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Abstract Piezoelectric Actuators are devices that convert electrical energy into
a mechanical displacement or stress by a phenomenon known as Piezoelectric
Effect. These crystals generate energy when mechanical stress is applied. This paper
reviews the application of piezoelectric actuators in vibration suppression of flexible
lightweight structures. Feedback control strategies are used for suppressing periodic
and aperiodic vibrations. Negative velocity feedback and positive position feedback
are two such common strategies employed for controller design. A finite element
is defined for modelling of a uniform cantilever beam and a thin, flexible plate.
The appropriate controller frequency is obtained by modal analysis, for monomodal
vibration control.
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1 Introduction

Lightweight flexible structures are used in aircraft, bridges, robot manipulators, large
space structures, buildings, etc. Vibrations in any static structures are undesirable,
as they induce stress in various structural elements. To reduce the stresses induced
by high amplitude vibrations, damping, isolation or any other cancellation method
is introduced in these structures. Damping will remove vibration energy, in the form
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of heat. Isolation protects a piece of equipment, by absorbing the mechanical energy
from the system.

The two fields to look upon are the applications of smart materials and the adop-
tion of various control techniques for active vibration suppression. Researchers have
used smart materials such as Shape Memory Alloys (SMA) [1], Magnetorheological
materials [2], Electrorheological materials [3], piezoelectric transducers, etc. Piezo-
electric materials are suitable for use in structural vibration control because of (1)
fast response, (2) it does not generate a magnetic field during conversion of electri-
cal energy to mechanical motion. The most commonly used material as actuator is
PZT (Lead-Zirconate-Titanate) material due to the high electromechanical coupling
coefficient.

The piezoelectric materials can also be integrated with laminated composites.
However, the challenge faced is the selection of elements formeshing, while account-
ing for the compositemechanical and electrical properties of the laminate plies.Based
on the first-order shear theory (FSDT), a finite element is established to study the
effect of stretching-bending coupling of piezoelectric actuator pairs on system sta-
bility of smart composite plates. A simple FSDT can be adopted which is similar to
classic plate theory and uses a smaller number of unknowns [4]. Alternatively, the
analysis can be performed by using a conventional beam or plane stress element, and
the effects of the coupling terms can be translated as equivalent concentrated nodal
loads.

Velocity Feedback and Positive Position Feedback (PPF) are popularly known
control strategies in the classical control theory, due to their easy implementation.
The PPF strategy is implemented by using an idealized modal model (analysis
of dynamic properties of the system under the frequency domain) of an actuated
structure. Lagrange’s equations of motion are used to describe the behaviour of the
system.

2 Need of Damping in Non-collocated Systems

Collocated control stands for the use of actuator and sensor on a structure when
they are physically located at the same place and are energetically conjugated [8].
Studies conducted show how the zeroes migrate when the sensor moves away from
the actuator. With the displacement of the sensor along beams with specific bound-
ary conditions, pair of imaginary zeroes will reach infinity and then move towards
origin along the real axis. This is known as non-minimum phase and it signifies
non-collocated control systems.

Lead compensators produce sinusoidal output with phase lead and this compen-
sates the undesirable phase lag caused by the poles, in the form of imaginary zeroes.
However, they provide damping to all flexible modes. Notch filter is used along with
lead compensator to introduce two zeroes alongside the flexible poles. It reduces the
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effect of flexiblemodes in non-collocated control. In case of systemswith large uncer-
tainties, notch filter is not useful as they are tuned to a single frequency and it is not
subjected to parameter uncertainty. Therefore, damping is critical for non-collocated
systems.

3 Direct Velocity Feedback

If a load is to be moved by means of a motor, the common control method used
is Proportional (P) control. It will produce system output proportional to the dis-
placement required and will oscillate about the steady-state value for some time. By
using Proportional-Derivative (PD) control, faster response with fewer oscillations
is obtained, as compared to P control. The alternative to this method is to use a sec-
ond feedback loop which returns the rate at which displacement is changing. This is
known as velocity feedback.

The governing equation of motion is obtained by using Hamilton’s variational
principle

M
..
x +C

.
x +Kx = f. (1)

where M, C and K denote the mass, damping and stiffness matrices, respectively,
and f stands for the perturbation. Let ẏ be a set of velocity measurements

ẏ = BT ẋ . (2)

where B is the influence matrix of dimensions (n × m). The damping matrix C =
BGBT . The velocity distributions which belong to the null space of BT will remain
undamped.

4 Positive Position Feedback (PPF)

This control strategy is appropriate for structures equipped with strain actuators and
sensors. It uses a second-order filter. The position response received from the second-
order auxiliary system is passed through a second-order filter and force feedback is
given to the structure.

For designing the PPF controller, an idealized modal model of a flexible structure
is considered. Either Lagrange’s [3] or Hamilton’s [4, 7] equation can be used to
formulate the equation of motion for the structure. The Lagrange equation is

d

dt

(
∂(T − V )

∂q̇

)
+ ∂(T − V )

∂q
= Q. (3)
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where ψ is the displacement of the structure; ζs and ωs are the damping ratio and the
natural frequency of the structure; η is the displacement of the compensator, ζc and
ωc are the damping ratio and frequency of the compensator; KPPF is the feedback
gain. Shan et al. [5] described the state-space form of the equations describing the
PPF technique.

When a general case of Multiple Input Multiple Output (MIMO) system with m
collocated actuator/sensor pairs and an array of l second-order filters.

M
..
x +Kx = Bu (4)

y = BT x (5)

v̈ + β f v̇ + �2
f v = Ey (6)

The structure, sensor and controller equations are (4), (5) and (6) respectively,
where β f = diag(2ξf ωf ),�2

f = diag(ω2
f ) andG= diag(gi), (gi) > 0.G is the diagonal

positive gain matrix. E is a rectangular matrix (l × m) which allows the number of
filters to be greater than actuators (l modes are dampened by m actuators).

There are three situations regarding the comparison of structural frequency and
compensator natural frequency [5],

Active Flexibility: ζs < ζc (due to decrease in stiffness term).
Active Damping: ζs = ζc (due to increase in damping term).
Active Stiffness: ζs > ζc (due to increase in stiffness term).

The robustness of the controller increases by increasing ζc as this ensures larger
region of active damping.

5 Structure Modelling

5.1 Uniform Cantilever Beam

For system modelling, the flexible structure (for example, robot-arm manipulator
[5]) bonded with piezoelectric (PZT) actuators is modelled as a uniform cantilever
beam. It is assumed as a Euler-Bernoulli beam. The Euler-Bernoulli equation gives
a relation between the deflection of the beam and the applied load

d2

dx2

(
E I

d2w

dx2

)
= q. (7)

where w(x) is the curve that defines the deflection of the beam. q is the force per unit
length. E is the elastic modulus and I is the area moment of inertia.
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Let w(x, t) be the deflection of the beam in the z-direction at point x and at time
t. The deflection can be represented as

w(x, t) =
m∑

k=1

φk(x)qk(t) = φ(x)q(t). (8)

where φk(x) is the shape function, qk(t) is generalized modal coordinate and k
represents the mode number (k = 1, 2, 3, …, m). A shape function is a function that
is used in finite element simulations to combine the solutions obtained at the mesh
nodes. Generalized modal coordinates are obtained by a coordinate transformation,

{q(t)} = [ψ]{p(t)}. (9)

where [ψ] is the modal transformation matrix and p(t) denotes the principal coor-
dinates. Such a transformation decouples the coupled set of equations of motion (of
higher DOF) so that they can be solved using the single DOF approach.

5.2 Plate

A smart isotropic finite element [7] is used for vibration control of composite
plate with bonded piezoelectric PZT actuators. Piezoelectric materials have two
constitutive laws, one which is used for sensing and the other for actuation.

{σ }3×1 = [C](E)
3×3{ε}3×1 − [e]3×2{E}2×1. (10)

{D}2×1 = [e]T2×3{ε}3×1 + [μ](σ )
2×2{E}2×1. (11)

where [C] is the mechanical constitutive matrix measure at constant electric field.
The above equation can be combined into a single equation

{ε} = [S]{σ } + [d]{E}. (12)

where [S] is the compliance matrix and [d] is the electromechanical coupling matrix.
This law is extensively used for vibrational control, noise control and shape control.

PPF strategy and strain actuators/sensor pairs are relied on for active damping.
Nearly collocated configuration of actuator and sensor is preferred as they guarantee
alternating poles and zeroes at low frequencies. Precise tuning of the controller
natural frequency on the targeted mode is necessary.

Taking an example, a 4-noded isoparametric FE element can be formulated,
assuming 2-D plane stress.

At each node, there are three DOFs: (1) u(x, y, t), (2) w(x, y, t) (Displacement
components), (3) Ez(x, y, t) (Electrical degree of freedom in z-direction).
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Fig. 1 a 4-noded isoparametric element. b Coordinate transformation into square of order 2

u(x, y, t) =
4∑

i=1

Ni (ζ, η)ui (t). (13)

w(x, y, t) =
4∑

i=1

Ni (ζ, η)wi (t). (14)

Ez(x, y, t) =
4∑

i=1

Ni (ζ, η)Ezi (t). (15)

where Ni stands for shape function at the node; ζ and η are the isoparametric coor-
dinates and are the nodal mechanical DOFs. Through a Jacobian transformation, the
actual geometry is mapped to a square of order 2 defined in the generalized coordi-
nate system (Fig. 1b). First-order Shear Theory is used to obtain the following linear
strain displacement relations

u(x, y, z, t) = u0(x, y, t) + zβx (x, y, t). (16)

v(x, y, z, t) = v0(x, y, t) + zβy(x, y, t). (17)

w(x, y, z, t) = w0(x, y, t). (18)

The nodal displacement vector is usedwith shape function to obtain reduced strain
vector. The governing equation is thus found.
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6 Modal Analysis

Modes are inherent properties of a structure. They are characterized by their natural
frequency and modal shape. Modal analysis is needed to find out the modal param-
eters of the structure [6]. This method is an important tool for vibration diagnosis,
analysis and control.

Modal analysis is carried out in Ansys workbench. The cross-section of a can-
tilever beam is created and then extruded up to a given depth. The parameters given in
Table 1 are taken into account. The beam is automatically meshed and fixed support
constraint is applied to one end of the beam. The displacement should be zero at the
fixed support.

From the above observations (Fig. 2; Table 2), it can be concluded that the con-
venient mode shape to control is the first mode. Thus, a PPF control system can
be developed using the first mode frequency, 9.8491 Hz as the controller frequency
[6]. An accurate value of the controller is obtained, by reducing the mesh size and
defining the mesh by commands.

Table 1 Aluminum alloy
beam parameters

Density 2700 kg/m3

Young’s modulus 68.9 × 109 (Pa)

Size 0.5 × 0.04 × 0.003 m3

Fig. 2 Mode shapes: a first mode, b second mode, c third mode, d fourth mode, e fifth mode



720 A. Mallick et al.

Table 2 List of mode frequencies

7 Conclusion

Control laws have guaranteed stability due to the interlacing of the poles and zeroes
of the structure along the imaginary axis. Stability is ensured for collocated pairs
of sensors and actuators. If they are not collocated or the location of the actuator-
sensor pair is such that controllability and observability areweak, the systembecomes
unstable [8]. It has been studied that two such control methods viz., negative velocity
feedback and positive position feedback have been developed in the field of vibration
suppression.

8 Scope for Future Work

The challenge faced by each of these control methods is that they do not account
for unknown disturbances. Unknown or random disturbances are not accounted for
since controller design revolves around the suppression of periodic vibrations. A
general model has been proposed for disturbance rejection [9]. This model considers
unknown disturbances and responds excellently in adverse conditions. Until more
research is conducted, the proposed control method works the best.
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