
Chapter 13
Rotation Techniques

In some analysis procedures, the solution for a data set is not uniquely determined;
multiple solutions exist. An example of such procedures is exploratory factor
analysis (EFA). In this procedure, one of the solutions is first found, and then it is
transformed into a useful solution that is included in multiple solutions. A family of
such transformations is the rotation treated in this section. The rotation for EFA
solutions in particular is called factor rotation, although the rotation can be used for
solutions of procedures other than EFA. This chapter starts with illustrating why the
term “rotation” is used, before explaining which solutions are useful in Sect. 13.3.
This is followed by the introduction of some rotation techniques.

13.1 Geometric Illustration of Factor Rotation

As discussed with (12.16) in Sect. 12.5, when loading matrix Â is an EFA solution
of a loading matrix, its transformed version,

AT ¼ ÂT0�1; ð13:1Þ

is also a solution. Here, T is an m � m matrix that satisfies (12.14), which is written
again here:

T0T ¼
1 #

. .
.

# 1

2
64

3
75; or equivalently; diag T0Tð Þ ¼ Im: ð13:2Þ

where diag() is defined in Note 12.1. In this section, we geometrically illustrate the
transformation of Â into AT ¼ ÂT0�1, supposing that T is given.
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Let us use aj′ for the jth row of the original matrix Â and use aðTÞj ′ for that of the

transformed AT. Then, AT ¼ ÂT0�1 is rewritten as

aðTÞ0j ¼ a0iT
0�1 ðj ¼ 1; . . .; pÞ: ð13:3Þ

Post-multiplying both sides of (13.3) by T′ leads to aðTÞj
0T0 ¼ a0j, i.e.,

a0j ¼ aðTÞj
0T0 ðj ¼ 1; . . .; pÞ; ð13:4Þ

which shows that the original loading vector aj′ for variable j is expressed by the

post-multiplication of the transformed aðTÞ0j by T′. We suppose m = 2 and define the
columns of T as

T ¼ t1; t2½ �;with t1k k ¼ t2k k ¼ 1 ð13:5Þ

which satisfies (13.2). Using (13.5) and aðTÞ0j ¼ ½aðTÞj1 ; aðTÞj2 �; (13.4) is rewritten as

a0j ¼ aðTÞj1 t01 þ aðTÞj2 t01: ð13:6Þ

It shows that the original loading vector for variable j is equal to the sum of tk
(k = 1, 2) multiplied by the transformed loadings. Its geometric implications are
illustrated in the next two paragraphs.

In Table 13.1(A), we again show the original loading matrix Â in Table 12.1(A)
obtained by EFA. Its row vectors aj′ (j = 1, …, 8) corresponding to variables are
shown in Fig. 13.1a; the vector a7′ for H is depicted by the line extending to [−0.63,
0.46], and the other vectors are done in parallel manners. Now, let us consider
transforming Â into AT ¼ ÂT0�1 by

Table 13.1 A solution
obtained with EFA
(Table 12.1A) and an exam-
ple of its rotated version

(A) Before rotation (B) After rotation

Â wj AT wj

A 0.77 −0.38 0.26 1.03 −0.76 0.26

C 0.61 0.50 0.38 0.56 0.32 0.38

I 0.67 −0.36 0.41 0.90 −0.69 0.41

B −0.74 −0.40 0.30 −0.75 −0.15 0.30

T 0.79 0.43 0.18 0.80 0.16 0.18

V 0.76 −0.44 0.22 1.04 −0.82 0.22

H −0.63 0.46 0.39 −0.89 0.79 0.39

P 0.70 0.18 0.47 0.77 −0.09 0.47

/12 0.00 0.57
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T0�1 ¼ 10:18 �0:42
�0:32 1:14

� �
; following fromT ¼ t1; t2½ � ¼ 0:94 0:26

0:34 0:97

� �
: ð13:7Þ

This T′−1 leads to AT ¼ ÂT0�1 in Table 13.1(B). There, we find that the vector for

H is aðTÞ07 ¼ a07T
0�1 ¼ ½�0:89; 0:79�; transformed from a07 ¼ ½�0:63; 0:46� in (A).

Those two vectors satisfy the relationship in (13.6):

½�0:63; 0:46� ¼ �0:89t01 þ 0:79t02; ð13:8Þ

with t01 ¼ ½0:94; 0:34� and t02 ¼ ½0:26; 0:97�.
The geometric implication of (13.8), which is an example of (13.6), is illustrated

in Fig. 13.1b. There, the axes extending in the directions of t1′ = [0.94, 0.34],
t2′ = [0.26, 0.98] are depicted, together with the original loading vectors a1′, …, a8′
whose locations are the same as in (A). Let us note that vector a07 for H satisfies
(13.8); i.e., the −0.89 times of t01 plus the 0.79 times of t02 is equivalent to
a07 = [−0.63, 0.64]. Here, the transformed loadings −0.89 and 0.79 can be viewed
as the coordinates of point H on t1 and t2 axes, as shown by the dotted lines L1 and
L2 in Fig. 13.1b, where L1 and L2 extend in parallel to t2 and t1, respectively. This
relationship holds for the other loading vectors.

In summary, transformation (13.1) implies the rotation of the original horizontal
and vertical axes in Fig. 13.1a to the new axes extending in the direction of the
column vectors of T as in Fig. 13.1b, where the transformed loadings are the
coordinates on the new axes. The reason why (13.1) is called rotation is found
above.
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Fig. 13.1 Illustration of rotation as that of axes
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13.2 Oblique and Orthogonal Rotation

Rotation is classified into oblique and orthogonal. The transformation illustrated in
the last section is oblique rotation, since the new axes are intersected obliquely, as
in Fig. 13.1b. On the other hand, orthogonal rotation refers to the rotation of axes
by keeping their orthogonal intersection, whose example is described later in
Fig. 13.2a. In orthogonal rotation, constraint (13.2) is strengthened so that it is the
m � m identity matrix:

T0T ¼ Im: ð13:9Þ

The matrix T satisfying (13.9) is said to be orthonormal, and its properties are
detailed in Appendix A.1.2. Customarily, the rotation made by orthonormal T is not
called orthonormal rotation, but rather orthogonal rotation. Using (13.9), (13.1) is
simplified as

AT ¼ ÂT ð13:10Þ

in orthogonal rotation.
In summary, rotation is classified into two types:

[1] Oblique rotation (13.1) with T constrained as (13.2)
[2] Orthogonal rotation (13.10) with T constrained as (13.9)

Orthogonal rotation can be viewed as a special case of oblique rotation in which
(13.2) is strengthened as (13.9).

13.3 Rotation to Simple Structure

The transformed loading matrix in Table 13.1(B) is not a useful one. That matrix is
merely an example for illustrating rotation. A “good rotation procedure” is one that
gives a useful matrix. Here, we have the question: “What matrix is useful?” A
variety of answers exist; which answer is right varies from case to case.

When a matrix is a variables � factors loading matrix, usefulness can be defined
as “interpretability”, i.e., being easily interpreted. What matrix is interpretable? An
ideal example is shown in Table 13.2(A), where # indicates a nonzero (positive or
negative) value. This matrix has two features:

[1] Sparse, i.e., a number of elements are zero
[2] Well classified, i.e., different variables load different factors

Feature [1] allows us to focus on the nonzero elements to capture the relationships
of variables to factors. Feature [2] clarifies the differences between factors. The
matrix in Table 13.2(A) is said to have a simple structure (Thurstone, 1947).
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Table 13.2(A) shows an ideally simple structure, but it is almost impossible to
have such a matrix; T cannot be chosen so that some elements of AT ¼ ÂT0�1 are
exactly zero as in (A). However, it is feasible to obtain AT ¼ ÂT0�1 that approx-
imates the ideal. It is illustrated in Table 13.2(B). There, “Small” stands for a value
close to zero, but not exactly being zero, while “Large” expresses a value with a
large absolute value. A matrix, which is not ideal but approximates ideal structure,
is also said to have a simple structure in the literature for psychometrics (statistics
for psychology).

Let us remember that AT ¼ ÂT0�1 can be viewed as the coordinates on rotated
axes. How should the axes be rotated so as to make the loading matrix AT be of a
simple structure? One answer is found in Fig. 13.2, where the useful orthogonal and
oblique rotation for the variable vectors in Fig. 13.1a is illustrated. First, let us note
the axes of t1 and t2 in Fig. 13.2b. The former axis is approximately parallel to the
vectors for a group of variables {A, V, I, H} (Group 1), while the latter is almost
parallel to those for another group {C, T, B, P} (Group 2). Thus, Group 1 has the
coordinates of large absolute values on the t1 axis, but shows those of small
absolutes on the t2 axis. On the other hand, Group 2 shows the coordinates of large
and small absolutes for t2 and t1 axes, respectively. The resulting loading matrix is
presented in Table 13.3(C). There, the matrix successfully attains the simple
structure as in Table 13.2(B). Orthogonal rotation is illustrated in Fig. 13.2a, where
t1 and t2 are orthogonally intersected; (13.9) is satisfied. On the other hand, the axes
are obliquely intersected in Fig. 13.2b. Also in (A), the t1 and t2 axes are almost
parallel to Groups 1 and 2, respectively, which provides the matrix having a simple
structure in Table 13.3(B).

In the above paragraph, we visually illustrated how T = [t1, t2] is set to be
parallel to groups of variable vectors so that AT ¼ ÂT0�1 has a simple structure.
But, this task can only be attained by human vision and is impossible even by that
when m exceeds three-dimensions. Indeed, the optimal T is obtained not visually
but computationally with

Table 13.2 Simple structure
in a matrix of variables �
factors

(A) Ideally simple (B) Simple

Variable F1 F2 F1 F2

1 # 0 Large Small

2 0 # Small Large
3 0 # Small Large
4 # 0 Large Small

5 0 # Small Large
6 # 0 Large Small

7 # 0 Large Small

8 0 # Small Large
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maximize Simp ATð Þ ¼ SimpðÂT0�1Þ overT subject to ð13:2Þ or ð13:9Þ: ð13:11Þ

Here, Simp(ÂT0�1) is the abbreviation for the simplicity of ÂT0�1 and is a function
of T that stands for how well AT ¼ ÂT0�1 approximates the ideal simple structure,
that is, how simple the structure in AT is. The procedures formulated as (13.11) are
generally called (algebraic) rotation techniques. In exactness, we should call them
simple structure rotation techniques in order to distinguish them from the rotation
that does not involve a simple structure. A number of simple structure rotation
techniques have been proposed so far, which differ in terms of how to define

SimpðATÞ ¼ SimpðÂT0�1Þ: Two popular techniques are introduced in the next two
sections.

Table 13.3 A solution obtained with EFA (Table 12.1A) and its rotated versions

(A) Before rotation (B) After varimax
rotation

(C) After geomin rotation

A wj AT wj AT wj

A 0.77 −0.38 0.26 0.81 0.28 0.26 0.82 0.08 0.26

C 0.61 0.50 0.38 0.07 0.78 0.38 −0.13 0.84 0.38

I 0.67 −0.36 0.41 0.73 0.22 0.41 0.74 0.04 0.41

B −0.74 −0.40 0.30 −0.24 −0.80 0.30 −0.04 −0.82 0.30

T 0.79 0.43 0.18 0.25 0.87 0.18 0.04 0.88 0.18

V 0.76 −0.44 0.22 0.85 0.23 0.22 0.87 0.01 0.22

H −0.63 0.46 0.39 −0.77 −0.12 0.39 −0.82 0.08 0.39

P 0.70 0.18 0.47 0.37 0.63 0.47 0.23 0.58 0.47

/12 0.00 0.00 0.48

(a) Orthogonal Rotation        (b) Oblique Rotation
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Fig. 13.2 Illustrations of rotation to a simple structure
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13.4 Varimax Rotation

The rotation techniques with (13.9) chosen as the constraint in (13.11) are called
orthogonal rotation techniques. Among them, the varimax rotation method pre-
sented by Kaiser (1958) is well known. In this method, the simplicity of AT ¼ ÂT
is defined as

Simp ATð Þ ¼ SimpðÂTÞ ¼
Xm
k¼1

var aðTÞ 21k � � � aðTÞ 2pk

� �
ð13:12Þ

to be maximized. Here, we have used the fact that (13.1) is simplified as (13.10) and

varðaðTÞ 21k � � � aðTÞ 2pk Þ stands for the variance of the squared elements in the kth col-

umn of AT ¼ ðaðTÞjk Þ:

var aðTÞ 21k � � � aðTÞ 2pk

� �
¼ 1

p

Xp
j¼1

aðTÞ 2jk � 1
p

Xp
l¼1

aðTÞ 2lk

 !2

: ð13:13Þ

That is, the varimax rotation is formulated as

maximize simpðÂTÞ ¼ 1
p

Xm
k¼1

Xp
j¼1

aðTÞ2jk � 1
p

Xp
l¼1

aðTÞ2lk

 !2

overT subject T0T ¼ Im:

ð13:14Þ

For this maximization, an iterative algorithm is needed. One of the algorithms can
be included in the gradient methods introduced in Appendix A.6.3 (Jennrich, 2001).
However, that is out of the scope of this book.

We should note that variance (13.13) is not defined for loadings aðTÞjk but for its

squares aðTÞjk ; they are irrelevant to whether aðTÞjk are positive or negative, but are

relevant to the absolute values of aðTÞjk . If variance (13.13) is larger, the absolute
values of the loadings in each column of AT would take a variety of values so that

some absolute values are larger; but others are small; ð13:15Þ

as illustrated in Table 13.2(B).
The sum of the above variances over m columns defines the simplicity as in

(13.12). By maximizing the sum, all m columns can have loadings with (13.15).
This allows us to consider the two different AT results illustrated in Table 13.4(A)
and (B). There, we find that (A) is equivalent to Table 13.2(B); i.e., it shows a
simple structure, while Table 13.4(B) is not simple, in that the same variables
heavily load two factors. However, (13.14) hardly provides a loading matrix AT, as
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in Table 13.4(B), since it necessitates t1 and t2 extending almost in parallel, which
contradicts constraint (13.9).

The varimax rotation for loading matrix Â in Table 13.3(A) provides the rotation
matrix

T ¼ 0:705 0:710
�0:711 0:704

� �
; ð13:16Þ

which is the solution for (13.14). Post-multiplication of Â in Table 13.3(A) by
(13.16) yields the matrix AT ¼ ÂT in Table 13.3(B) that shows a simple structure.
Indeed, Fig. 13.2a has been depicted according to (13.16).

Let us compare Â in Table 13.3(A) and AT in (B). It is difficult to reasonably
interpret the former loadings in (A), as all variables show the loadings of large
absolute values for Factor 1 and those of rather small absolutes for Factor 2. It
obliges one to consider that Factor 1 explains all variables, while Factor 2 is
irrelevant to all variables, which implies that Factor 2 is trivial. On the other hand,
AT ¼ ÂT can be reasonably interpreted in the same manner as described in
Sect. 12.7.

13.5 Geomin Rotation

The phrase “maximize Simp(AT)” in (13.11) is equivalent to “minimize −1 � Simp
(AT)”. Here, −1 � Simp(AT) can be rewritten as Comp(AT) which abbreviates the
complexity of AT and represents to what extent AT deviates from a simple structure.
Some rotation techniques are formulated as substituting “minimize Comp(AT)” for
“maximize Simp(AT)” in (13.11). One of them is Yates’s (1987) geomin rotation
method, in which complexity is defined as

Table 13.4 Variables �
factors matrices with and
without a simple structure

Variable (A) Simple (B) Not simple

F1 F2 F1 F2

1 Large Small Large Large
2 Small Large Small Small

3 Small Large Small Small

4 Large Small Large Large
5 Small Large Small Small

6 Large Small Large Large
7 Large Small Large Large
8 Small Large Small Small
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CompðATÞ ¼ CompðÂT0�1Þ ¼
Xp
j¼1

Ym
k¼1

aðTÞ 2jk þ e
� �( )1=m

; ð13:17Þ

with e a specified small positive value such as 0.01. The geomin rotation method
has orthogonal and oblique versions. In this section, we treat the latter, i.e., the
oblique geomin rotation, which is formulated as

minimize CompðÂT0�1Þ ¼
Xp
j¼1

Ym
k¼1

ðaðTÞ 2jk þ eÞ
( )1=m

overT subject to ð13:2Þ:

ð13:18Þ

For this minimization, an iterative algorithm is needed. One of the algorithms can
be included in the gradient methods introduced in Appendix A.6.3 (Jennrich, 2002).
However, that is beyond the scope of this book.

Let us note the parenthesized part in the right-hand side of (13.17):

Ym
k¼1

aðTÞ2jk þ e
� �

¼ aðTÞ2j1 þ e
� �

� � � � � aðTÞ2jm þ e
� �

: ð13:19Þ

It is close to zero, if some of aðTÞjk are close to zero, which would give a matrix
approximating that in Table 13.2(A). The sum of (13.19) over p variables is
minimized as in (13.18). This minimization for Â in Table 13.3(A) provides the
rotation matrix

T0�1 ¼ 0:581 0:582
�0:979 0:979

� �
: ð13:20Þ

Post-multiplication of Â in Table 13.3(A) by (13.20) yields AT ¼ ÂT0�1 in
Table 13.3(C). This has also been presented in Table 12.1(B), as described in
Sect. 12.7.

The reason for adding a small positive constant e to loadings, as in (13.19), is as

follows: (13.19) would be
Qm

k¼1 a
ðTÞ 2
jk ¼ aðTÞ 2j1 � � � � � aðTÞ 2jm without e. Then, the

solution which allows
Qm

k¼1 a
ðTÞ 2
jk to attain the lower bound 0 is not uniquely

determined; multiple solutions could exist. For example, let m be 2. If aðTÞj1 ¼ 0;

then aðTÞ 2j1 � aðTÞ 2j2 ¼ 0 whatever value aðTÞj2 takes. This existence of multiple solu-
tions is avoided by adding e as in (13.19).
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13.6 Orthogonal Procrustes Rotation

In this section, we introduce Procrustes rotation, whose purpose is different from
the procedures treated so far. Procrustes rotation generally refers to a class of
rotation techniques to rotate Â so that the resulting AT is matched with a target
matrix B. The rotation was originally conceived by Mosier (1939) and named by
Hurley and Cattell (1962) after a figure appearing in Greek mythology.

Let us consider orthogonal Procrustes rotation with (13.9), i.e., T (m �
m) constrained to be orthonormal. This is formulated as

minimize f ðTÞ ¼ B� ÂT
�� ��2 overT subject toT0T ¼ Im: ð13:21Þ

This is useful for every case, in which one wishes to match ÂT to target B and
examine how similar the resulting matrix AT ¼ ÂT is to the target, under constraint
(13.9).

The function f(T) in (13.21) can be expanded as

f ðTÞ ¼ Bk k2�2trB0ÂTþ trT0Â
0
ÂT ¼ Bk k2�2trB0ÂTþ Ak k2; ð13:22Þ

where we have used TT′ = Im following from (13.9). In the right-hand side of

(13.22), only �2trT0Â
0
B is relevant to T. Thus, the minimization of (13.22)

amounts to

maximize gðTÞ ¼ trB0ÂT overT subject toT0T ¼ Im: ð13:23Þ

This problem is equivalent to the one in Theorem A.4.2 (Appendix A.4.2). As
found there, the solution of T is given through the singular value decomposition of

Â
0
B:
A numerical example is given in Table 13.5. The matrices B and Â presented

there seem to be very different. The orthogonal Procrustes rotation for them provide

T ¼ 0:53 0:85
�0:85 0:53

� �
: The resulting ÂT is shown in the right-hand side of

Table 13.5, where ÂT is found to be very similar to B.

Table 13.5 Example of
orthogonal Procrustes rotation

B Â Â T

0.0 0.8 0.6 0.4 −0.02 0.72

0.3 0.7 0.8 0.1 0.34 0.73

0.6 0.6 0.8 −0.2 0.59 0.57

0.8 0.1 0.5 −0.6 0.77 0.11

0.9 0.0 0.5 −0.8 0.94 0.00
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13.7 Bibliographical Notes

Simple structure rotation techniques are exhaustively described in Browne (2001)
and Mulaik (2011). Procrustes rotation techniques are detailed in Gower and
Dijksterhuis (2004), with its special extended version presented by Adachi (2009).
The simple structure rotation can be related to the sparse estimation, as discussed in
Sect. 22.9 and other literature (e.g., Trendafilov, 2014).

Exercises

13:1. Show that T ¼ SdiagðS0SÞ�1=2 satisfies (13.2), where diag(S′S) denotes the
m � m diagonal matrix whose diagonal elements d1, …, dm are those

of S′S (Note 12.1) and diagðS0SÞ�1=2 is the m � m diagonal matrix whose

diagonal elements are 1=d1=21 ; . . .; 1=d1=2m .
13:2. Show that a 2 � 2 orthonormal matrix T is expressed as

T ¼ cos h � sin h
sin h cos h

� �
:

13:3. Thurstone (1947) defined simple structure with provisions, which have been
rewritten more clearly by Browne (2001, p. 115) as follows:

[1] Each row should contain at least one zero.
[2] Each column should contain at least m zeros, with m the number of

factors.
[3] Every pair of columns should have several rows with a zero in one

column but not the other.
[4] If m � 4, every pair of columns should have several rows with zeros

in both columns.
[5] Every pair of columns should have a few rows with nonzero loadings

in both columns.
Present an example of a 20 � 4 matrix meeting provisions [1]–[5].

13:4. Minimizing 1
m

Pm�1
k¼1

Pm
l¼kþ 1

Pp
j¼1 ðaðTÞ2jk � �aðTÞ2:k ÞðaðTÞ2jl � �aðTÞ2:l Þ over

T subject to diag(T′T) = Im is included in a family of oblique rotation

called oblimin rotation (Jennrich & Sampson, 1966), where aðTÞjk is the

(j, k) element of the rotated loading matrix ÂT
0�1

. Discuss the purpose of
the above minimization.

13:5. Oblique rotation tends to give a matrix of a simpler structure than orthog-
onal rotation. Explain its reason.

13:6. Show that orthogonal rotation is feasible for the p � m matrix A that

minimizes V� AA0k k2 subject to A0A ¼ Im for given V.
13:7. Show that oblique rotation is feasible for the solution of principal compo-

nent analysis, if constraint (5.25) is relaxed as n−1diag(F′F) = Im without
(5.26). Here, diag() defined in Note 12.1.
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13:8. Show the objective function (13.12) in the varimax rotation can be rewritten
as

f ¼ 1
n
trT0Â0fðÂTÞ � ðÂTÞ � ðÂTÞg � 1

n2
trT0Â0ÂTfdiagðT0Â0ÂTÞg:

(ten Berge, Knol, & Kiers, 1988). Here, diag() is defined in Note 12.1, and
� denotes the element-wise product called the Hadamard product and
defined as (17.69):

X� Y ¼
x11y11 � � � x1py1p

..

.

xn1yn1 � � � xnpynp

2
664

3
775 ¼ xijyij

� �ðn� pÞ for n� pmatrices

X ¼
x11 � � � x1p

..

.

xn1 � � � xnp

2
664

3
775andY ¼

y11 � � � y1p

..

.

yn1 � � � ynp

2
664

3
775:

13:9. Generalized orthogonal rotation is formulated as minimizingPK
k¼1 H� AkTkk k2 over H;T1; . . .;TK subject to T0

kTk ¼ TkT0
k ¼ lm,

k ¼ 1; . . .;K, for given p � m matrices A1, …, AK. Show that the mini-
mization can be attained by the following algorithm:

Step 1. Initialize T1; . . .;TK .
Step 2. Set H ¼ K�1PK

k¼1 AkTk .
Step 3. Compute the SVDA0

kH ¼ KkKkL0
k to setTk ¼ KkL0

k for k = 1,…,K.
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

13:10. Show

K ¼
XK
k¼1

H� AkTkk k2 ¼
XK�1

k¼1

XK
l¼kþ 1

AkTk � AlTlk k2

for H in Step 2 described in Exercise 13.9.
13:11. Let us consider the minimization of ½M; c� � ATk k2 over Tðm� mÞ and

c (p � 1) subject to T0T ¼ TT0 ¼ Im for given Mðp� ðm� 1ÞÞ and Aðp�
mÞ: Here, [M, c] is the p � m matrix whose final column c is unknown.
Show that the minimization can be attained by the following algorithm:

Step 1. Initialize T.
Step 2. Set c to the final column of AT.
Step 3. Compute the SVD A0½M; c� ¼ KKL0 to set T = KL′.
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

208 13 Rotation Techniques



13:12. Kier’s (1994) simplimax rotation, which is used for having a matrix of
simple structure, is a generalization of the Procrustes rotation introduced in
Sect. 13.6. In the simplimax rotation, target matrix B is unknown except for
that B is constrained to have a specified number of zero elements:

B� ÂT
0�1

��� ���2 is minimized over B and T subject to (13.2) or (13.9) and

s elements being zero in B, though the locations of the s zero elements are
unknown. Show that, for fixed T, the optimal B = (bjk) is given by

bjk ¼
0 if a½T�2jk � a½T�2\s[

a½T�jk otherwise

(
, where a½T�jk is the (j,k) element of ÂT0�1 and

a½T�2\s[ is the sth smallest value among the squares of the elements in ÂT
0�1

.
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