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Abstract In this article, a variety of synthetic (or simulated) surfaces of various
morphologies of thin films and their fractal analyses are presented. Similar scaling
factors have been used to generate the synthetic images in GwydionTM software.
The surfaces are based on the actual morphologies arising from various thin film
deposition techniques. Using actual thin films of CdTe deposited by radio-frequency
(RF) sputtering technique, we have successfully shown that the fractal analyses on
the synthetic surfaces can be used to explain, theoretically, the development and self-
affinity of various thin films.Based on this validation, the results of fractal analyses on
differentmorphologies of thin filmswere generated using different fractal methods in
Gwydion software. The methods used here include Minkowski functionals, height-
to-height correlation, areal autocorrelation, and power spectral density functions. The
article will be a good resource for explaining the fractal behavior and morphology
of thin films arising from different deposition methods.
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1 Introduction

During the deposition process of thin films, there are different morphologies of
structures formed depending on the deposition type, process parameters, films, and
substrate types [1]. Scanning probe microscopy (SPM) techniques such as atomic
force microscope (AFM) are used to study the surface morphology of various thin
films and coatings [2–5]. The micrographs obtained from the SPM techniques are
used to undertake roughness analyses such as statistical [6, 7] and fractal measure-
ments [8–12]. Fractal methods offer a detailed description of lateral roughness [13]
and the nature of the surface morphology can be captured [14]. Although fractal
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characterization is widely reported in the literature [6, 12, 15–17], very little is
reported on the relationship between the fractal measurements and the structure
type/morphologies of the films. Therefore, the purpose of this work is to generate
fractal profiles (using Minkowski functionals, autocorrelation, height-height corre-
lation, and power spectral density functions) based on theoretical/synthetic surfaces
of different morphologies.

2 Methods

Various synthetic morphologies of thin films were produced using scanning probe
microscopy (SPM) software Gwydion (Fig. 1). These films depict different struc-
tural types that are obtained through various deposition processes such as sputtering
and thermal spray. These structures are columnar, ballistic, fibrous, and pile-up struc-
tures (Fig. 1) and represent some of the most commonmorphologies observed in thin
films. The process of creating synthetic (simulated) surfaces in Gwydion software
are described elsewhere [18, 19]. All the images were single-layer, with a maximum

Fig. 1 Illustrating simulated surfaces of thin films consisting of various structural morphologies
a columnar b ballistic c fibrous, and d pile-up particles. Corresponding 3D images are shown as
insets on each image
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Fig. 2 Flowchart illustrating the image and fractal analyses procedures

height of 1000 nm and a scan area of 3 × 3 µm2. The fractal analyses of the simu-
lated AFM images were undertaken according to the flowchart in Fig. 2. To validate
the simulated fractal analyses, fractal values of a typical columnar AFM of CdTe
thin films sputtered on glass substrates (Fig. 3) were computed and compared to
the simulations. This process was iterative until comparable results were obtained
(e.g., Fig. 4). Subsequently, all computations were conducted for the other simulated
structure and results presented in Table 1.

3 Results and Discussions

The results of the fractal analyses of the simulated AFM surfaces of thin films are
presented in Table 1. A short description of the results in Table 1 is as follows:

• Minkowski connectivity (X): Negative values dominate the X for columnar, bal-
listic, and fibrous structures whereas positive dominates for pile-up particles. The
profiles vary with the type of structures.

• Minkowski boundary: There are significant differences; while columnar and bal-
listic tend to nearly Gaussian profiles, the maximum values of boundary lengths
for fibrous, and pile-up are skewed right and left, respectively.

• Minkowski volume: The profiles for columnar, ballistic and pile-up particles are
symmetrical aboutV =0.5, and exhibit S-shape [11, 20, 23]. Thefibrous structures
are asymmetrical and exhibit quarter-circle shaped Minkowski volume.

• Power spectral density: For columnar surface structures, the profile has a flat
region at low frequencies and linearly decreasing PSD at high frequency with
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Fig. 3 a SEM micrograph along the cross-section of CdTe thin films deposited by RF magnetron
sputtering. The white arrows show columnar structures of the films perpendicular to the substrate.
b Showing the AFM image (scan area of 0.5× 0.5µm2) at the top surface of the films. Recalibrated
3D AFM image of the CdTe films. Obtained from Camacho-Espinosa et al. [22] under open access
creative commons

Fig. 4 Bi-logarithmic plots for power spectral density (PSDF) against the spatial frequency (k) of
(a) typical columnar CdTe films deposited on glass substrates and b the corresponding simulated
profile plot. The shapes of the profiles are comparable and are characterized by withers at the
transition region between the flat and the linear areas of the PSDF profile
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withers at the transition point [21, 24, 25]. For ballistic surfaces, the 1-d PSD
profile consists of flat region and nonlinearly decreasing PSD. The flat region is
not clear in fibrous surfaces whereas the pile-up surfaces have distinct flat and
linear regions at low and high spatial frequencies respectively.

• Areal autocorrelation (ACF): For columnar surfaces, the profile exhibit oscillatory
behavior with decreasing and increasing values at low and high shifts respectively.
The ACF decreases sharply to nearly r = 1.0 and then nearly remains constant
for ballistic and fibrous. For pile-up surfaces, the ACF profile exhibit U-shape.

• Height-height correlation (HCF): The HCF increases with r for all surfaces up
to certain values. At very large r (mounded surface characteristics) oscillatory
behavior of the profile was observed for columnar and ballistic surface structures
[12, 23, 25]. The flat region (at large r) is not distinct for ballistic surfaces. The
HCF decreases at nearly constant r at the end of the flat region for columnar and
pile-up surfaces.

4 Conclusion

The profile plots of themost common fractal analyses of thin film surfaces of different
synthetic morphologies have been presented. The surfaces were generated using
Gwydion software and a typical validation of the columnar structure showed that the
software provides a good approximation of deposited films. Profiles of Minkowski
functionals, autocorrelation, height-height correlation and power spectral density
functions of the synthetic morphologies (columnar, ballistic, fibrous and pile-up
particles) presented in Table 1 will be a useful reference in relating the fractal results
to the films’ deposition techniques and conditions.
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