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Abstract In current work the unsteady MHD flow behaviour of a fluid of grade
three between two infinitely long flat porous plates is scrutinized where the top lam-
ina is fixed and the lower lamina moves with a velocity which vary with respect to
time. Then the non linear p.d.e governing the flow behaviour are reduced to a system
of algebraic equations using fully implicit finite difference scheme and numerical
solution is obtained using damped-Newton method, which is then coded usingMAT-
LABprogramming. Influence on velocitywith variations inm,α, γ , Re is interpreted
through different graphical representation.

Keywords Fluid of grade three · Finite difference methodology · Magneto
hydrodynamics · Damped-Newton method

1 Introduction

Due to substantial use of non-Newtonian fluids in the field of industry and engi-
neering, the modern research has captivated the attention of number of researchers
in this field. A sole paradigm exhibiting every aspect of non-Newtonian fluids is
unobtainable, because of which different non-Newtonian models and constitutive
equations have been recommended. Second grade fluid model is one of the simplest
model which is capable of predicting normal stress differences, but lacks the shear
thinning and thickening property of the non-Newtonian fluids described by Joseph
and Fosdick [1] which became a motivation for many researchers like Fosdick and
Rajagopal [2], Erdogan [3], Ariel [4, 5], Sahoo and Poncet [6], Nayak et al. [7, 8],
Awais [9], Samuel and Falade [10], Hayat et al. [11], Okoya [12].

Recently Carapau and Corria [13] have analysed the numerical solution of a third
grade fluid in a tube through a contraction. Using numerical simulation they analysed
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the unsteady flow over a finite set or a tube with performed contraction. Saadatmandi
et al. [14] used notion of Chebyshev polynomials and rational Legendre functions
for numerical solution. He used the specific features of RLC, ChFD techniques to
lessen the computation to a few algebraic equations and made a comparison between
the result obtained by this method to results obtained by other techniques which
manifested its competent accuracy and rate of convergence. Akinshilo [15] examined
the stationary flow and analysed the conduction of heat transfer of fluid of grade
three in the porous medium and solution was obtained to the arising non linear
differential equation using a domain method. He studied the influence of thermal
fluidic parameter on the flow and heat transfer, and discovered the inverse variation
of porosity term and velocity distribution, and direct variation of heat and temperature
distribution towards the upper plate and revealed its diverse application.

Here, we make an attempt to analyse the unsteady magnetohydrodynamics fluid
flow of grade three passing through two infinitely long porous plates. The bottom
plate moves instantaneously with a velocity that varies with time in its own plane
in the presence of a uniform magnetic field applied transversely. After attaining a
numerical solution for the problem, the influence of various physical parameters on
momentum boundary layers is audited through several graphs.

The technique used here is a powerful tool to solve strong non-linear complex
problem numerically for small as well as large values of elastic parameters and also
handle large system of equations with insignificant cost of time which might be
difficult to solve analytically. Also derivation of entire problem need not be required
for every change of boundary conditions. Due to the benefits of its mathematical
features and advantages of its application, the present study is worthwhile and has
not been analysed by any above cited researcher to the best of my knowledge.

A brief synopsis of our work is illustrated consecutively. Section2 is concerned
with framing of the problem. Section3 focuses on the solution strategy. Section4
reviews influence of several parameters on the velocity field, with magnetic field
being present, with the aid of graphical representations followed by the epilogue.

2 Devising the Problem

We choose x
′
along the lower wall and y

′
axis perpendicular to it. It is presumed that

the walls are unbounded either side of the x
′
axis, where the top lamina is stationary

and the lower plate moves suddenly with a velocity which vary with time.
Since both the plates are porous we represent the velocity of suction/injection by

a constant V.
We denote u

′
, v

′
, the constituents of velocity in the domain of flow at any point

(x
′
, y

′
) by

u
′ = u

′
(y

′
, t

′
) , v

′ = V . (1)

The cauchy stress P for an incompressible homogeneous and thermodynamically
accordant with fluid of grade three by Fosdick and Rajagopal [2] is given as
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P = −pI + μA1 + α1A2 + α2A
2
1 + β3(tr A

2
1)A1. (2)

where A1, A2 are first two tensors by Rivlin and Ericson [16].
μ = Viscosity.
α1, α2, β3 are the elastic parameters of second order and third order respectively.
p = Pressure.
I = Identity Tensor.

Under these physical assumptions and the stress components given in equation(2),
the equation of momentum for the fluid of grade three becomes

ρ

(
∂u

′

∂t ′ + V
∂u

′

∂y ′

)
= μ

∂2u
′

∂y ′2 + α1
∂3u

′

∂y ′2∂t ′ + 6β3
∂2u

′

∂y ′2
∂u

′

∂y ′

2

+ α1V
∂3u

′

∂y ′3 − σβ2
0u

′
.

(3)
Equation (3) is subjected to the subsequent conditions

t
′ = 0 : u ′ = 0, ∀y ′

,

t
′
> 0 : u

′ = Atn for y
′ = 0,

u
′ = 0, for y

′ = 1.

(4)

The dimensionless variables and parameters are introduced as:

u = u
′

A , y = y
′

√
ν1T

, t = t
′

T

Re = V
√
T√

ν1
, α = α1

ρν1T
, γ = 6β3A2

ρν2
1T

, m2 = σβ2
0 T
ρ

ν1 = μ

ρ
, is the kinematic viscosity, m is Hartmann number,

Re =Reynolds number,α = visco-elastic parameter, γ = third grade elastic parameter,
T = Time, σ = conductivity of the medium, β0 = Magnetic Strength, A = constant,
ρ = Density of fluid, μ = dynamic viscosity.

The above notations are employed in the equation of motion (3) to obtain the
following dimensionless form

∂u

∂t
+ Re

∂u

∂y
= ∂2u

∂y2
+ α

∂3u

∂y2∂t
+ Re α

∂3u

∂y3
+ γ

(
∂u

∂y

)2
∂2u

∂y2
− m2u. (5)

along with the subsequent conditions

t = 0 : u = 0 , ∀ y,

t > 0 : u = tn, for y = 0,

u = 0 when y = 1.

(6)
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3 Solution Strategy

The solution strategy is discussed as follows.

3.1 Finite Difference Method

Equation (5) is solved by implementing the crank-Nickolson type implicit finite
difference scheme for space discretization and time discretization with a uniform
mesh of space step h and time step k. The obtained difference scheme is represented
as

d j
1i = u j

i+1 − u j
i−1.

d j
2i = u j

i+1 − 2u j
i + u j

i−1.

d j
3i = −u j

i−2 + 2u j
i−1 − 2u j

i+1 + u j
i+2.

d
′ j
3i = −3u j

i−1 + 10u j
i − 12u j

i+1 + 6u j
i+2 − u j

i+3.

d
′′ j
3i = u j

i−3 − 6u j
i−2 + 12u j

i−1 − 10u j
i + 3u j

i+1.

We use the following notations for difference approximations for the derivatives
(ih, j�t), i = 0(1)N + 1 and j = 0(1)M − 1 as

∂u

∂t
≈ u j+1

i − u j
i

�t
.

∂u

∂y
≈ 1

4h
(d j+1

1i + d j
1i ).

∂2u

∂y2
≈ 1

2h2
(d j+1

2i + d j
2i ).

∂3u

∂y3
≈ 1

2h3
(d j+1

3i + d j
3i ) , i �= 1, N .

∂3u

∂y2∂t
≈ (d j+1

2i − d j
2i )

h2�t
. (7)

The third order derivative ∂3u
∂y3 is substituted by

1
2h3 (d

′ j+1
3i + d

′ j
3i ) and

1
2h3 (d

′′ j+1
3i + d

′′ j
3i )

at nodes (1, j�t), (N , j�t) respectively. The fully implicit finite difference scheme
used here is unconditionally stable and satisfy second order convergence in time as
well as in space.

Using the above differences for the partial derivatives, the governing velocity
equation is written as
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u j+1
i − u j

i

�t
+ Re

4h
(d j+1

1i + d j
1i ) = 1

2h2
(d j+1

2i + d j
2i ) + α

h2�t
(d j+1

2i − d j
2i )

+Re α

2h3
(d j+1

3i + d j
3i ) + γ

32h4
(d j+1

1i + d j
1i )

2(d j+1
2i + d j

2i ) − m2 u
j+1
i + u j

i

2
.

(8)

along with the subsequent conditions in discretized form are

u0i = 0, i = 0(1)N + 1,

u j
0 = ( j�t)n and,

u j
N+1 = 0, j = 1(1)M.

(9)

The approximate choice ofM ismade according to the algorithmgiven in Jain [17],
where the choice of N is made in such a way, to impose the boundary conditions at
infinity so that themodulus value of the difference between the two solutions obtained
by presuming the boundary conditions at infinity to hold at ((N + 1)h, j�t) and
((N + 2)h, j�t) successively, and their difference becomes less than a prescribed
error ε.

The system of non-linear equations for velocity (8) is solved using above men-
tioned numerical scheme, where the said method gives the quadratic convergent
result for sufficiently good choice of initial solution. For better choice of initial
velocity, equation of motion is arranged in tridiagonal form after making the param-
eter values α, γ, and m to zero in Eq. (8) and solution is obtained using special
form of Gaussian elimination method. For applying the damped-Newton method
we evaluate the residuals (Ri , where i ranges from 1 to N and the elements in

Jacobian matrix
(

∂Ri
∂u j

)
, i = 1(1)N and j = 1(1)M that are not equal to zero.

A new approximated solution is accepted as xk+1 =
(
xk + h

2i

)
for that i, where

i = min

(
j : 0 ≤ j ≤ jmax | ‖ residue (xk + h

2 j ) ‖
2

< ‖ residue(xk) ‖2
)
.

This ensures that the residual error decreases in each iteration, which guarantees
about the convergence of the scheme. The MATLAB coding is verified with the
existing result in Conte De Boor [18] and found exact upto fifth decimal place.

4 Results and Discussion

The flow characteristics for the concerned problem is investigated through several
graphs depicted in Fig. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

It is observed from Figs. 1 and 2 that the increase in the parametric values of the
Hartmann number (m) leads to increase in Lorentz force of the fluid, which causes
increase of resistance to the flow velocity and as a result velocity decelerates through
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Fig. 1 Influence on velocity
with variations in m when
α = 3, γ = 4, Re = 7

Fig. 2 Influence on velocity
with variations in m when
α = 3, γ = 4, Re = 8

Fig. 3 Influence on velocity
with variations in m when
α = 0, γ = 0, Re = 8
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Fig. 4 Influence on velocity
with variations in α when
γ = 4, Re = 8, m = 9

Fig. 5 Influence on velocity
with variations in α when,
γ = 4, Re = 8, m = 8

Fig. 6 Influence on velocity
with variations in α when
γ = 2, Re = 9, m = 8
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Fig. 7 Influence on velocity
with variations in γ when,
α = 3, Re = 8, m = 8

Fig. 8 Influence on velocity
with variations in γ when
α = 3, Re = 8, m = 8

Fig. 9 Influence on velocity
with variations in Re when
α = 3, γ = 3, m = 8
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Fig. 10 Effect on velocity
with variations in Re when,
α = 0.01, γ = 1, m = 7

out the flow field. A similar effect from Fig. 3 is also obtained for Newtonian fluid
i.e, when α and γ are considered as zero.

Visco-elasticity of the fluid rises, with increase of the visco-elastic parameter (α)
values, that gives rise to reduction of velocity in the entire flow field, for both less
and bigger values of α. When the values of elastic parameter α is small, the influence
of it on velocity is quite opposite, when damping magnetic strength value is 8 or less.

The effect of non-newtonian parameter γ on the velocity field is seen from Figs. 7
and 8. For large values of γ (γ > 1), a sudden rise in the velocity field is observed
near the plate, but there is a decrease in velocity through out the domain field, with an
increase in the parametric value γ . For γ < 1, with other parameters kept fixed, the
decreasing effect on velocity seems to be insignificant near the plates and gradually
becomes noticeable at a considerably far distance from the plate and again appears
to diminish.

Figure9 shows that velocity profile gradually slows down with increase in the
suction parameter Re. A similar behaviour is observed for smaller values of Re,
shown in Fig. 10, which is obtained by reducing values of elastic parameters as well
as magnetic factor.

5 Conclusion

The present study is concerned with the numerical study of a time- dependent flow of
a third grade fluid passing through two infinite parallelly placed plates is investigated
with the magnetic field being present. Using above mentioned scheme the governing
constitutive equation of motion is converted into system of non-linear algebraic
equations and is solved numerically using highly convergent aforesaid method and
presented graphically.
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The principal and noteworthy finding of this investigation is that the increase in
Hartmann numberm substantially decrease velocity profile, however the fluid shows
newtonian or non-Newtonian behaviour. With increase of Re, α, and γ slow down
the fluid motion both for large and small values of the parameters. For very small
values of visco-elastic parameterα, whenwe decrease the value ofmagnetic strength,
a reduction in the fluid viscosity is noticed which minimises the resistance to flow
velocity, resulting in remarkable gradual enhancement in velocity of the fluid. Hence
it is apparent that velocity profile is controlled with proper variations of parameters
α and m.
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