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Preface

The Department of Mathematics, School of Advanced Sciences, Vellore Institute of
Technology (Deemed to be University), Vellore, Tamil Nadu, India had organized
the International Conference on Applications of Fluid Dynamics—2018 (ICAFD
2018) during December 13-15, 2018 in association with University of Botswana,
Botswana and Society for Industrial and Applied Mathematics (SIAM), USA. The
major objective of ICAFD 2018 was to promote scientific and educational activities
towards the advancement of common man's life by improving the theory and
practice of various disciplines of applied mathematics and mechanics. This pres-
tigious conference was partially financially supported by the Council of Scientific
and Industrial Research (CSIR), India. The Department of Mathematics has 110
qualified faculty members and 90 research scholars, and all were delicately
involved in organizing ICAFD 2018 grandly. In addition, 30 leading researchers
worldwide served as an advisory committee member for this conference. Overall
more than 450 participants (Professors/Scholars/Students) enrich their knowledge
in the wings of applied mathematics and mechanics.

There were 11 eminent speakers from overseas and 10 experts from various
states of India had delivered the keynote address and invited talks in this confer-
ence. Many leading scientists and researchers worldwide submitted their quality
research articles to ICAFD. Moreover, 171 original research articles were short-
listed for ICAFD 2018 oral presentations authored by dynamic researchers from
various states of India and several countries around the world. We hope that ICAFD
will further stimulate research in applied mathematics and mechanics; share
research interest and information, and create a forum of collaboration and build a
trust relationship. We feel honored and privileged to serve the best recent devel-
opments in the field of applied mathematics and mechanics to the readers.

A basic premise of this book is that the quality assurance is effectively achieved
through the selection of quality research articles by the scientific committee that
consists of more than 100 reviewers from all over the world. This book comprises
the contribution of several dynamic researchers in 90 chapters. Each chapter
identifies the existing challenges in the areas of differential equations, fluid
dynamics and Numerical methods and emphasizes the importance of establishing
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new methods and algorithms to addresses the challenges. Each chapter presents a
selection of research problem, the technique suitable for solving the problem with
sufficient mathematical background, and discussions on the obtained results with
physical interruptions to understand the domain of applicability. This book also
provides a comprehensive literature survey which reveals the challenges, outcomes
and developments of higher level mathematics and mechanics in this decade. The
theoretical coverage of this book is relatively at a higher level to meet the global
orientation of mathematics and its applications in mechanical engineering.

The target audience of this book is postgraduate students, researchers and
industrialists. This book promotes a vision of applied mathematics as integral to
mechanical engineering. Each chapter contains important information emphasizing
core mathematics, intended for the professional who already possesses a basic
understanding. In this book, theoretically oriented readers will find an overview of
mathematics and its applications. Industrialists will find a variety of techniques with
sufficient discussion in terms of physical point of view to adapt for solving the
particular application based mathematical models. The readers can make use of the
literature survey of this book to identify the current trends in mathematics and
mechanics. It is our hope and expectation that this book will provide an effective
learning experience and referenced resource for all young mathematicians and
mechanical engineers.

As Editors, we would like to express our sincere thanks to all the administrative
authorities of Vellore Institute of Technology, Vellore; for their motivation and
support. We also extend our profound thanks to all faculty members and research
scholars of the Department of Mathematics; and all staff members of our institute.
We especially thank all the members of the organizing committee of ICAFD 2018
who worked as a team by investing their time to make the conference as a great
success one. We thank the national funding agency, Council of Scientific and
Industrial Research (CSIR), Government of India for the financial support that
contributed towards the successful completion of this international conference. We
express our sincere gratitude to all the referees for spending their valuable time to
review the manuscripts which led to substantial improvements and sort out the
research papers for publication. We are thankful to the project coordinator and team
members from Springer Nature for their commitment and dedication towards the
publication of this book. The organizing committee is grateful to Dr. Akash
Chakraborty, associate editor applied sciences, engineering and physics, Springer
for his continuous encouragement and support towards the publication of this book.

Editors
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Deriving Shape Functions for a 20-Nodal m
Tri-quadratic Serendipity Element L
and Verified

P. Reddaiah

Abstract In this paper, I derived shape functions for a 20-nodal tri-quadratic
serendipity element which consists of eight corner nodes and twelve mid-side nodes
using natural coordinate system. I derived two shape function verification conditions,
first verification condition sum of all the shape functions is equal to one, and second
verification condition each shape function has a value of one at its own node and zero
at all other nodes. For mathematical computations, I used Mathematica 9 Software.

Keywords 20-nodal tri-quadratic serendipity element - Natural coordinate
system - Shape functions

1 Introduction

Usage of Lagrange type of elements is very limited because it consist interior nodes.
Due to this limitation. serendipity type of elements has got more importance, because
in this type of elements interior nodes are not needed. Serendipity element means
nodes are located on the boundary only. Shape functions usage has many applica-
tions in solid mechanics problems, fluid mechanics problems, electrical engineering
problems, and heat flow problems. If node s is located in the boundary of the element
such type of elements are called serendipity elements.

2 Geometrical Description

The 20-nodal tri-quadratic element is shown in Fig. 1. This element consists of eight
corner nodes and twelve mid-side nodes. The eight corner nodes are 1, 2, 3, 4, 5, 6,
7 and 8, and twelve mid-side nodes are 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and
20 as shown in Fig. 1.
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Fig. 1 Schematic diagram of a 20 nodal tri-quadratic serendipity element

3 Deriving Shape Functions for a 20-Nodal Tri-quadratic
Serendipity Element

In Fig. 1, for displacement function u, v and w, there are 20 nodal values. In
displacement function, there should be only 20 constants.

u=ay+oé+an+al +asExn) +ag(n*) +as(§ x0)
+osE” +oon” + 00 +oni (& xnx0) +an(€ xn?) +a(E % 07)
+ana(n*E%) +ais(n* ¢%) + aie(¢ % &%) + a17(¢ % 1)
+aig(E2xnx &) +ag(n® * & x &) +axn(E *n*c?)

Substituting nodal coordinates 1(—1, —1, —1), 2(1, —1, —1) ... 20(—1, —1, 0) in
u we get nodal velocities uy, u; ..., upy and writing in matrix form.
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u 11 —-1-11 1 1 111 =1-1—-1-1-1-1-11 1 1 a
w 11 =1—-1—-11 11111 1 1 =1—-1-1-11 —1-1 @
u3 11 1 =11 —1—-1111-11 11 1 —=1—-1-1-11 a3
us 1-1 1 =1-10 1 1111 —=1—-11 1 -1-1-11 -1 o
us 1—-1-11 1 =1—-11111 —=1-1—-1-11 1 —1-11 as
us 11 =11 —=1—-1 1 111=11 1 1-11 1 11 —1I a6
u 11 1 1 0 1 11111 11 1 1 1 1 11 o
us 1-11 1 0 1 —1111—-1-1-11 111 1 —1-1 ag
uo 11 0-100-110100 1 0 0-100 0 0 oo
P 10 1 -10-10001000010-1020 0 a0
i 1-10-10 0 11010 0-100-1020 0 0 o
U 10-1-10 1 00110 00 0—-10-=1020 0 an
U3 1101 00 1101001 001000 0 a3
Ui 10 1 101 00110 000101000 o
us 1-10 1 0 0-11010 0-1001 00 0 0 ais
e 10-110-100110000-10120 0 0 a6
Uy 11 -10-10 011001 0-1000 00 0 a7
s 11 101 001100 1 0 1 00 00 0 0 s
uio 1-11 0-10 01100 -101 000 0 0 0 a1
Uz 1-1-10 1 0 01100 1010000 0 0] o]

{a} = [A] ul,

where {u}. is the vector of nodal displacements in & directions, [A] is the 20 x 20
matrix.
{ar} is the vector of generalized coordinates (constants in polynomials).
Calculating inverse of A using Wolfram Mathematica 9

1-1-1-11 1 1 111-1-1-1-1-1-1-11 1 1
11 -1-1-11-111111 1 -1-1-1-11 —=1-1
11 1 -11-1-1111-11 1 1 1 —-1—-1-1-11
1-11 -1-10 11111 -1-11 1 -1-1-11 -1
l1-1-1r1 1 -1 -11111~-1-1-1-11 1 —-1-11
11T -1r1 -1t-1r1111-11 1 -1-11 1 -11 -1
111 10 1 11111 1 1 1 1 1 1 1 1 1
l1-r1. 10 1 -1111-1-1-11 1 1 1 1 —1-1
11 0-1r0 0 ~-11010 0 1 0 0-10 0 0 0
A 10 1 -10-100010 0 0 01 0-10 00
1-1r0-1r0 0 117010 0 -10 0-10 0 0 0
10 ~-1-1r0 1 00110 0 0 O0~-10-10 00
11 01 0 0 117010 0 1 0 O 1 O O O O
10 1 1 0 1 00110 0 O O 1 O 1 0 0 O
l1-r0 1 0 0-11010 0-10 01 0 0 0 O
10-1r1 0-1r001170 0 0 0-101 0 0 0
11 -10-10 01100 1 0-10 0 0 O0 O O
11 10 1 0 01100 1 0O 1 O O O O O O
1-1r1 0 -1r0 01100 -10 1 0 0 0 0 0 O
l1-1-10 1. 0 01100 -10-10 0 0 O O O

Inverse[A]//MatrixForm
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1 ¢ n n & %6 npE 1,
ng__Z_Z+Z_T+Z__4 _4_Z§77§ (18)

L2 n On & %% nE 1,
N19——Z——4+Z—T—Z+T_Z+Z§n$ (19)

, & o n & % mE 1,
N20.—_——Z—Z+_4 _Z+_4+4_Z§775 (20)

4 Verification

First Verification Condition
Sum of all the shape functions is equal to one

N1+ Ny + N3+ Ny + Ns + Ng + N7+ Ng + Nog + Ny
+ Ni1 + Niz + Ni3 + Nig + Nis + Nig + Ni7 + Nig + Nig + Nog

Output
1

IInd Verification Condtion
Each shape function has a value of one at its own node and zero at other nodes.
Node 1

Substituting

E:=—1

n:=-—1

¢ := —1 Values in Equations 1-20 we get N, to N, values
N; Na N3 Ny Ns Ng N7 Ng Ng Nyjg Ny Ny» Ni3 Nig Nis Nyg N7 Nig Nig Nag
Output
10000000000000000000
Node 2
Substituting

E:=1

n:=-—1

¢ := —1 Values in Equations 1—20 we get N| to N,o values

N; N3 N3 Ny N5 Ng N7 Ng No Njg Ny Ny Ni3 Nig Nijs Njg Ni7 Nig Nig Nog
Output
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01000000000000000000

Node 3
Substituting
E:=1
n:=1
¢ := —1 Values in Equations 1—20 we get N| to N, values
N N2 N3 Ny N5 Ng N7 Ng No Njg Nij Ni2 Ni3 Nig Niys Nyg Ny7 Nig Njg Nog
Output
00100000000000000000
Node 4
Substituting
E:=-—1
n:=1
¢ := —1 Values in Equations 1—-20 we get N; to N, values

N; N3 N3 Ny N5 Ng N7 Ng No Njg Ny Ni2 Ni3 Nig Nis Nijg Ni7 Nig Nig Nog

Output
00010000000000000000
Node 5
Substituting

& =-1

n:=-1

¢ := 1 Values in Equations 1—-20 we get N to Njo values

N; No N3 Ny Ns Ng N7 Ng Ng Njg Ny Nyp Ni3 Nig Nis Nyg N7 Nig Nig Nog
Output

00001000000000000000

Node 6

Substituting

E:=1
n:=-—1
¢ := 1 Values in Equations 1—20 we get N to Ny values

N; N N3 Ny Ns Ng N7 Ng Ng Njg Ny Nya Ni3 Nig Nis Niyg N7 Nig Nig Nag
Output

00000100000000000000

Node 7

Substituting
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E:=1

n:=1

¢ := 1 Values in Equations 1—20 we get N to N,y values
N; No N3 Ny Ns Ng N7 Ng Ng Nyjg Ny Nya Ni3 Nig Nis Nyg N7 Nyg Nig Nag
Output
00000010000000000000
Node 8
Substituting

&E:=-1

n:=1

¢ := 1 Values in Equations 1—-20 we get N; to Njo values
N; N2 N3 Ny N5 Ng N7 Ng Ng Njg Ny Nia Ni3 Nig Nis Nig N7 Nig Nig Nag
Output
00000001000000000000
Node 9
Substituting

E:=1

n:=0

¢ := —1 Values in Equations 1—20 we get N| to N, values
N N2 N3 Ny N5 Ng N7 Ng No Nyjg Nij Niz2 Ni3 Nig Nijs Nyg Ni7 Nig Nig Nog
Output
00000000100000000000
Node 10
Substituting

E:=0

n:=1

¢ := —1 Values in Equations 1—-20 we get N; to N, values
N; No N3 Ny N5 Ng N7 Ng Ng Njg Ny Nia Ni3 Nig Nis Nyg N7 Nig Nig Nag
Output
00000000010000000000
Node 11
Substituting

E:=-1

n:=0

¢ := —1 Values in Equations 1—-20 we get N| to N, values
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N; N2 N3 Ny N5 Ng N7 Ng No Nig Nij Ni2 Ni3 Nig Niys Njg Nj7 Nig Nig Nog
Output

00000000001000000000

Node 12

Substituting

E:=0
n:=—1
¢ := —1 Values in Equations 1—-20 we get N| to N values

N; N2 N3 Ny N5 Ng N7 Ng Ng Njg Ny Nia Ni3 Nig Nis Nig N7 Nig Nig Nag
Output

00000000000100000000

Node 13

Substituting

]
(e

§:
n:
¢ := 1 Values in Equations 1—-20 we get N to Ny values

N; No N3 Ny Ns Ng N7 Ng Ng Njg Ny Nyp Niz Nig Nis Nyg Ni7 Nig Nig Nag
Output

00000000000010000000

Node 14
Substituting

i
- o

§:
n:
¢ := 1 Values in Equations 1—20 we get N to N, values

N; N N3 Ny Ns Ng N7 Ng Ng Njg Ny Nyp Ni3 Nig Nis Nyg N7 Nig Nig Nag
Output

00000000000001000000

Node 15
Substituting

0
1 Values in Equations 1—-20 we get Nj to N, values

&=
n:
¢ =
N; N2 N3 Ny N5 Ng N7 Ng No Nig Ny Ni2 Ni3 Nig Nis Njg Ni7 Nig Nig Nog

Output
00000000000000100000



P. Reddaiah

Node 16
Substituting

E:=0
n:=-—1
¢ := 1 Values in Equations 1—-20 we get N to Ny values

N N2 N3 Ny N5 Ng N7 Ng Ng Nig Nij Ni2 Ni3 Nig Nis Njg Nj7 Nig Nig Nog
Output

00000000000000010000

Node 17

Substituting

1
-1
= 0 Values in Equations 1—20 we get Ny to N, values

&
n:
¢

N; No N3 Ny Ns Ng N7 Ng Ng Njg Ny Ny» Ni3 Nig Nis Nyg Ni7 Nig Nig Nag
Output

00000000000000001000

Node 18

Substituting

Il
O = =

£:
n:
¢ Values in Equations 1—-20 we get N| to N, values

N; N N3 Ny Ns Ng N7 Ng Ng Nyjg Ny Nyp Ni3 Nig Nis Nyg N7 Nig Nig Nag
Output

00000000000000000100

Node 19
Substituting

E:=-1

n:=1

¢ := 0 Values in Equations 1—20 we get N to N, values

N; No N3 Ny Ns Ng N7 Ng Ng Njg Ny Nja Ni3 Nig Nis Nyg N7 Nyg Nig Nag
Output

00000000000000000010

Node 20
Substituting
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=—1
¢ := 0 Values in Equations 1—20 we get N to N values

E:=-1
n:

N; N3 N3 Ny N5 Ng N7 Ng No Njg Nij Ny Niz Nig Nijs Njg Ni7 Nig Nig Nog
Output
00000000000000000001

5 Conclusions

1. Derived shape functions for 20 nodal tri-quadratic serendipity element.

2. Verified first verification condition sum of all the shape functions is equal to one.

3. Verfied second verification condition at each shape function of node value is
equal to one and zero at remaining nodes.
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Cosinusoidally Fluctuating Temperature m
and Chemical Reacting Effects L
on MHD-Free Convective Fluid Flow

Past a Vertical Porous Plate with Hall,

Ion-Slip Current, and Soret

K. S. Balamurugan, K. V. B. Rajakumar, and J. L. Rama Prasad

Abstract In this paper, an exact solution and cosinusoidally fluctuating temperature
of unsteady MHD-free convective flow through an infinite moving vertical permeable
plate with hall, ion-slip current, and chemical reaction as well as soret effects has
been analyzed. The exact solution of the governing equations was attained using
perturbation method. The influence of dissimilar parameters on velocity, temperature
as well as concentration fields is stated graphically. In this investigation, it was
conclude that as rise in hall and ion-slip current parameter leads to rise in velocity, but
contrast effect was occurred in case of heat source and Prandtl number. In addition,
concentration and velocity are declined with rise in Reynolds number and soret
parameter.

Keywords Hall and Ion-slip parameter - MHD - Perturbation - Chemical
reaction - Radiation

1 Introduction

The noticeable fact heat and mass transfer on MHD have been gaining attention of
huge number of researchers owing to its practical relevance’s in manufacturing as well
as science and technology, fabric reprocessing mechanized operations, geophysical
as and planetary science, etc. Now the following literature has been presented a lot of
researchers related to soret, chemical reaction, Radiation along with heat and mass
transform but hall and ion-slip current was not worth mentioning.
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Mathew et al. [1] have presented the consequence of spanwise fluctuation and heat
and mass transform on MHD flow passes during porous medium in a perpendicular
channel using thermal radiation along with chemical reaction. In this investigation,
it has been found that the velocity turns down by means of the accelerated values of
Prandt]l number in addition to radiation parameter. Das [2] have examined spanwise
cosinusoidally fluctuating as well as non-Newtonian fluid model on MHD convective
double diffusion flow through a hot non-parallel absorbent plate through heat absorp-
tion. In this paper, it was found that the governing equations are solved analytically.
Ram et al. [3] have discussed the importance of cosinusoidally fluctuation heated per-
meable plate on MHD-free convective flow by means of radiating as well as reacting
fluid. In this analization, it was observed that the outcomes indicate diminished veloc-
ity with the acceleration of magnetic field. Garg et al. [4] have reported spanwise
cosinusoidal temperature and heat radiation effects on hydromagnetic forced as well
as natural convective flow past a hot non-parallel channel by means of a porous
medium. Ram et al. [5] have presented consinusoidally fluctuating temperature on
MHD-free convective fluid flow. In this research paper, it was concluded that fluctu-
ating the skin friction as well as Nusselt number by means of the variation in physical
parameters. In addition, it was found that velocity as well temperature diminished
by means of the accelerated of Prandtl number along with thermal radiation. Anu-
radha [6] has discussed the impact of cosinusoidally fluctuating temperature on MHD
oscillatory natural convective fluid flow during the boundless non-parallel permeable
plate. In the above, all investigations hall and ion-slip current were not taken into
consideration in the equation of momentum. Singh et al. [7] obtained exact solu-
tion of MHD-free convective flow with spanwise fluctuation on second grade fluid
past porous medium non-parallel absorbent channel by means of slip condition as
well as radiation. Singh et al. [8] have illustrated that sway of hall current on MHD
spanwise fluctuating free convective flow during porous medium in a non-parallel
porous channel by means of radiation. In this examination, the results indicate that
more rapid flows show the way to additional skin friction and for sluggish flows skin
friction is fewer. Garg et al. [9], Chand et al. [10], and Krishna et al. [11] studied
analytically, the influence of spanwise sinusoidal fluctuation on MHD forced and
natural convection flow past in a non-parallel porous channel in presence of injec-
tion/suction by means of thermal radiation. Hamza et al. [12] concluded that the fluid
velocity declined by means of a rise in magnetic field, porous parameters as well as
Grashof number (Gr) but the reverse effect was shown in the case of slip parameter.
In this investigation, analytical model (perturbation method) was utilized for solving
the governing equations.

The effort has been made in this examination is to scrutinize the influence of cos-
inusoidally fluctuating temperature on unsteady MHD-free convective flow through
an infinite moving vertical permeable plate with hall, ion-slip current, and chemical
reaction as well as soret effects In this investigation, the governing equations are
solved by using perturbation method. In this investigation, hall and ion-slip current
is very important in fundamental inflows of lab plasma when a solid magnetic field
of uniform quality is connected and drawn the consideration of the analysts because
of their differed hugeness in fluid metals electrolytes arrive ionized gasses.
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2 Formulation and Solution of the Problem

Unsteady 3D MHD-free convective flow of incompressible, viscous, electrically
conducting fluid passes through an infinite non-parallel sizzling permeable plate on
x*y*z* plane. By considering all physical fluid quantities are independent of x* along
the direction of x* with the assumption of the plate is to be considered in infinite
length and it has strength By under uniform normally magnetic field. Let (u*, v, w*)
be the components of the velocity in the direction of (x*, y*, z*) correspondingly.
Here w" tends to zero as independent of z*. With the effect of suction by means of
fixed velocity v* =—V at the surface of the plate. Now it was supposed that there be
present hall and ion-slip current in the equation of momentum, moreover, chemical
reaction between the fluid as well as species concentration.

The flow field is governed by the following set of equations.

Continuity equation:

av*
ay*

=0 (1)

Equation of Momentum:

%u*  3u*

[8”*} +v*[3“:} = gB[T* — Tx] + gB°[C* — Coc] + u[— + —]

ot* 8y 8y*2 az*2

oeBg[oteu* + B.w*] [ v ] N

- ——|u

pla? + 2] k*

2

ow* ow* 3Zw* 3Zw* aeBg[,B(,u* — aew*] v
+v* = + + ' — =
R R P =
3)

Equation of energy
c aT* o aT* 92T N 92T O[T~ T g, @
v =K|— — — —

PEP| o y* 9y 927 0 ol 7| 5y
Equation of Concentration:

c aC* oy aC* D d2C* n 32C*

Vi — | = >
PEP| g ay* 9y 9z

. Q2T+ a2T*
—T[C* - Cx]| + Dy o7 | T3 )

The plate temperature is to vary spanwise cosinusoidally fluctuating with time ‘¢’
has been considered and is of the form
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T,(z" ") =T+ ¢[Tp — Too]COS|:jTlZ - W*f*i| (6)

The initial boundary conditions are as follows:

u*=0,T"=Ty+ [Ty — Too]cos[”Tz* — w*t*], C*=C,aty*=0 A
u*=0,T*"=Ty, C*=C asy - o0

For the case of an optimality thin gray gas, local radiative heat flux in the energy
equation

g,
ay*

- 4aske[T*4 — Tjo] )
S =4 T - 3T 9)

Form the Eq. (8), (9), and (4), the modified energy equation is

ezl =l ) e ]

+16k, o T [T* — Tao]

The non-dimensional parameters as follows:

NN|v

v =u* zl =75kl = k*, t = w't*, voo = 0*l*, 7 = &
L= C*Cwe_T*T l} (11)
Cy—Cx’ Tv—Two

y

V=

Using the transformation (11) and Eq. (6), the momentum Eq. (2), (3), Eq. (10),
and concentration Eq. (5) reduce to the following dimensionless form:

o[2] - Re[—] — Re? Gr[f] + Re? Gm[C] + [3_] n [37] ]

dy
_M2 loeu+pew] (12)
[ez+62]

dw ow 02w 02w w 5 [Bett — atew]
w[E}_Re[ﬁ} [a_yz]Jr[a_ZZ]‘[z]‘M—angﬂg] (13)
907 R0 _ L[[2%0] , [ <RRe>
w[at]_ e[ay} Pf[[3y2]+[312:|]_ Pr
99 ¢ 1 ([d% 3%
oL |- rela )= se[55 ]+ [52]) - so(

0+ x 6] (14)

&1 =)

15)
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The corresponding boundary conditions are

u=0,0=1+¢ecos(mz—1),¢p=1 aty=0 } (16)

u=0,0=0,¢=0 asy — oo
where

Re = Y, Gr = vgB(Ty — o) (V?) "', Gm = vgB(Co — Coa) (V?) '

M? =10, B2(v)"' R = 16k,v?T3 (kV?) " 'Pr = uCpk~', Sc =vD' L (17)
—1 _ 2[—o+iBe

x =10Q(vpC,) S0 =2 (cTﬁ—?:;)N = [% + M[[xg+ﬂ+3]ﬂ ]]

Equations (12) and (13) are displayed, in a reduced form, as

2 2
w[ﬁ} — Re[g} = Re? Gr[0] + Re? Gm[C] + [E} + [a F] — N[F]

ar dy 3y? 92
(18)
The related boundary conditions are
F=0,0=1+¢cos[rz—t],p=1aty=0 (19)
F=0,0=0,¢=0 asy — oo

The solution of partial differential equations [(14), (15), and (17)] in conjunction
with boundary condition (19) is attained utilizing regular perturbation method similar
to one used in Ramakrishna Reddy et al. [11] as well as Singh et al. [8] through which
is assumed the components of velocity, temperature, and concentration, respectively,
as follows:

F=Fy+¢ Frexplimz —li] + &2F, exp[2imz — 2li]...
0 =6y+¢ Oexplimz —li] + £20, exp[2imz — 2li]. .. (20)
¢ =¢o+epexplimz —li]+ &2y exp[2imz —2li]. ..

Substituting Eq. (20) into set of Eqgs. (14), (15), and (18) and equating the like
powers, then we obtain

F = [tk — ke + k™ 4 ke "]
+ 8[((—/(5 — kg)e™™5Y 4 kse™™Y 4 kée—mgy)ei(ﬂz—t)] 21

0 =[e "] +¢e[01e] (22)

¢ =[(1—kDe™™ + ke + e[—koe ™™ + koe "] (23)
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3 Results and Discussions

Figure 1 represents for dissimilar values of Hall parameter on the velocity. In this
figure, it reflects that velocity rises with the enhancement of (8.) near the plate and
ultimately converges to its limiting value. Due to the production of an extra prospec-
tive dissimilarity transverse to the direction of accumulate free charge and applied
magnetic field among the opposite surfaces induces an electric current perpendicular
to both magnetic and electric. Figure 2 illustrated that variation of velocity for diverse
values of ion-slip (8;). From this figure, the outcomes reflects that the incremental
values of B; leads to rise in velocity and it is very close to the plate and reached
converging point it is depend on the hall. The variation of velocity distribution under
the sway of magnetic field (M) is reported in the Fig. 3. Therefore, Fig. 3 of out-
comes indicates that the velocity reduced by means of augmentation of M. Owing
to magnetic field employs a retarding force on free convection flow. Figures 4 and 5
exhibits the influence of chemical reaction (Kc¢) on velocity as well as concentration.
Here, the incremental values of K¢ leads to diminished in velocity and concentration.
Chemical reaction (Kc > 0) distinguished as destructive reaction declines the flow
velocity. Figures 6 and 7 reflects that for diverse values of soret (So) on velocity as
well as concentration. From this figure, it was found that velocity and concentration
rises with the enhancement of soret. Figure 8 reported that the sway of Schmidt
number (Sc) on concentration. Here, this figure reflects that concentration declined
with the rise in Sc. Physically, it is obviously, because rise of Sc means decline of

Fig. 1 Influence of B, on
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Fig. 3 Influence of M on
velocity

Fig. 4 Influence of Kc on
velocity

Fig. 5 Influence of Kc on
concentration

Fig. 6 Influence of So on
velocity
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Fig. 7 Influence of So on
concentration

Fig. 8 Influence of Sc on
concentration

25 3

molecular diffusivity. Hence, the concentration of species is higher for small values
of Sc and lower for large values of Sc.

Figures 9 and 10 demonstrated that velocity and temperature profile due to the
variations in heat source parameter x. From these figures, the results indicate that
velocity declined with the rise in y . Physically, in the presence of heat source has the
propensity to decline the fluid velocity transversely the momentum boundary layer.
Owing to the sway of thermal buoyancy to reduces which outcome in a net reduction
in the velocity. This form of behavior is shown near to the plate. Also temperature
declined with the rise in heat source parameter.

Fig. 9 Influence of x on 3
velocity

-1
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Fig. 11 Influence of M on velocity

4 Validity of the Results

In this examination, it is supposed to be revealed that the outcomes obtained herein
are compared with the results of Ramakrishna and Raju [11] in the nonappearance of
Hall and ion-slip parameter, i.e., 8. and B; by taking dissimilar values for magnetic
field parameter M keeping the other parameters unchanging and these outcomes are
obtainable in Fig. 11. The consequences of this comparison are established to be in
excellent agreement.

5 Conclusions

e The velocity as well as temperature diminished with the rise in Prandtl number
(Pr) and heat source parameter ().
e Asrise in Hall and ion-slip parameter, leads to rise in velocity.
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Velocity accelerated with the incremental values of Gr, Gm & So, but contrast
effect was established in case of M.

As concentration and velocity declined then it leads to a rise in a chemical reaction,
Reynolds number Re, and soret parameter.
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Fluid Motion in Finite Length Tubes in )
Peristaltic Pumps L

André Small and P. Nagarani

Abstract We considered the flow of an incompressible Newtonian fluid within a
finite tube, which is driven by multiple train waves or a single peristaltic wave.
The solutions of the governing equations were taken as a pertubation series with
pertubation parameter being the wave number. These infinite series were truncated
at the first corrective term. Expressions for the axial and transverse conponents of
the velocity, the pressure, the shear stress at the walls as well as the volume flow rate
were obtained. From this study, the effects of the wave number, the occlusion of the
tube, the wave amplitude, as well as the wave type were analyzed. It was observed
that the pressure distribution is affected by the wave type, the time-averaged volume
flow is slightly affected non-integral number of waves and is independent of the axial
position for the case of multiple train waves. However, in the case of single wave,
the time-averaged volume flow depends on the axial position and we saw reflux at
the entrance of the tube even for co-pumping conditions. Also, changes in the wave
number resulted in tranformations of the plots of the results which became more
obvious for highly occluded tubes.

Keywords Peristaltic transport + Lubrication theory - Finite tubes * Perturbation
methods

1 Introduction

The mechanism of peristalsis is very well known to physiologists and engineers as
one of the major mechanisms for fluid transport in many biological systems and
industrial pumping. Peristalsis is a mechanism used to pump fluids within a tube
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by means of moving contractile rings around the tube, which pushes the material
onward. The peristaltic wave generated along the flexible walls of the tube provides
an efficient means of transport of fluids in these biological and industrial pumping
systems. Regarded as pumping without a piston, peristalsis is the prime method of
transport in several biological processes. Whether chyme is being transported through
the intestines, urine from the kidneys to the bladder, lymphatic fluids in the lymphatic
ducts, the swallowing of a bolus of food in the esophagus, or the transportation of
an embryo from the ovary to the womb via the fallopian tubes, the relevant fluids
are thrust in the direction of waves of contractions. These waves are generated by
either the muscles embedded in the walls of the vessels themselves or by exo-skeletal
muscles which line the tubes.

The first mathematical attempt to understand the fluid mechanics of peristalsis
is by Latham [6], although it has been a very well-observed pumping phenomenon
in biological systems for many decades in advance. Fung and Yih [3] also made
early contributions in mathematical models on peristaltic transport. They considered
and included the non-linear convective accelerations and analyzed the model under
small peristaltic wave amplitudes in a two-dimensional channel. In their study, it
was observed that the mean flow induced by peristaltic motion of the wall is pro-
portional to the square of the amplitude ratio. The velocity of the fluid was found
to be dependent on the mean pressure gradient and for a particular positive pressure
gradient (critical value), the velocity was zero. There was no reflux when pumping
against a pressure head (Vp = pouttet — Pinlet) €8s than this critical pressure gradi-
ent. However, if the pressure gradient was greater than this value, then a backward
flow was induced. The infinite length tube model, later introduced by Shapiro et
al.[15], capitalized on the steady nature of such flow in the wave frame of reference.
Unlike the model postulated by Fung and Yih [3], the inertial effects were neglected
and hence the flow was considered viscous driven. By considering the streamlines,
two important phenomena were explored, viz. reflux and trapping. Reflux refers
to the existence of particles that move on average in the retrograde direction and
occurs at the periphery of the tube. Trapping, on the other hand, refers to circulating
parcels of fluid located at the center of the tube moving at the speed of the wave as if
trapped by the wave. These results were compared with experimental observations
which confirmed a linear relationship in the time-averaged volume flow rate and the
pressure head.

By obtaining an asymptotic series solution for low Reynolds number flow in a
slowly varying axisymmetric tube, Manton [8] provided expressions for the pressure
drop along the tube and the shear stress at the wall. Here, the stream function and the
vorticity component were used to provide solutions to the governing equations up to
the second order and the wall shape was formulated as a function of a perturbation
parameter. The zeroth-order solution was identified in this work as Poiseuille flow,
and the first- and second-order solutions provided the inertial correction. This analysis
was deemed applicable to problems such as flow through blood vessels and capillary
tubes. Manton [8] later studied long wavelength peristaltic pumping at low Reynolds
number. Again, using the stream functions and vorticity component, he obtained
asymptotic series solutions for the flow fields for varying wave shapes. Here, the
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chosen perturbation parameter is the wave number, hence incorporating the analysis
of the inertial effects of the flow. He examined the conditions necessary and sufficient
for trapping and established also that reflux is only possible with an adverse mean
pressure gradient.

On the other hand, the finite tube models consider inherently the non-steady nature
of the flow. These models are suited for biological transport systems in which the flow
is induced by peristaltic waves and in commercial pumps. Pressures are prescribed
at the ends of the tubes and the resulting pressure head is either a function of time or
a constant. The solutions of the conservation equations are found in this case in the
stationary frame of reference. In the model proposed by Li and Brasseur [7], several
wall shapes were considered to include a single wave in the tube, tear drop-shaped
wave trains, and sinusoidal wave trains. For integral number of waves within the tubes,
the finite length tube model coincides with the infinite length tube model proposed by
Shapiro et al. [15]. Non-integral numbers of waves present within the tubes however
had differences in the local flow parameters however minute differences in the global
pumping performance. Also, single-wave pumping displayed significant differences
in the pressure distribution and the pumping performance. Reflux at the inlet in single-
wave pumping occurred even with favorable pressure heads Vp < 0 and could only
be prevented when 5 =0or f—l = 1, that is full occlusion or no occlusion. Here, 5 is
a measure of the tube occlusion which is normalized and f € [0, 1]. For train wave
pumping, reflux is only possible for an adverse pressure head.

Later, several theoretical and experimental attempts have been made to understand
peristaltic transport in different flow and geometric situations. For application to
biological fluid transport and other physical transportation of fluid, peristaltic flow
of several fluid types other than Newtonian fluid was also considered. Much of the
theoretical papers that are available in the literature on peristaltic pumping may be
classified in two categories: (i) The infinite tube/channel model and (ii) the finite
tube/channel model. Generally, in both models mentioned, the lubrication theory is
applied, that is the mean radius a is much smaller when compared with the wavelength
A and the effective Reynolds number (R = Re(%)) is low enough to classify the flow
as laminar, where Re is the Reynolds number. Usha and Rao [20] examined the
effects of a two-layered fluid being transported in a tube of elliptical cross section.
They observed the effects of the peripheral layer viscosity on the flow rate and
frictional force for a slightly elliptical tube. It was shown that the time-averaged
flux is not significantly affected by the pressure drop when the eccentricity is large.
However, the pumping seems to improve with the eccentricity. Rani and Sarojamma
[12] investigated peristaltic transport of a Casson fluid in an asymmetric channel and
considered the walls having different amplitudes and phase difference. Ravi Kumar et
al. [13] investigated peristaltic transport of a power law fluid in asymmetric channels
bounded by permeable walls. The lower wall expression was adjusted here to facilitate
the asymmetry of the walls. With these conditions, they obtained expressions for the
velocity, pressure rise, and frictional force as well as the behavior of these quantities
for various parameters. Later Roy et al. [14] formulated a mathematical model for
the flow of chyme during gastrointestinal endoscopy, by considering the effects on
the flow of in inserted endoscope, for varying aspect ratios and wave amplitudes.
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Further, Kavitha et al. [5] considered a Jeffrey fluid again with porous walls, with
suction and injection.

Eytan et al. [2] developed a model where again the flow was induced by the walls
within a finite two-dimensional channel, for application to embryo transport within
the uterine cavity. They considered symmetric and asymmetric wall displacements
and showed that the transport phenomena is strongly dependent on the phase shift
of the wall displacement and the angle between the walls. It was also revealed that
whenever the contraction is completely out of phase, the velocities, pressure, flow
rate, and axial transport are reduced to zero. They provided the bases for reflux in
tappered channels and showed that reflux is more likely when the wall is asymmet-
ric while trapping is enhanced as the asymmetry decreases. Misra and Pandey [9]
formulated a model considering the flow of a food bolus through the esophagus. A
power law fluid is used to model the flow through an axisymmetric tube of finite
length, with a single contractile peristaltic wave responsible for fluid propultion.
The dependency of the pressure within the tube over time and space were studied
for a fixed time-averaged flow rate, in the stationary frame of reference. Compar-
isons between single and train wave transport, with an integral number of waves,
were made. The effects of the wave nature and the power law index number on the
pressure distribution along the tube were examined. To establish a model suitable
to the physiological occurrence during peristalsis, Hariharan et al. [4] considered
peristaltic transport of both power law and Bingham fluids within diverging tubes
for a wide range of waveforms. They obtained expressions for some of the wall
waveforms using Fourier series and identified the effects of not just the waveform
on the flow but also the power law index, the wave amplitude, and the yield stress.
In their report, it is established that the wave amplitude and the index number are
critical parameters in peristaltic transport. Furthermore, the thickness of the reflux
region depends strongly on these parameters and the wave shape. Later, Tripathi et
al. [17] also added to the model introduced by Li and Brasseur [7] by considering
the mechanical efficiency and reflux of peristaltic pumping of a Newtonian fluid.

Again to understand the dynamics of esophageal swallowing of a variety of foods
such as honey, Pandey and Tripathi [11] studied peristaltic transport of Casson flu-
ids. They provided information on the pressure distribution along the esophagus and
investigated non-integral number of waves at different instances of time. They also
offered information on the local shear stress, yield stress, and the mechanical effi-
ciency of esophageal pumping during Casson fluid transport. Reflux and the limits of
reflux are also discussed in this investigation. In an effort to provide a model which
closely simulates esophageal swallowing, Toklu [16] formulated a revised mathemat-
ical model highly dependent on experimental data. Using monometric measurements
of the luminal pressure in the esophagus and video-flouroscopy to show the motion
of the esophageal wall, experimental data was gathered and later used to guide the
formulation of the model. Here, single waves were considered along a tube of circu-
lar cross section. The conclusion reached was that the model is qualified to provide
information on peristaltic transport of fluids in a finite tube with a single wave present
within the tube, in particular esophageal swallowing and transport in the ureter. Misra
and Maiti [10] explored finite length tube peristaltic pumping of a power law fluid (a
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model for fluid transport in the esophagus) and reported that local pressure was highly
sensitive to the fluid index n (where n = 1 implies a Newtonian fluid), a result which
later confirmed the conclusions of Hariharan et al. [4]. Seeking a perturbation method
of solution with the viscosity parameter chosen as the perturbation parameter, Adb
Elmabouda et al. [1] observed peristaltic motion of an incompressible Newtonian
fluid with variable viscosity. Here, the viscosity is a function of the radial coordi-
nate r and is described by u(r) =1 — ar” where n > 2 and viscosity parameter
o < 1. Tripathi et al. [20] also investigated non-steady peristaltic flow with variable
viscosity, to simulate the transport in physiological vessels. Here, as many models
mentioned before, the model is analyzed for large wavelengths in comparison with
mean radius of the tube and low Reynolds number. In particular, the viscosity is
taken to vary exponentially and it is revealed that increasing the viscosity results
in a reduction in the mechanical efficiency. Later, Tripathi et al. [19] studied peri-
staltic transport of a bi-viscousity fluid through a curved tube: A mathematical model
for intestinal flow. The fluid was modeled using the Nakamura—Sawada bi-viscosity
non-Newtonian formulation. The effects of the curvature of the tube, the volume flow
rate, and the apparent viscousity of the fluid on the flow were observed. Here, it was
observed that increasing curvature increases the pressure rise in the pumping region.
Also, the bolus size slightly increases with increase in the non-Newtonian effects.

With the aforementioned applications of peristaltic transport in a finite length
tube, we intend to study the peristaltic transport of a Newtonian fluid in a finite
length tube in the present paper. We extend the study of Li and Brasseur [7] by
including the first-order terms using a perturbation series solution with perturbation
parameter being the wave number (k = ). The mathematical formulation of the
present model is given in Sect.2. Section3 explains the method of solution of the
problem. Analytic expressions for velocity and pressure gradient up to O (k) terms are
included. Results are discussed in Sect. 4 with pictorial representations. The effect of
multiple non-integral number of train waves, when compared with integral number
of wave trains within the tube, is explored. The local flow fields and global pumping
performance for a single wave within the tube, when compared with multiple integral
train waves, are investigated. Along with the pressure and shear stress at the wall, the
other flow characteristics observed are the volume flow rate and the time-averaged
volume flow rate. Concluding remarks are given in Sect. 5.

2 Mathematical Formulation

We consider the flow of an incompressible Newtonian fluid with viscosity p and
density p, in a tube of length L with mean radius a. The fluid is being driven by
oscillations of the wall (i.e., dominantly viscous driven flow) due to the propagation
of the peristaltic wave represented by

AG, 7 =a+0.5/$(1 —cos(zT”(ae—cﬂ)) (1)
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Fig.1 (a) Single peristaltic wave within a tube of length L and (b) multiple peristaltic waves within
the tube

Here, ¢ is the occlusion in the tube or the radius of the tube at the trough, x and f are the
space and time coordinates, c is the wave speed, A is the wavelength of the peristaltic
wave, and A is the amplitude of the wave. The wave shapes being considered here
are sinusoidal integral and non-integral train waves as well as a single wave within
the tube, as shown in Fig. 1. The wall moves only in the radial direction however,
with a speed 36—1:1 Axisymmetric flow is assumed in a tube of circular cross section
and the volume of the fluid in one wave is V), . Pressures are prescribed at the tube
inlet 5(0, ) and outlet p(L, 7) of the tube which are considered here as constants
with respect to time.

The problem is fashioned in the stationary (laboratory) frame of reference. We
desire to obtain expressions for the flow fields as well as expressions for the shear
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stress on the wall of the tube and the instantaneous and time-averaged volume flow
rate. Under the above assumptions, the equations that govern the flow are:

(8+A8+A8)A 813+ (18(A8ﬁ>+82ﬁ) )
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where # is the axial velocity component, v is the radial velocity component, and p
is the pressure. The corresponding boundary conditions are given by:

0,41 9H di 0,41 0 )
~ o= . Vg = —, —x = , v F=0 =
r=H r=H 9f = oF ler=o 0

i

We now introduce the following non-dimensional quantities
ct A akp
TP=C (6)

7v=
uc

?r= 7’/[:

X =

> =
Q| ™
SR

is the wave number. By introducing the above non-dimensional quanti-

Here, k = ¢
ties in (2)—(4), we obtain
ad a 0 ap 10 / du 0%u
R 2 (R =
¢ 3t+v3r+u8x " 8x+r8r or ax2 )

) = R ) R e @

d
Re (2 4 v tu—r)o=—L 22 2
© (3t+v3r+u8x or ror\ or ax2 r2
10 ou
-9 M _0 9
rar(rv)+8x ©)

where Re = £ is the Reynolds number. The corresponding expression for wall

shape in the dimensionless form is

H(x,t) = £ +0.5A(1 —cos2m(x — t)) (10)
a

The boundary conditions in non-dimensional form are also expressed as

0H OJu

ulr=pp =0, Vlr=p = 7=, 2| =000 =0 (1)

r=0
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3 Method of Solution

We assume the solution of (7)—(9) subjected to the conditions (11), as a series solution
in terms of the chosen perturbation parameter k, that is

u = uy+ kuy + 0Kk>) (12)
v =y + kv, + O(k?) (13)
p = po+kpi+ 0K (14)

Substituting (12)—(14) into (7)—(9), collecting the zeroth-order terms and rearranging
these terms we acquire the equations

0] 190
LAY P 15)
ax rarl or
a
o (16)
ar
19 dug
——(@v)+—=0 17)
ror ax
These equations are subjected to the corresponding boundary conditions
oH du
tol— =0, 0l—y = ——, —=| =0, uply—o =0 (18)
ot or lr=0

Also, by collecting the first-order perturbation correction terms (O (k)) and again
rearranging the terms we obtain the equations

0 0 0 bl 10 /9
Re(—+vo——i-uo—)uo—i-ﬂ = ——(rﬂ> 19)

ot or 0x 0x ror\ or

0
P _ (20)
or

10 8u1

-— — =0 21

rar(rvl)+8x (21)

with boundary conditions
3u1
urly=g =0, vi|,=g =0, — =0,vl,=0=0 (22)

or Ir=0
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First the system (15)—(17) is solved subjected to the boundary conditions listed in
(18) to obtain (ug, vo, po). Next the system of (19)—(21) subjected to the boundary
conditions registered in (22) is solved for (1, vy, p;). Later, the results are combined
to give the solution (u, v, p) = (ug, vo, po) + k(uy, vy, p1) + O(K?).

3.1 The Flow Field

Since p = po + kp; is independent of r, the expression for u, the zeroth-order term
of u the axial velocity, is obtained from (15) as

19po > 2
=-—I(r"—-H 23

"o 4 0x (r ) 23)
An expression for vy, the zeroth-order term of the transverse velocity, is acquired by
substituting (23) into (17). Again integrating with respect to » and using the boundary
conditions listed in (18), we obtain v, as

ox 0x dx2

4 2 @4

Vo = —

r{ dH dpg 82p0<r H2>]
4

Substituting the second boundary condition given in (22) into (24), we obtain

OH H?9H dpy = H’9°po

on _ LB 089 A9 P 25
ot 4 9x Ox 16 ox2 (25)
Solving (25), we have
9 r OH
PO (1) = H’4(x,t){G0(t)+ 16fH(s,r)—(s,t)ds}, (26)
dx at
0
[
poGe.1) = po(0. 1) + / W0, 1ds. @7)

0

Here, G((#) is a constant of integration and is at most a function of time. Keep-
ing p(0,¢) and p(L,t) invariant with respect to time, evaluating this constant of
integration we have,

Vp— 16 [F H, t)<f§ H(s, )2 (s, t)ds)dé

Go(t) =
o0 f H=4(n, 1)dn

(28)

where Vp = p(L) — p(0). Equations (23)—(28) give the complete solution to the
system (15)—(17) subjected to the boundary condition listed in (18). Now, the solution
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of the second system of equations, (19)—(21) subjected to the conditions provided in

(22), is obtained as:

10
ur = Fx,rt)+ Z%(rz — Hz)

where F,(x, r, t) is described by the equation

13po 3%po / 18 r*H> r?H* 29H®
F(x,r 1) = Re{-——(— - + -
8 dx 0x2 \144 32 8 288
132p0<r4 r2H? +3H4)
4 0x0t \16 4 16
1 /0po\20H
_(ﬂ> —(r2H3 — HS)
32\ 0x / 0x

_1%8_1{(,2}1_1{3)}
8 dx ot

1 821)] <r3 rH2> 10p, 0H
4 2

vy =—F(x,rt) — 192

where the function F3(x, r, t) is obtained as
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%()‘s 1) =H*(x, l)[Gl(l) + 16/ H(s, t)F3(s, z)ds], (33)
X
0
where
—16foL H74(€:7 t)(fog H (s, t)F5(s, I)ds)df
Gl(t) = I (34)
Jo H=*(n, )dn
and
h ap1
pi(x,t) = / H(s, t)ds. (35)

0

Here, G| like Gy is again at most a function of ¢. Using the results obtained in
(23)—(35), we therefore construct the series solution for u, v and p as

1,0 0
(220 4420

— _ P 2 2 )
= 4\%ox T )(’ H?) + kFy(x,r. 1) + O(k%), (36)

r(/9po ap1\ oH 82p0 82p1 r2 H?
= (=+k—)—H - k -
v 4{(8x+ 8x>8x (8x2 3x2><4 2)}
— kF3(x,r, 1) + 0K, (37)
and

X

p(x. ) = p(0.1) + / 90 (¢ 1y + k2P (s, 1yds + 0GR (38)
0x 0x
0

Equations (36)—(38) give the complete solution to the system of (15)—(22) and offer
a series solution with perturbation parameter k, up to the first-order corrective term.

3.2 The Local Shear Stress at the Wall of the Tube

The local shear stress at the wall of the tube can be obtained by

ou
or

_ 31/{0 8141

r=H or

(39)

Twall =

r=H or r=H

Therefore, the shear stress at the wall is therefore obtained as
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9 9
= 5 (20 + kY b 4 ks, (40)
2\ 0x
where
1 apo 82p0 5 82[)0 20H 4
Fs(x.1) =R {———H ( ) My
s = Re| ey o +16 ax? ) ox
192 1 0po 0H
- pOH3__ Po HZ] (41)
16 dxo1 49x o1

3.3 The Volume Flow Rate

For multiple wave trains, with both integral and non-integral number of waves

within the tube, we remove the dimensions of O = 27 fOH urdr by using the vol-
”;ZA, where

s

T, = % Using similar normalization parameters as [7], for single waves, we non-

ume of a completely occluded pump over one wave period, that is

dimensionalize Q using the volume of a completely occluded pump over the time it
takes the wave to travel the length of the tube, that is ”; “ where T, = L . There-

fore, Q = 2M fo urdr, thatis Q = 2M fo (ugr + kur)dr, where M = 1 for train
wave peristaltic pumping and M = i for single-wave transport. This integral gives
0 = Qg + kQ the instantaneous volume flow rate, which is obtained as

Q=——(ap0 k%>H4—2MkR{ 390 Vo
8 \ 0x ox 1024 9x 9x2
1 /0 oH 1 92 1 opg 0H
(p") H7——ﬂH6——ﬂ—H5} 42)
128 0x 96 0x0ot 32 0x ot

Now, the volume of fluid displaced over the time for the wave to travel one wavelength
A that is the volume of fluid transported in one wave period is given by the equation
0=+ fOT Qdt, where T is the period of the wave. Evaluating this integral produces
0, known as the time-averaged volume flow rate, a quantity of significant interest
found as

T
M a . 3 dpo 0
Q:-—/ p" p')H“—i—ZkRH EP0 PO pys
T 1024 9x 9x2
0

1 (%)23_HH7_iazpoH6 1ap08HH5]] 43)

128 Vox /) ax 96 9xat 32 ax or
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3.4 The Limiting Case k — 0

Note that for the limiting case k — 0, the axial and radial velocities described in
(12) and (13), respectively, reduces to u = uy and v = vy. Likewise, the pressure
described by the (14), reduces to p = pg. The shear stress at the wall 7y,), the
instantaneous volume flow rate Q, and the time-averaged volume flow rate O reduces
to (44), (45), and (46), respectively [6], given below

1 dpo

wall = ———H, 44
Twall = 5= 44)
M8p0 4

=———H", 45
0 % ox (45)

= M 18[?() 4
=—— [ ———H"dr. 46
0 T 8 d0x (46)

By evaluating the integral in (46), the time-averaged volume flow rate Q can, there-
fore, be explicitly shown to have a linear relation with the pressure head Vp as
described by

0 = Ovpo(1 - VZ;’ :0) @7)

Here, Oy p=0 and V p5_, are constants and represent the time-averaged volume flow

when Vp = 0 (i.e., there is no pressure head) and pressure head required for O = 0
(i.e., no volume being transported over time) which are obtained as

- oM {Uﬂqﬁﬁxﬁlﬂso @tMQ@
Ovp=o = =~ f d,  @48)

Ji H=4(n, ndn

8Q —1
Vpgeo = =2 (49)

] )

These results are superimposed in the graphical discussion to analyze the effects of
considering the wave number and hence the inertial terms initially considered trivial
in aforementioned papers.
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4 Results and Discussion

The volume of the fluid within one wave V), is kept constant with changes made in
the occlusion £. This is achieved by simultaneously adjusting the wave amplitude
A. Hence, the relation between A and f—l is obtained as

4 < 301 <s )2 g)
A=\ =z—=|—-) — - (50)
3 2 2\a a
This expression is obtained by finding the volume enclosed in a single wave and keep-
ing this value constant. We can observe that as f(e [0, 1]) increases, the amplitude
of peristatic wave decreases. Also, £ = 0 means, the peristaltic pump is completely
occluded and 2 = 1, and there is no occlusion.

In order to evaluate py and p;, the integrals acquired in (38) were evaluated
numerically using the trapezoidal rule. Due to extreme variations of the functions
associated, the integrals are extremely sensitive to the step size taken in space and
time. Thus, the step sizes are chosen small enough to appropriately capture the nature
of the function. By varying the length of the tube, the choice of having an integral
versus a non-integral number of waves within the tube is obtained. In this section, the
figures for the local pressures, the shear stress at the wall, and the volume flow rate
are generated for 5 =[0.1,0.3,0.5,0.9],A =[1.497,1.208, 0.897,0.195] and k =
[0,0.1, 0.5, 0.9] at time instants ¢ = [0, 0.5, 0.9] using MATLAB. The Reynolds
number Re is taken to be 1 throughout these calculations, isolating the effects of the
wave number.

4.1 Biological Data

The wave number k = f\—’ € (0, 1) is the ratio of the mean radius of the tube to the
wavelength of the wave. For the ureter, this value ranges from 0.01 to 0.5 (in extreme
cases), with the length of the ureter being 250-300 mm and wave speed 20 to 40
millimeters per second [3]. In the esophagus however, the wave number ranges from
0.05 to 0.2 with the length of the esophagus being 250-300 mm and wave speed 20—
40 mm per second [18]. In all the examples of peristaltic transport listed in Sect. 1
above, we see that the wave number lies in the above prescribed domain. For these
reasons, in the preceding calculations, the solutions of (7)—(9), subjected to the
conditions in (11) are chosen as a series solution with the perturbation parameter
being k. Hence, we have included in our analysis, the effects of this parameter on the
flow for values of k within this range including an extreme case k = 0.9. We have also
included, for validation, the case k = 0 which corresponds with neglecting the inertial
components of the flow. Considering the effective Reynolds number R = k Re, and
taking Re = % =1, then R = k which is consistent with low Reynolds number
flow conditions present in the esophagus and the ureter.
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4.2 Multiple Integral Train Waves

In this section, we analyze the variation of pressure distribution, shear stress at
the wall, and the time-averaged volume flow by choosing % = 2 (that is % € ZM).
Describing the wall position by (1), manipulating the length of the tube L and keeping
the wavelength constant, we are able to manipulate the number of sinusoidal waves
% present within the tube.

4.2.1 The Pressure Distribution over the Tube

Figures 2a—c describe the pressure distribution along the tube, for different values of
wave number k when 3 =0.5at+r =0.0,0.5 and 0.9. The wave number k is taken
ask =0,0.1,0.5, 0.9. We considered the case of Vp = 0 known as free pumping,
to discuss the characteristics of peristaltic pumping in the finite tube for different
time instants £ = 0, 0.5 and 0.9. Wall shapes are scaled and superimposed on these
plots at the corresponding instances of time. From Fig. 2a—c and for all the values of
t, the peak pressure is identified at the region immediately after the occluded region
(region of greatest constriction) and the least pressure directly before this region. The
pressure then decreases gradually within the body of the wave. It is also identified
that the pressure takes two peaks in each peristaltic wave one large positive peak
and one large negative peak. A shift of the plot is observed due to the systematic
movement of the fluid with the peristaltic wave with time. The same pattern as in
Fig.2 is observed for all values of £ and k. However, we observed the quantitative
changes. The magnitude of the pressure is observed to be decreasing as £ increases,
which could be due to decrease in wave amplitude. We noticed that the effect of k on
the pressure is either an increase or decrease, depending on the values of p; for the
corresponding times. For all values of 7, the greatest deviation from the case k = 0
is observed for k = 0.9 as expected, however there are critical positions within the
tube where k and hence the contribution of p; has no effect. It is also noticed that
as £ increases (that is, pumping at lower occlusions), the relative significance of p;
and hence the deviation of p from the limiting case py is larger. It is observed over
time and noted that these features of the pressure transition along with the wave.

4.2.2 The Shear Stress at the Wall of the Tube

The variation of shear stress at the wall over the tube at different times for variations
of k is projected in Fig.3 for £ = 0.3. Again, we considered free pumping (that is
Vp = 0) at time ¢t = 0. It is seen that the maximum shearing force on the surface
area of the wall of the tube is experienced at the region of greatest occlusion. Similar
pattern is observed over a variation of time with a shift of the plot along the axial
direction progressing with the wave. It is noticed that the effect of k on the shear
stress at the wall is not as pronounced as its effect on the pressure distribution. We
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Fig.2 The pressure distribution, for % =0.5,A =0.897 with Vp = 0, % = 2.0, for varing values
of k
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Fig. 3 Shear stress at the wall at time t = 0 for % =0.3,A=1208,Vp =0, % =2.0

also noticed that as f increases, the effect of k become more noticeable as the relative
significance of t; increases. The general features (described for Fig.3) of the plot
are conserved, however there is a reduction in the magnitude of T with increase in
£, due to a reduction in the wave amplitude.

4.2.3 The Time-Averaged Volume Flow

Figure4 shows the variation of the time-averaged volume flow (Q), against the
pressure head (V p), for different values of k for % =2,2=0.313,0.411. For =
0.313 and 0.411, the corresponding values of the wave amplitude are A = 1.189 and
1.038. Here, it is recognized that Q has a linear relation with V p for all the values of
£ and k. Also, an increase in £ results in a decrease in volume flow. Observing also
the effect of the wave number k on Q, we noticed that there is a transformation of
this linear relation depending on Q; (which also display a linear relation with V p).
The effect of k on volume flow rate is not much significant. However, it can be seen
that an increase in k increases the volume flow rate.
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Fig.4 Time-averaged volume flow Q distributed over the pressure head V p, for g =0.313,0.411,
with corresponding values of A = 1.189, 1.038 and % =2.0

4.3 Multiple Non-integral Train Waves

Choosing % = 1.82 (that is % ¢ Z™1), we now have a non-integral number of waves
within the tube. The pressure, shear stress at the wall, and the volume flow are
therefore discussed later under this condition.

4.3.1 The Pressure Distribution over the Tube

Figure 5 shows the axial variation of pressure distribution for Vp = O,% =182, =
0.5att =0.5for k =0,0.1, 0.5, 0.9, with the wall shape scaled and laid over the
plot. From Fig. 5 (as in the case of % integral), itis observed that the peak pressures are
identified just before and after the point of most contraction, with gradual decrease in
the pressure within the wave from the maximum to the minimum. These peaks along
with the entire plots shift with the wave over time. The effect of  is a slight deviation
of the pressure from the case k = 0 at this value of £. As  increases, we saw similar
patterns established for the pressures, however noted that the magnitude of pressure
decreases. Also, the deviation of the pressure due to k from py (case k = 0), becomes
more apparent with larger values of £, that is the relative significance of p,is greater
for pumps with lower wave amplitudes.
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Fig.5 Pressure distribution, for 5 =0.5,A=0.897withVp = O,% = 1.82att = 0.5, for varing
values of k

4.3.2 The Shear Stress at the Wall of the Tube

Figure 6 depicts the variation of the wall shear stress for £ = 0.5,Vp = 0, % =1.82,
at times t = 0.5. Scaled and superimposed in each plot are the wall shapes at the
corresponding instances of time. From this figure, the maximum stress is observed
at the point of most occlusion within the tube. Also, within the wave t decreases to
a minimum, increase to a local maximum, and then decreases to a minimum. These
general features of the shear stress were recurring with changes in time with shifts
in the plot along the axial direction due to the passage of the wave. The effect of the
wave number is not obvious for this value of ~. The response of the shear stress with
changes in £ noted. The general features of the plot (as described for Fig.6) were
preserved, with changes in g However, as 5 increases, the magnitude of t decreases
and the effect of k become more apparent. Also, we see the similar pattern with the
variation of time.

4.3.3 The Time-Averaged Volume Flow

The time-averaged volume flow for non-integral number of waves, as in the case
of integral wave forms within the tube, shows a linear relation with V p. The effect
of having a non-integral number of waves within the tube is a slight reduction in
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Fig. 6 Shear stress at the wall at time t = 0.5 for 5 =0.5,A=0.897,Vp =0, % =1.82

Q when compared with % integral. For this case also, the values of Q at any cross
section of the tube measured are observed to be the same. The effect of k like the
effect for % integral is a rotation about a point Vp for which Q; = 0. This was
noticed by closely observing Fig. 7 which is a plot of Q against V p, for % =1.82at

&

£ =0.313,0.411, 0.509. Furthermore, Q decreases with increase in 5 and the effect

a
of k of Q increases initially with increase in £ and then decreases.

4.4 Single Wave

Describing the wall functions as a piecewise function on the domain, as shown below,
we achieve the idea of a single wave within the tube as illustrated in Fig. 1a.

+0.5A(1 —cos2m(x — 1))t <x <t+1

elsewhere (1)

H(x,t):{

Qo ¢

The local pressure within the tube, the shear stress at the wall, and the time-averaged
volume flow are therefore discussed for a single wave within the tube in this section.
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Fig. 7 Time-averaged volume flow Q, distributed over the pressure head Vp, for g:

0.313,0.411, 0.509 with corresponding values of A = 1.189, 1.038, 0.882 and % =1.82

4.4.1 The Pressure Distribution over the Tube

Figure 8 describes the pressure variation within the tube, for 3 =0.5, % =1.82,Vp =
0, with a single wave within the tube for + = 0.9. In this plot, the corresponding wall
shapes are scaled and placed in the plots. We saw that the peak pressure is identified
in the region just after the point of most constriction and the least pressure just before
this point. Within the wave, there is a gradual decrease of the pressure from this peak,
to a minimum value of p. On the other hand, considering the positions along the tube
for which the wave is not present, we observed a linear relation with the pressure
and the axial position. These observations were also made for other instances in
time, with a shift of the graphs due to the propagation of the wave with time. As
different values of 2 were observed, it was noted that as 5 increases, the magnitude
of p decreases and the effect of kK become more pronounced. Due to the presence of
wave number, we saw a deviation of the pressure from the case k = 0 and this effect
increases with increase in k. The general features of the pressure described above
were however maintained, for all values of r and f;
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Fig. 8 Pressure distribution, for 3 =0.5, A =0.897 with Vp =0, % = 1.82 (single wave) at
t = 0.9, for varing values of k

4.4.2 The Shear Stress at the Wall of the Tube

Figure 9 gives the shear stress at the wall, distributed over the tube length, for £ = 0.5
and r = 0.9. The corresponding wall shape is scaled and superimposed in each plot.
Here, it is noted that T has a linear relation with the axial position along the tube,
for sections of the tube without the wave present. Within the wave, however, it was
observed that the shear stress has peak minimum values just after and before the points
of most constriction bounding the wave. Then, t increases to a local maximum then
decreases to this minimum just before the constriction. As £ increases, the range of
T decreases due to a reduction in the wave amplitude and the effect of k on T now
becomes more apparent. The general features discussed earlier were preserved for
all changes in .

4.4.3 The Time-Averaged Volume Flow

Unlike the volume flow for multiple train waves, it is noticed that Q is dependent
on the position along the tube. The time-averaged volume flow at the inlet (0(0))
and at the outlet (Q(L)) is observed for g = 0.313 and 0.411, with corresponding
wave amplitudes A = 1.189 and 1.038. For each of value of 5, we observed the
variation for k = 0, 0.1, 0.5, and 0.9. The time-averaged volume flow at the inlet
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Fig. 9 Shear stress at the wall at time # = 0.9 for % =0.5,A=0.897,Vp =0, % = 1.82 (single
wave)

Q(0) is plotted in Fig. 10 against Vp which was chosen to provide co-pumping
(favorable pressure head) that is Vp < 0. We observed that Q(0) displays a linear
relation with Vp and that even with co-pumping, a reflux flow is present at the
tube inlet. The amount of reflux at the inlet increases with V p, that is for changes
in Vp from favorable to adverse pressure heads. Reflux is the retrograde flow of
fluid in the opposite direction to the direction of the wave. Like the other case here
also the contribution of & is not much significant for smaller values of £ and its
significance increases with increase in Z. Figure 11 shows the distribution of 0(0)
over 5 for Vp = -2.0, —1.0, 0.0, with % = 2.0 for different k. We observed here
that the amount of reflux at the inlet increases with £ to a critical point of occlusion
e. and then decreases. This critical point . decreases as V p increases. It is also
seen that reflux decreases with k and the effect of k is significant in the case of free
pumping than the co-pumping. This significance decreases as negative V p increases.
Therefore, this reflux can be prevented in single-wave pumps provided that either
a suitable pressure head is chosen or complete occlusion (£ = 0) or no peristalsis
(£ = 1) as indicated in the plots. This result is made obvious in Fig. 12 which is a
plot of O, (0) over £ for corresponding values stated in Fig. 10. This increase in the
effect of k will result in an overall decrease in the reflux at the inlet. It is important to
note however, that although there is a reflux flow at the inlet of the tube, at the outlet
of the tube, we have a positive volume flow in the direction of the wave for the same
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Fig. 10 Volume flow rate at the inlet 0(0), for a range of favorable pressure heads, with % =2.0
for £ =0.313,0.411 and k = 0.0,0.1,0.5,0.9

values of pressure head. This is described in Fig. 13 which projects the variation of
the time averaged volume flow rate at the outlet (Q(L)), for f—l =0.131, 0.411 with

L

% = 2. Here also we observed a linear relation between Q(L) and V p but the slope

of the lines are less in this case if we compare with Q(O). The effect of the wave
number observed here is an increase in Q(L), and however, it can be shown that
there is a value of V p for which Q(L) is unaffected by Q;(L). Unlike Q(0), Q(L)
decreases with £ .

4.5 Comparing Multiple Integral with Non-integral Train
Waves

Although the pressure distribution for non-integral and integral train waves is simi-
lar in many of their features but there are significant differences for corresponding
instances of time. The corrective term p; has greater contribution within a full wave
and hence we noticed an aggregate that the correction to p due to p; is greater for
integral train wave pumping. The shear stress at the wall shows minimal differences
in its distribution over the tube length in these two cases. The time-averaged vol-
ume flow rate for non-integral waves shows a decrease in quantity when compared
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Fig. 13 Time-averaged flow rate at the outlet of the tube, for a range of favorable pressure heads,
with % =2.0for £ =0.313,0.411 and k = 0.0,0.1,0.5, 0.9

with integral waves in the tube for corresponding parameters. In both cases, we also
observed that Q responses similarly with £ and the response of Q with variations of
£ is also similar.

4.6 Comparing Multiple Train Waves with Single Wave

Although the pressure profile for single-wave pumping has similar features with
multiple train waves, we found that the profiles have differences. These differences
are primarily due to the region of the tube where there is no wave form. In these
regions, the pressure is observed to vary linearly over the tube length for which there
are no such regions present in the case of multiple train waves. Within the body of
the wave, however, the pressure profiles have similar features in both the cases. Also,
the corrective term p; and hence the effect of k have more contribution within the
wave compared with the regions without a wave form. Hence, there is an overall
reduction in the effect of k on p for single wave when compared with multiple waves
present within the tube. The shear stress at the wall also has similarities in both
the cases and again we noticed that t is constant in the region without the wave
present and varies with the axial position within the wave. Unlike Q for multiple
train waves, for single-wave transport Q depends on the position along the tube.
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As in the case of multiple train waves, there is a net positive flow at the outlet for
single wave. Additionally, Q is distributed linearly over V p in both cases. At the tube
inlet, reflux is present for single-wave transport and is possible in the presence of
a favorable pressure head (co-pumping,i.e., Vp < 0). In contrast, reflux is possible
when pumping with multiple train waves only if there is an adverse pressure head
present (Vp > 0).

5 Conclusion

Peristaltic transport of a Newtonian fluid in a finite length tube is studied using
perturbation analysis, with the perturbation parameter the wave number k. For mul-
tiple train waves, the non-integral waves within the tube have implications on the
local pressure when compared with integral train waves. However, non-integral wave
forms within the tube only slightly influenced the time-averaged volume flow rate. In
addition, we noticed that the effect of the wave number and hence the inertial effects
on the pressure distribution is a shift either increasing or decreasing the pressure,
which varies with the locations within the tube. The shear stress at the wall of the tube
is less disturbed by the first-order corrective term when compared with the pressure,
with maximum contribution within the occluded region. The time-averaged volume
flow, for both single and multiple train waves, has a linear relation with V p, for all
values of the wave number and is slightly affected by the wave number in all cases.

We identified that reflux is present at the inlet for single-wave peristaltic transport
even for favorable pressure heads and is only possible in multiple train waves when-
ever pumping against an adverse pressure head. This reflux can only be prevented
by choosing a pressure head (co-pumping) high enough to prevent reflux, or total
occlusion of the pump or no occlusion. The reflux increases with increase in £ up to
a critical point &. and then further decreases with =. The first-order time-averaged
volume flow at the inlet, on the other hand, increases to a maximum value for the
same ¢, and then decreases, which serves to reduce the amount of reflux at the inlet.
At the outlet of single-wave pumps, a positive time-averaged volume flow is possible
even with reflux at the tube inlet. The volume flow for multiple train waves, on the
other hand, is independent of the position along the tube.

References

1. Adb Elmabouda Y, Mekheimere KS, Adbelsalame SI (2014) A study of nonlinear variable
viscousity in finite-length tube with peristalsis. Appl Bionics Biomech 11:197-206

2. Eytan O, Jaffa AJ, Elad D (2001) Peristaltic flow in a tappered channel: application to embryo
transport within the uterine cavity. Med Eng Phys 23:475-484

3. Fung YC, Yih CS (1968) Peristaltic transport. J Appl Mech 35:669-675

4. Hariharan P, Seshadri V, Banerjee RK (2008) Peristaltic transport of non-Newtonian fluid in a
diverging tube with different wave forms. Math Comput Model 48:998-1017



52

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Small and P. Nagarani

. Kavitha A, Reddy R, Srinivas A, Sreenadh S, Saravana R (2012) Peristaltic pumping of a

Jeftrey fluid between porous walls, with suction and injection. Int ] Mech Mat Eng 7:152-157

. Latham TW (1996) Fluid motions in a peristaltic pump. Cambridge, MA
. Li M, Brasseur J (1993) Non-Steady peristaltic transport in finite-length tubes. Journal Fluid

Mechanics 248:129-151

. Manton MJ (1975) Long-wavelength perestaltic pumping at low Reynolds number. J Fluid

Mech 68:467-476

. Misra J, Pandey S (2001) A mathematical model for oesophageal swallowing of a food bouls.

Math Comput Model 33:997-1009

Misra J, Maiti S (2011) Peristaltic transport of a rheological fliud: model for movement of food
bolus through esophagus. Appl Math Mech 33:315-332

Pandey SK, Tripathi D (2010) Peristaltic transport of a Casson fluid in a finite channel: appli-
cation to flow of concentrated fluids in oesophagus. Int J Biomath 3:453-472

Rani PN, Sarojamma G (2004) Peristaltic transport of a Casson fluid in an asymmetric channel.
Austr Phys Eng Sci Med 27:49-59

Ravi Kumar YVK, Krishna Kumari PSVHN, Ramana Murthy MV, Sreenadh S (2011) Peri-
staltic transport of a power-law fluid in an asymmetric channel. Adv Appl Sci Res 2:396-406
Roy R, Rios F, Riahi DN (201 1) Mathematical models for flow of chyme during gastrointestinal
endoscopy. Appl Math 2:600-607

Shapiro AH, Jaffrin M, Weinberg S (1969) Peristaltic pumping with long wavelengths at low
Reynolds number. J Fluid Mech 3:799-825

Toklu E (2011) A new mathematical model of peristaltic flow on oesophagial bolus transport.
Sci Res Essays 6:6606-6614

Tripathi D, Pandey S, Chaube M (2010) Mechanical efficiency and reflux of peristatic pumping
through a finite length vessel. Int J Appl Math Comput 2:63-72

Tripathi D, Pandey S, Siddiqui A, Beg OA (2014) Non-steady peristaltic propulsion with
exponential variable velocity: a study of the transport through the digestive system. Comput
Models Biomech Biomed Eng 17:571-603

Tripathi D, Akbar NS, Khan ZH, Bég OA (2016) Peristaltic transport of bi-viscosity fluids
through a curved tube: a mathematical model for intestinal flow. J] Eng Med 230:817-828
Usha S, Rao AR (1996) Peristaltic transport of two-layered Power-law fluid. J Biomech Eng
119:483-488



Hall Effects on MHD Rotating Nano )
Fluid Over a Moving Flat Plate L
with Radiation and Chemical Reaction

Pushpabai Pavar, L. Harikrishna, and M. Suryanarayana Reddy

Abstract In this manuscript, we have deliberated an unstable free convection stream
of Nano fluid limited with a “moving vertical flat plate” through a porous medium in
revolving framework with conditions of diffusion and convection and also bringing
current of Hall into account. We acknowledged two kinds of Nano fluids: they are
TiO,—water and Ag—water. The governing equations would be illuminated analyti-
cally by utilizing the method of perturbation. Last, the impacts of different dimension-
less factors on temperature, velocity, and concentration profiles along with Sherwood
numbers, shear stress, and local Nusselt are deliberated with support of graphs.

Keywords Nano fluid - Rotation - Radiation - MHD - Chemical reaction

1 Introduction

The exchange of convective temperature in Nano fluids has various applications
and participates in a critical part in engineering and sciences. They exist in almost
each methodology that needs solar energy, exchange fluids of temperature (cooling
or heating), and nuclear reactors and so on. Therefore, from previous years, the
scientists of fluid dynamics have demonstrated an interest in the investigation of
Nano liquids because of their requisitions in different fields. It may be the way that
the usually utilizing liquids displays less “thermal conductivity” compared with the
metals. Consequently, it will be needed to combine the metals and liquid expanding
the heat exchange capacity of liquids. The “suspension of Nano-sized elements” in
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base liquid will be known as the Nano fluid. The idea of Nano fluids might have
been implemented by [1, 2] throughout an examination of cooling methodologies
in Argonne national lab. The work [3] examined the thermal conductivity of Nano
fluid. The work [4] analyzed through his research that there is a powerful thermal
conductivity in “ethylene glycol-based copper Nano fluid”. The contribution [5]
has researched the improvement of heat exchange in natural flow of convection in
porous media. The work [6] deliberated the impacts of injection or suction factors
on “Marangoni boundary layer flow of a Nano fluid”. The work [7] explored an
unstable flow of Nano fluid over vertical plate in revolving framework. The authors
in [8] concentrated on the viscosity impacts and thermal conductivity on Al,O3-water
Nano fluid flow.

The authors in [9] considered the impacts of thermal radiations on “unstable
natural convective flow of EG-Nimonic 80A Nano liquid”. The work [10] examined
the “volume fraction of Nano particles” impact by deliberating three kinds of Nano
fluids known as TiO,, Al,O;—water, and Cu—water, and finished that the kind of Nano
fluid will be also the main component to enhance the transfer rate of temperature.
The authors in [11] examined the outcomes of adjusted magnetic field, radiation, and
revolution impacts of a Nano fluid in revolving framework.

Keeping the above-mentioned facts, in this manuscript, we have studied the “Hall
current effects on a Nano fluid through porous medium” with the boundary conditions
of diffusion and convection.

2 Mathematical Formulation and Solution of the Problem

We have considered Hall impacts on unstable free convective flow of “incompressible
Nano fluid of an ambient temperature 7', past a semi-infinite vertical moving plate”
embedded in a “uniform porous medium” in existence of thermal buoyancy impact
with boundary conditions of diffusion—convection and constant heat source. The
physical configuration of problem is as presented in Fig. 1. The flow has assumed
in x-direction that will be taken along with the plate in z-axis and upward direction
will be normal to it. Similarly, it will be assumed that complete framework will
be revolving with constant velocity €2 about z-axis. A “uniform external magnetic
field” By will be taken to be acting with z-axis. A slight magnetic “Reynolds number
for oscillating plate because of semi-infinite plate surface assumption”, moreover,
the flow variables are functions of ¢ and z only. The governing equations are in
non-dimensional form of flow are provided by
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x
A Momentum boundary layer
Thermal boundary layer

/b Concentration boundary layer
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Fig. 1 Physical configuration of the problem
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Here, S = % is the injection (S < 0) or suction (S > 0) factor, R = 23? is rotational
parameter, M = arg‘; is the factor of magnetic field, K = kU
Qv

porous medium, Pr = ﬂ be the Prandtl number, Qy = = is the factor of heat

UZk;
source, Kr = ’;‘/Vz‘ is the factor of chemical reaction, Sc = v; be Schmidt number,
and F = 41 kT;’“ be the factor of thermal radiation and U, = [gB¢(Tyw — Too)] 3 be the

characteristic of velocity.
Also conditions of boundary become

u=0, v=0, 6=0, ¥ =0 forz <0 and for any z 5
— € (int —int —
/—[1+2(e te )] , v=0 } fort >0andz =0. (6)
0'(z) = =Nc(1 —0(2)), ¥ =—Na(1 =¥ (2))
u—>0 v—>0, 6—>0, v —>0 fortr>0andz— o© @)
where N, = I}("—Vl} is the connective parameter and Nq = stg/ be the factor of

diffusion. We calculate the Eqgs. (8) and (9) by putting the “fluid velomty” in composite
form as ¢ = u + i v and we get
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The equivalent condition of boundary become
q=0, 6=0, ¥v=0 forr <0 )

V(Z) — [1 + %(eint + efinl)]’ }
0'(z) = =Nc(1 = 0(2)), ¥'=—Na(l =¥ (2)

V>0, 6—>0 v —>0 fort>0andz— oo (11)

az=0and?r > 0. (10)

To attain the explanation of framework of fractional differential Egs. (8), (3), and
(4) under the condition of boundary signified in (9)—(11), we described V, 6 and ¢
as.

an=%+§kﬂmm+a“@@ﬂ (12)
0. 1) = b+ 5[0 () + e "62(2)] (13)
WLU=%+%VWMU+€MW@] (14)

Substituting the above Egs. (12)-(14) in Egs. (8), (3) and (4), and equating the
terms of non-harmonic, harmonic, and ignoring the higher sequence terms of &2,
we acquire the second-order differential equations. Solving these equations with
relevant conditions of boundary, we get the solutions of temperature, velocity, and
concentration distributions.

For engineering interest Cy be the “local skin friction coefficient”, Sh, be the
“local Sherwood number”, and Nu, be the “local Nusselt number” are discussed by
XGm

and Sh,=——1" _ (15)

Coe ™ XQqw
! " Dp(Cy — Co)

= —2’ Nu = ——
piUg ky(Tw — Too)

3 Results and Discussion

Figures 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, and 18 represent the
concentration, temperature, and velocity distributions with respect to the governing
parameters. Table 1 represented the physical properties of thermal about Ag, water,
and TiO; are provided in Table 1.
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Fig. 2 Concentration
profiles with S

Fig. 3 Concentration
profiles with S

Fig. 4 Concentration
profiles with Kr
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Figures 2, 3, 4, and 5 shows that growth in the parameter of suction or Schmidt
number reduces the concentration profiles of flow, whereas chemical reaction factor
and diffusion factor augments the concentration throughout the fluid region.
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Fig. 5 Concentration 3 FTar s L FREEE
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Fig. 6 The temperature
profiles with F Thick line: Ag water
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Fig. 7 The temperature
profiles with N
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From Figs. 6, we detected that an escalation in the radiation factor increases the
heat profiles of flow. It will be detected that an enhancement in convective factor
escalations the heat profiles of flow (Fig. 7). It will be clear that from Fig. 8, with
development in “volume fraction of nanoparticles” enhances the heat profiles of
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Fig. 8 The temperature
profiles with ¢ Thick line: Ag water
Dashed line: Tios water
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Fig. 9 The temperature
profiles with Oy Thick line: Ag water
Dashed line: Tioy water
3 4 5
Fig. 10 The Temperature 025 " T N
Profiles with S Thick line: Ag water

Dashed line: Tiop water

TiO,—water and Ag—water. Figure 9 represents that the heat enhances with increas-
ing heat source factor Qy. It is noticed that expand in suction factor denigrate the
boundary layer of thermal (Fig. 10).
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Fig. 11 The velocity
profiles with M

Fig. 12 The velocity
profiles with m

Fig. 13 The velocity
profiles with K
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Figures 11 displays, an increase in M and R disparages the “velocity profiles of
the flow (VPF)”. This might be finished by the magnetic field strengthening reasons
to improve the opposed force to flow. Figures 12 and 13 depicts the Hall current
effects and porous medium permeability. The magnitude of the velocity improves
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Fig. 14 The velocity
profiles with ¢

Fig. 15 The velocity
profiles with Oy

Fig. 16 The velocity
profiles with Oy
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Fig' 17 ’I‘he VelOCity 42 . . - - - . . . . - - . - . . - P - P - . . - - --I
profiles with F .
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Fig. 18 The velocity
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Table 1 Thermo physica% Thermo physical Ag Water TiO;
properties of Ag, water, TiO; properties

Cp (kg K) 235 4179 686.2

K (W/mK) 429 0.613 8.9538

o (kg/m?) 10500 997.1 4250

B x 107> (1/K) 1.89 21 0.9

o (S/m) 62.1x10° | 5.5x107° | 2.6 x 10°

with increasing Hall factor m and the permeability factor K. Figure 14 depicts the
Nanoparticle volume fraction impact on VPF. We noticed that the velocity reduces
with incrementing the source factor of heat Oy and rotation factor R (Figs. 15 and
16). It is recognized that an increment in generation of heat or absorption factor
expands the temperature profiles and declines the velocity profiles of flow. Figure 17
represents a radiation impact on the velocity profiles separately. It is noticed that
an expansion in radiation factor increases the VPF. Figure 18 shows the impact of
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Table 2 Sherwood number

Ny Kr Sc S Sh

0.3 0.2 0.22 2 0.146503

0.5 0.182068

0.7 0.203210
0.5 0.159036
0.8 0.182482
0.3 0.183601
0.6 0.235247
2.5 0.180452
0.198277

suction factor on velocity of flow. It will be noticed that development in suction factor
decays the boundary layer of momentum.

Tables 2, 3 and 4 represent Sherwood number, Nusselt number and skin friction
factor, with respect to the governing factors. From Table 2, we noticed that Sherwood
number Sh enhance with increasing all parameters diffusion parameterN 4, Schmidt
number Sc, chemical reaction factor Kr, and suction factor S. From Table 3, we
noticed that Nusselt number raise with increasing convection parameter N, radiation
parameter F, and factor of volume fraction ¢, and it reduces with increasing heat
source parameter Qy and suction factor S. Finally, it is evident that with an increment
in Hall factor m, permeability factor K, rotation factor R, and suction parameter S the
“skin friction coefficient” reduces. Likewise, it enhances with increasing Hartmann
number M, radiation factor F, volume fraction factor ¢, and heat source parameter Oy
(Table 4). Table 5 shows the comparison of current outcomes with existed outcomes
of Das [12]. We establish an outstanding agreement of current outcomes with existed
outcomes.

Table 3 Nusselt number (Nu)

Ne¢ F Ou ¢ S Ag—water TiO,—water
0.2 1 5 0.1 2 0.199978 0.204458
04 0.258855 0.288595
0.6 0.325568 0.366658
1.5 0.266589 0.345889
2 0.355622 0.452216
0.144152 0.152245
0.099589 0.114588
0.2 0.255458 0.289960
0.3 0.326656 0.399901
0.114552 0.189663
4 0.045585 0.144785
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Table 5 Comparison of results (F = Kr=Sc=m =0)

M ) R Ct Ct Nu,/Re, Nu,/Re,
Das [12] Present results Das [12] Present results

0.1 1 2.145221 2.145855 0.521452 0.521455

1.855472 1.855485 0.485596 0.485599

1.655212 1.655522 0.445201 0.445204

0.2 2.336650 2.336625 0.552468 0.552469

0.3 2.666325 2.666745 0.589985 0.589988

2.544481 2.544855 0.524252 0.524255

5 2.880112 2.880411 0.528854 0.528856

4 Conclusions

Radiation and Hartmann numbers have the tendency to reduce the velocity. The
velocity enhances with increasing Hall parameter m. The convective factor is support
to increase the heat profiles of flow. Concentration reduces with increasing suction
parameter. Nanoparticle volume fraction and radiation parameter increments the
transfer rate of heat. The suction factor is support to increment the transfer rate of
mass near the flow boundary.
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An Analytical Study of Aerosol )
Dispersion in the Atmosphere Bounded L
by Porous Layers

P. Meenapriya and K. Uma Maheswari

Abstract The mathematical model is developed using analytical method to examine
the effects of aerosol dispersion in atmospheric fluid, both in the presence and absence
of chemical reaction. Its applications are in many fields especially to human health,
environmental pollution, and climate change. Taylor’s dispersion model is applied to
study aerosol dispersion in a channel bounded by porous layers with applied electric
and magnetic field. Itis perceived that the presence of chemical reaction intensifies the
aerosol dispersion while in the absence of chemical reaction, the aerosol dispersion
reduces.

Keywords Atmospheric fluid - Concentration of aerosol - Chemical reaction *
Taylor’s dispersion model

1 Introduction

More than two decades the atmospheric dispersion modeling has attracted many
researchers since the dispersion study has an immense range of applications in envi-
ronmental pollution, material science processing, and industries. Atmospheric dis-
persion modeling is the mathematical simulation of how air pollutants disperse in
the atmosphere. These air pollutants are emitted from diverse sources and some of
them react together to form new compounds in the air. The main constituent of the
air pollutant is atmospheric aerosols.

An aerosol is defined as a disperse system of solid or liquid particles suspended
in the atmosphere. They are efficient scatterers as it can be transported to some
significant distance from their sources. It occurs in great amount proximate the Earth’s
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surface and its concentration decreases rapidly with increasing altitude. The very
high concentration of aerosols is the major cause of cardiovascular disease and is
suspected to cause cancer. Aerosols limit visibility due to high concentration, which
is the foremost problem prevailing in heavy industrialized areas and cities. To reduce
the concentration of aerosols, the effects of dispersion coefficient of the aerosol are
examined.

The dispersion of solute has attracted considerable interest among researchers
since the classic paper on dispersion by Taylor [1]. The dispersion of solute matter
in a circular pipe is explored by Taylor [2] and is valid asymptotically for large time.
Gupta and Gupta [3] examined the dispersion of a solute using Taylor’s model in the
presence of first-order chemical reaction. Shivakumara et al. [4] developed a model to
study dispersion in porous media, which is valid for all time. The effects of chemical
reaction on the dispersion of a solute in the porous medium are considered by Pal
[5]. Manjula [6] deals with the mathematical modeling of some complex fluids in
composite layers.

Das et al. [7] studied hydromagnetic Couette flow of a viscous incompressible
fluid in a rotating system. Due to the advanced measurement technologies, under-
standing of chemical composition, and physical properties of atmospheric aerosols,
the literature on aerosols has increased enormously in recent years. The dispersion
of aerosols in the presence of an electric field with and without chemical reaction
was investigated by Meenapriya [8, 9]. Rudraiah et al. [10] developed a model of
poorly conducting couple stress fluid in the presence of electric field bounded by
porous layers.

The objective of this paper is to formulate a mathematical model to investigate
the dispersion of aerosols in a horizontal channel bounded by porous beds in the
atmospheric fluid (modeled as poorly conducting fluid) using Taylor’s method. The
electric and magnetic field is applied to the porous layers of rectangular channels
externally. The dispersion coefficient of aerosols both with and without homogeneous
first-order chemical reaction has been evaluated numerically. Results are discussed
for various values of parameters including electric number, Hartmann number, porous
parameter, and chemical reaction rate parameter through graphs.

2 Mathematical Formulation

A Cartesian coordinate system is taken so that the channel of width 2 h is symmetric
about the x-axis. An electroconducting impermeable rigid plates embedded with
electrodes are placed on the porous layers, also uniform magnetic field B is applied
externally in the transverse direction as shown in Fig. 1. The electric potential ¢ =
%(x) aty=-hand ¢ = %(x — Xp) at y = h are maintained at the boundary of the
channel. Assume the flow to be laminar, incompressible flowing with a uniform axial
pressure gradient.
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Fig. 1 Physical configuration

The basic governing equations are given below,

Conservation of mass

V.q=0 (D
where q is the velocity of the fluid.
Conservation of momentum
aq 2
pl— +(@-V)ql = =Vp+ uV-q+ peE + (J x B) 2

ot

where p is the density of the fluid, p is the pressure, pe is the density of the charge
distribution, E is the electric field, i is the coefficient of viscosity, J is the current
density, and B is the magnetic induction.

Conservation of species

aC 5
5 (@ V)C=DVC—KC 3)

where C is the concentration of aerosols, K is the chemical reaction that takes place
in the channel, and D is the mass diffusivity.

Conservation of charges

dpe
Wﬁ-(q-V)peﬁ-(V-J):O 4)
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Maxwell’s equations

pe

V -E = — (Gauss law) 5)

€0

0By
VXE= ~ar (Faraday’s law) (6)
J =0.(E 4+ u x By) (Ohm’s law) @)

where o, is the electrical conductivity and By is the applied uniform magnetic field.
With all the assumptions made above, Egs. (2) (3) and(4) can be written in the
cartesian form as

9%u ap

n— — ocBgu = — — peE, (conservation of momentum) ®)
dy? 0x
aC n oC D d%C N 9%C KC( t' ¢ ies) ©)
—tu— = — 4+ — ) - conservation of species
or " ox 02 T ox2 P
J .
Y = 0 (conservation of charges) (10)
y

The boundary conditions on the velocity are,

ou o
ay \/lz P y
@ w—up), aty=—h (12)
— = —W—u,), aty=—
ay \/E P y
—k op
= —— 13
up o (13)
u=U aty=nh (14)

we are considering Beaver and Joseph [11] slip conditions for upper and lower per-
meable surfaces and « is called the slip parameter. The value of the porous parameter
o is given by (Darcy) o = %, where k is the permeability of the porous layer and
u, is the Darcy velocity of the porous layer.
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2.1 Determination of Velocity

Using the following dimensionless quantities Eqs (8)—(14) are made dimensionless

* Y u_ _’411E*_E * X * _ _pe
y e u* (%) u, x 3 )»P )2,)6 7o P€ (E;,JTV)

The non-dimensional form of momentum equation is given by

82
— —M*u=P — W,peE, (15)
dy?

252
letP = m 3—”, the electric number W, = av ,and the Hartmann number M2 = = 2Bl

Maxwell’s equations are used to calculate the electric force peE, and hence

2 —ay
a“xpe
E,=—— 16
pe 2sinh o (16)
So, the momentum equation (15) takes the form,
82
— — M*u =P + Weage™ (17)
ay?
2
where ap = 5572
The solution for Eq. (17) is
. . P
u = Acosh My + Bsinh My + aje™™ Y (18)
where a; = ZV ;47. The constants A and B are calculated using the dimensionless
boundary conditions on velocity given by
du
oy ao(u —up) y (19)
ou
— =ao(u—u,) aty=-—1 (20)
dy
Pk
u—u,=u-+ e 21
u=U aty=1 (22)

Using the above equations, the constant values are obtained as follows A =
ao [ale’” —aje® — ajcoshe _  aaj cosho tanh M + P Pk]

aocosh M+MsinhM bt o o M Mz TR
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__ aaj(cosha)
B = Mcosh M *

The average velocity u is given by

1! AsinhM  agsinha P
U = — d = —_— 23
u 2/_114 y i + " Ye (23)
LetV =u —u = Acosh My + Bsinh My + aje™® + f (24)

where f = [W _ asinhay

o

2.2 Concentration of Aerosols

The concentration of aerosols C with chemical reaction K in the atmosphere which
diffuse in a fully developed flow is given by Eq. (9). Following Taylor [1], we assume
that the transverse diffusion is very much higher than the longitudinal diffusion,
?,% < 327§ so Eq. (9) becomes,

aC oC 92C

9% L _pZt ke 25
ar T 9y 25)

We assume that homogeneous chemical reaction is taking place inside the channel
and Eq. (25) is solved for concentration with the boundary conditions,

C=Cy aty=nh (26)

C=C aty=—h 27

We now make Eqgs. (25)—(27) dimensionless by introducing the dimensionless
variables, y* = 2, C* = c%* =% &=42" and B2 = hZTK‘

where B is the reaction rate parameter, L is the characteristic length along the flow
direction. After non-dimensionalizing equation (25) becomes,

2

0°C
—5 =VO+pC (28)
ay

where Q = g—i%, B? = %hz and Egs. (26) and (27) becomes,
C=cy aty=1 (29)

C=c; aty=-—1 (30)
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We now consider two cases based on the presence and absence of chemical reaction
in the channel.

2.3 Case 1: Dispersion of Aerosols in the Presence of
Chemical Reaction (when 3 # 0)

The solution for Eq. (28) using the boundary conditions (29) and (30) is,

. A B . aje™ f
C = ficosh By + fasinh By + Q mcoshMy-i-msmhMy-i-m—p
(€2

A ShM
fl = coslhﬁ I:(CO;CI) - QMgTﬂZ aczleﬂv (COSh Ol) =+ :I

f= sinlhﬂ [(Cogd) - ngsifgy + a?‘,%z (7 + cosh oz)]

The atmospheric fluid is transported across a section of layer of unit breadth whose
volumetric rate is given by the equation,

1

h
M = E/Cde (32)
-1
using Eqgs. (24) and (31) we have
hZG oC
(33)
- DL Bé

Following Taylor [1], the assumption that the variation of C with £ is small
compared with those in the longitudinal direction is made and if Cy, is the mean
concentration, 2 35 is indistinguishable from 3C“‘ . So, Eq. (33) becomes,

h*G 9Cy,
=—— (34)
DL 09¢&

Using the aspect that no material is lost in the process is given by the continuity

equation,
M —29Cy
- (35
E L ot
where % represents differentiation with respect to time at point where £ is a constant.
From equations (34) and (35), we get
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9Cn 92Cp
o =Y 92 (%6)
~h*G
D*=— 37)

D* is the dispersion coefficient of aerosols in the presence of chemical reaction.

2.4 Case 2: Dispersion of Aerosols in the Absence of
Chemical Reaction(when 8 = 0)

Suppose if chemical reaction does not takes place in the considered horizontal chan-
nel, then the reaction rate parameter becomes zero. Let the concentration of aerosols
in the absence of chemical reaction be Cy, then Eq. (28) becomes,

32Cy
=QV 38
=2 (38)
using Eq. (24),
3*Co . o
52 = Q[AcoshMy~|—BsmhMy+ale y—i—f] (39)
y

where f = [W _ alSio?ha]-

The value of Cy is

a e~ 2
10 + Q];y

QA OB .
Co = [Wcosh My + Wsmh My + o2

+ fay + f4] (40)

where f3 and f4 are integration constants and their values are obtained by using the
boundary conditions given in Egs. (29) and (30) hence,

£ = [_@gcﬂ — 986inh M + %2 (cosha — e—a)]

_ | (Go+C)) 0A a0 of
fa= [% — 37 cosh M + “L2cosha — 7]

As explained in case (1), the value of volumetric rate is calculated. Hence,

h 1
Moy = 5/ CoVdy (41)
-1

and the dispersion coefficient of aerosols in the absence of chemical reaction DY is
given by,
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—h’G,
= 42
1 D (42)
C, is the mean concentration over a section. From Egs. (37) and (42), the expressions
of dispersion coefficients D* and D} are computed and results obtained from the
study are discussed in Sect. 3.

3 Results and Discussion

An analysis of aerosol dispersion in the atmospheric fluid in a channel bounded
by porous beds with an external electric and magnetic field has been discussed
analytically using Taylor’s method. The obtained analytical results are evaluated
numerically using MATHEMATICA, and the results are depicted graphically through
figures. Figure?2 represents the velocity for various values of electric number. The
dispersion coefficient in the presence and absence of chemical reaction has been
discussed separately in Sects. 3.1 and 3.2, respectively.

3.1 Effects of Dispersion Coefficient D* (Dispersion in the
Presence of Chemical Reaction)

Figure 3 represents the dispersion coefficient D* is plotted against the Hartmann
number M for some values of electric number W,. It is evident that an increase in
both the Hartmann number and electric number increases the dispersion coefficient.
In Fig.4, the dispersion coefficient D* is plotted against the Hartmann number M
for some values of porous parameter o. It is seen that an increase in the Hartmann

—— we=30
i we =40
== we=50

== we=060

1 " " " " 1 " " " " " " " " " " " " y
-1.0 -0.5 0.5 1.0

Fig. 2 Plots of velocity for different values of electric number
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Fig. 3 Plot of dispersion coefficient D* versus Hartmann number M for different values of electric
number W,
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Fig. 4 Plot of dispersion coefficient D* versus Hartmann number M for different values of porous
parameter o

number and porous parameter increases the dispersion coefficient. Figure 5 represents
the plots of dispersion coefficient D* versus electric number W, for different values
of porous parameter o. It shows that an increase in both electric number and porous
parameter increases the dispersion coefficient.

3.2 Effects of Dispersion Coefficient D (Dispersion in the
Absence of Chemical Reaction)

In Fig. 6, the dispersion coefficient Dy is plotted against Hartmann number M for
some values of electric number W,. It is clear that an increase in both electric number
and Hartmann number increases the dispersion coefficient. In Fig. 7, the dispersion
coefficient D7 is plotted against Hartmann number M for some values of the porous
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Fig. 6 Plot of dispersion coefficient D} versus Hartmann number M for different values of electric
number W,

parameter. It is noted that an increase in both porous parameter and Hartmann num-
ber decreases the dispersion coefficient. Figure 8 represents the plots of dispersion
coefficient D} versus electric number W, for some values of the porous parameter.
It shows that an increase in both electric number and porous parameter decreases the
dispersion coefficient.

Comparison Study Thus, dispersion coefficients both in the presence and absence
of chemical reaction increase with an increase in electric number and Hartmann
number. But results differ when comparing Figs.4 and 7 and it is perceived that
D*, the dispersion coefficient in the presence of chemical reaction increases with
an increase in Hartmann number and porous parameter, while D the dispersion
coefficient in the absence of chemical reaction decreases with an increase in both
Hartmann number and porous parameter. This comparative study is depicted in Fig. 9
where plots of D* and D7 are drawn using the same values of Hartmann number and
porous parameter.
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4 Conclusion

Aerosol dispersion in the channel of atmospheric fluid bounded by porous beds with
and without the effect of the chemical reaction is studied using Taylor’s approach. It
is noted that in the absence of chemical reaction the dispersion of aerosols reduces,
so the concentration of aerosol is maximum. On the other hand, the presence of
chemical reaction enhances the dispersion of aerosols and hence the concentration
of aerosols is reduced. Thus, reducing the concentration of aerosols will lessen some
serious health problems and visibility issues. It is concluded that the homogeneous
first-order chemical reaction enhances the dispersion of aerosols, while in the absence
of chemical reaction, the dispersion of aerosols reduces.
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Solution of Gas Dynamic and Wave )
Equations with VIM oo

Nahid Fatima

Abstract In the present research paper, we will solve homogeneous and non-
homogeneous gas dynamics equation, KdV, K (2, 2) equations and wave equation
with different boundary conditions. In the current research paper, to arbitrate solu-
tions for KdV, the K (2, 2) and the wave equation reliable iteration approach is taken
into consideration. We apply VIM to solve all the equations. The study highlights
the efficiency of the approach and its confidence on the Lagrange multiplier. This
work completes the coordination of KdV condition by the guide of any other strat-
egy. This prompts the unpredictable answers for the condition of homogeneous and
non-homogeneous gas dynamics equation, KdV and wave equations.

Keywords Gas dynamics equation - Wave equation + KdV equation

1 Introduction

Analytical methods are most commonly used to solve nonlinear equations by many
authors [1-4] are very restricted and numerical techniques involving discretization of
the variables, on the other hand, gives rise to rounding off errors. Recently introduced
variational iteration method (VIM) by He [5—7], which gives rapidly convergent suc-
cessive approximations of the exact solution if such a solution exists, has proved suc-
cessful in deriving analytical solutions of linear and nonlinear differential equations.
This method is preferred over other numerical methods as it is free from rounding off
errors and it does not require large computer power/memory. He [6, 7] has applied
this method for obtaining analytical solutions of autonomous ordinary differential
equation and nonlinear partial differential equations with variable coefficients. The
VIM was successfully applied to seventh-order Sawada equations [8]. Wazwaz [9]
used the VIM to solve the linear and nonlinear wave equations, Burgers and Cubic
Boussinesq equations. Nonlinear development assumes a significant job in applied
mathematics and material science. Moreover, when a unique nonlinear condition is
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legitimately determined, the arrangement will protect the genuine physical charac-
ters of arrangements. In this paper, the variational iteration method (VIM) created
by He [10] will be utilized to lead an expository investigation on the KdV, the K (2,
2) and the wave equation. The strategy gives quickly joined progressive solutions of
the precise arrangement if such an answer exists; generally, approximations can be
utilized for numerical purposes.

Various nonlinear developments in numerous parts of sciences, for example, phys-
ical, convection, affordable and natural procedures are portrayed by the interchange
of response and dissemination or by the association among convection and dispersion.

To represent the fundamental idea of the strategy, we assume the accompanying
general nonlinear differential condition given in the structure

Lu(t) + Nu(t) = g(1)

where Lu is a straight administrator, Nu is a nonlinear administrator and g(¢) is a
known explanatory capacity. We can develop a rectification operation as per the
variational strategy as

t

Upy1l = Uy + / )‘-(Lun(s) + Nﬁmn(s) - g(S))dS
0

We assume dii,, = 0.
We have,

t
dity1 = du, + / A, 8)Buy,)'ds =0
0

Its stationary conditions can be determined as follows:

A(s) =0

L+ A(s)lzy = 0.
From which the Lagrange multiplier can be distinguished as
A=—1,

and the following iteration equation is acquired

t

Unt1 = Up — f Az, s)(Luy (s), N, (s) — g(s))ds.
0
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Thus, the arrangement is given by

u = lim u,.
n— o0

The Korteweg-de Vries (KdV) equation is
U+ Uy + Uyy = 0 (1)

Composed here in authoritative structure.

In above condition, u(x, t) is a proper field variable, ¢ is time and x is a space orga-
nize toward proliferation. The KdV condition is generally perceived as a worldview
for the portrayal of feebly nonlinear long waves in numerous parts of physics and
engineering. Without a doubt, on the off chance that it is assumed that x-subordinates
scale as € where € is the small parameter portraying long waves (e.g., regularly the
proportion of a pertinent foundation length scale to a wavelength scale), at that point,
the plentifulness scales as € and the time advancement happens on a scale of €.

Despite the fact that the KdV Eq. (1) is truly connected with water waves, it
happens in numerous other physical settings, where it tends to be determined by an
asymptotic multi-scale decrease from the applicable administering conditions.

Regularly, the result is

Uy + cty + puttty + Atyyy =0 2)

Here, c is the important linear long wave speed for the mode whose adequacy
is u(x, t), while p and A, the coefficients of the quadratic nonlinear and straight
dispersive terms separately, are resolved from the properties of this equivalent linear
long wave mode and, similar to c rely upon the specific physical framework being
considered.

2 Korteweg-de Vries Equation

After change and rescaling, the altered condition can be changed to the denoted KdV
(or Gardner) equation u; + auu, + B(u*) + g = 0.

Like the KdV condition, the Gardner condition is combined by the backward
dissipating change. Here, the coefficient f can be either positive or negative, and the
structure of the arrangements depends urgently on which sign is suitable.

Hllustrative Example: To show efficacy of the method, we shall consider the below
examples with initial condition.
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3 Problems

In the beginning, we contemplate KdV equation

u; — S(uz)x + U =0

u(x,0) = 6x
fo (e 0 9P
Up41 = Up + )"(S) a%_ -5 9x + ax3 df
0
It gives
A =0,
1+2=0
Hence,
A=—1
From Eq. (4)

t

2 3
et Cit) = up (1, 1) _/(aun(x,é‘) _ ) (x. §) + 9 (Lm)(&f))dém

0& ox ax3
0

t
up(x,t) = 6x — / (=5 %72x)dé = 6x + 360xt = x(6 + 360¢1)
0

t

ui(x, 1) = 6x(1+31) — f (216x — 216x — 279936x1> — 15552xt)dé
0
= 6x(1 + 31) + 6x(12961> + 15552)¢

= 6x(1 + 31 + 12961* + 15552¢°)
Choosing value u(x, 0) = 6x for ug(x, 1),

uy = 6x,
up = 6x(1 +601),
uy = 6x(1 + 601 + 36001” + 155527°),

uz = 6x(1 + 60t + 3600¢> + 15552¢> + 1119744¢* 4 20155392¢%) + - - -

3)

“4)

®)

(6)

>0

(7
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us = 6x(1 + 60t + 36001 + 466561> + 1679616t + 604661761° + - - -)
iy = 6x (1 + 60 4 36001> + 466561° + 1679616¢* + 604661761° + - - )

u= lim u,,
n—o0

6x
=———, |60f] <1
"= 1o 100
K (2,2) equation
We contemplate & (2, 2) equation
ue+ (W), + (), =0,

XXX

u(x,0) =5x
- ’ duy 0w P’
Upy1 = un"—/‘)‘-(é)(E + 3)(2 + 8)(3 )dé
0
A=—1

Equation (10) becomes

t
P n P 2 83 2
Upt1 = Uy _/<L+ (un) + (un) )d%‘,l’l > 0
0

o0& 0x? dx3

choosing u(x, 0) = x for (x, t) and using (12),

u; = 5x(1 —21),
up = 5x(1 =2t + 41> — (8/3)¢%),

us = 5x(1 — 2t + 41> — 8> + (32/3)¢* — (32/3)°) + - --

ug = 5x(1 — 2t + 41> — 8> + 16t* — 326° + 641°) + - -

g =5x(1 =2t + 4% — 8 + 161 —320° + 641° — ..)
Recalling that

u= lim u,,
n—o0

Therefore, we have

85

®)

9

(10)

Y

(12)

(13)

(14)
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S5x
U= .
142t

Homogeneous Non Linear Gas Dynamic Equation
uy+u@), +u(l—u)=0

With initial condition

u(x,0) =¢e"
t
8”;1 8“;1
Untt = up + | AE)| - +un(x, §) +u(l —u) |d§
a& ox
0
This gives
A=0
1+2=0
r=-—1

Put the value of \ into functional (17) obtain the Eq. (19)

uy = (1 — e_x)

uy = (1 — e_")

Uy = (1 — C_x)

u, = (1 —e™)
Recalling that

u= lim u,

Therefore,

u=n(l-e™)

Homogeneous Differential Equation

u; + %(uz)x +u(l—u)=0

N. Fatima

15)

(16)

a7)

(18)

19)

(20)
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With condition

u(x,0) =¢" (22)
The formula for Eq. (22)
l ou, | 10u
un u,
e =, + [ A(é)( - ) da 23)
0
This gives
A =0,
1+A=0. (24
r=—1 (25)

Put value of A into Eq. (23) and we get,

t

1
unﬂzun—f(a”" L Loy, (1—u>) d 26)
0

3

e (1 +1)

Uy = uy _/(88»;1 + = : aul +u(l —u))dé
0

t

=e(l+0) - / (e —(1+2t+2)e ™  +e (1 —e™))dg
0
=e*(1+1+1%)
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And so on...
up=eF(1+t+2+054+-.) 27
Recalling that
u = lim u,,
n—oo
Therefore,
e—x
u =
1—1¢

VIM for solving Homogeneous and Non-Homogeneous Wave Equation

Example:

2

Uy = —

17 e (28)

Initial conditions are
u(x,00=0, u(x,0) = x*

Using VIM, we get,

1

ou, 9 /1 x?
un+|(x,t)=un—/[ar —x4—§L 1<s—2LEum>](df).
0

Consequently, following approximations are obtained.

UQ=)C4I
t x4t3
T

X X
wy =xtr+S— 4+ —

3! 5!
x4 X x*t7
ws =Xtk e e e

P
u”:x[t+3v+5v+ + }



Solution of Gas Dynamic and Wave Equations with VIM
Since

u= lim u,
n— o0

Hence, we have exact solution
u(x,t) = x* sinht
Example:

x2

Uy = S Uxx
2

u(x,0) =x> u,(x,0)=x2

Using VIM, we have

§2

t
du, 9 1
un+1(X,t)=u,,—/[ " _x2_x2__L1<_Lx
0

~ Unxx
2

Consequently, following approximations are obtained successive

Uy = x2 —I—x2t

x2? x4
Uy =x>+x%+— o + T
2t2 x2t3 x2t4 x2t5

3! stoel 7

R S R L
un=x<1+ tatatstaty +--)

And using the fact that

u= lim u,
n—o0o

Hence, we have exact solution

oo
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Example:

2

Uy = Euxx (30)
Initial condition
u(x,0) =x> u,(x,0)=x>

Applying (VIM), we get

t

ou, 9 /1 x2
U1 (X, 8) =u, — / [ P - =X - EL 1<S—2L?unxx>:|(dr).

0

We have successive approximations as follows
Uy = %3 + 3t

x3? X33
u—x +xt+ o +T
32 ¥ Bt X3
”‘”“*7*7*7&?
32 P X X3P B0 X3
=+ b S S S S T e

P . T Y
Uy = <l+ +3‘+ +5‘+6'+ + - )
And using

u= lim u,
n—o00

Hence, we have exact solution
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4 Conclusion

Homogeneous gas dynamics and wave equation and non-homogeneous have been
solved by VIM. The amount of calculations are tremendously reduced by the VIM
and it eliminates the computation of Adomian polynomials. He’s variational itera-
tion method facilitates the computational work and gives the solution rapidly when
compared to Adomian method.

The shut structure arrangements of higher request non-straight beginning worth
issues can be acquired utilizing VIM strategy in less calculations. The VIM strategy
can likewise be connected to tackle such issues in the future.
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Comparison Analysis Through Condition | M)
Monitoring for Fault Detection L
of Bearing in Induction Motor

Y. Seetharama Rao and Devarabhotla Sai Chandra

Abstract In Industries, maintenance is an important activity to keep the equipment
in a healthy condition. Condition-based maintenance (CBM) is a proactive mainte-
nance technique that helps to fault diagnose of a machine system in running condition.
This program is carried out in three steps: (i) detection; (ii) analysis; and (iii) correc-
tion. In CBM techniques, vibration analysis plays a vital role in identifying problems.
The objective of this paper is to perform a comparison analysis of newly replaced
bearings and corrected misaligned shaft for 630 kW induction motor with already
existing healthy condition induction motor. This is done by vibration monitoring
technique using fast Fourier transform (FFT) analyzer. The main attraction of this
technique is that it can be performed even while the equipment is in normal working
condition, thus saving precious downtime and avoiding production loss. This tech-
nique helps in diagnosing motor health by taking readings on drive end and non-drive
end for both motors. By placing the accelerometer sensor in the tri-axial direction of
motor vibration, data is obtained. These are in amplitude and time waveform signals
and are collected at full load condition. This comparison analysis is a technique that
helps to know the motor health condition. The obtained results are encouraging and
identified the motor rolling bearing health status in running condition.

Keywords Vibration monitoring + Fault identification - Vibration spectrum
analysis

1 Introduction

Condition-based maintenance involves regular inspection of equipment and sophisti-
cated instruments to assess the health of the machine, most of the activities ought to be
preferably done while equipment is running. While on the one hand, it improves the
effectiveness of inspection; on the other side, it reduces the downtime which is a lim-
iting factor in time-based preventive maintenance. Vibration monitoring is one of the
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techniques in condition-based maintenance. Rolling element bearings are the most
precisely made devices, do not fail prematurely, unless some other forces are respon-
sible. Such forces are often the same as causing vibration. Vibration monitoring is
a time reliable technique and aids to assess the machinery health condition. Kankar
etal. [1] investigated the feature recognition system for the detection of bearing faults
by classifying those using soft computing techniques like artificial neural networks
(ANN) and support vector machine (SVM). The performance of SVM is found to
be better due to its inherent generalization capability. Ma and Zhang [2] investigated
the rolling element bearing using SVM classifier for initial classification. SVM clas-
sification results show basic probability assignment (BPA). The experimental results
indicated that since SVM method has high recognition accuracy, stability, and broad
applicability, it can effectively identify roller bearing health status. Rummaan et al.
[3] conducted experiment on roller bearing using support vector method (SVM).
Vibration signal is followed by feature extraction in time and frequency domain, and
on this basis, fault classification is performed. Through the results and simulations
produced, efficient fault detection can not only be done using classical SVM but even
better results are obtained using one-class SVM. Saravanan et al. [4] have performed
experiments on condition of an inaccessible gear in an operating machine using vibra-
tion signal of machine which deals with the effectiveness wavelet-based features for
fault diagnosis using support vector machine and proximal support vector machines.
These data are classified by an algorithm and predominant features were fed as input
for training and testing SVM and PSVM and this helps in classifying faults in gear-
box. Siddiqui et al. [5] diagnosed bearing fault on squirrel cage induction motor in
transient condition further as steady-state condition by signal processing techniques,
like FFT by time domain as well as wavelet transform for early fault detection. Nandi
and Toliyat [6] gave a brief review of bearing, stator, rotor, and eccentricity-related
faults by non-invasive motor current signature analysis (MCSA) and diagnose faults
in machine. Yavanarani et al. [7] demonstrated experiment on engine test bed so as
to verify that it meets the particular at various load accumulations. These are usually
carried with troubleshooting so as to determine whether vibration levels are inside
acceptable limits at a given speed.

The above-discussed literature gives an idea of how to conduct experiment using
FFT analyzer on rotating machines. From vibration data, it gives an idea how to
analyze a problem on a rotating system. Different methods to analyze vibration
signals other than FFT analyzer are used. The data obtained helps in optimizing
the machine life and diagnosis the cause to root level but it takes a long period to
diagnose. This paper performs a simple and time reliable technique to diagnose motor
health in running condition.
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2 Comparison Analysis of Induction Motor Using Fast
Fourier Transform Analyzer

Fast Fourier transform analyzer is useful to take readings, record them, and track the
trend of the machine over a period of time. An accelerometer is held on motor drive
and non-drive end bearing housing for diagnosing. The overall readings are taken in
amplitude vs frequency in the tri-axial direction on both ends of the bearing housing.
These are analyzed by collected data depending on its vibration characteristics; the
nature of the defect is identified. The recorded readings are dumped into a computer
where all data is stored by using CSI Master Trend software that will be helpful for
comparing the present data with past data trends, and it can diagnose the mechanical
condition of the motor (Fig. 1).

2.1 General Defects in Anti-friction Bearings

Rolling element bearings are the most precisely made devices, do not fail prema-
turely, unless some other forces are responsible. Such forces are often the same as
causing vibration. So, even when a vibration analysis indicates symptoms of bearing
problems, that should not eliminate the possibility of something else, is the pri-
mary cause of trouble. Always make a careful check for other difficulties, such as
unbalance and misalignment, after replacing the bearing, especially where prema-
ture bearing failures have been frequent. Rolling element bearing having flaws in
raceways, rolling elements, or cage will usually cause a high frequency of vibration.
Actually, the defective bearing will not generally cause a single discrete frequency of
vibration, but, instead may generate several frequencies simultaneously the spectrum
taken out from fault bearing machine.

It is observed that there are several high frequencies which are generated by the
faulty bearing. The vibration signature further suggests that vibration is somewhat
random and unsteady (Table 1).

Motor Drive End

Motor Non- Drive End

Fig. 1 Measuring points to collect vibration data from induction motor
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Table 1 Equipment details
for mill fan

Y. Seetharama Rao and D. Sai Chandra

Equipment type

Single suction overhung rotor fan

Impeller diameter

2600 MM

Motor type 3-Phase induction motor
Rating 630 kW

Operating voltage 6600 V

Full load current 69 Amp

Motor speed 1000 RPM

Handling medium Nitrogen

Coupling type Pin bush

Foundation type Concrete

Motor bearing

Double row spherical roller (22,230)

As per ISO 2372, this equipment belongs to class-3 and the maximum vibration
limit for this equipment is 4.5 mm/s and the collected vibration readings should not

exceed this value.

3 Experimental Setup

After disassembly of motor bearings from induction motor, the motor drive end
bearing defect is observed on outer race like knurling pattern due to rubbing of
rolling elements. On non-drive end, it is also noted that normal wear appeared on
outer race of bearing (Figs. 2 and 3).

3.1 Physical Observations

e Abnormal and rhythmic knocking sounds appeared because the motor intensity
is high at bearing points as compared to motor body.

e Motor temperature readings are also reached to 62 °C at motor DE bearing on the
housing, and shaft temperatures are at the level of 58 °C.

PIN BUSH
COUPLING

Fig. 2 Measuring point layout for mill fan motor where B1—motor non-drive end (MNDE), B2—
motor drive end (MDE), B3—fan drive end (FDE), and B4—fan non-drive end (FNDE)
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- Wom out Quter
\ i due to
(V4 4 Knurling pattern race due tc
v defect due to deterioration
deterioration
(@ (®)

Fig. 3 a Knurling pattern defect identified on motor drive end side bearing and b normal wears on
outer race due to deterioration on non-drive end

e Fan side readings are more or less at the moderate level.

e [Lubrication condition also has appeared to be dry.

e Motor base plate vibrations readings are also high in vertical direction at drive
end and non-drive end base plate bolts.

4 Detection of Defective Bearing on Induction Motor

The overall vibrations are taken mm/s in the tri-axial direction for induction motor
helpful in analyzing the motor health condition. It is helpful in knowing at what
direction the maximum amplitude is appeared. Depending upon the nature of vibra-
tion amplitude and direction at which amplitudes appear, the type of defect can be
detected in advance (Table 2).

The spectrum from Fig. 4 shows the velocity amplitude of 3.05 mm/s at 960 cpm
in vertical direction, and Fig. 5 shows the velocity amplitude 5.49 mm/s at 3960 cpm
in axial direction on motor drive end before replacement of motor bearing (Figs. 6,
7, and 8).

Table 2 Overall vibration data of induction motor before replacement of bearing on motor drive
and non-drive end

Axis MNDE MDE
Vertical 2.81 3.05
Horizontal 1.71 2.72
Axial 3.63 5.49
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Fig. 7 Motor non-drive end axial spectrum before replacement of bearing
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Fig. 8 Motor drive end vertical spectrum after replacement of bearing
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4.1 Observation

1. Dominating vibration amplitudes are observed at motor DE bearing in vertical
and axial directions only, pattern directing us toward the localized problem, not
influencing the other bearings in the equipment.

2. In the fast Fourier transform spectrums of motor bearing, dominating peaks
appeared at 3974 cpm which is not matching with any harmonic frequencies of
rotating RPM of the motor.

3. Sub-harmonic frequencies of rotating motor revolution per minute (RPM) are
also not matching with 3974 CPM at any order.

4. Mapping of vibration amplitude on motor bearings shows an increasing trend with
time and is an indication that the rate of increase is high and the condition of the
bearing may deteriorate proportionally with the increase of vibration amplitude.

5. Vibration phase at motor DE bearing with respect to tacho signal has appeared
very erratic in both radial and axial directions.

6. The time waveform has also appeared like amplitude modulation pattern in the
axial direction readings of motor DE bearing.

5 Analysis of Spectrum After Replacement of Bearing
for Induction Motor

From the spectrum in Fig. 9, it is seen that there is velocity amplitude of 1.5 mm/s at
960 cpm in the vertical direction. From the spectrum in Fig. 10, it is seen that there
is a velocity amplitude of 1.15 mm/s at 960 cpm in horizontal direction, and from

(REPM - 900 (16 50H)

{ ]
Mix) : 960.00 cpm {0.97 Osdors)
[Miy) : 057 i s

| + { i 1 1 1
b | 1 Lo Y e | = B v

a 8000 10000 15000 20000 25000 20000 28000 40000 45000 50000 ssion 60000

Fig. 10 Motor non-drive end vertical spectrum after replacement of bearing
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o ) 10600 15500 20000 25000 30000 35600 40000

Fig. 11 Motor non-drive end axial spectrum after replacement of bearing

the spectrum Fig. 11, it is seen that the velocity amplitude is 1.11 mm/s at 960 cpm
in axial direction after replacement of bearing on motor drive end.

From the spectrum in Fig. 8, it is seen that there is velocity amplitude of 1.5 mm/s
at 960 cpm in the vertical direction and from the spectrum Fig. 9, it is seen that the
velocity amplitude is 1.11 mm/s at 960 cpm in axial direction after replacement of
bearing on motor drive end.

From the above spectrums in Fig. 10 it is observed that, the velocity amplitude
0.57 mm/s at 960 cpm in vertical direction in Motor Non-Drive End, and Fig. 11 the
velocity amplitude 0.91 mm/s at 960 cpm in axial direction in Motor Non-Drive End
before replacement of motor bearing. These peaks showing machine is running in a
healthy condition. The maximum amplitudes are found in vertical and axial directions
only, whereas in the horizontal direction, the amplitudes are within acceptable limits.
This shows that the motor is in an unhealthy condition.

6 Comparison Analysis for the Existing and Newly
Replaced Bearing for Induction Motor

From the spectrum in Fig. 12, itis seen that there is a velocity amplitude of 0.88 mm/s
at 960 cpm on axial direction. And from the spectrum Fig. 13, it is seen that the
velocity amplitude is 1.33 mm/s at 960 cpm in vertical direction after replacement
of bearing on motor drive end of existing healthy condition induction motor.

From the above spectrums in Fig. 14, it is observed that, the velocity amplitude
0.52 mm/s at 960 cpm in vertical direction in motor non-drive end, and in Fig. 15,
the velocity amplitude 0.51 mm/s at 960 cpm in axial direction in motor non-drive
end for existing healthy condition induction motor. These peaks showing machine
running in a healthy condition.

v e i MILL FAN-1O\MOTOR\M DE A\Coke oven\ S trum 11/05/2018 10:00:05
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Fig. 12 Motor drive end axial spectrum velocity amplitude 0.88 mm/s at 960 cpm
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Fig. 14 Motor non-drive end axial spectrum velocity amplitude 0.52 mm/s at 960 cpm
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Fig. 15 Motor non-drive end vertical spectrum velocity amplitude 0.51 mm/s at 960 cpm

6.1 Trends Observed After Replacement of Bearing
Jor Induction Motor on Motor Drive End

From Figs. 16 and 17, it is observed that there is a decrease in trend over a period
of time after replacement of bearing on motor drive end and non-drive end of the
induction motor and these values are within the permissible limit as per ISO 2372
which is less than 4.5 mm/s for class-3 equipment.
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Fig. 16 Trends on motor drive end vertical direction
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Fig. 17 Trends on motor drive end axial direction

Table 3 Overall vibrations
reading after replacing with
new bearing for motor on
drive and non-drive ends in
mm/s

Table 4 Vibration reading
collected for existing healthy
condition induction motor

Direction MNDE MDE
Vertical 0.57 1.5
Horizontal 0.51 1.15
Axial 0.91 1.11
Direction MNDE MDE
Vertical 0.51 1.33
Horizontal 1.16 1.59
Axial 0.52 0.88

From Tables 3 and 4, it can be clearly observed that there is a reduction in vibration
amplitudes readings on both drive end and non-drive end of bearings for the induction
motor. From the above data, it clearly shows the motor is running in a healthy

condition (Tables 5 and 6).

Table S Comparison
readings taken after newly
replaced bearing induction
motor with existing healthy
condition induction on motor
non-drive end (MNDE)

Table 6 Comparison
readings taken after newly
replaced bearing for induction
motor with existing healthy
condition induction on motor
drive end

Direction | Newly replaced motor | Existing healthy motor
MNDE(mm/s) MNDE(mm/s)

Vertical 0.57 0.51

Horizontal | 0.51 1.16

Axial 0.91 0.52

Direction | Newly replaced motor | Existing healthy motor
MDE (mm/s) MDE (mm/s)

Vertical 1.5 1.33

Horizontal | 1.15 1.59

Axial 1.11 0.88
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7 Conclusions

In this paper, an easy technique comparison analysis is adapted to compare induction
motor health status with already existing healthy running condition induction motor
to easily identify the defects. Early failure of bearing after taking into the operation is
not the problem of bearing but some external forces are responsible for their failure.
Early and efficient fault detection is very important in process industries, and failure
of any machine leads to huge production loss. Vibration analysis is the versatile tool
in the identification of bearing failures at an early stage and also helps in identification
of root cause like misalignment in the system, misalignment of bearing with its shaft
or in the housing, unbalance in the rotors, and resonant conditions in the surrounding
supporting structures.

1. This technique helps in diagnosing a machine within less time which is important
for processing industries machines, and failure of any machine leads to huge
production loss.

2. Itis found that the predominant frequency in the spectrum, i.e., 3960 cpm is very
close to harmonic of ball pass frequency of the outer race (BPFO) of a double
row spherical roller bearing.

3. From Tables 3 and 4, it is observed that the overall readings of two motors are
running in healthy condition and these are within the limits as per ISO 2372.

4. The vibration amplitudes were greatly reduced from 5.49 mm/s to 1.11 mm/s in
the axial direction of the motor drive end bearing after replacing with the new
bearing.

5. The temperatures readings also came within the limits on shafts 50° and on
bearing 53 °C on motor drive end bearing.
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Influence of Thin Baffle and Magnetic )
Field on Buoyant Convection L
in a Vertical Annulus

B. V. Pushpa, M. Sankar, B. M. R. Prasanna, and Zailan Siri

Abstract This paper numerically investigates buoyancy-driven convection in an
annular cavity having differently heated cylindrical side walls and a thin baffle
attached to the inner cylinder. The annular enclosure is packed with electrically con-
ducting low Prandtl number fluid (Pr = 0.054). Along the radial or axial direction, a
magnetic field of uniform intensity is applied. The finite difference method consisting
of ADI and SLOR techniques is employed to solve the model equations governing
the physical processes. The simulation results are presented through streamlines,
isotherms, local, and average Nusselt numbers to illustrate the effects of various
parameters. The simulation results explain that the Hartmann number and baffle
length restrained the heat transfer rate, while the Rayleigh number and baffle location
enhance the rate of heat transfer.

Keywords Magnetic field -+ Annulus - Baffle - Finite difference method

1 Introduction

Buoyancy-driven convection in finite geometries, such as rectangular and annular
enclosures with an applied magnetic field, has been widely examined because of
its occurrence in important applications, such as electrical power generation, astro-
physical flows, and crystal growth techniques. During the casting process, natural
convection takes place while melting the liquid metal in the mold; this causes the
movement of impurities, resulting reduction of the product quality. To improve the
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quality of the product, it is necessary to control the unwanted convection. Several
techniques have been used to reduce the unwanted convection. One of the best ways
to control this undesirable movement is the application of magnetic field in one or
more directions. Realizing this important aspect of the applied magnetic field, several
investigations have been carried out on heat transport in various finite-sized cavities
with an applied magnetic field. Among the finite shaped enclosures, an annular geom-
etry designed from two vertical coaxial cylinders is an important enclosure in many
scientific and industrial applications and hence investigated by many researchers
[1-3].

In a cylindrical annulus, Sankar et al. [4] numerically examined convection heat
transport by applying a constant magnetic field. It is observed that the direction
of magnetic field has profound influence on the type of enclosures. Wrobel et al.
[5] experimentally investigated convection in an annular geometry with magnetic
field. In an annular geometry, Venkatachalappa et al. [6] analyzed thermosolutal
convection to understand the magnetic field effects applied in either axial or radial
directions. They found that the suppression of double-diffusive convection by the
magnetic field greatly depends on the buoyancy ratio. Later, Sankar et al. [7] numer-
ically investigated the collective impact of magnetic field and thermocapillary force
on buoyancy-driven convection. Kakarantazas et al. [8] performed 3D magnetocon-
vection in a vertical annular enclosure. The vertical surfaces are heated differently,
and horizontal surfaces are considered as insulated. The results reported that the
turbulent flow is developed for the non-magnetic case, and an increase of magnetic
force makes the flow to be laminar. Afrand et al. [9] studied magnetoconvection
in an annular space filled with liquid potassium by applying a horizontal constant
magnetic field. They observed that the flow is axisymmetric for non-magnetic field
case, but for horizontal magnetic force, the flow is asymmetric and causes decrease
in thermal transport in the cavity. Later, in an inclined annular geometry, Afrand et al.
[10] examined three-dimensional magnetoconvection for wider parametric ranges.
Malvandi [11] examined the anisotropic behavior of nanoparticles in nanofluids in
the vertical cylinder filled with film boiling magnetic nanofluids and magnetic field.

The impact of magnetic force on buoyancy-driven flow in a rectangular cav-
ity is studied by Oreper and Szekely [12]. They found that the reduction of heat
transport rates by the magnetic field strongly depends on the size of the enclosure.
Magnetoconvection in a rectangular geometry has been numerically examined by
Venkatachalappa and Subbaraya [13]. They observed that the convection is sup-
pressed for sufficiently large magnetic strength, and thermal transport rate is increas-
ing with an increase in Rayleigh number. Later, Rudraiah et al. [14] extended the
similar work on magnetoconvection in a rectangular enclosure with uniform heat flux
and found sharp decline in thermal transport rate with an increase in Ha. Seller and
Walker [15] studied flow of liquid metal in tall cavity with magnetic field and electri-
cally insulated boundaries. Parvin and Nasrin [16] reported the results on magneto-
convection in square geometry containing a solid body of circular shape. The results
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demonstrated that flow and temperature patterns are strongly disturbed by the Hart-
mann and Rayleigh numbers. In a square enclosure, Sathiyamoorthy and Chamkha
[17] presented the results on the impact of an applied magnetic field on natural con-
vection. The results report that there is a substantial impact on the local and global
Nusselt numbers when the magnetic field strength is very high. Magnetoconvection
in a trapezoidal enclosure has been numerically investigated by Hasanuzzaman et al.
[18] and observed that convection is decreasing with an increasing in the magnetic
field strength.

Using finite element method, Turk and Tezer-Sezgin [19] numerically investi-
gated the combined influence of enclosure inclination and oblique magnetic field
on magnetoconvection in a tilted geometry. The recent theoretical studies on mag-
netoconvection in finite enclosures are due to Ganji and Malvandi [20] and Basant
et al. [21]. Mahmoudi et al. [22] analyzed convective heat transport of nanofluids
in a square geometry with magnetic field and heat sinks. It has been demonstrated
that the convective flow and thermal transport in a differentially heated geometry can
be efficiently organized by attaching baffies to the heated or cooled wall, which are
essential in many industrial applications, and have been widely investigated by many
researchers [23-25]. Few important studies on magnetoconvection in finite enclo-
sures can be found in the works of Sivasankaran and co-workers [26-29]. Based on
the detailed literature survey, the influence of magnetic field and baffle on convective
transport is not available for a vertical annulus. Hence, a numerical investigation is
performed to analyze the influences of magnetic force and a thin baffle on buoyancy-
driven convection in a vertical annulus. The proposed configuration is an interesting
work for many industrial applications, particularly to the situations where control of
heat transfer is essential.

2 Mathematical Formulation

In the present study, we considered the vertical annulus of width D and height H
with r; and r, as radii of inner and outer cylinders as shown in Fig. 1. The inner
cylinder is maintained at higher (8;,) temperature, and outer cylinder is at lower (6.)
temperature, upper and lower boundaries are considered as adiabatic. The inner hot
wall is attached with a thin circular baffle whose temperature is same as that of
inner cylindrical wall. It is assumed that the annular gap is filled with an electrically
conducting fluid having low Prandtl number (Pr = 0.054), and a magnetic field of
uniform strength By is applied along horizontal (radial) or vertical (axial) direction.
Further, the motion of electrically conducting fluid produces an induced magnetic
field. As corroborated by several investigations in the literature, the induced magnetic
fieldisignored in comparison with applied magnetic field By. By applying Boussinesq
approximations, the non-dimensional governing equations are:
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The above dimensionless equations are obtained from the following transforma-

tions:

(R,Z) = (r,2)/D, (U, W)= (u,w)-DJa, t =t*a/D*, T =

(9 - ec)/(eh - Gc)s

P = p/(po®/D?), ¢ = ¢*/(a/D?), ¥ = ¥*/(Da), where D = ry — r;.

The present problem has seven non-dimensional parameters. They are:

Ra = gﬁ MD , the Rayleigh number, Pr = 2
Haz = By,;D / ~ Hartmann numbers in radial and axial directions,

BOrD pv’

, the Prandtl number, Har =
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A= %, the aspect ratio, A = ’r—°, the radius ratio, & = length of the baffle and
L= %, location of the baffle.

The dimensionless boundary conditions are:

L
D’

0 a
onallrigid walls: ¢ = W _ W _

= = 0; ontheinner wall andbaffle: T = 1;
oR 0Z

oT
ontheouterwall: T = 0; on the bottom and top walls: 3z =0.

. . oT
The local and global thermal transport rates are respectively, given by Nu = — 2%

A
and Nu = 1 [NudZ.
0

3 Numerical Method

The model Egs. (1)—(3) are numerically solved using the stable, implicit finite dif-
ference methods. The energy and vorticity equations are discretized by time splitting
technique, and line over-relaxation method is applied to elliptic type of equation. The
system of equations from these finite difference techniques is solved using TDMA
algorithm, and Simpson’s integration is applied for the evaluation of global Nusselt
number. A more information on the methods can be found in our recent papers [24,
25, 30], and for brevity, the same is not provided here.

4 Results and Discussion

This segment illustrates the simulation effects to analyze the combined effects of
magnetic field and baffle on flow and temperature patterns, heat transfer in the vertical
annulus. Since the main focus is to analyze the impacts of external magnetic field
and baffle, the important governing parameters are varied. This investigation involves
seven dimensionless parameters, of which only four parameters, namely Rayleigh
number (Ra), Hartmann number (Ha), baffle location (L), and baffle length (¢), are
varied and remaining three parameters, namely Prandtl number (Pr), aspect ratio (A),
and radius ratio (1) are fixed, respectively, at Pr = 0.054, A = 1, and A = 2. The
range of parameter considered in this analysis is 10° < Ra < 10°, 0 < Ha < 100, 0.25
<L <0.75,and 0.125 < ¢ < 0.875. The flow and thermal formation are illustrated
in terms of streamlines and isotherms, and the thermal transport is measured through
local and average Nusselt numbers.

Figures 2 and 3 illustrate the impact of horizontal and vertical magnetic field on
flow fields and thermal distribution for fixed values of Ra = 10°, ¢ = 0.25, and L
= 0.5. For the case of non-magnetic force, it is noticed that the streamlines move
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Fig. 2 Flow and thermal distributions for different Har at Ra = 10°, Hax =0, ¢ = 0.25,L = 0.5,
a Har = 0, |¥max| = 16.9 b Har = 50, |{ymax| = 13.2 and ¢ Har = 100, |{max| = 9.4

faster due to enhanced convection strength and are packed near the vertical walls.
However, as magnetic field is introduced in the lateral direction (Har = 50 & 100),
the flow movement is drastically declined due to the drag from the magnetic force.
The impact of magnetic strength can also be seen from the variation of isotherms.
For zero magnetic field strength, the core of the annulus is thermally stratified and
this structure is significantly altered by the strong applied magnetic force. As the
magnetic force is changed to the axial direction, a drastic change in the flow field
is observed with the primary vertex that is elongated vertically as the intensity of
magnetic force is increased. The isotherm contours reveal the diagonal variation with
magnetic field strength.

Figure 4 depicts the combined effects of baffle length and magnetic force strength
on flow and thermal patterns by fixing the values of Rayleigh number (Ra = 10%),
baffle position (L = 0.5), and the radial Hartmann number (Har = 100). It is observed
that the baffle length has severe influence on the flow and thermal pattern. An increase
in the baffle length leads to bi-cellular flow pattern in the annulus with one vortex
below and above the baffle. As regards to the effect of baffle length on the isotherms,
the increase of baffle length creates the existence of thermally inactive zones above
the baffle. The inclusion of magnetic force causes the slow movement of fluid flow
and less distorted isotherms.



Influence of Thin Baffle and Magnetic Field on Buoyant ... 111

Fig. 3 Flow and thermal distributions for different Hax at Ra = 10%, Har = 0, ¢ = 0.25, L = 0.5,
a Hax =0, |{ymax| = 16.9 b Hax = 50, |{max| = 13.2 and ¢ Hax = 100, |{/max| = 9.9

The impact of vertical magnetic force on the flow and thermal fields in the presence
of three baffle lengths is exhibited in Fig. 5. On comparing with Fig. 4, the influence
of axial magnetic field can be vividly witnessed through streamlines and isotherms.
As the axial magnetic field is increased, the streamlines are extended along the axial
direction and the isotherms are diagonally elongated. For the maximum baffie length,
the portion over the baffle is sparsely filled by the isotherms. From Figs. 4 and 5, it
is noted that in the presence of magnetic force in either radial or vertical direction,
the maximum stream function increases with the baffle length.

Figures 6 and 7 report the effect of baffle location on contours of streamline
and isotherm for the constant values of Ra = 10°, ¢ = 0.25 with different magnetic
forces. In general, the existence of magnetic force reduces the flow intensity as well as
temperature stratification in the annulus. Although the flow structure is not disturbed
significantly with the baffle location, the flow intensity is reduced as the baffle is
shifted near to top adiabatic wall. In a similar way, a small thermally inactive region
is observed near the top wall as the baffle is placed near the upper boundary. For the
case of vertical magnetic field, the flow direction is changed and the main vortex is
elongated vertically as the value of Hax is enhanced.

The combined effects of baffle size and external magnetic field, in radial or axial
direction, on local heat transport rate are measured through the local Nu along the
inner as well as outer cylinders. The variation of local Nu alongside the inner and
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Fig. 4 Flow and thermal distributions for various baffle lengths at Ra = 10°, L = 0.5, Har = 100,
Hax = 0,a & = 0.25, |Ymax| = 9.0b e = 0.5, |¥max| = 10.9 and ¢ € = 0.75, |Y¥max| = 11.1

outer cylinders (Nup and Nug) with and without the magnetic force, for different
baffle lengths and baffle positions is shown in Fig. 8. The numerical simulations that
are carried out for the baffle lengths varied from ¢ = 0.125-0.75, and magnetic force
Ha = 100 is applied in radial and axial directions. It is witnessed that the local heat
transport declines below the baffle but increases above the baffle depending on the
baffle length. The increase in local heat transfer above the baffle can be anticipated to
the additional heat produced from the baffle. A cautious scrutiny of results exposes
that the local heat transport rate is greater over and below the baffle for Ha = 0 and
¢ = 0.125. However, as baffle length increases or the magnetic force is introduced,
the local heat transport rate decreases.

In any heat transfer analysis, the quantitative interest is the overall thermal trans-
port rate and is estimated by the overall Nusselt number. Figure 9 displays the com-
bined influences of baffle length, Rayleigh, and Hartmann numbers on the global heat
transport performance for a fixed baffle position L = 0.5. A close scrutiny of results
reveals that the overall heat transport rate can be significantly controlled through the
Rayleigh number and baffle length. However, the heat transport amount reduces as
the Hartmann number increases in either directions. In common, the heat transport
is higher for smaller baffle length (¢ = 0.25) and lower heat transfer is predicted
with larger baffle length (¢ = 0.75). Also, the applied magnetic force significantly
reduces the heat transport for all baffle lengths.
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Fig. 5 Flow and thermal distributions for various baffle lengths at Ra = 10%, L = 0.5, Har = 0,
Hax = 100, a ¢ = 0.25, |[¥max| = 9.4 b e = 0.5, |¥max| = 10.5 and ¢ € = 0.75, |max| = 12.3

The location of baffle on the heat transport rate is very interesting and is presented
in Fig. 10 for different Rayleigh number and magnetic field strengths by fixing the
baffle length at ¢ = 0.25. It is found that the heat transport rate enhances with
the Rayleigh number and baffle location, but heat transfer declines as Ha value is
increased.

5 Conclusions

The objective of the present analysis is to investigate the convective heat transport in
an annular geometry with magnetic field and baffle. From the extensive numerical
simulations, it has been observed that the addition of baffle and magnetic force plays
a major role in declination of heat transfer rate. It is observed that the baffle length
increases flow circulation rate, while decreases the heat transfer rate. Based on these
observations, we conclude that it is possible to increase or decrease the flow intensity
with the help of a baffle fixed to the annular wall.
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Fig. 6 Effect of baffle position on streamlines and isotherms for Ra = 10°, & = 0.25, Har = 100,
Hax =0,aL =0.25, [{ymax| = 10.0b L = 0.5, [{max| = 9.4 and ¢ L = 0.75, [{/max| = 8.5
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Fig. 7 Flow and thermal distributions for various baffle positions at Ra = 108, ¢ = 0.25, Har = 0,
Hax = 100, a L = 0.25, |Ymax| = 10.0 b L = 0.5, |¢¥max| = 9.9 and ¢ L = 0.75, |¢¥max| = 9.8
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Study of Rayleigh-Bénard Convection )
of a Newtonian Nanoliquid in a Porous oo
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Abstract In the paper we make a linear stability analysis of Rayleigh-Bénard con-
vection (RBC) in a Newtonian, nanoliquid-saturated porous medium. Single-phase
model is used for nanoliquid description and values of thermophysical quantities
concerning ethylene glycol-copper and the saturated porous medium it occupies are
calculated using mixture theory or phenomenological relations. The study is carried
out using general boundary conditions on the velocity and temperature. The Galerkin
method is used to obtain the critical eigen value. The results of free-free, rigid-free
and rigid-rigid isothermal/adiabatic boundaries are obtained from the present study
by considering appropriate limits. The results of the limiting cases of the present
study are in excellent agreement with those observed in earlier investigations. This
problem is an integrated approach to studying Rayleigh-Bénard convection covering
34 different boundary combinations.

Keywords Nanoliquid - Rayleigh-Bénard convection + Porous medium - Linear
stability + Single-phase
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o Thermal diffusivity of the nanoliquid in saturated porous medium
a) Thermal diffusivity of the base liquid in saturated porous medium
oy Slip coefficient

B Thermal expansion coefficient of the nanoliquid in saturated

porous medium
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Thermal expansion coefficient of the base liquid in saturated
porous medium

Nanoparticle volume fraction

Temperature difference

Brinkman number or ratio of viscosities

Viscosity of the nanoliquid

Viscosity of the nanoliquid in saturated porous medium

Wave number

Angular frequency

Porosity

Non-dimensional stream function

Dimensional stream function

Density of the nanoliquid in saturated porous medium

Porous parameter

Non-dimensional temperature

Amplitudes of convection

Biot number at the lower plate

Biot number at the upper plate

Specific heat capacity of the nanoliquid in saturated porous
medium at constant pressure

Channel depth

Slip Darcy number at the lower plate

Slip Darcy number at the upper plate

Free boundary

Acceleration due to gravity

Heat transfer coefficient

Isothermal boundary

Permeability of the porous medium

Thermal conductivity of the nanoliquid in saturated porous
medium

Thermal conductivity of the base liquid in saturated porous
medium

Thermal conductivity of the base liquid

Thermal conductivity of the nanoliquid

Thermal conductivity of the nanoparticle

Ratio of specific heats

Pressure

Prandtl number

Velocity vector

Rigid boundary

Rayleigh number of the nanoliquid in saturated porous medium
Dimensional temperature

Reference temperature

Horizontal and vertical velocity components

Dimensional and non-dimensional horizontal coordinates
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2, Z Dimensional and non-dimensional vertical coordinates
h Distance between the plates

0 At reference value

1 Liquid property in saturated porous medium
b Basic state

c Critical

[ Base liquid

nl Nanoliquid

np Nanoparticle

s Solid

Perturbed quantity

1 Introduction

The study of convection in a porous medium has received significant attention and
has many practical applications. This is due to the fact that numerous engineering
and biological applications [1] concern heat energy containment or removal. Since
the combination of both nanoparticles and porous medium can be used to regulate
the residence time of heat in the system the convection of nanoliquids in a porous
medium is of utmost importance.

In literature, we come across many works that consider only a single boundary
combination (see Table 1). However, with the availability of many sophisticated
mathematical tools it is now possible to unify all existing boundary combinations
into a single problem and the paper emphasizes on this fact. Such a very general
study encompasses the results of all the boundary combinations on velocity and
temperature. In the present problem the convection of nanoliquids in a porous medium
has been studied using general boundary conditions with respect to velocity and

Table 1 Works considering single boundary condition

Boundary Author (year, Journal)
considered
FIFI Vadasz (1998, J. Fluid Mech.)

N. Rudraiah, P. G. Siddheshwar (1998, Heat Mass Trans.)

M. S. Malashetty and D. Basavaraja (2002, Heat Mass Trans.)

R. K. Vanishree and P. G .Siddheshwar (2010, Transp. Porous Med.)
B. S. Bhadauria and S. Agarwal (2011, Transp. Porous Med.)

R. Chand and G. C. Rana (2012, Int. J. Heat Mass Trans.)

RIRI J. K. Bhattacharjeee (1988, Phys. Fluids)

A. R. Lopez et al. (1990, Phys. Fluids)

T. Desaive et al. (2002, Eur. Phys. J. B.)
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Fig. 1 Schematic representation of the flow configuration

temperature where the boundary conditions on velocity are derived from the Beavers
and Joseph slip condition [2]. A summarized, clear cut view of historical background
of Beavers-Joseph (BJ) boundary condition is reported by Nield [3]. The convective
instability of a ferromagnetic fluid in a Rayleigh-Bénard situation using the general
boundary condition on velocity was first studied by Siddheshwar [4].

Studies on Brinkman-Bénard convection can serve as a bridge between the clear
fluid case and low-porosity medium. This is apart from its yielding results on a high-
porosity medium. Each of these above 3 problems involve many different boundary
combinations, namely,

(i) Brinkman-Bénard convection with 16 boundary combinations (see Fig. 1),
(i) Darcy-Bénard convection with 2 boundary combinations (see Fig.2) and
(i) Rayleigh-Bénard convection with 16 boundary combinations.

Most reported studies on convection in porous media do not consider thermo-
physical values and are thus not very general in their conclusion. With abundant data
now being available on the values of thermophysical quantities, the predictions on
convection can be made more specific. The objective of the paper is to investigate
the following aspects in the current problem:

(i) Studying onset of RBC in nanoliquid-saturated porous medium using general
boundary conditions,
(ii) Obtaining the results on RBC of Newtonian base liquids as a limiting case,
(iii) Arriving at the results pertaining to 34 different boundary combinations as
limiting cases,
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Fig. 2 Schematic representation of the Darcy-Bénard configuration

(iv) Regulating the residence time of heat in the system using nanoparticles and

porous matrix and
(v) Make predictions on onset of convection for specific fluids and specific porous

medium.

2 Mathematical Formulation

The schematic of the flow configuration is as shown in Fig. 1.
The dimensionless form of the governing equations for the problem are:

ﬁg(v%p) = a1 AV'Y — a;0*(V* W) —afRaa—x (1
00 _ 0, 09.O) )
—_— — a P —
ot oax (X, 2)
where
— ! 2 3
Przi, a1=i,a=—¢kn1+(1 ¢)kS,A=i, 02=h—andRa=M'
ot oy (PCp) M K po

We now carry out the linear stability analysis and study the onset of convection.



126 P. G. Siddheshwar and T. N. Sakshath

3 Linear Theory

In order to make a linear stability analysis, we consider the linear and steady-state
version of Egs. (1) and (2). The general boundary conditions suitable for the study
are:

W = D> — DagDV =DO® —Bii®=0 at Z = —

’ 3)

N = DN =

¥ = D>V + Da,,DV = DO + Bi,0 =0 at Z =

c

o,d . .
where Da; = —— (slip Darcy number), Bi = (Biot number).
VK P

The eigen solutions of the Eqgs. (1) and (2) are:
(W(X,Z,7),0(X,Z,7)) = (Asin(wX)F(Z), Bcos(vX)G(Z)) " (4)

where A and B are amplitudes of the stream function and temperature respectively
and v is the wave number. Substituting (4) in the linearised version of Egs. (1) and
(2) and following the orthogonalisation procedure, we get

i® 2 2 2 2
[ﬁ(lz —V Il) + Cl]GA + a0 (12 —V I])i| A— ary RaI4B = 0, (5)
VI4A + [Miwls — aiM(Is — v*Is)] B =0, (6)
where

I = (F(2)*), L, = (F(Z) D*F(2)), 5 = (F(Z) D“F(Z»,} o

Iy = (F(Z) G(Z)), Is = (G(2)*), Is = (G(Z) D*G(Z)).

All the quantities within angular brackets in Eq. (7) are definite integrals with respect
to Z in [— %, %] For a non-trivial solution to A and B, we require

iw 2 2 2 2
E([g—v L) +alUA+aj0°(I, —v?1) —ajv Raly
1)14 Mla)15 — da]
M(16 — \1215)

This gives us the expression of the critical value of nanoliquid Rayleigh number as:

M [afPr (I — Isv?) (UA + 02 (I, — I1v?)) — Ise® (I)v? — 1)]

Ra =
atl1iv? Pr ®)

+iwN,
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where U = (—L1v* +21v? — I3),

M
N :m [1]1)2 (15 (VZAPT + Praz + V2) - 16) (9)

+1 (I — Is (2v* APr + Pro® +v?)) + I IsAPr].

Following Galerkin procedure, we choose F(Z) and G(Z) (See Appendix) in the

form
. 4(Day, —2Day)Z? — (Day + 6)(Day, + 6)Z>

F(Z)=Z"+
2Dag (Dag, + 4) + 8(Dag, + 3)
8(Dagy — Day,)Z + [Dag (Dag, + 8) + 8Dag, + 60]
16Dasl (Dasu + 4’) + 64’(Dasu + 3)

(10)

)

G2)y=27*-27°
16d,Bi;Bi, + 16d,Bi; + 16d,Bi, + Bi;Bi, + 5Bi; + 5Bi, + 16
4 (Bi;Bi, + 3Bi; + 3Bi, + 8) (11)
_ 5 Bi, _.Bif‘ - 16d.2Bi, + .l6d2Bi,, vy
4 (Bi;Bi, + 3Bi; 4+ 3Bi, + 8)

Since Ra is a physical quantity, imaginary part of Eq. (8) needs to be zero. Using
Egs. (10) and (11) in Eq. (9), we found on computation that for all parameters’
combination N # 0 and so @ must be zero. Hence we conclude that oscillatory
convection is not possible.

4 Results and Discussion

The study of Brinkman-Bénard convection is carried out by considering general
boundary conditions on velocity and Robin boundary condition with respect to tem-
perature. Figure 3 demonstrates the fact that the boundary effect on onset of convec-
tion is classical.

Fig. 3 Plot of Ra., versus 900 S e
Day for different values of 800 su \ X _
Dagy, for A = 1.2 and . 708 Dag, = 10 S
62 =5,Bi; = 0and Bi, =0 y

Dag, = 1073
-3-2-10 1 2 3 4
log;oDag
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Fig. 4 Plot of Ra., versus 600
Dag for different values of 500
A, for 62 = 5, Dag, = 1073,

Bi; = 0 and Bi, = 0 & 400
300

200
-3-2-10 1 2 3 4
log;oDay

Fig. 5 Plot of Ra., versus 500
Day for different values of
o2, for A =12, < 400
Dag, = 1073, Bi; = 0 and ~ 300
Bi, =0 200

-3 -2 -1
Fig. 6 Plot of Ra, versus 1000
Bi; for different values of 800

Bi,, for A = 1.2,02 =5, 3 600
Dag = 0 and Dag, =0 ~
400

200
-3-2-10 1 2 3 4

logoBi;

The results pertaining to permeable boundaries can be obtained by considering
the limits in between those of free-free and rigid-rigid boundaries. Thus from the
linear theory we obtain the following result for Ra,: RaNR! > RaRARI = RaRIRA -

RIFI _ p,FIRI RAFI _ p FIRA RARA RIFA _pp ,FARI FIFI
Ra;" =Ra, " > Ra:™" =Ra, " > Ra, > Ra;"=Ra,"™" > Ra, "~ > Ra,

FAFL _ RaleA > RaCRAFA — RafARA > RafAFA.

From Figs. 4 and 5 it is apparent that the critical value of effective Rayleigh number
increases with increase in both A and 2. Increase in the value of both A and o' leads
to decrease in value of permeability (or porosity) and hence less space is available
for the nanoliquid to flow. Hence this results in delayed onset.

The results pertaining to isothermal and adiabatic boundaries are well observed
in Fig.6 by considering larger values of Bi;, Bi, and smaller values of Bi;, Bi,
respectively. We can also conclude that onset of convection is delayed in isothermal
boundaries than in adiabatic boundaries.

Figures 7 and 8 show similar results as in the cases explained for plots considering
Ra,. versus Day;.

Table 2 reveals that different boundary combinations can be obtained from the
present problem by considering appropriate limits. In the current problem, the values
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Fig. 7 Plot of Ra, versus 00 Pk
Bi; for different values of A, 7
2 : -3 600
foro- =5, Bi, =107, < 500
Dag = 0 and Dag, =0 ~ 200
300}_
200

-3-2-10 1 2 3 4
log,oBi;

Fig. 8 Plot of Ra, versus
Bi; for different values of o2,
for A = 1.2, Bi, = 1073,
Dag = 0 and Dag, =0

-3-2-10 1 2 3 4
log;oBi;

of Dagy, Dag,, Bi; and Bi,, are considered as 10> for co and 1073 for 0. We also observe
that 16 different problems are obtained in the case of sandwiched porous medium.
Likewise, we can also obtain 16 different problems in case of clear fluid layer by
considering A = 1, 02=0,M=1anda, = 1.

Table 3 demonstrates the fact that our results with general boundary conditions
compare well with those of earlier works. The comparison of critical value of
Rayleigh number and wave number has been made for the limiting case M = 1;
A = 1 and 0> = 0. We observe that the values obtained are well within the expected
range when compared with Platten and Legros [5] and Siddheshwar et al. [6]. The
methodology used by Platten and Legros [5] is local potential theory and that used
by Siddheshwar et al. [6] is a higher-order Galerkin procedure. Even though lower
order Galerkin method is used for the present study, the results obtained are accurate
enough when compared with those obtained by earlier works. Although there is a
maximum percentage error of 5.74, it can be further decreased by considering more
terms in the Galerkin approximation (Table4).

Table 5 compares the values of Ra, and v, obtained from the present study by the
Galerkin technique with that obtained by the shooting method. Good agreement is
found between the two.

The thermophysical properties of ethylene-glycol [7] as the base liquid, copper [7]
as the nanoparticle and 30% glass fiber reinforced polycarbonate porous material [8]
are considered. The thermophysical properties of ethylene-glycol copper saturated
porous medium is calculated and the same is tabulated in Table 4.
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Table 2 Limits of Dagj, Dag,, Bi; and Bi,, for different boundary combinations

Boundary combinations | FIFI RIRI RIFI (FIRI) | FAFA RARA

Limits of (0,0, 00, 00) | (00, 00, 00, | (00,0, 0o, 0,0,0,0) (00, 00, 0, 0)

(Dag1, Dagy, Bij, Biy,) 00) 00)

Boundary combinations | RAFA FAFI RARI RAFI RIFA
(FARA) (FIFA) (RIRA) (FIRA) (FARI)

Limits of (00,0,0,0) |(0,0,0,00) | (00, 00,0, (00, 0, 0, 00) | (00, 0, 00, 0)

(Dasl, DaSLls Bi], Blu) OO)

5 Conclusion

(a) The numerical study is carried out for general boundary conditions using the
single-term Galerkin technique. Maximum error in the eigen value is a little
over 5%.

(b) Resultsin the case of 34 different boundary combinations are obtained as limiting
cases of the present problem:

(i) 16 problems in the case of sandwiched porous media.
(i1) 16 problems in the case of sandwiched clear fluid layer.
(ii) 2 problems in the case of Darcy-Bénard configuration.

(c) The effect of increasing A and/or o' on the onset of convection is to stabilize
the system.
(d) Rather than solving an individual problem one can think of considering an inte-
g p g
grated problem involving all limiting cases.
(e) RaBO+Cu+GF _ RuEGHGF  R.EG+Cu _ RaEG RaFG _ RaEG+GF
c c ’ c (] c c ’
(EG: Ethylene glycol, Cu: Copper, GF: 30% glass fiber reinforced polycarbon-
y gly PP g poly
ate).

6 Appendix

The eigen functions F(Z) and G(Z) of the boundary value problem

d? ’ d?
@l <ﬁ B vz) - @0 (ﬁ N Vz) F(Z)+alvRaG(Z)=0 (12)

2

d
—VF(Z)+a M (ﬁ —vz) G(Z)=0 (13)
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Table 4 Thermo-physical properties of ethylene glycol-copper saturated porous medium at 300 K
for volume fraction, x = 0.06. and ¢ = 0.88.

P Cp k B " P (pCp) )

(kg/m?) (J/kgK) |(WmK) |EK'x (kg/ms) |[(m?s~!'x |(/m?K x | (kg/m>K)
10%) 107) 1079)

1565.09 166234 029294 |39.17174 | 0.02522673|1.12545  |2.60172 | 0.613073

subject to the boundary conditions

&F payF =% _BiG=0mz=_" (14)

_— s = — — = a = —,

dzz ~ U T gz TP 2

d2F+D F dG—l—B'G OatZ : (15)

e sull = —F5 «=0Ua ==

dazz T az 7! 2

are chosen in the form

F(Z)=2Z"4+aZ’ + b, 72>+ \Z +d, (16)
G(Z) =2+ 02>+ 2 Z + d». (17)

Fourth degree polynomials are chosen for F(Z) and G(Z) keeping in mind the
order of the differential equations in Eqgs. (12) and (13). The constants a, b;, ¢;
and d;,i = 1, 2 are determined such that the eigen functions F(Z) and G(Z) are

mutually orthogonal in the domain R={(X, Z)/X € [0, 1] and Z € [—%, %]} , Le.,

1
f: . F(Z) G(Z) dZ = 0 and these functions satisfy the boundary conditions (14)—
2
(15). The quantities Day; and Day, are slip Darcy numbers at lower and upper plates
respectively, Bi; and Bi, are Biot numbers at lower and upper plates respectively.
From the above considerations the constants are found as follows:

2Day, — 2Day b (Dag + 6) (Dag, + 6)
a = , = - ,
Dasl (Dasu + 4) + 4(Dasu + 3) : 2Dasl (Dasu + 4) + S(Dasu + 3)

Dagy — Dag, Dag (Dag, + 8) + 8Dag, + 60

1T 3Day (Day +4) + 8(Day +3)° '~ 16Day (Day, + 4) + 64(Dag, + 3)°
) 16d,(Bi;Bi, + Bi; + Bi,) + Bi;Bi, + 5Bi; + 5Bi, + 16

2= 4 (Bi;Bi, + 3Bi, + 3Bi, + 8) ’
) Bi; — Bi, — 16d,Bi; + 16d,Bi,

L —

= 4(BiBi, + 3Bi; + 3Bi, + 8)

The constant d; varies according to the boundary combination.
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Rotary Oscillations of a Permeable m
Sphere in an Incompressible Couple L
Stress Fluid

P. Aparna®, N. Pothanna, and J. V. R. Murthy

Abstract In this paper, an attempt is made to study the flow generated by rotary
oscillations of a permeable sphere in an infinite expanse of an incompressible couple
stress fluid. The flow generated is solved under Stokesian assumption for velocity
field in the form of modified Bessel functions. The couple acting on the sphere due
to external flow as well as internal flow is calculated. The couple has contributions
to both couple stress tensor and stress tensor. Contour for the flow at different couple
stress parameters is drawn to analyze the flow. It is noted that, due to couple stresses,
the particles near the surface of the sphere are thrown away with velocity more than
the velocity of the surface of the sphere. Comparative study of type B and type A
conditions is presented through pictorial representations.

Keywords Couple stress fluid - Rotary oscillations + Permeable sphere

1 Introduction

Due to the heavy technical demand of industries, many researchers are using non-
Newtonian fluids extensively in the problems of the extraction of petrol from porous
wells, sedimentation, dilute polymers, suspensions, and lubrication journal bearings.
Rotational effects of the fluid particles are shown by some non-Newtonian fluids like
colloidal and suspension, animal blood and liquid rocks. Such behavior of the fluids
is explained by couple stress fluid theory. The constitutive equations and basic theory
for couple stress fluids were first established by Stokes [1]. Stokes has proposed a
couple stress fluid theory in the year 1966. This theory was developed based on the
pure kinematic behavior of fluid. Micropolar fluid theory of Eringen [2] was based
on microstructural effects present within a fluid element.

Ramakisson [3] derived a mathematical formula for drag experienced by sphere
for couple stress fluids. The formula for couple, acting on a solid axisymmetric body
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in a rotary flow of viscous fluids, was derived by Jeffery [4]. Lakshmana Rao and
Iyengar [5] analyzed the flow past a spheroid. The flow of a couple stress fluid past an
approximate sphere was considered by Iyengar and Srinivasacharya [6]. Resonance-
type flow due to rotary oscillations of a sphere as well as composite sphere in a
micropolar fluid was investigated and couple experienced by the fluid on the porous
surface is obtained analytically [7, 8].

Study of flow past sphere for viscous fluid was reported [9-11]. Srivatava [12]
examined the flow due to rotation of axisymmetric body. The author discussed the
oscillatary and uniform flow of an incompressible couple stress fluid past permeable
sphere previously and reported [13, 14]. Aparna et al. [15] analyzed the couple acting
on a rotating permeable sphere in a couple stress fluid.

Nagaraju and Murthy Ramana [16] examined and reported an unsteady flow of a
micropolar fluid generated by a circular cylinder. Pothanna and Aparna [17] studied
the effects of various material parameters on velocity and temperature fields.

In the present paper, the flow produced due to rotary oscillations of a permeable
sphere in a couple stress fluid is analyzed.

2 Basic Equations and Formulation of the Problem

The basic equations of motion of couple stress fluid which were introduced by Stokes
[1] are:

dv _ 5 _
P = —Vp+ A+ V(- V)+nV{V(V-V)}
+ uV2V =g V*V 4+ pf 4+ (1/2)V x (pI). (1)

together with the continuity condition

dp

5 +V-(pV)=0. 2)

Since the fluid is incompressible, Eq. (2) reduces to
V.V =0. 3)
Avoiding the body moment and the body forces, Eq. (1) becomes
dv - —
paz—Vp—,u,VxVxV—anVxVxVxV. 4)

We analyze the rotary oscillations of a permeable sphere an incompressible couple
stress fluid having radius ‘a’ and angular velocity $2¢®. The amplitude £2 of the
angular velocity is assumed to be small so that Stokes approximation can be adopted
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Fig. 1 Rotating permeable Z
sphere 3
R
P e
Region-I|
y/
Region-ll
and the nonlinear terms in Eq. (4) can be neglected. With this, we have (Fig. 1)
v — —
paz—Vp—MVxVxV—anVxVxVxV. 4)

To satisfy the oscillatory nature of the sphere and incompressibility condition (3),
we assume that

. w . )
V — Qel(ut — (_ela)t>z(p’ p — Pelwt (6)
h3
Substituting (6) in (5) we get,
ipwgQ =—-VP —uVxVxQ—-VxVxVxVxQ (7

Taking the components of toroidal direction ey, the equation for swirl W is
obtained as below:

A2 A3
2 1 2 2 _
(EO . ;) (EO . ;) W =o0. @.1)
21 9
B2 1 (L o0 8.2
=32 " R2(392 0 ae) (8:2)

pa’

Sy
32402 =2 — gandadad = 21
n

—io (8.3)

Non-dimensional scheme:

2
a
R=ra, W=Qadw, p =puQp, S:MT,
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Qa? Q 1
Re=22 6= 2% _Res, E}=—E 9)
0 n a
Using (9) in (8) we have,
(E* = 17) (E* = A3)w =0. (10)

We solve Eq. (10) for ‘w’ under the following conditions.

3 Boundary Conditions
Region 1 Region 2
G Lt w,=0 Lto w; is finite
r—00 r—

(i) w, = sin’0 onr =1 w; =sin’6 onr =1
(ili) M =0onr =1 for type A condition
@ =1V x gy onr =1 fortype B condition.

Type A: This condition gives the couple stress tensor as zero on r = 1.
M =ml+2nV(V x V) +27'V(V x V)T. (11)

The components that contribute to couple are M,, and M,y. M,y = O gives the
condition that

E2w+(l_e)(a—w—2—w>200nr:1 (12)

r or r

for external flow and internal flow.
M,, = 0 gives the condition that

m+—(1t6)<d—w—2—w>=o (13)

r dr r
Type B: Hyper-stick condition along the tangential direction on the sphere.

ow .
— =2sin“fonr =1 (14)
ar
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4 Solution of the Problem

The solution of Eq. (10) can be written in the following form
w=w; + w; (15)
where
(E*> =AD)w; =0, (E* — 23)w, = 0. (16, 17)

The solution of Eq. (10) by separation of variables method which satisfies
condition (i) is given by

we = /r(a1K3p(hir) 4 b1 K32 (A2r)) G (x). (18.1)

wi = /r(a2l32(hr) + balz)p(Aar)) Ga(x). (18.2)
Where Gz(x) = %(1 — xz),x = COS@, 13/2()»17'), 13/2()»21’) and K3/2(A1r),
K3/2(A,r) are modified Bessel functions. The constants ay, by, a,, b, are to be found

by using above boundary conditions (ii) and (iii).

ay = a1K3p(h), by = a1K30(h2), ay = axl3ja(h1), by = bal3 (M), (19)

A K (A1) AMKi (A1)
AAM) =14+ —"— A N)=1—- ———— (20)
n K3/2(X1) 2 K30(Ay)
Hence we have,

ay+b,=2,a,+b,=2. (21.1,21.2)

For type A condition: M,y = 0 gives
[Alal + 236 ] = A+ [+ Ar(M))a + 2+ Ar(A2)b]] (22.1)
[A1as +A3b5] = (1 + ) [ 2 + Ax(M))ab + (2 + Ax(A2)bh] (22.2)

For type B condition, Eq. (14) gives
ajA1(A) + b1 A1 (A) = —4. (23.1)
ayAy (A1) + byAx(h,) = —4. (23.2)

Solving equations from 21.1-22.2 for type A condition we get,
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2 _ _
20 — Ay + (A —e)[A1(A2) — A1(Ap)]
, 4r7 —2(1 — )[Ar (M) + 2]

= . 24
27 20201 + (L — o)A () — As()] @4

Substituting (21.1, 21.2), (21.1, 21.2) in (22.1), (22.2) we can find the normal
couple stress m as:

e = (1+e){ajA1(1) + b1 A1 () + 4} and
i = (14 &) ab As (1) + by As(ha) + 4} 25)

Solving (21.1, 21.2) and (23.1) for the type B condition we get

2A1(A 4
b, = (A1) +

2A, (A 4
— ,agzz_b,l,b/z_ 2( 1)+
Ar(A) — A1(X)

=——"— 7  a,=2-Db, (26)
Ar(h) — Aa(hy) 2 2

From Egs. (23.1) and (25), we see that the permeability of the surface does not
affect the flow. This flow is not similar to micropolar fluid where the flow is affected
by the permeability of the boundary. This shows that, under Stokesian approximation,
in spite of the fact that the boundary is permeable, the flow in the exterior region and
the flow in the interior region do not interfere with one another under the two types
of boundary conditions considered.

From type A condition, we can find the normal couple stress ‘m’ on the boundary.
The function ‘m’ at all points cannot be determined, but only the form of ‘m’ can be
known. From type B condition, this ‘m’ is undeterministic.

S Couple on the Sphere

The couple acting on sphere is given by

C =2na’ / T,,sin’ 6 6. (27)
0

The constitutive equation for stress tensor T for couple stress fluids is given by
— — — 1
T=—-pl+ MV -VI+ M{VV + (VV)T} + EI x (DivM + pc). (28)

From which

1 daw 2w 1 d , 1 am]) ;..
To =1 E-W e,

Rsind\dR R ) Rsin6 dR T 2R 96
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For type A condition, the couple for external flow Ci and couples due to internal
flow Cy, are given by

Aradus :
Co = 3—5“[@% + A1) + (1] + HA1(A)b) +4S]e. (29.1)
dradun | 02 + S A (0 )d! ‘
¢, = Tene | & , Jaata . (29.2)
38 + (A3 + S)Ay(Aa)bh + 4S8

For type B, the couple for external flow Ci and couples due to internal flow Cy,
are given by

Ara’uf2 , 1
Co = 3—S“[A%A1(x1)al + 201 00)b} ]e . (29.3)
Aradus2 , 11 i
= T[,\%Az(xl)az + A58 (ha)b) e, (29.4)

6 Couple Due to Couple Stress Tensor

The couple due to couple stress tensor for type A condition is zero, since couple
stress vanishes on the boundary. The couple C,, due to couple stress is

T
C, =2ma’ / (M, cos@ — M,y sin0) sin 6 db. (30)
0

After simplifying for external and internal couples we get, for type B condition;

8 rufRa’ .

Cpx = 3%(A%ai + A%b/l)e“‘”forexternal flow (31.1)
8 ruRa’ ,

- gWTa(kfaé + A3b}) e for internal flow (31.2)

The steady flow for the internal region is similar to viscous fluid case. But the
unsteady flow differs from viscous fluid case. The total couple on the sphere is Cex
= Ci + Cpx and C;, = Ciy + Cp for external and internal flows. We can observe
that this total couple is independent of m.

_AmaiuQ [(x% + S)A 1 (A)d) + A2+ )AL ()P,

Cox = ot 32.1
¢ 35 | 44§ } (32.1)
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dra’us2 ,
Cin = %[(A% + ) As01)a, + 02 + $)Ar ()b +45]e . (32.2)
dra’uf2 , ;
o = T[(x%a + Ar(A))a) + (A2 + Ar(ro)b] e (32.3)
dra’us2 , ;
Cin = 3—;‘[@%(2 + Ay + 022 + A (a)By]e . (32.4)

7 Discussions and Conclusions

In this analysis of finding flow field and couple, the values of length parameters X;
and X, are found by taking suitable values to S and o and solving the quadratic
equation, x> — Sx + io = 0 where x = A2 or A3.

Then, the velocity field in the form of swirl ‘w’ is found from Eq. (18.1). Equation
(32.1) is helpful for calculating couple. The effects of different parameters on couple
and swirl are presented in the form of diagrams.

In Fig. 2, velocity at different values of couple stress parameter S is shown. As
S increases, for type B and type A conditions, swirl decreases, showing that swirl
is maximum for viscous fluids. (Since s — oo, implies that n — 0, i.e., no couple
stresses and we get the case of viscous fluids.) But we can observe that for type A
condition, swirl at any distance ‘r’ is less than the swirl on the surface (r = 1) of
the sphere. For type B condition, the swirl near to the sphere is more than the swirl
on the surface of the sphere. Again, since the curves are not grouping, the effect of

Type - A Type -B
Swirl wvs distance r at Re=0.1, e=1 for s values Swirl w vs distance r at Re=0.1, e=1 for s values
25
——s= a=5
| —s-?o 25 A\ g |
s: By |- s=15
weemen R G 2 \I|\ ——35=20{1
15 --—-5=20 N
z 1.5 "\
N
1 o
N
0s ¥
N LT
] M i

Fig. 2 Variation of swirl for different values of couple stress parameter S
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Type -A Type - B

Swirl wvs distance at s=10 e=1 for Re values Swirl w vs distance rat s=10,e=1for Re values
25 : = =
Re=04 ——Re=0.1
Re=02 25 3 —-—-Re=02|
2 cee-Re =03 ) Re=03
—-=Re=04 2 \ '—Re=0.44
4
z 15 )
\
1 \
N
05 4
0 -
0 2 4 6 8

Fig. 3 Swirl for various values of Reynold’s number Re

couple stresses on the flow is clear in type B condition, whereas in type A conditions,
all curves are grouped without much variations.

In Fig. 3, variation of swirl for different values of Reynold’s number Re for
type A and B conditions is shown. As Re increases, swirl decreases and goes to
zero drastically as ‘r’ increases. This implies that (as Re is proportional to €2,) as
amplitude of oscillations of sphere increases, the particles of fluid confines to the
region near to the sphere.

In Fig. 4, it is shown that as 6 increases, swirl decreases. In Fig. 5, the variation
of couple for external and internal flows at different values of relative couple stress
parameter e is shown for type A condition. For type B condition, the couple is
independent of the parameter. As ‘e’ increases, the value of couple decreases and as

Type-A Type -B
Swirl wvs distance r at 5=10, e=1, Re = 0.1 for 6 values Swirl w vs distance r at Re=0.1, s=10,e=1 for & values
08 !
— =23
—-=-9=23
06 oot =43

Fig. 4 Swirl w at different values of angles of 6
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type-A condtion type-A condtion
External Couple versus Satg =5 Re=0.1 8 Internal couple versus S ata = 5, Re =0.1
10
75
wemeeee @05
8 ) e=1.0 7
"eeaene | ——e=15
x —+—e=20/ c 6.5
8 ] 0
/’M ﬁ
4
55 ...............................
B - . . : 5
0 5 10 15 20 0 5 10 15 20

S

Fig. 5 Variation of couple for external and internal flows at different e values

S increases, couple tends to reach a constant value near to 6. This implies that, this
is the value of couple due to a viscous fluid.

From Fig. 6, we can observe that as Re increases, couple due to internal flow
decreases for type A condition. But the values are near to 6 and less than 6 for small
values of frequency parameter o. Type B condition does not show variations to the
variations of Re but couple increases drastically from — 12 to 2 as S increases.

In Fig. 7, the contours of swirl are shown. For type A condition, we can notice that
the internal flow follows almost a straight line path. Flow circulation from outside
to inside is more for type B condition. As the values of Re and S increase, the flow
develops a secondary circulation region confined concentric spheres of radius 2 and
3.

Type-A condtion Type-B condtion
Internal Couple versus Satg =5 e=1 Internal Couple versus Sato=5,e=1
6 5
-=--=-- Re=0.1
i Re=02|. .
5.96 ——Re=03
e S o c 5
© 59 *\ 0
A m“"‘“—‘"——*—»—_.
3 10
5.88
-15
5.86
0 5 10 15 20 0 10 20 30
S S

Fig. 6 Variation of couple due to internal flow at different values of Reynold’s numbers Re
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Contours of Swirl at s=10, Re=0.1

Type

A

Type-B
Contours of Swirl at s=10, Re=0.1

25 : e ; :
."// ’/
2 : /—’_\\\_ N
i S
15 / /
- /
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2 0 -2 -1 1 2
X X
Type-A Condition Type-B
Contours of Swirl at 5=5, Re=0.01 Contours of Swirl at s=5, Re=0.01
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Fig. 7 Contours of swirl w at various values of Reynold’s number Re and couple stress parameter
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Simulation of Natural Convective Heat
Transfer in a Triangular Enclosure Filled | @i
with Nanofluid: Buongiorno’s

Mathematical Model

K. Venkatadri®), V. Ramachandra Prasad ©, B. Md. Hidayathulla Khan®,
M. Suryanarayan Reddy, and R. Bhuvanavijaya

Abstract Natural convection of triangular enclosure filled with water-based
nanofluid under the influence of Brownian diffusion and thermophoresis is stud-
ied numerically in two cases by depending on wall boundary conditions. The high
(hot) temperature vertical wall and the insulated bottom wall are considered in case
(1) and the other case the bottom wall is uniformly heated while the vertical wall is
thermally insulated. In both cases, the inclined wall is maintained low temperature
(i.e., cold inclined wall). The coupled governing vorticity—stream function formu-
lation equations are employed by the help of finite difference method (FDM). The
influence of the Rayleigh number, Lewis number on fluid flow, heat have been exam-
ined through graphically and discussed. It has been found that in the case of uniform
heating is high sensitive to rising of the Ra, while the uniform heating of the left wall
of the cavity is not so sensitive to changes of Ra.
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1 Introduction

Buoyancy convective flow within an enclosure with various shapes has been exam-
ined last several decades due to its prevalence in the area of science and engineering
applications such as geothermal systems, nuclear reactors cooling, food processing,
glass production, drying technologies, solar power collectors, chemical processing
equipment, etc. The researches focused on much attention on triangular enclosures
because of its has several applications in various fields which include building and
thermal insulation systems, geophysical fluid mechanics, and so on.

LBM method based simulation is carried by [1]. They studied power-law nanofluid
flow characteristics within a square enclosure under the uniform moving top lid using
two-phase model. Sheremet [2] have examined natural convection porous enclosure
filled with nanofluid for the wavy left wall under the effect of thermal dispersion.
Sheikholeslami [3] demonstrated heat transfer in nanofluid due to Lorentz forces
in a lid-driven enclosure with hot square obstacle. Sheikholeslami [4] reported on
Buongiorno Model-based nanofluid is studied fluid flow over a stretching plate with
the influence of the magnetic field. Several mathematical models are employed theo-
retically by several researchers to illustrate heat transfer utilizing no fluids. Khanafer
et al. [5] studied the enhancement of heat transfer in an enclosure with utilizing
nanofluids. Oztop et al. [6] reported numerical investigation of natural convection
under effect partially active left wall of enclosure filled with nanofluid. The account
of Brownian motion and thermophoresis effects, Buongiorno [7] proposed a two-
component nonhomogeneous equilibrium model to examine heat transfer utilizing
nanofluid. The influence of the Brownian motion and thermophoresis on convective
flow of nanofluids has been examined with various numerical techniques by several
authors [8—13]. Sheremet and Pop applied Buongiorno’s model [7] to study the natu-
ral convection within enclosure filled with nanofluid [14], triangular enclosure with
one angle is right angle [15], square enclosure [16], entrapped triangular enclosure
[17].

In this paper, the impacts of thermal boundary conditions on the nanofluid flow
in an enclosure are examined. The fine grid based method is chosen to examine
the pertinent results by using finite difference. The influence of the Ra and Lewies
number on thermal characteristics is examined in presence of the Nb (Brownian
motion) and Nt (thermophoresis parameter) effects.

2 Basic Equations

Let us consider two-dimensional regime with triangular shape filled with conducting
water-based nanofluid and nanoparticles. Figure 1, reveals the physical diagram of
the present computational model. The assumptions of the current study are as follows:

1. Incompressible nanofluid
2. All fluid properties are considered to be constant except density
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Fig. 1 Schematic physical model
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Case (ii)

3. Invoked Boussinesq approximation

4. Radiation, dissipation effects, electric field, heat generation are neglected.
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Based on the above-mentioned assumptions, the conservative equations are
written as follows (see Buongiorno [7]).
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where ug = 7, dimensionless stream function and vorticity and their corresponding
boundary conditions

v=% y__ W

= , = 7
aY X ™
v aU 2y Y
W= = — — (8)
X dY X2 9X?
C,—C,. — c Cc,—-C
o (G Colen—pa) o PO, (Ci=Co vy
,8(1 - Cc)pfo(Th - Tc) (,OC)f arf of
Dy (pc), (Tn — T T, —T.)( - C.)L?
Nt — r (PO, (T} )’ Ra:g’B(h )2( ) ’ Le—
T. (po)y oy vy Dp
The boundary conditions are in vorticity—stream function as follows:
20 0 a6
Yv=0,0=1lor— =0, Nb—¢ +Nt— =0onY =0
0X ayY Y
v=060=1 00 0 Nb8¢+Nt89 OonX =0 9
=y, v=lor— =V, - — =0onX =
X Y Y
d 20
v =0,0=0, Nb—(b—i—Nt— =0onY=1—-X
on on

The interesting physical quantities are local Nusselt number Nu and the average
Nusselt avg_Nu. These parameters are defined as Nu = —%, avg_Nu = fOL Nuds.

3 Solution Procedure

The finite difference based discretization of nonlinear differential equations in the
form of vorticity—stream function and with boundary conditions were solved numer-
ically. In this numerical computation, we considered uniform-based grid system. The
convective terms were approximated with second-order accuracy and diffusion terms
were approximated by the central difference scheme. The transient partial equations
are computed by the explicit iterative scheme while the most emerging parameter
stream function is evaluated by the iterative method of Gauss—seidel iterative method.
The explicit time iterative loop was exit when the time loop reaches converges con-
dition for each parameter (i.e., vorticity, stream function, temperature). The house
computational MATLAB code is developed and validated by [18] for natural con-
vection of triangular enclosure and also compared with the results of Basak et al.
[18].
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4 Results and Discussion

The numerical investigation of natural convection within a triangular enclosure filled
with water-based nanofluid for two cases is conducted. The flow characteristics and
heat transfer of triangular enclosure have been studied for a wide range of Rayleigh
number (Ra = 103 -2 x 105) with Pr = 6.2, Nb = 0.1, Nt = 0.1, the buoyancy ratio
parameter (Nr = 0.1-5) and Lewis number (Le = 1-100).

Figure 2 illustrates streamlines and isotherms of the first case, the effect of
Rayleigh number (Ra = 10° — 2 x 10%), Lewis number (Le = 2), Nr = 0.1 and
fixed Pr = 6.2 when the vertical wall is heated uniformly and the bottom wall is
thermally insulated while the inclined wall kept at cold temperature. When expected
the fluid rises up along the left wall and flow down to slant wall (cold wall) which
produces the clockwise circulation within enclosure. The enlarged clockwise circu-
lation is developed with enclosure shape due to the effect of wall resistance of the
fluid flow at Ra = 103. The corresponding isotherms are smooth and monotonic, dis-
tributed the whole cavity. When the Rayleigh number is increasing, the flow patterns
and isotherms are considerable changes registered. Further increasing of Ra leads to
the formation of thermal plume over the inclined (cold) wall with an increase in the
nanofluid clockwise circulation. We found the high-density thermal flume over the
cold wall at Rayleigh number Ra = 2 x 10*. The smooth patterns of the isotherms
are distracted at the Rayleigh number Ra = 10*.

Figure 3 presents the second case of flow patterns and temperature contours for
various values of Rayleigh number, Le = 2 and Nr = 0.1. First of all, it is to be
notified that the right-angled triangular enclosure presents the instability convective
flow of natural convection with uniformly heated bottom wall with inclined cold
wall whereas the adiabatic wall of the other one. Irrespective values of Rayleigh
number, the mono clockwise cell is developed within the enclosure. The nanofluid
particles descend along the inclined cold walls while developing a clockwise cir-
culation. For Ra = 10%, the nanofluid flow forms the enlarged mono cell within
a cavity and the corresponding isotherm contours are spread throughout the cav-
ity which are smooth curves and increases monotonically. The domination of heat
conduction in an enclosure is noticed at Ra = 10*, where the temperature contours
are shifted from smooth curves to straight patterns. When enhancing the Rayleigh
number illustrates the shape of the circular cell changes within the triangular enclo-
sure. The mono circulation within the cavity gradually moves towards to right corner
(i.e., hot and cold area corner) of the bottom wall with increasing of the Rayleigh
number. The distribution of isotherms is parallel to uniformly heated wall is noticed
at the Rayleigh number Ra = 2 x 10°. The effect of buoyancy ratio parameter on
flow patterns and temperature contours are depicted Figs. 4 and 6 for both cases.
We are noticed that with rising of Nr leads to no changes registered in streamlines
and isotherms. The influence of Lewis number on streamlines and isotherms are pre-
sented in Fig. 5. For two cases of uniform heated wall. We found that increasing Le
leads to non-considerable modifications are observed on the characteristics of flow
field and temperature contours.
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Fig.2 Streamlines ¢ and isotherms 6 contours for uniformly heated left vertical wall, 6(0, Y) = 1,
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5 Conclusions

We studied in this investigation, the natural convective nanofluid in a triangular
enclosure applying the effect of Nb and Nt in two cases. The interest of domain has left
heated walls and cooled wall is the first case and heated bottom walls and cold wall is
the second case. The governing partial differential equations converted into vorticity—
stream function formulation and then solved by second-order accuracy scheme with
fine grid FDM. The fluid flow, heat transfer phenomenon such as flow patterns and
temperature contours, in addition, the most important scaling of heat transfer rate of
average Nusselt numbers along hot surfaces of triangular enclosure were depicted
in a graphical form for various values of the non-dimensional parameters. More
intensive flow regime and convective heat distribution occur within the enclosure in
case (ii) are noticed. We found that regardless of the thermal Rayleigh number value,
mono circular convective eddy is developed within the cavity for both cases. The
average Nusselt number increasing functions of the Rayleigh number and decreasing
functions of the Lewis number. In case (ii), the convective eddy is moved towards
the right side corner of bottom wall with increasing of Rayleigh number. The Lewis
number plays a major role on average Nusselt number of the hot wall in both cases.
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Influence of Ohmic Heating and Viscous m
Dissipation on Steady MHD L
Non-Newtonian Mixed Convective Fluid

Flow Over an Infinite Vertical Porous

Plate with Hall and Ion-Slip Current

K. V. B. Rajakumar, M. Umasankara Reddy, and K. S. Balamurugan

Abstract Impact of Hall and ion-slip on steady MHD (non-Newtonian fluid) Cas-
son fluid model based on mixed convective dissipative Casson fluid model flow over
an infinite vertical permeable plate with Ohmic heating in aspect of soret as well as
chemical reaction has been presented. The modelling equations are transformed into
dimensionless equations and then solved analytically through multiple regular per-
turbation law. Computations were carried out graphically to examine the behaviour
of fluid velocity, temperature, and concentration on the vertical plate with the dif-
ference of emerging physical parameters. This study reflects that the incremental
values of Casson fluid parameter and Schmidt number lead to reduction in velocity.
However, fluid velocity rises due to enhancement of ion-slip parameter, but reverser
effect has been shown in case of Hall parameter.

Keywords MHD - Casson fluid - Multiple regular perturbation law + Ohmic
heating - Hall and ion-slip current

1 Introduction

The Newtonian theory has worked extremely well in explaining numerous physical
phenomena in diverse fields of fluid dynamics; this entices us to comment that for the
most part of fluids at least in ordinary situations perform similar to Newtonian fluids.
Butin the modern years, in particular with the materialization of polymers, it has been
established that there are fluids which illustrate a different deviation from Newtonian
theory. Such fluids are known as non-Newtonian fluids. The non-Newtonian fluids
are generally categorized into the following classifications which are Maxwell fluids,
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dilatants fluids, Reiner-Rivlin fluids, purely viscous fluids, visco-plastic fluids as well
as perfectly plastic materials, couple stress fluid, power law fluids, visco-elastic fluids,
pseudo-plastic fluids, Casson fluid, and micro-plar fluid; currently, in this paper, it
was studied on Casson fluid model.

Etwire et al. [1] have addressed numerically Casson fluid model based on MHD
flow over a normal plate immersed in porous media by means of joule heating as well
as convective boundary condition. Vinod Kumar et al. [2] and Prasad et al. [3] have
assayed steady MHD stagnation Casson fluid flow over a stretching sheet subjected to
slip boundary conditions in the existence of viscous dissipation and chemical reaction
along with Joule heating. Ullah et al. [4] have described MHD mixed convective
viscous dissipative Casson fluid model flow owing to affecting wedge bounded in
a porous medium in the alive of chemical reaction. In this report, it was noticed
that Joule heating owing to a magnetic field and porous medium heating have been
discussed. Abd El-Aziz et al. [5] and Biswas et al. [6] have explored Casson fluid on
unsteady MHD natural convective flow past a non-parallel porous plate along with
doubled diffusion, radiation, and chemical reaction. Lakshmanna et al. [ 7], Seth et al.
[8] and Srinivas et al. [9] have investigated numerically impact of joule heating as
well as Casson fluid model on unsteady MHD flow imminent an oscillating vertical
plate during a non-Darcy porous medium in aspect viscous dissipation as well as
thermodiffusion. Implicit Crank—Nicolson finite difference technique was employed
for solving coupled governing equations. Sobamowo et al. [10] have considered the
influence of nanoparticles as well as thermal radiation on MHD free convection flow
along with heat transfer of Casson nanofluids over a non-parallel plate. Vijaya et al.
[11] have discussed chemical reaction as well as thermophysical properties on MHD
Casson fluid through an oscillating non-parallel wall enclosed through permeable
and effect of crosswise magnetic field and radiation in the aspect of heat source.

Joule heating is also renowned as ohmic heating, and resistive heating is the
process by which the channel of an electric current during a conductor generated
heat; i.e., the power of heating produced by an electrical conductor is relative to the
product of its resistance as well as the square of the current. Recently, Chen et al.
[12], Abo-Eldahab et al. [13], Babu et al. [14], Mohammed Ibrahim et al. [15, 16],
and Barletta et al. [17] have presented the Joules as well viscous dissipation as at
the same time heat generation has been taken into consideration in the equation of
energy.

The objective of the current scrutinize is to investigate the impact of Hall as well as
ion-slip current on steady MHD mixed convective Casson fluid flow over an infinite
vertical porous plate with Ohmic heating as well as viscous dissipation in the aspect
of soret and chemical reaction. The modelling equations are revolutionized into
dimensionless equations and after that solved analytically utilizing perturbation law.
Computations were performed graphically to explain the behaviour of fluid velocity,
temperature as well as concentration with the dissimilarity of emerging physical
parameters. Such examination has noteworthy applications in paper manufacturing
industries, polymer processing industries and biomechanics, chemical engineering
fields as well as industrialized processes for instance metal spinning, nuclear squander
repositories, polymer extrusion, transpiration cooling, strengthening oil recovery
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products, crammed bed catalytic reactors, continuous casting of metals, glass as well
as fibre manufacture, and wire drawing.

2 Mathematical Formulation and Method of Solution

Contemplate the 2D MHD mixed convective dissipative Casson fluid model flow over
an infinite perpendicular porous plate among a saturated porous medium through
double diffusion in a homogeneous of a pressure grading. In this exploration, an
account of that x"-axis is purloined along the plate in upward way & y"-axis is in
the way of orthogonal to the flow. The physical model of the problem is shown in
Fig. 1: Presumptively that transverse magnetic field of the uniform strength B is to
be employed in the way of y*-axis. In view that the motion is two dimensional nev-
ertheless, the length of the plate is large enough; therefore, all the physical variables
are independent of x”. " and v" are the dimensional velocities components along x*
and y* directions. Joules, viscous dissipation, and heat generation are contemplated
in the equation of energy; in the same manner, Hall and ion-slip current is contem-
plated in equation of momentum. From the above hypothesis, the unsteady flow is
governed by the following partial differential equations.
Equation of continuity:

av*
37 =0 (1)
i.e. v* = constant = —vy.

u .T.

A
. y=9

v — BO
‘-—

1=}

F 3
R
—

Flow

Fig. 1 Physical model of the problem
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Equation of momentum:

V*%:ﬁ(l—l—ﬂ*l)azu* +gﬂ(T*—T;)+gﬁ*(C*_C:o)
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9 -1 B2, (ctou*+Bow*) ( )
—re () = Gy
ow* 3Zw* v B2o.(Bou* — otew™)
V* =v(1+p7"! — =14+ Hw+ =2 (3)
y* ( ) ay* k*( ) P(O‘Z + ﬁez)
Equation of energy:
AT kT —i—&(T*—T*)—i—i(l—f—i) (8u*)2+<8w*>2
ay* T pCp 3)’*2 prCp o0 Cp B ay* ay* (4)
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Concentration species diffusion equation:
ac* 32C* 32T*
ay* ay* ay*
The corresponding boundary conditions of the problem:
u=0,T"=T,C*=C, aty=0 ©
Uu—>0,T" > Ty,C*"=Cyx as y —> o0
u* w* voy* Vs
X(’?):_,F(n)z_,nz_’k*= 2 ) (7)
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_ (I-Ty) — (€"—Cx) _ 98B(Tv—Tx) _ Dk —
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— DiI(Th—Ty) 2 _ 9By¥ _ 98B (Cv—Cx) _ 2
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_ 9pCy _ v, _ Q0
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Dropping asterisk in Egs. (1)-(5) using Eq. (7), then we get

Mloex + B T1 _
[2+82]

M[,Be X — Qe F] —
(o2 + 2]

0" +Pro =—Ec Pr[l + %} ((X’)2 + (F’)Z) - QPrf

(L+B8 %"+ x — Ko(1+B7")Ix1— ~Gro—Gmg¢ (9)

(1+B T +T' = Ka(1+ BT+ 0 (10)
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— Pr ECM(X2 + l"2)

¢ +Scd’ — Kr Scp =—So Sc 9”
The relevant boundary conditions are:

n=0: x=0,I'=0,0=1,¢=1
n—>0: x—>0T—>060—->0,¢—>0

[1 + %]F”—i—F’—N[Ff] =-Gro—Gmé¢

The relevant boundary conditions are:

n=0: F=0,0=1,¢=1
n—-0: F—>0,6—>0,¢—>0

where

F +'F:>dF d +'dr&f
= 1 —_ = — 11—
X dy dyX dy

’r:>df d 'dr
= —1 _— = — — ] —
X dy dyX dy

To solve Egs. (11), (12), and (14) let as assume

F(n) = Fy(n) + Ec Fi(n) + O(Ec)*
0(n) = 6o(n) + Ec 6,() + O(Ec)*
o) = do(n) + Ec ¢1(n) + O(Ec)?

Subject to the boundary conditions:

at n=0: Fp=0,F1=0,6=1,0=0,900=1,¢1 =0

as n—>o0: Fp—0,F —-0,60— 0,6 >0,¢0—>0,¢ >0
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(1)

(12)

13)

(14)

5)

(16)

a7

} (18)

Using Eqgs. (17) and (18), we get velocity, temperature, and concentration.

F(n) =vyne Ry 4 yne Y+ Aye ™ + Ec y7e72R + Ecyrge2R1y
+Ec Yr19e 2R 4+ Ec g e RIHRIY 4 Fe gy, e~ (RiFRY
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19)
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0(n) = e RV + Ec Yue2R 4 Ecyrse 2R + Ecipge ™R + Ecyge™(RitRy
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(20)

() = Y1e Y + A1e™Y + Ecrioe Y + Ecyne MY + Ecype %Y
+Ecyze"Ri+R)Y 4 Eoyy e RIHR)Y 4 Eoqyse=(RetRa)y
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3 Results and Discussion

Figure 2 represents the behaviour of velocity for dissimilar estimators of Hall param-
eter f,. From this figure, it was found that the enhancement of various values of Hall
parameter leads to reduction in velocity and itis very near to the plate. Figure 3 reflects

B,=0.1,0.2,03,0.4

(7
fffmfrmmmmn

0 2 4 6 8 10
y

Fig. 3 Plot of velocity for varying f;
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Fig. 4 Plot of velocity for varying

the rise in velocity owing to enhancement of diverse values of ion-slip parameter g;.
Figure 4 depicts the distinction of velocity for diverse values of Casson fluid param-
eter in both cases. At this juncture from the figure, it was examined that the velocity
is diminished owing to the incremental estimators of 8. Figure 5 indicates that the
outcomes of Eckert number Ec on velocity; here, in this figure, it was investigated
that for dissimilar incremental values of Ec show the way to rise in velocity. Figure 6
establishes that for dissimilar values of Prandtl number (Pr) rises, then it leads to
reduction in temperature. Figure 7 displays distinction of temperature for diverse
values of soret parameter so. In this figure, it was observed that the enhancement
of dissimilar estimator’s of soret parameter leads to ascend in temperature. Figure 8
confirms that the influence of Eckert number on the temperature. As of the figure,
it was determined that as the values of Ec rises, it leads to rise in temperature. For
dissimilar values of the Schmidt number on the fluid concentration is illustrated in
Fig. 9: From this figure, the outcomes indicate that the enhancement of Sc leads to
decrease in concentration. Representative dissimilarity of the concentration along the
spanwise coordinate y is exhibited in Fig. 10: As of this figure, it was recognized that
for diverse values of soret, So rises; then, it leads to concentration rises significantly.

Ec=0.01, 0.03, 0.05, 0.07

Fig. 5 Plot of velocity for varying Ec
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Fig. 10 Plot of concentration for varying So

Figure 11 demonstrates the performance of concentration for disparate estimators of
chemical reaction (Kr). The results obtained from this figure were perceived that the
concentration reduced due to rise in chemical reaction parameter.

4 Conclusions

e Velocity rises due to enhancement of diverse values of ion-slip parameter §;. But
reverser effect has been shown in case of Hall parameter S,.

e As velocity profile is diminished due to the incremental values of §.

e As the fluid velocity rises with the dissimilar incremental values of Ec in velocity.

e Asthe concentration diminished with the enhancement values of Schmidt number
Sc and chemical reaction Kr. But inverse effect was occurred in case of Soret.
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Effect of Rotation and Fluid on Radial m
Vibrations in a Micropolar Elastic Solid oo
Having a Fluid-Loaded Spherical Cavity

K. Somaiah

Abstract The main objective of this study is to investigate the angular rotation
effect of the solid and density of the fluid on the radial vibrations in an unbounded
micropolar elastic solid with a fluid-loaded spherical cavity. The micropolar elastic
solid is homogeneous and isotropic, but the loaded fluid is homogenous, isotropic, and
in viscid. Dispersion relation for radial vibrations of macro-displacements is derived
and which is influenced by the loaded fluid and angular rotation of the solid, while
the micro-rotational vibrations are not influenced by the loaded fluid and angular
rotation. All these results are not obtained in any classical theory of elasticity. Under
the MATLAB program, the numerical computations for a particular solid have been
performed and have also been shown graphically to understand the effect of angular
rotation of the solid and density of the loaded fluid on the behavior of phase velocity
and dispersion relation.

Keywords Rotation - Fluid + Radial vibrations *+ Micropolar elastic solid -
Spherical cavity

1 Introduction

The radial vibration study in a rotating elastic media is an important consideration
of theoretical and practical applications in geophysics, seismology, and synthetic
porous materials. It is also greatly applicable for verity engineering fields such as
civil, mechanical, chemical, aerospace, and nuclear engineering. Chand et al. [1]
presented his investigations on uniformly rotating homogeneous isotropic solids.
The rotation effect on classical waves is discussed by many authors like Schenberg
and Censor [2], Clarke and Burdess [3], and Destrade [4]. Rotation effect in magneto-
thermo elastic solids is investigated by Sharma Thakur [5] and Othman and Song
[6]. Mahmoud [7] discussed the angular rotation effect on Rayleigh waves. Recently,
the effect of rotation on plane waves is studied by Somaiah [8].
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In this chapter, we computed the frequency equation for radial vibrations in an
unbounded rotating micropolar elastic media having a fluid filled spherical cavity. It
is observed that these types of frequency equations are not obtained in any classical
theory of elasticity.

2 Governing Equations

The governing equations of motion for an angular rotating homogenous generalized
isotropic micropolar elastic solid are given by Eringen and Suhibi [9].
The equation of motion for rotating elastic solid is

A+ wu i+ (e + Kuy i + Kégim G + p[fl — il + 2 ><<.Q X 171)] =0
(D

The balance of the stress moment equation is
(o + B)iu + Y éuii + Keimtmi —2Kdy + p(Li — T i) =0 2)
The stress tensor #; and couple stress tensor my; are given by

tij = hug i + pluij +uji) + K(uij — imem) 3
mj = a¢m,m81i + ﬂ¢m,i + y¢i,m 4)

where the vectors u, ?, L, 5, 5 indicate the macro-displacements, body forces,
body couples, micro-rotations, and angular rotations, respectively, and the scalars;
namely, J is the micro-inertia, p is the density of the body, A, i, K, «, 8, y indicate
elastic constants, and §;; is the Kronecker delta, while &j;, is the permutation symbol;
a suffix index / following a comma indicates partial differentiation with respect to
the coordinate (x;); dot superposed on a symbol denotes partial differentiation with
respect to the time 7.

3 Problem Formulation and Its Solution

Consider the uniform micropolar elastic medium of infinite extent with radius r
= a. The medium is assumed to be rotating at a constant rate with constant angular

velocity 5 = (0, 0, £2) abut z-axis. Under the dynamical deformation of the medium,
the additional terms are namely the time dependent part of centripetal acceleration
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N i . - > . .
2 X (.Q X u) and the Coriolis acceleration 2 (§2 x u). We are interested in the

derivation of frequency equations for the radial vibrations of macro-displacements
and micro-rotations, so we consider those vectors in the following manner:

u” =, 0,0), 97 =(p,0,0),
with

U = u(r, 1)é, (5)

¢ = o 0)e, ©)

where ¢, is the unit vector at the position vector in the direction of tangent to the r-
curve. On neglecting the body forces and body couples in the governing Eqgs. (1)—(4),
we obtain the following partial differential equations

?u  2du 2 P 3%u 2
- -y =" | _ Q% 7
or2  ror r? (A+2u+ K)| 012
39 209 2 2K oJ 3%
et ¢ = = (®)
or ror r (x+B8+7vy) (a+B+y) ot
u 2\
or r
0 2a
mrr=(01+/3+3/)—¢+—¢ (10)
or r

For deriving the dispersion relation of the radial vibrations in an unbounded micro-
polar elastic solid having a spherical cavity filled with homogeneous in viscid fluid
with density p'/), the governing equations for homogeneous in viscid fluid are taken
from [10] as follows:

) 524D
P u
v(v . u(f)) = W o (11

and
1D =eD(V . u)s,, (12)

where u/) represents the displacement vector of the solid in the presence of fluid,
£ and p') are, respectively, the bulk modulus and density of the fluid.

For deriving the vibration relations in the radial direction, we assume that
ulhH = (u(f), 0, 0)
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with

)
uh =
ar

where /) is the fluid potential.
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13)

Inserting Eq. (13) in Egs. (11) and (12), we obtain the differential equation for

the displacement potential y/) in the liquid medium as,

o 92y (H)
TED a2

V2
and
1) = Y2y

2_ 2 4238
where V- = T el

Equation (14) can be solved as [12], and it is given by

1.
v, 1)=F /%e—lr;ezwt

The radial displacements in the presence of liquid P/ are given by

T

PO =4 F
rr 2l

0

) _ 81/f(f) _ T p(f) iwt—Ir
'’ =——=—-F | — —¢
or V2 r2

The appropriate boundary condition is
tw=—PPatr=a
One can solve Eq. (7) in the form
u(r, t) = R(r) e’

On using Eq. (20) in Eq. (7), we obtain

2 2
|:v2_z+M:|R:0

rr " (A+2u+K)

2
f) w_eia)t—[r

(14)

15)

(16)

a7)

(18)

19)

(20)

2y
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Suppose

X = gr (22)
where

- p(w? + £2%)

= (23)
(A +2u+K)

Using Egs. (22) and (23), Eq. (21) can be converted into the following second-
order ordinary differential equation

5 2 1 d
D°+—\D—-—-)+1|R=0,D=— (24)
X X dx
The general solution of Eq. (24) is
R( ) y d eix
xX)=M—|—
dx \ x
Hence,
i 1 .
u(r, ) = M[— - —Z}e“w”g’) (25)
gr  (gr)

where x is defined in Eq. (22); M is an arbitrary constant.
On using Eqgs. (25) and (17) in Eq. (19), one can obtain the following frequency
equation for radial macro-displacements

r—1 1—A 1 3 .
MO 420+ K) | 2i +2 —=| ==F(5) g w0
ga? gka’ a 2a
(26)

FromEq. (26), we observed that dispersion relation of radial macro- displacements
is effected by loaded fluid in the cavity of the solid and this relation coincides with the
results of Srinivas and Somaiah [11] in non-rotating and un loaded fluid solids. The
additional dispersion relations are same as the results of Srinivas and Somaiah [11].
Also we observed that the classical dispersion results are obtained as K approaches
to zero in Eq. (26).
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4 Numerical Illustration

To understand the relation derived in Eq. (26), and square phase velocity v? =

02a® . . p(w%+.(22) . . .
—5- of radial displacement for g = FruTk In great detail, we consider the

natural frequency wg of the solid as, wy = 0.8 (non-dimensional) and the material
values of aluminum epoxy from [12] and the liquid parameters from [13] taken as
follows: A = 7.59 x 10°N/m?, u = 1.89 x 10°N/m?, K = 0.015 x 10° N/m?,
p = 2.192 x 103kg/m?, J = 0.196 x 10°°m?, &) = 2.14 x 10°N/m? and
o) = 1.0 x 10° kg/m>.

The frequency, square phase velocity curves against non-dimensional amplitude
ratios % for the speed of angular velocity =0, 1, 5, 100 are shown in Figs. 1 and 2. It
is observed that dispersions and phase velocities are inverse proportional to the speed
of angular velocity in the given range of amplitude ratios, and also it is observed that
zero dispersions and phase velocities appeared at angular rotation 100.

The frequency and square phase velocity against non-dimensional density ratios
’5%2 for angular velocity = 0, 5, 20, 100 are shown in Figs. 3 and 4. It is observed that
dispersions and phase velocities are not effected by the fluid density in the rotating
solids. Constant phase velocities and dispersions appeared in rotating fluid-loaded
solids. Dispersions and phase velocities are inversely proportional to the density of
the fluid in non-rotating solids.

14

x 10
8 T T T T T
Rotation=0
eF —— = Rotation=1
—#— Rotation=5
6 —— Rotation=100 | |-

Frequency

Amplitude Ratios

Fig. 1 Variation of frequency versus non-dimensional amplitude ratios
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2.5 L} T T T T
Rotation=0
— — = Rotation=1
21 —#— Rotation=5
—+— Rotation=100

Phase Velocity
o

—_

05

Amplitude Ratios

Fig. 2 Phase velocity against non-dimensional amplitude ratios
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Fig. 3 Variation of frequency versus non-dimensional density ratios
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Fig. 4 Phase velocity against non-dimensional density ratios

The dispersion and phase velocity curves for non-dimensional rotations for dif-
ferent amplitude ratios are shown in Figs. 5 and 6. It is observed that dispersions
approach to zero at rotation speeds 4 x 10'?> and 6.5 x 10'? and dispersion, phase
velocity curves are suddenly falling down at rotation speed 5 x 10'? for all amplitude
ratios.

5 Concluding Remarks

For investigating the rotation effect and loaded fluid on radial vibrations, we con-
sider a micropolar elastic media with a spherical cavity. Throughout this theoretical
computations and numerical calculations, we conclude the following:

1. Frequencies pertaining to displacements are depending on loaded fluid and
angular velocity.

2. The dispersion relations of micro-rotations coincide with the results of [12].

3. Frequencies and phase velocities are inversely proportional to the speed of
angular velocity.

4. Frequencies and phase velocities are not effected by the fluid density in the
rotating solids.
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Constant phase velocities and frequencies appeared in rotating fluid-loaded
solids.

Frequencies and phase velocities are inversely proportional to the density of the
fluids in non-rotating solids.
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Convex Cylindrical Surface-Modified )
Rayleigh Waves L

A. Chandulal

Abstract In this paper, we consider the effect of curvature on the surface wave
propagation in a micromorphic medium. It is interesting to observe that the additional
waves found in the study of surface waves with curved boundary are dispersive
without any cutoff frequency.

Keywords Rayleigh waves + Surface waves - Stoneley waves + Longitudinal
wave * Transverse wave

1 Introduction

Wave propagation theory is usually discussed in terms of two general phenomena,
namely the propagation of longitudinal and transverse waves by omitting the body
forces fy, fy, fz,i.e., by neglecting the effect of gravity. Moreover, we consider
wave propagation only in those cases where all boundaries and interfaces are paral-
lel planes, but in some cases of importance, the interfaces are curved usually being
cylinders and spheres. The media are assumed to be perfectly elastic in these prob-
lems. It is well known; however, the dissipation accompanies vibrations in solid
media, because of conversion of elastic energy to heat. Several mechanisms have
been proposed for energy dissipation in vibrating solids, and these may be grouped
collectively under internal friction. For a discussion of internal friction, one may
refer the work of Kolsky [5]. In general, the effect of internal friction is to produce
attenuation and dispersion of elastic waves. In practice, however, the attenuation is
slight and dispersion is negligible for earthquake waves.

Gravity is the principal force which concerns in the problem of wave propagation
in such cases f; = f, and f, = g. Jefferys [4] showed that the gravity terms are
significant for compressional waves in the earth. The effect of gravity on Rayleigh
wave propagation in a solid half-space is studied by Bromwich [1]. The effect of
gravity on surface wave propagation in a compressible solid half-space was discussed
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by Love [6], and he shows that the velocity of Rayleigh wave on the whole is likely
to be increased by the gravity.

The surface waves in an elastic solids also effected by the curvature and gravity.
The effect of curvature on surface waves are initially disucussed by Sezawa [8], and
Viktorv [9] investigated the effect of curvature on surface waves for both convex and
slightly.

Concave cylindrical surface. Surface waves on a cured surface are dispersive.
The effect of curvature on Stoneley waves is considered in detail by Epstein [2].
Sambaiah et al. [7] have discussed the Rayleigh wave propagation in micromorphic
elastic half-space and have shown that the additional waves found are dispersive with
certain cutoff frequencies.

2 Basic Equations

Using the principles of vector calculus related to curvilinear coordinates, it can be
shown that

A=lO )+18u0+8uz (1)
=—-—(ru
r or a0 0z
19 19ps 06,
A=) oS 2
(r o) + 89+az 2)

Curlii — 1 du, duy du, duy;\ 10 10u, 3

ur”‘[(?ae_a_z)’<az_ar)?a_r( 9)__39} ©)
L (106 090\ (9 09\ (10 194,

°“r1¢_[<r 26 az)’<az Br) (rar(¢) ;6 )} @

The equations of motion involving macro-displacement and micro-rotation in
vectorial form are given by

(A +2Ar)grad A — (As + A)curl(curlii) + 2Ascurl g+ pf = pii~ (5)

2(B3 + B4 + Bs)grad Al — 2B3 curl(curl q?)
—2Ascurlii — 4A;6 + p€ = pjig (6)
The equations of motion involving micro-strains are given by

azu,
8t2

(7

(Ar +240) LA — 24y + Ag (120 _ 5
! 23r 2 3 r89 0z

>+4A3w +pfy =
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1A aw>  ow ; 3%ug
A 2A,)—— —2(A A U 4A3w, =p—— (8
(A + 2)r89 (Az + 3)( 32 8r>+ W, + pfs P )
) 19 . —low" N
(A] +2A2)—A —2(A2~|—A3) ——(VW 9)— +4A3WZ
0z ror r 00
9%u
+pof:= vy )
3, 1w awy’ N
2(B3+ By4+ Bs)— A" —4B3| — - +4A3w,
or r 00 0z
92,

—4A3¢. + pl, = pj 82 (10

19 aw>' aw N

2(B3+ By + Bs) — ——A" —4B; — +4A3w,

ror 0z or
0%¢
— 443y + ply = pj— 5 (11)
2(Bs+ By + B~ LA — 4B, | . 8( ;) aw,”
3 4 > r 0z 3 r or 0 r 00
N 0%,

+4Asw,; —4A3¢, + pl; = pj (12)

ot?

The equations of motion given by (5) and (6) or (7)—(12) can also be written in
other form. We know that from vector calculus

V2F = V(v.ﬁ) —V x (v x ﬁ) (13)
Using (13), Egs. (5) and (6) can be expressed as

2(Bs + Bs) grad A' + 2B,V § + 4Asiv — 443 + pl = pé (15)

Equations (14) and (15) in terms of components are

2

0 N 0°u,
(A1 + A2 = A3) A+ (A + A3) Viur + 443w, tofi=0p - (16

10 ) ~ 821/{3
(Al + AZ - A3);£A + (A2 + A;)V ug + 4A3W0 =+ ,Ofg =0 ——5

a2 a7
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2

d N 0°u,

(A +4; = A3 - A+ (Ar + A) Vi +4daw] +pfe=p 5 (18)
N 2 - 0’

2(Bs + Bs)a—rA +2B3V2p, + 4Asw) — dA3h, + pl, = pj o2 (19)

19 X - - 9%¢y

2(Bs + BS);ﬁA +2B3V2py + 4A3w, — 4Aspy + ply = pj e (20)
I 2 ~ 0%,

2(By + BS)B—ZA +2B3V g, +4A3w, —4A3¢, + pl; = pj Py (21)

where

2 19 1 92 32
+— (22)

v 22, 2%
ar? +r ar +r2 2002 072

3 Solution of the Problem

Consider a convex cylindrical surface and let the axial components of displacement
be set equal to zero, i.e.,

u,=0 And ¢, =0 =0 (23)

Then, for the plane strain problem under discussion, the macro-displacement and
micro-rotation vector are

i = (ur, ug, 0) (24)

and

-

¢ =(0,0,¢:) (25)

And we suppose that these are independent of z and are function of r, 6 and time
t only. In view of (24) and (25), Egs. (1)-(4) and (22) give

Al=0w> =0

" 26
wy =0w; =0 (26)

1d 1 dug , 3 193 19
=~ Luy+ -2 Apg V2= 422 2O 27
or U DG AN o2 Trar T 202 @7
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Introducing

¢, =¢ (28)

For convenience, the equations of motion (16)—(21) for plane strain problem in
the absence of body forces and surface loads are reduced to

Ayt As— AL A+ (Ay + Ay)V2u, + 4452 02 Pu, (29)
— J— u, _—_——=
1 2 35, 2 3 3. 39 p8t2
1 dA R 0%uy
AL+ Ay — A3)—.— + (Ay + A3 V? bA3— = p—n 30
(A1 + Az 3)r 30+(2+ 3)Voug + 357 = Pn (30)
and
8u9 Up 13149 .82¢
2B3VZp + 4A = -2 —4Ap = pj— 31
3Vip + 3(8r+r r39> 3¢ PI53 (€2

Equations (29)—(31) are the coupled equations which are the field equations for
the problem under study. Similarly, the equations from (7)—(12) reduce to

d rog 9%u,
(A + 2A2)—A 2(A; + A3)— W + 4A3_3_9 =p a2 (32)
ow; ¢ ’uo
Al +2A = 33
(A1 +24; Py 35, =P 32 (33)
and
2 ~ 0%
2B3V- + 4A3WZ —4A3¢0 = pJ m (34)
Suppose
G = duths; cf =t
C3 =23 Ci =22 (35)
C2— 2ButBs). 0 _ 24
- oj 0™ pj
Now, Eqgs. (32)—(34) can also be written as
82
(CT+C3) VA= PR (36)
3w
(C3+C3) VW] —C3 Vi = (37)

8t2
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52
CiVip = —¢ +2wh ¢ — 2wgw, (38)

Now, the solution of the above three equations in the form of time-harmonic wave
can be taken as

' A d 2n' B1 | i
L @ ﬂ o
(39)
_A’”J( r) — bdj(k) 2C 4 ) | expli vt + n6)]
- kor r)— —— J,(k,r) | exp[i Wt +n
TR 2 ar T e P
(40)
2B byC
¢ = [k—z by Iy (kgr) + ,2—2 In (kﬂ)} expli (wt — no)] 4D
B Y
where
»* 0?20}
ke = ke = CZ+CZ’ ky = 7w =ke
b() — 2w(2];w k= 271’ b = Cf(l;ﬁ ) (42)
;) wp
2 nwa
k==t and n=ka= "¢

k is the wave number, c is the phase velocity, n is the number of complete circum
perennial wave, as is the radius of the convex cylindrical surface, J,(x) is Bessel
function of first kind of order n and A, B, C are constants. The conditions of a
traction-free surface at r = a and bounded stresses at » = 0 are imposed and they are

, A ou, n Uy 1 1 8149 ou, _0 at 3)
= — =0 atr =a

Wor "7 T r 90 or

1 ou, Odug ug dug ud 1 du,
to =2A —_— - — 2A e
v 2[r 89+8r r:|+ 3|:8r+r r891|
+2A30 =0 atr =a (44)
0
myy = —233a—¢ =0 atr=a (45)
r

and these stresses must remain bounded as r approaching to zero.

Now, substituting the macro-displacement and micro-rotation components given
by (39)—(41) into the boundary conditions (43)—(45) yields a set of homogenous
equations in A, B and C.
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11 Al 1 n’
—(A1 +2Ay)J, (kqa) — o J, (kqa) — ;Jn(kota) A
2A;ni 1
+ =2 {Jn' (kpa) — —Jn(k,ga)]B
a

| 2Aani I} (kya) — cl—ljn
¢ (kya)

{7, (kea) — é(kya)]A

cC=0 (46)

|:—in(A2 +243)
a

1 2
At (na) = Lot 0) + 2 kpa)
+ [(=AN{J,)" (kea) — aJ,(kpa)]B
2
+ |:—2A2{J,, (kya) — 21,} (koa) + Z—an (k,a)j|C =0 (47)
by Js(kga)B + by J,! (kya)c = 0 (48)

For this existence of non-trivial solution of the Egs. (46)—(48), the determinant of
the coefficients must vanish, i.e., (49)

|aij| =0 (49)
where

A 2
ar = —(A) + 2497 (kya) — —I{J,}(km - ”—Jn<kaa>}
a a

2Asni 1
ap = ; {‘]n] (kpa) — ;Jn(kﬁa)}

_ 2A21’li 1 _ l
apz = — {Jn (k},a) aJn(kya)}

—in (A 2A 1
ay = W{Jr) (kya) — ;mkaa)}
2

i = — AQ[J;I(kﬁa) L )+, (kﬂa)i| — 2[4 (kya) + ady (ksa)]

1 2
ay = —2A2|:Jn (kya) — ;Jn' (kya) + 'Z—an (kya)]

az1 = 0,ax = b J, (kga), a3 = by J, (k) (50)

Now, expanding the determinant and incorporating the amendments made by
Ewing et al. [3], the required frequency equation can be written as
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|aij| = Re(e) =0 (51)
ie.,

Re(c) = [Ri(0) + Ao(©) Ro(©)]+ € [A1(0) + Ap(0) Aa (@] =0 (52)
where R, (¢) = [(kg — 2k§)J,,(kaa) - 2J“(ka(c))].

[(k§ —2k%)J, (kg a) + EJ,} (kﬁc)}

—4k2[Jn' (kga) — Clljn (kaa)} [J,} (kga) — éJn (kﬁa)} (53)

Ry(c) = [(kj — 2k3) Ju(koa) — 20, (ko) ] [(k§ — 2k%) J (kya) + % J! (k,,a)j|
- 4k2[Jn1 (kga) — é],, (kaa):| [J; (kya) — éJn (kyc)] (54)

Ar(e) = [{ (kg — 2k2) Ju(koa) — 2, (ka)} {(k§ — 2k%) J, (kga) + éJ,} (kﬁa)”

2
+ [(k§ — 8A3)J,(kpa) + EJ,} (kﬂa)} [(1 +243) ]y (kea)]
— 4k2[1,} (ko) — l],i(kaa)} [J,} (kga) — 1J,, (kﬂa)} (55)
a a
_ —b1 Jnl (kﬂ(l)
Bol©) = 5y 71kt (56)

Ax(c) = [(1 + 2A43)J, (kga)] [(kj — 2k%)J, (k) + %Jn' (kya)]
+ [(kF — 2k2) T (ko) — 24, (ko) ] [(kg — k%) J,(kya) + %J,} (kya)]
— 4k2[Jnl (kqa) — cl—ljn(kaa)} [Jnl (kea) — ijn (kyc):| (57)

In Eq. (52), the terms other than R;(c) contribute the effect of curvature in the
surface wave propagation. When the micro-effects are neglected, i.e.,o; = 0,0, = 0,
e= 0, Eq. (52) reduces to

Ri(@) = [ (K = 2ka) k) = 24, (ko) [(k§ —20%)J, (KS) + %J”' (k,ga)j|

- 4k2[1,} (k¢) — %Jn(ko,a)} [J; (kpa) — é],, (kﬂa)j| =0
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which agrees with the equation given by Ewing et al. [3]. The equation (52) is suitable
for discussion in such a complicated form.

Now consider the equation of motion for micro-strains. For the problem under
discussion, we have

¢VV =¢rr(r99vt)¢90 :¢99(r’97t) (58)

deoy = Gro(r, 0, ) and @y = Gy = Py =0

The filed equations involving these micro-strains are

2B, V3¢, — 2As¢,, = LR (39)
2 rr 5Prr — 210.] 812
2 1 0% e
2By Vigog — 24500 = 0] ——5 (60)
2 ot
2 1 . 9%¢u0)
2By V: ooy —2As5¢r0 = SP]— (61)
2 ot
We suppose that solution of (59) in the form
¢rr = a' W (r) expli (1 +nb)] (62)
where a! is consistent and v (r) is function of r only.
Substituting (62) in (59), we get
TR 2 n’
vo+-y +|\p - 5v=0 (63)
r r2
where
Zpj —4A
2 _ w=p] 5 (64)
4B,
The solution of equation (63) is of the form
Y (r) = Ju(pr) (65)

Thus, the solution of (59) is

¢ = a' J,(pr) expli(wt — nb)] (66)
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As Eqgs. (60) and (61) are similar to (59), we have

$go = b' J,(pr) expli(wt + nb)] (67)

$ay = ' Ju(pr) expli(wr +n6)] (68)

where b!, ¢! are constants.
The boundary conditions to be satisfied are

lrrr) = tro6) = lrrs) = 0 (69)

Substituting (66)—(68) in (69), we get three frequency equations and each is of
the form

, 4As , 4As
W = —/— 0or ¢~ = )
pJj pik

where c is the phase velocity. We can observe that it is a dispersive wave.

4 Conclusions

In case of surface waves in planes, these waves are found to the dispersive and have
the same cutoff frequency [7]. In the present case, there is no such cutoff frequency;
this can be attributed to the effect of curvature on surface wave propagation. The
additional wave found in the curved surface is dispersive without cutoff frequency,
whereas this wave in planes is dispersive with some cutoff frequency.
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Modelling Third-Grade Liquid Past )
Vertical Isothermal Cone with Variable L
Temperature and BIOT Number Effects

S. Abdul Gaffar®, V. Ramachandra Prasad ®,
B. Md. Hidayathulla Khan@®, and K. Venkatadri

Abstract The non-similar natural convection flows of an incompressible viscoelas-
tic fluid past an isothermal cone with BIOT number effects and variable tempera-
ture are investigated. The Keller-Box technique is utilized to solve the transformed
conservation equations subject to physically appropriate boundary conditions. The
variations of different emerging dimensionless parameters on velocity, temperature,
skin friction coefficient and heat transfer rate profiles are presented.

Keywords Third-grade fluid - Material fluid parameter - BIOT number - Heat
transfer rate * Skin friction

1 Introduction

The enthusiasm for non-Newtonian liquid elements keeps on developing because of
expanding applications in different parts of cutting-edge mechanical advances that
incorporate warm oil recuperation, slurry movement, polymer amalgamation and
nourishment handling. In non-Newtonian liquid elements, scientific issues muddled
because of solid nonlinearity and higher request differential transport conditions.
Researchers and architects are engaged with non-Newtonian liquid elements in the
light of the fact that the examination and execution of these liquids are basic to
numerous differing frameworks, for example restorative and substance designing,
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plastic production and biotechnology. Numerous examinations of rheological hydro-
dynamics have been conveyed [1, 2]. A few liquid models have risen in effectively
impersonating genuine non-Newtonian qualities. The third-grade liquid is an easi-
est subclass of viscoelastic models which can foresee ordinary pressure and shear
diminishing or thickening attributes. Numerous analysts analysed the streams of
third-grade liquid for different situations, typically for a scientific accentuation and
next to know if any physical comprehension or understanding of the arrangements.
Sahoo [3] researched the stream and warmth exchange of third-grade liquid from
an exponentially extending sheet with fractional slip limit conditions. In the present
examination, a scientific model is created to look at the regular convective limit layer
streams of third-grade viscoelastic liquid past a vertical isothermal cone with BIOT
number and variable temperature. Suitable non-comparative changes are connected
to change over the preservation conditions into dimensionless structure. An under-
stood limited distinction “Keller-Box” system is executed to acquire the surmised
computational arrangements [4]. Approval with prior Newtonian arrangements is
additionally recorded. The impact of chosen parameters on speed, temperature, skin
rubbing number and warmth exchange rate qualities is contemplated.

1.1 Third-Grade Fluid Model

In this article, a simple class of non-Newtonian liquids called the third-grade liquid
is examined. The Cauchy stress tensor [5] of third-grade non-Newtonian liquid takes
the structure:

T=—pl+ pA; +a1Ay + AT + Bi1As + Ba(A1 Ay + AyA)) + Ba(tr AT) A,
)

where 7, p and I are additional tensor, hydrostatic pressure and character tensor,
respectively. «; (i = 1, 2), B;(i = 1, 2, 3) are material constants. Ay (k = 1,2, 3) is
first Rivlin—Ericksen tensors [6] characterized as:

A= (VV)+(WT 2)

_ dAn—l

A,
dt

+ A1 (VV) + Ay (VT m> 1 3)

1.2 Mathematical Model

A steady, natural convective flows of viscoelastic fluid from a cone with vertex angle
2A illustrated in Fig. 1 are considered. The cone vertex is placed at (0, 0), the x and y
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X, &u
Fiow
g
Permeable cone y 35,
Jeffirey Fluid @' @
T.,.C
y.nv O (leading edge)

Fig. 1 Physical model and coordinate system

axes are considered along and normal to cone surface. The surface is set to a variable
temperature, T,(x) = T o, + Bd; x", where B and d are constants. Also, we suppose
that the Boussinesq approximation holds. In approach with Sahoo [3] and Hayat [7],
the eqns. for continuity, momentum and energy are as:

d(ru) B(rv)_
ax + ay

ou n ou %u o 33u n 33u n du 3%u n du 9%u
U—+v—=v—+ —|U—— +v—s + —— +3—
0x dy 9y2  p | oxdy? 9y’ = 9x dy? dy 0xdy

20 du 9%u 683 <8u>282u

0 4)

p Ay =) 33 T-T A G
,03y3x8yjL o \dy 8y2+g‘8( ) COS (5)

oT oT 0°T

ua + vg = aa—y2 (6)
Subject to:
u=0, v=0, —k?}—z =h,(T,(x) = T) at y=0,
u—>0, T—> Ty, as y— 00, 7
Define ru = 200 py = — 208 r(x) =xsin A

ady ax
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£ Vix GroV4, = XG’,):M’
v X
v =rVGr(f+ie)oE =212 pr=V
=rv Ty = ==
2 V=TT, "
T, — Tso)x> cos A
er = gﬂ( oc;)x cos . ¢ = %Gi’g/z,
4u pX
61 = —LGrl, 6, = 2 Grl? @®)
PX pX

The reduced non-dimensional equations for velocity and temperature are:

5 +<7+n)f’—(1+n)(f’)2+§f/+6¢(f/)2f/+9

4 2
143n 7+n
+81[ ff=—1- Ef/}
+ 3n, , 1—n , ,
+ (e + 2¢2) (f )2 — (4¢; +282)77—f f
3f af f”
_ Y 3 2 "
7 [f o =z o — (Ber+2e) f T
3f” JOf L, 0f
-— — == 9
(f o8 f T ©)
0" 7+ 1 - Bf
— 4+ —— 0+ 80 —nf'o0= — =0 = 10
pr 0" +£0" —nf’ <f o8 85) (10)
Subject to:
0/
f=0, f =0, 6=1+—, at =0
14
f'=0, -0 as n— oo (11)
Here y = M The shear stress coefficient and heat transfer rate are:

7 7
r 0 - 0)>
+2¢(f", 0)’° (12)

/ 5+
Gr'4Cc, = f(¢,0) —l—al(

Gr 4 Nu= —-0'(£,0) (13)
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2 Results and Discussion

Complete arrangements of numerical outcomes have been obtained and are shown in
Tables 1 and 2 and Figs. 2, 3, 4, 5 and 6. To approve the Keller-Box numerical code
utilized, examination with prior Newtonian arrangements displayed by Hossain and
Paul [8] is directed and appears in Table 1. Table 2 provides the influence of the third-
grade fluid parameter (¢), material fluid parameters (&1, €;), BIOT number (v ) and
surface temperature exponent (n) on skin friction (Cy) and heat transfer rate (Nu).
We see that with expanding ¢, Cy is enhanced, while Nu is decreased. However, Nu
isreduced. Also, increasing & is observed to decrease Cy and Nu. Further, increasing
&7 is seen to increase both Cy and Nu. Increasing y values is seen to enhance both Cy
and Nu. Increasing n reduces Cr but enhances Nu. Figure 2a, b presents the velocity
(f") and temperature () profiles for different ¢ values. Velocity is seen to elevate
strongly with increasing ¢ values. A slight increase in temperature is observed in
Fig. 2b, and thus, the thermal boundary layer thickness is also enhanced. Figure 3a,
b presents profiles for velocity (f') and temperature (6) for different values of ;. The
parameter & straightforwardly corresponds to the first material viscoelastic modulus,
a1, An increase in ] reduces viscosity and enhances fluid elasticity which leads to
deceleration in the boundary layer flow and hence reduces velocity. In Fig. 3b, we
see that the temperature is increased slightly with increasing &, values and hence
increases thermal boundary layer thickness. Figure 4a, b presents velocity (f') and
temperature () profiles for greater &, values. An increase in ¢, increases the fluid
velocity (Fig. 4a) significantly, whereas a very slight decrease in temperature is
observed with an increase in ;. Figure 5a, b presents velocity (f’) and temperature
(0) profiles for increasing y values. Both velocity and temperature profiles (Fig. 5a,
b) are enhanced with increasing y values. Figure 6a, b illustrates the velocity (f')
and temperature (6) profiles for increasing n values. Both velocity and temperature
are shown to decrease with increasing n values.

oro0E.0) Torvarions € —0¢.0)

values of & with Pr=0.71, Hossain and Paul [8] Present

p=¢e1=6e=0 0.0 0.24 584 0.24 587
0.1 0.25 089 0.25 091
0.2 0.25601 0.25603
0.4 0.26630 0.26633
0.6 0.27662 0.27665
0.8 0.28694 0.28698
1.0 0.29731 0.29735
2.0 0.35131 0.35136
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Fig. 2 a Influence of ¢ on the velocity profiles. b Influence of ¢ on the temperature profiles

2.1 Tables

See Tables 1 and 2.

2.2 Figures

See Figs. 1,2, 3,4, 5 and 6.
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Fig. 3 a Influence of €1 on the velocity profiles. b Influence of £; on the temperature profiles

3 Conclusions

The buoyancy-driven, non-similar convective flow and heat transfer of third-grade
viscoelastic fluid external to a vertical isothermal cone are presented numerically.
The implicit second-order accurate finite-difference Keller-Box numerical technique
is implanted to solve the transformed, non-dimensional boundary layer equations,
with prescribed boundary conditions. A comprehensive assessment of the effects of
the third-grade parameter (¢) viscoelastic material fluid parameters. (1, €;), BIOT
number (y) and surface temperature exponent () has been conducted. Very stable and
accurate solutions are obtained with the present finite-difference code. Validation of
the implicit Keller-Box method solutions has been achieved with earlier Newtonian
solutions. In this regard, this method is explored with other non-Newtonian fluids.
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Fig. 4 a Influence of &, on the velocity profiles. b Influence of &, on the temperature profiles
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Fig. 5 a Influence of y on the velocity profiles. b Influence of y on the temperature profiles
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Fig. 6 a Influence of n on the velocity profiles. b Influence of n on the temperature profiles
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Nonlinear Kelvin—Helmholtz Instability m
of Viscous Fluids with Heat and Mass Gedida
Transfer

Rishi Asthana and Mukesh Kumar Awasthi

Abstract A nonlinear stability analysis of novel Kelvin—-Helmholtz instability of
two superposed viscous fluids is performed. We are allowing transferring of heat/mass
at the juncture of two fluids. The multiple timescale expansion method is utilized to
study various modes of instability. The stability of arrangement is finally governed by
a partial differential equation which is nonlinear in nature. The stable/unstable zones
are represented graphically showing the impacts of physical variables. The nonlinear
analysis shows that transferring of heat at the juncture of two fluids induces instability,
while nonlinearity induces stability.

Keywords Interfacial stability - Nonlinear investigation * Viscous potential flow *
Timescale perturbation - Plane geometry

1 Introduction

If the heat transfer includes mass at the juncture of two viscous fluids, the instability
investigation becomes complicated. Various applications in chemical engineering
and geophysics contain the phenomenon of mass transferring including heat. The
analytical revision of interfacial stability of Kelvin—Helmholtz and Rayleigh—Taylor
type in Cartesian plane was made by Hsieh [1]. Ho [2] considered the heat transfer
effect at the juncture of two viscous liquids of identical viscosity. The heat transfer
effect on interfacial instability in Cartesian plane assuming liquid as viscous while
vapor as inviscid was examined by Khodaparast et al. [3].

The analysis of Kelvin—Helmholtz instability with the use of viscous potential
flow theory does not permit for no-slip conditions, but contrasting from inviscid
theory, the normal viscous stresses are included at the interface. Joseph and Liao
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[4] invented the basic idea of viscous flow theory. The mass transfer effect at the
juncture of two viscous fluids of unequal viscosities was checked by Awasthi and
Agrawal [5]. Joseph and Funada [6] included the viscous effects at the juncture of
two fluids in case of Kelvin—Helmholtz instability. Asthana and Agrawal [7] studied
the mass transfer effect at the juncture of two viscous fluids when they are streaming
with unequal velocities.

The nonlinear stability examination is quite tough as the number of equations
increases, but from linear theory, we cannot find the complete stability mechanism.
The weakly nonlinear theory for unbounded inviscid fluids was developed by sev-
eral authors in the literature [8, 9]. The nonlinear interfacial instability of Kelvin—
Helmbholtz type between two semi-infinite fluids was analyzed by Weissman [10]. He
established amplitude equations which are first- and second-order time-dependent
equations, and these equations are also depending on the different dispersion rela-
tion which was used for linear theory. The impact of transferring of mass on the
juncture of two ideal fluids was investigated by Hsieh [11] using nonlinear analy-
sis. The nonlinear instability of Kevin-Helmbholtz type of two non-viscous fluids in
plane geometry was analyzed by Lee [12] taking heat transfer through the interface.
The mass transfer effect on the juncture of two viscous fluids including nonlinear
contributions was examined by various authors [13, 14].

In this paper, we made an attempt to study the nonlinear impact of disturbance
waves on the interfacial instability of Kelvin—Helmholtz type for two incompressible
as well as viscous fluids. The irrotational viscous flow theory is utilized to include
viscous effects. Heat is transferring including mass at the juncture of two fluids. The
compound timescale perturbation method is considered to investigate, and a partial
differential equation which is nonlinear in nature is derived to describe the nonlinear
waves. The comparison between obtained results and linear theory [7] has been made.

2 Mathematical Formulation of the Problem

The schematic of the problem is presented in Fig. 1. A planar patch y = 0 at tem-
perature 7; is considered between phases of water and vapor of velocities V,,, V,,
temperatures T,,, T,, viscosities u,,, iy, width d,,, d,, and densities p,,, p,, respec-
tively. A sudden disruption makes the patch elevated by ¢ (x, 7), and hence, the patch
takes shape as y = ¢ (x, t). The normalized vector in outward direction is [13]

o\ ae

The perturbed flow above and below is supposed to be irrotational, and their
potentials are harmonic.

Vi, =0, Vg, = 0} (2.2)
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Fig. 1 Schematic of the arrangement

The boundary conditions can be summarized as:
There is no normal velocity at y = —d,, and y = d, i.e.

¢, /0y =0aty = —dw }’ 2.3)

0¢p,/dy =0aty =dv

At the patch y = ¢(x, t), we should have

(i) The mass transfer equations as;

9 dpw 0L dgy ¢ d¢, 0C Ay,
S _ %) (228 _ B 2.4
p<8t+8y axax) p( ar T oy axax) 24

(i) The transfer of heat is governed by;

905 | O¢w 08 0pyw )
oG ) = e 2
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The details for H(¢) / L were expressed by Awasthi et al. [13].
The nonlinear equation of energy transfer can be written as

BZ 3(Pw a; a(pw 2 3
Y I T A T 2.6
p( o Ty dx ox (6 + g’ +ast’) (2-6)
3 3
where a = %(C%W—Fd%),az _di"‘;’ - @ ij;id&df

(iii) The dynamical condition

gy, 3¢ gy 3§+3¢w 9¢ 0gy dpy L gy
M\ By T ax ox ot oy axoax ) P\%y T axox

¢ d¢, 9L g, . .
- = v w_2 Y Vv'
<81+3y ax ax ) = (v Pwm 2R V@ Vg, i

9
+2uwﬁ-V®V¢W.ﬁ+oV-ﬁ){l+<a§> } 2.7)
X

Using Bernoulli’s equation, we may get;
(B _ 980\ (L0 g 3t B
"\dy  ax oax ar 3y  dx dx
dpy 9L gy \ ([ 0C +3(ﬂv 9¢ gy
Py T ax ox J\ "ot T oy ox ox
dpw 1 (0p\* 1 (00, Y
= — =] — 1 2
pw<8t+2<8y)+2<8x) T\
doy  1(0p,\* | 1(0¢\ z\?
- py — — 1 -
p<8t+2(8y +2 ox o
w00 0w | P (02
—2u, ‘P _ 89w | 97w (00
3y? Bx dydx  9x2 \ox
g, 3¢ 3%, 3%, [0\
—ou, % _2_4 o 09 ag
dy? dx dydx  dxZ \ ox
-3
NS i (2.8)
0O ——= .
9x? 8x
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We study the nonlinear temporal growth on the interfacial stability of Kelvin—

Helmbholtz type taking the approach adopted by Awasthi et al. [13]. The expansion
of variables is taken as follows;

¢ = (to, th, b, x) + Calto, 1y, 1, X)
+ ¢t 1, 1, X) (2.9)

Pw = Po.w(X) + 11 (to, 1, 12, ¥, X) + P2, (to, 11, 12, Y, X)
+ 303, (to, 11, 12, ¥, X) (2.10)

@y = @0y (X) + 191, (o, t1, 12, ¥, X) + P02, (to, 11, 1, ¥, X) + O3, (to, 11, 2, ¥, X)
2.11)

Here, ¢ reveal the order of disruption and #ty = ¢,t; = ut, 1, = (2t. The other
variables ¢,, ¢, and { coming in the above equations are expanded according to
Maclaurin’s series about the patch y = 0. Now, we use the above expression for

©w, ¢y and ¢. The coefficients of ¢, 2, 3 are separated which gives us the equations
of distinct perturbation orders.

3 Linear Theory

As we suppose, the flows below and above the patch have velocities V,,, V,, i.e.,

Do,w = VW.X, Yo,y = Vv-x} (31)

Technique of normal mode is utilized to analyze the linear stability, and patch
disruption is considered as;

21 = D(t1, 1) - **e™" 4 complex conjugate, 3.2)
Linear form solution for Eq. (2.2) is

cosh(k(y +dw))  itx —io
R T W ikxg

1/«
w=-—-i kV,, |D(t,t - .c. (33
o1, k(pw iw+i ) (t1, 1) sinh (k) +cc. (33)
lfa . cosh(k(y —dy))  itr —iwr
==zl == kVy |D(ty, ) ———————= e +cc. (34
o1, k( ) iw+1i ) (t1, 1) sinh(kd,) ee ' 4 c.c. (34)

Based on Eqs. (3.2)-(3.4) and linear normal stress balance equation, the
characteristic equation achieved by Asthana and Agrawal [7] was obtained.
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cow® + (c1 +id)w+cr +idy = C(w, k) =0 (3.5)
co = py coth(kd,,) + p, coth(kd,)
¢y = —2k(p,, V,, coth(kd,,) + p,V, coth(kd,))

d; = a(coth(kd,,) + coth(kd,)) + 2k*(uw,, coth(kd,,) + i, coth(kd,))
¢y = k*(py V; coth(kd,,) + p, V] coth(kd,)) + (py — pu)gk — ok’

— 2% (“— coth(kd,,) + 2~ coth(kdv))

w v

dy = —ak(V,, coth(kd,,) + V, coth(kd,))
— 2k (i, Vi, coth(kd,,) + ., V, coth(kd,))

The adequate condition for roots with negative real parts is:
cod; — cididy + crdi < 0 (3.6)
which gives us

— coth(kd,,) coth(kd,)[a*k* (p, coth(kd,,) + p,, coth(kd,))
+ 4k°(py 1y, coth(kd,,) + iy coth(kd,))
+ 4ok (py oy coth(kd,) + pyiy coth(kd,)JU? + [(p — pv)gk + ok’]
X [a (coth(kd,,) + coth(kd,)) + 2k*(ju,, coth(kd,,) + 1, coth(ka’v))]2

+2ak? (ﬂ coth(kd,,) + 2~ coth(kdv)>

w v

[e(coth(kd,) + coth(kd,)) + 2k (u,, coth(kd,,) + i, coth(kdv))]z <0 (3.7

Here, U =V, —V,,.

4 Second-Order Solution

The governing equations of potential function for second-order perturbations are
given as

V2, =0; Vg, =0 (4.1)

If we substitute the expression of &, ¢; ,, and ¢, in 2nd order equation, we have
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£ = —2ay DD + D, D2 xe 2wt BZBZeZikeriwt 4.2)
hQk(y + d,,
@2 = M) 2%&”‘" —2iel 4 complex conjugate 4 d (19, t1, 1)
(4.3)
h(2k(y — d,
02, = —M2D? %emx —2iel 4 complex conjugate + d(f, 11, 1)
(4.4)
where
2% i(w— kV
D, = pitw =kV) - oth(2ka)
CQw, 2K) k
2
+3 (coth2(kd + 1))(- —iw+ sz)
P
+2p(w — kV)? —i3akV — 6k 1 (- —iw+ th) — kuy coth(zkd)ﬂ
P
lC(O[z
[(@ — kV,) coth(kd,,) +(w — kV,) coth(kd,)]
tdkaan [ﬂ coth(2kd,,) + 1~ coth(2kdv)i| }
S
Mi = —[y,- + {ﬁ ~2i(w —kVi)}Dz + @] i =w.v)
2k pi pi
Y = —Zk{— —i(w—kV; )} coth(kd;) (j =w,v)
Lj
od> _ o C o kVY (1 — coth? (kd)) + 2 D2
—— — Py —— = — 4+ (v — — Co o
P T P Pl pge

5 Third-Order Solutions

The velocity potentials in third approximation are
V23,0 = 0; Vs, =0 (5.1)
If we substitute the expression for ¢y, &2, @1, @1, @2.» and @, , in equation

interfacial stress balance equation, the solution for third-order problem can be
computed as



212 R. Asthana and M. K. Awasthi

— 13D ) cosh(k(y +dv) ;. i
V3w = {N31D2D + Ea_tz } W * " + complex conjugate (5.2)
190D ] cosh(k(y — d,)) _
, = NDZD___ D S th iwt 1 t 5.3
o3, { £ T 9m } Snh(kd) + complex conjugate (5.3)

where N} and N7 are as follows;

N; = —k|:2M21 coth(2kd,,) — 2 coth(kd,,) (i —iw+ ika> %

Pw

1| . o
+ E{—W — 3l(a) — ka)} + W@aé — 30[3)
2 D
& s iw—ikv, ) coth(kd,) + 222122
Pw pwk ) k

N3 = —k[2M3 coth(2kd,) — 2coth(kazv)<g —iw+ ikVV> %

v

1|« : o 2
_ E{E — 3l(a)—va)} — W@az — 3@3)
2 D
(% +iw—ikv,) coth(kd,) + 2221 22
Pv ,OVk k

Here, we have assumed that the secular terms are zero because the expansion
is uniformly valid. If we put first- and second-order solution in the stress balance
equation, a nonlinear equation is achieved as follows:

i dC oD

8D’D =0 5.4
k Ba) 31‘2 + -4

If we put viscosity u,, = @, = 0in Eq. (5.4), the relation given by Lee [12] can
be achieved.
Equation (5.4) can also be written as

aD —
P r'D*D =0 (5.5)

From above equation,

1

|D* = 5
| Do~ 4+ 2(RelM)1,

(5.6)
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It can be concluded from the above expression that if denominator gets zero, D
goes to infinity and therefore the stability condition one can obtain as

Rel' > 0 (5.7)

6 Numerical Results and Discussion

The phenomenon of transferring of heat along with transfer of mass exists quite
frequently in multiphase flow. The case of film boiling contains two rigid plates
containing liquid in between where the lower plate has more temperature than the
upper one. The liquid at the lower plate vaporizes, and due to gravity effect, it comes
above the liquid where it condenses. The process repeats periodically and affects the
stability of the flow.

The critical stability condition (5.7) predicted by the nonlinear theory will be
presented in this part for a fluid—fluid interface where fluid below the interface is
water and fluid above is water vapor.

pw =10 gm/cm3, wyw = 0.01 poise, o = 72.3 dyne/cm,
g = 980cm/s?, p, = 0.001 gm/cm?, v, = 0.00001 poise

The total length of the channel is taken as 1 inch, i.e., d, +d,, = 2.54 cm, and the
fluid below the patch is considered immovable, i.e., V,, = 0 throughout the numerical
computations. The unstable zone is denoted by U and stable zone by S.

Linear analysis of considered problem was analyzed by Asthana and Agrawal [7].
In this study, irrotational viscous theory was applied to get the growth of disturbance
waves. The stability range achieved in the present study and that represented by
Asthana and Agrawal [7] are plotted in Fig. 2. Flow is unstable above this curve,
and it is stable below this curve. The lower curve represents linear theory. The zone
above this curve is unstable, while below the curve is a stable zone. The mid region
was unstable in the linear study and now becomes stable. The stability range of two
viscous fluids with transferring of heat has been enlarged due to nonlinearity.

To examine the effect of fluid viscosities, a comparison between irrotational vis-
cous flow theory and irrotational inviscid flow theory is made in Fig. 3. The zone
below the dotted line now becomes stable in irrotational viscous flow theory which
was in the beginning unstable in the inviscid potential flow theory. VPF analysis
contains the effect of viscous normal stresses, and IPF solution does not contain its
effect. It can be concluded that the stable region is enlarged because there is resistance
of the flow due to viscosity in the nonlinear investigation. The combined effect of
nonlinearity and viscosity is shown in Fig. 4. The coupled viscosity and nonlinearity
resists the perturbations to grow.
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Fig.3 Stability range for nonlinear analysis; VPF—viscous potential flow; IPF—inviscid potential
flow

Figure 5 plots the relative velocity curves for vapor width d, = 0.3, 0.5 and 0.7.
Atcrest, the pressure exerted by vapor will be lower than symmetrical vapor pressure.
On increasing vapor fraction, evaporation will take place. Amplitude of disturbance
wave will lower down due to this, and system will be stabilized. The influence of
transfer of heat in the nonlinear analysis is analyzed in Fig. 6. The increase in transfer
of heat at the patch of water and vapor increases evaporation, and disturbance grows
faster when transfer of heat at the juncture increases and interface will be unstable.
The nature of transfer of heat at the juncture of two fluids is same irrespective of
viscosity, but the inclusion of viscosity enhances the stability range.
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Fig. 5 Stability range for various values of d, with u,, = 0.001, u,, = 0.00001 poise

7 Conclusions

We have examined the nonlinear Kelvin—Helmholtz instability of two superposed
viscous fluids. The transferring of heat and mass at the juncture of two viscous fluids
is allowed. The irrotational viscous flow theory is used to include viscosity. Timescale
multiple expansion method is employed, and a partial differential equation which is

nonlinear in nature is achieved.
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Fig. 6 Stability range for various values of o with u,, = 0.001, u, = 0.00001 poise

The main observations are as follows:

1. The nonlinear effects resist the growth of disturbance waves.
2. Vapor width induces stability.
3. Viscosity of both fluids is also playing stabilizing role.
4. Heat/mass transfer destabilizes the interface.
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Influence of Ion-Slip and Hall Current )
on Magneto Hydrodynamic Free i
Convective Flow Past an Accelerated

Plate with Dufour Effect and Ramped
Temperature

G. Dharmaiah, K. S. Balamurugan, and K. V. B. Raja Kumar

Abstract An analytical solution is proclaimed the significance of ion-slip and Hall
current on magnetohydrodynamic convective free flow of radiation absorbing as
well as a chemical reacting fluid past an accelerated affecting vertical porous plate
with ramped temperature and Dufour effect. The modelling equations are reformed
into dimensionless equations, further illuminated systematically by multiple stan-
dard perturbation law. Appraisals were operationalized graphically to scrutinize the
performance of fluid velocity, temperature as well as concentration on the vertical
plate by means of the disparity of emerging physical parameters.

Keywords Hall current + Ion-slip - Chemical reaction + Dufour - MHD

1 Introduction

Due to multifaceted industrial as well as manufacturing applications, it is a great
understanding to examine the MHD flow. The noteworthy purpose of MHD principles
is to interrupt the flow field in a requisite way by fluctuating the formation of the point
of the confinement layer. Thus, with the intention to modify the flow kinematics, the
idea to execute MHD seems to be more flexible and consistent. In pharmaceutical as
well as ecological science, MHD has been playing a critical role in the application of
fluid dynamics and therapeutic sciences, owing to its implications in chemical fluids
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as well as metallurgical fields. The production of an extra prospective dissimilarity
transverse to the direction of accumulating free charge and applied magnetic field
among the opposite surfaces induces an electric current vertical to both the fields,
magnetic as well as electric. This current is renowned as Hall current. Numerous
explorers have been reviewed on Ion-slip as well as Hall current. Vijayaragavan and
Karthikeyan [1] examined the significance of Hall current effect on MHD Casson
fluid in presence Dufour as well as thermal radiation effects by means of chemically
reaction. The noteworthiness of double diffusion, Ion-slip and Hall current on MHD
free convection flow of couple stretch fluid during porous channels through chemical
reaction and Dufour along with soret effects scrutinized [2, 3].

The impact of Hall and ion-slip current on unsteady 2D fluid flow in presence of
Dufour as well as heat source described by [4]. In this study, the modelling equa-
tions are reformed into dimensionless equations, further illuminated systematically
by multiple standard perturbation law and a consistent magnetic field is employed
perpendicularly to the way of the flow. Abuga et al. [5] have discussed prominence of
Hall current along with rotating system on magnetohydrodynamic fluid flow through
an infinite plate affecting which is perpendicular, with externally heating as well as
cooling of the plate in the occurrence of ramped wall temperature and isothermal
in the aspect of thermal diffusion as well as diffusion thermo. The implication of
hall current on convective double diffusion flow past stretching sheet along with
dissipation as well as radiation contemplated by [6, 7]. Based on this scrutiny it was
confirmed that Galerkin finite element was employed for solving nonlinear coupled
equations. Makinde [8] has explored numerically, ion-slip and hall current impor-
tance on transient MHD flow by means of convective external boundary conditions
in the presence of an infinite porous plate. Based on the outcomes it was perceived
that the explicit finite difference method was employed for solving unsteady cou-
pled nonlinear PDE’s. Seth et al. [9] have dissected, affect of a rotational system
on unsteady hydromagnetic flow which is natural convective flow over impulsively
affecting erect plate thereby ramped temperature implanted in a permeable medium
by taking thermal diffusion as well as heat absorption. Deka and Das [10], Seth [11]
and Rajesh and Chamkha [12] have analyzed the significance of ramped wall tem-
perature on transient 2D, passes through a vertical surface with radiation as well as
a chemical reaction.

Objective of present study mainly discussed effect of Hall as well as ion-slip
current on MHD natural convective with double diffusion of a chemical reacting
and radiation absorbing past fluid an accelerated moving vertical porous plate with
ramped temperature in presence of Dufour effect. Natural convection emerging from
such a plate temperature profile is probable to be of importance in numerous man-
ufacturing applications particularly where the underlying temperature is of note-
worthiness in the design of electromagnetic gadgets as well as a number of natural
phenomena occurring owing to convection as well as heat generation/absorption.
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2 Formulation and Solution of the Problem

Contemplate transient 2D MHD natural convection stream with the help of double
diffusion, synthetically responding with temperature-dependent heat retaining fluid
past an accelerated boundless orthogonal affecting porous plate in a homogeneous
of a stress grading in the aspect of thermal as well as mass diffusions. Contemplate
x"-axis is along the permeable in the upward surface way and z"-axis in the way of
non-parallel to the plane of the plate also y* is normal to the x“z"—plane. The fluid
is saturated by uniform crosswise appealing field By employing parallel to z*-axis.
Initially, i.e. at the time #* < 0; the fluid as well as plate are at rest and retained at
uniform temperature 7 uniform surface concentration CZ,. At time t* > 0, plate
starts affecting in x"- direction opposite the gravitational field with time-dependent
velocity U cos w*t*. Temperature of the surface is accelerated or else declined to
T =T% —t*(T} —T,;)/t, and the scale of concentration at the surface of the plate
is accelerated or declined to C* = C —t*(C%, — C})/t, when (0, #y] thereafter i.e.
at (tp, 00). The schematic outline assumed flow setup is shown in Fig. 1: The Hall
current and Ion-slip was contemplated in the equation of momentum. Furthermore,
Dufour as well as radiation absorption was reflected in the equation of energy.

On the basis of the exceeding hypothesis, the transient fluid is represented by the
consequent partial differential equations.

Equation of Momentum:

du* aZu* aZu* * * s [ ok *
el i el A el R e G

B [B.w™ + aeu*]Bgae

, (D
—u*z?[K*]_l - —r[u*]

p[B2 + 2]

r 3

Fig. 1 Schematic outline assumed flow setup
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ow™ 9 32w n 32w 19[ g
= Vr - —w
ar* 9z* 3z |k

Ve ¢ w1 . BioelBeu* — aew*]
— — W+ 2)
T
Equation of Energy:
aT* k (9*T*
= ( 2 ) + % (T* - T;)
at*  pCp,\ az* pCp
1607T% 8>°T*  DypKr 9°C*
s T 00 - T _ + R*(C* _ C:O) (3)
3pCpk} az* C,Cp 0z*
Equation of Concentration:
ac* . d°C*
=D K.(CL —C* 4
3 = Dy H K€L= @)

The relevant confinement conditions are
w=0T"=T;,C"=C ift*<0forz>0
[T*-T5] .
[ - 00]
Ci—C*] [z]
Coo — Ci] t

0
uw—0,T" > TL,C"— Ci as 7" — o0

u* = [US‘ cos a)*t*],

3

if (0, f0] at z* = 0 (5)

—|—

*

Presently, non-dimensional amounts are characterized as

_ut vt LUy oyt _v02t* v

F=t8= gy U==7,%= 5 1=y 00 U2 ;

oo K0 v (- () [
Vi’ (T -1;)  (CL—Cy)

After substituting the confinement conditions and non-dimensional variables in
the governing Eqgs. (1)—(4) then we obtain:

% _ az_f . _ B(%Ge[aef+,3€g]
(I+58) Py + GO0+ GnC — 1+ PLS] —p[aZ A

ar
9g 3%g 9’8 Bioe[Bef — gl
I:gi| =1 +,3)|:8—Z2i| +Vr|:8_Z2] —(I+B)lgl+ W ®)

)
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0 _ eyt (14 4 20 pu?C e o
- = - — u—-—
ot 3 )z 92

aC 92C

o =S¢ )———KC (10)

The corresponding confinement conditions are

f=g=0=C=0 Vz,t <0

u=coswt, g=0, §=C=tatz=0 20 (11)
>
u,0,C - 0asz— oo

3

_ oB}o o _ 9p*g(Cl — C) G 9pg(Ty —T%) , _ 40T%
pv2 " I ViU kek

see? pre DmKt[Cy —CX] ~ R*W(Cy—CL) _ poCp

TocsGmi-TR] T Vi -1%) K

_ | Mo tifed 1B | kD, w900 F_<3+4R)
B [a§+53] K |"7F —\ 3Pr

=—=B=-n= .
Vi v pvice

(12)
8 2
=0 +ﬂ) +G€+GC x§& 13)

Here xy = f +ig
The relevant confinement conditions are

x=0=C=0 Vz,t <0
x =coswt, =C=tatz=0 (14)

t>0:
x,0,C — 0, asz — 00

Equations (9), (10) and (13) are illuminated systematically with the help of single
perturbation method subject to initial and confinement conditions (14).

X = xo(z)exp(iwt) ..., 6 =6y(z)exp(iwt)..., C = Co(z)exp(iwt)...}
(15)

Substituting Eq. (15) in Egs. (9), (10) and (13) then we obtain:
A+Bxy — E —iw) xo=—Gby—GuCo (16)

re) — (io —n)by = —DuCl — R,Co (17)
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C(/)’ — Sc(K:+iw)Cy=0 (18)

The appropriate confinement conditions are

xo=e " cos(wt), ) = Co=te ' atz=0 (19)
X0,60,Co — 0asz— oo
Solve Egs. (16)—(18) by using (19) then we get,
) S—i
((cos @re™™ =y, — Y3 exp(— (, / %)a |
x = . elwt (20)
+v» eXP(—< @)z) + Y3 exp(— (\/ Sc(K: + ia)))z)

_ ((teiwt _ WI)e_( (iwl:”))z + wle(«m)z)eiwt (21)
C = (remiotem(VSeKerioN): ) gior, (22)

3 Discussion of Ideal Convergence

Figures 2, 3 and 4 Reaffirmed that the sway of time (¢) on the velocity and temperature
as well as concentration. From this figure, it was identified that as the values of
“t” rises then it leads to rise in temperature and concentration as well as velocity.
Figures 5, 6, 7 and 8 Illustrated that the performance of velocity and temperature
for disparate estimators of Dufour (Dr) and radiation absorption (R,). The results
obtained from this figure it was perceived that enhance in temperature as well as
velocity. Representative dissimilarity of the velocity along the spanwise coordinate

2.5

........ t=0.1
........ =03 |l
-------- t=0.5
-------- =0.7 ||

=1.0

Fig. 2 Performance of t on x(z)



Influence of Ion-Slip and Hall Current on Magneto ... 225

t=0.1
e =03 4
t=0.5
t=0.7 H
t=1.0

\
0,000tk
BT
"

0 2 4 6 8 10 12 14

Fig. 4 Performance of t on C(z)
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Fig. 5 Performance of Dr on x(z)

yare exhibit in Figs. 9 and 10: From these figures, it was recognized that for diverse
values of Ion-slip estimator (8;) rises then it leads to enhance in velocity, but reverse
effect occurred in case of Hall current (8, ). Figures 11 and 12: demonstrated that the
impact of C.R. (K;) as well as S.nu. (Sc) on concentration. On the basis of figures, it
was perceived that velocity and concentration reduced with the raise of K, and Sc.
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Fig. 12 Performance of Sc on C(z)

4

Conclusions

As velocity, temperature as well as concentration rises with rise in time £.
Temperature and velocity rises owing to the enhancement of Dufour Dr as well
as radiation absorption R,

Asrise in chemical reaction K leads to decline in velocity as well as concentration.
As Velocity rises with the enhancement of Hall parameter (8, ), but inverse effect
was occurred in case of Ion-slip current (5;).
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Effect of Permeable Boundaries )
on the Flow of a Jeffrey Fluid i
in a Channel of Varying Cross-Section

P. Devaki®, C. H. Badari Narayana, A. Kavitha, and S. Sreenadh

Abstract In this paper, the flow of a simplest Non-Newtonian fluid in a channel
of varying cross-section with permeable boundaries is investigated. The paper finds
its significance in understanding the flow of Bio-fluids in the ducts of varying cross
section. Perturbation technique is used to solve the governing equations of the flow
phenomenon. The expressions for velocity, flow rate, wall shear stress, and the pres-
sure drop are derived. The flux is a function of external pressure, Jeffrey parameter,
and the permeability parameter. Further, if A; — 0 our results agree with Krishna
Prasad and Chandra (Proc Nat Acad Sci 60(A) I1I: 317-326, 1990 [1]). Mathematica
software is used find the pressure, which place a vital role in varying cross sections.
Shear stress increases with increasing effects of permeability and Jeffrey parame-
ters which is observed graphically. It is noticed that shear thinning reduces the wall
shear stress and this point is stresses in the paper as well. This work helps the young
researcher to develop interest in the field of Bio-fluids with varying cross-section.

Keywords Shear stress - External pressure - Flow rate + Pressure drop

1 Introduction

Nowadays flow in a tube or channel with varying cross-section through permeable
boundaries, has become an interesting topic among researchers. There are several bio-
fluids present in human ducts that are considered as Non-Newtonian fluids. Among
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several Non-Newtonian fluids, Jeffrey fluid is the simplest model of Non-Newtonian
fluids. Permeable boundaries play a vital role in the field of medicine and engineering.

Varying cross-section of a tube or channel also includes the elastic nature in the
tube wall. Vajravelu et al. [2, 3] concentrated on a circular tube that includes elastic
behavior of the tube for the flow of Hershel-Bulkley and Casson fluid. Badari et al.
[4] investigated on the inclination effect in an elastic tube for a Jeffrey fluid. Berhane
[5] analyzed the effect of slop, slip and reabsorption parameters on the flow of an
incompressible fluid in a rigid tube with varying cross-section. Recently Devaki et al.
[6] studied on a channel with flexible walls of a Casson fluid with heat transfer and
slip effects.

Permeable walls find its significance in the filtering of physiological fluids in field
of engineering and medicine. Some of the physical parameters used as permeable
materials are limestone and sand. In human body, the skin act as a permeable material
to send out toxins in our body in the form of sweat. Fakour et al. [7] studied on the
MHD flow of a Nanofluid in a permeable channel and found that the Reynolds
and Hartman number reduces the Nanofluid flow in a channel. Rasoulzadeh and
Panfilov [8] found the effects of inertial and visco-inertial effects on the flow of
a fluid in channel with wavy walls. Many researchers concentrated on the flow of
wavy channels, diverging channel with the flow of Newtonian/ no-Newtonian fluids
[9-13].

Based on these facts, it is noticed that very few researchers are concentrating on the
flow of simplest Non-Newtonian fluid in a permeable channel with different cross-
sections. The influence of many physical parameters like permeability parameter,
Jeffrey parameter, Reynolds number, and others on the wall shear stress, flow rate,
and pressure drop are discussed graphically.

2 Formulation of the Physical Situation

Consider the steady flow of a Jeffrey fluid in a permeable channel with varying cross-
section. We considered the fluid flow is two dimensional and incompressible. The
governing equations are framed in Cartesian coordinate system (X, Y), where X is
the axial distance and Y is the distance across the channel Fig. 1. The cross-section
varies with the boundary of the wall as

Y =+H(X) = j:HMz(%) and h(0) = 1, (1)

where 2 H is the initial channel width, L is the characteristic length of the channel
and h(%) is an arbitrary function of axial distance and represents the cross-section
variation.
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y

Permeable Boundary

h(x)

Fig. 1 Physical geometry

The non-dimensional quantities are defined as.

X Y 2HyU 2LV 2HF (P, Pex)
x:_1y=_7u= 7Vz_7(p»pext)=—
L Hy Qo Qo uL Qg
wL?K 0 H 2H T
k="—g=—h=— Ty="2" )
H; Qo Hy nLQo

By applying these non-dimensional quantities, the non-dimensional governing
equations are

Ree(uuy +vuy) = —px + vy [%urx + 1y, ], 3)
Re &’ (uvy +vvy) = —py + [ Var + vy ], 4)
14X
Uy, +v, =0, &)
and the corresponding boundary conditions are:
u+&>vh, =0and v — uh, = K(p — pext) at y = £h(x), (6a, b)
v=0andu,=0aty =0, (6¢, d)

g=1land P = P*atx =0, (6e, f)
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Here, we considered the analysis for ¢ < 1 and Re is chosen in such a way that

Re = O(e) where ¢ = % and Re = % is the flow Reynolds number.

3 Solution of the Problem

To solve the Eqs. (3—6e, f), we use an asymptotic power series in terms of & as
follows:

(u, v, p) = (ug, vo, po) + &ur, vi, p1) + O(e?), (7

Substituting the above expansion in Egs. (3—6e, f) and collecting the like powers
of ¢, we get the following sets of equations:

Zeroth Order
1
muow = Pox,> Poy = 0, uox + Voy = 0, (8a9 b, C)
ug = 0 and vo — uohy = K(po — pext) at y = +h(x), (8d, €)
vo =0and up, =0aty =0, (8f, g)
Por = 1:”1 and Py = P* atx = 0, (8h, 1)
First Order

(14 2D[p1x + Re(uouox + vouoy)| = uryy, pry =0, u1x +vi, =0 (9a,b,¢)

uy =0and v —u1h, = Kp; aty = th(x), 9d, e)
vi =0and u;, =0 at y= 0, (°f, g)
27Re(1 + A _
Dlx = %[31)*/’(4—2@] and Py =0atx =0, (9h, 1)

Solving the zeroth-order and first-order equations and using the boundary condi-
tions for velocity components, the expressions for ug, vy, ©; and v; are obtained
as
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pOx

up = (1+1)==(y> — h?), (10)
(I+Ap)
Vo = Tl(p0x6hhxy + 3h2ypoxx - POxxy3)v (1)
Pox 1+2)? Y0 +45h*y* — 46h°) pox poxx+] |
15hhxp0x(y + 6 Y —7h ) by

(12)
%{plxx(yz _3h2) _6p1xhhx} ]
(P2, + Porex Por) (V0 + 105h%y? — 32215)
v =—(1+A ox
ROV i Red Lok, poce poc (v + 200297 81 + 21y R,
(* + 10R2y% — 35h*) + h2 (y* + 30h%y? — 175h*)

(13)

The differential equations governing the zeroth- and first-order pressure
po and pj, respectively are given by

L * )=0 (14)
Poxx h Pox h3(1+)»1) Po Pext) = U,
3hy 3k (p2 + pOxpOxx)ﬁ
v+ = plx — 5————p1 = —3Re(l + A;)?| o 3 ,
14 w P h3(1+M)p1 e( 1) |:+hxp0xp0xxh3+h5(hhx+6h;2()
(15)

The differential Eqs. (14) and (15) with the initial conditions (8h, i) and (9h, 1),
respectively form a two-point initial value problem and for a given 4 (x). So we can
find Po and D1

Shear Stress and Flow Rate

The non-dimensional shear stress 7, is given by 7, = ( + £2h2), aty = th(x)
and the volumetric flow rate is given by ¢ = Oh(x) dy.

In view of (7), T, and g can be expressed as

T = Tow + €Ty + O (&%), (16)
g = qo+eq1 + 0(e?), (17)

where
Too = h(L+AD)poxss  Tiw = h(1+2)pir  +
M Repo 2 [6k(po — po) = (L + AR hepoc]s 0 = =920 py,
g = —(1 + )\,l)hg[plt + (1+A1) C2) Rehpo, (9k(po — Pext) — 2h thOx)] and we

define ¢* = g,y
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3.1 Particular Case

It is to be noted that even though numerical solutions of (14) and (15) can be given
for any arbitrary A (x), it is not possible to find out an analytical solution always.
So, here we consider a particular case when h(x) = e** for which we give an
analytical solution for the differential equation governing the zeroth-order pressure
po- Equation (14) reduces to

Poxx + 3apoy — 3ke > (pg — pext) =0 (18)

and the initial conditions are

-3
p=ptand ppy = —atx =0 19
P=p T (19)

Now using the transformation po(x) — pext = w(2); 2 = e3ox, Eq. (18) becomes

W —w, — BPzw =0 (20)

where 8 = \/ém. Again using w = zW(s), where s = z8, we get
W +sW, — (s> + DW =0 (21)
Equation (21) is modified Bessel’s equation and the solution is given by
W = Al (s) + BK,(s)

where I;(s) and K;(s) are modified Bessel functions of first and second kind,
respectively.

Po(X) = Pext = z2[AL(s) + BK ()] (22)
By using initial conditions (19), we get
A= (p" = pex)BKo(B) + 2K (B)/ and B = (p* — pex) B1o(B) + 211 (B) /e

Now using the expressions of py from (22), we numerically solve the differential
Eq. (15) along with the initial conditions (9h, i) for the first order pressure p;.
The pressure drop Ap is given by

Ap = pli—o = Plizi = Po(0) = po(1) +&(p1(0) — pi(D)

= p* — e P[AL(2B) + BK (e */*B)] — epi (D).
(23)
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4 Results and Discussions

Flow of a Jeffrey fluid with variable cross-section with permeable walls is investi-
gated. The numerical values of velocity, flow rate at x = 1, wall shear stress, and
the pressure drop are determined by using the expressions (16), (18), (22), and (23)
respectively.

The behavior of velocity with y is shown in Figs. (2, 3 and 4). Figure 2 shows
the variation of velocity with ¢, we observe that as the ¢ increases the velocity
is increasing. The variation of velocity with y for different values of permeability
parameters are shown in Fig. 3. From the figure it is noticed that as the permeability
parameter increases the velocity is increasing. From Fig. 4 we observe that as the
Jeffrey parameter increases the velocity is increasing.

Velocity,u

Velocityu 3

Fig. 3 Variation of velocity with y for different values of permeability parameter
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Fig. 4 Variation of velocity with y for different values Jeffrey parameter

The behavior of flow rate with x is shown in Figs. 5 and 6. From Fig. 5 we notice
that as the permeability parameter increases the flux is increasing. As the Jeffrey
parameter increases the flux of the tube increases, which is shown in Fig. 6.

The behavior of Shear Stress with x is shown in Figs. 7, 8 and 9. We notice from
Fig. 7 that as « value increases the Shear Stress decreases. From Figs. 8 and 9 we
conclude that as the Jeffrey parameter and the permeability parameter increases the
Shear Stress is increasing.

The behavior of pressure with the change in permeability parameter is shown in
Figs. 10, 11 and 12. Figure 10 shows the variation of pressure with permeability for
different values of «. Here we observe that as the value of « increase, the pressure
is increasing. From Fig. 11 we notice that as the value ¢ increases the pressure

8 - -
: —_ =5

6 — k=10 |
I k=15

Fig. 5 Variation of flux with x for different values permeability parameter
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Fig. 6 Variation of flux with x for different values Jeffrey parameter

40f |~ a=03 -

b |~ a=04

30¢ @=0.5 ]

™w | ]
20¢ ]
10f :

0 :l 1 | 1 1 J.:

0.0 0.2 0.4 0.6 0.8 1.0

X

Fig. 7 Variation of shear tress with x for different « values

decreases. As the external pressure increases the pressure drop decreases, which is
shown in Fig. 12.

5 Conclusion

Non- Newtonian Jeffrey fluid in a channel with varying cross-section which includes
permeable boundaries is considered in the paper. The following conclusions were
made by investigating this paper:
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Fig. 8 Variation of shear tress with x for different values of permeability parameter
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Fig. 9 Variation of shear tress with x for different values of Jeffrey parameter

1. Increment in ¢ results out in increment of velocity, shear stress and decrement in
pressure.

2. As the permeability parameter increases, velocity, flux and shear stress increase,
where it has reverse impact on pressure.

3. Velocity and shear stress increases with increase of Jeffrey parameter.

Pressure decreases with the increase of external pressure.

5. Pressure increases with the increase of «.

&
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Fig. 10 Variation of pressure with k for different o values
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Fig. 11 Variation of pressure with k for different ¢ values
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Fig. 12 Variation of pressure with k for different external pressure values
References
1. Krishna Prasad JSVR, Chandra P (1990) Flow in channels of varying cross-section with

11.

12.

13.

permeable boundaries. Proc Nat Acad Sci 60(A) I1I: 317-326

Vajravelu K, Sreenadh S, Devaki P, Prasad KV (2015) Peristaltic transport of Herschel Bulkley
fluid in an elastic tube. Heat Transf Asian Res 44(7):585-598. https://doi.org/10.1002/htj.21137
Vajravelu K, Sreenadh S, Devaki P, Prasad KV (2016) Peristaltic transport of Casson fluid in
an elastic tube. J Appl Fluid Mech 9(4):1897-1905. https://doi.org/10.18869/acadpub.jafm.68.
235.24695

Badari Narayana CH, Devaki P, Sreenadh S (2017) Effect of elasticity and inclination on
Hershel- Bulkley fluid flow in a tube. Int J Adv Inf Sci Technol 6(2):6—12. https://doi.org/10.
15693/ijaist/2017.v6i2.6-12

Berhane Tesfahun (2017) Flow of a Newtonian fluid in a non-uniform wavy and permeable
tube. New Trends Math Sci 5(4):12-23. https://doi.org/10.20852/ntmsci.2017.210

Devaki P, Sreenadh S, Vajravelu K, Prasad KV, Vaidya H (2018) Wall properties and slip
consequences on peristaltic transport of a casson liquid in a flexible channel with heat transfer.
Appl Math Nonlinear Sci 3(1):277-290. https://doi.org/10.21042/AMNS.2018.1.00021
Fakour M, Ganji DD, Khalili A, Bakhshi A (2017) Study of heat transfer in nanofluid mhd flow
in a channel with permeable walls. Heat Transf Res 48(3):221-238. https://doi.org/10.1615/
HeatTransRes.2016011839

Rasoulzadeh M, Panfilov M (2018) Asymptotic solution to the viscous/inertial flow in wavy
channels with permeable walls. Phys Fluids 30:106604. https://doi.org/10.1063/1.5041748
Makinde OD (1995) Laminar flow in a channel of varying width with permeable boundaries.
Rom J Phys 40(4-5):403-417

Makinde OD, Alagoa KD (1999) Effect of magnetic field on steady flow through an indented
channel. AMSE Modell Measure Control B 68(1):25-32

Makinde OD (1999) Steady flow and heat transfer in a diverging tube. AMSE Modell Measure
Control B 67(1):51-63

Makinde OD, Sibanda P (2000) Steady flow in a diverging symmetrical channel: numerical
study of Bifurcation by analytic continuation. Quaestiones Math 23:45-57. https://doi.org/10.
2989/16073600009485956

Mhone PY, Makinde OD (2006) Unsteady MHD flow with heat transfer in a diverging channel.
Rom J Phys 51(9-10):967-979


https://doi.org/10.1002/htj.21137
https://doi.org/10.18869/acadpub.jafm.68.235.24695
https://doi.org/10.15693/ijaist/2017.v6i2.6-12
https://doi.org/10.20852/ntmsci.2017.210
https://doi.org/10.21042/AMNS.2018.1.00021
https://doi.org/10.1615/HeatTransRes.2016011839
https://doi.org/10.1063/1.5041748
https://doi.org/10.2989/16073600009485956

Marangoni Convection of Titanium m
Dioxide/Ethylene Glycol Dusty L
Nanoliquid MHD Flow Past a Flat Plate

N. Indumathi, A. K. Abdul Hakeem, B. Ganga, and R. Jayaprakash

Abstract The effects of magneto hydro dynamic Marangoni convection flow of tita-
nium dioxide/ethylene glycol dusty nanofluid past a flat plate is investigated for the
first time. The surface tension is required to change directly with temperature. Tita-
nium dioxide/ethylene glycol dusty nanofluid has been enlisted for the improvement
of heat transfer rate. By using appropriate similarity transformation for dusty nano-
liquid, dimensionless non-linear ordinary differential equations are reformed from
the governing equations. The physical parameters for temperature and velocity fields
are inspected graphically and elaborately conversed numerically. The heat transfer
rate values for the physical parameters are illustrated and tabulated. The average
Nusselt number has been enhanced by the Marangoni flow.

Keywords Marangoni convection + MHD - Dusty nanoliquid + Flat plate - Heat
transfer

1 Introduction

The Marangoni effect is primarily recognized by the deviation of liquid-liquid or
liquid-gas surface tension with the temperature. In past two decades the studies on
Marangoni convection have drawn extensive scrutiny as a result of the vast utilization
in crystal growth melts, welding, semiconductor processing, drying silicon wafers.
Plenty of authors [1-7] have investigated the different physical phenomena problem
with water based nanofluid past a flat plate together with Marangoni convection.
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Mahanthesh et al. [8] studied solar radiative Marangoni flow of dusty nanofluid over
a flat plate. They resulted that Marangoni flow enhanced the rate of energy transfer.

Meanwhile modeling, preparation and characterization of nanofluids have been
deliberated by plenty of researchers. All the while, lots of works away at the heat
exchange impacts of nanofluids have been finished by the specialists [9-14]. Addi-
tionally by the trial and numerical examination it is inferred that the heat exchange
rate has been expanded by a sensible rate due to the nanofluid.

The mixture of millimeter or micrometer sized conducting dust particles into the
nanofluid is known as dusty nanofluid. At first the laminar dusty gas was investigated
by Saffman [15]. Many papers were worked on two/multi-phase nanofluid by the
wide range of engineering applications. Sandeep et al. [16] studied on exponentially
stretching surface with MHD radiative unsteady flow of two-phase fluid. Cabaleiro et
al. [17] tentatively found a non-Newtonian shear diminishing conduct for a nanofluid
with base fluid as ethylene glycol and nanoparticles as titanium dioxide.

By considering the above results, in the present work by taking ethylene glycol
non-Newtonian fluid as the base fluid and titanium dioxide as nanoparticles together
with the dust particles is investigated numerically with MHD Marangoni convection
past a flat plate.

2 Problem Formulation

Consider a steady, two-dimensional, laminar, incompressible, MHD, Marangoni con-
vection, two-phase boundary layer flow in an ethylene glycol (EG) predicated dusty
nanoliquid consisting TiO; as the nanoparticles. TiO, /EG is a non-Newtonian shear
thinning nanoliquid, hence ethylene glycol based titanium dioxide nanofluid is Cas-
son fluid. No slip occurs between titanium dioxide nanoparticles and ethylene glycol
base fluid, further they are in thermal equilibrium. Additionally assume that the
surface tension is to vary linearly with temperature

=& =@ —1)) (D

where & is the surface tension at the interface, f is temperature of the ambient fluid
and we considered that fy = 7. For most liquids the surface tension ¢ declines along
with temperature. That is 79 > 0 fluid property. Table 1 provides the thermo physical
properties of nanoparticles and base fluid. The boundary temperature of each, fluid
and particles are expected to be quadratic functions of the extent x. The equations
that govern for this investigation are given as follows
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Table 1 Thermophysical properties of nanoparticles and base fluid

Property TiO, Ethylene Glycol
C, (JkgK) 686.2 2430
p (kg/m?) 4250 1115
k (W/mK) 8.9538 0253
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here (i, 7) and (U, V) are velocity fields of fluid and particle phase respectively, 7—
fluid temperature, T—particle temperature, p p—particle density, »—kinematic vis-
cosity, 3y is that the Casson parameter, By—magnetic field strength. 7, = mo/6mur}y
is momentum relaxation time, 7r = moCp /67 ur} thermal relaxation time, mq and
ry are the mass and radius of dust particles. Cp specific heat of the dust particles.

fo, To—constants, 7o, and T .o—fluid and particle ambient temperature and A = ATT

where AT is the constant characteristic temperature and L is the length of the sur-
face. For the nanofluid p,,—fluid density, 1, ;—dynamic viscosity, k,s—thermal
conductivity, C,s—specific heat and o, s—electrical conductivity which are given
by
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Implementing the next transformation of similarity
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V = — 2% Further (| = (”*;’VLA’)” Lo=(Z ;}A“/ ) * are constants.

Substltutmg Egs. (10) and (11) into Egs. (4 9) we have
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(10)

(1)
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(12)
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(14)

15)

(16)

here! = pp/py isthe dust particle mass concentration, 3y = 1/7,,(1(, is the momen-

tum dust parameter, M = o s B3/ p (1, is the magnetic parameter, Pr =

uC/kisthe

Prandtl number, v = Cp/C is the specific heat ratio, 8y = 1/7,(;(, is the thermal

dust parameter.
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The local Nusselt number, is denoted as
—knp
Nur = —26,30'(0) 17)
f

The average Nusselt number depends on the common temperature distinction
between the temperature of the surface and also the temperature far away from
the surface is obtained by

k,
Nu; = k—fMa‘/3Pr‘/39/(0) (18)
;

where Marangoni number based on L is defined as

o AL?
Broy

19)

3 Numerical Solution

Runge-Kutta-Felhberg method in sync with shooting technique has been used to cal-
culate the non-linear boundary value problem (BVP) given in Egs. (12)—(16) numeri-
cally. The suitable initial assumptions for the unknowns ¢’ (0), G (0), G’ (0), ¢'(0) and
® (0) are created so as to satisfy the asymptotic boundary conditions. The focused
results are attained among a tolerance limit of 10~> level by the above shooting iter-
ation process. Numerical solutions are found and drawn through graphs and tables.

4 Results and Discussion

The numerical calculations are performed to generate the results by handling the
aforesaid numerical process for different values of suitable parameters for dusty
TiO,/ethylene glycol nanofluid. For this motive, we have got Figs. 1,2, 3,4, 5,6, 7
and 8 framed, in which the velocity and temperature distribution phase of fluid and
dust are investigated. Next we figure out that ¢'(n), G'(n), 8(n) and © (n) fields are
abating as 7 steps up. All of these distributions have come closer asymptotically and
fulfill the condition of the far-field boundary. This led to greater certainty about the
revealed solution’s accuracy. Furthermore Fig.9 and Table 2 show the effect of heat
transfer rate.

Impact of solid volume fraction ¢ of titanium dioxide nanoparticles (TiO,) on
g'(m) and G’(n) is illustrated in Fig. 1. We see that the dusty phase is lower that



248 N. Indumathi et al.

Pr=184.5
M=1
1 =2
Po = 1
Bv : 1.2 |
_ By = 1.2
£ =1 =
= T
o
= ]
o
4 5 6
Fig. 1 Impact of ¢, ¢'(n) and G'(n)
0.8 -
Pr=184.5
0.7\ .
N ¢ =01
0.6\ Bp =1
p.=1.2
0.5 v._ :
_ B = 1.2
= -
- 0.4 o= 1 ]
o )
= 0.3}
o
0.2 5
01
ol _
0 1 2 3 4 5 6

Fig. 2 Impact of [, ¢'(n) and G’ (n)

of the fluid phase for momentum layer. It is visible in Fig.1 that both ¢'(n) and
G'(n) decayed near the plate, as higher ¢ increases the frictional force in the liquid
movement. Whereas for away from the plate for both ¢'(n) and G’(5), an opposite
behavior is noted. Figure 2 illustrates the ¢'(n) and G'(n) curves for increasing .
Here both ¢'(n) and G’(n) decreases as [ is enhanced. Physically speaking, the drag
force within the liquid is boosted while there is enhancement in dust particle volume
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Fig. 4 Impact of By, ¢’(n) and G’ (n)

concentration. Figure 3 sketches the influence of M on ¢'(n) and G’(n). In both cases,
an increase in M decreases the flow. This behavior is evident since the Lorentz drag
force has the propensity to lessen the flow of the fluid phase and dust phase due to
the magnetic field. Figure4 shows the ¢'(n) and G’(n) curves for momentum dust
parameter /3. The velocity profile enhances for dust phase and decays for fluid phase.
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Since the base fluid loses the kinematic energy by increasing the interaction with the
dust particles. Figure 5 exhibits the influence of ¢ on (7)) and © (n). As the volume
concentration of nanoparticles increases, the thermal conductivity thus increases
the distribution of temperatures for the phase of fluid and dust. Figure 6 depicts the
effect of parameter / on the temperature distribution for the phase of fluid and dust. In
general, the heat exchanges between the dust particles and the nanofluid declines the
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temperature distribution. Temperature actions with M fluctuation is shown in Fig. 7.
A rise in M tends to increase the thickness of the energy boundary layer and thus
increases the distribution of temperature for the phase of fluid and dust. In Fig. 8,
we noticed an interesting result, that the dust phase increases and the fluid phase
temperature profile decreases while the thermal dust parameter (3 increases. This
also happens subjectively for velocity of 3, (Fig.4). From the Fig. 9, the heat transfer
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Table 2 Variation in rate of heat transfer for the flow with 5, = 1.2,v =1

M l Br

—0'(0)

0.5 2 1.2

11.83923

1

11.53229

1.5

11.24987

2

10.98902

2.5

10.74754

3

10.52318

1

12.73685

13.83612

14.85015

15.79341

NN || W

1.8

12.62768

2.4

13.51292

3.0

14.25415

3.6

14.88973

rate can be observed to improve for the increment of / and Ma. At long last, Table 2
introduced to examine the effect of M, [, B on heat transfer rate (—6'(0)). While
expanding M the heat transfer rate diminishes though for the expanding estimations

of [ and By it increments.
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5 Conclusion

The problem of steady, laminar, two-phase, two-dimensional and incompressible
dusty nanoliquid with base fluid as ethylene glycol and nanoparticles as TiO, has
been investigated mathematically. The notable results that follow are perceived.
The momentum and thermal behaviors were found to be strongly dependent on the
value of the fraction of solid volume of nanoparticle, concentration of dust particle
mass, magnetic parameter and Marangoni parameter. The velocities of two phase flu-
ids for the increment of nanoparticle volume fraction decreases close to the wall and
have a different trend for away from the wall, however, fluid phase dusty nanoliquid
is of higher velocity than dust phase dusty nanoliquid. The velocity and temperature
layer retards by dust particle mass concentration parameter. The parameter of concen-
tration of dust particles therefore has a very significant and remarkable effect on the
flow of the two—phase dusty nanofluid. The momentum layer decreased and thermal
layer increased by magnetic field parameter for both phases. Momentum/thermal dust
parameters accelerate the dust phase dusty nanoliquid velocity/temperature profile.
But the opposite phenomenon for the liquid phase field is observed. The average heat
transfer rate increased by dust particle mass concentration and Marangoni parameter.
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Aligned Magnetic Field Effect )
on Unsteady MHD Double Diffusive Free | <o
Convection Flow of Kuvshinski Fluid
Past an Inclined Moving Porous Plate

J. L. Rama Prasad, K. S. Balamurugan, and S. V. K. Varma

Abstract The current paper scrutinizes the sway of the aligned magnetic field and
Kuvshinski fluid model on unsteady MHD free convective flow past a moving
inclined plate in the occurrence of thermal radiation as well as radiation absorp-
tion with chemical effect and mass blowing or suction. It is implicit that the plate
is entrenched in a uniform porous medium moving with a steady velocity in the
flow direction and in the existence of a transverse magnetic field. Perturbation tech-
nique was employed for solving non-dimensional governing equations. Significant
consequences with regard to embedded parameters are illustrated graphically for the
temperature, velocity, and concentration profiles. The expression for the Skin friction
coefficient is also obtained.

Keywords Unsteady - MHD - Kuvshinski fluid - Aligned magnetic * Inclined plate

1 Introduction

There are numerous fluids in the industry as well as technology whose performance
fails to be described by the classical linearly viscous Newtonian fluid model. The
divergence from the Newtonian comportment demonstrates itself in an assortment of
manners: non-Newtonian viscosity, stress relaxation, non-linear creeping, develop-
ment of normal stress differences, and yield stress. The Navier—Stokes equations are
insufficient to prognosticate the activities of such a category of fluids, consequently
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multitudinous significative associations of non-Newtonian fluids. These substantial
relations yields ascend to the differential equations, which, in comprehensive are
higher perplexed and higher order compared with Navier—Stokes equations. For that
reason, it is complicated to attain exact analytical solutions for Kuvshinski fluids.

Reddy etal. [1] have scrutinized radiation assimilation and Kuvshinski fluid model
on unsteady MHD free convective flow all the way through an infinite non-parallel
porous plate in the existence of chemical effect and heat source. Sakthikala et al. [2]
investigated the influence of Kuvshinski fluid model on unsteady free convective fluid
flow through an infinite moving porous plate by means of dependable as well as vari-
able temperatures. Reddy et al. [3] examined the influence of Soret and Kuvshinski
type fluid on MHD natural convective flow inside a porous medium through a semi-
infinite non-parallel moving plate with heat source. In this examination, perturbation
technique was employed for solving the governing equations. Buggaramulu et al.
[4] have reported visco-elastic fluid model on unsteady MHD-free convective fluid
stream through a porous medium in the existence of chemical effect and radiation.

Devasena et al. [S], Reddy et al. [6] and VidyaSagar et al. [7] have analyzed
analytically the influence of Kuvshinski fluid on unsteady MHD natural convective
flow with radiation absorption. Sharma et al. [8] have examined influence of stratified
Kuvshinski fluid on MHD free convective stream through a non-parallel porous plate
by means of heat and mass transfer. Chamkha [9] and Hady et al. [10] have analyzed
unsteady natural convective flow through a semi-infinite porous moving plate by
means of heat absorption. Hossian et al. [11] have discussed the problem of natural
convection flow along a non-parallel wavy surface by means of uniform surface
temperature in the existence of heat generation/absorption. Chamkha et al. [12],
Muthucumaraswamy et al. [13] and Ibrahim et al. [14] investigated the influence of
heat generation and chemical reaction on MHD unsteady free convection flow over
perpendicular moving porous plate.

All these studies paid attention towards MHD unsteady free convection flow of
Kuvshinski fluid past an inclined surface, where thermal radiation, radiation absorp-
tion, chemical reaction, heat generation, and aligned magnetic impacts are contem-
plated. The predominant purpose is to scrutinize the unsteady MHD free convection
flow of Kuvshinski fluid past a moving inclined plate with heat production in the
demeanor of mass blowing or suction and with the special effects of aligned magnetic,
chemical reaction, thermal radiation, and radiation absorption.

2 Mathematical Formulation

Let us contemplate the 2D unsteady MHD free convection Kuvshinski fluid flow
through a semi-infinite inclined moving porous plate in a uniform porous medium
under the sway of a uniform magnetic field, radiation absorption, chemical effect, heat
generation and thermal radiation. Here x”-axis is taken along the porous plate in the
upward direction and y*-axis perpendicular to it. The fluid is to be gray, absorbing—
emitting however non-scattering medium. In the x"-way, the radiative heat flux is
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significantly small against to that in the y*-direction. Each and every flow variable
excluding pressure are functions of y* and ¢* only. The plate in x"-direction is of
infinite length. The induced magnetic field is insignificant. The size of the porous
plate is large compared to typical microscopic length scale of the porous medium.
Chemical reactions occur in the flow.

T =T a (T, =T )"
€ =Cl+a(C) ~Cl)"™
ar =0

Under these suppositions, the governing equations are
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The conditions at the boundary are
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*

w* = ul, =Uy(l+e€e””), T"—>T%, C*— Ciaty— oo (6)

Let us suppose that in the direction of the fluid flow, the porous plate moves by a
stable velocity u}, and the free stream velocity U5, abide by exponentially increasing
small perturbation law. In addition, the temperature, concentration and the suction
velocity are exponentially varying with time. It is clear from Eq. (1) that the suction
velocity at the plate surface is a function of time only and it takes the following form

V= V(14 € Ae"") @)
where A is a real positive constant € and € A are small and less than unity and V is

a scale of suction velocity which is a non-zero positive constant.
Let us set the dimensionless variables as follows:

u* v* y*Vy
=, = =, U* = U U 5
" U() Y V() Y v o 000
2 n*y
M* —UpU(),t— 0 ) = )
p VO
90— T -TZ% C— c*—C%,
T:—Tx' Cy—Cx’
T — T *(C*r - C*
Gr:vgﬁ(w2 “),szvgﬁ(;” Oo)’
V Uo V UO
K*V, 2 C C* —C* 2
K= °S—¢” Pr="PRa= R =)
V2 kV; T -T1% ) V;
AEV2 4o* T 2 R*v v
=200 g el g =g = ®)
v KikVy 1% Dy,

Substituting the Eq. (8) into Egs. (2), (3) and (4), we obtain

3\ 9 0 \dUs | 0%u
<1+A1—>—”—(1+6Aem)a—”=<1+/\1—)—+—+Gr19+Gmlc
y

ot ) ot at) dr 9y?
9
+N<1+)»1 )(U ) ©)
36 1 4R\3%60 S Ra
% (14 € A" 1+ )20 2y R 10
o UTe )y Pr<+3>8y2+Pr Pr (10)
aC aC 1 9%C
= - (e e —KrC (1)
at ay ~ Se 8y

The corresponding boundary conditions are

u=Up,0=1+¢ce”,C=1+ce” ,aty=0 (12)
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U—>Up=14+€e",6 >0,C—>0asy - c© (13)

where, N = M sin* £ + +.Grj = Grecos¢p, Gm; = Gmcose.

3 Solution of the Problem

To solve the Egs. (9)—(11) subject to the boundary conditions (12) and (13), we apply
the perturbation technique. Let the velocity, temperature and concentration fields as

u = up(y)+ € e"ui(y) + 0(€?)
0 = 0p(y)+ € e"01(y) + 0(?)
C = Co()+ €e"Ci(y) + 0(?) (14)

Using (14) in Egs. (9)—(11) and comparing the coefficients of the same degree
terms and neglecting terms of 0(€2), a set of ODE are obtained and on solving, the
following solutions are obtained.

u(y,t) = (1 + Lie™Y 4 pe Ry 4 Pge_R”)—}— ce
(1 + Lzeilzy + Pgeilly + Pl()eiRly + PlleiRzy + P1267R3y + P1367R4y)

(15)
0(y, 1) = (Pre™®7 + (1 — Py)e ™)
+e enz(P3e—R|y + p4e—Rzy + P5C_R3'V + Pﬁe_R4y) (16)
Cly.t)=e '+ ee"((1—P)e ™ + Pe ™) (17)
Shear Stress: The skin friction at the plate y = 0 in terms of shear stress is given
by
—du
T= =1Ly + R P+ R3 Pg)
Y ly=o

+ee"(4Ly + 11 Py + R Pio+ RaPiy + R3Pip + Ry Pi3) (18)
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4 Results and Discussion

From analytical solutions, the numerical values for velocity, temperature, concen-
tration, skin friction, Nusselt number as well as Sherwood number are computed by
fixing diverse values of the non-dimensional parameters in the problem, i.e., n = 0.2,
A=1,6=0002,t=1,§=0.0l,Ra=1,R=1,Pr=0.71,M =1, Sc = 0.60, Gr
=5G6m=3,K,;=1,U,=1,K=5As=1,¢=7%andé = ¢.

Figure 1 illustrated the effects on velocity of magnetic field M as well as Prandtl
number Pr for cooling of the plate (Gr > 0). The velocity declined for both water
(Pr = 7) as well as air (Pr = 0.71). The reason is that the magnetic field generates
Lorentz force which resists the fluid flow and hence velocity falls. From Fig. 2: it is
lucid that the velocity diminishes with the rise of aligned angle & for the reason that
the influence of the applied magnetic field is higher while aligned angle accentuates.
From Fig. 3, it is observed that fluid velocity decreases with the increase of angle
¢. If the plate is inclined, as a result of gravity components, the buoyancy effect
decrements and consequently the fluid has higher velocity for vertical surface (¢ =
0) as against that of inclined surface. The influence of radiation, heat absorption as
well as absorption radiation parameters on the temperature field is revealed in Fig. 4.

Fig. 1 Velocity profiles for
different values of M and Pr

Fig. 2 Velocity profiles for
different values of &

1.8 =T T T T

16

141

—_—

12H

&-M=1, Pr=0.71
“*M=2,Pr=0.71| ]
--M=3, Pr=0.71
>M=1,Pr=7
——M=2,Pr=7
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Fig. 3 Velocity profiles for 4 T T T T
different values of ¢

35[ <=0
-0 =1/6

Fig. 4 Temperature profiles T T T T T T T T T
for different values of R, S, 121 +R=1,8=0.01,Ra=1| ]
and Ra ~-R=2,S=0.01,Ra=1

R=3,S=0.01,Ra=1
-+-R=1,5=0.05Ra=1
0814 ~R=1,8=007,Ra=1| |
—R=1,8=0.01,Ra=2

—-R=1,5=0.01,Ra=3

It is perceived that the temperature rises with the rise in radiation and radiation
absorption parameters.

Conclusions

The velocity declines, with the incremental values of magnetic field.
The temperature rises with the rise in thermal radiation and radiation absorption
and the skin friction rise with the rise in solutal Grashof number.

e Therise of aligned angle or angle of inclination leads to a decrease in fluid velocity
(Table 1).

Validation of the results: In this examination, the outcomes obtained herein are
compared with the results of Chamkha [9] in the absence of Kr, R and Ra on skin
friction t for different values of Gm. The consequences of this comparison are in
good agreement with Chamka [9].
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Table 1 Skin friction Gm Skin friction coefficient t
coefficient when Kr =R =
Ra=¢ =& =1, =0 Present study Chamka [9]
0 2.7203 2.7200
1 3.2786 3.2772
2 3.8387 3.8343
3 4.3960 4.3915
4 4.9493 4.9487
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Nonlinear Radiative Williamson Fluid )
Against a Wedge with Aligned Magnetic L
Field

K. Subbarayudu, L. Wahidunnisa, S. Suneetha, and P. Bala Anki Reddy

Abstract The foremost importance of this presentation is to explore the nonlinear
thermal radiation on a Williamson liquid model on a wedge in the company of a heat
generation/absorption which is not uniform. An aligned magnetic field, Brownian
diffusion and thermophoresis aspects are also investigated. The flow and temperature
equations are derived and solved by Runge—Kutta based MATLAB bvp4c solver.
Results for different flow characteristics are plotted through graphs and discussed
in detail. The wall temperature raises as temperature ratio parameter increases and
results in a deep penetration for temperature. The concentration of the species seems
to be increased with Brownian diffusion and radiation.

Keywords Williamson fluid model - Wedge shape geometry + Aligned magnetic
field - Nonlinear thermal radiation

1 Introduction

The contemporary era, researchers are doing many experimental and theoretical stud-
ies on the fluid flow and transformation of energy in the non-Newtonian fluid models
that have significant applications in engineering, for instance, emulsions, lubricants,
polymers, and nuclear fuel slurries. Some alive rheological models are Power law,
Carreau, Jeffery, Williamson fluid, and so forth. Out of these, Williamson fluid model
is a simple model to suggest the viscoelastic nature and shear thin out features which
were introduced by Williamson [1] in 1929. The fluid flow and transfer of heat across
wedge-shaped geometries are important in several engineering applications and also
in fluid dynamics. Particularly such flows occur in aerodynamics, heat exchangers,
geothermal industries, and so on. A number of surveys have been found consid-
ering Williamson wedge flow in Ref. [2—4]. The study of fluid past a wedge with
MHD has vital applications in nuclear reactor cooling, MHD power generators and
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so forth. Several authors [5-8] examined the MHD effects over a wedge in various
types of fluids in different situations. Electromagnetic radiation is the major reason
for radiation heat transfer. While framing a system in the industry with a negligible
temperature variation inside a fluid, a troublesome is observed. To avoid this com-
plexity, researchers included an extra parameter nonlinear thermal radiation in place
of linear thermal radiation. Brief information on this area is quoted in Refs. [9-12].
At present, we consider heat source/sink which is not uniform, i.e., dependent on
space and temperature. Some related studies were carried out by some investigators
[13-16].

It is noted by the literature survey that a little information is existing on the MHD
Williamson fluid model flow via a wedge with heat source/sink which is not uniform
and radiation which is nonlinear. Inspired by these uses, the present study examines
the influence of the thermophoresis effect and Brownian motion of Williamson fluid
model for a radiating flow over a wedge.

2 Description of Physical Model

A two-dimensional, viscous, non-Newtonian liquid with Williamson model over a
wedge with time-dependent aligned magnetic field is considered. A non-uniform heat
generation/absorption and thermal radiation which is not linear is added. u,,(x, t')
represents wedge stretching velocity and is referred by u,, (x, ') = bx" (1 — ct’)™!
where b-stretching rate and c-stable value. The flow velocity at free stream,
u.(x,t") = ax™(1 — ct’)~", while, a and ¢ are stable values more than zero with
0 < m < 1, along the wedge axis. 2 = Br supposed to be the angle of the wedge
and the pressure gradient 8 is given as § = n% The x-axis is incident in the
elongating direction and y-axis makes 90° angle outside from it. A geometrical con-
figuration and schematic model of the present objective model is put on viewed in
Fig. 1. To study the heat flow on the surface of wedge, the temperature, T,,(x, t') =

X, u

e

-

ualx, 1) I
Flow s BIT
— a-pr

Uy (X, 1)

T, Cw

—_

Fig. 1 Flow geometry
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_1 ] _1
TownX (1 — ¢1') ™2 4 Ti, concentration C, (x, ') = X (] — ') ? + Cy, mag-

_1
netic field B (t/) = By ( 1— ct/) 2, Ty, Co be the initial temperature and concentration
are considered and also, as y tends to 0o, the free stream gain the constants values
T «, Coo. With the above assumption, the equations are

du v
I (1)
dx  Jy

ou n du n du u, n du, n 0%u 5+ (l ’3*) | Fau !
—+—u+_—v= Ue— +v— - -I'—
ot dx dy or’ 0x 9y?

e g o-m(-o5) |

_oBi() sin? & (u — u,) )
o)
or OT | oT 0T dg |
a’  dx dy ay2 3y (pcp)
AT oC Dr (0T \* "
e ()]s o
aC aC  aC  3*C 3T Dy

w“ra—xu av—a—yz B+8_yz§ @)

From Eq. (2) the fluid flow drive to viscous fluid case when * = 0 = T.
The heat generation or absorption which is not uniform, is denoted as ¢” =
[ /(T — To) A* + (T — Too) B*]““2 where A*—dependent relative to space and
B*—dependent relative to temperature of heat generation/absorption. The internal
heat generation and absorption is noticed when A* > 0, B* >0 and A* < 0, B* < 0.

For optically thick fluid, we use Rosseland approximation in which ¢, denote
radiative heat flux, is specified as

—_q 333)(’*”4 (5)
B = T Ty

We can set the term T stirring in Eq. (5) and availing Taylor series by supposing
an undersized deviation in temperature of the fluid and ambient fluid and within the
boundary layer, preserving to first-order terms only. Hence T* referred to as

1 3
ZT“ ;T;T—ZT; (6)

Equation (3) appears as Eq. (7) by utilizing Egs. (5) and (6).



266 K. Subbarayudu et al.

oT N T N oT ’T N 166*T3 3T
JR— R —_—Y = —— —
ar " ax Ay 0y2 " 3(pey )kt dy

dC aT aT\>D
+T ——DB+<—> T+ (7
dy dy dy ) Ty pCy
related to the boundary conditions.
The wedge is assumed to be as there is no-slip condition on its surface and it
follows:
On the shell of the wedge i.e., aty =0
u=u, I =T, v=0,C=C, ()
At open water course i.e., as y — 00

U=y, T = T, C = Coo )

Using the quantities of non-dimensional [17]:

D\ 2 2uxu, \?
nzy(u> ,wzf(n)<ﬂ),

2ux m—+1
C—-Cy T — T
:—’0 e —— 10
0D = 6 = (10)

at this juncture, the stream function ¥ (x, y, t) satisfies Eq. (1). The velocities
are u = % and v = —%. By using Eq. (10) in Egs. (2), (7) and (4) we get the
corresponding OD equations:

fm[ﬂ* + (1 _ wef”)72(1 _ﬂ*)] + ff//+ (ﬂ _,B(f/)2>
—(f +n05 " —1)2—pA—-Ha*{f —1}(2—B)sin*§ =0, (1)

1 3 /7

ﬁ[(1.333)1201[1 + (00 — ]+ 1]0

+ (1.333)13—3(9,1, — D[(B0 — 0) + 11707 + (6 — 2f'6)

— g(z —B)(n0' +360) + Nt9”? + Nbgp'0' + (A*f' + B*0) =0 (12)
L /" ﬂeu é 2 ( / 3 ) 2 / /I 0 (13)
Le[¢ 5 }—2( —B)n¢" +3¢) =2¢f + f¢' =0,

with reduced conditions at boundary:

f=0f=r6=1¢=1latn=0 (14)
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fl=>16—->0,¢—>0asn— o0 (15)

Here, the wedge moving parameter, A = g and A > 0: a stretching wedge,
A < 0: a shrinking wedge and A = 0: a steady wedge.

The other engaged physical non-dimensional factors are:

B* = %’O is the ratio of viscosities, o = ch,, the effective thermal diffusivity, We =

2 3
% the Weissenberg number, Pr = % the Prandtl number, Rd =

Radiation parameter, A = —<= the unsteadiness parameter, 8 =
ax

40*T30
75

the wedge
pB}

paxm=1

the

2m
m+1

angle parameter, 6,, = ;—w (>1) the temperature ratio parameter, Ha*> =
D7 (Ty—Tx)
Toov

the

Hartmann number, Le = DLB the Lewis number, Nt =
TDR(Cy—Cox)
v

the thermophoresis
parameter, Nb = the Brownian motion parameter.

The parameters which are useful in engineering are the local non-dimensional
friction factor C,, Nusselt number Nu, and Sherwood number Sh,. They are:

Ty xq
u, =

- and Sh, = tm

C v I L
& k(T — Too) Dg(Cy — Co)

T

w

where 7,,, ¢,, and g,, are given as

ou . N u\ "
Aty:oafu)zllv()(@) .B+(1_:3)(1_F5> ,

0] T ‘+ 16073 q
w = rl — | 7 T AT an
T =14 3y 3k

aC
qm = —Dg (a_) (16)
y

Using (10) and (16), the dimensionless Engineering quantities are given by

CpRel = ———[p" 4 {1 —we /@) (1 - )] £ 00,
, —
% — 1 i _ 3)\p/
Nu,Re; = % <1 + 3Rd[(9w 1)6(0) + 1] )9 (0) and
Sh,Rei = — 21_ =4/(0) (17)

UpX

where Reynolds number Re, =
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3 Results and Discussions

The set of Eqs. (11)—(13) with (14) and (15) have been solved using the MATLAB
bvp4c solver. This section analyzes the effects of parameters A = 1.0, We = 0.5, 8 =
0.1,#=02,Nt=0.5,0, =1.1,Nb=05,Le =0.5,A =0.1, Rd = 0.5,Ha = 0.5,
A* = —0.05, B* = —0.05, £ = 45°, Pr = 7.2 associated with the flow problem. All
the above values are kept steady unless mentioned in the figure. The mathematical
results are plotted in diagrams and tables.

To attest to the genuineness of the attained results, an assessment is made with
Hamid et al. [3] (Table 1). A wonderful agreement with the results is noticed. The
skin friction values for diverse factors are submitted in Table 2. The development in
the enormity of the skin friction is noticed as A, 8, Ha and £ increases. A reverse
trend is noticed for A. Table 3 provides the impact of numerous physical factors on
Nusselt number. A rise in Nusselt number is observed as Pr, A rises. A fall in Nusselt
number is noticed for a rise in Nb, Nt and We. Table 4 put on view the inspiration

Table 1 Comparison of wall friction coefficient for assorted 8 whilst A =Ha=g*=We =1 =
0

B Hamid et al. [3] Present study
0.0 0.469600 0.4696
0.1 0.587035 0.5869
0.3 0.774755 0.7747
0.5 0.927680 0.8543
0.9 1.232588 0.9392

Table 2 Variations in the skin friction coefficient for variant values of A, 8, A, Ha and & when
We=0.5,8*% =0.2,0, =1.1,Rd=0.5,Nr =0.5,Nb =0.5,Le =0.5,A* = —0.05, B* = —
0.05,Pr=7.2

A B A Ha 3 —f"(0)
1.0 0.1 0.1 0.5 /4 0.3730
2.0 0.1 0.1 0.5 /4 0.5370
3.0 0.1 0.1 0.5 /4 0.6461
1.0 0.2 0.1 0.5 /4 0.3804
1.0 0.3 0.1 0.5 /4 0.3877
1.0 0.1 0.2 0.5 /4 0.3114
1.0 0.1 0.3 0.5 /4 0.2434
1.0 0.1 0.1 1.0 /4 0.4638
1.0 0.1 0.1 1.5 /4 0.5758
1.0 0.1 0.1 0.5 /4 0.3899
1.0 0.1 0.1 0.5 /4 0.4060
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Table 3 Variations in the Nusselt number for variant values of Pr,Rd, 6,,, A*, B* A, Nb, Nt, and

We when 8 =0.1, *=0.2,Le =0.5,1 =0.1, Ho = 0.5, § =45°

Pr Rd Ow A Nb Nt We 6'(0)

7.2 0.5 1.1 1.0 0.5 0.5 0.5 2.6121
10.0 0.5 1.1 1.0 0.5 0.5 0.5 2.8462
15.0 0.5 1.1 1.0 0.5 0.5 0.5 3.0025
7.2 1.0 1.1 1.0 0.5 0.5 0.5 4.0137
72 1.5 1.1 1.0 0.5 0.5 0.5 5.5615
72 0.5 1.2 1.0 0.5 0.5 0.5 3.1535
72 0.5 1.3 1.0 0.5 0.5 0.5 3.8511
7.2 0.5 1.1 2.0 0.5 0.5 0.5 3.7261
72 0.5 1.1 3.0 0.5 0.5 0.5 4.6236
72 0.5 1.1 1.0 1.0 0.5 0.5 2.2656
7.2 0.5 1.1 1.0 2.0 0.5 0.5 1.9774
72 0.5 1.1 1.0 0.5 1.0 0.5 2.2710
7.2 0.5 1.1 1.0 0.5 2.0 0.5 1.9390
7.2 0.5 1.1 1.0 0.5 0.5 1.0 2.6036
7.2 0.5 1.1 1.0 0.5 0.5 2.0 2.6003

Table 4 Variations in the Sherwood number for variant values of 8, Le, A, Nb, Nt and We when

p* =02,0,, =1.1,Rd=0.5,Le=05,1 =0.1,Ha=0.5,A* = —0.05, B* = —0.05, £ =45°,

Pr=72
B Le A Nb Nt We ¢'(0)
0.1 0.5 1.0 0.5 0.5 0.5 0.7887
0.2 0.5 1.0 0.5 0.5 0.5 0.8450
0.3 0.5 1.0 0.5 0.5 0.5 0.9038
0.1 0.6 1.0 0.5 0.5 0.5 0.8372
0.1 0.7 1.0 0.5 0.5 0.5 0.8815
0.1 0.5 2.0 0.5 0.5 0.5 0.2527
0.1 0.5 3.0 0.5 0.5 0.5 0.0412
0.1 0.5 1.0 1.0 0.5 0.5 1.2178
0.1 0.5 1.0 1.5 0.5 0.5 1.3409
0.1 0.5 1.0 0.5 1.0 0.5 1.0334
0.1 0.5 1.0 0.5 1.5 0.5 2.0021
0.1 0.5 1.0 0.5 0.5 1.0 0.6514
0.1 0.5 1.0 0.5 0.5 1.5 0.5401
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of different physical factors on Sherwood number. A hike in Sherwood number is
observed as 8, Le, Nt, and Nb rise and an opposite trend is noticed for A and We.
The inspiration of Ha on velocity is shown in Fig. 2. In point of physics, hydro-
magnetic flow for positive values of Ha and neutral for hydrodynamic flow. As of
Fig. 2, it is noted an enhancement in Ha enhances the velocity. Influence of A on
velocity is plotted in Fig. 3. With higher unsteadiness parameter, the fluid velocity

1
09
08k
07k
06f
Zosk
0n4F
03f

Ha=05,10,15,2.0
02 4
0.1 4
I) - - - A s - e
0 0.5 1 1.5 2 25 3 35 4 45 5

09F

A=1.0,2.0,3.0,4.0

Fig.3 f'(n) viaA
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demonstrates an escalate behaviour near the boundary whereas a reverse trend is
noticed for temperature. Figure 4 displays the upshot of Pr on temperature distribu-
tion over a wedge. Fluid temperature simply reduces for elevated Pr. As Pr promoted
the rate of thermal diffusion is demoted. That is, accelerating Pr leads a loss in the
boundary layer width of temperature. It is also noted that the thermal energy is high
for B = 0.5 case compared with the other case. The outcome of thermophoresis on
temperature is captured in 5. From Fig. 5, it is revealed that the temperature in the

0.9

0(n)

Pr=17.0,10.0, 15.0, 20.0

0.8

0.6

g(n)

Nt=02,04,0.6,0.8

04 F

n

Fig. 5 6(n) via Nt
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