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Preface to the Second Edition

In this second edition, I have added new six chapters (Chaps. 17-22) and three
Appendices (A.7-A.9) to the first edition (which spanned Chaps. 1-16 and
Appendices A.1-A.6), together with correcting all known misprints and other errors
in the first edition. Furthermore, I have made minor modifications to some parts
of the first edition, in line with the additional chapters and appendices.

The chapters added in this second edition are as follows:

17. Advanced Matrix Operations

18. Exploratory Factor Analysis (Part 2)

19. Principal Component Analysis versus Factor Analysis
20. Three-way Principal Component Analysis

21. Sparse Regression Analysis

22. Sparse Factor Analysis

which form Part V (Advance Procedures) following Parts I-IV.

Chapter 17 serves as a mathematical preparation for the following chapters. In
Chap. 17, the Moore—Penrose (MP) inverse in particular is covered in detail,
emphasizing its definition through singular value decomposition (SVD). I believe
that the MP inverse is of secondary importance among matrix operations, with SVD
being of primary importance, as the SVD-based definition of the MP inverse allows
us to easily derive its properties and various matrix operations. In this chapter, we
also introduce an orthogonal complement matrix, as it is foreseeable that the need
for this matrix will increase in multivariate analysis procedures.

Chapter 18 is titled “Exploratory Factor Analysis (Part 2)”, while “(Part 1)” was
added to the title of Chap. 12 in the first edition. The contents of Chap. 12 remain
unchanged in this second edition, but the exploratory factor analysis (EFA) in
Chap. 18 is of a new type, i.e., the EFA procedure formulated as a matrix
decomposition problem. This differs from EFA based on the latent variable model
in Chap. 12. To emphasize the difference, the former (new) EFA is referred to as
matrix decomposition FA (MDFA), while the latter is called latent variable FA
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(LVFA) in Chap. 18. Its addition owes to recent developments after the publication
of the first edition, as studies of MDFA advanced rapidly. I believe that MDFA is
generally superior to LVFA in that the former makes the essence of FA more
transparent.

In Chap. 19, answers are given to the question of how solutions from principal
component analysis (PCA) and FA differ. No clear answer to this question is found
in other books, to the best of my knowledge. The answers in Chap. 19 also are
owing to advances in MDFA studies, with the MDFA formulation allowing for
straightforward comparisons to be made between FA and PCA.

Three-way principal component analysis (3WPCA) is treated in Chap. 20.
3WPCA refers to a specially modified PCA designed for three-way data sets. The
given example is a data array of inputs x outputs x boxes, whose elements are the
magnitudes of output signals elicited by input signals for multiple black boxes.
Three-way data are often encountered in various areas of sciences, and as such
3WPCA is a useful dimension reduction methodology. Its algorithms are very
matrix-intensive and suitably treated in this book.

Sparse estimation procedures are introduced in Chaps. 21 and 22. Here, sparse
estimation refers to estimating a number of parameters as zeros. Such procedures
are popular topics in the field of machine learning. This field can be defined as
learning attained by machines (in particular computers) as opposed to humans or
living organisms. Statistical analysis procedures are useful methodologies for
machine learning. Sparse estimation is also I believe a key property of human
learning: our perception performs sparse estimation too in that usually we only
cognize useful signals, neglecting useless ones as “zeros”. In this respect, it is very
important to enable machines to perform sparse estimation, as a complement to
humans. In Chap. 21, sparse regression analysis procedures are described, including
Tibshirani’s (1996) procedure called lasso which spurred the developments in
sparse estimation. Finally, sparse factor analysis (FA) procedures are introduced in
Chap. 22.

The Appendices added in this second edition are as follows:

A.7. Scale Invariance of Covariance Structure Analysis
A.8. Probability Densities and Expected Values with EM Algorithm
A.9. EM Algorithm for Factor Analysis.

Though the scale invariance in A.7 had been described with short notes in the first
edition, the notes were found too short and insufficient. Thus, the scale invariance is
described in more detail in Appendix A.7: Notes 9.3 and 10.2 in the first edition
have been expanded and moved to A.7 in this edition. The new Appendix A.9 is
necessary for explaining one of the two sparse FA procedures in Chap. 22 and is
also useful for deepening the understanding of the confirmatory and exploratory FA
treated in Chaps. 10 and 12. The foundations of the algorithm in A.9 are introduced
in the preceding new Appendix A.8. Further, this A.8 serves to deepen the
understanding of the treatment in Chap. 8.
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In the first edition, some parts of the bibliographical notes and exercises were
provided to allow readers to extend their understanding beyond the scope covered in
that edition. Such parts have become unnecessary in the second edition, as the
advanced contents are now described in the additional chapters. Hence, sections
of the bibliographical notes and exercises related to the new chapters (Chaps. 17-22)
have been deleted or moved to the relevant chapters in the second edition.

Yutaka Hirachi of Springer has encouraged me for publishing this revised ver-
sion, as well as when I prepared the drafts for the first edition. I am most grateful to
him. I am also thankful to the reviewers who read through drafts of this book.

Kyoto, Japan Kohei Adachi
February 2020
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A set of multivariate data can be expressed as a table, i.e., a matrix, of individuals
(rows) by variables (columns), with the variables interrelated. Statistical procedures
for analyzing such data sets are generally referred to as multivariate data analysis.
The demand for this kind of analysis is increasing in a variety of fields. Each
procedure in multivariate data analysis features a special purpose. For example,
predicting future performance, classifying individuals, visualizing inter-individual
relationships, finding a few factors underlying a number of variables, and exam-
ining causal relationships among variables are included in the purposes for the
procedures.

The aim of this book is to enable readers who may not be familiar with matrix
operations to understand major multivariate data analysis procedures in matrix
forms. For that aim, this book begins with explaining fundamental matrix calcu-
lations and the matrix expressions of elementary statistics, followed by an intro-
duction to popular multivariate procedures, with chapter-by-chapter advances in the
levels of matrix algebra. The organization of this book allows readers without
knowledge of matrices to deepen their understanding of multivariate data analysis.

Another feature of this book is its emphasis on the model that underlies each
procedure and the objective function that is optimized for fitting the model to data.
The author believes that the matrix-based learning of such models and objective
functions is the shortest way to comprehend multivariate data analysis. This book is
also arranged so that readers can intuitively capture for what purposes multivariate
analysis procedures are utilized; plain explanations of the purposes with numerical
examples precede mathematical descriptions in almost all chapters.

The preceding paragraph featured three key words: purpose, model, and
objective function. The author considers that capturing those three points for each
procedure suffices to understand it. This consideration implies that the mechanisms
behind how objective functions are optimized must not necessarily be understood.
Thus, the mechanisms are only described in appendices and some exercises.

ix
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This book is written with the following guidelines in mind:

(1) Not using mathematics except matrix algebra
(2) Emphasizing singular value decomposition (SVD)
(3) Preferring a simultaneous solution to a successive one.

Although the exceptions to (1) are found in Appendix A.6, where differential
calculus is used, and in some sections of Part III and Chap. 15, where probabilities
are used, those exceptional parts only occupy a limited number of pages; the
majority of the book is matrix-intensive. Matrix algebra is also exclusively used for
formulating the optimization of objective functions in Appendix A.4. For
matrix-intensive formulations, ten Berge’s (1983, 1993) theorem is considered to be
the best starting fact, as found in Appendix A.4.1.

Guideline (2) is due to the fact that SVD can be defined for any matrix, and a
number of important properties of matrices are easily derived from SVD. In the
former point, SVD is more general than eigenvalue decomposition (EVD), which is
only defined for symmetric matrices. Thus, EVD is only mentioned in Sect. 6.2.
Further, SVD takes on an important role in optimizing trace and least squares
functions of matrices: The optimization problems are formulated with the combi-
nation of SVD and ten Berge’s (1983, 1993) theorem, as found in Appendix A.4.2
and Appendix A.4.3.

Guideline (3) is particularly concerned with principal component analysis

(PCA), which can be formulated as minimizing ||X — FA’||2 over PC score matrix
F and loading matrix A for a data matrix X. In some of the literature, PCA is
described as obtaining the first component, the second, and the remaining com-
ponents in turn (i.e., per column of F and A). This can be called a successive
solution. On the other hand, PCA can be described as obtaining F and
A matrix-wise, which can be called a simultaneous solution. This is preferred in this
book, as the above formulation is actually made matrix-wise, and the simultaneous
solution facilitates understanding PCA as a reduced rank approximation of X.
This book is appropriate for undergraduate students who have already learned
introductory statistics, as the author has used preliminary versions of the book in a
course for such students. It is also useful for graduate students and researchers who
are not familiar with the matrix-intensive formulations of multivariate data analysis.
I owe this book to the people who can be called the “matricians” in statistics,
more exactly, the ones taking matrix-intensive approaches for formulating and
developing data analysis procedures. Particularly, I have been influenced by the
Dutch psychometricians, as found above, in that I emphasize the theorem by Jos
M. F. ten Berge (Professor Emeritus, University of Groningen). Yutaka Hirachi of
Springer has been encouraging me since I first considered writing this book. I am
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most grateful to him. I am also thankful to the reviewers who read through drafts of
this book. Finally, I must show my gratitude to Yoshitaka Shishikura of the pub-
lisher Nakanishiya Shuppan, as he readily agreed to the use of the numerical
examples in this book, which I had originally used in that publisher’s book.

Kyoto, Japan Kohei Adachi
May 2016
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Part 1
Elementary Statistics with Matrices

This part begins with introducing elementary matrix operations, followed by
explanations of fundamental statistics with their matrix expressions. These initial
chapters serve as preparation for learning the multivariate data analysis procedures
that are described in Part II and thereafter.



Chapter 1 )
Elementary Matrix Operations I

The mathematics for studying the properties of matrices is called matrix algebra or
linear algebra. This first chapter treats the introductory part of matrix algebra
required for learning multivariate data analysis. We begin by explaining what a
matrix is, in order to describe elementary matrix operations.

In later chapters, more advanced properties of matrices are described, where
necessary, with references to Appendices for more detailed explanations.

1.1 Matrices

Let us note that Table 1.1 is a 6 teams X 4 items table. When such a table (i.e., a
two-way array) is treated as a unit entity and expressed as

0.617 731 140 3.24
0.545 680 139 4.13
0.496 621 143 3.68
0.493 591 128 4.00 |’
0.437 617 186 4.80
0.408 615 184 4.80

this is called a 6 (rows) X 4 (columns) matrix, or a matrix of 6 rows by 4 columns.
“Matrices” is the plural of “matrix”. Here, a horizontal array and a vertical one are
called a row and a column, respectively. For example, the fifth row of A is “0.437,
617, 0.260, 4.80”, while the third column is “140, 139, 143, 128, 186, 184”.
Further, the cell at which the fifth row and third column intersect is occupied by
186, which is called “the (5,3) element”. Rewriting the rows of a matrix as columns
(or its columns as rows) is referred to as a transpose. The transpose of X is denoted
as X"

© Springer Nature Singapore Pte Ltd. 2020 3
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
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4 1 Elementary Matrix Operations

Table 1.1 Averages of the Team Item

Wk [ [ [ea
Tigers 0.617 731 140 3.24
Dragons 0.545 680 139 4.13
BayStars 0.496 621 143 3.68
Swallows 0.493 591 128 4.00
Giants 0.437 617 186 4.80
Carp 0.408 615 184 4.80

0.617 0.545 0.496 0.493 0.437 0.408
731 680 621 591 617 615

I
X = 140 139 143 128 186 184
324 413 368 4.00 4.80 4.80
Let us describe a matrix in a generalized setting. The array of a; (i = 1,2, ..., n;
j=1,2, ..., m)arranged in n rows and m columns, i.e.,
apjp ap - Qim
ay axp - Qo
A= , (1.1)
apl  ap2 o Apm

is called an n x m matrix with a; its (i, j) element. The transpose of A is an
m X n matrix

apiy  dzr ot dpl

, dapp daxp - dp
A= T T (1.2)

Aim  Am - Apm

The transpose of a transposed matrix is obviously the original matrix, with
(A" = A.

The expression of matrix A as the right-hand side in (1.1) takes a large amount
of space. For economy of space, the matrix A in (1.1) is also expressed as

A = (ay), (1.3)

using the general expression a;; for the elements of A. The statement “We define an
n X m matrix as A = (a;)” stands for the matrix A being expressed as (1.1).
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1.2 Vectors

A vertical array,

aj
a

a=| .|, (1.4)
ay

is called a column vector or simply a vector. In exactness, (1.4) is said to be an
n x 1 vector, since it contains n elements. Vectors can be viewed as a special case
of matrices; (1.4) can also be called an n X 1 matrix. Further, a scalarisa 1l x 1
matrix. The right side of (1.4) is vertically long, and for the sake of the economy of
space, (1.4) is often expressed as

a=la,a,...,a,) ora =lay,a,... a), (1.5)

using a transpose. A horizontal array as a’ is called a row vector.
We can use vectors to express a matrix: by using n x 1 vectors

. ~ /
a; = [alj,azj, .. .,anj] ,J=1,2,...,m, and m x 1 vectors a; = [a;1,apn,. - ., Q| s
i=1,2, ..., n, and the matrix (1.1) or (1.3) is expressed as
~/
~,1
a, o .,
A=la,a,..,a,)=| | =[a,a,...,3,] = (g). (1.6)
a,

In this book, a bold uppercase letter such as X is used for denoting a matrix, a
bold lowercase letter such as x is used for a vector, and an italic letter (not bold)
such as x is used for a scalar. Though a series of integers has so far been

expressed as i = 1, 2, ..., n, this may be rewritten as i = 1, ..., n, omitting 2 when

it obviously follows 1. With this notation, (1.1) or (1.6) is rewritten as
aig v Aim

A= | =la,...,a, =a,.. a3,
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1.3 Sum of Matrices and Their Multiplication by Scalars

The sum of matrices can be defined when they are of the same size. Let matrices
A and B be equivalently n x m. Their sum A + B yields the n x m matrix, each of
whose elements is the sum of the corresponding ones of A = (a;;) and B = (b;): The
sum is defined as

A+B:(dij+bij), (17)

3 -2 6

2 0 _2] and

using the notation in (1.3). For example, when X:[

2 1 -9
=[5 3

342 241 6-97] [5 -1 -3
X+Y_{8—7 042 —2—3}_[1 2 —5]'

The multiplication of matrix A = (a;) by scalar s is defined as all elements of
A being multiplied by s:

sA = (s x ay), (1.8)

8§ -2 6
-5 0 =3

using the notation in (1.3). For example, when Z = [

—0122{ —0.1x8 —01x(-2) —01x6 ]
' —0.1x(=5) —0.1x0 —0.1x(=3)
_[-08 02 —06
_{0.5 0 0.3}

The sum of the matrices multiplied by scalars is defined simply as the combi-
nation of (1.7) and (1.8):

VA +wB = (va; + wby). (1.9)

4 -2 6 2 1 -9
Forexample,whenX—{8 0 _2} andY—[_7 2 _3},

o.5x+(—2)Y:[24 -1-2 3+18]:[2 -3 21}

4414 0-4 —-1+46 18 —4 5
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Obviously, setting v = 1 and w = —1 in (1.9) leads to the definition of the matrix

difference A — B.
The above definition is generalized as

K K
kaAk = V1A1 + - +VKAK = (Z vka,jk>, (110)

k=1 k=1

where Ay, ..., Ak are of the same size and a;; is the (i, j) element of A, (k = 1, ..., K).

1.4 Inner Product and Norms of Vectors

The inner product of the vectors a = [ay, ..., a,,]' and b = [by, ..., b,,,]' is defined as
by m

a’b:b’a: [al,...7a,,,] :a1b1—|— +ambm:Zakbk. (lll)
bm k=1

Obviously, this can be defined only for the vectors of the same size. The inner
product is expressed as a'b or b'a, i.e., the form of a transposed column vector (i.e.,
row vector) followed by a column vector, so as to be congruous to the matrix
product introduced in the next section.

The inner product of the identical vectors a and a is in particular called the
squared norm of a and denoted as |[al|*:

aj m
lal’=a'a=lai,...an'| | | =ai+ - +ay =) a. (1.12)

Aam

The square root of ||al|, that s, |

...y Qy,]" with
lal| = /a3 + - +a2. (1.13)

It is also called the length of a, for the following reason. If m = 3 with a = [ay, a,,
a3]’ and a is viewed as the line extending from the origin to the point whose
coordinate is [ay, as, a3]’, as illustrated in Fig. 1.1: (1.13) expresses the length of the
line. It also holds for m = 1, 2. If m > 3, the line cannot be depicted or seen by
those of us (i.e., the human beings living in three-dimensional world), but the length
of a is also defined as (1.13) for m > 3 in mathematics (in which the entities that do
not exist in the real world are also considered if they are treated logically).

a|| is simply called the norm of the vector a = [a;,
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Fig. 1.1 Graphical [ai, ..., am]’
representation of a vector
a
[0, ..., 0]
1.5 Product of Matrices
Let n x m and m X p matrices be defined as
all ayy o aip bll blp
Alif=1: ¢ i fadB=[bibl=| o1
a;z (27 BN bml T bmp
blj
respectively, with a; = [a;1,...,ap](i=1,...,n) andb;= | : |[(i=1,...,p).
bmj
Then, the post-multiplication of A by B is defined as
alb; --- alb,
AB = |: L = (ajb)), (1.14)
ab, --- ab,

using the inner products of the row vectors of the preceding matrix A and the
column vectors of the following matrix B. The resulting matrix AB is the
n X p matrix whose (i, j) element is the inner product of the ith row of A and the jth
column of B:

a;bj = [aila . ~;aim] = ailblj * + Qi Zazkbk] (115)
L Dmj
e (] (2 —4] 4, -3 1
For example, if A = [3'2_ = [1 . ],B— [by by] = [ ) _S}Jhen
AB = [
a'b, a2b2 (=3)+7x2 1 x147x(=5)

alb, abz] [ 3)+(—4)x2 2><1+(—4)><(—5)}
9}

[
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As found above, the matrix product AB is defined only when the following
holds:

the number of columns in A = the number of rows in B. (1.16)
The resulting matrix AB is
(the number of rows in A) x (the number of columns in B). (1.17)
Thus, the product is sometimes expressed as

A B = C, or,moresimply, ,A,B, =,C,, (1.18)

nXmmxp nxp

with which we can easily verify (1.16) and (1.17). If n = p, we can define products
AB and BA. Here, we should note

AB +# BA, (1.19)

except for special A and B, which is different from the product of scalars with
st = ts, the inner product (1.11), and that of scalar s and matrix A with

SA =A Xs. (1.20)

For this reason, we call AB “the post-multiplication of A by B” or “the pre-
multiplication of B by A”, so as to clarify the order of the matrices.

Here, four examples of matrix products are presented as follows:

3 5 4
Ex.l.ForX:{_zz 3 4l]andY: -1 0 -2,
0 6 O
XY — 2x343x(=1)+(-1)x0 2x543%x04+(=1)x6 2x44+3x(-2)+(-1)x0
_{72><3+0><(71)+4><0 —2x54+0x04+4%x6 —2x440x(=2)+4x%x0
(3 4 2
_[—6 14 —8}'
_23 _01 -4 1
Ex. 2. For F = andA=| 6 -3/,
1 3 5 5
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T2 -1
pa_ |30 [4 6 2]
1 3|l1 =35
2 -3
2x(—4)+(-1)x1  2x64(=1)x(=3) 2x2+(-1)x5
-3 x(-4)+0x1 -3 x6+4+0x (-3) —3x2+0x5
B 1 x(—4)+3x1 1 x6+3x(=3) 1x2+3x%x5
| —2X(—4)+(-3)x1 —2x6+(-3)x(-3) —-2x2+(-3)x5
-9 15 -1
12 —-18 -6
-t =3 17 |
LS -3 -19

where it should be noted that A has been transposed in the product.

Ex. 3. In statistics, the product of a matrix and its transpose is often used.

—4 1
For A= | 6 -3/, the post-multiplication of A by A’, which we denote
2 5
by S, is
(—4)* 412 —4x64+1x(=3) —4x2+1x5
S=AA"= |6 x (—4)+(-3) x 1 6% + (=3)? 6x2+(=3)x5
2x(-4)+5x1 2x6+4+5x(=3) 22452
17 27 -3
=|-27 45 -3
| -3 -3 29

The pre-multiplication of A by A’, which we denote by T, is

(—4)% + 6% +22 (=4) X 146 x (=3)+2 x5
I x (—4)+(=3) x 6+5x2 124 (=3)° + 5

(56 —12
S l-12 35 |

Ex. 4. The product of vectors is a_special case of that of matrices:

2 -2
Foru=|—-1|andv= | 3

3 —4

T=AA=

s



1.5 Product of Matrices 11
the inner product yields a scalar as

uv=2x(=2)+(-1)x3+3x (—4) = —19,

but the post-multiplication of 3 x 1 vector u by 1x 3 v’ gives a 3 X 3 matrix with

2 2% (-2) 2x3  2x(-4)
w' = | —1|[-2 3 —4]=|(-1)x(=2) (-)x3 (=1)x(-4)
3 3x(=2)  3x3  3x(-4)
4 6 -8
=2 -3 4
-6 9 -12

1.6 Two Properties of Matrix Products
The transposed product of matrices satisfies
(AB) = B'A’; (ABC) = C'B'A’ (1.21)

Let A and B be matrices of size n x m; let C and D be those of m x [. Then, the
product of their sums multiplied by scalars s, t, u, and v satisfies

(sA +1B)(uC 4+ vD) = suAC + svAD + uBC + tvBD. (1.22)

1.7 Trace Operator and Matrix Norm

A matrix with the number of rows equivalent to that of columns is said to be

Si1 S12 S
. S21 S22t S

square. For a square matrix S= | . . . |, the elements on the
Snl Sn2 S

diagonal, i.e., 1y, ..., Su., are called the diagonal elements of S. Their sum is called

a trace and is denoted as

trS = 511 + 852+ - + S (123)
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Obviously,
rS’ = S (1.24)

The trace fulfills important roles when it is defined for the product of matrices.
=~/

a; an o dim
Let us consider A=fa;---a,]=|:!|=/]"! : : and B=
ﬁ; apl  cc Apm
b, by -+ by,
by b= | : | = : : - |. Then, AB and BA are n x n and
b, byt -+ b
m X m square matrices, respectively, for which traces can be defined, with
ajb, # ba #
AB = . and BA = .
# a b, # f):nam

Here, # is used for all elements other than the diagonal ones. In this book, the
matrix product precedes the trace operation:

trAB = tr(AB). (1.25)

Thus,

tI'AB = ﬁ;bl = Z (ailbli + - +al~mbmi) = aijbﬁ, (126)

i=1 i=1 i=1 j=1
m

wBA = b = ij (bjayj+ -+ +bjany) = Z bjiaij = Xn: > aib.

j=1 j=1 j=1 i=1 i=1 j=1

=

(1.27)
Both are found to be equivalent, i.e.,
trAB = trBA, (1.28)

and express the sum of a;b;; over all pairs of i and j.

It is an important property of the trace that (1.28) implies

trABC = trCAB = trBCA; trABCD = trBCDA = trCDAB = t¢DABC. (1.29)



1.7 Trace Operator and Matrix Norm 13
Using (1.21), (1.28), and (1.29), we also have

tr(AB)" = rB'A’ = trA’B’; tr(ABC)' = trC'B’'A’ = rA'C'B’ = tB'A’C’. (1.30)

Substituting A" into B in (1.25), we have trAA’ = rA’'A = 71| ™" | a; which
is the sum of the squared elements of A. This is called the squared norm of A, i.e.,
the matrix version of (1.12), and is denoted as ||A||*:

A|*= trAA" = rtA'A = > "a;. (1.31)

i=1 j=1

This is also referred to as the squared Frobenius norm of A, with Frobenius (1849—
1917) a German mathematician. The squared norm of the sum of matrices weighted
by scalars is expanded as

[sX + 1Y]]> = tr(sX + 1Y) (sX + 1Y)
= tr(s"X'X + XY + 15Y'X + £Y'Y)
= s2uX'X + sttrX'Y + setrX'Y + Y'Y (1.32)
= strX'X + 2sttrX'Y + Y'Y
= &2||X]|> + 2s1trX'Y + 22| Y%

1.8 Vectors and Matrices Filled with Ones or Zeros

A zero vector refers to a vector filled with zeros. The p x 1 zero vector is denoted
as 0, using the boldfaced zero:

0,=1.1. (1.33)
0
A zero matrix refers to a matrix whose elements are all zeros. In this book, the
n X p zero matrix is denoted as ,0,, using the boldfaced “O”:

0O --- 0
0,= 0 ] (1.34)
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A vector of ones refers to a vector filled with ones. The n x 1 vector of ones is
denoted as 1,,, with the boldfaced one:

1
L=1.1 (1.35)

The n x p matrix filled with ones is given by

1 - 1
;- .
Ll =1: ... 1. (1.36)
1 - 1
1.9 Special Square Matrices
A square matrix S = (s;;) satisfying
S= Sl7 i‘e., Sij = Sji (137)
is said to be symmetric. An example of a 3 x 3 symmetric matrix is
2 -4 9
S=|—-4 6 —7|. The products of a matrix A and its transpose, AA’ and
9 -7 3

A'A, are symmetric; using (1.21), we have
(AA")'= (AY’A’ = AA’and (A'A)'= A/(A)'= A'A. (1.38)

This has already been exemplified in Ex. 3 (Sect. 1.5).
The elements of A = (a;;) with i # j are called the off-diagonal elements of A. A
square matrix D whose off-diagonal elements are all zeros,

d 0 - 0
p— |0 = 0 ] (1.39)
: 0 . 0
0 -~ 0 d

is called a diagonal matrix. The products of two diagonal matrices are easily
obtained as



1.9 Special Square Matrices 15

C1 0 0 d] O 0 C1d1 0 0
0 o 0 0 d 0 _ 0 cdy, 0
0 0 0 0 0 0
0 0 ¢||O 0 d, 0 0 cyd,
(1.40)
d 0 - 0
0 d 0
D'=DD..D=| , (1.41)
0 . 0
0 0 d

where D’ denotes the matrix obtained by multiplying D ¢ times. Thus, we use the
following expression:

i’ 0 - 0
0 d' 0
D' = S (1.42)
: 0 .0
0 . 0 dp*’

When ¢ = 1/2, (1.42) shows D' whose diagonal elements are d; 1/2, v dyy 172,
The identity matrix refers to the diagonal matrix whose diagonal elements are all
ones. The p x p identity matrix is denoted as I,,, using the boldfaced “I":

0 0
L (1.43)
0 .0
0 0 1

For example, I3 =

S O =

0 0
1 0. An important property of the identity matrix is
0 1

Al, = AandI,B = B. (1.44)

The identity matrix of 1 X 1is I; =1, with s x 1 =1 x s =s. That is, I, is a
generalization of one (or unit).
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1.10 Bibliographical Notes

Matrix operations, which are necessary for describing multivariate data analysis,
but have not been treated in this chapter, are introduced in the following chapters.
As in the present book, introductory matrix operations are treated intelligibly in
Carroll, Green, and Chaturvedi (1997), where geometric illustrations are empha-
sized. Banerjee and Roy (2014) and Schott (2005) are among the textbooks rec-
ommended for those who finished reading Chaps. 1-3 in the present book.
Formulas for matrix operations are exhaustively listed in Liitkepohl (1996).

Exercises

I.1. Let X =(x;) be an n x p matrix. Express X using n x 1 vectors

X; = [x1j,- %] i=1,...,p, and express X using p x 1 vectors
ii = [x,-l,...,xip]/,i: 1,...,n.
Tl s 5
1.2. Let A = 3 5 0 andB=| 6 —8/|.Compute AB, B'B, BB,
-4 6 -3 -2 1
A'A, and AA'.
_12 —36 —95 —72 :é _35 2 3
1.3. Let A, = 8 ) ol A, = 0 3 9 | B, = —19 _67 ,
-4 6 -3 6 —4 0
5 7
B,=|6 -8|, si;=-5, s,=7, t;=3, and t, =—-2. Compute
-2 1

(s1A1 + $5A,)(11B1 + 1,B)).
1.4. Let B =[by, ..., b,]. Show AB = [Ab,, ..., Ab,,].
1.5. Prove trABCDE = trC'B'A’E'D'.
1.6. Let W = [wy, ..., w,]. Show that the (j, k) element of W'X'XW is w,X'Xw,

p
and rW'X'XW = Zl WJ’.X’ Xw;.
j=

17. Let a mawix F satisfy FF=1I, Show [X—FA'|’= X
—2uF'XA +n|| Al
1.8. Compute 1Q[4, 2, 6, 11" and 14[4, 2, 6, 1].
1.9. Prove (I, —11,1/)"(I, - 11,1)) =1, - 11,1,
1.10. Show that LF'F =1, if F = [f;, f,, f3] with HfjH2= n(j=1,2,3) and fif, =
0 forj # k.



Chapter 2 )
Intra-variable Statistics Check or

This chapter begins with expressing data sets by matrices. Then, we introduce two
statistics (statistical indices), average and variance, where the average is an index
value that represents scores and the variance stands for how widely scores disperse.
Further, how the original scores are transformed into centered and standard scores
using the average and variance is described.

As the statistics in this chapter summarize the scores within a variable, the
chapter is named intra-variable statistics, in contrast to the immediately following
chapter entitled inter-variable statistics, where the statistics between variables
would be treated.

2.1 Data Matrices

A multivariate data set refers to a set of values arranged in a table whose rows and
columns are individuals and variables, respectively. This is illustrated in each panel of
Table 2.1. Here, the term “individuals” implies the sources from which data are
obtained; for example, individuals are examinees, cities, and baseball teams,
respectively, in Panels (A), (B), and (C) of Table 2.1. On the other hand, the term
“variables” refers to the indices or items for which individuals are measured; for
example, variables are Japanese, mathematics, English, and sciences in Table 2.1(A).
By attaching “multi-” to “variate”, which is a synonym of “variable”, we use the
adjective “multivariate” for the data sets with multiple variables, as in Table 2.1. On
the other hand, data with a single variable are called univariate data.

© Springer Nature Singapore Pte Ltd. 2020 17
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Table 2.1 Three examples of

multivariate data

2 Intra-variable Statistics

(A) Test scores (artificial example)

Participant Item
Japan Mathematics English Science

1 82 70 70 76
2 96 65 67 71
3 84 41 54 65
4 90 54 66 80
5 93 76 74 77
6 82 85 60 89

(B) Weather in cities in January (http://www2m.biglobe.ne.
jp/ZenTech/world/kion/Japan/Japan.htm)

City Weather
Min °C Max °C Precipitation
Sapporo -17.7 —0.9 110.7
Tokyo 2.1 9.8 48.6
Naha 14.3 19.1 114.5
(C) Team scores (2005 in Japan) (http://npb.jp/bis/2005/stats/)
Team Averages
Win % Runs HR Avg. ERA
Tigers 0.617 731 140 0.274 3.24
Dragons 0.545 680 139 0.269 4.13
BayStars 0.496 621 143 0.265 3.68
Swallows 0.493 591 128 0.276 4.00
Giants 0.437 617 186 0.260 4.80
Carp 0.408 615 184 0.275 4.80
Let us express a data set as an n-individuals X p-variables matrix

X1j Xip

X Xp | = [xl, Xy xp] , (2.1)

Xj Xnp

whose jth column
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X1j
X; = = [xlj, .. .,an]/ (22)

Xnj

stands for the jth variable. Examples of (2.1) have been given in Table 2.1(A), (B),
and (C).

A different example is presented in Table 2.2(A), where n individuals and
p variables are six students and two items, respectively, with x;; the score of student
i for test j and x; the 6 x 1 vector containing the scores on the jth test:

66 74 66 74
72 98 72 98
X =1 . . | withx; = | . | andx, =
6x2 : . . .
56 84 56 84

The scores in Table 2.2(B) and (C) will be explained later, in Sects. 2.4 and 2.6.

2.2 Distributions

The distribution of the six students’ scores for each variable in Table 2.2(A) is
graphically depicted in Fig. 2.1, where those scores are plotted on lines extending
from O to 100. The distributions allow us to intuitively recognize that [1] their
scores in history are lower on average than those in mathematics, and [2] the scores
disperse more widely in mathematics than in history. The statistics related to [1]
and [2] are introduced in Sects. 2.3 and 2.5, respectively.

Table 2.2 Raw, centered, and standard scores of tests with their averages, variances, and standard
deviations (SD) (artificial example)

Student (A) Raw (B) Centered (C) Standard
History Math History Math History Math
1 66 74 5 -3 0.52 —-0.20
2 72 98 11 21 1.15 1.43
3 44 62 -17 -15 -1.78 -1.02
4 58 88 -3 11 -0.31 0.75
5 70 56 9 -21 0.94 —1.43
6 56 84 =5 7 -0.52 0.48
Average 61.0 77.0 0 0 0 0
Variance 91.67 214.33 91.67 214.33 1.00 1.00
SD 9.57 14.64 9.57 14.64 1.00 1.00
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(a) History (b) Mathematics
58 70 84
4456 6672 5662 74 86 98
1 11l Ll 1 Ll L
0 100 o —— $ 100

Fig. 2.1 Distributions of the test scores in Table 2.2(A)

2.3 Averages

Let us consider summarizing n scores into a single statistic. The most popular
statistic for the summary is the average, which is defined as

1 1 &
Xj :;(X11+ +xnj) :_inj (23)
i=1

n

for variable j, i.e., the jth column of X. For example, the average score in mathe-
matics (j = 2) in Table 2.2(A) is X, = (744+98 462488+ 56+84)/6 = 77.0.
The average can be rewritten, using the n x 1 vector of ones 1,, =[1, 1, ..., 1]
defined in (1.35): The sum x;; + -+ + x,; is expressed as

Xnj
thus, the average (2.3) is also simply expressed as

1
Xj = ;l;xb (2'5>

without using the complicated “Sigma” symbol. For example, the average score in
history (j = 1) in Table 2.2(A) is expressed as 6‘11’6x1 with x; = [66, 72, 44, 58,
70, 56]'. The resulting average is 6 '15x; = 61.0.

2.4 Centered Scores

The raw scores minus their average are called centered scores or deviations from
average. Let the centered score vector for variable j be denoted as y; = [y, ..., Y]’
(n x 1), which is expressed as
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Vi Xy — % Xy X;j X
Vnj Xpj — X; Xpj X; X

In Table 2.2(B), the centered data for (A) are shown: The centered scores
[5, 11, ..., =5] for history are given by subtracting 61 from all elements of [66,
72, ..., 56]" and the centered scores for mathematics are given by subtracting 77 in a
parallel manner.

Here, we rewrite (2.6) in a simpler form. First, let us note that all elements of the
subtracted vector [)_cj, ce )_cj]/ in (2.6) are equal to an average X;, thus, that vector can
be written as

= )_len = ln X )_Cj7 (27)

Xj

where we have used (1.20). Substituting (2.5) into X; in (2.7), this is rewritten as

K 1 1 1
=1, -1x | =-1,(I'x)) =-1,1'x,. 2.8
X <l’l nXJ> n ( nX]) n nX] ( )
Xj
Here, we have made use of the fact that “x scalar (nfl)” can be moved and A
(BC) = ABC generally holds for matrices A, B, and C, which implies 1, (lilxj) =

1,1)x;. Using (2.8) in (2.6) and noting property (1.44) for an identity matrix, the
centered score vector (2.6) can be rewritten as

xlj 7)7Cj Xj 1 1
y, = : =x— | | =Lx; — ;lnlzxj = (In — ;1111:;>Xj = Jx;,

(2.9)

where J =1, — n’llnlg, and we have made use of the fact that
BC + EC = (B + E)C holds for matrices B, C, and E. The matrix J has a special
name and important properties:
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Note 2.1. Centering Matrix
This is defined as

1
J=1,—-1,1. (2.10)
n

The centering matrix has the following properties:

J = J/(symmetric), (2.11)
F=JJ= J(idempotent), (2.12)
LI=0, (2.13)

Here, an idempotent matrix is defined as follows: S is said to be idempotent if
SS =S.

Equation (2.11) can easily be found. Equations (2.12) and (2.13) can be
proved as follows:

1 1 1 1 1
JJ = (In — —1,,1;> (In — —1n1;) =1, —-1,1, - -1,1,+ = 1,1/1,1,
n n n n n
1 1 1 1
=L —=1L,1, =~ 1,1, + S L, =1, -~ 1,1, = J,
n n n n

1 1 1
1y =1 (L-10y) =1, - Ty = 1 - L, =,
n n n

where 1/,1,, = n has been used.

Equations (2.12) and (2.13) further lead to the following important facts:

Note 2.2. Matrices Pre-multiplied by the Centering Matrix
A matrix sJA with A an n X p matrix and s a scalar satisfies

1,(sJA) = s1,JA = 0, (2.14)
J(sJA) = sJJA = sJA. (2.15)

When A is an n x 1 vector a, those equations are rewritten as lz(sJa) =0
and J(sJa) = sJa, respectively.
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Comparing (2.9) with (2.14), we can find that the sum and average of centered
scores are always zero:

1

This is shown in the row named “Average” in Table 2.2(B). Figure 2.3(B) (on a
later page) illustrates (2.16); the centered scores are distributed with their average
being the zero which is a center between negative and positive values. This property
provides the name “centered scores”, and the transformation of raw scores into
centered ones is called centering. Comparing (2.9) with (2.15), we also find

Jy, =y; (2.17)

The centered score vector, pre-multiplied by the centering matrix, remains
unchanged.

2.5 Variances and Standard Deviations

The locations of averages in the distributions of scores are indicated by triangles in
Fig. 2.1(A), which do not stand for how widely scores disperse. The most popular
statistic for indicating dispersion is variance. It is defined using the sum of squared
distances between scores and their average, which is illustrated in Fig. 2.2. The
division of the sum by the number of scores gives the variance. Denoting the
variance for variable j as v, it is formally expressed as

56 62 74 84 86 98
| | | L L |
I I I L |

<>
|74-77] | €——>
. o [84-77
162-77| —>
€ > |86-77|
|56-77| L \
|98-77]
Average
77.0

Fig. 2.2 Distances of scores to their average, which are squared, summed, and divided by n, to
give the variance of the mathematics scores in Table 2.2(A)
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1
Vij = ;{\xlj — 5+ —59'|2}
1 1 n

= ;{(xlj — %) (e *%‘)2} = 5,-21: (5 — %)’
where the same subscript j is used twice as v;;, for the sake of accordance with the
related statistic introduced in the next chapter. The variance of the scores for
mathematics in Table 2.2(A) is obtained as 6 '{(74 — 77)* + (98 — 77)* + - +
(84 — 77)*} = 214.33, for example.

To express (2.18) in vector form, we should note that it can be rewritten as

| Xij Xj
V]jzﬁtxlj—Xj,...,an—jCjJ . (219)
Xnj = X
X1j = X
Comparing (2.19) with : = Jx; in (2.9), the variance (2.18) or (2.19) is
Xnj = X
expressed as
1 / 1 2 1 1 1
v = - (I%) I = ~ [ "= —xIx; = —xiIx; =~ xiJ;, (220)

where (1.12), (2.11), and (2.12) have been used. Further, we can use (2.9) in (2.20)
to rewrite it as

1 1 1 1 2
vj = ZXJ'.ij = EXJ’.J'ij = Zy]'.yj = HyJH ) (2.21)

The variance of raw scores is expressed using their centered score vector simply as
n”'|lyI- We can also find in (2.20) and (2.21) that the variance is the squared
length of vector y; = Jx; divided by n.

How is the variance of the centered scores (rather than raw scores) expressed?
To find this, we substitute the centered score vector y; for X; in the variance (2.20).
Then, we use (2.17) and (2.9) to get

[ 1, [
Zij Jyj = Zyjyj = ;X]J JXj, (222)

which is equal to (2.20); the variance of the centered scores equals that for their raw
scores.
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The square root of variance (20.20), (2.21), or (2.22)

1, 1 1
Vi = X% = WHJXJH ZWHYJ‘H (2.23)

is called the standard deviation, which is also used for reporting the dispersion of
data. We can find in (2.23) that the standard deviation is the length of vector
y; = Jx; divided by n'”.

2.6 Standard Scores

The centered scores (i.e., the raw scores minus their average) divided by their
standard deviation are called standard scores or z scores. Let the standard score

vector for variable j be denoted by z; = [z, . . ., znj]/, which is expressed as

(e = %) / /Y5 e =X )

1

z = : =—| i |=m=k="¥
- Vi _ Vi Vi
(X — %))/ /75 Xnj = %

where we have used (2.9). In Table 2.2(C), the standard scores for (A) are shown;
the standard scores [—0.20, ..., 0.48]" for mathematics are given by dividing its
centered scores (B) by 14.64. Transforming raw scores into standard ones is called
standardization.

Standard scores have two important properties. One is that the sum and average
of standard scores are always zero, as are those of centered scores:

(2.24)

1
1;1Zj = EIQZ]‘ = 0, (225)

which follows from (2.16) and (2.24). The other property is that the variance of
standard scores is always one, which is shown as follows: The substitution of z; into
x; in (2.20) leads to the variance of standard scores being expressed as
n'2 ) Jz; = n'2z; = n7'||z; |, where we have used z; = Jz, following from the
use of (2.17) in (2.24). Further, we can substitute (2.24) in n~'||z,||* and use (2.21) to
rewrite the variance of standard scores as

}’lej _

1 2 1 2
;HZIH :n—VjJHyjH :;jj 1 (2.26)

This also implies that the length of every standard score vector is always ||zj| = n'".
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2.7 What Centering and Standardization Do
for Distributions

The properties of centered and standard scores shown with (2.16), (2.22), (2.25),
and (2.26) are summarized in Table 2.3. Figure 2.3 illustrates the roles that cen-
tering and standardization (i.e., transforming raw scores into centered and standard
ones) perform for the distributions of data: Centering simply moves the distribu-
tions of raw scores so that the average of the moved distributions is zero, and
standardization further accommodates the scale of the moved distributions so that
their variances are equal to one. The standard scores are unified among different
variables so that the averages and variances are zero and one, respectively, thus, the
greatness/smallness of the standard scores can be compared reasonably between
variables.

Taple 2.3 Averages and Average Variance
variances of centered and -
standard scores Centered scores 0 Variance of raw scores
Standard scores 0 1
History Mathematics
58 70 84
Raw 44 56 6672 see2 74 8 98
(a) Scores : H—H 100 0 : ——H TI 100
Centering
xij = %;
& a & & Centered
- —H—Ht + - —FH—H——+ (®) geores
H 0 H O i
v M < v (c) Standard
- =t — —HH— + Scores
0 0
variance 1 variance 1

Fig. 2.3 Distributions of raw, centered, and standard scores in Table 2.2



2.8 Matrix Representation 27

2.8 Matrix Representation

We will now introduce a basic formula in matrix algebra:

Note 2.3. A Property of Matrix Product
If A is a matrix of n X m and by, ..., bg are m x 1 vectors, then

[Aby, ..., Abg] = A[by, ... bg]. (2.27)

Using this and (2.5), the 1 X p row vector containing the averages of p variables
is expressed as

_ 1 1 1 1
[xl,...7xp} = |:21;X1,...,;1;Xp:| :ZI:L[XI"‘”XP] :EIZX (228)

For example, when X consists of the six students’ scores in Table 2.2(A),
6-'1;X = [61.0,77.0].

Let Y = [y, ..., ¥,] denote the n X p matrix of centered scores whose jth
column is defined as (2.9) for the corresponding column of X. Then, we can use
(2.9) and (2.27) to express Y as

Y= [Jxl,...,pr] :J[xl,...,xp] =JX, (2.29)

an example of which is presented in Table 2.2(B).

Let Z = [z, ..., z,] denote the n x p matrix of standard scores whose jth
column is defined as (2.24) for the corresponding columns of X and Y. Then, Z is
expressed as

1

1 1 vt
Z=|—y....—Y,| =[y,--¥,) . =YD (2.30)
[V"“ Vi ! N
Vi
1
Nam
Here, the blanks in stand for the corresponding elements being
VY11
zeros and D = . is the p x p diagonal matrix whose diagonal
Vop

elements are the standard deviations for p variables: We should recall (1.42) to
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notice that D™ is the diagonal matrix whose diagonal elements are the reciprocals

of the standard deviations. Those readers who have difficulties in understanding
(2.30) should note the following simple example with Y being 3 x 2:

yii o Y1z {1 ] yn/\/Vu y12/\/V22

YD '= |y y» /v yu/vvae |, (2.31)
Y3t Y32 )’31/\/\/11 )’23/\/1/22

which illustrates the equalities in (2.30) in the reverse order. The standard score
matrix Z can also be expressed as

1
Vv

Z=JXD !, (2.32)

using (2.29) in (2.30).

2.9 Bibliographical Notes

Carroll, Green, and Chaturvedi (1997, Chap. 3) and Reyment and Joreskog (2002,
Chap. 2) are among the literature in which the matrix expressions of intra-variable
statistics are intelligibly treated.

Exercises

2.1. Compute J = Is — 571515 and obtain the centered score matrix Y = JX for
the 5 x 3 matrix X in Table 2.3.

2.2. Compute the variance vj; = S’IX;JXJ- (j=1,2,3), the diagonal matrix
D! = J+—z , and the standard score matrix Z =JXD! for
X = [X;, X5, X3] (5 x 3) in Table 2.4.

2.3. Discuss the benefits of standardizing the data in Table 2.4.

2.4. Show that if the average for each column of Y (n X p) is zero, then the
average for each column of YA is also zero.

Table 2.4 Data rr}atrix X of  person Height Weight Sight

5 persons x 3 variables Bill 172 o 08
Brian 168 70 14
Charles 184 80 1.2
Keith 176 64 0.2
Michael 160 62 1.0
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2.5.

2.6.

2.7.

2.8.

Let Z be an n-individuals x p-variables matrix containing standard scores.
Show that ||Z|* = «Z'Z = «ZZ' = np.

Let x be an n x 1 vector with v = n~'x'Jx the variance of the elements in
x. Show that the variance of the elements in bx + cl,, is b?v.

Let y = [y, ..., ¥,]' contain centered scores. Show that the average of the
elements in -y +cl,=[-y; +¢, ..., =y, +c]' is ¢ and their variance is
equivalent to that for y.

Let z = [z, ..., z,)" contain standard scores. Show that the average of the
elements in bz + c1,, = [bz, + ¢, ..., bz, + c]' is ¢ and their standard deviation
is b.



Chapter 3 M)
Inter-variable Statistics Check or

In the previous chapter, we described the two statistics, average and variance, which
summarize the distribution of scores within a variable. In this chapter, we introduce
covariance and the correlation coefficient, which are the inter-variable statistics
indicating the relationships between two variables. Finally, the rank of a matrix, an
important notion in linear algebra, is introduced.

3.1 Scatter Plots and Correlations

As in the previous chapter, we consider an n-individuals x p-variables data matrix
2.1),1e., X =[xy, ..., Xj, ..., X,]. An example of X is presented in Table 3.1(A).
There, n individuals are 10 kinds of foods (n = 10) and p variables are their
sweetness, degree of spice, and sales (p = 3). The relationship between two vari-
ables, jand k (j, k = 1, ..., p), which is called a correlation, can be captured by the
scatter plot in which n individuals are plotted as points with their coordinates [x;,
xil, i =1, ..., n, where x;; and x; are the scores of individual 7 for variables j and k,
respectively. The plots for Table 3.1(A) are shown in Fig. 3.1a—c. For example,
(c) is the scatter plot for sweetness and sales, where 10 foods are plotted as points
with their coordinates [x;;, x3], i = 1, ..., 10, i.e., [32, 62], [28, 83], ..., [22, 63].

In Fig. 3.1, distributions are easily captured by the ellipses roughly surrounding
the points. The slope of the ellipse in Fig. 3.1c shows that sales are positively
proportional to sweetness. Two variables with such a proportional relation are said
to have a positive correlation. The inverse relationship is found between spice and
sweetness in Fig. 3.1a; the former tends to decrease with an increase in the latter,
which is expressed as the variables having a negative correlation. On the other
hand, the ellipse in Fig. 3.1b is not sloped; no correlation is found between spice
and sales.

© Springer Nature Singapore Pte Ltd. 2020 31
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Table 3.1 Data matrices of 10 individuals x 3 variables (artificial example)

Food (A) Raw score: X (B) Centered Scores: Y (C) Standard Scores: Z
X1 X2 X3 Y1 y2 Y3 Z 2 Z3
Sweet | Spice | Sales Sweet | Spice | Sales Sweet | Spice | Sales
1 32 10 62 3.5 -7.7 =5.5 0.69 |—-1.77 |-0.35
2 28 20 83 —0.5 2.3 15.5 —0.10 0.53 0.98
3 20 19 34 -85 1.3 -33.5 —1.68 0.30 | —2.11
4 34 21 91 5.5 33 23.5 1.09 0.76 1.48
5 25 16 53 -3.5 -1.7 —14.5 -0.69 |-0.39 |-0091
6 35 14 70 6.5 -3.7 2.5 1.28 | —0.85 0.16
7 25 20 62 -35 2.3 -5.5 —-0.69 0.53 |-0.35
8 30 18 73 1.5 0.3 5.5 0.30 0.07 0.35
9 34 13 84 5.5 —4.7 16.5 1.09 |—-1.08 1.04
10 22 26 63 —6.5 8.3 —4.5 —1.28 1.90 |-0.28
Average |28.5 17.7 67.5 0.00 0.00 0.00 0.00 0.00 0.00
Variance |25.65 |19.01 |251.45 |25.65 | 19.01 | 25145 1.00 1.00 1.00
SD 5.06 4.36 15.86 5.06 4.36 15.86 1.00 1.00 1.00
30 00— = 100
5L S wl 7 m . % - .
: . . 80
g 05\ 4 = ' 8 - ' . g 7 oo
E« 5l . . & o . ) -
. - af . 50 :
1or " T B 40
L@ L™ "L ()
15 20 25 30 35 40 510 15 20 30 15 20 25 30 35 40
Sweet Spice Sweet

Fig. 3.1 Scatter plots for the pairs of the variables in Table 3.1(A)

3.2 Covariances

The correlation between two variables j and k can be indicated by a covariance,
which is defined as

1 ~ ~
Vik = ;Z (x5 — %) (X — Xi),

i=1

(3.1)

the average of the product (x; — X;) X (xx — %) overi =1, ..., n, with x; — X; and
Xxix — X being the centered scores for variables j and k, respectively. It takes a
positive value when variables j and k have a positive correlation, while v;, shows a
negative value when the variables have a negative correlation, and vy is close to
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Table 3.2 Covariance matrix Variable Sweet Spice Sales

for Table 3.1(A) Sweet 25.65 ~12.65 60.15
Spice ~12.65 19.01 0.15
Sales 60.15 0.15 251.45

zero when j and k have no correlation. This property can be verified as follows: The
covariance between the variables sweet and spice in Table 3.1(A) is computed as

1
vi2 =75 {35 % (-7.7) +(-05) x 23+ -+ +(~6.5) x 83} = ~12.65, (3.2)

using the centered scores in (B). Those variables are found negatively correlated in
Fig. 3.1a and their covariance (3.2) is also negative. In a parallel manner, we can
have the positive vi3 = 60.15, which is the covariance between sweet and sales
correlated positively, as in Fig. 3.1b, while we can find v,3 = 0.15 closing to zero,
which is the covariance between spices and sales uncorrelated, as in Fig. 3.1c.
Those covariances are summarized in Table 3.2.

To express (3.1) in a vector form, (3.1) can be rewritten as

Xk — Xk
.oy xnj—ij] . (33)

Xnk — )_Ck

1[ _
Vi =—[x1; — %
e = T

Here, (2.9) should be recalled, noticing that the right vector in (3.3) can be
X1k — Xx

expressed as =y, = Jx; by replacing the subscript j in (2.9) by k, with

Xnk — Xg

v« the n x 1 vector of centered scores corresponding to the raw scores x; and J the

n X n centering matrix defined in (2.10). Thus, (3.3) is rewritten as

1 1 1 1 1
Vik = (Jx.i)/JXk = ;X,,'J/Jxk = ;X;JJXk = ;X}Jxk = ZY}Yk, (3.4)

in which (2.9), (2.11), and (2.12) have been used. That is, the covariance between
variables j and k is the inner product of the centered score vectors y; = Jx; and
Vi = Jx; divided by n.

A p-variables X p-variables matrix containing covariances, as in Table 3.2, is
called a covariance matrix. Each of its diagonal elements expresses the covariance
for the same variable.

1 1
v = ;x]’-ij = ;yj’-yj, (3.5)



34 3 Inter-variable Statistics

which equals (2.21), i.e., the variance for that variable. This implies that covariance
is an extension of the concept of variance for two variables. We should thus
consider covariance as including variance as a special case.

Let us substitute the centered score vector y; for x; in covariance (3.4). Then, we
have

1 1 1 1
Vie =" (JYj)/JYk = ;yj/-JYk = EY}Yk = ;X}J/Jxk, (3.6)

which equals (3.4); the covariance of centered scores equals that of their raw scores.

Though the covariance is a theoretically important statistic, an inconvenient
property of the covariance is that its value does not allow us to easily capture how
strong the positive/negative correlations between variables are. For example, (3.2)
shows that sweet and spice are negatively correlated with its sign (negative), but its
absolute value of 12.65 does not show to what degree those variables are negatively
correlated. This problem can easily be dealt with by modifying the covariance into a
correlation coefficient, as described next.

3.3 Correlation Coefficients

A correlation coefficient between variables j and k is given by dividing the co-
variance (3.1) or (3.4) by the square roots of the variances of variables j and % (i.e.,
by the standard deviations of j and k). That is, the coefficient is defined using (2.23)
as

j—
Vik XX

VEIV L S/

Here, it should be noted that n~" and the two square roots of n~' in the right-hand
side can be canceled out; (3.7) is rewritten as

XX X Jx; (Ix;) Ixs Yi¥i

’uk: — = =
" e Jaafases, sl

which shows that the correlation coefficient is defined as the inner product of the
centered score vectors y; = Jx; and y, = Jx; divided by their lengths. The coeffi-
cient (3.7) or (3.8) is also called Pearson’s product-moment correlation coefficient,
named after Karl Pearson (1857-1936, British statistician), who derived the
coefficient.

The correlation coefficient 7;, between variables j and k has the following
properties:

(3.8)
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[1] Its absolute value cannot exceed one with =1 < 7 < 1.

[2] Tt takes a positive value when j and k have a positive correlation.
[3] It takes a negative value when j and k have a negative correlation.
[4] It approximates zero when j and k have no correlation.

Property [1], which is not possessed by covariances, allows us to easily capture the
strength of the correlation, as illustrated in the following paragraph. Before that, we
will show some numerical examples. The coefficient between sweet and spice can
be obtained as

iy — V12 o —12.65 o
BT e v25.651/19.01

using (3.2) and v;; (Table 3.2) in (3.7). The value from (3.9) shows that sweetness is
negatively correlated with spice. In a parallel manner, the coefficient between spice
and sales is computed as

~0.57, (3.9)

V23 0.15
e — _ — 0.00,
B v V19.01v/251.45

indicating that spice and sales have no correlation, while ry3 is found to be 0.75,
which shows that sweetness is positively correlated to sales.

The wupper limit ry. = 1, shown in Property [1], is attained for y; = ay, with
a > 0; its substitution in (3.8) leads to ry = ay,'y/(|ly;l|xally;]) = 1. On the other
hand, the lower limit ry = —1 is attained when y; = by, with b < 0. The scatter
plots of the variables with r;, = 1 and r; = —1 are presented at the far left and right
in Fig. 3.2, respectively. In each plot, all points are located on a straight line. Any
7, takes a value between the two extremes *1, as shown in Fig. 3.2. There, we can
find that the strength of a positive or negative correlation is captured by noting to
what degree rj is far from the 0 point corresponding to no correlation and close to

(3.10)

R Sweet-Spice Spice-Sales Sweet-Sales o ,; 1'1)() ’
r=-1.00 rp=-0.57 Fa3=0.00 r13=0.75
1 1 |
I I 1
-1 0 1
Negative No Positive
Correlation Correlation Correlation

Fig. 3.2 Scatter plots and the corresponding correlation coefficients with their locations on the
scale ranging from —1 to 1
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Tabl.e 3.3 The correlation Variable Sweet Spice Sales
matrix for Table 3.1 Sweet 1.00 ~0.57 0.75
Spice —-0.57 1.00 0.00
Sales 0.75 0.00 1.00

+1. For example, 73 = 0.75 is close to 1, which indicates sweetness and sales are
highly positively correlated. On the other hand, r1, = —0.57 is located a little to the
left of the midpoint between 0 and —1, which indicates that sweetness and spice
have a fairly negative correlation, though the correlation might not be said to be
high.

The correlation coefficients among the variables in Table 3.1(A) are shown in
Table 3.3. Such a p-variables x p-variables matrix is called a correlation matrix.
As found in its diagonal elements, the correlation for the same variable is always

one: r;; = y;/y/(lyillllyih = 1.

3.4 Variable Vectors and Correlations

In this section, vector y; = [yy;, ... , ¥,;]’ is regarded as the line extending from [0,
..., 0] to [y, ..., ¥yl'- As explained in Appendix A.1.1 with (A.1.3), the cosine of
the angle between two vectors is equal to the division of their inner product by the
product of their lengths. Thus, (3.8) shows that the correlation coefficient equals the
cosine of the angle 0 between vectors y; = Jx; and y; = Jx; with

= 1if O = 0°

y,yk > 0 if Ojk <90°
jkzjizcosejk =0if ejk:900 . (311)

Al <0/if O > 90°

= —1if 0y = 180°

Here, the right-hand side shows the relationships of 0 to cos 0. In (3.11), we can
find that the angles between the vectors of positively correlated variables are less
than 90°, while the angles between negatively correlated ones are more than 90°,
and the angle between uncorrelated variable vectors is 90°. When the angles
between two vectors are 90°, they are said to be orthogonal. Using (3.11), we can
find that r1, = —0.57, ;3 = 0.75, and r»3 = 0.00 lead to 0,, = 125°, 0,53 = 41°, and
0,3 = 90°, respectively, which allows us to visually illustrate the variable vectors as
in Fig. 3.3.
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Fig. 3.3 Illustration of ya: Spice
correlations with variable

vectors in a three-dimensional

space

\1250

41° ys: Sales

yi: Sweet

3.5 Covariances and Correlations for Standard Scores

Let us recall (2.24), i.e., the definition of standard scores. By substituting (2.24) into
X; in (3.4), the covariance between standard score vectors z; and z; is expressed as

! 1/
o1 / 1, 1( 1 1 7YYk Vik
v ==Jz) o = -2z = — | —=y; = - .
= o) I = S g =0 5 ) kT i Vi

(3.12)

Here, z; = Jz; has been used. We can find (3.12) be equal to (3.7); the covariance of
standard scores is equivalent to the correlation coefficient of raw scores.
The correlation coefficient between standard score vectors z; and z; is expressed

as rj[f(] = vj[ﬁ / vj[;] v,[f]) by replacing vy, in (3.7) by the covariance (3.12). Here,

(2]

the variances v[z-] and v, for standard scores are equal to one, as found in Table 2.3,

Ji
thus, r][,f] = vj[.i] or (3.12); the correlation coefficient of standard scores equals the
correlation coefficients of the raw scores.

Table 3.4 summarizes the properties of the covariances and correlation coeffi-
cients for standard and centered scores. The correlation coefficients for centered/
standard scores and the covariances for standard scores equal the correlation
coefficients of their original raw scores, and the covariances for centered scores
equal those for the raw scores. We can regard the correlation coefficient as a
standardized version of the covariance, as the covariances for standard scores equal
the correlation coefficients of the raw scores.

Table 3.4 Covariances and correlations of centered and standard scores

Covariance Correlation coefficient

Centered scores Covariance for raw scores Correlation coefficient for raw scores

Standard scores Correlation coefficient for raw scores
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3.6 Matrix Expressions of Covariances and Correlations

Using (3.6) with (2.27), the p-variables x p-variables covariance matrix V = (vj)
for the data matrix X (2.1) can be expressed as

X Ix o X VIxe - XTI, |
V:l xJIxi - xJIx oo xJIx,
n
I VI o x|
x| J
_1 gf (3.13)
=% [Ixp - X Ix,] .
%]
_Xll_
1 ./ U 1 1y 1 /
== | X [JI[x - x00ox,] = -XTIX = -XJX,
n n n
X/
L-p

in which (2.11) and (2.12) have been used. We can use (2.29) to rewrite the
covariance matrix (3.13) simply as

1
V=-YY. (3.14)

n
Let R = (rj) denote the p-variables X p-variables correlation matrix R = (rj)
for X. Since the covariance for the standard scores is equal to the correlation

coefficient for the raw scores as shown in Table 3.4, the (j, k) element R = () is
expressed as (3.12):
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/ / / / / /
Zlle e ZlJzk e ZIJZP zlzl e lek e ZIZP
1 o K | 5 ,
R=-\|zJzy --- zJ)zy --- ZJ)z,| =_|22y --- Z2 -+ 1Z1Z
J J P J J P
n n
/ / / / / ]
szzl szzk szzp 2,2, z,Z; z,7,
1 !
=-77,
n
(3.13)
where Z = [z,, ..., z,] is the n-individuals x p-variables matrix of standard scores

matrix. Using (2.32) in (3.15), R is also expressed as
1 —1v/y/ —1 1 —ly/ -1
R=-D XJJXD  =-D XJXD ', (3.16)
n n

VvVl

with D = , as defined in Sect. 2.8. Further, if we compare

Vpp
(3.16) with (3.13), we have

R=D'vD (3.17)

3.7 Unbiased Covariances

For covariances (and variances), a definition exists that is different from (3.4). In
this definition, x;Jx, is divided by n — 1 in place of n; the covariance matrix for
X may be defined as

1
V-~ X JXx=-"
n—1

p— 1V. (3.18)
This is called an unbiased covariance matrix. Its off-diagonal and diagonal ele-
ments are called unbiased covariances and unbiased variances, respectively, for
distinguishing (3.18) from (3.13); one may use either equation. In this book, we
refrain from explaining why two types of definition exist, and (3.13) is used
throughout. For example, see Hogg, McKean, and Craig (2005) for the statistical
theory about the adjective “unbiased” and its antonym “biased”.

Though the covariance is defined in the two above manners, the correlation
coefficient is defined uniquely, i.e., in a single way, as follows: If we use covariance
(3.18), the correlation in (3.7) is rewritten as
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1 / /
_ VK 1 X%k _ XXk
\V4 Vij/Vik \/ﬁ XJ/»JX]‘ \/ﬁ X;(Jxk \/XJ{JX]'\ / X;Jxk

Here, n — 1 in the numerator and denominator are canceled out so that (3.19)
becomes equivalent to (3.8), i.e., (3.7).

i (3.19)

3.8 Centered Matrices

When a data matrix X contains centered scores, i.e., is already centered, with
1,’X=0,', or, equivalently, X = JX, (3.20)

X is said to be centered, where J = I, —n '1,1, is the centering matrix (2.10). The
equivalence of the two equations in (3.20) will now be proved.

Note 3.1. Two Expressions of Zero Average

The sum and average of the elements in each column of an n X m vector
F being zero are equivalent to the pre-multiplication of F by the centering
matrix being F:

1,'F = %ln’F =0, isequivalentto JF=F. (3.21)

This is proved by showing both [1] JF=F =1,F=0,, and [2]

1,F=0,' = JF =F. [1] is easily found by using (2.13) in 1,'F = 1,/JF,

while [2] follows from pre-multiplying of both sides of 1,'F = 0,,/ by —n"'1,,

yields —n'1,1,'F = ,0,,, to whose both sides we can add F so as to have
F-n'1,1,F =F,ie, A, -n '1,1,)F = F.

When X is centered, (3.13) and (3.16) are expressed as

1
V =-XX, (3.22)
n
1—1/ —1
R=-D!X'XD!, (3.23)
n

respectively, simply without using J.
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The covariance matrix, which has been treated so far, contains covariances
among the variables in a single data matrix X. Now, let us consider the p x m
matrix containing covariances between the variables in X (n X p) and those cor-
responding to the columns of F (n x m). The covariance matrix is expressed as

1
Vxr = ;X’JF. (3.24)
If both X and F are centered with X = JX and F = JF, (3.24) is simplified as
1,
Vxg = - X'F. (3.25)
n

Further, when both X and F contain standard scores, (3.25) also expresses a cor-
relation matrix.

3.9 Ranks of Matrices: Intuitive Introduction

For every matrix, its rank is given as an integer. It is an important number that
stands for a property of the matrix and is used in the following chapters. In this
section, we introduce rank so that it can be intuitively captured using the four 5 x 3
matrices in Table 3.5.

First, note the matrix in Table 3.5(A). The values seem to be different among the
three columns. Indeed, no relationships exist between X, X,, and x3. That is, those
three columns are regarded as, respectively, conveying three different kinds of
information. Such a matrix is said to be the one whose rank is three. Next, note (B),
whose third column is the same as the first one; though the matrix has three
columns, it conveys to us only two kinds of information. The rank of this matrix is
said to be mwo.

The third column in Table 3.5(C) is different from the first one, but multipli-
cation of the latter by —3 gives the third column. Its elements can be considered as
expressing the same information as those in the first column, except that the signs of
the values are reversed and their scales differ. The rank of this matrix is also said to
be two, not three.

Table 3.5 Four matrices for illustrating their ranks

(A) B) © (D)

X] X2 X3 X] X2 X3 X] X2 X3 X1 X2 X3
1 2 3 -2 2 3 2 2 3 -6 2 9 -2
2 4 5 9 4 5 4 4 5 -12 4 =21 9
3 -1 7 3 -1 7 -1 -1 7 3 -1 —10.5 3
4 =5 0 3 -5 0 =5 -5 0 15 =5 -16.5 3
5 7 5 2 7 5 7 7 5 —21 7 4.5 2
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Finally, let us note Table 3.5(D). Though the three columns seem to mutually
differ, x, = 1.5x;_3x3. The rank of this matrix is also said to be two, in that the
information conveyed by the second column can be found by knowing that found in
the other two.

In the next section, the rank of a matrix is precisely defined.

3.10 Ranks of Matrices: Mathematical Definition

A sum of the vectors hy, ... , h, multiplied by scalars

bihy+ --- +b,h, = Hb (3.26)
is called the linear combination of hy, ... , h,. Here, H=[hy, ... ,h,Jisann x p
matrix, and b = [by, ... , by]"is a p x 1 vector. Before defining the rank of H, we

introduce the following two notions:

Note 3.2. Linear Independence
The set of vectors hy, ... , h, is said to be linearly independent, if

bih; + --- +byh, = Hb = 0, implies b = 0,,. (3.27)

The inverse of the above is defined as follows:

Note 3.3. Linear Dependence
The set of vectors hy, ... , h,, is said to be linearly dependent, if Hb = 0, does
not imply b = 0,, that is, if

bih; + -+ +b,h, = Hb = 0, holds,

. . (3.28)
with at least b;(1 <J < p) not being zero.

This implies that byh; = — Zj ., bjhj and we can divide both sides by b, to

have
bj
h, = —Z;hj: (3.29)
i#

the vector h; is a linear combination of the other vectors with coefficients
—bjlb;. Here, >, ,; a; denotes the sum of g; over j excluding ;. When j = 1,
2, 3, Eﬁéz a; = a; + az, for example.
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The rank of H, which we denote as rank(H), is defined as follows:

Note 3.4. Rank of a Matrix

rank(H) = the maximum number of linearly independent columns in H.
(3.30)

For illustrating the definition of rank, we present the following three examples:

[1] Let P = [p;,p,,p3] = . Then, rank(P) = 3,

DN = DN =
~N B~ OO

AW =

since b\p; + byp, + bsps = 05 implies b; = b, = b3 = 0; we cannot find nonzero

1 2 3
2 4 6

2] Let Q=q;,q,q3] = L2 o3l Then, rank(Q) = 1,
2 4 6

since q, = 2q; and q3 = 3q;; the linearly independent vector sets are {q;}, {q>},
and {q3}, each of which consists of a single vector.

[3] Let R = [1'171'271'3] =

3
6
Mk Then, rank(R) = 2,
8

11
2 2
1 3
2 4

since r3 = 2r; + rp, thus, rank(R) < 3, but the set of r; and r, is linearly
independent.

It is difficult to find the rank of a matrix by glancing at it, but we can easily find
the rank through the extended version of the singular value decomposition intro-
duced in Appendix A3.1.

Here, we introduce properties of the rank without proof. The rank of an n x
p matrix A satisfies

rank(A) = rank(A’), (3.31)

which implies that the “columns” in (3.30) may be replaced by “rows”. Further,
(3.31) implies
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rank(A) < min(n, p). (3.32)
The following properties are also used in the remaining chapters:
rank(BA) < min(rank(A), rank(B)) (3.33)

A’A =1, implies rank(A) = p. (3.34)

3.11 Bibliographical Notes

Carroll, Green, and Chaturvedi (1997, Chap. 3), Rencher and Christensen (2012,
Chap. 3), and Reyment and Joreskog (2002, Chap. 2) are among the literature in
which matrix expressions of inter-variable statistics are intelligibly treated. The rank
of a matrix is detailed in those books introduced in Sect. 1.9.

Exercises

3.1. Prove the Cauchy-Schwarz inequality
(a'b)” < |a]*[[b]” (335)

by defining matrix C = ab’ — ba’ and using [|C||* > 0.
3.2. Use (3.35) to show

X% < [[Ixi[[1Ix2 ), (3.36)

with x; and x, n X 1 vectors and J =1,, — n_ll,,ln' the centering matrix.
3.3. Use (3.36) to show that the correlation coefficient takes a value within the
range from —1 to 1.
34. Letx =[x, ..., x,) and y = [yy, ... , ¥, with v = n~'x'Jy the covariance
ax; +c

between x and y. Show that the covariance between ax + cl,, =

ax, +c
by, +d
and by +dl, = : is given by abv = n”'abx'Jy.
by, +d
3.5. Let r denote the correlation coefficient between vectors X = [xy, ... , x,,]’ and
y = [y1, ..., ¥.]". Show that the correlation coefficient between ax + c1,, and

by + dl,, is also r for ab > 0, but is —r for ab < 0, with the coefficient not
defined for ab = 0.
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Let X and Y be the matrices containing n rows, with Vxy = n 'X'JY the
covariance matrix between the columns of X and those of Y. Show that
A'VxyB gives the covariance matrix between the columns of XA and those
of YB.
Let X and Y be the matrices containing n rows, Dx be the diagonal matrix
whose jth diagonal element is the standard deviation of the elements in the
jth column of X, and Dy be defined for Y in a parallel manner. Show that
Ryy = n 'DY'X'JYDY! gives the correlation matrix between the columns of
X and those of Y.
Consider the matrices defined in Exercise 3.7. Show that Rxy =
n IDYX'YDy! gives the correlation matrix between the columns of X and
Y, when they are centered.

1 0 1
0 2 2 .

Let A = 30 3] Show rank(A) = 2 by noting the columns of A and
0 4 4

rank(A") = 2 by noting the rows of A.

Let Gbe p X gand Hbe g x r, with g > p > r. Show rank(GH) < r.
Let Fben x mand A be p X m, with m < min(n, p). Show rank(FA") < m.
Show rank(I,,) = n, with I, the n X n identity matrix.

Show that rank(JX) < min(n — 1, p), with X an n X p matrix and J =1, —
n 11,1, the centering matrix.



Part 11
Least Squares Procedures

Regression, principal component, and cluster analyses are introduced as least
squares procedures. Here, principal component analysis is treated in two chapters,
as it can be described in various ways. The three analysis procedures are formulated
as minimizing least squares functions, though other formulations are also possible.



Chapter 4 M)
Regression Analysis petic

In the previous two chapters, we expressed elementary statistics in matrix form as
preparation for introducing multivariate analysis procedures. The introduction to
those procedures begins in this chapter. Here, we treat regression analysis, whose
purpose is to predict or explain a variable from a set of other variables. The origin
of regression analysis is found in the studies of Francis Golton (1822-1911, British
scientist) on heredity stature in the mid-1880s. The history of developments in
regression analysis is well summarized in Izenman (2008, pp. 107-108).

4.1 Prediction of a Dependent Variable by Explanatory
Variables

In Table 4.1, we show a 50-products x 4-variables (quality, price, appearance,
and sales) data matrix. Let us consider predicting or explaining the sales of
products by their quality, price, and appearance, with the formula

sales = by X quality + by X price + b; X appearance + ¢ + error. (4.1)

Here, the term “error” must be attached to the right-hand side, because a perfectly
exact prediction of sales is impossible.

Let us use x;1, xin, X;3, and y; for the quality, price, appearance, and sales of the
i-th product in Table 4.1, respectively. Then, (4.1) is rewritten as

Vi = bixjt +byxp +b3xy +c+ej, (4.2)

with e; the error value for product i. Since (4.2) is supposed for all products, i = 1,
..., 50 in Table 4.1. Thus, we have

© Springer Nature Singapore Pte Ltd. 2020 49
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g‘lible 41"1 Da.ta matrix for Product Quality Price Appearance Sales
appZZfaZi;z,p ;ﬁde’sales of 1 10 1800 2.6 48
products, which is an artificial 2 5 1550 4.2 104
example found in Adachi 3 5 1250 3.0 122
(2006) 4 5 1150 | 1.0 104
5 6 1700 7.0 125
6 6 1550 4.0 105
7 5 1200 3.6 135
8 3 1000 1.8 128
9 3 1300 5.8 145
10 5 1300 3.0 124
11 6 1550 5.8 99
12 9 1800 4.2 102
13 8 1400 44 146
14 6 1300 3.0 138
15 5 1400 3.8 122
16 10 1950 3.0 13
17 4 1550 5.2 103
18 2 1300 4.0 86
19 7 1800 6.8 109
20 4 1300 34 103
21 6 1350 4.0 113
22 9 1450 1.8 100
23 5 1300 4.2 111
24 6 1450 4.0 138
25 8 1750 4.0 101
26 4 1500 4.2 126
27 3 1700 4.6 29
28 6 1500 2.2 73
29 4 1250 34 129
30 9 1650 3.2 77
31 5 1500 34 84
32 4 1350 3.8 103
33 4 1350 3.8 112
34 3 1550 4.6 77
35 3 1200 3.6 135
36 1 1450 6.0 112
37 4 1600 4.8 106
38 5 1600 3.8 99
39 1 1100 4.2 143
40 6 1600 3.8 54
41 4 1450 6.6 139

(continued)
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Table 4.1 (continued)

Product Quality Price Appearance Sales
42 2 1300 1.6 90
43 4 1200 5.2 203
44 3 1150 2.4 96
45 7 1350 3.2 125
46 7 1200 1.2 107
47 5 1550 5.0 130
48 5 1600 4.2 72
49 7 1400 3.8 137
50 7 1600 5.4 106
48 10 1800 2.6 c e
104 5 1550 4.2 c e
: =bi| . |+b . +bs| . |+ |+ e (4.3)
106 7 1600 5.4 c es0
Further, it is rewritten as
48 10 1800 2.6 1 e
104 5 1550 42| (b 1 e
N : ; by el |+ . (44)
106 7 1600 5.4]°° 1 eso

by summarizing the vectors for quality, price, and appearance into a matrix.
Expressing this matrix as X and using y for the sales vector, (4.4) can expressed as

y=Xb+cl,+e, (4.5)

with b = [by, by, b3]', e = [ey, ... , e50]’, and 1,, the n x 1 vector of ones (n = 50 in
this example). Regression analysis refers to a procedure for obtaining the optimal
values of ¢ and the elements of b from data y and X. Though y was used for a
centered score vector in the last two chapters, it is not so in this chapter.

Hereafter, we generally describe X as an n-individuals x p-variables matrix,
which implies that y and e are n x 1 vectors and b is a p x 1 vector. The model
(4.5) for regression analysis is thus expressed as
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y X b 1, e

V1 X11 X1p 1 €1
b

Vi = | x Xip : + c|1 + e (4.6)
by

Yn Xl Xpp 1 [

The term model refers to a formula that expresses the idea underlying an analysis
procedure.

In this paragraph, we explain the terms used in regression analysis. The pre-
dicted or explained vector, i.e., y, is called a dependent variable, while the columns
of X are called explanatory variables. On the other hand, the elements of b are
referred to as regression coefficients, and c is called an intercept. In particular,
regression analysis with p = 1, i.e., a single exploratory variable, is called simple
regression analysis, while the procedure with p > 2 is called multiple regression
analysis; (4.6) is its model.

The terms generally for describing analysis procedures are summarized next:

Note 4.1. Data Versus Parameters
In contrast to y and X given as data beforehand, the values of b and ¢ are
unknown before regression analysis is performed. Such entities as b and c,
whose values are estimated by an analysis procedure, are generally called
parameters. When one sees symbols in equations, it iS very important to note
whether the symbols express data or parameters.

Besides the data and parameters, errors (e) are included in (4.6). So as to
minimize their amount, the parameter values are estimated, as described in the
next section.

4.2 Least Squares Method

Parameters b and ¢ can be estimated using a least squares method. It generally
refers to a class of the procedures for obtaining parameter values that minimize the
sum of squared errors. This sum for (4.5) is expressed as

lel*= e+ +e = lly —Xb— L, (4.7)

since (4.5) is rewritten as e =y — Xb — cl,,. Thus, regression analysis is formu-
lated as
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minimizing £ (b, ) = [[e|*= ||y — Xb — c1,[|* overband c, (4.8)

which can be restated as obtaining the optimal b and c (i.e., their solutions) that

minimize (4.7). Let us express the solutions of b and ¢ for (4.8) as b and ¢,
respectively, which are given as described in the following paragraphs.
It is known that ¢ must satisfy

1 1
¢=—-1y——1Xb. (4.9)
n n

This result can be derived as follows: We can define h = y — Xb to rewrite (4.7) as
[h = c1,]* which is minimized for ¢ =n '1,’h, as shown with (A.2.2) in
Appendix A.2.1. The use of h =y — Xb in ¢ = n~'1,,'h leads to (4.9).

Substituting (4.9) into cine =y — Xb — 1,, x ¢, which follows from (4.5), we
have

1 1
e=y—Xb- (; L1y - ;lnIQXb)
1 1 (4.10)

with J =1, — n_11n1:1 the centering matrix defined in (2.10). Thus, (4.7) is
rewritten as

le]* = [|Jy — JXb]|*. (4.11)
This is minimized when b is
b= (X'JX)'X'Jy, (4.12)
as shown with (A.2.16) in Appendix A.2.2. Here, (X'JX) " is the inverse matrix of
X'JX, which is introduced below.
Note 4.2. Inverse Matrix
A p x p square matrix H is said to be nonsingular it

rank(H) = p; (4.13)

otherwise, H is said to be singular. If H is nonsingular, the p X p matrix H'
exists that satisfies
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H'H=HH'=1,. (4.14)
The matrix H ! is called the inverse matrix of H. For example,

3 -1 2
H=|-4 6 —3|isnonsingular, and H'
1 0 5
049 008 —0.15
028 021 0.02
—0.10 —-0.02 0.23

We can find in (4.14) that H is the inverse matrix of H ' with H= H )",
The inverse matrix H™' does not exist if H is singular.
Two basic properties of inverse matrices are

H) = HT, (4.15)
(GH) ' =H'G™!, (4.16)

which includes (sH) ~' = sT'"H " as a special case with s # 0 a scalar. The
inverse matrix of a symmetric matrix S is also symmetric:

st=s" (4.17)

As found in the note, we suppose that X'JX is nonsingular in (4.12). Actually, the
data set in Table 4.1 gives such a X'JX.
Thus, the solution of regression analysis is given by obtaining (4.12) and sub-

stituting b into b in (4.9). The solution (4.12) for b is also geometrically derived, as
explained later, in Sect. 4.7.

4.3 Predicted and Error Values

The solutions (4.9) and (4.12) for the data set in Table 4.1 are shown in Table 4.2

(A); b = [7.61,—0.18,18.23]" and ¢ = 256.4. Substituting these values into (4.1),
we have
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Table 4.2 Results of regression analysis for the data in Table 4.1

Solution Regression coefficient Intercept Variance Multiple
by: by: bs: ¢ explained | correlation
quality | price appearance

(A) 7.61 —-0.18 18.23 256.4 0.73 0.85

Unstandardized

B) 0.51 -1.17 0.77 0.0

Standardized

sales = 7.61 x quality — 0.18 X price 4+ 18.23 x appearance + 256.4 + error.
(4.18)

This equation is useful for predicting the future sales of a product, which is not
included in Table 4.1. For example, let us suppose that a product has not yet been
sold, but its quality, price, and appearance have been found to be 6, 1500, and 4.
We can substitute those values into (4.18) to predict the sales as follows:

sales = 7.61 x 6 —0.18 x 1500 + 18.23 x 4 +256.4 + error = 105 + error.
(4.19)

That is, future sales can be counted as 105, although any future error is unknown.
However, existent errors can be assessed as described in the following paragraph.

Let us consider substituting the solutions b and ¢ into (4.5), giving

y = Xb +¢1,, + e, which is rewritten as
y=y+e ie,e=y—y (4.20)

by defining a predicted value vector as
y = Xb+¢l,. (4.21)

In (4.20), we have attached the “hat” mark to the e in (4.5), i.e., replaced it with &, in
order to emphasize that the error vector e, which had been unknown before analysis,
becomes known, as shown next: Using b= [7.61,—0.18, 18.23]', ¢ =256.4, and
X in Table 4.1, the values in (4.21) are given by

10 1800 2.6 1 56.0

|5 1550 42| 761 1 92.1

y=1>. 0 Tl -0a8| 42564l | =| T |, (4.22)
18.23

7 1600 5.4 1 120.2
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while y = [48, 104, ..., 106]’ as seen in Table 4.1. This vector and (4.22) are used
in (4.20) to provide

48 56.0 —8.0
. R 104 92.1 11.9
e=y-y=| . || : |= : (4.23)
106 120.2 —14.2
Its squared norm
[€]>= (=8.0)> + 11.9% 4 -+ + (—14.2)? (4.24)

indicates the largeness of errors.

4.4 Proportion of Explained Variance and Multiple
Correlation

The purpose of this section is to introduce a statistic that indicates how successful
the results of regression analysis are, using (4.24) and the three properties for y and
€ described in the following paragraph.

The first property is

Jy = JXb, (4.25)

which is derived as follows: (4.21) implies J§ = JXb+ J(¢1,), with J(¢1,) =
¢(1,')'= 0, following from (2.11) and (2.13). The second property is

Je=eé, (4.26)

which follows from the use of (2.12) in (4.10). Property (4.26) shows that the
average of an error vector is always zero; n='1,é = n='1/ Jé = 0, because of (2.13).
The third property is that errors are uncorrelated to predicted values with their covari-
ance n~'¢'Jy =0, ie.,

ely =0. (4.27)
Readers interested in the proof of (4.27) should see the following note:
Note 4.3. No Correlation between Errors and Predictive Values

The use of (4.21) and (4.25) in (4.20) leads to Je = Jy — JXb. Substituting
this and (4.25) in & J§ = & J'Jy, this is rewritten as
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&¢Jy = (Jy — JXb) JXb = y'JXb — b'X'JXb,

where (2.11) and (2.12) have been used. We can further substitute (4.12) in
the above equation to have

é,Jy _ lex(X/Jx)*lley _ y/Jlx(X/Jx)*llex(Xle)*IX/Jy

AR R (4.28)
= yIX(XJX) 'XJy - yIX(XJX) 'XJy=0

The pre-multiplication of the first equality in (4.20) by J leads to Jy =
Jy + Jé = Jy + é because of (4.26). Further, the angle between Jy and € being 90°
is found in (4.27). This fact implies that Jy, Jy, and € form the right triangle
illustrated in Fig. 4.1. We can thus use the Pythagorean theorem to have

9y (%= 191+ [lé]*. (4.29)

From (4.29) we can derive a statistic indicating how successful the results of
regression analysis are, as follows: The division of both sides of (4.29) by |Jy|*
leads to

B [
yl* 19yl

(4.30)

Here, the proportion ||é]|*/||Jy||* taking a value within the range [0, 1] stands for
the relative largeness of errors; equivalently, one minus that proportion,

JA 2 é 2
31 | el wsl)
1yl 1y
Fig. 4.1 Geometric /'\
relationship among e (errors),
Jy (centered dependent Jy
variable), and Jy (centered
predicted values) e
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taking a value within the range [0, 1] indicates the smallness of errors, i.e., suc-
cessfulness of regression analysis. Statistic (4.31) is called the proportion of
explained variance, as it can be rewritten as:

13507 _ o 35)° ! [lax|
R P 1

(4.32)

using (4.25). That is, the denominator of (4.32), n”'||Jy|/% is the variance of a
}2

dependent variable, while the numerator, n! HJXB , is the variance of predicted
values based on the explanatory variables in X, which implies that (4.32) indicates
the proportion of the variance explained by explanatory variables in the variance of
the dependent variable. The resulting proportion of the explained variance in
Table 4.2 is found to be 0.73, which is interpreted to mean that 73% of the variance
of the dependent variable (i.e., how much more/less sales are) is explained by
quality, price, and appearance. Statistic (4.32) is also called a coefficient of
determination.
Let us consider the square root of (4.32). This can be rewritten as

Iyl 1yl 1yl Iy yIly o Jy)Jy (433)

= X — = — = — = —
804 I ¥ 04 8 A A X 113 M1 3 MR A R DA 1B Ml

where we have used y'Jy = (§ +&)'Jy = §'J§ because of (4.27). Comparing (4.33)
with (3.8), we can find (4.33) to be the correlation coefficient between y and y. In
particular, (4.33) is called the multiple correlation coefficient between dependent
and explanatory variables, as we can use (4.25) to rewrite (4.33) as

Jy)Jy _ (Jy)IXb (434)

[ 35T~ ayl [axb|

which stands for the relationship of y to the multiple variables in X. Its value,

0.85 = v/0.73 in Table 4.2, is near the upper limit of 1 and indicates a close
relationship of sales to quality, price, and appearance.

4.5 Interpretation of Regression Coefficients

Simple regression analysis with a single explanatory variable can be formulated in
the same manner as the multiple regression analysis described so far, except that
p is restricted to one, i.e., X is set to an n X 1 vector x. Simple regression analysis
with the model “sales = b x quality + ¢ + error” for the data in Table 4.1 pro-
duces the result
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Table 4.3 Covariances and correlations among the four variables in Table 4.1

Variable | V: covariance matrix R: correlation matrix
Quality | Price Appear® | Sales |Quality |Price | Appear® | Sales
Quality 4.5 1
Price 245.5 41,801 0.57 1
Appear® -0.4 104.6 1.8 —0.16 039 |1
Sales —-18 —3748 10 985 -0.27 -0.58 |0.24 1
“Appearance
sales = —4.02 x quality + 128.73 + error. (4.35)

Here, it should be noted that the regression coefficient for quality is negative. The
covariance and correlation coefficients between sales and quality in Table 4.3 are
also negative. Those negative values show that the products of lower quality tend to
sell better. This seems to be unreasonable. This is due to the fact that the above
coefficients are obtained only from a pair of two variables (quality and sales)
without using the other variables (prices and appearance), as explained next.

Let us note the positive correlation of quality to price, which tends to decrease
sales. That is, a third variable, price, intermediates between quality and sales.
These may also be intermediated by appearance. The effects of intermediate
variables cannot be considered by the statistics obtained for two variables
excluding the intermediate ones.

On the other hand, we can find in Table 4.2 that the coefficient for quality,
by =761, resulting from multiple regression, is reasonably positive. This is
because the other variables are included in the model, as found in (4.1). The
coefficient value by = 7.61 is interpreted as indicating the following relationship:
The sales increase by 7.61 on average with a unit increase in quality, while the
values of the other variables are kept fixed. Why this interpretation is derived
should be understood in a rather subjective manner: A unit increase in quality with
price and appearance fixed in (4.1) can be expressed as

sales™ = by x (quality + 1) + by X price + by X appearance + ¢ + error*, (4.36)

where asterisks have been attached to sales and error, since an increase in quality
changes their values from those of the sales and error in (4.1), i.e.,

sales = by x quality + by X price 4+ bs X appearance + ¢ + error.
The subtraction of both sides of (4.1) from those of (4.36) gives
sales™ — sales = by + (error* — error), (4.37)

whose average equals b, since the average of errors is zero, i.e., (4.26) leads to
n~'1,'¢ = 0, implying that the average of error — error in (4.37) is zero.
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The other coefficients are also interpreted in the same manner. For example,

by = —0.18 in Table 4.2 allows us to consider the following: sales tend to decrease
by 0.18 on average with a unit increase in price, while quality and appearance are
fixed.

4.6 Standardization

It is senseless to compare the largeness of the three regression coefficients in

Table 4.2(A) (i)l =7.61, b, = —0.18, by = 18.23), since they are obtained from
the raw scores in which the variances (i.e., how widely the values range) differ
across variables. For the comparison of coefficients to make sense, regression
analysis must be carried out for the standardized data in which the values in all
variables have been transformed into standard scores, so that the variances are
equivalent among the variables (i.e., all unity). The solutions for standard scores are
called standardized solutions, while those for raw scores, which we have seen so
far, are called unstandardized solutions. However, the standardized and unstan-
dardized solutions of regression analysis for the same data set can be regarded as
the two different expressions of the same solution, as shown next.
The standard score vector for y is expressed as

1
Ys = ﬁJY (4.38)

by substituting y for x; and v, for vj; in (2.24), where v, is the variance of the
dependent variable; it should be noticed that y; in (2.24) is different from y in this
chapter. The standard score matrix for X is expressed as (2.32), i.e.,

Z=JXD . (4.39)

Vit
Here, D = . is the p x p diagonal matrix, with its jth diagonal

v/ Vop
12

element v;;~ being the standard deviation of the jth explanatory variable, implying
that its variance is v;. Substituting (4.38) and (4.39) into y and X in (4.12),

respectively, we have the standardized solution of the regression coefficient vector
. _ - 1
bs = (2/3Z)"'Z/Jys = (DX JXD )" (DX [ —=Jy
vV

1 / -1 — v/ 1 ’ — 1</ 1 N
=—DX'JX) DD XJy=—DXJX) XJy=—Db.
- DIXIX) - DIXIX) -

(4.40)
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Here, (4.16) has been used: (D 'XJXD ) !=XJXD Y 'D = DXJX) 'D.
Formula (4.40) shows that f)s is easily transformed from the unstandardized solution

b, i.e., the pre-multiplication of b by v;” ’D. Further, the substitution of (4.38) and
(4.39) into y and X in (4.9) leads to the standardized solution of the intercept
simply being zero:

cs = 0. (4.41)
Let us substitute (4.38), (4.39), and (4.40) for y, X, and b in (4.32). Then, we have

N 2
ot Jazbs X0 (0) |

_ 2 2 _ 2"
n=H|Jys|l %JyH n= Iyl

(4.42)

n—1

This shows that the proportion of explained variance remains equal to (4.32) and
its square root (4.33) or (4.34) (multiple correlation coefficient) also remains
unchanged, even if the data set is standardized. That is, the index value for the
successfulness of regression analysis is equivalent between unstandardized and
standardized solutions.

Let us see the regression coefficient f)s in the standardized solution, which is
called the standardized regression coefficient, in Table 4.2(B). A comparison of
their values makes sense. We can find that the absolute value of the coefficient for
price is the largest among the three exploratory variables, showing that the effect of
price on sales is the largest among the three. Further, the coefficient of price is
negative, implying that sales tend to decrease with an increase in price. The effect
of quality is found to be the least among the three variables.

4.7 Geometric Derivation of Regression Coefficients

This section can deepen our understanding of regression analysis, with knowledge
of the vector space explained in Appendix A.1.3 being necessary here.

The minimization of (4.11) over b is also restated as minimizing the squared
length of the vector (4.10), i.e., e = Jy — JXb. To solve this problem, let us con-
sider what JXb geometrically stands for when the elements of b take any real
values. It can be represented as the grayed plane in Fig. 4.2a. Though it has been
depicted as a two-dimensional plane in the figure, the grayed plane indeed repre-
sents a p-dimensional space, which is formally expressed as
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Jy K‘
\“ Jy — IXb Jy — JXb
JXb JXb
E(JIX) Z(JIX)
(a) When b is arbitrary (b) When b is the solution b

Fig. 4.2 JXb in space Z(JX) with vector Jy

EJX) = {JX*: Jx* = JXb = [Jxi, ..., Jx,]b (4.43)
=bJxi+ -+ +bJx,; —oco<bj<oo,j=1,...,p}, '

with X =[x, ... , x,] and b = [by, ... , b,]; (4.43) is equivalent to (A.1.12) in
Appendix A.1.3, with h" and H in (A.1.12) replaced by Jx* and JX in (4.43),
respectively. We can set by, ..., b, to any real values so that the terminus of the

vector Jx = JXb moves in the space (4.43), i.e., on the grayed plane in Fig. 4.2a.
The function (4.11) to be minimized is the squared length of the difference
vector e = Jy — JXb, which is depicted as a dotted line in Fig. 4.2a. It is found to

be the shortest, i.e., the minimum, when e = Jy — JXb is orthogonal to JXb, as in
Fig. 4.2b, that is, when

(JXb)'(Jy — JXb) = b'X'Jy — b'’X'JXb = 0, (4.44)

which holds for b equaling (4.12). This is shown by the fact that the substitution of
(4.12) into b in b’X"Jy — b'’X'JXb [i.e., the middle side of (4.44)] leads to the
second and last equalities in (4.28). We should also note that the right triangle
found in Fig. 4.2b is the one in Fig. 4.1.

4.8 Bibliographical Notes

There are a number of books in which regression analysis is exhaustively detailed.
Among them are Montgomery, Peck, and Vining (2012) and Fahrmeir, Kneib,
Lang, and Marx (2013).

Multivariate data analysis procedures including regression analysis are exhaus-
tively introduced in Lattin et al. (2003) with a number of real data examples.
Izenman (2008) and Koch (2014) are examples of advanced books on multivariate
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data analysis procedures recommended for those who have finished reading the
present book.

One topic that has not been mentioned in this chapter is variable selection, i.e.,
the problem of selecting useful exploratory variables and discarding useless ones
among the initial set of variables. A modern approach to this problem is treated in
Chap. 21.

Exercises

4.1. Show that

1 _
A :—{ a22 alz} (4.45)
apla — apaz | —ai ar
is the inverse matrix of A = [a“ 6112}
a;  an
. . —6x1+2x, =7 . _ .
4.2. Let us consider the system of equations { 3, 4900 = —12° i.e., Ax = ¢, with
_ -6 2 _ 7 . _ X
A= [ 3 9} and ¢ = [_12]. Compute the solution of x = [XJ for the
system using A™' in (4.45).
4.3. Show (AB)™"" = A" 'B"" with A and B being nonsingular.
4.4. Consider the model y;=c+e¢; (i=1, ... , n), ie.,, y =cl, + e, for a data
vector y = [y, ... , ¥,]’, with e = [e}, ... , e,]' containing errors and c the

parameter to be obtained. Show that the average y =n~' > | y; is the least
squares solution of ¢ in the model, i.e., that fic) = |ly — c1,,||* is minimized for
¢ =Y, using the facts in Appendix A.2.1.

4.5. Show that the solution of intercept ¢ in (4.9) is zero if y and each column of
X contain centered scores.

4.6. Show that the regression model (4.5) can be rewritten as

y=Xp+e, (4.46)

b

X11 le 1 .
with X = : “lannx (p+1) matrix and p= | * |[a(p+1) x1

Xnl "t Xpp 1 P
vector.

4.7. Show that fi = ()Z’X)AXN’y is the least squares solution of f for (4.46), i.e.,
Hy — Xﬁ”z is minimized for f = fi, using the facts in Appendix A.2.2.
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4.8. Show that (4.12) can be rewritten as b= V;;ny. Here, Vyy = n 'X'JX is the
covariance matrix among explanatory variables, and vy, = n 'X'Jy is the
vector containing the covariances between explanatory and dependent vari-
ables, with n the number of individuals.

4.9. Show that (4.40) can be rewritten as BS = R)};(rxy. Here, Ryy =
7 'DT'X'JXD ™! is the correlation matrix among explanatory variables, and
Iy, = n 'd'D7'X'Jy is the vector containing the correlation coefficients
between explanatory and dependent variables, with n the number of individ-
uals, D the diagonal matrix whose jth diagonal element is the standard devi-
ation for the jth variable in X, and d the standard deviation of the elements in

y.
4.10. Discuss how JXb in Fig. 4.2b is the image of a pencil reflected in a mirror,
when Jy and E(JX) stand for the pencil and mirror, respectively, with p = 2.
4.11. In some procedures, a combination of function f{0) and another one g(0), i.e.,

f(0) +¢(0), (4.47)

is minimized, where 0 is a parameter vector, 7 is a given nonnegative scalar value,
and g(0) is called a penalty function in that it penalizes 0 for increasing g(0). In a
special version of regression analysis (Hoerl & Kennard, 1970), function f(0) is
defined as fib) = ||Jy — JXb||* for a dependent variable vector y (n x 1) and ex-
planatory variable matrix X (n x p), while a penalty function is defined as
g(b) = ||b|* which penalizes b for having a large squared norm. That is,
[Jy — JXb|* + <||b]|* is minimized over b for a given 7. Show that the solution is
given by b = X'JX + rI,,)le’Jy.



Chapter 5 )
Principal Component Analysis (Part 1) petic

In regression analysis (Chap. 4), variables are classified as dependent and ex-
planatory variables. Such a distinction does not exist in principal component
analysis (PCA), which is introduced in this chapter. A single data matrix X is
analyzed in PCA. This was originally conceived by Pearson (1901) and formulated
by Hotelling (1933) who named the procedure PCA. As found in this chapter and
the next, PCA can be formulated apparently in different manners. In some text-
books, PCA is firstly formulated as in Sect. 6.3 (in the next chapter), or the for-
mulation found in this chapter is not described. However, the author believes that
the latter formulation should precede the former one, in order to comprehend what
PCA is. According to ten Berge and Kiers (1996), in which the formulations of
PCA are classified into types based on Hotelling (1933), Pearson (1901), and Rao
(1973), the formulation in this chapter is based on Pearson, while the next chapter is
based on Hotelling.

5.1 Reduction of Variables into Components

PCA is usually used for an n-individuals X p-variables centered data matrix X, with
(3.20),i.e.,1,’X = 0,. Table 5.1(B) shows an example of X which is a 6-students x
5-courses matrix of the centered scores transformed from the test scores in
Table 5.1(A).

For such a data matrix X, PCA can be formulated with

X =FA'+E. (5.1)

Here, F is an n-individuals x m-components matrix whose elements are called
principal component (PC) scores, A is a p-variables X m-components matrix whose
elements are called component loadings, and E contains errors, with
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Table 5.1 Test scores for four courses, M (mathematics), P (physics), C (chemistry), and
B (biology), with their averages and standard deviations (SD) (artificial example)

Student (A) Raw scores (B) Centered scores (C) Standard scores
M P C B M P C B M P C B
S1 69.0 | 664 |77.0 |74.1 -49 |-10.6 0.3 53 | -045 | -0.70 0.02 0.38
S2 67.2 |53.6 |539 |58.7 -6.7 |—-234 |-228 |-10.1 |[-0.61 |-1.54 |-1.75 |-0.73
S3 786 1969 |973 |96.2 4.7 19.9 20.6 27.4 0.43 1.31 1.58 1.97
S4 84.4 |87.7 |839 |69.8 10.5 10.7 7.2 1.0 0.96 0.70 0.55 0.07
S5 56.3 | 68.7 |72.1 |56.8 |-17.6 —8.3 —-4.6 |-12.0 |-1.62 |-0.55 |-035 |—0.86
S6 879 |88.8 |76.0 |57.2 14.0 11.8 -0.7 | —-11.6 1.29 0.78 | —0.05 | —0.83
Average | 739 |77.0 |76.7 |68.8 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00
SD 109 | 152 |13.0 | 139 10.9 15.2 13.0 13.9 1.00 1.00 1.00 1.00
m <rank(X) < min(n, p). (5.2)

The term “components” roughly means those entities into which p variables are
summarized or reduced. The kth columns of F and A are called the kth components.
Inequality (5.2) implies that (5.1) takes the form

Al

That is, X is assumed to be approximated by the product of unknown matrices
F and transposed A, with the number of columns (components) in F and A being
smaller than that of X, as illustrated by the rectangles in (5.3).

The matrices to be obtained in PCA are PC score matrix F and loading matrix
A. For obtaining them, a least squares method is used; the sum of the squares of the
errors in E = X — FA/,

F(F,A) = |E|*= |X - FA'|]", (5:4)

is minimized over F and A. When X is the 6 x 4 matrix in Table 5.1(B) and m is set
to 2, the function (5.4) is minimized for the matrices F and A shown in Table 5.2
(whose W is introduced later). There, it should be noticed that A is of variables X
components, i.e., not transposed as in (5.1) or (5.3). As found in the table, the
students (individuals), which have been assessed by four kinds of scores (variables)
in X, are described by the two kinds of PC scores in F, while the relationships of the
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Table 5.2 Matrices F, A, and W obtained for the centered data matrix in Table 5.1(B)
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F (PC scores)

A (loadings)

W (weights)

F1 F2 Al A2 W1 w2
S1 —0.23 —-0.93 M 7.16 6.87 M 0.01 0.05
S2 —1.46 —-0.18 P 14.28 4.34 P 0.03 0.03
S3 1.65 —1.04 C 12.52 —1.96 C 0.02 —-0.01
S4 0.62 0.73 B 11.02 —7.86 B 0.02 —0.06
S5 —-0.81 —-0.41
S6 0.25 1.82

PC scores to the original four variables are described in A. How F and A are
interpreted is explained in Sect. 5.4. Currently, readers need only keep in mind that
the original four variables have been reduced to two components, which implies
that variables are explained by the components whose number is smaller than that
of variables. Such a reduction is called reduced rank approximation, which is

detailed in Appendix A.4.3.

5.2 Singular Value Decomposition

PCA solutions are given through the singular value decomposition (SVD) intro-
duced in the note below. As SVD is one of the most important properties of
matrices, carefully memorizing the following note as absolute truth is strongly

recommended.

Note 5.1. Singular Value Decomposition (SVD)

Any n x p matrix X with rank(X) = r can be decomposed as

X = KAL'.

Here, K (n x r) and L (p x r) satisfy

and

KK=LL=1I,

(5.7)
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is an r X r diagonal matrix whose diagonal elements are positive and
arranged in decreasing order:

> >0 > 0. (5.8)

This decomposition is called singular value decomposition (SVD) and 1 (the
kth diagonal element of A) is called the kth largest singular value of X.

In (5.7) the blank elements of A represent their being zero, with this expression
used in the remaining parts of this book. SVD is described in more detail in
Appendix A.3, where the theorem in the above note is presented as a compact form
of SVD in Theorem A.3.2.

Another expression of the SVD explained in Note 5.1 is given next:

Note 5.2. Another Expression of SVD (1)
Let us express the matrices K and L in Note 5.1 as K = [ky, ..., k,,,, K115 -,
kr] = [Kms I<[m]] and L = [l], ERR) lm’ lm+l» L) lr] = [Lm, L[m]]s with

K, = [ki, ..., ky| and L, = [l;,...,1,](thefirst m columns), (5.9)

Kj = [Knt1,.. k] and Ly, = [Liy 1, ..., 1] (the remaining columns).
(5.10)
Then, (5.6) can be rewritten as k,’k, =1/, = 1 and k, 'k, = 1,/1, = 0 for u #
v wu=1, ... , r, v=1, ... , r). Further, (5.5) can be rewritten as
X =4kl + -+ 4, KL+ A Kol + - + 4K, which is expre-
ssed in matrix form as
X = KAL = K,A, L, + K[m]A[m]L[m],, (5.11)

with

/11 )~m+1
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Further, SVD has the following important property, which is directly related
to the PCA solution minimizing (5.4):

Note 5.3. SVD and Least Squares Solution

Let X be an n X p matrix whose SVD is defined as in Notes 5.1 and 5.2, F be an
n X m matrix, and A be a p X m matrix, with m < r = rank(X) < min(n, p).
Then,

f(FA') = |X — FA'|]® (5.13)
is minimized for
FA' = K, A, L, (5.14)

with K,,,, L,,, and A,, defined as in (5.9) and (5.12).

The fact in the above note is proved by Theorem A.4.5 with (A.4.17) in Appendix
A.4.3. The theorem is referred to as Eckart and Young’s (1936) theorem in some of
the literature.

Let us illustrate the SVD in Note 5.1 and the solution in Note 5.3. The SVD (5.5)
for the X in Table 5.1(B) is given as

X K A L’
—49-106 03 53| |-0.10-0.38 0.19-0.71||56.57 031 0.62 0.54 0.48
—6.7 234 -22.8 -10.1| |-0.60-0.07 0.52 0.42 28.10 0.60 0.38 —0.17 -0.68

47 199 20.6 27.4|=| 0.67-0.42 0.07 0.44 15.72 0.68 —0.37 -0.40 0.49
105 107 72 1.0 0.25 0.30 0.05-0.33 5.16/ [-0.29 0.58 -0.72 0.25

-17.6 -83 —4.6 -12.0| |-0.33-0.17 -0.82 0.11
140 11.8 0.7 -11.6 0.10 0.74 —0.02 0.09

(5.15)
Note 5.3 thus shows that the solution of FA' for minimizing (5.13) is given by
Kn Am L'
-0.10 -0.38| [56.57 0.31 0.62 0.54 048
-0.60 -0.07 28.10{ | 0.60 0.38 —0.17 —0.68 (5.16)
1 = | 0.67 -0.42 .
FA 0.25 0.30
-0.33 -0.17
0.10 0.74

We should note that SVD provides the solution of FA' in function (5.4) for PCA,
but not each of F and A is given. Their solutions are generally expressed as

F = K,A,,S, (5.17)
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A=L,A SV (5.18)

m

with o and S being arbitrary scalar and nonsingular matrices, respectively. We can
easily verify that (5.17) and (5.18) meet (5.14). That is, the solution is not unique:
There are infinitely many solutions for {F, A}. One of the solutions has been shown
in Table 5.2, as explained in Sect. 5.4.

5.3 Formulation with a Weight Matrix

Notes 5.1 and 5.2 lead to the following facts:

Note 5.4. Another Expression of SVD (2)
Let K,, L,, and A,, be the matrices defined in Note 5.2. The
post-multiplication of K,, and L,, by A,, can be expressed as

K, A, = XL, (5.19)

LA, = X'K,,. (5.20)

The facts in the above note are proved in Appendix A.3.3.
By comparing (5.19) with (5.17), we can rewrite the latter as
F=K,A,A," 'S =XL,A," 'S, ie.,

F =XW (5.21)
with
W=L,A"'S (5.22)
a p-variables X m-components matrix that we refer to as a weight matrix.
Equation (5.21) shows that the PC score matrix F is expressed as the data matrix
post-multiplied by the weight matrix.
This fact shows that PCA may be formulated, by using (5.21) in (5.4), as
minimizing
F(W,A) = [|IX - XWA'|? (5.23)

over W and A. This minimization is equivalent to minimizing (5.4) over F and
A. Some authors have first presented (5.23) rather than (5.4) as the loss function for
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PCA, where the term loss function refers to the one to be minimized; its examples
are (5.23), (5.4), and (4.7).
Equation (5.21) implies that the resulting PC scores are centered ones with

IF=0, ie, JF=F, (5.24)

m?’

when PCA is performed for a data matrix of centered scores with 1,/’X = 0,/ since
1,F=1,XW =0,W = 0,,/, and it is equivalent to JF = F, as proved in Note 3.1.

5.4 Constraints for Components

For selecting a single set of F and A from the multiple solutions satisfying (5.17)
and (5.18), we must impose constraints onto F and A. There are various types of
constraints, and one of them is that

1
-FF =1, (5.25)
n
A’A s a diagonal matrix whose (5.26)
diagonal elements are arranged in decreasing order. '
The solution that satisfies this constraint is
F = /nK,, (5.27)
A= ! L., A (5.28)
- \/ﬁ m4xms *

which are derived from (5.17) and (5.18) by setting o« = 0 and S = nl/zlm. We can
verify that (5.27) and (5.28) satisfy (5.25) and (5.26) by noting that (5.6) and (5.9)
imply K,’K,, =L,'L,, =L,. Under (5.25) and (5.26), the weight matrix is
expressed as

W = VnL,A,', (5.29)

which is derived from (5.22) by setting « = 0 and S = n'"?1,,. Table 5.2 shows the
solutions of (5.27), (5.28), and (5.29) for the data in Table 5.1(B).

To consider the implications of constraints (5.25) and (5.26), we express the col-
umnsof Fand A asF = [f}, ... ,f,]and A = [a,, ..., a,,], where the elements of f; are
called the kth PC scores and those of a, are called the kth loadings (k = 1, ..., m). Let
us note (5.24) and recall (3.22). They show that the left-hand side n 'F'F in (5.25)1s
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the inter-component covariance matrix of PC scores, whose diagonal elements n~ /£,
are variances, and whose off-diagonal elements nilf’kf, (k # 1) are covariances. The
variances and covariances are constrained to be one and zero, respectively, in (5.25).
This implies the following:

[1] PC scores are standardized.
[2] The kth PC scores are uncorrelated with the Ith PC ones with f}(fl =0fork#1.

Similarly, the constraint of A’A being a diagonal matrix in (5.26) is rewritten
as a;'a; = 0 for k # [, which does not imply that a; is uncorrelated to a;, since
1,’A # 0, in general, but allows the loadings to have the following property:

[3] The kth loading vector a; is orthogonal to the Ith one a,.

The properties are desirable in that [2] and [3] allow different components to be
distinct and [1] makes it easier to compare PC scores between different components.
Further, [1] leads to the following property:

[4] A (p x m) is the covariance matrix between p variables and m components,
in particular, the correlation matrix when X is standardized.

It is proved as follows: We can use (5.20) and (5.27) to rewrite (5.28) as

1 1 1
A=—L,A, =—=XK, =-XTF, 5.30

which equals (3.25) and is the covariance matrix for X and F, since of 1,'’X =0,
and (5.24). Further, if X is standardized, (5.30) is the correlation matrix, because of
property [1] and (3.25).

Note that the loading matrix A in Table 5.2 is the covariance matrix for X and F,
but is not their correlation matrix, since it is the result for the data set which is not
standardized. On the other hand, Table 5.3 shows the PCA solution for the stan-
dard scores in Table 5.1(C), where the constraints (5.25) and (5.26) are imposed.
The A in Table 5.3 is the correlation matrix between variables and components.
The solution has been given through SVD:

Table 5.3 Matrices F, A, W obtained for the standard scores in Table 5.1(C)

F (PC scores) A (loadings) W (weights)
F1 F2 Al A2 Wil w2

S1 —-0.23 -0.78 M 0.70 0.66 M 0.24 0.79
S2 —1.43 0.13 P 0.94 0.20 P 0.33 0.24
S3 1.58 -1.10 C 0.94 -0.24 C 0.33 -0.28
S4 0.66 0.72 B 0.77 -0.56 B 0.27 —0.66
S5 -0.92 -0.74

S6 0.33 1.76
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X K A L'
-0.45-0.70 0.02 038 |-0.09 -0.32 -0.26 0.72| | 4.15 041 056 056 0.46
-0.61 -1.54 —1.75 -0.73| |-0.58 0.05 ~0.55 —0.41 224 072 022 -0.26 -0.61
043 131 158 1.97|=| 0.65-0.45-0.13 -0.44 1.23 —0.51 047 040 -0.60
096 070 055 0.07| | 027 029 002 033 0.38|] 023 -0.65 0.68 -0.25
-1.62-0.55 —0.35 -0.86| [-0.38 —0.30 0.77 —0.10
129 078 —0.05 -0.83| | 0.14 0.72 0.16 -0.10
(5.31)
with X being the matrix in Table 5.1(C).
5.5 Interpretation of Loadings
Let us define the columns of matrices as X = [xy, ..., X,], A’ = [ay, ... , a,], and

E =[e,, ..., e,], withx; a;,and ¢; j = 1, ..., p) corresponding to variable j (i.e., a;/
the jth row vector of A). Then, the PCA model (5.1) is rewritten as

G=1,...,p).

This takes the same form as (4.5) except that (5.32) does not include an intercept.
That is, PCA can be regarded as the regression of x; onto F. When m = 2, as in
Table 5.3, (5.32) is expressed as

X; = Faj + €; (532)

Xi:aj1f1+aj2f2 —&-e,» (]: 1,... ,p), (533)
with F = [f}, f,] and a; = [a;;, ap]'. That is, f; and f, can be viewed as the ex-
planatory variables for a dependent variable x;, with loadings a;; and a;, as the
regression coefficients. The equation is further rewritten as
xj=aufa +apfote; (i=1,...p;j=1,...,p), (5.34)
using X = (x;), F = (fi), and A = (ay).
On the basis of (5.34), we can interpret the loadings in Table 5.3 as follows:

[Al] All a;; show fairly large positive values for all variables (courses), which
implies that students with higher values of f;; (the 1st PC score) tend to
show higher scores x;; for all courses (j = 1, ..., p). The Ist component can
thus be interpreted as standing for a general ability common to M, P, C, and
B.

aj, show positive loadings for M and P, but negative ones for C and B. The
2nd component can be interpreted as standing for a specific ability advan-
tageous for M and P, but disadvantageous for C and B.

[A2]
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As described with (5.30) in Sect. 5.4, the loadings in Table 5.3 can also be
regarded as the correlation coefficients of variables to components. For example,
courses P and C are very highly correlated with Component 1, since the corre-
sponding coefficient 0.94 is close to the upper limit.

5.6 Interpretation of Weights

The role of weight matrix W is easily understood by rewriting (5.21) as
fk:XWk:W”(X1+ +kaXp (k: 1,...,m), (535)

with W = [Wi, ... , Wyl the kth column of W = (wy). In (5.35), we find that the
elements in W provide the weights by which variables are multiplied to form the PC
scores in F. We can further rewrite (5.35) as

fie=wuxa+ - Fwuxp (=1, . mk=1,...,m). (5.36)

This allows us to interpret the W in Table 5.3 as follows:

[W1] All w;; show positive values for all variables (courses), which shows that
the Ist PC score f;’l = WiXj1 + WX + W3 X3 + Wa1Xig is the sum of all
variables positively weighted. Thus, the score can be interpreted as standing
for a general ability common to M, P, C, B.

[W2] wj, show positive values for M and P, but negative ones for C and B; the
2nd PC scores fp = wipXiy + WaoXpp + W3opXi3 + WapXiy are higher for stu-
dents who are superior in M and P, while the scores are lower for those who
are superior in C and B. The scores can thus be interpreted as standing for a
specific ability advantageous for M and P, but disadvantageous for C and B.

Those interpretations are congruous with [A1] and [A2] in the last section.

5.7 Percentage of Explained Variance

In this section, we consider assessing the amount of the errors for the resulting
solutions. Substituting SVD (5.5) and the solution (5.14) into X and FA’, respec-
tively, in the squared sum of errors (5.4), its resulting value can be expressed as

|IE|> = ||KAL - KAL),
= rtLAK'’KAL' — 20LAK'K,, A, L, + trL,, A, K.,
=trA? — trAfn >0.

I

KmAmL:n (537)
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Here, we have used trLAK'K, A, L, =tr(L,/LAK'K,A,) = tr(A,)A,,) =
trA2,A,,. This result follows from

_l -
KK, =LL, = !
m m 0 O

L0 -+ 0]

K'K,, = L'L,, equals the » x m matrix whose first m rows are those of I, and the
remaining rows are filled with zeros. Dividing (5.37) by trA? leads to

% =1—-PEV,, >0, (5.38)
with
trA2  trA2
= trAZl = ||X||n§ (5.39)
Here, we have used
[X|]*= rX'X = rLAK'KAL’ = trA>. (5.40)

Since (5.38) expresses the largeness of errors with taking a nonnegative value,
(5.39) indicates the smallness of errors, i.e., how well FA' approximates X, by
taking a value within the range [0, 1]. Some different terms are used for proportion
(5.39). One of them is the proportion of explained variance (PEV), since (5.39) can
be rewritten as

1 ARY l 1 n/ 1
PEV, — ;tr(KmAmlL m) KAy L _ Itr(FA')'FA ’ (5.41)
r X'X trV
with V = n~'X’X the covariance matrix given in (3.22); the denominator of (5.41)
is the sum of the variances of p variables, while the numerator is the sum of the
variances of the columns of FA’, i.e., (5.14), since (5.24) implies that FA' is
centered with 1,'’FA' =0,
The PEV for the solution with m = 2 in Table 5.3 is obtained as

4.15% +2.24? 2224
4152 +2.242 +1.232+0.382  23.90

PEV, = =0.93, (5.42)
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using (5.31). This implies that 93% of the data variances are accounted for by two
components; in other words, 7% (=100-93) of the variances remain unexplained. If
we adopt the m = 3 solution, the PEV is

415242242 +123% 2375
4.152+2.242 +1.232+0.382 "~ 23.90

PEV; = =0.99.

The PEV for the solution with m = 2 in Table 5.2 (i.e., the solution for the
centered data matrix without standardization) is obtained as

56.572 4 28.107 398978

PEV, = =
> 56572 +28.102+15.722 +5.16>  4263.52

=0.94, (5.43)

using (5.15) and (5.16). This differs from (5.42); the difference is not due to a
round-off error. This shows that the PCA solution for a centered data matrix without
standardization differs from that for the standard scores for the same data matrix.
The latter solution cannot be straightforwardly transformed from the former, which
differs from the regression analysis in the last chapter.

5.8 High-Dimensional Data Analysis

Recently, we have often encountered data sets with much more variables than
individuals, i.e., an n X p data matrix X with p > n. Such a data set is said to be
high-dimensional (e.g., Kock, 2014). In order to find a few components underlying
a number of variables, PCA is useful. In this section, we illustrate PCA for
high-dimensional data using Yeung and Ruzzo’s (2001) gene expression data with
n = 17 time points and p = 384 genes. The data matrix is publicly available at
http://faculty.washington.edu/kayee/pca.

We performed PCA for the data set with m =4. The solution shows
PEV, = 0.81, which implies that 81% of the variances in 384 variables are
explained by only four components. For the resulting loading matrix, we performed
a varimax rotation, which is described in Chap. 13, for the following reason:

Note 5.5. Rotation of Components
If constraint (5.26) is removed and only (5.25) is considered, (5.1) can be
rewritten as

X =FA'+E =FITA' +E = FfA{ + E. (5.44)


http://faculty.washington.edu/kayee/pca
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Here,
Fr=FT and At =AT, (5.45)

with T a special matrix satisfying T'T = TT' =1, which is detailed in
Appendix A.1.2. If F meets (5.25), Fr also satisfies it:

1 1 1
“FiFr=-TFFT =T (—F’F)T =TA)T=TT=1,  (546)
n n n

Equations (5.44) and (5.46) imply that if F and A are the PCA solution that
minimizes (5.4) subject to (5.25), so are Fr and Ar.

The above T can be chosen by the rofation techniques in Chap. 13, so that
the resulting A+ is easily interpreted.

The resulting loading matrix A+ is of 384 x 4, which is too big to capture the values
of its elements. Such a matrix can be effectively presented by a heat map, in which
the largeness of the absolute values of each element is represented as the depth of
color in the cell corresponding to each element. Figure 5.1 shows a heat map for the
resulting loadings, block-wise. There, the blocks correspond to the five groups, into
which the 384 genes are known to be categorized; each block is a matrix whose
rows and columns are occupied by the genes in the corresponding group and the
four components (C1-C4), respectively, though the genes in Group 2 are divided
into two blocks. The solution is considered to be reasonable, as each phase has a
unique feature of the loadings: the genes in Groups 1, 2, 4, and 5 positively load
Components 1, 2, 3, and 4, respectively, while those in Group 3 positively load
both Components 2 and 3.

5.9 Bibliographical Notes

Jolliffe (2002) exhaustively details various aspects of PCA. A subject that has not
been treated in this book is the graphical biplot methodology for jointly repre-
senting the PC scores of individuals and the loadings of variables in a single
configuration (Gower, Lubbe, & le Roux, 2011). The author of the present book has
proposed a modified PCA procedure for easily capturing the biplot (Adachi, 2011).

A three-way data array is often observed whose element can be expressed as x;,
with i, j, and k standing for an individual, a variable, and an occasion, respectively,
for example. The PCA formulation in this chapter can be modified to the
approximation of the three-way data array by the reduced components, as intro-
duced in Chap. 20.
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Exercises

5.1

5.2.

5.3.

5.4.
5.5.
5.6.

5.7.
5.8.

5.9.
5.10.

5.11.

5.12.
5.13.

Write Egs. (5.5)—(5.8) ten times, using different characters for matrices, in
order to learn SVD by heart.

Show that (5.5) can be rewritten as X = KAL forn > p. Here, K and L are

the n X p and p X p matrices, respectively, satisfying KK=L1TL= L,
- -

while A is a p X p diagonal matrix with A= ~r

0
This is the extended version of SVD in Appendix A.3.1.

Show that the error matrix E = X — FA’ resulting in the minimization of
(5.4) is expressed as E = KAL), with its right-hand side defined
as in (5.11) and the resulting PC scores are uncorrelated to the errors with
FE =,0,.

Show that (5.14) can be rewritten as FA' = A k{1’ + -+ + 4,k,l,,; using
(5.9).

Show that the problem in Note 5.3 would be trivial with its solution
FA' =X, if m < rank(X) were not supposed.

Show that (5.27) and (5.28) must be replaced by F = K,,Ap? and A = L,,AL?,
respectively, if constraint (5.25) was replaced by F'F = A'A,

Show that the SVD in Notes 5.1, 5.2, and 5.4 implies K,, = XL,,A,, .
Discuss the similarities and differences between the loading matrix A and the
weight matrix W.

Show PEV,, < PEV,.; for (5.39).

Let us define

X" =LA'K (5.47)

for the matrix X whose SVD is defined in Note 5.1. Show that X* satisfies
XXX = X, XXX = X, (XX = XX*, and (X*X)' = X*X. Matrix (5.47)
is called the Moore—Penrose inverse of X, as introduced in Chap. 17.

If X is nonsingular, show that its inverse matrix X ' is a special case of the
Moore—Penrose inverse X" (5.47).

Show that the Moore—Penrose inverse (5.47) is defined for every matrix.
As with SVD and the Moore—Penrose inverse, QR decomposition is also
defined for every matrix. Here, the QR decomposition of A (p x m) is expressed
as A = QR, with Q'Q = I,,, and the elements of R = (rj) (m x m) being zero
forj > k. Verify that
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A Q R
-0.27 -1.74 124 1.58 -0.09 -032 -026 0.72 3 2 4 6
-1.74 146 -257 -648 -0.58 0.05 -0.55 -041 0 6 -5 3
1.95 400 485 0.09]| = 0.65 -045 -0.13 -0.44 0 0 0 2
0.81 1.20 -0.37 4.18 027 029 0.02 033 0 0 0 5
-1.14 -1.04 -0.02 -2.14 -0.38 -0.30 0.77 -0.10
042 4.04 -3.04 282 0.14 072 0.16 -0.10

represents a QR decomposition.



Chapter 6 M)
Principal Component Analysis (Part 2) petic

In this chapter, principal component analysis (PCA) is reformulated. The loss
function to be minimized is the same as that in the previous chapter, but the
constraints for the matrices are different. This reformulation gives two purposes of
PCA that were not found in the previous chapter. They are [1] forming a weighted
composite score with the maximum variance and [2] visualizing a high-dimensional
invisible distribution of individuals. In Sects. 6.1 and 6.2, the reformulation of PCA
is mathematically described, followed by illustrations of the two purposes in
Sects. 6.3, 6.4, and 6.5. Finally, a subject parallel to that in Sect. 5.7 is treated in
Sect. 6.6.

6.1 Reformulation with Different Constraints

Let X denote an n-individuals x p-variables centered data matrix with 1,'’X = 0,/,
as in the last chapter. As described there, PCA is formulated as minimizing (5.4),
which is equivalent to (5.23), i.e., minimizing

F(W,A) = [|X — FA'|’= | X — XWA/| (6.1)

over weight matrix W and loading matrix A with F = XW containing PC scores.
Using the singular value decomposition (SVD) in Notes 5.1 and 5.2, the solutions
for W and A are expressed as (5.18) and (5.22), which are presented again here:

A=L,AL"SY (6.2)
W =L,A%'S. (6.3)

Here, o and S are arbitrary scalar and nonsingular matrices, respectively, which
show that infinitely many solutions exist.

© Springer Nature Singapore Pte Ltd. 2020 81
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To select a single solution among them, we consider the following constraints:

F'F = WX'XW = a diagonal matrix whose diagonal elements (6.4)
are arranged in descending order, '

WW =1,, (6.5)

which differ from constraints (5.25) and (5.26) in the last chapter. Then, the solution
for W and A is expressed as

W=A=L,. (6.6)

Both matrices are identical, which are given by (6.2) and (6.3) with o = 0 and
S = A,,.. Obviously, (6.5) is satisfied by (6.6). This also allows F = XW to satisfy
(6.4) as follows: (6.6) and (5.19) lead to F = XW = XL,, = K,,A,,,. This fact and
K,'K, =1, imply

FF = WXXW =A,° (6.7)
where the diagonal elements of A2 are in descending order, because of (5.8) and

(5.12).
The identity of W to A in (6.6) shows that we may rewrite (6.1) as:

F(W) = [[X - XWW/|° (6.8)

without A.

6.2 Maximizing the Sum of Variances
Minimization of (6.8) subject to (6.4) and (6.5) is equivalent to maximizing

1 1
g(W) = r—FF = —tr'W'X'XW (6.9)

n n

subject to the same constraints. The equivalence is shown by expanding (6.8) as

F(W) = aX'X = 20X’ XWW' + trWW X' XWW’

_ ! I/ I/ / (6'10)
= trX'X — 20WX'XW + orWXXWW'W.

Using (6.5), the function (6.10) can be further rewritten as
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F(W) = rX'X — 2 WX'XW + tr WX'XW = tX'X — tW'X'XW.  (6.11)

Here, we should note that only —trW'X'XW is a function of W in the right-hand
side. This implies that the minimization of f{W) over W is equivalent to minimizing
—trW'X'XW or maximizing trW'X'XW. Further, this maximization is equivalent to
trW’X'XW divided by n, i.e., (6.9).

Thus, PCA can also be formulated as maximizing (6.9) subject to (6.4) and (6.5).
Here, the matrix n 'F'F in (6.9) is the covariance matrix of PC scores between
components, since F = XW is centered: 1,'’X = 0, leads to 1,'F = 0,,". Thus, the
diagonal elements of n~ 'F'F are the variances of m PC scores, implying that (6.9) is

the sum of the variances of the 1st, ... , mth PC scores:
g(W):lf’f +~--+lf’f :i lf’fk (6.12)
nt! nm" £~ \n ) '

with F = [f}, ..., f,].
We can also rewrite (6.9) as

1
g(W) = e W’ (- x’x) W = trW'VW, (6.13)
n
where
1,
V=-XX (6.14)
n

is the covariance matrix for centered X. In some books, PCA is introduced with the
following decomposition:

Note 6.1. Eigenvalue Decomposition of a Covariance Matrix

The singular value decomposition X = KAL' in (5.5) with (5.6) and (5.7)
leads to X'X = LA’L’. Comparing it with X'X = nV following from (6.14),
we have nV = LA’L’. This equation can be rewritten as

V =LAL'. (6.15)

Here,

= . = — 2
A= . A, (6.16)
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with 7 = rank(X) and §; > -+ > 0, > 0. Decomposition (6.15) is referred to
as the eigenvalue decomposition (EVD) or spectral decomposition of V, d;
(k=1, ..., r)is called the kth largest eigenvalue of V, and the kth column of
L is called the eigenvector of V corresponding to dy.

6.3 Weighted Composite Scores with Maximum Variance

Let us express the columns of a data matrix as X = [X;, ... , X,]. An example of
X with n = 9 (examinees) and p = 3 (tests) is given in Table 6.1(B), which contains
the centered scores of the raw ones in (A). They are the scores of the entrance
examinations for a company. The examinations consist of the following items:

ES: essay,
IN: interview,
PR: presentation,
which define the three variables in X.
We perform PCA for this data set with the number of components m equaling

one, i.e., W=w; (p x 1) and F = f; = Xw; (n x 1) being vectors. By defining
Wi = [wiy, ..., wp1]', the PC score vector f; is written as

fl = XW1 =wnx1+ - —|—Wp1Xp = W11ES +W21IN+W31PR, (617)

Table 6.1 Scores for an entrance examination and its PCA scores, which are artificial examples
found in Adachi (2006)

Examinee | (A) Raw scores (B) Centered scores (C) PC scores
ES IN PR ES IN PR 1st 2nd 3rd

1 88 70 65 21.2 4.3 -3.0 10.8 | —19.0 0.6
2 52 78 88 —14.8 12.3 20.0 13.3 243 | —-1.8
3 77 87 89 10.2 21.3 21.0 313 47 |-14
4 35 40 43 -31.8 |—-257 |-250 |—46.5 109 |33
5 60 43 40 -6.8 |—22.7 |—-28.0 |—-348 |-114 |-0.7
6 97 95 91 30.2 29.3 23.0 469 |-103 |-1.1
7 48 62 83 —18.8 -3.7 15.0 -1.8 234 6.5
8 66 66 65 -0.8 0.3 -3.0 -2.0 -09 |22
9 78 50 48 112 |-15.7 | =200 |-17.1 |-21.6 34
Average 66.8 65.7 68.0 0.0 0.0 0.0 0.0 0.0 0.0
Variance 358.0 (3242 |380.2 |358.0 |3242 |380.2 | 7933 |260.4 8.5
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with the abbreviations for the variables in Table 6.1 used in the right-hand side.
Here, f; is found to contain the weighted composite scores for the examinees, i.e.,
the sum of the data in x; weighted by w;; overj =1, ..., p.

Using W = w; and F = f; = Xw, the function (6.9) or (6.12) is rewritten as

1 1
g(w)) =w, <nX'X>W1 =w,Vw, :;fllfl- (6.18)

This stands for the variance of the weighted composite scores in (6.17); their
variance is defined as n 'f,Jf;, = w'(n "X IX)w, = w,/'(n ' X' X)w, = n 'f)f),
since X is centered with X = JX. This variance is to be maximized subject to (6.5),
ie., wi'w; = 1 for m = 1 (where (6.4) may not be considered for m = 1, since
F'F = f,'f; is a single scalar). That is, the PC scores in f; are the composite scores
obtained by weighting the variables so that the variance of the scores is maximized,
in other words, so that individuals are best distinguished.
PCA for the data set in Table 6.1(B) provides

w; = [0.47,0.63,0.62]', (6.19)
which implies that
PC score = 0.47ES + 0.63IN +0.62PR (6.20)
is to be obtained for each examinee. For example, the centered scores for the second
examinee are —14.8, 12.3, and 20.0, thus, that examinee’s first PC score is obtained
as
047 x (—14.8) +0.63 x 12.3+0.62 x 20.0 = 13.3. (6.21)
The PC scores computed for all examinees in this way are shown in the first column
of Table 6.1(C).
In everyday life, we often use a composite score:

Simple Sum Score = x; + --- +x, = ES+IN+PR, (6.22)

i.e., the sum of the equally weighted variables. As compared to this score, the PC
score (6.20) is more useful for distinguishing individuals.
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6.4 Projecting Three-Dimensional Vectors
onto Two-Dimensional Ones

Though the maximization of (6.9) (for m = 1) was considered in the last section, the
purpose of this section is to explain that the minimization of (6.8) implies projecting
a three-dimensional (3D) space onto one that is two-dimensional (2D), for p = 3, as
in Table 6.1(B), and m = 2. For that purpose, let us use F = XW in (6.8) to rewrite
it as

FW) = [IX — XWW|>= | X — FW/||%. (6.8")

Further, we use row vector x/(1 x p) for the data vector of individual i, and fi(1 x
m) for the PC score vector of i

f W
X=|x|, F=|f|=XW=|xW (6.23)
X, f, X, W

with W being p x m. Then, the rows of FW’' = XWW' in (6.8’) are expressed as

W X, WW/
FW = | fW' | = XWW' = | xww’ | (6.24)
A X, WW’

Using (6.23) and (6.24) in (6.8"), this is rewritten as

2

xi]  [XiWW X [fw
FW) =1l x | = | xWW ||| = || x| — | W || . (6.8")
X, Lgww X1 Low
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Fig. 6.1 The projection of a data vector onto a plane (a) with its front view (b)

When p = 3 and m = 2, the minimization of (6.8") amounts to matching indi-
viduals® data vectors )Ef = [x;1, %, x53] to )EﬁWW’ =f;W'(1 x 3), which can be
expressed as

/

f(gWW, = E;W, = [fil ,ﬁz] |:z,1] :ﬁ‘lw/l +ﬁ2W’2, (6.25)
2

with W = [wy, wa] (3 X 2) and f/ = [fi1,fi2]. A key point involves capturing what
(6.25) geometrically stands for. This is explained in the following two paragraphs.

As the data vector );; = [xi1, %, x3] is 1 x 3, )2; can be depicted in a 3D space, as
in Fig. 6.1a; x/ is the line extending to the coordinate [x;1, x;2, x;3]. There, we can
also depict a plane whose direction in the 3D space is defined by vectors w;’" and

w,'. As found there, the projection of )Zf on the plane is expressed as (6.25), where
the projection refers to the vector that extends to the intersection of the plane and

the line drawn from X, , vertical to the plane. Further, the PC scores in f, =

[fi1.f2] = X)W stand for the coordinates of the projection within the plane. Why
this fact holds is explained in Appendix A.1.4. The plane seen head-on is shown in
Fig. 6.1b. There, the first and second PC scores in [f;;, f;»]" are the coordinates on
the horizontal and vertical axes of the plane. Below, we note the difference in this

plane compared with that used in Chap. 4:

Note 6.2. Differences from Fig. 4.2

The plane in Fig. 4.2 differs from the one in Fig. 6.1a and the remaining ones
in this chapter, in that variable vectors extend on the plane in Fig. 4.2, while
individuals® vectors extend/are distributed on the planes in the figures

appearing in this chapter.
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We can freely define spaces (i.e., planes); which spaces are to be con-
sidered depends on one’s research interests.

Now, let us recall function (6.8"), which is minimized over W = [w;’, w,']" in
PCA. This minimization implies bringing the projection (6.25) as close to )2; as
possible for all i = 1, ... , n. In other words, one purpose of PCA is to find the
matrix W = [w;’, w,']’ that defines the direction of the plane so that the projections
(6.25) are closest to the original data vectors )Zj The plane obtained by PCA is thus
called a best-fitting plane, since it is closest, i.e., the best fitted to the data vectors

We illustrate the above case with the data in Table 6.1(B), whose data vec-
tors )Ej(z =1,...,9) can be depicted as in Fig. 6.2a. Here, the endpoints of the
vectors )2: have been indicated by circles (not by lines as in Fig. 6.1a) for the sake of
ease in viewing. For the data set, PCA provides the solution of W = [w,’, w,']’ with
w, given by (6.19) and

3! X3 Zic»
~, X2 °
xX7®
[}
/ iy iq
~ - ri% ;
W 3 .
Bw U/ ]
L) ’ w]’ @
id o
[ "’ a
fsw 2 ‘ll... ( )
Ja " [F T E -
. ~ f; 2 ﬁ fz f{
y 10.8
fS i‘-r tj%%) .......... Aﬁ’ -ig
]
(b) |

Fig. 6.2 Projections of data vectors (a) on a plane (b) with its front view (c)
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These vectors define the best-fitting plane in Fig. 6.2b, on which the projections

f'W/ (i =1,...,9) for data vectors x| exist. A head-on view of the plane is shown
in Fig. 6.2c. Here, the coordinates of the points are the first and second PC scores in
fN,»’ = [fi1,fiz], whose values are presented in Table 6.1(C). For example, the PC
score vector for Examinee 1 is found to be f~1’ = [10.8, —19.0] in the table, and it is
located at the point with the coordinates [10.8, —19.0] in Fig. 6.2c. Here, the second
PC score, —19.0, has been obtained as fj, = —0.84 x 21.2 + 0.11 x 4.3 + 0.53 x
(—3.0) = —19.0 using her/his centered scores [21.2, 4.3, —3.0] and the weights in
(6.26).

This section deals with the logic in PCA by which the original 3D data distri-
butions (as in Fig. 6.2a) are projected on a 2D plane (as in (b)), whose front view is
a scatter plot (as in (c)). This 2D plot is useful, in that it is easier to capture than the
original 3D plot. However, this section is merely a preparation for the one that
follows, where the distributions in the space of a higher dimension can be projected
onto a lower-dimensional space in the same way as in this section. It is one of the
most important benefits gained by using PCA.

6.5 Visualization of Invisible Distributions

We consider a new data set in Table 6.2 (Committee for Guiding Psychological
Experiments, 1985). It contains the results of the rating by participants for to what
extent 12 adjectives characterize 14 occupational categories. The table shows the
average rating values for the categories on a scale of 1-5. For example, let us note
the final column “busy”: the busyness of “bank clerk” is rated at 4.2, while that of
“professor” is 3.0, that is, people think that bank clerks are busier than professors.

Let X = (x;) (14 x 12) contain the centered scores of the data in Table 6.2. For
example, x3; is 3.2-3.7 = —0.5 (the usefulness of “cartoonist” minus the average of
usefulness). Can we depict the distribution of the 14 categories’ scores on the 12
variables? That would require a 12-dimensional (12D) space with its 12 coordinate
axes orthogonally intersected. Unfortunately, a space of dimensionality m > 3 can
neither be drawn nor seen by us, as we live in a 3D world! However, such a
high-dimensional space can be considered in logic, i.e., mathematically, regardless
of how high the dimensionality is.

Let us suppose that )E{ = [xi1,. . xi12] (=1, ..., 14; categories) are distributed
in a 12D space as depicted in Fig. 6.3a. PCA for X yields the weight matrix
W = [w;, w] in Table 6.3(A). It defines the best-fitting plane on which the pro-
jections £/ W'(i = 1,... ,14) are located, as illustrated in Fig. 6.3b. This plane can
be seen head-on, as shown in Fig. 6.4. There, the 14 categories are plotted,
with their coordinates being the PC scores f/ = [fi1,f2], whose values are obtained

as in Table 6.3(B) using the centered scores for Table 6.2 and the weights in
Table 6.3(A).
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(a) 12D space (invisible!) (b) Plane in 12D space

Fig. 6.3 Projecting the distributions in a 12D space (a) on a 2D plane (b)

Table 6.3 Weights and PC scores obtained for the centered scores transformed from the data in
Table 6.2

(A) W (weights) (B) F (PC scores)
Wi W2 f, f;
Noble 0.03 0.18 Monk -3.46 0.27
Useful 0.12 0.23 Bank clerk -0.91 0.19
Good 0.04 0.07 Cartoonist 0.43 -2.57
Big 0.06 0.25 Designer 0.43 -1.93
Powerful 0.22 0.46 Nurse 1.06 -0.25
Strong 0.26 0.42 Professor —2.41 1.40
Quick 0.44 0.09 Doctor —0.24 1.60
Noisy 0.48 —-0.07 Policeman 1.13 2.11
Young 0.50 -0.27 Journalist 2.16 0.72
Faithful 0.09 0.15 Sailor 0.95 0.67
Strict —-0.19 0.59 Athlete 2.24 1.30
Busy 0.39 —-0.09 Novelist -2.06 -0.29
Actor 0.04 —1.78
Stewardess 0.65 —1.43

Although the original distribution of )E{ in Fig. 6.3a was invisible, the projection
of );: on the best-fitting 2D plane is visible, as found in Fig. 6.4. This shows that a
benefit of PCA is the visualization of a high-dimensional invisible space. The
resulting plot in Fig. 6.4 can be captured in the same manner as for a usual map;
two objects close to each other can be viewed as similar, while those that are distant
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Fig. 6.4 Front view of the
plane in Fig. 6.3b Po”ceman
)
Professor Docto.r Athlete
°
Sailor
®  Journalist
@ Monk Bank.CIerk ournalis
L 2 ® Nurse
Novelist
.Stewardess
ACtor ® ¢ Designer
® Cartoonist

can be regarded as dissimilar. For example, Fig. 6.4 shows that “designer” and
“cartoonist” are similar occupations, while “monk” and “journalist” are very
different.

6.6 Goodness of Projection

It should be noticed that the original distribution in Fig. 6.3a is not perfectly
reflected on the plane in Fig. 6.3b, which in turn gives Fig. 6.4; some information
in the original distribution has been lost in Figs. 6.3b and 6.4. The amount of the
loss can be assessed by the resulting value of loss function (6.8) or (6.8"), since it

expresses the differences between the data vectors x/(i = 1,...,n) in Fig. 6.3a and
their projections f; W'(1 x 3) in (b).
The resulting value of (6.8), into which solution (6.6) is substituted, is expressed as

X — XL,L! |*= ||X - KnAuLL = | KAL' - K, AL, ||, (6.27)

where we have used (5.5) and (5.19). It can be found that (6.27) is equivalent to
(5.37), which implies that the proportion of explained variance (5.39), i.e.,
PEV,, = trA,,2/trA* = trAm2/||X||2’ is also an index for the goodness of projection.

For the centered scores of the data in Table 6.2, PCA gives trAz2 = 64.1 and
trA? = ||X||* = 86.6, thus PEV, = 64.1/86.6 = 0.74. This implies that 74%
(=0.74 x 100%) of the information of the distribution in Fig. 6.3a is reflected in
Fig. 6.4; the former invisible distribution is visualized in the latter and, furthermore,
we can see 74% of the former. This demonstrates the benefit of PCA.
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6.7 Bibliographical Notes

As described in Sect. 5.9, various aspects of PCA are exhaustively detailed in
Jolliffe (2002). Visualization as a benefit of PCA in the natural sciences has been
illustrated in Izenman (2008) and Koch (2014), which are among the advanced
books recommended for a deeper understanding of multivariate analysis, though the
term visualization is not used in those books.

Here, we must mention sparse PCA for obtaining the sparse weight matrix
W (Jolliffe et al., 2003; Zou et al., 2006). Here, a sparse matrix refers to a matrix
including a number of zero elements. That is, sparse PCA refers to the modified
PCA procedures in which the elements of W to be zero are computationally chosen
jointly with estimating the values of the nonzero elements. The resulting W can be
easily interpreted, as only nonzero elements may be noted. The procedures related
to the sparse PCA would be treated in Chap. 22.

Exercises

6.1. Show trV = trA for V and A in Note 6.1.

6.2. Show that the eigenvalue decomposition (EVD) in Note 6.1 implies
VI, = o (k =1, ..., r) with I; the kth column of L. The equation is called
the eigen equation for V.

6.3. Show that the EVD in Note 6.1 can be rewritten as X'X = LA’L’ and
post-multiplying its both sides by LL' leads to X'XLL' = X'X i.e.,

X'X(I,, — LL') =, 0,. (6.28)
6.4. Show that (6.28) leads to (I, — LL")X'X(I, — LL') = ,0,, which implies
X(Ip — LL') =, 0p, (6.29)

using the fact that M'M = ,0,, implies M = ,0,, for M being n x p.

6.5. Show that the SVD in Note 5.1 can be derived from the EVD in Note 6.1,
noting the fact that (6.29) implies X = XLA'AL’ and XLA™' can be
regarded as K in Note 5.1.

6.6. A square matrix N is said to be nonnegative definite if iw) = w'Nw > 0 for
any vector w. It is known that S being nonnegative definite and symmetric is
equivalent to the property of S that it can be rewritten as S = BB'. Show that
the covariance matrix V = n~'X'JX is nonnegative definite.

6.7. A square matrix P is said to be positive definite, if filw) = w'Pw > 0 for any
vector w other than the zero vector. Show that a diagonal matrix D being
positive definite is equivalent to all diagonal elements of D being positive.

6.8. Let v(fy) denote the variance of the kth PC scores, i.e., the elements in
f, = Xw,. Show that v(f;) equals J;, i.e., the kth eigenvalue of V defined in
Note 6.1.
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6.9. Show that the vectors f/W’ and X, — /W’ intersect orthogonally, as in
Fig. 6.1, i.e., f/W' (X, — WE;) = 0.
6.10. Show that (6.6) is replaced by W = A =L, T, with T the orthonormal
matrix satisfying (A.1.6) in Appendix A.1.2, if constraint (6.4) is removed
and only (6.5) is imposed in PCA.



Chapter 7 )
Cluster Analysis e

The term “cluster” is synonymous with both “group” as a noun and “classify” as a
verb. Cluster analysis, which is also simply called clustering, generally refers to the
procedures for computationally classifying (i.e., clustering) individuals into groups
(i.e., clusters) so that similar individuals are classified into the same group and
mutually dissimilar ones are allocated to different groups. There are various proce-
dures for performing cluster analysis. One of the most popular of these, called k-means
clustering (KMC), which was first presented by MacQueen (1967), is introduced here.

7.1 Membership Matrices

An example of a membership matrix is given here:

Australia UK USA

Mick 1
Kieth 1
G=(gik) = Ronny 1
Charly 1
Bill 1

It indicates the nationalities of individuals, and the blank cells stand for the
elements taking zero. In general, a membership matrix G = (g;.) is defined as the
matrix of n individuals x K-clusters satisfying

~_J 1 if individual i belongs to cluster k (7.1)
§k=1 0 otherwise ’ '
Gl =1,. (7.2)
© Springer Nature Singapore Pte Ltd. 2020 95
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These equations imply that each row of G has only one element taking 1, i.e.,
each individual belongs to only one cluster. Such a matrix is also called an indicator
matrix or a design matrix. A major purpose of clustering procedures including k-
means clustering (KMC) is to obtain G from an n-individuals X p-variables data
matrix X.

7.2 Example of Clustering Results

For a data matrix X, KMC provides a membership matrix G together with a K-
clusters x p-variables cluster feature matrix C, which expresses how each cluster is
characterized by variables.

Before explaining how to obtain G and C, we show the KMC solution for the
14-occupations x 12-adjectives data matrix X = (x;;) in Table 6.2 in the last
chapter. It describes to what extent the occupations are characterized by the
adjectives. For the data matrix, KMC with K set at 4 provides the solutions of G and
C shown in Tables 7.1 and 7.2. First, let us note the resulting membership matrix
G in Table 7.1. The cluster numbers 1, 2, 3, and 4 are merely for the purpose of
distinguishing different clusters; G simply shows that the occupations having 1 in
the same column belong to the same cluster. For example, monk, professor, and
novelist are members of a cluster, while policeman, journalist, sailor, and athlete
are members of another cluster. Next, let us note Table 7.2. There, the resulting
cluster feature matrix C is shown, which describes the values of variables char-
acterizing each cluster. For example, Cluster 2, whose members include bank clerk
and doctor, are found to be very useful, strict, and busy.

Tabl.e 7.1 M.embership Occupation | Cluster Cluster Cluster Cluster
matrix G obtained for the data 1 2 3 4
in Table 6.2

Monk 1

Bank clerk 1

Cartoonist 1

Designer 1

Nurse 1

Professor 1

Doctor 1

Policeman 1

Journalist 1

Sailor 1

Athlete 1

Novelist 1

Actor 1

Stewardess 1
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7.2 Example of Clustering Results
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7.3 Formulation

KMC is underlain by the model
X =GC+E, (7.3)

with E containing errors. To obtain G and C, a least squares method is used; the
sum of squared errors

£(G,0) = |E|’= |X - 6C|? (7:4)

is minimized over G and C subject to G satisfying (7.1) and (7.2).

For the sake of ease in understanding (7.3) and (7.4), we use the example of X in
Fig. 7.1, which is more compact than the data set in Table 6.2. In Fig. 7.1,a 10 x 2
data matrix X is shown together with a scatter plot of the 10 row vectors in X. For
this data matrix, KMC with K = 3 gives the solution expressed as follows:

X G C E
1 4 1 20 4.0 1.0 0.0
7 3 1 63 73 0.5 0.5
6 1 1 75 25 1.5 -15
8 6 1 1.7 -1.3
3 5| = 1 + | L0 10 (7.5)
5 7 1 1.3 -03
9 2 1 1.5 -0.5
2 3 1 0.0 -1.0
8§ 4 1 05 1.5
6 9 1 03 1.7
10
X 9 mX0
Xi 1 4 g
X2 3
— ! 7r u
X3 6 1 6 X ~r
o = i] . -
Xi | 8 6 , o
=t 5 i m X5
H)E_\ 3 5 XI,
X6 5 7 4 o 3 gy
g X2
X7 9 2 3 n n
X |23 I e
o |
E:J 8 4 1+ ~ B
Xio 6 9
0 1 1 1 1

Fig. 7.1 Data matrix X and the scatter plot of the row vectors in X
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Here, model (7.3) is shown, into which the data and the resulting solution were
substituted. Further, we can obtain the product of G and C to rewrite (7.5) as

X GC E

1 4 20 4.0 -1.0 0.0

7 3 75 25 -0.5 05

6 1 75 25 -1.5 -1.5

8 6 63 7.3 1.7 -1.3

3 5 = 20 40| + 1.0 1.0 (7,6)
5 7 63 73 -1.3 -03 ’
9 2 75 25 1.5 -0.5

2 3 2.0 4.0 00 -1.0

8 4 75 25 05 1.5

6 9 63 73 -03 1.7

where white, light gray, and dark gray have been used for the background colors of
the rows corresponding to Clusters 1, 2, and 3, respectively. In (7.6), we find that
the ith row of X is matched to the row of C = [¢;, €, €3]’ associated with the cluster
into which individual i is classified; for example, X; = [8,6] is matched to
¢, =1[6.3,73].

Solution (7.6) can be illustrated graphically, as in Fig. 7.2, in which the rows of
X and C are plotted. There, we can find that f:}( (the kth row of C) expresses the
representative point of cluster k that is located at the center of the individuals (X; s)
belonging to that cluster. For this reason, C is also called a cluster center matrix. In
Fig. 7.2, each of the lines connects i; for individual i and f:;( for the cluster
including i. The lines in the figure indicate the row vectors of error matrix

€

E = | : |. For example, the line extending from center ¢; to X; indicates & =

~/
el‘l

X — ¢, with €/ the ith row of E. Here, we should note that the function (7.4) to be

Fig. 7.2 Joint plot of the 10
rows of X in Fig. 7.1 with
those of C 9

=~

C2

X¢ i‘/‘
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minimized is rewritten as ||E|*= [|&]* + --- + ||&,||* Its minimization is restated
as minimizing the sum of the squared lengths of the lines in Fig. 7.2, which implies
making each individual vector (f(;) close to the center of the cluster (é;() including
the individual.

7.4 Iterative Algorithm

Let us remember that the PCA solution is obtained through (5.14) and the solution
for regression analysis is given by (4.9) and (4.12); those solutions are expressed
explicitly as formulas. On the other hand, the KMC solution minimizing (7.4)
cannot be given explicitly by a formula. In general, statistical analysis procedures
can be classified into the following two types:

[1] those with explicit solutions (as regression analysis and PCA)
[2] those without explicit solutions (as KMC)

How are solutions for [2] obtained? They can be attained with iterative algorithms,
where steps are iterated for finding the solution. There are some types of iterative
algorithms, as described in Appendix A.6.1.

The algorithm for KMC is formed using the following fact: although the G and
C minimizing (7.4), i.e., G, C), cannot be expressed as formulas, the matrices

C that minimizes (G, C) while G is fixed at a specified matrix (7.7)
and
G that minimizes f (G, C) while C is fixed at a specified matrix (7.8)

can be explicitly given, as shown in the next sections. This fact allows us to form
the iterative algorithm for KMC, described by the following steps:

Step 1. Set G and C to specified matrices Gy, and Cy,, respectively, with ¢ = 0.

Step 2. Obtain C defined as (7.7) with G being fixed at Gy, and express the
resulting C as Cjy.

Step 3. Obtain G defined as (7.8) with C fixed at C,}, and express the resulting
G as G[t+1]~

Step 4. Finish and regard Cy., 1 and Gy..; as the solution, if convergence is reached;
otherwise, go back to Step 2 with increasing ¢ by one.

Here, ¢ stands for the number of iterations, and the convergence in Step 4 is
explained later. The central part of the algorithm is the alternate iteration of Steps 2
and 3. With this iteration, the value of function (7.4) decreases monotonically (or
remains unchanged), regardless of what is used for the specified matrices in Step 1,
as described in the following paragraphs.
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Let us consider the value of (7.4) at Step 1, i.e., fiGjo;, Cjo) = Gy, Cpyy) for
t = 0, which is followed by Steps 2 and 3, providing fiGo;, C(1)) and fiG1}, Cp1)),
respectively. They are found to satisfy

f(Gp), Cp) 2 (G, Crip) = (Gpy, Cpyp)- (7.9)

Here, the first inequality AGyo}, Cio)) > f(Go}, C1p) follows from the fact that Cyy,
is the matrix C that minimizes G, C) with G fixed to G|, as found in (7.7), and
the second inequality f(Gyq}, Cj1)) > fGy1), Cj1)) follows from (7.8), i.e., Gyy; being
the matrix G that minimizes (G, Cp,;) with C fixed to Cpy;.

As described in Step 4, unless convergence is reached, the algorithm must go
back to Step 2, with an increase in ¢ from one to two. Then, Steps 2 and 3 are
performed again to have Cy; and G, which allows (7.9) to be followed by two
inequalities > ﬂG[l], C[z]) > f(G[Q], C[z]): it leads to

F(Gpy, Cp) 2 £ (G, Cy) 2 £ (Gy, €y) = £ (Gy» €y) 2 £ (G Cy) - (7.10)

We can generalize (7.9) and (7.10) as

F(613.€1) 21 (G Cp1y) 2f(Gpry 11, Cpry) (7.11)

for t=0,1,2,..., where Cp,; denotes the matrix C obtained in Step 2 and Gy,
denotes the matrix G obtained in Step 3 at the rth iteration. That is, the value of AG,
C) decreases monotonically with an increase in t so that the value is expected to
converge to the minimum. Convergence can be defined as having a difference in the
value of (7.4) from the previous round of iteration that is small enough to be ignored, i.e.,

F(G,Cyy) —f(Gps1), Cpey) <é, (7.12)

with & being a small value, such as 0.1° or 0.1°.
Figure 7.3 shows the change in G, C) with the iterative KMC algorithm for the
data in Fig. 7.1, where the elements of the specified matrices in Step 1 were

Fig. 7.3 Values of (G, C) at 100
steps in the z-iteration (¢ = 0,
1, 2, 3) with subscripts 2 and 80 -
3 indicating Steps 2 and 3

O 60

9

<40

20
0 1 1 1 1 1 1 1 |
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randomly chosen. In Fig. 7.3 we find the monotonic decrease in the (G, C) value
with ¢, and the value is unchanged from ¢ = 2 to 3, i.e., convergence is reached at
t = 3. The matrices C and G at this time are their solution in (7.5). The compu-
tations that were used in Steps 2 and 3 are described in the following two sections.

7.5 Obtaining Cluster Features

In this section, we consider Step 2 from the previous section, i.e., obtaining the
cluster feature matrix C defined as (7.7). The matrix C to be obtained is the one

minimizing f(C) = ||X — G;C||’, i.e., the function (7.4) with G fixed at Gy. This
C is given by

-1
C[,+ = (G/[,]Gm) Et]X = DilG/mX, (7.13)

with D = GGy, as explained in Appendix A.2.2. There, we can compare
(A.2.11) with (7.4) to find that (A.2.12) leads to (7.13).
Let us consider what matrixD = G{;'Gy is, with a simple example of Gy,

1 1
1 S 1 1
I Gy |, , thenD = | 1 Lo,
1
. 1
1 1
[2
=| 3
i 1

In general, D = G|'G is a K x K diagonal matrix, with its kth diagonal ele-
ment is n; which denotes the number of individuals belonging to cluster k. Thus, the
inverse matrix D™ is found to be the diagonal matrix whose kth diagonal element is
1/2 1/2
1/ny. Further, in the above example, D™'Gyy' = | 1/3 1/3 1/3
1
This is post-multiplied by 6 x 2 X to give an example of (7.13):
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X1 X2
X21 X2
_ 1/2 1/2 X3 X
ol 31 X3
Cirp=DGyX =1 3 1 1/3 13| |xa xp
X51  Xs2
X61  X62
X1 X12
= | X1 X2 |. (714)
X31 X3

Here,

1
Xj=— X (7.15)

s iecluster k

with )", juser ¢ X denoting the summation of x; over the individuals belonging to
cluster k. That is, (7.15) is the average of the data within cluster k for variable j, and
such cluster averages are the elements of (7.13) and its example (7.14). The term “k-
means” originates in the fact that “mean” which is a synonym of “average”plays an
important role in the algorithm.

7.6 Obtaining Memberships

In this section, Step 3 from Sect. 7.4 is considered; it is shown how the membership

matrix G is obtained that minimizes f(G) = ||X = GCj 4
(74) with C fixed at C[t+l]'
Using g; for the ith row of G, the function f{G) can be rewritten as

2 . .
, 1.e., the function

o 2

X gll n
IX=GCyl=||| i | | [Cornl| =2 K -&Coy]". (716)
i=1

S/ ~/
Xn gf'l

which is the sum of the least squares function of g,

I

f(8) = || — g Cps]| (7.17)

over i = 1, ..., n. Here, it should be noted that g; appears only infi(g;), i.e., not in
the other functions f; (g;) with u # i. This implies that the optimal &, which
minimizes (7.17), can be obtained independently of g/ with u # i; the repetition of
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obtaining the optimal g, over i = 1, ..., n provides the rows of the membership
matrix G that minimizes (7.16).

Let us recall (7.1) and (7.2), i.e., that g; is filled with zeros except for one
element taking 1. For example, if K = 3 and individual i belongs to cluster 2, then

g = [0, 1, 0], thus, g/Cj, ;| = &, and (7.17) can be rewritten as ||X} — ¢ ’2, with €,
the kth row of Cp, ;. This example allows us to find that (7.17) takes one of
K distinct values as

1%, — & if & = [1,0,0,...,0]
% - &| if g =[0,1,0,....0]

- ST
£(&) =% - &Cl|'= (7.18)
X, - &]” if & = [0,0,0,...,1]
Therefore, we can compare the largeness of Hf(i — E;c H2 acrossk =1, ..., Kto select
the vector g corresponding to the minimal one among [|X; — | *k=1,...K.
This selection is formally expressed as
e =2 e =2
8ik = 1 if Hxi - ck” = lgl,ngHXi - clH . (7.19)
otherwise
The selected vector is the optimal g = [gi1, .. ., gix] minimizing (7.17). Repeating
the selection (7.19) over i = 1, ..., n provides the vectors g/, ..., g, that form the

rows of Gy to be obtained.

7.7 Brief Description of Algorithm

The steps of the KMC algorithm in Sect. 7.4 can be rewritten in a simpler manner
(without using the subscript ¢ indicating the number of iteration) as follows:

Step 1. Initialize G.

Step 2. Obtain C = D'G'X

Step 3. Update G with (7.19)

Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

Here, the facts in Sects. 7.5 and 7.6 have been used in Steps 2 and 3. The phrase
“initialize G” in Step 1 refers to “set G to a matrix”, as the elements of the latter
matrix are called initial values. It should be noted that C may not be initialized in
Step 1, since C is obtained in the next step.

Another version of the KMC algorithm can be formed in which rather C is
initialized with Steps 2 and 3 interchanged. The version can be listed as follows:
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Step 1. Initialize C.

Step 2. Update G with (7.19).

Step 3. Obtain C = D™'G'X.

Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

7.8

Bibliographical Notes

Everitt (1993) has intelligibly treated the cluster analysis procedures, including
hierarchal clustering, which was not introduced in the present book. The recent
developments in clustering have been exhaustively detailed in Gan et al. (2007).
Hartigan and Wang (1979) have proposed a modified version of the KMC algo-
rithm described in this chapter.

Exercises

7.1.

7.2.

7.3.

7.4.
7.5.

7.6.

Show that (7.2) could not be satisfied if two or more elements took one with
the other elements being zero in a row of G.

Let D = G'G. Show that D is a K x K diagonal matrix and G'1,= D1 with
the kth element of D1 and the kth diagonal element of D being the number
of the individuals in group k.

Show that (7.4) can be rewritten as » : Hf(, — éy,.|
representing the cluster to which individual i belongs and E;l_ being the y;th

2. .
, with y; the index

row of C.

Show that (7.4) can be rewritten as 7, S°F | gl — &>

One drawback of the k-means clustering (KMC) is that it tends to give local
minima, but not the global minimum. Here, the global minimum is defined as
the minimum of (@) for all possible 0, using f(0) for the loss function of 0
(parameter vector or a parameter) to be minimized. On the other hand, a local
minimum is defined as the minimum of f{0) for the 0 value within a restricted
range. Those minima are illustrated in Fig. 7.4. To avoid the selection of 0
for a local minimum as the solution, the algorithm is run multiple times by
starting with different initial values, in the procedures sensitive to local
minima. Let us use f{0;) for the loss function value resulting in the /th run of
the algorithm with [ =1, ... , L. Then, 0. is selected as the solution with
f(61) = miny <; <, f(6;). Describe why this multi-run procedure decreases
the possibility of selecting 0 for a local minimum as the solution.

The iterative algorithm in Sects. 7.4—7.7 is included in a family of algorithms
generally called alternating least squares (ALS) algorithms, as described in
Appendix A.6.1. In this exercise, let us consider an ALS algorithm for a

problem different from KMC. The problem is the minimization of f(a,b) =

|y — ax; — abx,||* over a and b for n x 1 data vectors y, X,, and x,. Here, it
should be noted that the coefficient of x, is the product of a and b. Show that
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Fig. 7.4 Illustration of local £(0)
minima and the global
minimum

7.7.

7.8.

7.9.
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minimum
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global
minimum

fla, b) can be rewritten as ||y — ax||* with x = x; + bx, and also as |ly —
bx || withy” =y — ax, and X = ax,, leading to an ALS algorithm in which
the minimization can be attained by the following steps:

Step 1. Initialize b.

Step 2. Obtain X = x; + bx, to update a with a = (x'’x)"'x , -
Step 3. Obtainy =y —ax; and X = ax, to update b withb = (x 'x ) 'x 'y .
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.
Hints are found in Appendix A.2.2.

Show that (7.4) can be decomposed as
IX - GC|*= | X - GD'G'X|]* +||[GD'G'X - GC|’,  (7.20)
with D = G'G, by noting
IX - GC|? = |X - GD'G'’X+GD'G'X - GC|°

=X - 6D '¢’X|’ +|6D'¢'X - G|’
+2u(X - GD'G'X) (GD'G'X - GC).

Show that HGD_lG'X—GCH2 in (7.20) can be rewritten as

HD_ 2, i.e., (7.4) can be decomposed as

IX - GC|’= | X - 6D 'G'X|’ + [ 2¢X - D' 2|’ (7.21)

De Soete and Carroll (1994) have proposed reduced k-means analysis (RKM)
in which clustering is performed simultaneously with principal component
analysis. In RKM, the matrix C (K X p) in (7.4) is constrained as C = FA'.
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7.10.

Here,Fis K x m,Aisp x m,A’A = 1,,,and F'DF being adiagonal matrix whose
diagonal elements are arranged in descending order, with m < min(K, p) and
D = G'G. That is, RKM is formulated as minimizing ||X — GFA'||* over G, F,
and A subject to the above constraints, (7.1) and (7.2). Show that an ALS
algorithm for RKM can be formed by the following steps:

Step 1. Initialize C = FA'.

Step 2. Obtain G with (7.19).

Step 3. Perform SVD of D™"2G’X, defined as D™"*G’X = KAL'.

Step 4. Obtain C =D~ '/?’K,,A,,L,, with K,, (K x m) and L,, (p X m)
containing the first m columns of K and L, respectively, and A,,
(m x m) the diagonal matrix whose /th diagonal element is that of A.

Step 5. Set F = D’l/szAm and A = L,, to finish if convergence is reached;
otherwise, go back to Step 2.

Here, (7.21) has been used in Steps 3 and 4 with the hints for those steps
found in Note 5.3.

Show that the algorithm in Sects. 7.4-7.7 can give a G whose columns
include 0,, during iteration, which implies that D™ = (G'G)™" does not exist
and stops the algorithm, i.e., makes KMC fail.



Part 111
Maximum Likelihood Procedures

This part starts with the introduction of the principle underlying the maximum
likelihood method. This is followed by introductions to path analysis, factor
analysis, and structural equation modeling, whose solutions are estimated by the
maximum likelihood method. Their solutions can also be obtained by least squares
methods, and the procedures in Part II can also be formulated with the maximum
likelihood method. However, the latter are often introduced with the least squares
methods, while the maximum likelihood method is often used for the procedures
discussed in this part.



Chapter 8 M)
Maximum Likelihood and Multivariate Check o
Normal Distribution

In the analysis procedures introduced in the last four chapters, parameters are
estimated by the least squares (LS) method, as reviewed in Sect. 8.1. The remaining
sections in this chapter serve to prepare readers for the following chapters, in which
a maximum likelihood (ML) method, which differs from LS, is used for estimating
parameters. That is, the ML method is introduced in Sect. 8.2, which is followed by
describing the notion of probability density function and the ML method with
multivariate normal distribution. Finally, ML-based model selection with infor-
mation criteria is introduced.

8.1 Model, Parameter, Objective Function,
and Optimization

This section deals with a very big subject: We discuss a general framework in
which almost all statistical analysis procedures can be formulated; namely, any
procedure is underlain by a model that can be expressed as

Data = ¢(®) or Data= ¢(O) + Errors, (8.1)

with ® standing for the parameters to be obtained. For example, in K-means
clustering (Chap. 6), ® is {G, C} and ¢(0®) = ¢(G, C) = GC, as found in (7.3).
Another example is regression analysis (Chap. 4). In its model (4.5), the “Data” in
(8.1) are denoted as dependent variable vector y, while ® = {b,c} and ¢(®) =
¢(b,c) = Xb + 1, with X containing explanatory variables.

An analysis procedure modeled as (8.1) obtains or estimates parameter @ values.
This is formulated as “Obtaining @ that optimizes an objective function obj(®)
subject to a constraint on @”. This phrase is rewritten as

© Springer Nature Singapore Pte Ltd. 2020 111
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
https://doi.org/10.1007/978-981-15-4103-2_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4103-2_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4103-2_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4103-2_8&amp;domain=pdf
https://doi.org/10.1007/978-981-15-4103-2_8

112 8 Maximum Likelihood and Multivariate Normal Distribution

Optimizing obj(®)over @ subjectto a constraint on ©. (8.2)

Here, the term “optimizes” refers to either “minimizes” or “maximizes”, and some
function can be used as 0bj(@). In Chaps. 4, 5, 6, and 7, least squares functions are
used as obj(®), which are generally expressed as ||Data — ¢p(®)|, i.e., the sum of
the squared Errors = Data — ¢(0), with “optimizes” referring to “minimizes”. The
phrase “subject to a constraint on @ in (8.2) is not indispensable; whether the
phrase is necessary or not depends on analysis procedures. For example, it is
necessary in the k-means clustering in which G in @ = {G, C} is constrained to
satisfy (7.1) and (7.2), while the phrase is unnecessary in the regression analysis, in
which ® = {b, ¢} is unconstrained.

A methodology formulated by rephrasing “Optimizing obj(®) over @” in (8.2)
as “minimizing a least squares function” is generally called a least squares (LS)
method, which is used for the procedures in Part 2. Another methodology, which is
as important as the LS method, is introduced next.

8.2 Maximum Likelihood Method

A maximum likelihood (ML) method can be formulated by rephrasing “optimizing”
and “an objective function” in (8.2) as “maximizing” and “probability”, respec-
tively. One feature of the ML method is that it uses the notion of probabilities,
which are not used in the LS method. In this section, we introduce the ML method
using a simple example.

We suppose that a black box contains black and white balls, where the total
number of the balls is known to be 100, but the number of black/white balls is
unknown. We use 0 for the number of black ones. Let us consider a case illustrated
in Fig. 8.1: In order to estimate 0, a ball was chosen from the box and returned five
times, which gave the data set

d=[1,0,0,1,0]" (8.3)

Here, d; = 1 and d; = 0 indicate black and white balls chosen, respectively, with d;
the ith element of d.

Let us consider the probability of the data set in (8.3) being observed. On the
supposition of a ball randomly chosen, P(d; = 1|6) and P(d; = 0|0), which denote
the probability of d; = 1 observed (i.e., a black ball chosen) and that of d; = 0 (i.e., a
white one chosen), respectively, are expressed as

0 0
P(d; =1]|0) = 100 and P(d;=0|0)=1-— 100 (8.4)

Further, we suppose the balls were chosen mutually independently. Then, the
probability of the data setd = [1, 0, 0, 1, 0]' observed in (8.3), i.e.,d; = 1,d, =0,
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Black box Data

CeOOe
o—oco~—

Fig. 8.1 Data of balls chosen from a black box that contains white and black balls with their
numbers unknown

d3;=0, dy=1, and ds=0 1is given by the product P(d; =1|0)x
P(dy, = 0]0) x P(ds = 0|0) x P(ds = 1]6) x P(ds = 0|0):

0 0 0 0 0
P(d|0) = — 1—— 1—— — 1——
(d]0) = 700 ( 100) % ( 100) 100 " ( 100)
0\° 0\’
=(— 1-——). .

<100> < lOO) (8:5)
For estimating the value of 0, the ML method can be used. Without using
mathematics, the idea of the method can be stated as “Obtaining the parameter

value such that the occurrence of an event is the most likely”, which can be
rephrased as

Obtaining the parameter value which (8.6)
maximizes how likely it is that the event will occur. '

Here, the “event” refers to the observation of a data set, i.e., observing d in (8.3),
and “how likely it is that the event will occur” is measured by its probability. That
is, we can use statistical terms to rephrase (8.6) as:

Obtaining the parameter value that maximizes (87)
the probability of the data being observed. '
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Fig. 8.2 Probability values (a) and their logarithms (b) against 0

Therefore, the ML method for the data set in (8.3) is to obtain the value of 0 that
maximizes (8.5). Figure 8.2a shows that the values of 0 = 0, 1, ..., 100. There, we
can find that the solution of  that maximizes the probability is 40. The ML method
is similar to a human psychological process; most people seem to think in a manner
similar to that in the ML method. For example, in order to determine who caused an
event as “James caused it? Jim? Or Miller did?”, one would consider the person
most likely to cause the event is the person to be found!

Let us note that P(d|0) is treated as a function of parameter 0 for a fixed d in the
ML method (Fig. 8.2a), in contrast to cases where P(d|0) is regarded as expressing
how probable it is that data set d occurs for a fixed value of 0. As in Fig. 8.2a, the
probability, if it is treated as a function of parameters, is rephrased as likelihood,
from which the name maximum likelihood method originates.

For the sake of ease in mathematical operation, the parameter value that maxi-
mizes the logarithm of probability (log likelihood) rather than the probability
(likelihood) is often obtained in the ML method, since a function, f{(y), and its
logarithm, log f(y), take their maximums at the same value of y. The log of (8.5) is
given by

0 0
log P(d|0) = 210gm +3log(1 —100). (8.8)

Figure 8.2b shows the change in (8.8), where it is also found to attain its maximum
for 0 = 40.

A solution in the ML method is called a maximum likelihood estimate (MLE).
The MLE 6 = 40 divided by 100 gives 0.4, which equals the proportion of black
balls in (8.3). Thus, one may only glance at (8.3) to intuitively conjecture that 6 is
about 40, without using the ML method. However, when solutions cannot be
intuitively conjectured, the ML method serves as an effective parameter estimation
methodology.
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8.3 Probability Density Function

In the last section, we used an example of cases where a variable can only take
discrete values as 1 and 0. In the remaining sections of this chapter, we do not treat
such discrete variables, but rather those variables taking continuous or almost
continuous values.

The probability of a genuinely continuous variable being a specific value cannot
reasonably be defined. For example, “the probability of a person’s stature being
exactly 170.0 cm” stands for “the probability of it completely equaling 170.0 cm”,
which have to be said to be zero. However, the probability can reasonably be
defined for the intervals of a continuous variable by letting P(x£4) be the proba-
bility of variable x taking the values within the interval of x —  to x + ¢ with 6 > 0.
The density of the probability is given by dividing P(x £ J) by the width of interval
0 — (=9) =20 as P(x + 9)/(20). The density P(x) = P(x £ 9)/(25), in which the
width 20 is reduced to be small enough to be ignored, can be used to express how
likely x is to take a specific value, and P(x) is called a probability density or the
probability density function (PDF) of variable x. An example of PDF is given in
Fig. 8.3a. Its horizontal axis shows the values that x can take and its vertical axis
indicates the value of PDF P(x). The following two points should be known about
PDF:

e P()

a b
(a) An example of functions (b) Normal distribution

Fig. 8.3 Probability density functions
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Note 8.1 Probability Density

A probability density stands for how likely it is that a value will be observed;
an x value with a greater value of probability density P(x) is more likely to be
observed. For example, P(a) < P(b) in Fig. 8.3a implies that x = b is more
likely to occur than x = a.

The probability density also has the following property: The area below
PDF P(x) expresses a probability. In Fig. 7.3a, the probability of x taking the
values within the interval [a, b] is indicated by the area with the horizontal
lines.

For a variable taking almost continuous values, its probability of being a specific
value can be reasonably considered. For example, it makes sense to consider “the
probability of a test score being 8” for a test whose scores take the integers from 0
to 10. However, such a variable is also usually treated as a continuous variable for
which a probability density is defined, as it is more efficiently analyzed than in
cases where it is treated as a discrete variable.

Among a variety of PDFs, the symmetric bell-shaped function shown in
Fig. 8.3b is used in a number of univariate statistical procedures. The distribution of
x with this PDF is called the normal distribution or Gaussian distribution, the latter
name originating from the German mathematician Gauss (1777-1855), who derived
the function. Its generalization is introduced next.

8.4 Multivariate Normal Distribution

For multivariate analysis, a PDF for multiple variables is needed, for example, in
order to express how likely a person’s stature, weight, and waist measurement are to
show the values 170.6 cm, 65.3 kg, and 80.7 cm, respectively. As such a PDF,

X :;ex —lx— Y (x —
PE) = p{j-wria-w) @)

is very often used, where x = [xl, .. .7xp}/ is the p x 1 vectors of p variables, p
is a p x 1 vector containing fixed values, m (£3.14) denotes the circle ratio,
exp{*} = !} with e (22.72) the base of the natural logarithm, X is not the symbol
of summation but a p X p positive-definite matrix containing fixed values, and |X|
denotes the determinant of X. The positive-definiteness and determinant are
explained in the next notes.
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Note 8.2 Nonnegative and Positive Definite Matrices
A p x p square matrix S is said to be nonnegative definite if f{w) = w'Sw >
0 for any vector w. It is known that S being nonnegative definite and sym-
metric is equivalent to the property of S that it can be rewritten as S = BB'.
Nonnegative matrix S is particularly said to be positive definite if
fiw) = w'Sw # 0, i.e., fiw) > w'Sw for any vector w # 0, It is known that
any positive definite matrix is nonsingular; i.e., its inverse matrix exists, and
this matrix is also positive definite.

A determinant is defined for any square matrix to yield a scalar as a function of
the matrix. However, only the determinants of positive-definite matrices are treated
in this book, which can be obtained as follows:

Note 8.3 Determinants
Let S be a p x p positive-definite matrix whose singular values are 41, ..., 4,;
the determinant of S is given as

S| =241 X Ao X -+ X 4. (8.10)
The determinant has the following properties:
U = I$| x [ul, (8.11)

|S7! = IsI7". (8.12)

The distribution of x whose PDF is (8.9) is called a multivariate normal (MVN)
distribution. The value of (8.9) for a specified x can be obtained, with p and X
given. We next describe cautions for notations:

Note 8.4 Three Types of Vector Expressions for Data
Until the last chapter,

=l
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had been used for an n-individuals X p-variables data matrix; we had
expressed the p x 1 vector for individual i as X; with the tilde symbol (~)
attached to x;, in order to distinguish X; from the vector x; (n x 1) standing for
variable j.

The p x 1 vector x in (8.9) is associated with x;. However, a filde is not
used in (8.9) for the sake of simplicity. We do not attach the tilde to the
vectors standing for individuals from this chapter; they are expressed as

X,

X = X§ . This is the same for the other vectors. Thus, readers should be

X
careful about whether vectors stand for the rows of matrices or their columns.
The reason for vector x in (8.9) not having a subscript is that x is a random
vector. This term means that the elements of that vector can take arbitrary
values. Thus, x; for any i can be substituted into x, with the probability
density of x = x; expressed as P(X;). An element of a random vector is called
a random variable.

An expected value for a random variable is introduced next:

Note 8.5 Expected Value

Let us consider a trial in which an infinite number of random vector x = [x;,
..., %,]" (p x 1) are observed. The average of those x is called the expected
vector of x and denoted as E[x], with “E” the abbreviation for “expected”.
The expected vector E[x] is p X 1 and expressed as E[x] = E[[x;, ...,
x,1'1 = [E[x1], ..., E[x,]]'". Its jth element E[x;] is called the expected value of
random variable x;. The expected value and vector are described in more
detail in Appendix 8.2.

In particular, it is known that if x follows the MVN distribution with its
PDF (8.9), E[x] and the corresponding inter-variable covariance matrix (p X
p) equal p and X in (8.9), respectively. This fact is described more exactly in
Appendix A.8.4, following Appendices A.8.1-A.8.3 which serve as prepa-
rations for A.8.4.

Thus, vector x with its PDF (8.9) is said to have (or follow) the MVN distribution
with its mean vector p and covariance matrix X. This statement is denoted as
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X2
Contours of P(x! u,Z)

X1
(a) Probability density function (PDF) (b) Bird’s-eye view of PDF
Fig. 8.4 Illustration of a multivariate normal distribution for p = 2, i.e., X = [xy, x5]’
X~ N, (1, Z), (8.13)

where N and its subscript p stand for “normal distribution” and the number of
variables, respectively. The term “mean” in “mean vector p” is a synonym of
“average” (as mentioned in Sect. 7.5).

150 136
136 159
Fig. 8.4a. It resembles a bell. The vector x closer to the place corresponding to the
top of P(x|p, X) is more likely to be observed. A bird’s-eye view of the distribution
in (a) is shown in Fig. 8.4b. There, we can find that the center corresponding to the
top of P(x|p,X) is the mean vector p. It is surrounded by ellipses which express
the contours of P(x|pn, X); that is, each of the ellipses stands for the terminus of the
vector x providing an equivalent value of P(x|p, X). The shapes of those ellipses are
known to be determined by the covariance matrix X. If p is reduced to one, the
shape of P(x|p,X) is equal to that drawn in Fig. 8.3b. If p > 3, then we need
graphs of more than three dimensions, which cannot be drawn or seen. But, we can
imagine “a bell in a multidimensional space”.

The PDF (8.9) with p =2, p =[165, 70], and X = { } is drawn in

8.5 Maximum Likelihood Method for Normal Variables

In Fig. 8.4, the PDF P(x|p, X) for MVN distribution is illustrated on the assumption
that p and X are known. But, in practical situations, p and X are often unknown and
x is observed as specific vectors x; (i = 1, ..., n), for example, as the rows of X in
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Tabl(.s 8.1 Data matrix Physics Chemistry Biology

showmg scores of 1.1 students X = oy 20 s o

x 3 subject tests, with the first 1

five and the remaining six X;' 65 46 70

students belonging to two X3’ 82 57 76

ngre)rllet)classes (artificial x4/ 66 61 60
Xs' 73 72 76
X¢' 79 84 89
x; 89 74 78
Xg' 67 60 61
Xo' 91 87 85
X10' 81 64 72
X' 71 73 75

Table 8.1. In this section, we consider estimating parameters p and X from an n X
p data matrix X = [Xy, ..., X,,]' on the assumption that their row vectors follow the
MVN distribution with its average vector p and covariance matrix X:

xi~N,(WE) (i=1,...n) (8.14)

For this estimation, we can use the ML method introduced in Sect. 7.2. The ML
method for continuous variables can be expressed simply by attaching “density” to
“probability” in (8.7), as

Obtaining the parameter value that maximizes (8.15)
the probability density of the data being observed. '

It is because both a probability density and a probability stand for how likely it is
that a value will be observed, as described in Sect. 8.2 and Note 8.1.
By substituting x; for x in (8.9), the probability density of x = x; is expressed as

1 1 v
P(Xi|ll,2)(27r)p/2|2|l/zexp{2(xiu)2 (x u)} (8.16)

For example, the probability density of x = x; in Table 8.1 is

P(x|n,X) = L (180,77,68]' — p) =" ([80,77,68] — p)}.

1
(27r)p/2|):|1/2 exp{ 2
(8.17)
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Mathematical operations for probabilities also hold for probability densities (e.g.,
Hogg, McKean, & Craig, 2005). On the supposition that the rows of X = [xy, ...,
x,]" are observed mutually independently, the probability density of the n rows in
X being jointly observed is given by the product of (8.16) overi =1, ..., n:

i=1

o= =1 {WP{‘§< Wz w b
1 Lo -
:Wexp{?;(‘f‘m (Xi—u)},

with the operator [] defined as follows:

Note 8.6 Repetition of Products

m
Hai:alxazx-uxam
i=1

The probability density, if it is treated as a function of parameters, is also
rephrased as the likelihood. That is, (8.18) can be called the likelihood of p and X
for the data matrix X.

8.6 Maximum Likelihood Estimates of Means
and Covariances

The p and X values are obtained in the ML method, such that the data matrix X is
the most likely to be observed. That is, the maximum likelihood estimates (MLE) of
i and X are estimated that maximizes (8.18) or its logarithm. This is given by

n

np n 1 -1
log P(X|n,X) = —=-log 27 — S log [X] - EZ (xi—wWE (xi—p). (819

i=1
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Here, —(np/2)log2n is a constant irrelevant to p and X. Thus, the maximization of
(8.19) is equivalent to maximizing the function

n

n 1 _
I, 2) = ~Tlog [£] 33" (x—w'E" (5~ ), (8.20)
i=1

with the constant term deleted from (8.19). We refer to (8.20) as the log likelihood
below. As shown in Appendix A.5.1, the MLE of p and X is given by

1 n
a:izgzxi, (8.21)
i=1

n

> (i —X)(xi—%) =V. (8.22)

i=1

2:

S |-

Here, V is the matrix defined in (3.13) as shown next:

Note 8.7 Another Expression of V

Let us recall (3.13). It can be rewritten as V = n~ 'X'JX = n~'(JX)'JX, where
(x1 —X)'

JX contains the centered scores: JX = : . Thus, n '(JX)'JX is
(Xn — i)l

found to equal n! Y% | (x; — X)(x; — X)' in (8.22).

In (8.21) and (8.22), we find that the MLE of p and X is found to equal the average
vector and covariance matrix obtained from the data set, respectively.

Though both p and X are referred to as average/mean vectors, and both X and
V are called covariance matrices, p and X differ from X and V, in that the former are
the parameters determining N,(p,X), while X and V are the statistics obtained from
X. However, the MLE of p and X equals X and V, respectively, as shown in (8.21)
and (8.22) on the assumption of the rows of X following N,(u, ¥) mutually
independently. For distinguishing p and X from X and V, the latter statistics are
called a sample average vector and a sample covariance matrix, respectively.

By substituting MLE (8.21) and (8.22) into the log likelihood (8.20), its maxi-
mum is expressed as



8.6 Maximum Likelihood Estimates of Means and Covariances 123

1 n
~Jlog [V = 3>~ (x =%V (xi %)

i=1

1 n
—glog V| — ztr; (xi — %)V (x; — %)

~
~
=
M
Il

(8.23)

1 n
—glog V| — Etr; (xi —X)(x; — %)’V

n n _ n np
—~log|V| —ztrVV ! = —Zlog [V| — =.
5 log|V| -5t 5log|Vl =~

8.7 Model Selection

Cases exist for which several models are considered to explain a single data set, as
illustrated in Fig. 8.5. Model selection refers to comparing models and selecting the
model best fitted to a data set. An advantage of the ML method is that its MLE can
be used for model selection with statistics generally called information criteria.

One statistic included in such information criteria was first derived by the
Japanese statistician Hirotsugu Akaike (1927-2009). The statistic is known as
Akaike’s (1974) information criterion (AIC), which is defined as

AIC = —2[(@®) + 21 (8.24)

for a model in which # is the number of parameters to be estimated in the model, [©)
stands for a set of MLEs of parameters, and l((:)) expresses the value of the log

likelihood (@) for @ = @. AIC is defined for each of the models considered for a
data set, and the model with a smaller AIC value is regarded as the better model.

Following AIC, similar statistics have been proposed. Among them, a popular
one is Schwarz’s (1978) Bayesian information criterion (BIC), defined as

BIC = —2(@) + n7logn, (8.25)

Fig. 8.5 Several models for a
data set MOdel 1 \
Model 2

\"’ Data Set
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with n the number of individuals in a data set. As with AIC, (8.25) is defined for
each model, and a smaller value implies that the model is better. It should be noted
that both (8.24) and (8.25) penalize a model for having more parameters, which can
be related to the philosophy of science, as in the following note:

Note 8.8 Information Criteria and Philosophy
How information criteria such as (8.24) and (8.25) are derived is beyond the
scope of this book. However, the following arguments are to be born in mind:

Let us view Fig. 8.5 by replacing “model” with “theory” and “data set”
with “phenomenon”. In the philosophy of science, it had been argued that the
goodness of a theory should be evaluated by

[1] how well it explains a phenomenon;
[2] how simple (parsimonious, in philosophical terms) it is.

(e.g., Hempel, 1966). We can reasonably consider that [1] corresponds to the

attained value of the log likelihood l((:)) and [2] is associated with the
smallness of n (the number of parameters). Thus, [1] and [2] are found to
correspond to smaller values of (8.24) and (8.25). In this sense, information
criteria can be viewed as a mathematical validation of the philosophical
argument.

Sometimes, the model chosen by AIC is different from that by BIC. For such a
case, the model must be chosen by users’ subjective consideration. This shows that
no absolute index exists for model selection, which should be kept in mind.

8.8 Assessment of Between-Group Heterogeneity

In order to illustrate model selection by information criteria, we consider two
models for the data matrix X in Table 8.1. Model 1 is expressed as (8.14); all row
vectors of X are assumed to follow an identical MVN distribution, N,(n, X), in
Model 1. On the other hand, let us consider Model 2 expressed as

Xi~Ny(py, Zy) fori=1,...,5andx; ~ N,(p,, Xp) fori = 6, ..., 11 (8.26)

The row vectors for the first five students and those for the remaining six students
are assumed to follow different MVN distributions in Model 2, where the former and
the latter students belong to two different classes.

The MLEs for Model I are given by (8.21) and (8.22) with n = 11, and their
values are obtained as in Table 8.2(A). As found there, # (the number of param-
eters) is 3 + 6 = 9, where 3 is the number of elements in p and 6 is the number of
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Table 8.2 MLE, 7 (the number of parameters), AIC, and BIC for the data in Table 8.1, with the
lower triangular elements omitted in symmetric covariance matrices

Model (A) Model 1 (B) Model 2

Parameter | o b)) i P i, %,

Physics 76.7 |73.7 1639 484 |73.2 |48.6 |38.9 |22.0 |79.7 |75.6 522 |50.9
Chemistry | 68.6 136.8 | 64.6 |62.6 121.0 |2.0 |73.7 942 | 832
Biology 73.6 71.9 |70.0 35.2 |76.7 82.2
n 9 18

AIC 588.54 189.45

BIC 592.12 196.61

different covariances in X; it has 3 x 3 elements, but the number of different ones is

6, since X is symmetric. Substituting those MLEs into (8.23), we have /(ji,X) =

—110g(202139.9) — 3} = —285.268. Further, this is substituted into (@) in (8.24)
and (8.25) to give AIC = —2x(—285.268) + 2 x 9 = 588.54 and BIC = -2 x
(—285.268) + 9logl1 = 592.12, as shown in Table 8.2(A).

Note 8.9 Base of Logarithm
In this book, “log x” stands for “log, x”, with e = 2.72 the base of the natural
logarithm.

Next, let us obtain the MLE, AIC, and BIC for Model 2. On the supposition that
the rows of X = [xy, ..., X,,]' are observed mutually independently, the probability
density of the n rows in X being observed jointly is expressed as

1 1S ,
PX|py, 2,10, 50) = ————< =) (=) (ki —
( |lll7 1?"27 2) (2n)5p/2|21|5/2exp{ 2 (X lll) 1 (X ul)}

i=6

1 1 Iv—1
X WCXP{_EZ(Xi M) L, (x; —Hz)}7

because of (8.26), where

1 1< I —1
WCXP{—EZ(Xi—M)Z1 (Xi—lll)}

i=1

stands for the probability density of Xy, ..., X5 being jointly observed, while



126 8 Maximum Likelihood and Multivariate Normal Distribution

1 1 11 e

is the probability density for Xg, ..., Xi-
The log likelihood corresponding to (8.27) can be expressed as

l(ﬂ1,217l‘«2722) = ll(ulazl) +l2(u2a22)7 (828)

where

1

5 : .
B B) = = Slogl=i] =33 ( —m)E (- ). (8:29)
i=1
6 1 Is—1
B(a, E2) = —SloglZa =33 () (=), (8.30)
i=6

with the constants irrelevant to parameters being deleted.

As found in (8.28), the log likelihood is decomposed into /;(p;, X;) and l(p,,
X,). Since they are functions of different sets of parameters, the sets {p;, X}
maximizing [(py, X;) and {p,, X,} maximizing lr(p,, X,) are found to be the
MLEs that maximize (8.28). By comparing (8.29) and (8.30) with (8.20), we can
find that (8.29) or (8.30) is equivalent to log likelihood (8.20), in which p and X
have the subscript 1 or 2, and the series i = 1, ..., nis replaced by i = 1, ..., 5 or
i=6, ..., 11. This fact, along with (8.21) and (8.22), shows that p; and X; max-
imizing [;(p,, X;) are given by

L1 .
H1:§;Xh X =

while p, and X, maximizing l,(p,, X;) are given by

5
Z (xi — By) (xi — y)’
i=1

| —

A 1l . 1 ) A
By = gzxia L= EZ (xi — ) (xi — ).

i=6 i=6

Those values are shown in Table 8.2(B), whose substitution into (8.28) gives the
value of the maximum log likelihood:

© e 5 15 6 18
log (i, 1, iy, £2) = —log(98.328.73) — =~ — 710g(36,140.64) — —

= 7673,

with 7 = 18 for Model 2 and n = 5 + 6 = 11. Using them in (8.24) and (8.25), we
get the AIC and BIC values in Table 8.2(B).
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In Table 8.2, both the AIC and BIC are found to show that Model 2 is better; the
11 students are classified into the two groups characterized by different MVN
distributions. It should be kept in mind that comparing the AIC and BIC values is
senseless; the comparison is to be made within the same index. Comparing AIC
values for different data sets as well as BIC values for different data sets is also
senseless. A model comparison must be made for a single data set (Fig. 8.5).

8.9 Bibliographical Notes

This chapter can serve as a preliminary stage before learning statistical inferences,
which are not treated in the present book. Statistical inferences refer to the theories
in which the relationships of the estimates of parameters to their true values are
discussed on the basis of probabilities. One of the established books on elementary
statistical inferences was written by Hogg, McKean, and Craig (2019). Books on
multivariate statistical inferences include Anderson (2003), Rao (2001), Rencher
and Christensen (2012), Seber (1984), and Timm (2002). Searl and Khuri’s (2017)
book is among the ones in which the matrix algebra for probabilities and statistical
inferences is introduced. Detailed treatments of information criteria are found in
Konishi (2014) and Konishi and Kitagawa (2008). In those books, properties of
maximum likelihood estimates are detailed.

Exercises

8.1. Let d be an n x 1 data vector whose m elements take one and whose
remaining elements are zero, with @ the probability of an element in d taking
one. The likelihood of parameter w for the data set d is expressed as

Plw)=o"(1—-w)"", (8.31)

on the supposition that the elements in d are mutually independently
observed. Show that the MLE of w is given by m/n, using the fact that
dlogP(w)ldw, 1i.e., the differentiation of the logarithm of (8.31) with
respect to o, is zero for the w value being MLE, with dlogw/dw = 1/w
and dlog(l — w)/dw = —1/(1 — w).
8.2. The function
1

Plalbie) = 1 e (8.32)

is called a logistic function and is used for relating a continuous variable x to
probability ¢(x|b,c). Verify that the function ¢(x|b,c) takes the forms in
Fig. 8.6 with 0 < ¢(x|b, ¢) < 1, by substituting some values into x with b and
c fixed at specific values.



8 Maximum Likelihood and Multivariate Normal Distribution

—00 X +o0 —0 X +00

b>0 b<0

Fig. 8.6 Illustrations of logistic functions

8.3.

8.4.

8.5.

Let us suppose that the probability of engine i (= 1, ..., n) having trouble is
expressed as 1/{1 + exp(—bx; + ¢)} with x; the value of the variable for
i explaining the trouble probability. Show that the likelihood of » and ¢ can
be expressed as

Il (1 e e >> (1 f‘fi;ff;;i i c>) o ew

i=1

for observed data x; and d;, i = 1, ..., n, with d; = 1 if i has trouble; d; = 0
otherwise. Here, d;, ..., d, are assumed to be mutually independently
observed.

Show that the logarithm of (8.33) can be written as

zﬂ: {(1 —d;)(=bx;+c) —log[l + exp(—bx; +c)]}. (8.34)
i=1

Let us consider another model for engine trouble in which the probability of
engine i (= 1, ..., n) having trouble is expressed as 1/{1 + exp(—oz; —
Pxi+ y)}, with x; the one in (8.33) and z; the value of another explanatory
variable for i. The likelihood for this model is expressed as

n

1 a exp(—az; — fx;+7) I=d;
H (1 + exp(—ozi — ﬁxi+y)> (1 + exp(—oaz; — ﬁer’)) - (839)

i=1

Let b and ¢ denote the MLE of b and ¢ for maximizing (8.33) or (8.34). On

the other hand, let &, [3, and ) be the MLE of «, f, and y for maximizing
(8.35). Show that BIC is expressed as
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—2) " {(1 = d;)(=bx; + &) — log[1 + exp(—bx; + )]} +2log n
i=1
for (8.33) or (8.34), while it is expressed as
—2 Z {(1 —d;)(—bz; — pxi +9) — log[1 + exp(—dz — px; +”)7)]} +3logn
i=1

for (8.35).

8.6. The similarity of the ML method to a human psychological process was
mentioned with an example in Sect. 8.2. Present another example for illus-
trating the similarity.

8.7. If x ~ N,(n, L), it is known that x + a~ N,(n + a, X) for fixed a. Use this
fact to show the equivalence between x~ N,(u, X) and x = p + e with
e ~ N, (0, X).

8.8. Use the fact that [¢°I,| = 0™ to show that the probability density function

(PDF) of x ~ N,(n, 621,,) is the product of P(xj|,uj,02) =

(x/'_:uj)z

] exp{f %T} over j =1, ..., p, with x; the jth element of x, y; that of

210
1, and P(x; | w;, 6?) being the PDF of the (univariate) normal distribution with
its mean y; and variance o’

8.9. Show that the MLE of ¢” is given by & = #Z":, |x; — |7, if x ~ N,(n,

ozlp), where X, ..., X, are the p x 1 observed vectors for x and
X = n’lZ;‘:lxi.

8.10. Let us consider the model x; = f,(®) + e; for p x 1 data vectors x;, i = 1, ...,
n, observed mutually independently, with e; ~ N(0,, O'ZI[,) and f(®) a
function of parameter @ yielding a p x 1 data vector. Show the equivalence
between the MLE of ® and the least squares estimate of @& minimizing
=X — £,(©)||%, using the facts in Exercises 8.7 to 8.9.

8.11. For ny vectors x; (p x 1),i =1, ..., ng, observed mutually independently, for
group k = 1, 2, 3, let us consider the following models:

Model 1. x;; ~ N,(n, X): All observations follow an identical distribution.
Model 2. x;; ~ N,(m, Xg): Each group has a specific distribution.

Model 3. xy; ~ Ny(uy, 1) and x4; ~ Nj(po, Xy) for k = 2, 3: Group 1 differs
from 2 and 3.

Express AIC for the models as functions of x;; and the number of parameters.

8.12. For ny vectors x;; (p x 1), i = 1, ..., n; observed mutually independently, for
group k =1, ..., K, let us consider the following models:

Model 1. x4; ~ N,(l., X): The covariances are homogeneous among groups.
Model 2. xi; ~ N,(u Xy): The covariances are heterogeneous across
groups.
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Express BIC for the models as functions of x;; and the number of parameters,
using the facts described in Appendix AS.2.

For n vectors x; (p x 1),i = 1, ..., n, observed mutually independently, let us
consider the models:

Model 1. x; ~ Ny(n, X): The covariances are unconstrained.

Model 2. x; ~ NI,(u,o*zIp): The covariances are constrained.

Express AIC for the models as functions of x;; and the number of parameters.



Chapter 9 M)
Path Analysis e

Let us assume three variables, A, B, and C, to be analyzed. The regression analysis
for predicting C from A and B is based on the causal model, with A and B causes
and C the result. However, this model is not guaranteed to indicate the true rela-
tionships among A, B, and C. The true causal model might be “A causes B which
causes C” or “A causes B and C”. Path analysis is a procedure in which users form
causal models by themselves and select the model fitted well to a data set. The
origins of path analysis can be found in Wright’s (1918, 1960) biometric studies
and Haavelmo’s (1943) econometric ones (Kaplan, 2000).

9.1 From Multiple Regression Analysis to Path Analysis

In this chapter, we use the data set of 60 students by 5 variables in Table 9.1(A).
The five variables concern a lecture:

IN: to what extent students were interested in the lecture

KN: the amount of prior knowledge of the lecture subjects

AB: how often students were absent from the lecture

SH: study hours that students took at home for the lecture

RE: records that students were finally given.

For this data set, the regression analysis for predicting RE is modeled as
RE = b; x IN+ by x KN+ b3 x AB + by x SH + ¢ + error. (9.1)

This model can be expressed as the path diagram in Fig. 9.1a. There,
double-headed arrows indicate linked variables being merely correlated, and
single-headed arrows indicate the causal relationships; they extend from causes
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K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
https://doi.org/10.1007/978-981-15-4103-2_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4103-2_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4103-2_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4103-2_9&amp;domain=pdf
https://doi.org/10.1007/978-981-15-4103-2_9

132

Table 9.1 A data set for five variables for a lecture (artificial example)

9 Path Analysis

|IN KN | AB | SH |RE
(A) Raw data
1 4 54 13.8 120 82
2 7 68 0 150 9
3 4 66 19.6 90 82
4 4 68 17.5 90 80
5 4 68 35.1 60 70
6 4 66 2 90 58
7 3 76 26.1 30 82
8 3 66 322 60 66
9 2 58 412 0 40
10 6 70 1.1 150 90
11 6 98 10.6 60 90
12 2 48 48 60 44
13 4 70 11.9 150 98
14 6 76 137 120 90
15 3 50 39.7 90 70
16 5 62 11.8 120 96
17 3 52 25.2 60 60
18 2 74 34 0 54
19 3 52 33.1 90 64
20 5 70 13 150 86
21 5 80 9.5 150 88
2 1 56 39.7 0 48
23 7 74 115 180 84
24 4 60 15.5 90 80
25 1 64 53.6 0 52
26 5 60 234 150 80
27 5 50 16.7 180 74
28 5 66 13.9 90 74
29 5 76 26.2 120 80
30 5 62 10.4 120 88
31 3 64 25.5 60 78
32 3 62 274 60 68
33 3 72 37 30 64
34 3 74 2.8 90 90
35 6 68 24.2 180 94
36 3 64 35.8 60 76
37 5 70 16.8 90 94
38 4 58 17.5 90 90
39 2 56 25.2 0 58

(continued)
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Table 9.1 (continued)

From Multiple Regression Analysis to Path Analysis
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IN KN AB SH RE
40 5 64 9.4 120 90
41 5 66 6.2 120 86
42 3 52 38 30 48
43 6 66 5.8 150 86
44 5 62 19.4 90 86
45 5 82 9.9 30 92
46 3 60 36.4 60 62
47 4 58 24 120 82
48 2 56 32.1 60 60
49 4 58 38.8 60 56
50 2 40 30.7 90 64
51 4 50 31.9 90 72
52 4 64 10.5 120 78
53 3 44 19.8 60 66
54 5 70 94 150 82
55 4 50 24.5 120 74
56 4 66 25.6 120 76
57 5 62 26 120 86
58 5 74 15.8 60 90
59 5 64 4.8 90 94
60 4 52 433 90 58
Av 4.03 63.47 22.78 90.50 75.77
SD 1.35 9.99 12.08 46.63 14.61
(B) Centered data = X
1 —-0.03 -9.47 -8.97 29.50 6.23
2 2.97 4.53 —22.78 59.50 20.23
3 —-0.03 2.53 -3.17 -0.50 6.23
4 —-0.03 4.53 -5.28 —0.50 4.23
5 —-0.03 4.53 12.33 —30.50 =5.77
6 —-0.03 2.53 1.23 -0.50 -17.77
7 -1.03 12.53 3.33 —60.50 6.23
8 -1.03 2.53 9.43 =30.50 -9.77
9 -2.03 -5.47 18.43 —90.50 -35.77
10 1.97 6.53 —21.68 59.50 14.23
11 1.97 34.53 -12.18 =30.50 14.23
12 -2.03 —15.47 25.23 —30.50 -31.77
13 —-0.03 6.53 -10.88 59.50 22.23
14 1.97 12.53 -9.08 29.50 14.23
15 -1.03 —13.47 16.93 —0.50 =577
16 0.97 -1.47 -10.98 29.50 20.23

(continued)
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Table 9.1 (continued)

9 Path Analysis

IN KN AB SH RE

17 —1.03 —11.47 243 —30.50 —15.77
18 —2.03 10.53 11.23 —90.50 —21.77
19 —1.03 —11.47 10.33 —0.50 -11.77
20 0.97 6.53 -9.78 59.50 10.23
21 0.97 16.53 —13.28 59.50 12.23
22 —3.03 —7.47 16.93 —90.50 —27.77
23 2.97 10.53 —11.28 89.50 8.23
24 —0.03 —3.47 —7.28 —0.50 4.23
25 —3.03 0.53 30.83 —90.50 —23.77
26 0.97 —3.47 0.63 59.50 4.23
27 0.97 —13.47 —6.08 89.50 -1.77
28 0.97 2.53 —8.87 —0.50 -1.77
29 0.97 12.53 3.43 29.50 4.23
30 0.97 —1.47 —12.38 29.50 12.23
31 —1.03 0.53 2.73 —30.50 2.23
32 —1.03 —1.47 4.63 —30.50 =1.77
33 —-1.03 8.53 14.23 —60.50 -11.77
34 —-1.03 10.53 0.03 —0.50 14.23
35 1.97 4.53 1.43 89.50 18.23
36 —1.03 0.53 13.03 —30.50 0.23
37 0.97 6.53 -5.97 —0.50 18.23
38 —-0.03 —5.47 -5.28 —-0.50 14.23
39 —2.03 —7.47 243 —90.50 -17.77
40 0.97 0.53 —13.38 29.50 14.23
41 0.97 2.53 —16.58 29.50 10.23
42 —-1.03 —11.47 15.23 —60.50 =27.77
43 1.97 2.53 —16.98 59.50 10.23
44 0.97 —1.47 —3.38 —0.50 10.23
45 0.97 18.53 —12.88 —60.50 16.23
46 —1.03 -3.47 13.63 —30.50 -13.77
47 —0.03 —5.47 1.23 29.50 6.23
48 —2.03 —7.47 9.33 —30.50 —15.77
49 —-0.03 —5.47 16.03 —30.50 —19.77
50 —2.03 —23.47 7.93 —0.50 -11.77
51 —-0.03 —13.47 9.13 —0.50 —3.77
52 —-0.03 0.53 —12.28 29.50 2.23
53 —1.03 —19.47 -2.97 —30.50 -9.77
54 0.97 6.53 —13.38 59.50 6.23
55 —-0.03 —13.47 1.73 29.50 -1.77
56 —-0.03 2.53 2.83 29.50 0.23

(continued)
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Table 9.1 (continued)
IN KN AB SH RE

57 0.97 —1.47 3.23 29.50 10.23
58 0.97 10.53 -6.97 —30.50 14.23
59 0.97 0.53 —17.98 —0.50 18.23
60 —0.03 —11.47 20.53 —0.50 —-17.77
Av 0.00 0.00 0.00 0.00 0.00
SD 1.35 9.99 12.08 46.63 14.61

IN w33

<6012 b b
@i ZLw» AB
Q]
013 KN b\Z. @ss IN _—v bs 55

014 QO RE b\‘ SH

23 / 2 \

w22 AB b; w12 by be RE
<a)34 by W W43 ;
4
SH KN

(a) Multiple Regression (b) Path Analysis

Fig. 9.1 Multiple regression model and an example of path analysis models for the data in
Table 9.1

(explanatory variables) to a result (dependent variable). That is, regression analysis
is based on the causal model with multiple causes and a single result.

But, other causal models may better describe the relationships of variables. An
example of other models is shown by the path diagram in Fig. 9.1b, in which it is
considered that IN influences RE by way of AB and SH, while KN influences RE
directly and by way of SH. In other words, [1] AB is influenced by IN; [2] SH is
influenced by IN and KN; and [3] RE is influenced by KN, AB, and SH. These
causal relationships are expressed as a set of regression analysis models:

AB = b x IN+c3 +e3,
SH = by X IN+ b3 x KN+ ¢4 + ¢4, (9.2)
RE = by x KN+ b5 x AB + bg x SH+ ¢5 + e5,

with ¢; and ¢; (j = 3, 4, 5) intercepts and errors, respectively. Here, the subscripts 3,
4, and 5 attached to ¢ and e merely correspond to AB, SH, and RE being the third,
fourth, and fifth variables. The set of the three equations is equivalent to the path
diagram in Fig. 9.1b, where the intercepts are omitted. Parameters by, ..., bg in (9.2)
are called path coefficients.
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In path analysis, the variables are classified into explanatory and dependent
variables as follows:

[11 An explanatory variable is one to which no single-headed arrow extends in a
path diagram; in Fig. 9.1b, IN and KN are explanatory variables. The errors
es, e4, and es are also included in explanatory variables.

[2] A dependent variable is one to which at least a single-headed arrow extends;
AB, SH, and RE are dependent variables in Fig. 9.1b.

Explanatory and dependent variables are also called exogenous and endogenous
variables, respectively.

9.2 Matrix Expression

Table 9.1(B) contains the centered scores transformed from the raw scores in (A). It
is known that the path analysis for (A) and that for (B) give an identical solution,
except for the resulting intercepts (cs3, c4, cs) being zero in the latter analysis. We
thus omit the intercepts in the models for path analysis, for the sake of simplicity,
supposing that a data set to be analyzed contains centered scores. Thus, (9.2) is
simplified without c3, ¢4, and cs as

AB = b; x IN +e3,
SH = b2 X IN+b3 X I(l\I—i-€47 (93)
RE = by x KN+ b5 x AB + bg x SH + e3.

Using matrices and vectors, the three equations in (9.3) are summarized in the
following single equation:

X B X u
IN IN IN
KN KN KN
AB | = | b AB | + | & s (9 4)
SH b2 b3 SH €4
RE b4 b5 b() RE es

with the blank cells in B occupied by zeros. Here, the first and second rows in the
left- and right-hand sides of (9.4) stand for “IN = IN” and “KN = KN”, which
obviously hold true, and the remaining rows are found to equal (9.3). Any model
for path analysis can be expressed in the form of (9.4), i.e.,

x =Bx+u, (9.5)

for a p x 1 random vector x for p variables, with the expected vector E[x] for
x supposed to be 0,,. This corresponds to the above supposition that a data set to be
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analyzed contains centered. The p x 1 u in (9.5) is a random vector containing
p explanatory variables, and B is the p X p path coefficient matrix, in which the (i, j)
element being nonzero implies that variable i is influenced by variable j.

Equation (9.5) is rewritten as x — Bx = u, thus, (I, — B)x = u. We can further
rewrite it as

x= (I, - B)_lu, (9.6)

supposing the existence of (I, — B) "', i.e., that the inverse matrix of I, — B can be
obtained. For the model in Fig. 9.1b, (9.6) is expressed in the concrete form:

X (I,-B)™ u
IN 1 - JIN
KN 1 KN
9.7
AB = —b1 1 es . ( )
SH —bz —b3 1 ey
RE —by —bs —bg 1 es

9.3 Distributional Assumptions

Let us assume that explanatory variable vector u follows the multivariate normal
(MVN) distribution with its mean vector 0, and covariance matrix €2:

u~N, (0,,, Q). (9.8)
The elements of the covariance matrix are described as

IN KN e ey es

IN | Wi W2
KN | W2 2
Q = o W3 (9.9)
e Wy4
es (0.3

for the model in Fig. 9.1b. Here, the blank cells indicate zero elements, which
implies that errors are assumed to be uncorrelated with explanatory variables and
that errors are assumed to be mutually uncorrelated. Those assumptions are found
in Fig. 9.1b; they are not linked by paths there.

Here, we introduce a property of MVN variables without its proof:
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Note 9.1. A Property of MVN Distribution
If u is a random vector with u ~ N,(n, ), then

Au+c~N,(Ap+c,AQA") (9.10)

for fixed A (p x p)and ¢ (p x 1).

Here, the difference of random u to fixed A and ¢ should be noted; the
elements of u take a variety of values as x in Note 8.4, while the elements in
A and c are constant.

Because of (9.6), (9.8), and (9.10), variable vector x is found to follow an MVN
distribution as follows:

x~N,(0,,%), (9.11)

with its covariance matrix

1

= (I, -B)'Q(I,-B)" (9.12)

9.4 Likelihood for Covariance Structure Analysis

Let a 60 (students) x 5 (variables) data matrix X contain the centered scores in
Table 9.1(B) and x;" denote the ith row of X. If x; ~ N,(n, X), the log likelihood
for X is expressed as (8.20) in Chap. 8. However, in the path analysis model, p is
restricted to 0, as in (9.11), with X constrained as (9.12).

The substitution of 0, into p in (8.20) leads to the log likelihood of X for path
analysis:

I(X)

n 1 - Iy —1
_EIOg‘E‘_El;:X"E X;

n 1 —1 - !
_EIOg‘Z‘_EU}: inxi (9.13)

i=1

n n o fI~. ) n N
—zlog\):\ —Etr): (E;X1X1> = —Elog |Z] —Etr):. V,
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where X is constrained as (9.12) and
V:lzn:x-xleX’X (9.14)
n4 L) '

is the inter-variable covariance matrix for the centered score matrix X.
Let us note that the matrix X maximizing (9.13) is equivalent to the one
maximizing

[(Z) = glog\z*v\ - gtr271V7 (9.15)
since we can use (8.11) and (8.12) in (9.15) to rewrite this as

I'(X) = glog(‘):’l! x [V|) — gtrZ’lV = —glog|2| + glog|V| - gtrE’lV.
(9.15')

Its parts relevant to X are the same as in (9.13); that is, (9.15) can be regarded as the
log likelihood equivalent to (9.13). The former is easier to treat than (9.13) in that
the same matrix £~V appears in the determinant and trace. We thus use (9.15) for
the log likelihood of X from here. The log likelihoods for the procedures in
Chaps. 10, 11, and 12 are also written in the form of (9.15).

Note 9.2. Covariance Structure Analysis

Likelihood (9.15) is a function of the covariance matrices V and X that are
obtained from data and derived from a model as in (9.6), respectively. To
distinguish the two matrices from one another, the data-based V is called a
sample covariance matrix, while the model-based X is called a covariance
structure. Further, the path analysis and the procedures in Chaps. 10, 11, and
12 are generally called covariance structure analysis, as those procedures
share in common log likelihoods that are written in the form of (9.15) and
differ only in the covariance structure; it is constrained as (9.12) in the path
analysis, while constraints different from (9.12) are imposed upon X in the
other procedures.

9.5 Maximum Likelihood Estimation

Substituting (9.12) into X in (9.15) leads to the log likelihood of parameters B and
Q for the data matrix X:
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I'(B,Q) = —Zlog| (1, — B)'Q”' (I, - B)V| - Jur(1, - B)' @' (I, ~ B)V.
(9.16)

Here, we have used the fact that the inverse matrix of (9.12) is expressed as
-1
2 = {(, -0, -8} =1, -8 (1, B

because of (4.16).

In path analysis, log likelihood (9.16) is maximized; in other words, its negative
—I'(B, Q) is minimized, over B and Q. In model (9.7), the number of parameters to
be obtained is 12, since the distinct nonzero elements in B and Q are by, ..., b and
W11, Wao, W33, W44, W55, W12, Tespectively, with Q symmetric, i.e., its (1, 2) and (2,
1) elements being the same. Since the solution is not explicitly given, the mini-
mization of —'(B, Q) is attained by iterative algorithms. A popular approach is the
one using a gradient algorithm, which is illustrated in Appendix A.6.3. Setting the
vector 0 in A6.3 to [by, ..., bs, 11, Wr2, W33, Was, W55, W12], the solution can be

obtained. We express the solution of B, €, and (9.12) as fi Q and ﬁ‘. respectively.
9.6 Estimated Covariance Structure

For the data set in Table 9.1(B), the solution of the path analysis with its model
(9.7) is given by

IN KN AB SH RE IN KN ¢ ey es
N IN[ 1.83 6.38
R KN . KN| 6.3899.72
B = aB|-6.90 , Q= o 58.55
SH[31.94 -1.65 e 706.86
RE 0.40 -0.62 0.10 es 51.36
(9.17)

Figure 9.2a presents a path diagram with the values in the above solution shown in
the corresponding parts. The GFI statistic, defined as

£V -1,)
wE VL)

(X V)?

GFl=1-— , (9.18)

is convenient for assessing whether a solution is satisfactory or not. Index (9.18)
indicates the closeness of the sample covariance matrix V and the estimated co-
variance structure
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090, , 1 25
IN L2 (es) IN AR
o \
-1.65
7

>
(=}
2
[
2N

mRE ’ RE

6.38
0
99.72
KN 0.40
(a) Unstandardized Solution (b) Standardized Solution

Fig. 9.2 Solution of the model in Fig. 9.1b for the data in Table 9.1

r=(,-B) Q(I,-B) , (9.19)

i.e., (9.12) in which the solutions B and Q have been substituted If £ = V, which

implies that a model is fitted completely to a data set with T V I,, then (9.18)
attains the one at the upper limit; the largeness of the GFI stands for how well
solution-based covariances approximate sample covariances. A value of 0.9 is
sometimes used as a benchmark with a GFI > 0.9 showing a satisfactory model,
though selecting 0.9 does not have any theoretical rationale.

The sample covariance matrix for the data in Table 9.1 and the estimated co-
variance structure for the solution in Fig. 9.2a are given as

IN KN AB SH RE IN KN  AB SH RE
IN 1.83 IN 1.83
KN 638  99.72 Sym . KN 638  99.72 Sym
V = AB |.1265 5110 14587 , 2 = AB |-12.65 -44.08 14587
SH | 4798 3927 -350.54 2174.75 SH | 4798 3927 -331.26 2174.75
RE | 1534 7514 -144.42 443.12 21348 RE | 1501 7081 -139.75 43123 207.71

respectively, where X has been obtained by substituting solution (9.17) in (9.19),
and the upper triangular elements in V and % have been omitted by writing “Sym”,

since they are symmetric. The above V and ¥ are substituted in (9.18) to give a GFI
of 0.984, which is higher than 0.9, suggesting that the solution in Fig. 9.2a is
satisfactory.
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9.7 Unstandardized and Standardized Solutions

The result in Fig. 9.2a is called unstandardized solution, as it is obtained from
unstandardized data with variables having different variances. Thus, it is senseless
to compare the largeness of the resulting parameter values. For the comparison to
make sense, we must obtain the standardized solution obtained for the standard
scores transformed from the raw data.

The unstandardized and standardized solutions can be considered two different
expressions of the same solution, as the maximum value of log likelihood (9.16) is
equivalent between unstandardized and standardized solutions, which is shown in
Appendix A.7. This equivalence is called scale invariance: The path analysis
solution can be said to be scale invariant. This property leads to the equivalence of
the value of GFI (9.18) between both solutions, as shown by (A.7.10) in
Appendix A.7. Furthermore, the standardized solutions of B and €, which we
denote B and ©, can be obtained straightforwardly from the unstandardized solu-

tions B and Q with the simple transformations:
B=D 'BDandQ =D'QD". (9.20)

This fact is also shown in Appendix A.7 with (A.7.20).

The standardized solutions transformed from (9.17) by (9.20) are shown in
Fig. 9.2b. There, it makes sense to compare the parameter values. For example, we
can find AB to be the most influential for RE among the three explanatory variables
AB, SH, and KN that extend paths to RE, since the absolute value of the coefficient
(—0.52) attached to the path from AB to RE is the largest. Further, the sign of that
coefficient is negative, implying that AB tends to considerably decrease RE. The
covariance @, = 0.47 in the standardized solution Q= (&) is viewed as the
correlation coefficient, since all variables are standard scores.

9.8 Other and Extreme Models

Let us refer to the model in Fig. 9.1b as Model 1. Although this model was
regarded as satisfactory, with a GFI exceeding 0.9, a model may exist that is better
fitted to the data set in Table 9.1(B). This suggests that other models should be
considered and compared; that is, the model selection illustrated in Fig. 8.5
(Sect. 8.7) is to be performed. Figure 9.3 shows two examples of other models,
which we call Models 2 and 3. In Model 2, one path is added to Model 1 in
Fig. 9.1b. On the other hand, in Model 3, one path deleted from Model 1. For
Model 2, (9.6) is expressed as
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Fig. 9.3 Examples of models that differ from the one in Fig. 9.1b

(I-B)"

X u
IN 1 - IN
KN 1 KN
AB |= | b, | e (9:21)
SH —b2 —b3 1 é4
RE —b7 —b4 —b5 —b6 1 es

Here, a parameter, b, is added to (9.7): that model has one more parameters than
Model 1. The covariance matrix among explanatory variables is the same as that in
(9.9). Except for the difference between (9.7) and (9.21), the same procedure is
performed for Model 2: The maximum likelihood method gives the solutions for
Model 2 and other possible models.

Now, let us consider two types of extreme models. One is the independent model
shown in Fig. 9.4a, where we find that no variable is linked to the others. It implies
that all variables are assumed to be mutually independent. This model is the most
restrictive, with its number of parameters the least among possible models. That
number is p, i.e., the number of variables; only their variances are to be estimated,
which are denoted as g;; G = 1, ..., p) in Fig. 9.4a.

The other extreme type is called the saturated model, whose number of
parameters equals p(p + 1)/2, the number of the distinctive covariances in V or
X = (oj); this is 15 for the data set in Table 9.1(B). This number is the maximum
among those for all possible models. The saturated models contain several ones,
and a typical saturated model is shown in Fig. 9.4b, where all variables are con-
nected by double-headed arrows, implying that all variables are assumed to be
merely correlated. That is, the model in Fig. 9.4b states nothing for the causal
relationships among the variables.

The covariance structures of the independent and saturated models are expressed
as
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Fig. 9.4 Two extreme models with the least and the most parameters

IN KN AB SH RE
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KN o
2 =AB o
SH Oy
RE Oss

IN KN AB SH RE
IN Oi
KN 031 On Sym
> X =B 031  On O3
SH O3 Opn Op Oup
RE Os1 Osp Os3 Osq  Oss

respectively. The former is a diagonal matrix, while the latter is a simple uncon-
strained covariance matrix without a special structure.

9.9 Model Selection

So far, we have Models 1, 2, and 3, and two extreme models. For comparing those
five models with respect to the goodness of fit to the data set, we cannot use GFI,
since the GFI values increase with the number of parameters in the models, and the
GFI for the saturated models always attains the upper limit. This can be found in
Table 9.2, where the models are arranged according to their numbers of parameters.

Table 9.2 Number of

parameters (NP) and the
resulting index values for

each model

Model NP GFI AIC BIC

Saturated 15 1.000 30.000 61.415
Model 2 13 0.987 28.035 55.262
Model 1 12 0.984 26.364 51.496
Model 3 11 0.908 39.792 62.830
Independent 5 0.389 231.480 241.952
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This property of GFI is due to the fact that the number of parameters is not
considered for defining the GFI, as found in (9.18). GFI is thus only useful for
assessing whether a considered model is satisfactory or not.

The information criteria introduced in Sect. 8.7 are useful for comparing
models, since the number of parameters is considered in the criteria. The typical
information criteria AIC and BIC for path analysis are obtained by substituting the
maximum (9.16) value /*(B, Q) into /(®) in (8.24) and (8.25). The AIC and BIC
values for each model are shown in Table 9.2. Since smaller values of the infor-
mation criteria indicate better models, Model 1, for which both the AIC and BIC
show the lowest values, is found to be the best of the five models. Different from
this example, cases often arise when AIC and BIC indicate different models are
best.

9.10 Bibliographical Notes

It is difficult to find books in which path analysis is exclusively treated. It is,
however, detailed in chapters of books for structural equation modeling, which
include Bollen (1989) and Kaplan (2000).

Exercises

9.1. Present an example of a set of the variables V1, V2, and V3 whose rela-
tionships are represented as the following path diagram:

@

9.2. Present an example of a set of the variables V1, V2, V3, and V4 whose
relationships are represented as the following path diagram:

]

120
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9.3.

9.4.

9.5.
9.6.

9.7.

9.8.

9 Path Analysis

Present an example of a set of the variables V1, ..., V5 whose relationships
are represented as the following path diagram:

Let the elements of the p x 1 vector x in (9.5) denoted as x = [zy, ..., z,,
Yis o ¥ =12, yT, with z=[z,, ..., z,]' the g x 1 vector containing
explanatory variables, y = [y, ..., ¥,]' the r X 1 vector consisting of de-

pendent variables, and p = g + r. Show that the path analysis model (9.5)
can be rewritten as

y=Ay+Cz+e, (9.27)

with A (r x r) and C (r X g) containing path coefficients.

Rewrite the diagram in Fig. 9.1b using the elements of A and C in (9.27).
Let the path analysis model be expressed as (9.27) with z ~ N0, @),
e ~ N0, ¥), and no correlation found between z and e, where ¥ is an
r x r diagonal matrix. Then, the fact is known that the ¢ x r covariance
matrix between the g explanatory variables in z and the r dependent ones in
y is given by ®C'(I, — A)"'. Using this fact, show that the covariance
structure (9.12) can be rewritten as

_ ()] oC/(I, — A)/fl
la-aylce @ -a)y oW - a) } 928

where (9.28) is one of the block matrices which are detailed in Sect. 14.1.
For an n x p centered data matrix, the independent model can formally be
expressed as X ~ N,(0,, X) with X = (dj) being constrained as a diagonal

matrix. Show that the PDF of x = [xy, ..., x,]" in this model is expressed as
)4 xf
P(x|X) = e -, 9.29
=-11— mﬂ xpd — 2= (9.29)
j= J]

using the fact that |E| = []/_, g if £ = (gy) is diagonal.
Show that the MLE of X in the independent model treated in Exercise 9.7 is
given by the diagonal matrix whose diagonal elements are those of
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9.9.

9.10.

9.11.

V = n 'XX, with X the n x p centered data matrix whose rows are filled
with x' for n individuals.

Let us consider model (9.27) with z ~ N,(0,, ®), e ~ N,(0,, ¥), and no
correlation found between z and e, where ¥ is an r x r diagonal matrix. If
the jth variable in y cannot be a cause for the (j-1)th variable, the log
likelihood of the parameters in (9.27) for the n X p centered data matrix
X =[Z, Y], whose rows are filled with the observations of x" = [Z/, ¥, is
known to be given by

log{(H, ¥, ®) ——{1og [¥|+ oMY~ + log |®| +trV,® '}
- 75{10g ||+ tr(HVxxH — 2VxxH)¥ ™! + trVyy P! + log |®| + trV,,®7 '}

(9.28)

(Adachi, 2014). Here, H = [C, A] (r x p), Vyy = n_'Y'Y, Vyx = n”'Y'X,
Vxx=n 'X'X, Vz=n'2Z7, and M =HVxxH — 2VyxH+Vyy,
with Z (n x gq) and Y (n x r) the blocks of X. Show that the two terms tr
(HVxxH'—2VyxH)¥ ! and log|'¥| + tM¥ ™" in (9.28) can be rewritten as

p
tr(HVxxH' — 2VyxH )¥ ™! Z v <Z V% +2 Z Z vichihi —2 Z Wi ,,)
i j=1

J=1 k#Aj

(9.29)

log [¥| + uM¥ ' = 3" (log y, + %) (9.30)
i=1 i

with Vxx = (v), Vyx = (W), H = (hy), m;; the ith diagonal element of M,
and ; that of W. For (9.30), use the fact that [D| = d; x -+ X d, if D is the
r x r diagonal matrix whose diagonal elements are dj, ..., d,.

Let us consider maximizing (9.28). The MLE of ® is explicitly given by
® = V,,, but the MLE of the nonzero elements in H and ¥ must be obtained
by an iterative algorithm. Use (9.29) and (9.30) to show that the algorithm
can be formed by the following steps:

Step 1. Initialize the nonzero elements of H.

Step 2. Set ; = m;; for i = 1,

Step 3. Repeat updating h;; as h,, (wl] >F 4 Vichic) over all indexes
i and j for the nonzero elements in H.

Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

The hint for Step 2 can be found in Exercise 8.1.

Show that the minimization of | XD — FA'||* over F and A gives an essen-
tially different solution from that of (5.4), which implies that the solutions
of principal component analysis do not have scale invariance. Here, X is an
n x p centered data matrix the number of the column of F is not greater than
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min(n, p), and D is a p X p diagonal matrix whose diagonal elements are all
positive and take mutually different values.

Show that the k-means clustering (KMC) for an n X p data matrix X gives an
essentially different solution from that for XD, which implies that the KMC
solutions do not have scale invariance, with D a diagonal matrix whose p X p
diagonal elements are all positive and take mutually different values.
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Let the positive correlations be observed among the test scores for physics,
chemistry, and biology. In order to investigate the causal relationships among the
three variables, we can use the path analysis from the previous chapter. For
example, we can evaluate the model in which a person’s ability in physics influ-
ences his/her scores in chemistry and biology; ability in physics is a cause, while
the scores in chemistry and biology are the results. However, it may be rather
reasonable to assume that all of the scores for physics, chemistry, and biology are
the results of a single factor, namely “an aptitude for the natural sciences”. This is
the idea underlying factor analysis (FA). British psychologist Spearman (1904) had
such a conception in his studies of human intelligence, which is the origin of FA. Its
key point is that all observed variables are regarded as the results caused by a few
unobserved latent variables called common factors, in contrast to path analysis, in
which causal relationships among observed variables are modeled.

FA can be classified into exploratory FA (EFA), confirmatory FA (CFA), and
sparse FA, where sparse FA is beyond the scope of Part III and treated in Part V.
EFA refers to the FA procedures for exploring common factors underlying
observed variables for cases without prior knowledge of underlying common fac-
tors (Thurstone, 1935, 1947). In contrast, CFA refers to the procedures for con-
firming a model describing the relationships of common factors to variables
(Joreskog, 1969). Historically, the development of EFA preceded that of CFA, and
EFA is often simply called “factor analysis”. However, CFA is dealt with in this
chapter, as introducing CFA before EFA suits the context of this book and CFA is
easier to understand than EFA.

© Springer Nature Singapore Pte Ltd. 2020 149
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
https://doi.org/10.1007/978-981-15-4103-2_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4103-2_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4103-2_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4103-2_10&amp;domain=pdf
https://doi.org/10.1007/978-981-15-4103-2_10

150 10 Confirmatory Factor Analysis

10.1 Example of Confirmatory Factor Analysis Model

We use the data set of 100 (participants) by 8 (behavioral features) in Table 10.1a
containing the self-ratings evaluating to what extent participants’ behaviors are
characterized by eight variables (features): A (Aggressive), C (Cheerful), I
(Initiative), B (Blunt), T (Talkative), V (Vigor), H (tendency to Hesitate), and P
(being Popular). For these eight variables, we consider the model with the
assumption that A, I, V, and H are caused by a common factor (Factor_1) inter-
preted as an activity, while C, B, T, and P are caused by another common factor
(Factor_2) that stands for sociability. The model is expressed as a set of eight
equations:

A =a; X Factor_1+c;+ ¢
I=ay, x Factor_1+c,+en

V =a;z X Factor_1+c3+e3
H = a4 X Factor_1+c4 + ey

(10.1)
C =as X Factor_2+cs5 + es
B = ag X Factor_2 + c¢ + e
T = a; X Factor_2+c7+e7
P = ag x Factor_2 + cg + eg
Here, c; and ¢; (j = 1, ..., 8) express an intercept and an error, respectively. Each

equation in (10.1) is a model for regression analysis, though the factor is not an
observed but rather an unobserved latent random variable. The model in (10.1) can
be represented as the path diagram in Fig. 10.1.

10.2 Matrix Expression

Table 10.1b shows the centered scores for the raw data in (a). As in path analysis
(Chap. 9), CFA for (a) and (b) produces the same solution, except for the resulting
intercepts (cy, ..., cg) being zero in the latter analysis. We thus omit the intercepts
in CFA models, for the sake of simplicity, on the supposition that a data matrix to
be analyzed contains centered scores. The model in (10.1) without intercepts can be
expressed in the matrix form
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10.2  Matrix Expression
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»
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ai Factor 1 e
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with the blank cells in A occupied by zeros.
In any CFA model, a p x 1 random variable vector X, whose expected vector E
[x] = 0, is expressed as

x=Af+e. (10.3)

Here, A is the p variables x m-factors matrix whose elements are called factor
loadings (or path coefficients), f is an m x 1 vector whose elements are called
common factor scores or simply common factors, e contains errors, and E[x] = 0,
corresponds to the above supposition that a data set to be analyzed contains cen-
tered scores.

10.3 Distributional Assumptions for Common Factors

The common factor vector f is assumed to follow the multivariate normal
(MVN) distribution whose average vector is 0,, and whose covariance matrix is
® = @', respectively:

£~ N, (0, D). (10.4)

Here, the covariance matrix ® (m X m) is constrained to be a correlation matrix
with

1 ¢12 (rzslm
o=|% ' C . (10.5)

. . . (bm—lm
¢1m e qufl‘m 1

It is equivalent to the assumption that common factor scores are standard scores
with their variances ones.
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Fig. 10.1 Example of CFA

4!
models for the personality a
data

A

1723 Y3

Let us consider the rationale of the above assumptions for averages and co-
variances. The average vector 0,, is matched by supposing that a data set to be
analyzed being centered scores. The reason for assuming the factor scores to be
standard ones is that factors are unobserved latent variables, thus, their variances
can be freely determined; we may consider the values of a factor to be distributed
over the range [—100, 90], [-50, 60], or [-0.01, 0.01]. For this reason, the variance
is usually set to one, as it is a comprehensible value. This implies that the common
factor scores are standardized and the covariance matrix between factors is their
correlation matrix. Thus, ® in (10.5) is called a factor correlation matrix.

10.4 Distributional Assumptions for Errors

The error vector e is assumed to follow the MVN distribution whose average vector
is 0, and whose covariance matrix is ‘P, respectively:

e~N,(0,,¥), (10.6)
with ¥ the p x p diagonal matrix, i.e.,

¥y
v = . (10.7)
p

Assumption (10.7) implies that the errors for different variables are mutually
uncorrelated, as found in Fig. 10.1, where each of the errors is only linked to the
corresponding variable. This is an important feature of factor analysis. In contrast to
the common factors in vector f being the common causes for multiple variables,
each error in e can be viewed as the factor that exclusively or uniquely contributes
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to the corresponding variable. For addressing this contrast, the errors in e are called
unique factors. Further, the diagonal elements of W are called unique variances, as
they are the variances of the unique factors.

10.5 Maximum Likelihood Method

We start with a property of the MVN distribution without its proof:

Note 10.1. A Property of MVN Distribution
Ifu~ N(ny, ), uy ~ N(ny, ), and u; is distributed independently of
u,, then

Biu; +Bouy ~ N, (Bip, + Bop,y, BiQ B + B, B)) (10.8)

for fixed matrices B; and B,.

The common and unique factor vectors, f and e, are assumed to be distributed
mutually independently. Using this assumption and (10.8) in (10.3), (10.4) and
(10.6), the observation vector x in (10.3) is found to follow an MVN distribution, as
follows:

x~N,(0,,X), (10.9)

with its covariance matrix

X =ADA + V¥, (10.10)

which is called a covariance structure, as described in Note 9.2.

Let X denote the centered data matrix and V = n~'X'X be the sample covariance
matrix. As explained in Sect. 9.4, the log likelihood for CFA can be written in the
form of (9.15), i.e., I"(X) = (n/2)log|E~'V| — (n/2)rE"'V. Substituting (10.10)
into I"(X), we have

(A, Y, D) = “log|(AGA + %) 'V| — L (ADA’ +¥) V. 10.11
2 2

This is maximized over A, ¥, and @, i.e., the 17 parameters ay, ..., dg, Vi1, -.-, Vgs,
¢ for the model in Fig. 10.1.
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Since the solution is not explicitly given, the maximization is attained by iter-
ative algorithms. An approach is the one using a gradient algorithm, which is
illustrated in Appendix A.6.3. Setting the vector 0 in A.6.3 to [ay, ..., ag, Vi1, .-
vgs, ¢, the solution can be obtained. We express the resulting A, ‘l‘ and @ as A,

‘l’ and (D respectively. Another approach is the one using an EM algorithm
(Dempster et al., 1977). The EM algorithm specialized for CFA (Rubin & Thayer,
1982; Adachi, 2013) is detailed in Appendix 9.

10.6 Solutions

The solution given by the maximum likelihood method is shown in Fig. 10.2a,
where the estimated parameter values are presented at the corresponding parts. As
in path analysis, the GFI statistic defined as (9.18) can be used for assessing
whether a solution is satisfactory or not. A value of 0.9 is used as a benchmark, with
GFI > 0.9 indicating that a model is satisfactory. The GFI value for the solution in
Fig. 10.2a was 0.953, which shows that the solution is to be accepted.

.50

(a) Unstandardized

solution

(b) Standardized

solution

Fig. 10.2 Solution of the model in Fig. 10.1 for the data in Table 10.1
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The result in Fig. 10.2a is the unstandardized solution obtained from variables
with different variances. Thus, it is senseless to compare the largeness of the
resulting parameter values. For the comparison to make sense, we must note the
standardized solution obtained for the standard scores transformed from the original
data set. The unstandardized and standardized solutions in CFA can be considered
as two different expressions of the same solution, since CFA is scale invariant with
the attained (10.11) and GFI values are the same between both solutions, as is path
analysis. This property is shown in Appendix 7. There, the fact is also proved that
A, (i), and ‘i’, which denote the standardized solutions of the loading, factor cor-
relation, and unique variance matrices, respectively, are transformed from the un-

standardized solutions A, ‘i‘, and CiD, with

A=D'A®=d and¥=D"'¥D . (10.12)

The standardized version of the solution in Fig. 10.2a is shown b.

10.7 Other and Extreme Models

Let us refer to the model in Fig. 10.1 as “Two-factor Model 1”. Though this model
is regarded as satisfactory, with a GFI exceeding the benchmark value of 0.9, a
model may exist that is better fitted to the data set in Table 10.1b. This suggests that
other models should be considered and compared, that is, the model selection
illustrated in Fig. 8.5 should be performed. Figure 10.3 shows two examples of
other models. Figure 10.3a presents the one-factor model in which only one factor
underlies the eight observed variables. For this model, the A and f in (10.3) are a
vector and a scalar, respectively. Figure 10.3b shows the “Two-factor Model 2” in
which the variables “Initiative” and “Cheerful” load both factors. This model is
written as

X A f e
8x1 8x2 2x1 8x1
A ai Factor 1 el
I a ao Factor 2 e
Vv as es
H |= |a + | e ( 10.13 )
C ayp das es
B ag €6
T ar er
P ag eg

As in path analysis, the two types of extreme models are the independent and
saturated models. In the former, all variables are mutually independent, without any
factor. This is represented as the path diagram in which only eight variables are
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Wi Y2 Ys
(b) One-factor \Y
Model

(¢) Two-factor
Model 2

Fig. 10.3 Example of other CFA models

depicted, without any link among them. On the other hand, one of the saturated
models is represented in the path diagram in which each of the eight variables are
linked to the other seven by double-headed arrows, without any factors. This
implies that all variables are merely correlated.

10.8 Model Selection

So far, we have the two-factor models (1 and 2), the one-factor model, and two
extreme ones. For comparing those models with respect to the goodness of fit to the
data set, we cannot use the GFI (9.18) for the reason explained in Sect. 9.9. On the
other hand, the information criteria introduced in Sect. 8.7 are useful for com-
paring models since the number of parameters is considered in the criteria. The
typical information criteria AIC and BIC for CFA are obtained by substituting the
maximum (10.11) value [* (A y (I)) into l( ) in (8.24) and (8.25). The AIC and
BIC values for each model are shown in Table 10.2. There, the BIC shows that
Two-factor Model 1 is the best, while it is found to be slightly worse than
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Table 10.2 g};lmbzr ‘;lf Model NP |GFI |AIC BIC
t t
parameters (NP) and the Saturated 36 |1.000 | 72.000 |165.786
resulting index values for
each model Two-factor model 2 | 19 0.964 54.168 | 103.666

Two-factor model 1 17 0.953 55.464 99.751
One-factor mode 1 16 0.642 193.494 235.176
Independent 8 0.354 |504.322 | 525.163
Italic font refers to the least AIC and BIC values

Two-factor Model 2 in the AIC values. This demonstrates that model selection
statistics indicate different models as the best. For such a case, the model must be
chosen by users’ subjective consideration. This shows that no absolute index exists
for model selection, which should be kept in mind.

10.9 Bibliographical Notes

It is difficult to find books in which CFA is exclusively treated. CFA is, however,
described in chapters of books on structural equation modeling or factor analysis,
which include Kaplan (2000), Mulaik (2010), and Wang and Wang (2012).

One drawback of CFA is that the model, i.e., the elements that are set to be zero
in A, must be selected by users in a subjective manner. Such a drawback can be
dealt with by the sparse factor analysis treated in Chap. 22.

Exercises

10.1. Let us consider the model x = ¢ + e, with x an observed variable, ¢ an error,
and ¢ a true score which is an unobserved latent variable. For example,
t stands for the ability of mathematics possessed by an examinee, while x is
the test score on mathematics shown by the examinee, and an error e must
be considered, since ¢ (ability) cannot be perfectly exactly measured by
x (score). Present another example for a set of x, 7, and e in the model.

10.2. Spearman (1904) hit upon the idea of factor analysis, by considering the
scores of achievement tests as variables, and personality test scores have
been used as an example in this chapter. Present an example of a data set
that is not related to such tests and for which factor analysis is useful.

10.3. Consider another two-factor model for the data in Table 10.1.

10.4. Depict the path diagram of a saturated model for the data in Table 10.1
without a factor and a single-headed path.

10.5. Present an example of the CFA model for 15 observed variables with three
factors.

10.6. Eq. (10.3) can be rewritten as x = Af + e = Af +e with f =S'f and
A" = AS. It suggests that f and A" could also be regarded as a factor score
vector and a loading matrix, respectively, with S an m x m arbitrary non-
singular matrix. However, in CFA, except for special cases, it is not possible
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10.7.

10.8.

10.9.

10.10.

10.11.

to regard f* and A" as above. Show the reason for this, noting that A is
constrained in CFA.
Model (10.3) can be rewritten as x = Hg, with H = [A, L,] being p X

(m+p) and g = [‘j (m+p) x 1. If A and x are given, x = Hg is

regarded as a system of equations with g unknown. The necessary and
sufficient condition of the system having the solutions of g is known to be
HH*x = x. If this equation holds true, show that the solution of g satisfying
x = Hg is expressed as

g=H"x+ (L,., —H"H)q, (10.14)

with H* the Moore—Penrose inverse of H defined in Exercise 5.10 and q an
arbitrary (m + p) x 1 vector. This inverse and the solution of a system of
equations are also detailed in Chap. 17.

Show the following: (10.14) implies that factor score vector f cannot be
uniquely determined, i.e., we cannot select a single vector as f for given
A and x.

Let us consider the CFA model with intercept vector ¢: x = Af + ¢ + e,
f ~ N,0,, ®), and e ~ N,(0,, ¥). Show that the MLE of transposed
intercept vector ¢’ is given by n '1,’X for the n x p data matrix X whose
rows are the observations of x’ for individuals i = 1, ..., n.

Let us consider a confirmatory principal component analysis (PCA)
procedure formulated as minimizing IX — FA'II* over F and A subject to
n'F'F = I, and some elements of A constrained to be zero. Show that the
function can be decomposed as

IX — FA|*= |[X — FB'|* +n|B — A|, (10.15)
with B = n~'X'F (Adachi & Trendafilov, 2016).

Show that an algorithm for the confirmatory PCA in Exercise 10.10 can be
formed by the following steps:

Step 1. Initialize F.

Step 2. Set the unconstrained elements of A to the corresponding ones of ' X'F.
Step 3. Obtain the SVD XA = KAL’ and set F = n'?’KL'.

Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

The hints for Steps 2 and 3 can be found in (10.15) and Theorem A.4.2
(Appendix A.4.2), respectively.



Chapter 11 )
Structural Equation Modeling ke

In confirmatory factor analysis (CFA), introduced in the previous chapter, all fac-
tors (latent variables) were causes (explanatory variables). An extended variant of
CFA is structural equation modeling (SEM), in which the causal relationships
among factors are considered, i.e., factors appear that are dependent variables.

To the best of the author’s knowledge, SEM was first presented by the Swedish
statistician Joreskog (1970), who combined path analysis and factor analysis to
formulate SEM. This has been elaborated on and popularized, particularly with the
developments of computer software, by the efforts of psychometricians including
Bentler (1985).

11.1 Causality Among Factors

We will introduce structural equation modeling (SEM) by starting with the for-
mation of a model, which is followed by the description of the data to be observed.

Let us consider a model of the causality among four factors, depicted in
Fig. 11.1, with the factors as follows:

[F1] Prior achievements before PostGraduate School (PGS);
[F2] Adaptation to PGS;

[F3] Achievements in PGS;

[F4] Satisfaction with having gone to PGS.

The path diagram in the figure is expressed as a set of formulas

F3 = b1F1 + b,F2 + eps3,

(11.1)
F4 = b';Fz +b4F3 +€F4,
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Fig. 11.1 Path diagram for a
structural equation model for
latent variables

with eg3 and egy being errors. Here, intercepts are omitted, since it is known that
they may be zero, assuming that the averages of the factors are zeros. The set of
formulas is a kind of path analysis model, though the variables are not observed but
rather latent factors, which differs from the ordinary path analysis in Chap. 9.
A model such as (11.1) is called a structural equation model for latent variables.

11.2 Observed Variables as Indicator of Factors

It is reasonable to consider that the above four factors are difficult to measure
directly, but each of them (F1, F2, F3, F4) can be measured with several indices
(observed variables). Then, let us suppose that each factor can be measured by the
four variables shown in Table 11.1. For example, we suppose that X9 (scores for
lecture courses), X10 (scores for practice courses), X11 (evaluation of the thesis for

Table 11.1 Variables indicating factors

F Variable
F1 X1 Scores for languages when one was a student in a faculty
X2 Scores for sciences when one was a student in a faculty
X3 Scores for the entrance examination for a postgraduate school
X4 Evaluation of a graduation thesis
F2 X5 Goodness of fit to the education in the postgraduate school
X6 Goodness of fit to the atmosphere in the postgraduate school
X7 Goodness of fit to the facilities in the postgraduate school
X8 Inconvenience found in the systems of the postgraduate school
F3 X9 Scores for lecture courses in the postgraduate school
X10 Scores for practice courses in the postgraduate school
X11 Evaluation of the thesis for master degree
X12 Self-rating of achievement
F4 X13 Fulfillment felt from life in the postgraduate school
X14 How well one enjoyed life in the postgraduate school
X15 Regret that one went to the postgraduate school
X16 Hope for the future
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master degree), and X12 (self-rating of achievement) can be used as the indicators
for F3 (achievements in PGS).

The four path diagrams in Fig. 11.2 represent the fact that F1, F2, F3, and F4 are
indicated by the variables in Table 11.1. Each diagram can be expressed by a set of
formulas; for example, the third diagram is expressed as the set of four equations

X9 = agF3 + ey,
X10 = aoF3 + ey,
X11 = a1 1F; +eqq,
X12 = 012F3 —|—€12

(11.2)

This is just a factor analysis model, which is also called a measurement equation
model, as (11.2) stands for how an unobserved common factor (F3), which cannot
be measured directly, is measured using several observed variables as the indi-
cators of the common factor.

Let 300 x 16 data matrix X contain the centered scores of 300 postgraduate
students for the 16 items in Table 11.1 with covariance matrix V = n~'X'X for the 16
variables shown in Table 11.2. The data matrix X is too big to be presented; in place of
it, the sample covariance matrix V is presented here. As described in Note 9.2, the
procedures in Chaps. 9—12 can be feasible only with V, even if X is not available.

11.3 SEM Model

The structural equation model in Fig. 11.1 and the four measurement equation
models in Fig. 11.2 are integrated into a single model in Fig. 11.3. This is a SEM
model for the covariance matrix in Table 11.2. The outer parts of the diagram in
Fig. 11.3 are a—d in Fig. 11.2, while the inner part in Fig. 11.3 is the diagram in
Fig. 11.1. In other words, the outer parts stand for measurement equation models
(i.e., factor analysis models), while the inner part represents a structural equation
model (i.e., a path analysis model with latent factors). That is, SEM is an analysis
procedure with a model into which structural and measurement equation models
are integrated. However, the procedure is called structural equation modeling,
without the use of the term “measurement”.

11.4 Matrix Expression

The path diagram in Fig. 11.3 is formally expressed using the two equations in
(11.1) and the four sets of measurement equations, with an example of a set pre-
sented in (11.2). Those equations can be written as a single equation in matrix form:
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Here, t is the random vector whose first elements are common factors and the
remaining ones are observed variables, while u is the vector whose first elements
are the common factors being explanatory variables and the remaining ones are the
errors for the dependent common factors and observed variables. Matrix B is filled
with zeros except for the path coefficients corresponding to the links between
common factors and the links of common factors to observed variables. The first
and second rows in the left- and right-hand sides of (11.3) stand for F1 = F1 and
F2 = F2, which obviously hold true; the third and fourth rows express (11.1), and
the remaining ones stand for the measurement equation models (Fig. 11.2), with the
rows for X9 to X12 corresponding to (11.2).
Any SEM model is expressed as

t=Bt+u (11.4)

Here, B is an (m + p) x (m + p) path coefficient matrix, with m and p being the
numbers of common factors and observed variables, respectively. Vector t is
(m + p) x 1 with

f
t= [ X } . (11.5)
Its first m elements are those of an m x 1 common factor vector f and the (m + 1)th,
..., (m + p)th elements of t are the 1st, ..., pth observed variables in x. Vector u is
(m + p) x 1 with

u= |ep|. (116)

Its first my elements are those of the my; x 1 vector fz containing common factors
being explanatory variables; the next m, elements are those of the mp x 1 vector ep
consisting of the errors for dependent common factors; and the remaining p ones are
the elements of the p x 1 vector ey containing the errors for x.

Equation (11.4) can be rewritten as (I, , — B)t = u with I, the (m+p) x
(m+ p) identity matrix. It can be further rewritten as

f

t=(L,.,—B) 'u, ie, {X

} = (L, —B) 'y, (11.7)

where we have supposed the existence of (I, — B) L. Now, let us define a p X
(m + p) matrix as
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0 0 0

L R (11.8)
: : o . . 0
0 0 0 0 1

whose first m columns are filled with zeros and whose remaining p columns are the
columns of I,. We find that

}, ie, x=Ht (11.9)

Using (11.7) in (11.9), it is expressed as
x=H(L,;, -B) u (11.10)

This is the SEM model for the observation vector X.

11.5 Distributional Assumptions

Let us assume that vector u is distributed according to the multivariate normal
(MVN) distribution, with its mean vector 0,,, and covariance matrix £2:

u~N,,1+p(0m+p,Q). (1111)

The elements of the covariance matrix are described as

F1 F2 €F3 €F4 el ele
Fl I r
2| r 1
Q = €F3 1
ers 1 (11.12)
el w1
el6 w16

for the model in Fig. 11.3, where the blanks (=zeros) indicate no correlation be-
tween errors and no correlation of errors to explanatory variables. They are not
linked by paths, as found in the figure.

In (11.12), we should note the following constraints:

V(F1) = V(F2) = V(eps) = V(eps) = 1, (11.13)
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with V(F1) denoting the variance of F1. The reason for constraining the variances
of factors to be one with V(F1) = V(F2) =1 is the same in factor analysis
(Sect. 10.3); the variances can be set to one, as the common factors are unobserved
latent variables and their variances can be freely determined. The errors egz and eg,
for factors F3 and F4, respectively, are also unobserved and their variances can be
freely determined. Thus, V(egs) and V(eg4) can be set to one. The constraint V
(F1) = V(F2) = 1 implies that factors F1 and F2 are standardized; thus, their co-
variance r is a correlation coefficient.

Because of (9.10), (10.8), (11.10), and (11.11), observed variable vector X is
found to follow an MVN distribution as

x~N,(0,, ), (11.14)

with the covariance matrix

-1

> —H(L,.,-B) 'Q(,,,—B) "H. (11.15)

11.6 Maximum Likelihood Method

Let X denote the centered data matrix and V = n~'X'X be the sample covariance
matrix. As explained in Sect. 9.4, the log likelihood for SEM can be written in the
form of (9.15), i.e., I*(2) = (n/2) log|Z™'V| — (n/2)tr=~'V. Substituting (11.15)
into ["(X), we have the log likelihood of parameter matrices B and Q:

-1

I'(B, @) = Zlog| {H(L, — B)

Q(Imﬂ,g)/lH’}lV‘

(11.16)

- gtr{H(I,,H_,, ~-B)'Q1,., - B)'H}'V.
This is maximized over B and , that is, the 37 parameters ay,...,as, by,
by, b3, bs, 0y, ..., 016, r. The maximization of (11.16) is equivalent to minimizing

—I'(B, Q). Since the solution is not explicitly given, the minimization is attained by
iterative algorithms. A popular approach is the one using a gradient algorithm,
illustrated in Appendix A6.3; setting the vector 0 in A.6.3 to [ay, ..., aje, b1, b2, b3,
by, ®1, ..., 01, r]’, the solution can be obtained. We express the resulting B and

as B and Q, respectively.
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11.7 Solutions

The solution given by the maximum likelihood method is shown in Fig. 11.4; the
estimated parameter values are presented at the corresponding parts. As in path
analysis and confirmatory factor analysis, the GFI statistic defined in (9.18) can be
used for assessing whether a solution is satisfactory or not. A value of 0.9 is used as
a benchmark with a GFI > 0.9 showing that a model is satisfactory. The GFI value
for the solution was 0.96, which shows that the solution is to be accepted.

The result in Fig. 11.4 is the unstandardized solution obtained from those
variables with different variances. Thus, it is senseless to compare the largeness of
the resulting parameter values. For the comparison to make sense, we must obtain
the standardized solution obtained for the standard scores transformed from the
original data set. The standardized solution is shown in Fig. 11.5. In this solution,
the variances of the dependent common factors are also adjusted to be unity.

As in path analysis and confirmatory factor analysis, SEM also has scale
invariance, (though its proof is too complicated to be treated in this book). Thus, the
attained value of the maximum of log likelihood (11.15) is equivalent for unstan-
dardized and standardized solutions, and so is the GFI. Further, the standardized

1711 23.07 29.94 20.58  29.02 41

PPOY POOY

o0 OooOd

Fig. 11.4 Unstandardized solution
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PPV PPOE

Hodd 0606

Fig. 11.5 Standardized solution

solution is easily transformed from the unstandardized one. We may thus consider
unstandardized and standardized solutions to be two different expressions of the
same solution.

11.8 Model Selection

As in path analysis and confirmatory factor analysis, several models, including two
extreme (independent and saturated) models, should be compared in SEM. For the
comparison, information criteria such as the AIC and BIC are useful for selecting a
good model, although the GFI cannot be used. The AIC and BIC Values for SEM are

obtained by substituting the maximum (11.16) value I (B, Q) into /(®) in (8.24) and
(8.25).

An example of SEM models differing from the model in Fig. 11.3 is shown in
Fig. 11.5, where the path connecting F2 and F4 in Fig. 11.3 has been deleted. In
Table 11.3, the AIC and BIC for the model in Fig. 11.3 are found to be the least,
which shows that model to be the best among the four considered.
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Table 11.3 (I\Ifl;‘)mbzf ?lf Model NP |GFl  |AIC BIC

parameters and the

resulting index values for Saturated 136 [1000 [272000  [775.714

each model Figue 113 [37 0960 |175052  |312.092
Figure 1.6 |36 0957 |183.703  [317.039
Independent |16 |0.332 | 2034.899 | 2036.828

11.9 Bibliographical Notes

The books in which SEM is exhaustively detailed include Bollen (1989), Kaplan
(2000), and Wang and Wang (2012). SEM is also illustrated in a chapter of Lattin,
Carroll, and Green (2003). The formulation of SEM in this chapter is based on
Toyoda (1998), which is a very excellent book, but written in Japanese.

Exercises

11.1. Present an example of a set of the variables (V1-V5) and common factors (F1
and F2) whose relationships are represented as the following path diagram:
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11.3.
11.4.

11.5.

11.6.

11.8.

. The above diagram can be changed into the one for CFA by changing a few

parts. Show those changes.

Present another SEM model for the covariance matrix in Table 11.2.
Describe what is implied by removing the double-headed path between F1
and F2 from Fig. 11.3.

Show that the structural equation model describing the causal relationships
among factors can be expressed as

fp = Cfp + Qf; +ep. (11.17)

Here, f5 (mp x 1) contains the common factors as dependent variables, fz
(mg x 1) contains the common factors as explanatory variables, and e (mp
x 1) consists of the errors for fp, as defined in Sect. 11.4, with C and Q path
coefficient matrices.

Discuss how the elements of C and Q in (11.17) correspond to the diagram in
Fig. 11.1.

. Show that the measurement equations describing the relationships of the

common factor vectors fp, and fz in (11.17) to observed variables can be
expressed as

y:Any+ey, (1118)
z:Asz—i-ez. (1119)

Here, y (pp x 1) and z (pg x 1) are the observed variable vectors
corresponding to f, and fg, respectively; y, z, ey, and ez form the p x 1
vectors X = [/, y']" and ey = [e;/, ey’]" in (11.5) and (11.6), respectively, with
P = pptpE; Ay and Ay are path coefficient matrices.

Show that model (11.4) is equivalent to a set of (11.17), (11.18), and (11.19).
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Exploratory Factor Analysis (Part 1) g

As described in Chap. 10, factor analysis (FA) is classified into exploratory FA
(EFA) and confirmatory FA (CFA), except the sparse FA treated in Chap. 22. EFA
refers to the procedures for exploring factors underlying observed variables for
cases without prior knowledge of what factors explain the variables. EFA is
introduced in this chapter. Two features of EFA are that [1] all common factors are
assumed to be linked to all variables, and [2] multiple solutions exist for a data set.

The FA model conceived by Spearman (1904), the originator of FA, was
restricted to one common factor. In the single-factor case, CFA is not distinguished
from EFA, as only that model can be considered in which the common factor is
linked to all variables. Spearman’s single-factor FA was extended to FA with
multiple common factors by Thurstone (1935, 1947). Then, he chose the EFA
approach with all common factors linked to all variables. That was the origin of
EFA.

Part 1 follows EFA in the title of this chapter, as the next part for EFA is
introduced in Chap. 18. The formulation of EFA in this chapter is prevalent cur-
rently, while the formulation in Chap. 18 is the one established recently.

12.1 Example of Exploratory Factor Analysis Model

We use the same data set as that in Chap. 10, the 100 (participants) x 8 (behavioral
features) data matrix in Table 10.1(A). It contains the self-ratings regarding to what
extent participants’ behaviors are characterized by eight variables (features): A
(Aggressive), C (Cheerful), I (Initiative), B (Blunt), T (Talkative), V (Vigor), H
(tendency to Hesitate), and P (being Popular).

Let us suppose that two common factors underlie the eight variables, though it is
unknown what variables are related to each factor. Thus, those links are considered
which connect all variables to all common factors, as illustrated in Fig. 12.1. This is
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Fig. 12.1 EFA model with
two factors for personality
data

a key point in EFA. The model in Fig. 12.1 can be written as the set of eight
equations:

A = a1 X Factor_1+ayn x Factor_2+c;+ ey
C = ay X Factor_1+ax x Factor_2+cy+e;
I =a3 x Factor_1+az x Factor_2+c3+e3
B = a4 X Factor_1+ a4 X Factor_2+ c4+ e4
T = as; x Factor_1+asy X Factor_2+ cs5+ es (12.1)
V = ag1 X Factor_1+agy X Factor_2 + c¢ + eg
H = a7, x Factor_1+azp X Factor_2+c7 +e7
P = ag; x Factor_1+agy, x Factor_2 + cg + eg.

Here, c¢;j and ¢; (j = 1,..., 8) express an intercept and an error, respectively; the first
subscript j and the second k in aj indicate a variable and a common factor,
respectively. The path coefficients aj are also called factor loadings.

In Fig. 12.1, we can find that each error is a cause for a single variable, in
contrast to the common factors which are a common cause for all variables. For this
contrast, an error is also called a unique factor (a factor uniquely influencing a
single variable) with its variance called a unique variance, as already mentioned in
Chap. 10.

12.2 Matrix Expression

Table 10.1(B) shows the centered scores of the raw data in (A). EFA for (A) and
that for (B), on the assumption of the averages of factors being zeros, produces the
same solution except for the resulting intercepts being zero in the latter analysis.
We thus omit the intercepts in EFA models, for the sake of simplicity, by supposing
that a data matrix to be analyzed contains centered scores. Model (12.1) without
intercepts can be expressed in matrix form:
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X A f e
8x1 8x2 2x1 8x1

A an  an Factor 1 el

C a axn Factor 2 e

I a1 ax es

B|=|an an + | e4 (12.2)
T asy  as es

\Y asl a2 €

H an  an e7

P agy  as es

In any EFA model, a p x 1 random variable vector x, whose expected vector
E[x] is 0,, is expressed as

x=Af+e, (12.3)

where A = (ay) is the p (variables) x m (common factor) matrix containing factor
loadings, £ is an m x 1 vector whose elements are called common factor scores, and
e contains errors, in other words, unique factor scores. This is the same as the CFA
model in Chap. 10 except that A is unconstrained in EFA.

12.3 Distributional Assumptions

The error or unique factor vector e is assumed to be distributed according to the
multivariate normal (MVN) distribution whose average vector and covariance
matrix are 0, and ¥, respectively:

e~ N, (0,,,‘1’)7 (12.4)
with ¥ the diagonal matrix including unique variances, i.e.,

¥y
L= . (12.5)
v

The common factor vector f is supposed to be distributed according to the MVN
distribution whose average vector and covariance matrix are 0,, and I,
respectively:

£ ~ Ny(0,, L) (12.6)
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This differs from assumption (10.4) for CFA in Chap. 10 in that the covariance
matrix is the identity matrix. However, this can be transformed into a factor cor-
relation matrix @, as in (10.4), for the reason described in Sect. 12.5.

The common factor vector f and error vector e are assumed to be distributed
mutually independently. Because of (10.8), the independence of f from e, (12.4),
and (12.6) imply that the observed variable vector x is distributed according to the
following MVN distribution:

X ~ N,(0,,X), (12.7)
with its covariance matrix

T =AA + V. (12.8)

12.4 Maximum Likelihood Method

Let X denote the centered data matrix in Table 10.1(B) and V = n'X'X be the
sample covariance matrix. As explained in Sect. 9.4, the log likelihood is written in
the form of (9.15). By substituting (12.8) in (9.15), we have

(A, W) = glog (AA'+¥)"'V| - gtr(AA’ +w) v (12.9)

This is maximized over A and W¥. Since the solution is not explicitly given, the
maximization is attained by iterative algorithms. One of the algorithms is a gradient
algorithm, which is illustrated in Appendix A.6.3. Another approach is the one
using an EM algorithm (Dempster, Laird, & Rubin, 1977). The EM algorithm
specialized for EFA (Rubin & Thayer, 1982, Adachi, 2013) is detailed in
Appendix A.9, following Appendix A.8 which serves as a preparation for
Appendix A.9. We express the resulting solutions of A and ¥ as A and ¥,
respectively.

12.5 Indeterminacy of EFA Solutions

The property is called indeterminacy that the solution of a procedure is not unique,
i.e., is not a single; in other words, multiple solutions exist. This property is pos-
sessed by EFA. Infinitely many solutions exist in EFA. This is true because the FA
model (12.3) can be rewritten as
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x=Af+e=ATTf+e=Arfr +e. (12.10)
Here,
Ar = ATandfr = T'f, (12.11)
with T an m X m matrix satisfying
TT=TT =1,. (12.12)

This T is called an orthonormal matrix, which is detailed in Appendix A.1.2.
Because of (9.10) and (12.12), (12.6) leads to

fr =Tt ~N,(0,,1,) : (12.13)

fr follows the same distribution as that for f. That is, (12.11) satisfies the
assumptions of EFA, which implies that At = AT is also the solution of A if A is
the solution.

We can also relax the condition (12.12) for T as

1 #
TT = . , or equivalently, diag(T'T) = L. (12.14)
# 1
1 #
Here, stands for a square matrix whose diagonal elements are
# 1

restricted to one and diag() is defined next:

Note 12.1. Operator diag(M)
For an m x m square matrix M, diag(M) expresses the m X m diagonal
matrix whose diagonal elements are those of M. For example, if

a b . a 0
M—[c d},thendlag(M)—[O d]'

When T is defined as (12.14), the EFA model (12.3) can be rewritten as

x=Af +e=AT"'T'f e = Arfr +e. (12.15)
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with
Ar = AT 'andfy = T'f. (12.16)
Because of (9.10), (12.6) and (12.14) imply
fr = T't ~ N, (0,,,®) withd® = T'T. (12.17)

Though this differs from (12.6), (12.17) is a reasonable assumption, if factors are
assumed to be correlated, since (12.14) implies that ® = T'T is a factor correlation

matrix with its diagonal elements ones. This shows that AT~ is also the solution
of A with (12.14) providing the corresponding factor correlation matrix.

As discussed above, the EFA solution of A is not unique. But, the solution of the
diagonal matrix V¥ is uniquely determined; the solution of W is single.

12.6 Two-Stage Procedure

As described in the last section, if A is the solution of A, AT is that with (12.12),

and, further, AT"! is also a solution with (12.14). Thus, EFA involves the fol-
lowing two-stage procedure:

Stage 1. A set of solutions for A and , i.e., A and ‘i’, is obtained.

Stage 2. A suitable T is found to have a solution AT with (12.12) or AT ! (and
® = T'T) with (12.14).

Indeed, the procedure in Sect. 12.4 corresponds to Stage 1. On the other hand,
the procedure in Stage 2, which is called rotation, is not treated in this chapter, but
is detailed in the next chapter. In the next two sections, we illustrate the interpre-
tation of the solution after Stage 2.

12.7 Interpretation of Loadings

The EFA solutions obtained with the above procedures also have scale invariance,
as explained in Appendix A.7. Thus, the unstandardized and standardized solutions
of EFA can be viewed as two expressions of the same solution. In this chapter, only
the standardized one is shown. For the data in Table 10.1(B), Stage 1 in the last
section, the EFA procedure with m =2 in Sect. 12.4, provides the solution in
Table 12.1(A), where the inter-factor correlation is found to be zero, as shown in
(12.6). For this solution, Stage 2 in the last section provides the result in Table 12.1
(B), where a rotation technique called “oblique geomin rotation”, which will be
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Table 12.1 Standardized (A) Before rotation (B) After rotation

solutions for the data in A -

Table 10.1, with ¢, the cor- A v At v

relation between the first and A 0.77 —0.38 0.26 0.82 0.08 0.26

second factors C 0.61 0.50 (038 |—0.13 0.84 |0.38
I 0.67 -0.36 | 0.41 0.74 0.04 [041
B -0.74 |-040 |0.30 |-0.04 |-0.82 |0.30
T 0.79 043 ]0.18 0.04 0.88 [0.18
\Y% 0.76 -0.44 |0.22 0.87 0.01 0.22
H —-0.63 046 [0.39 |-0.82 0.08 [0.39
P 0.70 0.18 [0.47 0.23 0.58 [0.47
¢ |0.00 0.48

detailed in Sect. 13.5, has been used for finding T. In this rotation technique, T with
(12.14) is obtained, and thus an inter-factor factor correlation is also provided.

Let us consider interpreting what each factor in Table 12.1(B) stands for. For
facilitating the interpretation, bold font is used for the loadings of large absolute
values in Table 12.1(B). Further, the factor loadings can be visually captured in
Fig. 12.2, where the widths of paths are proportional to the absolute values of the
corresponding loadings and their signs are distinguished by solid and dotted lines.
In the figure, we can find that the variables A, I, and V load Factor_1 heavily and
positively, while H loads that factor negatively; i.e., the higher Factor_1 leads to
less H (tendency to hesitate). This result allows us to call Factor_1 “the factor of
activity”. On the other hand, the variables C, T, and P load Factor_2 heavily and
positively, while B loads that factor negatively. This allows us to interpret Factor_2
as “the factor of sociability”. Table 12.1(B) shows that the correlation between
those two factors is 0.48, which implies the factor of activity is positively correlated
with the sociability factor.

Fig. 12.2 Path diagram in
which the widths of paths are e e e e e @ e @
proportional to the absolute
values of loadings and unique
A C I B T A\ H P
x w t 4

variances, with solid and
dotted lines indicating \
positive and negative values,
respectively

* PR
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12.8 Interpretations of Unique Variances

Unique variances are uniquely determined, as they are unrelated to the indetermi-
nacy discussed in Sect. 12.5: their values are equivalent between Table 12.1(A) and
(B). The table shows that the unique variance for A (aggressive) is 0.26. This
implies that 26% of the variance of variable A remains unexplained by the two
common factors; in other words, 74% (=[1 — 0.26] x 100%) of the aggressiveness
(A) of individuals are accounted for by the two common factors. That proportion
(one minus a unique variance in the standardized solution) is called communality. It
makes sense to compare the largeness of unique variances among variables in
Table 12.1, since the solution is standardized. The largest is that of P (popular)
(0.47). 1t is least explained by the common factors; in other words, P is charac-
terized by a feature unique to that variable beside the two common factors.

12.9 Selecting the Number of Factors

When EFA is used, the suitable number of factors (m) is often unknown for a data
set. In order to select m, information criteria such as AIC and BIC can be used.
Those values for EFA are obtained by substituting the maximum (12.9) value
I (A, ‘i’) into l((:)) in (8.24) and (8.25). For a data set, we can carry out EFA with
m set at some candidate numbers, so as to choose the solution with the least AIC or
BIC as the solution with the suitable m. In EFA, the number of parameters # in
(8.24) and (8.25), which is used for obtaining AIC and BIC, is given by

m(m—1
Here, p + pm is the number of unique variances and loadings, from which
m(m — 1)/2 must be subtracted for the reason described next:

Note 12.2. Loadings Set to Zero

EFA loadings have indeterminacy shown by (12.10) to (12.13). An
orthonormal matrix Ty is known to exist, which can be substituted into T in
(12.12) and leads to

Ao = AT, (12.19)
with

m(m — 1)

> elements in Ay being zero. (12.20)
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This is illustrated in Table 12.2. The post-multiplication of the left A by
047 020 0.86

To= | —040 092 0.00 | leads to the right Ag = AT, whose upper
—-0.79 —-0.35 0.51

left 3(3 — 1)/2 elements are zero.

The above fact implies the following: “If A is a solution, then A, is also
so”. This can be rewritten as “If A is a solution, AT is so, with T satisfying
(12.12)”. That is, once the {pm — m(m — 1)/2} nonzero elements in A, are
estimated, we can obtain any solution of the loading matrix for a data set.
This leads to (12.18).

Table 12.2 Two solutions of loading matrices for the correlation matrix in Table 12.4

187

A: maximum likelihood estimate Ay = AT;) with 3 zero elements

0.60961 0.00029 0.36018 0.00000 0.00000 0.70806
0.38404 —0.03143 0.24305 0.00000 —0.03454 0.45426
0.42288 —0.13882 0.37412 —0.04198 —0.17035 0.55433
0.49556 —0.09901 0.22700 0.09179 —0.06804 0.54208
0.68417 —0.28993 —0.31198 0.68124 —0.01740 0.43022
0.67711 —0.40867 —0.24367 0.67191 —0.15122 0.45884
0.66746 —0.38456 —0.32760 0.72385 —0.10202 0.40785
0.67352 —0.17645 —0.12146 0.48046 0.01826 0.51801
0.68557 —0.45757 —0.25595 0.70521 —0.19000 0.45986
0.48125 0.58511 —0.46732 0.35695 0.79602 0.17686
0.55191 0.30992 —0.12420 0.23023 0.43959 0.41212
0.48094 0.51620 —0.10070 0.09563 0.60577 0.36305
0.60801 0.24713 0.03432 0.15671 0.33861 0.54103
0.40242 0.00397 0.00947 0.17839 0.08261 0.35128
0.37857 0.03413 0.08833 0.09299 0.07800 0.37088
0.50229 0.03928 0.32167 —0.03533 0.02711 0.59609
0.44799 0.13903 0.00273 0.15057 0.21790 0.38714
0.51477 0.26950 0.16531 0.00104 0.29462 0.52739
0.44212 0.06012 0.11279 0.09286 0.10630 0.43804
0.61658 —0.13514 0.11094 0.25417 —0.03614 0.58722
0.60193 0.23149 0.06913 0.13274 0.31099 0.55349
0.61152 —0.12704 0.11541 0.24503 —0.03131 0.58515
0.69611 —0.05113 0.12739 0.24444 0.05132 0.66410
0.65299 0.18337 —-0.20214 0.38966 0.37142 0.45944
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Table 12.3 AIC and BIC values as functions of m for the data in Table 12.4 with the number of
parameters

m 1 2 3 4 5 6 7

n 48 71 93 114 134 153 171

AIC 4247.5 4077.3 3987.9 3956.1 3968.3 3962.9 3972.4
BIC 4390.4 4288.6 4264.7 4295.4 4367.2 4418.3 4481.5

The AIC and BIC values for some m are shown in Table 12.3, which were
obtained by the EFA solutions for the correlation matrix in Table 12.4. This is a
famous data set known as the 24 psychological test data (Holzinger and Swineford,
1939). The least AIC and BIC are found for m = 4 and m = 3, which suggest that
the best number of factors is 3 or 4. The loading matrices with m = 3 in Table 12.2
have been obtained by EFA for the correlations in Table 12.4.

12.10 Difference to Principal Component Analysis

Let the ith rows of X (n X p), F (n x m), and E (n x p) be x', f', and e’ observed for
individual i, respectively. Then, the EFA model (12.3) can be rewritten in matrix
form as X = FA' + E. This takes the same form as the model (5.1) for principal
component analysis (PCA). This begs the question “In what points does EFA differ
from PCA?” One might answer that EFA is a maximum likelihood (ML) procedure,
while PCA is a least squares (LS) one. But, this is incorrect, since EFA can be
formulated as LS procedures through the approach in Chap. 18 and the other ones
(Harman, 1976; Mulaik, 2011), while PCA can be formulated as an ML procedure
(Bishop, 2006; Tipping & Bishop, 1999). Clear answers for the question are found
in Chap. 19. In this section, we describe only answers that can be given within the
scopes of this and fifth chapters.

A crucial difference between EFA and PCA is found in the errors. No
assumption is made for E in PCA. Thus, it can be formulated simply as minimizing

(5.4),ie., |[E[’= X — FA'||2. In contrast, the covariance matrix for errors in EFA
is constrained to be a diagonal matrix ¥, as in (12.4). That is, the error for a
variable is assumed to be uncorrelated with those for the other variables. Thus,
errors are called unique factors, and its variances (i.e., the diagonal elements of ¥)
are called unique variances in EFA. On the other hand, the error for a variable in
PCA are not unique to that variable; the correlations are found among variables,
i.e., among the columns of the resulting E = X — FA’.

Table 12.5 shows the EFA and PCA solutions for the correlation matrix in
Table 12.4 with m = 3. Here, the PCA solution for loadings has been given by
(5.28), which can be obtained if only a covariance or correlation matrix is available,
as found in Note 6.1. The varimax rotation has been performed for the EFA and
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Table 12.5 Solutions obtained by the varimax rotation for the data in Table 12.4

EFA PCA

1 2 3 v; 1 2 3 Var(e;)
Visual perception 0.64 0.14 0.26 0.50 0.69 0.17 0.23 0.44
Cubes 0.41 0.06 [0.18 |0.79 0.55 0.01 0.14 |0.67
Paper form board 054 |-0.06 022 |0.66 064 |[—0.08 020 |0.54
Flags 0.46 0.06 [0.30 |0.69 0.56 0.01 0.30 |0.60
General 0.11 022 [0.77 |0.35 0.10 020 [0.80 |0.30
information
Paragraph 0.15 0.09 [0.81 0.32 0.16 0.10 [0.83 |0.28
comprehension
Sentence 0.08 0.14 [0.82 |0.30 0.07 012 |0.86 |0.24
completion
Word 0.27 023 |0.61 0.50 0.26 020 |0.67 |0.44
classification
Word meaning 0.14 0.06 [0.85 |0.26 0.14 0.09 [0.86 |0.23
Addition —-0.06 0.87 [0.16 |0.21 —-0.12 0.82 [0.19 |0.28
Code 0.24 0.55 (023 |0.58 0.13 0.71 022 |0.44
Counting dots 0.23 0.67 [0.05 |0.49 0.15 072 [0.05 |0.45
Straight-curved 0.39 047 1025 057 0.36 053 (023 |0.54
capitals
Word recognition 0.24 0.19 (027 |0.84 0.20 032 (027 |0.79
Number 0.29 0.17 [0.20 |0.85 0.29 030 [0.16 |0.80
recognition
Figure recognition 0.55 0.14 0.18 0.64 0.62 0.22 0.13 0.55
Object-number 0.27 032 022 |0.78 0.22 049 |0.18 |0.68
Number-figure 0.45 039 [0.12 |0.64 0.46 0.52 [0.04 |0.52
Figure-word 0.35 0.21 022 |0.79 0.36 0.31 0.18 [0.74
Deduction 0.43 0.14 |045 |0.59 0.46 0.14 048 053
Numerical puzzles 0.42 0.44 0.24 0.58 0.42 0.47 0.23 0.55
Problem reasoning 0.43 0.14 0.44 0.60 0.44 0.17 0.47 0.56
Series completion 0.50 023 [045 |0.50 0.51 023 [047 |0.46
Arithmetic 0.22 053 [041 0.50 0.17 0.57 (043 |0.45
problems

PCA loading matrices. The PCA loading matrix can be rotated if constraint (5.26) is
removed, as explained in Note 5.5. In Table 12.4, var(e;) for PCA is the variance of
the resulting error values for variable j, i.e., the jth diagonal elements of the n 'E'E,
while the unique variance y; for EFA can be associated with var(e;) for PCA. There,
we can find the similarity between EFA and PCA solutions. The difference is the
interpretation for errors. For example, 1/, = 0.5 for EFA can be interpreted as that
50% of the variance in “visual perception” being uniquely and exclusively explained



192 12 Exploratory Factor Analysis (Part 1)

by the corresponding unique factor, but var(e;) = 0.44 for PCA cannot be inter-
preted so: it is interpreted simply as that 44% of the variance in “visual perception”
remains unexplained by the three principal components.

12.11 Bibliographical Notes

Various subjects on EFA are exhaustively detailed in Bartholomew et al. (2011),
Harman (1976), and Mulaik (2011). Papers reviewing EFA well include Yanai and
Ichikawa (2007). Approaches to the noniterative estimation of parameters have also
been found in EFA studies (e.g., Thara & Kano, 1986; Kano, 1990).

Exercises

12.1. Present another example of a set of the variables for which EFA is useful.

12.2. Show that EFA model (12.3) with (12.4) can be rewritten as x = Af + y!/2y
with u ~ N, (0,,,1,,).

12.3. In model (12.3), factor vector f is regarded as a random vector. In contrast to
this, the EFA model also exists in which f is regarded as a fixed parameter
vector (Anderson & Rubin, 1956). This model is called a fixed factor model,
which is expressed as

X; :Afi—|—e,~ (1221)

by attaching subscript i to x, f, and e in (12.3) for explicitly showing that they
are related to individual i. Show that if A is given, the squared norm of the
error for i, ||e;||°= ||x; — Af;||, is minimized for f; = (A’A) "' A'x;.
12.4. Model (12.21) with e; ~ N,(0,,, ¥) implies x; ~ N,(Af;, ¥). Show that it
X/1
leads to the log likelihood for X = | | = [yl, . yp] being expressed as

X',

n

1
logI(F, A, ¥) = — glog|‘l’| — 3> (x — AL)¥ ! (x; - Af)

i=1

1
—_ glog|‘l‘| — (X - FA)Y '(X-FA)  (12.22)
A RS e a

2\ = =07 ' )

with F = [f,....f,],A = [a1,...,a,]", §; the jth diagonal element of P,
and the term irrelevant to X, F, A, and ¥ omitted.
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Show that f; = (A"PilA)ilA"l‘flx,-(i =1,...,n) maximizes (12.22) for
2
given A and ¥, using H\P*/in _ \P*‘/zAf,.H = (xi — Af,)"W ! (x; — Af)).

Show that y; = n’lej — FajH2 maximizes (12.22) for given F and A, by
noting the fact in Exercise 8.1.

Show that the MLE of F, A, and ¥ does not exist for (12.22), since this
diverges to infinity when F, A, and ¥ are jointly estimated. A hint is found in
the fact that x; can be equal to Fa,.

Let us consider the model (12.21) with e; ~ N,(Af;, y¥1,,), i.e., the error
variance for every variable constrained to equal y. Show that its log likeli-
hood for the data matrix X is expressed as

1
log I(F, A, /) = —%mgw—ﬂnx—m’nz. (12.23)

The maximization of log likelihood (12.23) has been introduced as a max-
imum likelihood estimation for principal component analysis (PCA) in
Bishop (2006, p. 571). Show that maximizing (12.23) over F, A, and V is
equivalent to minimizing (5.4) over F and A, i.e., PCA.

A least squares method for EFA is formulated as minimizing

IR — (AA +W)|° (12.24)

over p x m loading matrix A = [aj,...,a,] and p x p diagonal matrix
7

Y = for the p x p inter-variable correlation coefficient

v
matrix R = (rj;) obtained from a data set. Discuss how this method is
rational.
Let r; be the (p — 1) x 1 vector obtained by deleting r;; from the jth column
of the correlation matrix R in (12.24). Show that the minimization of
(12.24) over A and ¥ can be attained by the following algorithm (Harman
& Jones, 1966):

Step 1. Initialize A.
Step 2. Repeat the update of the ith row of A by the transpose of a; =

-1
(A]’-Aj) A}rj forj=1, ..., m, where A, is the (p — 1) x m matrix

obtained by deleting a;' from the current A
Step 3. Set y; =1 — a]’.aj to finish if convergence is reached; otherwise, go

back to Step 2.
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12.12. Independent component analysis (ICA) refers to a class of procedures,
the most general form of whose models can be expressed as
x = f(s) + e (Izenman, 2008, p. 558). Here, x is a p x 1 observed variable
vector, e is an error vector, s is an m X 1 vector containing unobserved
signals originating from m mutually independent sources, and f(s) is a
function of s providing ap x 1 vector. Discuss relationships of ICA to EFA.



Part IV
Miscellaneous Procedures

The types of matrices to be analyzed by the procedures in this part differ from those
in Parts II and III. The techniques in Chap. 13 are not procedures for analyzing
data, but rather for transforming solutions. The data sets to be analyzed by the
procedures in Chap. 14 are given as block and categorical data matrices. In
Chap. 15, data sets are treated in which individuals are classified into some groups,
while data are considered which describe the quasi-distances among objects in
Chap. 16.



Chapter 13 M)
Rotation Techniques petic

In some analysis procedures, the solution for a data set is not uniquely determined,
multiple solutions exist. An example of such procedures is exploratory factor
analysis (EFA). In this procedure, one of the solutions is first found, and then it is
transformed into a useful solution that is included in multiple solutions. A family of
such transformations is the rotation treated in this section. The rotation for EFA
solutions in particular is called factor rotation, although the rotation can be used for
solutions of procedures other than EFA. This chapter starts with illustrating why the
term “rotation” is used, before explaining which solutions are useful in Sect. 13.3.
This is followed by the introduction of some rotation techniques.

13.1 Geometric INlustration of Factor Rotation

As discussed with (12.16) in Sect. 12.5, when loading matrix A is an EFA solution
of a loading matrix, its transformed version,

Ar = AT}, (13.1)

is also a solution. Here, T is an m X m matrix that satisfies (12.14), which is written
again here:

1 #
T'T = , or equivalently, diag(T'T) = L,. (13.2)

# 1

where diag() is defined in Note 12.1. In this section, we geometrically illustrate the
transformation of A into Ay = AT, supposing that T is given.
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Let us use a; for the jth row of the original matrix A and use aj(-T)’ for that of the

transformed Ar. Then, At = AT ! is rewritten as

a}T)/:a;T'_l G=1,...,p). (13.3)

Post-multiplying both sides of (13.3) by T’ leads to ajm T = a}, ie.,
T .
a=a'T (j=1,..p), (13.4)

which shows that the original loading vector a; for variable j is expressed by the
post-multiplication of the transformed aj(-T)/ by T'. We suppose m = 2 and define the

columns of T as

T = [thtg],with ||t1|| = HtQH =1 (135)
which satisfies (13.2). Using (13.5) and ajml = [aJ(IT), a](.zT)], (13.4) is rewritten as

a; = aﬁr)t/1 +ajg>t’1. (13.6)
It shows that the original loading vector for variable j is equal to the sum of t;
(k = 1, 2) multiplied by the transformed loadings. Its geometric implications are
illustrated in the next two paragraphs.

In Table 13.1(A), we again show the original loading matrix A in Table 12.1(A)
obtained by EFA. Its row vectors a; (j = 1, ..., 8) corresponding to variables are
shown in Fig. 13.1a; the vector a;' for H is depicted by the line extending to [—0.63,
0.46], and the other vectors are done in parallel manners. Now, let us consider

transforming A into Ay = AT~ by

Tab!e 13‘1_ A solution (A) Before rotation (B) After rotation
obtained with EFA =

(Table 12.1A) and an exam- A Vi A Y
ple of its rotated version 0.77 —-0.38 0.26 1.03 -0.76 0.26

0.61 0.50 |0.38 0.56 032 ]0.38

0.67 -0.36 |0.41 090 |—-0.69 |041
-0.74 |-040 |030 |-0.75 —-0.15 0.30

0.79 043 ]0.18 0.80 0.16 [0.18

0.76 -044 ]0.22 1.04 |-0.82 [0.22
—-0.63 046 039 |-0.89 0.79 10.39

0.70 0.18 047 0.77 -0.09 |0.47
0.00 0.57

Tm </ HlwTal >

<
I
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0.94 0.26

1 [1018 —042 . - B
T = [ ],followmg fromT = [t;,t,] = {0.34 0.97} (13.7)

-0.32 1.14

This T'"! leads to At = AT'~! in Table 13.1(B). There, we find that the vector for
His al" = a/T'~! = [~0.89,0.79], transformed from a} = [~0.63,0.46] in (A).

Those two vectors satisfy the relationship in (13.6):
[—0.63,0.46] = —0.89t; +0.79¢;, (13.8)

with t| = [0.94,0.34] and t, = [0.26,0.97].

The geometric implication of (13.8), which is an example of (13.6), is illustrated
in Fig. 13.1b. There, the axes extending in the directions of t;" = [0.94, 0.34],
t,' = [0.26, 0.98] are depicted, together with the original loading vectors a,’, ..., ag’
whose locations are the same as in (A). Let us note that vector a} for H satisfies
(13.8); i.e., the —0.89 times of t| plus the 0.79 times of t, is equivalent to
a’7 = [-0.63, 0.64]. Here, the transformed loadings —0.89 and 0.79 can be viewed
as the coordinates of point H on t; and t, axes, as shown by the dotted lines L; and
L, in Fig. 13.1b, where L, and L, extend in parallel to t, and t,, respectively. This
relationship holds for the other loading vectors.

In summary, transformation (13.1) implies the rotation of the original horizontal
and vertical axes in Fig. 13.1a to the new axes extending in the direction of the
column vectors of T as in Fig. 13.1b, where the transformed loadings are the
coordinates on the new axes. The reason why (13.1) is called rotation is found
above.

rotation

q

(b) Rotated axes, the coordinates which give

(a) Variable vectors for Table 13.1(A) the loadings in Table 13.1(B)

Fig. 13.1 Illustration of rotation as that of axes
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13.2 Oblique and Orthogonal Rotation

Rotation is classified into oblique and orthogonal. The transformation illustrated in
the last section is oblique rotation, since the new axes are intersected obliquely, as
in Fig. 13.1b. On the other hand, orthogonal rotation refers to the rotation of axes
by keeping their orthogonal intersection, whose example is described later in
Fig. 13.2a. In orthogonal rotation, constraint (13.2) is strengthened so that it is the
m X m identity matrix:

T'T =1,. (13.9)

The matrix T satisfying (13.9) is said to be orthonormal, and its properties are
detailed in Appendix A.1.2. Customarily, the rotation made by orthonormal T is not
called orthonormal rotation, but rather orthogonal rotation. Using (13.9), (13.1) is
simplified as

A = AT (13.10)

in orthogonal rotation.
In summary, rotation is classified into two types:

[1] Obligue rotation (13.1) with T constrained as (13.2)
[2] Orthogonal rotation (13.10) with T constrained as (13.9)

Orthogonal rotation can be viewed as a special case of oblique rotation in which
(13.2) is strengthened as (13.9).

13.3 Rotation to Simple Structure

The transformed loading matrix in Table 13.1(B) is not a useful one. That matrix is
merely an example for illustrating rotation. A “good rotation procedure” is one that
gives a useful matrix. Here, we have the question: “What matrix is useful?” A
variety of answers exist; which answer is right varies from case to case.

When a matrix is a variables x factors loading matrix, usefulness can be defined
as “interpretability”, i.e., being easily interpreted. What matrix is interpretable? An
ideal example is shown in Table 13.2(A), where # indicates a nonzero (positive or
negative) value. This matrix has two features:

[1] Sparse, i.e., a number of elements are zero
[2] Well classified, i.e., different variables load different factors

Feature [1] allows us to focus on the nonzero elements to capture the relationships
of variables to factors. Feature [2] clarifies the differences between factors. The
matrix in Table 13.2(A) is said to have a simple structure (Thurstone, 1947).
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Table 13.2(A) shows an ideally simple structure, but it is almost impossible to
have such a matrix; T cannot be chosen so that some elements of At = AT ! are

exactly zero as in (A). However, it is feasible to obtain At = AT'"! that approx-
imates the ideal. It is illustrated in Table 13.2(B). There, “Small” stands for a value
close to zero, but not exactly being zero, while “Large” expresses a value with a
large absolute value. A matrix, which is not ideal but approximates ideal structure,
is also said to have a simple structure in the literature for psychometrics (statistics
for psychology).

Let us remember that At = AT'~! can be viewed as the coordinates on rotated
axes. How should the axes be rotated so as to make the loading matrix At be of a
simple structure? One answer is found in Fig. 13.2, where the useful orthogonal and
oblique rotation for the variable vectors in Fig. 13.1a is illustrated. First, let us note
the axes of t; and t, in Fig. 13.2b. The former axis is approximately parallel to the
vectors for a group of variables {A, V, I, H} (Group 1), while the latter is almost
parallel to those for another group {C, T, B, P} (Group 2). Thus, Group 1 has the
coordinates of large absolute values on the t; axis, but shows those of small
absolutes on the t, axis. On the other hand, Group 2 shows the coordinates of large
and small absolutes for t, and t; axes, respectively. The resulting loading matrix is
presented in Table 13.3(C). There, the matrix successfully attains the simple
structure as in Table 13.2(B). Orthogonal rotation is illustrated in Fig. 13.2a, where
t; and t, are orthogonally intersected; (13.9) is satisfied. On the other hand, the axes
are obliquely intersected in Fig. 13.2b. Also in (A), the t; and t, axes are almost
parallel to Groups 1 and 2, respectively, which provides the matrix having a simple
structure in Table 13.3(B).

In the above paragraph, we visually illustrated how T = [t;, t,] is set to be
parallel to groups of variable vectors so that At = AT ! has a simple structure.
But, this task can only be attained by human vision and is impossible even by that
when m exceeds three-dimensions. Indeed, the optimal T is obtained not visually
but computationally with

Table 13.2 Simple structure (A) Ideally simple (B) Simple

in a matrix of variables x -

factors Variable F1 F2 Fl1 F2
1 # 0 Large Small
2 0 # Small Large
3 0 # Small Large
4 # 0 Large Small
5 0 # Small Large
6 # 0 Large Small
7 # 0 Large Small
8 0 # Small Large
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(a) Orthogonal Rotation

Fig. 13.2 Illustrations of rotation to a simple structure

(b) Oblique Rotation

Table 13.3 A solution obtained with EFA (Table 12.1A) and its rotated versions

(A) Before rotation

(B) After varimax

(C) After geomin rotation

rotation
A i Ar ;i Ar 12}

A 0.77 —0.38 0.26 0.81 0.28 0.26 0.82 0.08 0.26
C 0.61 0.50 0.38 0.07 0.78 0.38 —0.13 0.84 0.38
I 0.67 —0.36 0.41 0.73 0.22 0.41 0.74 0.04 0.41
B —-0.74 —0.40 0.30 -0.24 —-0.80 0.30 —0.04 —0.82 0.30
T 0.79 0.43 0.18 0.25 0.87 0.18 0.04 0.88 0.18
\% 0.76 —0.44 0.22 0.85 0.23 0.22 0.87 0.01 0.22
H —-0.63 0.46 0.39 -0.77 —-0.12 0.39 —0.82 0.08 0.39
P 0.70 0.18 0.47 0.37 0.63 0.47 0.23 0.58 0.47
$1n | 0.00 0.00 0.48

~ 1—1

maximize Simp(At) = Simp(AT ) over T subjectto (13.2) or (13.9). (13.11)

Here, Simp(AT’ ~1) is the abbreviation for the simplicity of AT~ and is a function

of T that stands for how well Ay = AT'~! approximates the ideal simple structure,
that is, how simple the structure in A is. The procedures formulated as (13.11) are
generally called (algebraic) rotation techniques. In exactness, we should call them
simple structure rotation techniques in order to distinguish them from the rotation
that does not involve a simple structure. A number of simple structure rotation
techniques have been proposed so far, which differ in terms of how to define

|
Simp(AT) = Simp(AT/ ). Two popular techniques are introduced in the next two

sections.
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13.4 Varimax Rotation

The rotation techniques with (13.9) chosen as the constraint in (13.11) are called
orthogonal rotation techniques. Among them, the varimax rotation method pre-
sented by Kaiser (1958) is well known. In this method, the simplicity of At = AT
is defined as

Simp(At) = Simp(AT) Zvar(alk .. .a[(){)2> (13.12)

to be maximized. Here, we have used the fact that (13.1) is simplified as (13.10) and

var(a(li>2 = _a[(;)z) stands for the variance of the squared elements in the kth col-

umn of Ay = (a;»kﬂ):

1 P P 2
var(agﬂ-- 2) _I;Z ( pZalf)z) . (13.13)

j=1

That is, the varimax rotation is formulated as

2
R m P 1 4
maximize simp(AT) = Z Z <aj(.kT 2_Z Z a§,{T>2> over T subject T'T = 1,,,.
P

1
g

(13.14)

For this maximization, an iterative algorithm is needed. One of the algorithms can
be included in the gradient methods introduced in Appendix A.6.3 (Jennrich, 2001).
However, that is out of the scope of this book.

We should note that variance (13.13) is not defined for loadings a;-kﬂ but for its

squares a;kT >; they are irrelevant to whether a}g ) are positive or negative, but are

relevant to the absolute values of a}kT) . If variance (13.13) is larger, the absolute

values of the loadings in each column of At would take a variety of values so that
some absolute values are larger, but others are small, (13.15)

as illustrated in Table 13.2(B).

The sum of the above variances over m columns defines the simplicity as in
(13.12). By maximizing the sum, all m columns can have loadings with (13.15).
This allows us to consider the two different At results illustrated in Table 13.4(A)
and (B). There, we find that (A) is equivalent to Table 13.2(B); i.e., it shows a
simple structure, while Table 13.4(B) is not simple, in that the same variables
heavily load two factors. However, (13.14) hardly provides a loading matrix Ar, as
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Table 13.4 Variables x Variable (A) Simple (B) Not simple
factors matrices with and
. . F1 F2 F1 F2
without a simple structure
1 Large Small Large Large
2 Small Large Small Small
3 Small Large Small Small
4 Large Small Large Large
5 Small Large Small Small
6 Large Small Large Large
7 Large Small Large Large
8 Small Large Small Small

in Table 13.4(B), since it necessitates t; and t, extending almost in parallel, which
contradicts constraint (13.9).

The varimax rotation for loading matrix A in Table 13.3(A) provides the rotation
matrix

0.705  0.710
T= [—0.711 0.704]’ (13.16)

which is the solution for (13.14). Post-multiplication of A in Table 13.3(A) by

(13.16) yields the matrix At = AT in Table 13.3(B) that shows a simple structure.
Indeed, Fig. 13.2a has been depicted according to (13.16).

Let us compare A in Table 13.3(A) and At in (B). It is difficult to reasonably
interpret the former loadings in (A), as all variables show the loadings of large
absolute values for Factor 1 and those of rather small absolutes for Factor 2. It
obliges one to consider that Factor 1 explains all variables, while Factor 2 is
irrelevant to all variables, which implies that Factor 2 is trivial. On the other hand,

Ar = AT can be reasonably interpreted in the same manner as described in
Sect. 12.7.

13.5 Geomin Rotation

The phrase “maximize Simp(Ar)” in (13.11) is equivalent to “minimize —1 x Simp
(At)”. Here, —1 x Simp(Ar) can be rewritten as Comp(Ar) which abbreviates the
complexity of At and represents to what extent At deviates from a simple structure.
Some rotation techniques are formulated as substituting “minimize Comp(Ar)” for
“maximize Simp(Ar)” in (13.11). One of them is Yates’s (1987) geomin rotation
method, in which complexity is defined as
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p m 1/m
Comp(Ar) = Comp(AT ) =3~ {H (a},f” +s)} : (13.17)

=1 k=1

with ¢ a specified small positive value such as 0.01. The geomin rotation method
has orthogonal and oblique versions. In this section, we treat the latter, i.e., the
oblique geomin rotation, which is formulated as

1/m
14 m
minimize Comp(ATH) = Z {H (a;kT>2 + s)} over T subject to (13.2).
=1 k=1

(13.18)

For this minimization, an iterative algorithm is needed. One of the algorithms can
be included in the gradient methods introduced in Appendix A.6.3 (Jennrich, 2002).
However, that is beyond the scope of this book.

Let us note the parenthesized part in the right-hand side of (13.17):

m

11 (a](g)2+g> _ (ajélTﬂH) o (a;;?ere). (13.19)
k=1

It is close to zero, if some of a;kn

approximating that in Table 13.2(A). The sum of (13.19) over p variables is

are close to zero, which would give a matrix

minimized as in (13.18). This minimization for A in Table 13.3(A) provides the
rotation matrix
—1 | 0581 0.582
T = {—0.979 0.979 | (13.20)

Post-multiplication of A in Table 13.3(A) by (13.20) yields At = AT~ in
Table 13.3(C). This has also been presented in Table 12.1(B), as described in
Sect. 12.7.

The reason for adding a small positive constant ¢ to loadings, as in (13.19), is as

follows: (13.19) would be HZ;I a](.kT)2 —a"?x .. x aj(;)z without ¢. Then, the

it
solution which allows [[;_, a](kT )2 to attain the lower bound 0 is not uniquely

determined; multiple solutions could exist. For example, let m be 2. If a_;]D =0,

then aJ(lT)z X ajg )2 = 0 whatever value ajg ) takes. This existence of multiple solu-

tions is avoided by adding ¢ as in (13.19).
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13.6 Orthogonal Procrustes Rotation

In this section, we introduce Procrustes rotation, whose purpose is different from
the procedures treated so far. Procrustes rotation generally refers to a class of

rotation techniques to rotate A so that the resulting At is matched with a target
matrix B. The rotation was originally conceived by Mosier (1939) and named by
Hurley and Cattell (1962) after a figure appearing in Greek mythology.

Let us consider orthogonal Procrustes rotation with (13.9), ie., T (m X
m) constrained to be orthonormal. This is formulated as

minimize f(T) = ||B — AT||” over T subject to T'T = I,,. (13.21)

This is useful for every case, in which one wishes to match AT to target B and

examine how similar the resulting matrix At = AT is to the target, under constraint
(13.9).
The function f{T) in (13.21) can be expanded as

F(T) = |B|>—2uB'AT + tT'A’AT =||B||>—2uB'AT + || A|]%, (13.22)

where we have used TT' =1, following from (13.9). In the right-hand side of

(13.22), only _2t'T'A’'B is relevant to T. Thus, the minimization of (13.22)
amounts to

maximize g(T) = trB’AT over T subject to T'T = I,,,. (13.23)

This problem is equivalent to the one in Theorem A.4.2 (Appendix A.4.2). As
found there, the solution of T is given through the singular value decomposition of
A'B.

A numerical example is given in Table 13.5. The matrices B and A presented

there seem to be very different. The orthogonal Procrustes rotation for them provide

p_ [ 053 085
~|-0.85 053

Table 13.5, where AT is found to be very similar to B.

}. The resulting AT is shown in the right-hand side of

Table 13.5 Example of B N

. A AT
orthogonal Procrustes rotation
0.8 0.6 0.4 —-0.02 0.72
0.3 0.7 0.8 0.1 0.34 0.73
0.6 0.6 0.8 -0.2 0.59 0.57
0.8 0.1 0.5 -0.6 0.77 0.11
0.9 0.0 0.5 —-0.8 0.94 0.00
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13.7

Bibliographical Notes

Simple structure rotation techniques are exhaustively described in Browne (2001)
and Mulaik (2011). Procrustes rotation techniques are detailed in Gower and
Dijksterhuis (2004), with its special extended version presented by Adachi (2009).
The simple structure rotation can be related to the sparse estimation, as discussed in
Sect. 22.9 and other literature (e.g., Trendafilov, 2014).

Exercises

13.1.

13.2.

13.3.

13.4.

13.5.

13.6.

13.7.

Show that T = Sdiag(S' S)fl/ 2 satisfies (13.2), where diag(S'S) denotes the
m x m diagonal matrix whose diagonal elements d;, ..., d,, are those

of S'S (Note 12.1) and diag(S'S)fl/2 is the m x m diagonal matrix whose
diagonal elements are 1/d}/*, ... 1/d\/?.

Show that a 2 x 2 orthonormal matrix T is expressed as
T— {cos() —sin()}

sinf cos@ |’
Thurstone (1947) defined simple structure with provisions, which have been

rewritten more clearly by Browne (2001, p. 115) as follows:

[1] Each row should contain at least one zero.

[2] Each column should contain at least m zeros, with m the number of
factors.

[3] Every pair of columns should have several rows with a zero in one
column but not the other.

[4] If m > 4, every pair of columns should have several rows with zeros
in both columns.

[5] Every pair of columns should have a few rows with nonzero loadings
in both columns.

Present an example of a 20 x 4 matrix meeting provisions [1]-[5].

P m—1 m T)2 —(T)2 T)2 _(T)2
Minimizing 53500 3000 1 20 (a;k) —ay’ )(“,('1 Z—a?)  over
T subject to diag(T'T) =1, is included in a family of oblique rotation

called oblimin rotation (Jennrich & Sampson, 1966), where aj(,;r ) is the

(j, k) element of the rotated loading matrix ATH. Discuss the purpose of
the above minimization.

Oblique rotation tends to give a matrix of a simpler structure than orthog-
onal rotation. Explain its reason.

Show that orthogonal rotation is feasible for the p x m matrix A that
minimizes ||V — AA’||” subject to A’A = I,, for given V.

Show that oblique rotation is feasible for the solution of principal compo-
nent analysis, if constraint (5.25) is relaxed as nildiag(F’F) = I, without
(5.26). Here, diag() defined in Note 12.1.
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13.8.

13.9.

13.10.

13.11.

13 Rotation Techniques

Show the objective function (13.12) in the varimax rotation can be rewritten
as

f= %trT’A’{(AT) ® (AT) ® (AT)} — %trT’A’AT{diag(T’A’AT)}.

(ten Berge, Knol, & Kiers, 1988). Here, diag() is defined in Note 12.1, and
® denotes the element-wise product called the Hadamard product and
defined as (17.69):

[ESTRIT I XipYip
XoY= : = (x;v5) (n x p) forn x p matrices
LXn1Ynl - XnpYmp
ESTHRRE Xlp yu 0 Vip
X= andY =
[ Xn1 0 Xp Yal Y

Generalized orthogonal  rotation is formulated as minimizing
SK L IIH = A{Ti|]* over H,Ty,...,Tx subject to T,T; = TyT, =1,,
k=1,...,K, for given p X m matrices A, ..., Ax. Show that the mini-
mization can be attained by the following algorithm:

Step 1. Initialize Ty, ..., Tx .

Step 2. Set H=K~' S| AT .

Step 3. Compute the SVD A/ H = K AL toset Ty = KL fork = 1, ..., K.
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

Show

K K-1 K
K= [H-ATP =) > AT — AT
k=1 k=1 I=k+1

for H in Step 2 described in Exercise 13.9.

Let us consider the minimization of ||[M, ¢] — AT||* over T(m x m) and
¢ (p x 1) subject to T'T = TT' = 1,,, for given M(p x (m — 1)) and A(p x
m). Here, [M, ¢] is the p x m matrix whose final column ¢ is unknown.
Show that the minimization can be attained by the following algorithm:

Step 1. Initialize T.

Step 2. Set ¢ to the final column of AT.

Step 3. Compute the SVD A'[M, ¢] = KAL' to set T = KL.

Step 4. Finish if convergence is reached; otherwise, go back to Step 2.
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13.12. Kier’s (1994) simplimax rotation, which is used for having a matrix of
simple structure, is a generalization of the Procrustes rotation introduced in
Sect. 13.6. In the simplimax rotation, target matrix B is unknown except for
that B is constrained to have a specified number of zero elements:

112
B — AT 1H is minimized over B and T subject to (13.2) or (13.9) and

s elements being zero in B, though the locations of the s zero elements are
unknown. Show that, for fixed T, the optimal B = (by) is given by

o T2 _ [T
by = {0 if ay” <a<ys ]

" ' . where @ is the (j.k) element of AT~ and
ay  otherwise

. |
aE]S2> is the sth smallest value among the squares of the elements in AT .



Chapter 14 )
Canonical Correlation and Multiple gt
Correspondence Analyses

In this chapter, we treat procedures for the data set in which variables are classified
into some groups. Such a data set is expressed as a block matrix, introduced in
Sect. 14.1. Then, we describe canonical correlation analysis (CCA) for data with
two groups of variables, which is followed by the introduction of generalized CCA
(GCCA) for more than two groups of variables in Sect. 14.3. GCCA provides a
foundation for a procedure, in which the multivariate categorical data described in
Sect. 14.4 are analyzed. This procedure is called multiple correspondence analysis
(MCA), whose purpose is to quantify un-numerical categories, i.e., finding the
optimal scores to be given to the categories, as shown in Sect. 14.5.

CCA was originally formulated by Hotelling (1936), and some types of GCCA
have been presented (Gifi, 1990; Kettenring, 1984; van de Geer, 1984), among which
Gifi’s (1990) approach is chosen for describing GCCA and MCA in this chapter.

14.1 Block Matrices

We start with introducing the blocks of a matrix by the following note:

Note 14.1. Blocks of a Matrix
We can rewrite a 5 X 4 matrix Y as follows:

Yu Y2 Y13 Y4

Y1 Y22 Y23 Vo4

Y = Y31 Y32 Y33 Y34 = Y 11 Y 12

Va1 Ya ya3 Yaa Y2 Y22

Ysi Y52 Ys3 Ys4

© Springer Nature Singapore Pte Ltd. 2020 211
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where
yu o Y2 yi3 Yia

Yu = ya Y2 |, Yo = ya |, Yo = Ya Yo |, Yo = Ya3 o Yam
¥ ya: 33 V3 ys1 ys2 Y53 Ys4

Y1, Y12, Yo, and Yo, are called the blocks of Y, while Y is called a block

matrix consisting of Y1, Y1, Y21, and Y.
This example is generalized as follows: an n X p matrix Y can be rewritten

as

Yy - Yy oo Yy
Y=|Yy - Yl] - Yy |- (141)
Y - Yy o Yy

Here, Y;; is called the (i, j) block of Y, while Y is called a block matrix
containing Y; G =1, ..., j=1, ..., J). If Y;;is n; X p;, then n = Zleni
and p = Zlepj.

In this chapter, a block matrix of data is treated in which blocks X, ..., X; are
arranged horizontally:

X=[X,.., X, X/, (14.2)

while a block matrix of parameters is considered in which Cy, ..., C; are stacked
vertically:

C
c-|¢ql. (14.3)
C,

Here, X and C; are called the jth block of X and C, respectively.
A weighted sum of matrices can be expressed block-wise as follows:
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Note 14.2. Weighted Sum of Block Matrices

Ay - Ay By --- By
Let the block matrices A = : and B = :
Ap Ay B, -+ By

be of the same order and their blocks Ajand B; i = 1, ..., L;j =1, ..., J) also

be so. Then, the sum of A and B multiplied by scalars s and 7 is defined as

SA; +Byy - sAy+1Byy
A+ 1B = : : (14.4)
sSAp+mBy - sAp+1By

whose (i, j) block is sA;+ B

The product of the matrices can also be expressed block-wise:

Note 14.3. Product of Block Matrices

An o Ay
Let us define n X p and p x m block matrices as A = and
An - Ay
Qu - Qi
Q= : , respectively, with A; being the (i, j) block of A,
Q1 - Qi

Qjx the (j, k) one of Q and the number of the columns of A; equaling the
number of rows of Qj. Post-multiplication of A by Q provides the n x
m matrix

Vi - Vik
V=AQ= : : (14.5)
Vn -+ Vi

whose (i, k) block is
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7
Vi = ZAiijk =AnQu +AnQu + - +AyQu. (14.6)
=

In this chapter, the special case of (14.5),

XC =

J
XjCj:X1C1—|—X2C2+ -+ X,Cy, (147)

j=1

C,
is often used with X = [X,, ..., X;Jand C = |
Cy

14.2 Canonical Correlation Analysis

Let us consider an n-individuals X p-variables data matrix X= [X,, X5] consisting
of the two blocks X = [Xi1,...,X1p, ] (n x p1) and X5 = [Xa1,...,Xap, | (n X p2).
That is, the p variables in X are classified into a group of p; variables and into a
group of p, variables. We suppose that X is centered with 1/ X = 0;). An example of
such data is presented in Table 14.1.

For X = [X,, X,], canonical correlation analysis (CCA) is formulated as
minimizing

f(C1,C) = |X,C; — XoCo? (14.8)

over p; X m coefficient matrix C; and p, x m coefficient matrix C, subject to the
constraints

1 1
SOXX(C = CXXaCo = T, (14.9)
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with mgrank(X’le). That is, the purpose of CCA is to obtain the coefficient
matrices C; and C, that allow X;C; and X,C, to be mutually best matched. Loss
function (14.8) can be rewritten using (14.9) as
p=trC X X;C; + rC, X5 X0 Co — 2urC X X €y = 2m — 2uC X[ X,C,,  whose
minimization is equivalent to maximizing

1
CiX(X,C,. (14.10)

This maximization subject to (14.9) is attained as in Theorem A.4.8 (Appendix
A.4.5; where we can set Vi = n'X| Xy, Vo = n7 X)Xy, and Vi, = n7 XX, to
find the solution for the above CCA problem).

We illustrate CCA by performing it to the data set in Table 14.1, setting m = 1.

In this unidimensional case, C; and C, are simplified as vectors ¢; = [c11,. .., ] ,,1]'
and ¢; = [czl, .. .,C2p2]/, respectively; X;C; and X,C, are expressed as X;¢; =
cuXir+ -+ +cip Xyp, and Xo€ = ¢21Xp1 + - -+ + C2p, X2, respectively. The CCA
for the data set gives the following solution:

Xjc; =0.442 x RJ40.267 x VI+0.588 x DM

14.11
+0.061 x GP+0.222 x SM+0.091 x DB +0.014 x BW, ( )

X,¢, = —0.426 x SP40.233 x L+0.370 x LT +0.004 x CE — 0.356 x MA,
(14.12)

where the resulting coefficient for each variable is followed by the abbreviation of
its name in Table 14.1. The solutions in (14.11) and (14.12) stand for the weighted
sums of strength and athletic test scores that are best matched.

Since I;X = 0;,, the correlation coefficient between X;¢; and X,c, is expressed

as

n71C1X,1X2C2
b
Vi le X Xievn e X Xoe

(14.13)

whose denominator equals one because of (14.9): (14.10) with m = 1 is equivalent
to (14.13). This particular coefficient is called a canonical correlation coefficient
between the variables in X; and those in X,. The CCA solution for the data set in
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Table 14.1 gives the (14.13) value equaling 0.85, which shows that the items in the
strength test are strongly related to those in the athletic test.

14.3 Generalized Canonical Correlation Analysis

Let us compare the CCA loss function (14.8) and the function

f(F,C,Cy) = |[F =X Cy|* + ||F — Xo G| (14.14)

with a new matrix F (n x m) whose rows correspond to individuals. The mini-
mization of (14.8) is equivalent to minimizing (14.14) over F, C;, and C,. It
follows from the fact that the solution of F must satisfy F = 2-1 (XiCi +X,Cy), as
shown with (A.2.6) in Appendix A.2.1. Substituting the equation for F in (14.14), it
is rewritten as

2 2

1
f(FaChCZ) = Hz(xlcl +X2C2) — X]C]

1
+ Hz(X1C1 +XC2) - XpC

2 2

1 1
= |[zX,C, — =X, C
H222 R

1 1
~-X,C, —=X,C
+H2 161 =5 %0

1
=5 IX,Cy — X2C2H27
(14.15)

which equals half of (14.8).
Generalized canonical correlation analysis (GCCA) can be formulated through
the extension of (14.14) to the cases when the n x p data matrix X is expressed as

X=[X,..,X..,X,]withJ > 2. Here, X;is n x p; and p = Zf:ﬂ’j- For the
data set X, the loss function of GCCA is defined as

J

2
n(F,C) =>_|[F-XC, (14.16)
=1
C
with C = | . In GCCA, F rather than X;C; is constrained as
C

1
“FF=1,, (14.17)
n
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Fig. 14.1 Illustration of
generalized canonical XiCy
correlation analysis

X,C»

\d

X;Cy

with m < r = rank(X). That is, GCCA can be formulated as minimizing (14.16)
over F and C subject to (14.17). The implication of this minimization is illustrated
in Fig. 14.1, where a single F and multiple X;C; (G = 1, ..., J) are depicted. The
double-headed arrows in the figure express the deviations of X;C; from F. The
deviations are expressed as squared differences and summated as in (14.16), which
is minimized so that X;C; are well matched with F. As a result, X;,C;, G =1, ...,
J) becomes similar across different j, and X;C; is summarized into a single matrix F.

As explained later, the matrix XD 1/2 plays an important role in GCCA with
X' (X
X" Xo
Dy = ) (14.18)
X'/ X;

a p x p block diagonal matrix in which the blank cells are filled with zeros. We
explain the term block diagonal matrix and the superscript —1/2 in D 172 in the
following two notes.

Note 14.4. Block Diagonal Matrices

A matrix B whose (i, j) block is a zero matrix for i # j, i.e.,

B,
B,
B= : (14.19)

B,

is called a block diagonal matrix and B; (i = 1, ..., I) is called the ith diagonal
block of B.
The products of block matrices are given as
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B1 Hl
B2 H2
B, H,;
B H,
B, H,
= : , (14.20)
B,/H;
G
G,
X1, Xa, ..., X/] 3 = [X,C1,XoC;, ..., X,Cy],
G
(14.21)
B, Q B:Q;
B2 Q2 B2Q2
. Sl=1" (14.22)
B, | |Q B,Q,

Here, we have supposed that the products of the blocks are defined. If (14.19)
and B, ..., B; are square and nonsingular, the inverse matrix of (14.19) is
expressed as

B!

B! _ : (14.23)

Note 14.5. Square and Square Root of a Matrix
The square of an n X n matrix V is expressed as

VZ=VV. (14.24)

The square root of V, denoted as V2, is the matrix satisfying

219
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vizylz =y (14.25)

and the inverse matrix of Vm, denoted as V2, satisfies

vo2yTl2 vl (14.26)

Thus, Dy'/? is the matrix satisfying Dy '/*Dy"/* = D!, Comparing (14.18) with
(14.23) and (14.26), we find

(X/IXI)—I/Z
D;(I/Z (X'2X,) /2 . , (14.27)
(X,X,)"?
and use (14.21) to get
XDy '/? = [Xl(Xle)_l/z,...,X,(XJXJ)_I/Z . (14.28)

-1/2
How to obtain (XJ’XJ) is described in Appendix A.4.6.

As described in Theorem A.4.6 (Appendix A.4.4), the GCCA problem, i.e., the
minimization of (14.16) subject to (14.17), is equivalent to minimizing

2

f(F,C) = HXDX1/2 - %FC’D;/2 (14.29)

over F and C subject to (14.17), which can be viewed as the reduced rank

approximation of XD;(I/ % with rank(XD;(l/ 2) = r as explained in Appendix A.4.4.
The solution of F and C is given by

F = aN, T, (14.30)
C = V/aDy'’M,, ®, T, (14.31)

as found in Theorem A.4.6. Here, T is an m x m orthonormal matrix, and N,,,, M,,,,

and @,, are obtained through the singular value decomposition (SVD) of XD;/ 2

defined as
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XDy '/? = NOM/, (14.32)

with NN =M'M =1, and ® a diagonal matrix whose diagonal elements are
ordered in descending order; N,,, and M,,, contain the first m columns of N and those
of M, respectively, with @,, the first m x m diagonal block. The matrix T appearing
in (14.30) and (14.31) implies that the solution can be rotated as in EFA.

The importance of GCCA may not be its usefulness in real data analysis, but
rather that it leads to multiple correspondence analysis for the categorical data
described in the next sections.

14.4 Multivariate Categorical Data

An example of multivariate categorical data is given by a 10-individuals X
3-variables matrix Y = (y;) in Table 14.2a, where the variables are

[V1] Faculty to which each individual belongs,
[V2] Subject at which she/he is best,
[V3] Sciences, basic or applied, to which she/he is oriented.

We should note that the elements of Y are not quantitative scores, but the code
numbers referring to categories. For example, those for [V1] are coded as
1 = Sciences, 2 = Medicine, 3 = Engineering. In Table 14.2b, the elements of
Y are presented as category names.

Table 14.2 Artificial example describing the faculties (FC) of students (ST), the subjects (SJ) at
which they are best, and their orientation (OT), which is found in Adachi and Murakami (2011)

ST | (a) Data matrix (b) Data matrix Y (¢) Indicator matrix G = [G, G», G3]

Y

Code number Category* G, (FC) G, (S) G; (0T)

FC |SJ |OT |FC SJ OT |Sci |Med |Eng |Math |[Bio |Phy |Chemo |Bs |Ap
1 3 4 2 Eng |[Che |Ap |0 0 1 0 0 0 1 0 1
2 1 2 1 Sci Bio |Bs 1 0 0 0 1 0 0 1 0
3 2 3 2 Med |Phy |Ap |0 1 0 0 0 1 0 0 1
4 1 1 1 Sci Mat | Bs 1 0 0 1 0 0 0 1 0
5 2 2 1 Med |Bio |Bs |0 1 0 0 1 0 0 1 0
6 3 3 2 Eng |Phy |Ap |0 0 1 0 0 1 0 0 1
7 2 2 2 Med |Bio |Ap |0 1 0 0 1 0 0 0 1
8 1 3 1 Sci Phy |Bs 1 0 0 0 0 1 0 1 0
9 2 4 2 Med |[Che |Ap |0 1 0 0 0 0 1 0 1
10 |3 1 1 Eng |Mat |Bs |0 0 1 1 0 0 0 1 0

“The names of categories are abbreviated as follows: Eng engineering, Sci sciences, Med medicine; Che chemistry,
Bio biology, Phy physics, Mat mathematics; Ap applications, Bs basis
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Each column of the data matrix in (a) or (b) can also be expressed as the n-
individuals x Kj-categories indicator matrices

-, -
8ij

G=|g | (i=1273), (14.33)

/
[ 8 |
as in Table 14.2c. Here, the jth variable in (a) or (b) corresponds to Gj;, and the kth
element g;; in the ith row ggj is defined as

) ifk=yy
8ik = {0 otherwise ’ (14.34)

For example, g;, = [0,0,1,0], since yg, = 3: individual 8 shows 3 (=Physics) for
variable 2. The indicator matrix G; in (14.33) can also be called a membership
matrix, as described in Sect. 7.1, as G; stands for the membership of individuals to
categories.

Let the number of columns of G; be K;, j=1, ..., J, and K = Zf:l K;. We

further define an n x K block matrix as

G: [Gl,...,GjV‘.,GJ]. (1435)

In the next sections, we refer to G rather than G; as an indicator matrix.

14.5 Multiple Correspondence Analysis

The loss function for multiple correspondence analysis (MCA) is given by replacing
X by G; in the GCCA function (14.16). That is, MCA is formulated as minimizing

J
n(F,C) =Y |IF - GG’ (14.36)
=1

subject to (14.36) and an additional constraint,

1'F = 0/ , orequivalently, F = JF, (14.37)
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with m < rank(JG). The equivalence in (14.37) has been proved in Note 3.1
(Chap. 3). The K-categories x m-dimensions matrix C; to be obtained is called a
category score matrix, as its kth row stands for the vector of scores which is suitable
to be given to category k, as explained in the next section. There, we also explain
why we refer to the columns of C; as dimensions. For the same reason, an n-
individuals x m-dimensions matrix F is called an individual score matrix. Why
constraint (14.37) is added is explained next:

Note 14.6. Avoiding Trivial Solutions

Let m = 1 for the sake of simplicity. Then, F and C; in (14.36) are the column
vectors. Without (14.37), the MCA loss function (14.36) would attain the
lower limit zero for

F=1,andC; = I, (14.38)

because (14.34) implies Gjlg, = 1,,. The solution in (14.38) is rivial, since it
implies that the same score of “one” is given to all individuals and categories.
This trivial solution does not satisfy (14.37); by adding it, the trivial one can
be excluded from the solution.

As the minimization of (14.16) is equivalent to that of (14.29) in GCCA, the
MCA problem, i.e., the minimization of (14.36) subject to (14.17) and (14.37), is
equivalent to minimizing

2

VR
h(F,C) = HJGDG‘/2 —~FC'DY? (14.39)
n

over F and C under the same constraints, which is detailed in Theorem A.4.7
(Appendix A.4.4). Further, the theorem shows that the MCA solution is given by

F = /nS,T, (14.40)
C = uD;"’P,®,T. (14.41)
Here,
GG,
GG,
D = (14.42)

GG,
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is the matrix in (14.18) with X; replaced by G;, T is an m X m orthonormal matrix,
and S,,, P,,, and ®,, are obtained through the SVD of JGDal/ ? defined as

JGD;'? = SeP. (14.43)

Here, §'S = P'P =1, with ¢ = rank(JG) and @ is a diagonal matrix whose diag-
onal elements are arranged in descending order. That is, S,, and P,, contain the first
m columns of S and P, respectively, with @,, the first m x m diagonal block of ©.
In this chapter, we do not use a rotation technique by setting T in (14.40) and
(14.41) at I,,, as explained with (A.4.33) in Appendix A.4.4.

We must mention that the block diagonal matrix Dal/ *in (14.43) is simply a
diagonal one. This can be verified by the fact that the G, in Table 14.2c implies

3 1/V/3
GG, = 4 . Thus, (G’lGl)fl/2 = 1/V/4 . In general,
3 1/V/3

GG; and (G}Gj)fl/ *(j=1,...,J) are diagonal matrices, which implies that Dg

and Dgl/ * are also diagonal.

14.6 Homogeneity Assumption

Table 14.3 presents the MCA solution of F and C = [C},...,C}]’ for the data set
in Table 14.2 with m = 2. In Table 14.3, fg denotes the ith row of F, which cor-
responds to the ith individual in Table 14.2, and cj’.k denotes the kth row of C;,

which is associated with category k in variable j; for example, ¢}, contains the
scores for Phy (physics). The solution in Table 14.3 can be graphically represented

Table 14.3 MCA solution for the data in Table 14.2

F C

f, 1.20 1.20 C ¢}, Sci -1.19 -0.10
f, -L12 -0.94 ¢} Med 0.63 -0.84
£ 0.83 -0.38 ¢)5 Eng 036 1.23
f, -1.56 0.59 C, ¢, Math -1.19 1.03
f, -0.27 ~1.44 ¢ Bio -0.26 -1.25
f, 0.71 1.01 ¢ Phy 021 0.23
f) 0.61 -137 &, Che 1.26 0.50
£ -0.90 0.05 C ¢, Bs -0.93 -0.05
f) 1.32 -0.19 ¢ Ap 0.93 0.05
f, -0.83 1.48
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Fig. 14.2 Scatterplot of 15
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as in Fig. 14.2, where individual i (= 1, ..., n) is plotted as the point with its
coordinate f;, and category k in variable j is plotted with its coordinate ¢;. We can
interpret the plot by noting inter-point distances. The rationale for this
distance-based interpretation of MCA solutions is explained in the following
paragraph.

MCA can be reformulated with the homogeneity assumption:

the scores for an individual should be homogeneous to (14.44)
the scores for the categories to which the individual belongs. '

Here, the underlined scores are expressed as the vector ¢;,,;, which is the category
score vector c}k with k set to the category y;; (the category number that individual

2
to be small, and its

i shows for variable j). Assumption (14.44) requires ‘ fﬁ — c}yij_

sum over i and j can be expressed as
/ /
,  J , fi gy
98l LRI Sl T
j=1 =1 = g
n

/
gnj

J n
Z Z Hf: N c;yij

j=1 i=1

(14.45)

Here, we have used
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/
le

K
giC=g;| i | =D sty =0, (14.46)
C, k=1
i

because of (14.34). We can find the equivalence of (14.45) to (14.36) by noting
(1433)and F = [f},.. .. 1,]"

The inter-point distances in Fig. 14.2 allow us to capture the relationships
among categories, among individuals, and between categories and individuals; we
can consider the entities near one another to share similar features. For example,
(1) the point for “Sciences” is found to be close to that for “Basis”, which shows
that the students in the department of “Sciences” tend to regard “Basic” sciences as
important; (2) individuals 1 and 6 are similar students; (3) individual 3 is involved
with “Medicine” and “Applications” (or applied sciences).

The spatial representation of the MCA solution as in Fig. 14.2 and its spatial
interpretation show the reason why we refer to the columns of F and C; as
dimensions.

14.7 Bibliographical Notes

CCA is intelligibly introduced in Lattin, Carroll, and Green (2003) with real data
examples, and detailed in Izenman (2008) and Kock (2014). The formulations of
GCCA and MCA in this chapter are detailed in Gifi (1990). MCA is also intelli-
gibly treated in Greenacre (2007). The analysis procedure called correspondence
analysis, with the “multiple” deleted from MCA, is treated only in the next exer-
cises. The relationships between correspondence analysis and MCA are detailed in
Greenacre (1984, 2007).

We must mention that various terms have been used for referring to MCA and
related procedures. For example, the term homogeneity analysis has been used in
Gifi (1990). Other terms can be found in Hayashi (1952), Nishisato (1980), and
Young (1981).

Recently, Shimodaira (2016) has proposed a procedure which can be viewed as a
generalization of GCCA.

Exercises

14.1 Show that (14.16) can be rewritten as ||I;® F — X*C||>, where X# =

X
is the nJ x p block diagonal matrix whose jth diagonal
X,
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14.2

14.3

14.4

14.5

14.6

14.7

F
block is X, and I; @ F = | : | is the nJ x m block matrix whose all blocks
F
are F. The operator ® is called Kronecker product and is detailed in
Chap. 17.
Discuss how the generalized orthogonal rotation in Exercise 13.9 and GCCA
are similar/different.
Let =[z,, ..., z,] contain standard scores with l;zj =0 and
n’lz’zj =1( =1,...,p). We can substitute z; for X in (14.16) to rewrite it

as n(F,A) = f;luF*Z;a/ 2, with C in (14.16) replaced by

A=a,.. .,ap]/. By noting the equivalence between (14.16) and (14.29),
show that the minimization of #(F, A) subject to (14.17) is equivalent to the

principal component analysis (PCA) for Z, i.e., minimizing ||Z — FA'|]*
under (14.17).
Show that the function (14.29) multiplied by n can be rewritten as:

nf(F,C) = || XD,"? — FC'DY?|?

Vi
with Dy = . the block diagonal matrix, whose jth block V;
v,
is defined as V; = n’IX_;Xj and is the covariance matrix for X; if it is
centered.
Let us constrain C; in (14.36) to be C; = qjajf, with q; and a; being K; x 1
and m x 1 vectors, respectively. Then, (14.36) is rewritten as

n(F,q;,a)) ZHF Giqa .

Show that its minimization over F, qy, ..., q;, and A = [ay, ..., a;] subject to
(14.17), (14.37), 1,Gjq; = 0, and ™" (qui)lqui =1 is equivalent to min-
imizing ||Go — FA/|[> under the same constraints with Gq =
[G14q;, G2qy, - - -, Gyq,] an n x J matrix (Gifi, 1990).

Discuss how the assignment of quantitative scores to categories and PCA are
simultaneously performed in the procedure considered in Exercise 14.5.
Show that N = (ny) = GG, represents the K, x K, contingency table,

whose element 7;; expresses the number of individuals classified into cate-
gory k for variable 1 and category [ for variable 2
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14.8

14.9

14.10

14 Canonical Correlation and Multiple Correspondence Analyses

Show that G'1JG, = N — n’lDIIKl 1’K7D2, with N defined in Exercise 14.7,
J=1I,— n‘llnlil the centering matrix, and D; the K; x K; diagonal matrix
whose kth diagonal element is the number of the individuals classified into
category k for variable j (=1, 2).

The procedure called correspondence analysis with removing “multiple”
from “multiple correspondence analysis” is performed for the contingency
table N defined in Exercise 14.7 (Benzécri, 1992; Greenacre 1984). The loss
function of correspondence analysis is expressed as:

~ 1
f(C1,Cy) =N —;D:/2C1C’2D§/2||2, (14.48)

which is minimized over C; and C,, with

N =D;"’(N—n"'D,15,1; D,)D, > = D; /*G'JG,D, '*.

Show that (14.48) is minimized for
C; = nD;"*U,AY? and C, =+/nD;'*V,Al2 (14.49)

m

subject to C\D;C; = C,D,C, being a diagonal matrix. Here, U,, and V,,
contain the first m columns of U and V, respectively, while A,, is the first
m x m diagonal block of A, with U, V, and A obtained from the SVD

N = UAV'.
The solution of MCA for G with K = 2, i.e., G = [Gy, G»], is given through
the SVD (14.43) with K = 2, which is rewritten as:

DII /2

J[G1, G, = SO[P',, P, (14.50)

D£1/2

with P; (K; x r) and P, (K5 x r) the blocks of P = {gl} Show that
2

(14.50) leads to

Dl—l/z Dl—l/z

K

G } J[G1, G

P
= {Pj O[P';,P)]

D2—1/2 D, 1/2

M, N
N M,
equivalence of the correspondence analysis to MCA for [G|, G;] with the
constraint of C'lD 1C = C’2D2C2 being a diagonal matrix. Here, the symbols
have been the ones defined in Exercises 14.8 and 14.9, with

M; = Iy, — n'D; 1 1) D}”.

and that its left-hand side can be rewritten as { } , which imply the



Chapter 15 )
Discriminant Analysis e

Discriminant analysis refers to a group of statistical procedures for analyzing a data
set with individuals classified into certain groups, where the results of the analysis
are used for finding the group of a new individual that is not included in the above
data set. The sections in this chapter can be classified into two parts:
(1) Sects. 15.1-15.3 concern an approach without using probabilities, and (2) the
remaining sections concern probabilistic approaches. In (1), a canonical discrim-
inant analysis (CDA) procedure is introduced by modifying the multiple corre-
spondence analysis in the last chapter. In (2), we introduce two probabilistic
procedures using multivariate normal distributions. One of them is linear dis-
criminant analysis (LDA), which is rooted in Fisher (1936) and found to be
equivalent to CDA. The other is a generalization of LDA.

15.1 Modification of Multiple Correspondence Analysis

The multiple correspondence analysis (MCA) in the last chapter is performed for
the n individuals x K-categories membership matrix (14.35). Here, let us consider a
case where J = 1, i.e., G = Gy, and an n individuals X p-variables quantitative data
matrix X corresponding to G is also given, with 1/ X = 0;,. That is, the data set is
expressed as an n X (K + p) block matrix [G, X]. An example of [G, X] is shown in
Table 15.1 (Fisher, 1936), in which individuals are irises whose categories are
indicated by G and the individuals’ features are described by X. In this chapter, the
column entities of G are called groups rather than categories.

© Springer Nature Singapore Pte Ltd. 2020 229
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Table 15.1 Membership of irises for groups 1, 2, and 3 (G) and standardized scores for features
of the irises (X). The original data are available at http:/astro.temple.edu/ ~ alan/MMST/datasets.
htm (Izenman, 2008)

Tris G X
1 2 3 SL” SwW* pPL" PW"

1 1 0 0 -0.90 1.02 -1.34 -1.31
2 1 0 0 -1.14 -0.13 -1.34 -1.31
50 1 0 0 -1.02 0.56 -1.34 -1.31
51 0 1 0 1.40 0.33 0.53 0.26
52 0 1 0 0.67 0.33 0.42 0.39
100 0 1 0 -0.17 -0.59 0.19 0.13
101 0 0 1 0.55 0.56 1.27 1.71
102 0 0 1 -0.05 -0.82 0.76 0.92
150 0 0 1 0.07 -0.13 0.76 0.79

“SL sepal length, SW sepal width, PL petal length, PW petal width

For the above G, the MCA loss function (14.36) is simplified into ||F — GC||*
without the symbol of summation and the subscript for C. Here, let the individual
score matrix F be constrained as

F = XB, (15.1)

with B a p x m coefficient matrix. Using (15.1) in ||F — GC|)%, it is rewritten as
n(B,C) = | XB — GC|*. (15.2)
Further, the substitution of (15.1) into constraint (14.17) leads to

1
“B'X'XB =1, (15.3)
n

Minimizing (15.2) over B and C subject to (15.3) is called canonical discriminant
analysis (CDA), whose solution is detailed in Sect. 15.2. Before it, discriminant
analysis is compared with clustering in the following note.


http://astro.temple.edu/%7ealan/MMST/datasets.htm
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Note 15.1. Comparison to Cluster Analysis

Let us compare (15.2) with the loss function (7.4) in k-means clustering
(Chap. 7). Deleting B from (15.2) leads to (7.4). Further, the matrix G, which
indicates the memberships of individuals to groups, is known in (15.2)
(discriminant analysis), while G is unknown and to be obtained in (7.4)
(cluster analysis). For this difference, discriminant analysis is referred to as
supervised classification, while cluster analysis is called unsupervised clas-
sification, as the former is concerned with the classification when the data set
exists that serves as the supervisor indicating the memberships, while such a
data set or supervisor does not exist in the latter.

15.2 Canonical Discriminant Analysis

As shown in Appendix A.2.2, (15.2) is minimized for

C = (G'G)"'G'F = D;'G'XB, (15.4)

given G, with Dg = G'G,aK x K diagonal matrix. We can substitute (15.4) in
(15.2) to rewrite it as

n(B) = || XB — GDg'G'XB||”
= tr B'’X'XB — 2uB'X'GD;'G'XB + tB'X'GD;' (G'G)D;'G'’XB  (15.5)
= nm — tB'’X'GD;'G'XB,

where we have used (15.3) and G'G = Dg. The minimization of (15.5) under (15.3)
is equivalent to maximizing trB’X’GDé'G’XB subject to (15.3), whose solution is
given as in Theorem A.4.9 (Appendix A.4.5). There, by setting M and V in
(A441)to X’GDalG’X and V = n~'X'X, respectively, we have the solution for B,
as in (A.4.43).

Note 15.2. Another Formulation of CDA

As found above, CDA can be formulated as maximizing p(B) = trB’SB over
B subject to (15.3) with S = X’GDEIG’X. In a more popular introduction of
CDA, (15.3) is replaced by BWB = I, with W = n~!(X’X — S): CDA is
also formulated as maximizing p(B) under BWB = I,,. A reason for using
(15.3) in this book is relating CDA to MCA.
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Let us express the ith row of X (n X p) as X, = [x, . .., x;] and the /th column
of B=[by,....,b,](p x m) as b, = [b”, .. .,bpl}/. Then, the (i, [) element of (15.1)
is expressed as

fa=xby =byxi + -+ + bpixip, (15.6)

i.e., the weighted sum of the p variables in x;. Sum (15.6) is called the I/th dis-
criminant score for individual i, and the weights by, ..., by, are called the Ith
discriminant coefficients, with [ = 1, ..., m. The other parameter matrix in CDA is
C. Its rows of C = [¢y, . ., cK]’ are associated with groups, and the kth row ¢;’ (1 x
m) can be called the kth group score vector, as it stands for the features of the
group.

Let us consider performing CDA for the iris data in Table 15.1, setting m = 2.
This gives us F, whose ith row is expressed as f; = [f;1, fo] = [xgbl,x;bz] =x/B,
i.e., two discriminant scores for each individual. The resulting scores for the data set
are expressed as

x;b; = 0.12 x SL+0.12 x SW — 0.68 x PL — 0.38 x PW, (15.7)
x;b, = —0.02 x SL — 0.84 x SW +1.47 x PL — 1.94 x PW, (15.8)

where the names of the variables in Table 15.1 and the solutions of the coefficients
are substituted into x;, ..., x;, and by, ..., by in (15.6), respectively. For example,
the elements of the data vector x| (=[SL,SW,PL,PW]) =
[—0.90,1.02, —1.34, —1.31] for individual 1 can be substituted into the variables in
(15.7) and (15.8) so that the discriminant score vector for individual 1 is given as
f) = x{B = [x|by,x|b,] = [1.42,-0.28]. In Fig. 15.1, the vectors for all individ-
uals, f! = xB(i = 1,. .., 150), are plotted, with squares, circles, and triangles used
for the individuals in Group 1, 2, and 3, respectively.

The CDA for the data in Table 15.1 also gives the solution of the group scores as

¢ 133 —0.19
C=|d,|=]-031 065 |. (15.9)
¢, ~1.01 —0.46

In Fig. 15.1, ¢, ¢, and c3 are represented as a filled square, circle, and triangle,
respectively. There, we can find that the discriminant scores for the individuals in
the same group are distributed mutually close, with their center being the group
score vector. This can be mathematically shown in the next section.
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Equation (15.4) for C = [cy, . . ., ck|’ implies that its kth row ¢, is the centroid, i.e.,

the averaged vector of the discriminant score vectors f; for the individuals
belonging to group &:

1 1
= E fi=— E 'B. 15.10
ck g i ' X; ( )

i€gk €8k

Here, g; expresses the set of the individuals in group & with their number denoted
by mg, and >, f! stands for the summation of f; over the individuals belonging to
group k. The rows of C being averages can be verified by the following example:
(15.4) is expressed as

f! 0 1
f, 10
lf/ f/ f/
C=D;'G|f,| = (41415 ,whenG = |1 0| with
G 3 l(f/+f/)
fﬁ‘ 2\*1 4 O 1
f’ 10
D _ 30
ST lo 2]
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Further, we can ascertain the closeness of the vectors f; = x/B in group  to ¢}
from the fact that (15.2) is rewritten as

n(B.C) = [xB - g’ ="
i=1 i=1

:

xB — ¢ (15.11)

Here, g is the ith row of G, y; is the index number of the group to which individual
i belongs, and we have used g/C = c;l_. This implies that CDA is also based on the

homogeneity assumption:

the scores for an individual should be homogeneous to (15.12)
the scores for the group to which the individual belongs, '

which is the same as (14.44) except the term “categories” has been replaced by
“group”. Minimizing (15.11) allows f: = x/B to be close to ¢, with ¢, being the
score of the group including individual i, which is also the centroid of the individual
scores in that group, as shown in (15.10).

Let x, be a 1 x p vector which is not included in X so that it is unknown to what
group X, belongs. That is, our task is to classify X, into one of the groups k = 1, ...,
K, in other words, to find the group to which x/, should belong. Assumption (15.12)
leads to the following minimum distance classification:

xis classified into group k* with ||x'B — ¢.|| = 12321<”X,B —¢f.  (15.13)

Here, x’ generally expresses a 1 x p vector whose elements are associated with the
p variables in X. We illustrate the classification rule (15.13) with x equaling
x, =[1.8, 04, 0.1, —0.6]. This is substituted into (15.6) to provide
x,B = [0.42,0.94], with the elements of B given as in (15.7) and (15.8). The
location of x;B is shown by “?” in Fig. 15.1. By comparing its distances to ¢, ¢,,
and c;, we can find that x;B is closest to ¢,, and thus, X, is reasonably classified into
Group 2.

15.4 Maximum Probability Classification

Beginning with this section, discriminant analysis will be formulated in a different
manner: We start with a classification rule, in which the distances and “min” in
(15.13) are replaced by probabilities and “max”, respectively. The rule is stated as
follows:
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xis classified into group k* with P(g;

X) = lg%(ang(gdx). (15.14)

Here, P(g;lx) stands for the probability that the individual showing x belongs to
group k. This particular probability is called a posterior probability as it is related to
considering the group from which x arises a posteriori, after x was observed.
Interchanging g; and x in P(g;Ix) gives the symbol P(xlg;), which is called a group-
conditional density, and stands for the probability density of an individual in group
k showing x. Between P(g;Ix) and P(xlg;), the following equation is known to hold:

P(gelx) = — 80 P(xlew) (15.15)

K P(g)P(xlg)

Here, P(g;) is a probability of a randomly chosen individual belonging to group
k and called a prior probability, as it is given a priori, before x is observed.
Equation (15.15) is known as the Bayes’ theorem, as it was found by English
pastor, Thomas Bayes (1701-1761). Thus, (15.14) is called the Bayes’ classifica-
tion rule.

As found in (15.15), we can obtain the posterior probability P(g./x) necessary
for classifying x with (15.14) if group-conditional densities P(xlg;) and prior
probabilities P(g;) (k = 1, ..., K) are estimated. This estimation is made using the
data set [G, X]. The facts described in [G, X] can also be expressed without using
G, by means of rearranging the individuals in X so that the ones belonging to the
same group are collected in the same block. The rearrangement gives an n indi-
viduals x p-variables block matrix

X, X1
X=X | with Xo=|x, |. (15.16)
XK X;mk

Here, n = n; + --- + ng, and xy; is the p x 1 data vector for the ith one of the
individuals belonging to group k. In the remaining sections, (15.16) is used for a
data matrix with the memberships of individuals to groups known. Further, P(xlg;)
is supposed to be the probability density of a multivariate normal (MVN)
distribution:

x~N,(W, Zx) for x € g, (15.17)
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with x € g; representing the fact that the individual showing x belongs to group
k. That is, the group-conditional density for group k is given as

1 1 o1
P(x|gy) = P(x|p, Ei) = Wem{_i(x —m) X (x— pk)}

(15.18)

by adding the subscript k to (8.9).

15.5 Normal Discrimination for Two Groups

In this section, the number of groups is restricted to two (K = 2), and the covari-
ance matrix in (15.18) is supposed to be homogeneous between two groups:

==X (15.19)

Then, using (15.15), the rule (15.14) is rewritten as follows: x is classified into g; if
P(g1)P(x|g1) > P(g2)P(x|g2) or, equivalently,

~—

p(x|g1

p(x|g2 = ree (15.20)

=
—~
o

otherwise, x is classified into g,. By changing both sides of (15.20) into their
logarithm, we can rewrite it as log P(xlg,) — log P(xlg,) > logP(g,) — logP(g,), or
equivalently,

f(x) = log P(x|g,) — log P(x|g,) + log{P(g,)/P(g,)} > 0. (15.21)

Further, by substituting (15.18) into (15.21) with the use of (15.19), we can rewrite
the function in (15.21) as

F6) =~ 5 (i) ) (- a2 () + Tog{Ple)/P(e2)}

_ 1 _ _
=xT ' (p, — )+ 3 (W= "'y — W=7y ) + log{P(g,)/P(g,)}
=bx+c=bx;+ - +byx,+c,
(15.22)
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with

b= [b1,...5,]'= T (1, — ), (15.23)

CcC =

(W', — i =7 y) + log{P(g,)/P(g,)}- (15.24)

N =

Rule (15.14) is thus simplified as
x is classified into Group 1 if f(x) > 0; otherwise, into Group 2. (15.25)

As (15.22) is a linear function of x, which is the weighted composite of vari-
ables, (15.22) is called a linear discriminant function (LDF), and the procedure for
obtaining (15.22) is called linear discriminant analysis (LDA). As described in
Appendix A.5.2, the maximum likelihood estimates of p;, p,, and X needed for
obtaining (15.22) are given by

1
g;(:g;:#;kxk (k=1,2), (15.26)

n

r= % {Z (x1; — X1) (x1; — %) + i (x0; — X2) (X2 — xz)/}. (15.27)

i=1 i=1

These are substituted into py, Py, and X in (15.23) and (15.24) for providing b and
¢, though P(g)/P(g,) must also be estimated for obtaining c.
For example, we consider a case of p = 2, where

P(g1) = P(g2) (15.28)

is  supposed, and  [i, =[76.20,61.42], [, =[66.93,72.16],  and

120.77  60.05
{ 60.05 146.98
[0.14, —0.13] and ¢ = —1.40. They lead to the LDF

= } By substituting these into (15.23) and (15.24), we have
b=

£(x) = 0.14x; — 0.13x, — 1.40. (15.29)

The classification in which (15.29) is used for (15.25) can be graphically illustrated
as in Fig. 15.2, where the bird’s-eye view of the group-conditional densities for the
two groups is depicted. As found there, the LDF (15.29) value of x = [xy, x,] is the
coordinate on the axis called a discriminant axis. For example, let the point “?” in
the figure indicate x; = [58, 62]/, i.e., a new observation to be classified. This leads
to
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Boundary line

Discriminant Axis

Classify into g,

Classify into g, fx)=0.14x -0.13 x,- 1.40

Fig. 15.2 Illustration of linear discriminant analysis

£([58,62]') = 0.14 x 58 — 0.13 x 62 — 1.40 = —1.34, (15.30)

which is a coordinate on the discriminant axis. The LDF value in (15.30) is called a
discriminant score. Since (15.30) is negative, (15.25) shows that x; = [58,62]" is to
be classified into Group 2. Let us note the boundary line in Fig. 15.2. It defines the
regions for two groups: The observations x located to the right of/below the line are
classified into g; and those on the other side are classified into g,.

15.6 Interpreting Solutions

For illustrating the interpretation of LDA solutions, we consider performing LDA
for the 27 (employees) x 4 (personality traits) data matrix X = [X|, X’Z]' in
Table 15.2a. Here, it is supposed that the personality traits of the employees are fit
to their groups (i.e., departments). Substituting the solution of (15.23) and (15.24)
in (15.22) leads to the LDF as
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Table 15.2 Aurtificial example of the data for LDF (Adachi, 2006) and the resulting classification
based on the discriminant scores

Department | Employ. | (a) Data (b) Result
Social | Cooperative | Diligent | Creative | Score | Classi.
g1 1 15 14 15 14 256 | g
2 11 13 17 17 -1.64 |g
3 16 14 17 26 1.34 | g,
4 19 21 18 15 494 | g
5 18 26 21 15 393 | g
6 15 28 18 12 328 |g
7 17 19 12 10 641 |g,
8 12 15 18 12 -0.68 |g
9 13 22 16 10 210 | g
10 14 26 18 6 279 | &1
11 16 20 18 18 239 |&1
12 11 15 20 15 -2.58 | g
13 20 21 17 20 570 | g
14 15 20 19 12 1.71 | g
15 13 13 17 16 -0.11 |g
2 16 11 15 18 17 -1.82 |g
17 10 13 16 9 -122 |g
18 11 14 24 16 —4.65 |g»
19 10 10 13 12 -0.50 |g»
20 10 14 22 18 —4.61 |g
21 13 19 23 24 272 |g
22 11 10 20 28 -4.36 |g»
23 15 20 20 16 091 |gi
24 12 22 23 13 -2.10 |g
25 10 11 18 10 -2.51 |g
26 12 10 19 27 -3.10 |g
27 10 14 21 19 —-423 |g
“Misclassification
F(x) = 0.719x; 4 0.139x, — 0.462x3 — 0.084x; — 2.069, (15.31)

where we have set the prior probabilities in (15.24) as P(g;) = 15/27 and P
(g2) = 12/27, i.e., the proportions of the members in groups 1 and 2 in Table 15.2.

Let us consider assessing how correctly/incorrectly individuals are classified by
the LDF in (15.31). An easy way to do so is to substitute each row vector of X into
(15.31) and examine whether the resulting discriminant score shows the correct
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classification or not. For example, the substitution of the first and second row
vectors in Table 15.2a yields

f(xi = [15,14,15,14]")
=0.719 x 154+0.139 x 14 — 0.462 x 15 — 0.084 x 14 — 2.069 = 2.56,
(15.32)

f(x2 =[11,13,17,17))
=0.719 x 11 4+0.139 x 13 — 0.462 x 17 — 0.084 x 17 — 2.069 = —1.64,
(15.33)

respectively. Here, (15.32) implies correct classification since it gives a positive
value, showing that x;; is to be classified into Group 1, and in reality, x;; belongs to
Group 1. On the other hand, (15.33) implies misclassification, since (15.33) is
negative and shows that x;, is to be classified into Group 2, but the examinee 2
belongs to Group 1 in fact. The scores obtained as above are shown in Table 15.2b,
with the asterisks indicating misclassification.

By counting those asterisks, we can assess misclassification rates; the rate is 4/
15 in Group 1, while it is 1/12 for Group 2, and the total rate is (4 + 1)/27 = 0.185.
This assessment is known to underestimate the misclassification rate since the
classification is made for the data vectors from which LDFs are obtained. This
differs from a usual setting, in which a new data vector x, to be classified is not
included in the data set X. However, procedures for more accurately assessing the
rate are out of the scope of this book.

LDA is used not only for classification but also for finding the variables that
characterize groups. For this purpose, the standardized discriminant coefficients are
to be used that are obtained with LDA for standardized data. The coefficients for the
standard scores transformed from the data in Table 15.2a are presented in
Table 15.3. There, we can find the following:

(1) The persons to be classified into Group 1 are social and cooperative, but not
diligent and creative, with particularly important characteristics being social
and less diligent.

(2) The persons to be classified into Group 2 are diligent and creative, but not
social and cooperative, with important characteristics being diligent and less
social.

Let us consider performing the CDA in earlier sections for the data set in
Table 15.2a with m = 1. CDA provides B = b = [0.226,0.044, —0.145, —0.26]’,

Table 15.3 Standardized
discriminant coefficients for
the data in Table 15.2a

Social Cooperative Diligent Creative
2.079 0.704 —1.289 —0.459
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every element of which equals the corresponding coefficient in (15.31) divided by
3.1. Indeed, it is known that the coefficients for CDA are proportional to those of
LDA, and the classifications made by CDA with m = 1 are equivalent to those by
LDA when P(g;) = P(g>), though its proof is omitted here. The discriminant
analysis procedure differing from LDA and CDA is described in the following
section.

15.7 Generalized Normal Discrimination

In this section, the classification by (15.14) is illustrated for the cases where X1, ...,
X are supposed to be heterogeneous among groups. We consider the data matrix
(15.16) with n = 150, p = 2, K = 3, and the 150 individuals randomly sampled. Let
the statistics obtained from X,, X5, and X3 be summarized as in Fig. 15.3a; for
example, the average vector 40’112‘0X2 for Group 2 is [25.9, 74.8], and the co-
435.1 212.6

. . —1wv/ .
variance matrix 447 X3JX3 for Group 3 is {212.6 168.4

} with J the centering

matrix defined as (2.10).
Prior probabilities can be estimated as P(gy) = ni/n:

66 40 44

P(gl):ﬁv (gz)zﬁ»andp(gﬁ:ﬁ

for the data set in Fig. 15.3a. The group-conditional density is given as (15.18),
whose parameters p; and X; can be estimated by the maximum likelihood method
as described in Sect. 8.6 and illustrated in Sect. 8.8. The MLE of p; and X is given
by Egs. (8.21) and (8.22) with the subscript k added as

(15.34)

X2

1007 Px )
Group 4| £ k] 80
ny 66 40 44
Variable X X Xy X Xy X

Average | 52.1| 433 259] 748| 71.0] 234]
Covar- | 355.7] 203.8] 180.4]-198.8| 435.1] 212.6
iances | 203.8] 252.5] 198.8] 369.4] 212.6] 1684] 40

. 20
(a) Statistics for each group

0 20 40 60 80 100
(b) Group-conditional densities

Fig. 15.3 Statistics and probability densities for generalized normal discrimination
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= X :*Zxki, (15.35)
- 1 & B oy
) zn—kZ(in — Xi) (X — X)) - (15.36)
i=1

Let us substitute the statistics in Fig. 15.3a into the corresponding parts of (15.35)
and (15.36). Using these results in (15.18), we have the group-conditional densities

355.7 203.87|'/?
P = (2m) " { }
(Xlg1) = (27) 203.8 252.5
1( [52.1D’[355.7 203.8]"( {52.1})
exps — = [ x — X — ,
2 433 203.8 2525 433
(15.37)
180.4 —198.87|"'/?
P = (2m) " { }
(X|ga) = (27) —198.8 369.4
1( [25.9])’[180.4 —198.8]_'( [25.9D
expy — =[x — X — ,
2 74.8 1988 369.4 74.8
(15.38)
435.1 212.67|7'
P = (2m) " { }
(Xlgs) = (27) 2126 1664
1( [71.0D’[435.1 212.6]_'( [HOD
exps — = [ x — X — ,
2 23.4 212.6 166.4 23.4
(15.39)

with © = 3.1416 ... the circle ratio. In Fig. 15.3b, a bird’s-eye view of (15.37)—
(15.39) is drawn as in Fig. 8.4b. We may consider the figure as a map depicting
three mountains whose tops are indicated by filled circles and counter lines are
expressed by ellipses.

Let x7 = [40, 60}/ indicated by a blank square in Fig. 15.3b be a new data vector
for the individual whose membership to a group is unknown; our task is to classify
X, into one of groups 1, 2, and 3. This can be achieved by performing the calculus
in the Bayes’ theorem (15.15) and by using the classification rule (15.14).

By substituting x; = [40,60] into (15.37), (15.38), and (15.39), we have the
values of the group-conditional densities as P([40,60]'|g,) = 7.534 x 1073,
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P([40,60]'|g,) = 5.560 x 107%, and P([40,60]'|g;) = 1.600 x 10~'3, respec-
tively. Using these with (15.34), the numerator in the right-hand side of (15.15) is
obtained as

66

P(g,)P([40,60]'|g,) = T50 X 7-334 1075 =3315x 1077, (15.40)
/ 40 —4 4

P(g,)P([40,60]'|g,) = 50 % 3360 x 107% = 1.483 x 10° (15.41)

44
P([40,60]'|g3) = 50 < 1.600 x 107" = 4.693 x 10~ (15.42)

for each group. Here, it should be noted that the denominator in the right-hand side
of (15.15) is equivalent among different groups; we may only compare its nu-
merator between groups for classification. This implies that (15.14) may be sim-
plified to

x is classified into group k" with P(gs- ) P(x|gi-) = Pz P(gr)P(x|gr). (15.43)

By this rule, we can compare (15.40), (15.41), and (15.42) to classify x; = [40, 60]'
into Group 2 since (15.41) is the highest of the three values.

If we wish to perform not only the classification but also obtain the posterior
probability of X, belonging to the group, the denominator in the right-side hand of
(15.15) must be obtained, which is the sum of P(gy)P(giIx) over k. The sum of
(15.40)—(15.42) is given by

> P(g)P(x[g) =3.315 x 107+ 1.483 x 107* +4.693 x 10~
=1
=1.815x 107%. (15.44)

The use of this value and (15.41) in (15.15) leads to the posterior probability

1.483 x 10~*

Thus, the probability of x, belonging to Group 2 is 0.82. This value can be regarded
as expressing the confidence with which we classify x, into g,. In a parallel manner,
the probability of x, belonging to Group 1 can be obtained as
P(g][40,60]") =343x10 — 018, and P(gs][40,60]') = 1 — P(g;|[40,60]") —
P(g([40,60]') can be found to be almost zero.
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15.8 Bibliographical Notes

A variety of discriminant analysis procedures are described in McLachlan (1992)
and Hand (1997). Some new procedures in discriminant analysis are detailed in
Hastie, Tibshirani, and Friedman (2009). An introduction to CDA as a modification
of MCA is found in Adachi (2004).

Exercises

15.1 Matrices
Ve =2 {3 28 e —X) (&% — %)} = {0 (e -0 (% — %)},
Vw =1{30 S (%6 — %) (%0 — %)’} and Vi =
LS S (i — X)(xu — X)'} are called between-group, within-group,
and rotal covariance matrices, respectively, with x;; the p x 1 data vector for
the ith individual in group k, n= Z,K:1 ng, X =mn ' > " Xy, and
x=n"'30 S Xy Show Vi = Vi + Vyy.

152 Let x; be the /th row vector of n individuals X p-variables data matrix
X = [X’I,Xg]/: [Xi,...,X,] in (15.16) and Xj;; be the (n — 1) x p matrix
obtained by removing x;’ from X. In a leaving-one-out procedure, the fol-
lowing assessment is replicated over / = 1, ..., n: (15.23) and (15.24) are
estimated with X[;; and classification (15.25) with x = x; performed in order
to assess whether the resulting classification is correct or not. It is known that
misclassification rates are estimated better in the leaving-one-out procedure
than in that illustrated in Sect. 15.6. Discuss why the rates are estimated
better in the former procedure.

15.3 In logistic discriminant analysis for two groups, the posterior probability for
Group 1 is expressed as P(g; |x) = m, with x the vector containing

observed variables, b the vector of coefficients, and P(g,|x) =1 — P(g;[x).
Discuss how the logistic and linear discriminant analyses are similar/
different.

154 The Mahalanobis distance of x to group k is defined as
(x — m) 27" (x — ), with p and X the mean vector and covariance matrix
for group &, respectively. Show that the classification rule (15.13), with its
distances replaced by the Mahalanobis distances, is equivalent to the clas-
sification procedure in Sect. 15.7 with P(g;) and IX;| constrained to be
homogeneous among the groups.

15.5 Let us consider a case in which each element of the vector x in (15.15) takes
either one or zero, and the jth element x; takes one with probability 0 for
x being included in group k. Show that if the elements of x are observed

mutually independently, classification (15.14) is feasible using P(x|gy) =

P 051 — 03)' ™Y in (15.15).
15.6 Let us consider a variant of CDA with G unknown. This procedure is for-

mulated as minimizing |[XB — GC|* over G = (gi), C = [¢i, .. .,cx] and
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B subject to (7.1), (7.2), and (15.3). Show that the minimization can be
attained by the following algorithm:

Step 1. Initialize G and obtain V = V!/2V!/2 with V = n~1X'X.

Step 2. Obtain the EVD X'GD;'G'X = Q@*Q’ to set B = V~1/2Q,, with
Dg = G'G.

Step 3. Obtain C by (15.4).

Step 4. Set gy =1 if ||XB —¢||*= min<;<x||xB —¢|||" and gy =0
otherwise, fori=1, ..., n; k=1, ..., K.

Step 5. Finish if convergence is reached; otherwise, go back to Step 2.

In Vichi and Kiers’ (2001) factorial K-means analysis (FKM), (15.3) is
replaced by BB =1,,..

There exists a Bayesian method for estimating parameters besides the least
squares and maximum likelihood methods. In the Bayesian method, the fact
is used that Bayes’ theorem (15.15) can be generalized as

P(0)P(X]|0)

PORY) = =5

(15.46)

Here, 0 is the vector containing parameters, while X is a data matrix, with P
(0) denoting the probability density function (PDF) of 0, P(X) the PDF of
X observed, P(X|0) the PDF of X for given 0, and P(6|X) the PDF of 0 for
given X. As found in (15.46), the parameters are also viewed as being
randomly distributed in the Bayesian method. This method is formulated as
the maximization of (15.46) over 0, or equivalently, maximizing P(0)P(X|0).
Argue that P(0)P(X]|0) is the product of the prior information for parameters
and their likelihood.

A penalized least squares method for n x p data matrix X can be formulated
as minimizing || X — H(0)|]* 4 7¢() over parameter vector 0, with H(8) a
function of 0 providing an n X p matrix, g(0) a function of 0 giving a
nonnegative scalar value, and 7 a specified nonnegative scalar value. An
example of the method is found in Exercise 4.11. Show that the Bayesian
estimation method in Exercise 15.7 is equivalent to the penalized least

squares one if P(X|0) in (15.46) takes the form of P(X|0) =a X

exp{—bHX - H(0)||2} and 7 is set to a certain value.



Chapter 16 M)
Multidimensional Scaling I

The keywords for describing multidimensional scaling (MDS) are the coordinates
of objects, the distances between objects, and the corresponding quasi-distances
observed as data. For example, let us suppose that the objects are cities such as
London, Paris, and Amsterdam. Then, their coordinates are the locations of those
cities on a map, which define the inter-city distances. We further suppose that the
flight-times between those cities are observed as data, which are regarded as quasi-
distance data, since they are approximately proportional to distances, but are not
equivalent to them. The purpose of MDS is to estimate the coordinates of objects,
i.e., their locations, from quasi-distance data; the coordinates are obtained so that
their defined distances approximate quasi-distance data.

The origin of MDS can be found in Torgerson (1952). His approach is called
classical scaling, which is equivalent to Gower’s (1966) principal coordinate
analysis. Those procedures are formulated with inter-object inner products rather
than distances. Also, though they are not treated, their squares are considered in
Takane, Young, and de Leeuw’s (1977) procedure known as alternate least squares
scaling (ALSCAL). In this chapter, only an MDS procedure is introduced in which
distances themselves are considered and a computational technique called a ma-
Jorization algorithm is used. This technique for MDS is rooted in de Leeuw (1977)
and has been developed by Groenen (1993), Heiser (1991), and others.

16.1 Linking Coordinates to Quasi-distances

Let us use g;; for the observed quasi-distance between objects i and j. Then, the data
set of quasi-distances among n objects can be expressed as an n X n matrix

© Springer Nature Singapore Pte Ltd. 2020 247
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q12 413 " qn
q23 " 4m
Q= . o (16.1)
dn—1n

Here, the lower left elements, i.e., the parts for g; with i > j, are blank, as it is
supposed that Q is symmetric with g; = g;;, and g;; (the quasi-distance between an
object and itself) is not observed. We also suppose g; > 0 in this chapter. One
feature of data matrix Q is that the same set of entities occupies the rows and
columns, which differs from the n-observations x p variables data matrices that
have been treated in other chapters. Table 16.1 presents an example of Q, which
describes the perceived dissimilarities between objects (sports). They are
quasi-distance data in that a pair of objects perceived similar/dissimilar corresponds
to their being close/distant; however, the dissimilarities differ from the genuine
distances defined mathematically as found in the next paragraph.

The purpose of MDS is to obtain an n-objects x m-dimensions matrix of the
objects’ coordinates,

!
a;

A= (aik) = L, (162)

=~

from (16.1). Here, a; (m x 1) is the coordinate vector indicating the location of
object i, with the kth element a;; the coordinate of i on dimension k. The distance
between a; and a; is expressed as

Ja; — ajf| = (16.3)

Table 16.1 An example of Q: rated dissimilarities between sports

Baseball | Volleyball | Football | Tennis | Ping-pong | Basketball | Rugby | Softball

Baseball 5.6 5.0 4.6 4.4 54 6.0 1.2
Volleyball 54 44 4.2 3.0 54 54
Football 5.6 6.2 4.0 2.8 4.8
Tennis 2.0 5.8 6.4 4.2
Ping-pong 52 6.4 4.8
Basketball 4.6 52
Rugby 5.6
Softball
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This particular distance is called Euclidean distance, from the ancient Greek
mathematician Euclid (or Eukleid@s in Greek), for distinguishing it from the other
special definitions of distances.

Distance (16.3) can be linked with its guasi-version g;; in (16.1) as

= =+ s (164

with e;; an error. Thus, MDS is formulated as minimizing the sum of squared errors,
ie.,

HA) =3 (a5~ ai =i’ (16.5)

i<j
is minimized over A.

Note 16.1. Summation for i < j
The symbol >, . x; stands for the summation of a set of x; that satisfies
i<j. For example, let X=(x;) be a 4 x 4 matrix, then

> X = X1 +x13 + X14 + X3 + X4 + X34.
i<j

As found in (16.3), the distance is the squared root of Hai —a; 2, which is far more

difficult 1o handle than ||a; — a;||*. For dealing with that difficulty, some MDS

procedures are formulated as fitting ||a; — aj||2: lla]|* + ||ajH2 —2ala; to squared
q; (Takane et al., 1977) or fitting inner product aja; to the corresponding coun-
terpart transformed from g;; (Togerson, 1952; Gower, 1966), rather than minimizing
(16.5). But, we will directly treat it in this chapter.

16.2 Illustration of an MDS Solution

For matrix Q in Table 16.1, MDS loss function (16.5) is minimized for the coor-
dinate matrix A in Fig. 16.1A. This solution is graphically represented as in
Fig. 16.1B, where the objects (sports) are plotted according to their coordinates in
(A). We can see the plot as a usual map; the close/distant objects in the plot are
similar/dissimilar in their features. For example, baseball and softball are closely
located, which implies both are perceived to be similar, while rugby and ping-pong
are distant, implying that they are dissimilar. This illustrates that we can visually
capture inter-objects relationships in MDS solutions.
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WPing-pong mBascball
Dimension 1 2 mTennis mSoftball
Baseball 1.7 2.7
Volleyball -2.8 -1.4
Football 26 -1.7
Tennis 24 19
Ping-pong -2.2 2.7
Basketball -1.1 -2.7 mVolleyball
Rugby 22 -34 Football
Softball 19 2.0

mBasketball
ERugby

(a) Coordinate Matrix (b) Configuration

Fig. 16.1 MDS solution for the data in Table 16.1

The solution in Fig. 16.1 cannot explicitly be given. The iterative algorithm that
provides the solution is described in the remaining sections.

16.3 Iterative Algorithm

Loss function (16.5) is expanded as h(A)=>,_qi+ >, |ai— ajH2
=23 qij||a; — aj||. Here, > i<j 47 is a constant irrelevant to A. Thus, the min-
imization of (16.5) is equivalent to minimizing

FA) =Sl —afP =23 gyllai — ay)- (16.6)

i<j i<j

We will consider the latter.
Using A, (n x m) for the coordinate matrix A obtained at the rth iteration, the
outline of the iterative algorithm for minimizing (16.6) can be listed as follows:

Step 1. Initialize A, with # = 0.

Step 2. Update A, to Ap,q SO thatf(Am) Zf(A[H_ 1]).

Step 3. Finish if convergence is reached; otherwise, increase ¢ by one and return to
Step 2.
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In Step 3, the convergence can be defined as f (A[f]) —f (A[,Jr 1]) is small enough to

be ignored.
The update formula in Step 2 is given by

1
LIS ;Q(A[/])A[t]- (16.7)

Here, Q(AW is the n x n matrix which is a function of A, and is expressed as

S qii‘m qﬁm .. qﬁAW
Q(A[r]) = - . ) (16.8)
n (Af) (Al) (Af)
Zi:l din . qnl[ T an[
(A

with the blanks standing for zero elements and g;; 1) defined, using al[»t] (1 x m) for

i
the ith row of Ay, as

0 ifal = al”
(Aa) _ { P (16.9)

4 IS ‘,‘” otherwise

Why does (16.7) guarantee f (A[,]) >f ( (41 ) In order to explain this, we need a
long story continuing over the next three sections. There, the following tasks are
attained in turn:

(€9 ij ||a,- — ajH2 in (16.6) is expressed in matrix form (Sect. 16.4).
(2) An inequality for Y=, _: gy||a; —aj|| in (16.6) is derived (Sect. 16.5).
(3) We use the results of (1) and (2) to derive (16.7) (Sect. 16.6).

16.4 Matrix Expression for Squared Distances

. 2. . .
In order to express squared distance Ha,- —aj|| in matrix form using A, we
introduce the elementary vectors in the following note:

Note 16.2. Elementary Vectors

Let e; denote the n x 1 vector filled with zeros, except only the ith element
taking one. Such a vector is called an elementary vector. For example,
e; = [0, 1, 0]’ for n = 3. We can easily find that e]/A = a} with A defined as
(16.2); € serves for selecting the ith row of a matrix.
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b/
Let B = : be an n X m matrix, like A. Then, we have

b/

n

(ai — a;)'(b; — b;) = (/A — €/A)(eB — €;B) = (e; — ¢;)'AB/(e; — ¢))
= tr(ei = ej)'AB'(e,» = ej) = trB’(e,- = ej) (e,» = ej)IA

= tI'AIHijB,
(16.10)
with
H; = (e —¢)(ei —¢)". (16.11)
For example, when n = 3,
1 -1 0 1 0 -1 0 O 0
H,=|-1 1 O[,Hz=| 0 0 O [,Hz=]0 1 -1
0 0 O -1 0 1 0 -1 1
(16.12)
If B is set to A in (16.10), we have the squared distance
la; — aj]|*= rAHjA. (16.13)

This summation over i < j is expressed in a simple form, using the following result:

Note 16.3. Use of Centering Matrix
It can be found that

> Hj=nl, — 1,1, =nJ, (16.14)

i<j

with J =1, — n‘11n1; the centering matrix defined in (2.10). Using (16.12),
we can verify (16.14) as



16.4 Matrix Expression for Squared Distances 253

2 -1 -1
ZH,-j:H12+H13+H23= -1 2 -1
i<j -1 -1 2
1 00 111
=3[0 1 0|—|1 1 1|. (16.15)
0 0 1 111

Using (16.13) and (16.14), we can rewrite » |ai — asz in (16.6) as

i<j’

ai—al’ =S ctAHA =tA'S H;A = ntrA'JA. (16.16)
J i i
i<j i<j i<j

16.5 Inequality for Distances

This section concerns the term ZKJ. q,;i‘|ai — ajH in (16.6). The distance Hai — ajH

in that term is more difficult to handle than ||a; — aj||2. This difficulty can be dealt
with by finding an inequality for ), _; qij||a; — a;|| and > e gii(ai — a;)'(b; — b)),
with b! being a row vector of B defined in Note 16.2. The first step for that task is
using the following famous theorem:

Note 16.4. The Cauchy-Schwarz Inequality

[Ix]| x [lyll > x'y. (16.17)

Setting X = a; — a; and y = b; — b; in (16.17) and using g; > 0, we have

qil|ai — aj]| x |[b; = bj|| > g;(a; — a))"(b; — by), (16.18)
which leads to

ayllai — aj]| > g (a; — &)/ (b; — by) (16.19)
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with

(B) 0 lfbi:bj
95 = —”b_q_"fb” otherwise - (16.20)

Here, it has been taken into consideration that the division by Hbi — ij = 0 cannot

be defined, and q@ has the superscript “(B)” because q(-B)

ij ij
of B.
We can use (16.10) to rewrite the right-hand side of (16.19) as

is a function of the rows

qgjm (a; — aj),(bi — bj) = trA/(q(B)Hij)B. (16.21)

)

The left-hand side of (16.19) can be rewritten as

0 if a; = aq;
aya; —ajl| = W (a; — a;)'(a; —a;) otherwise " (16.22)
i d)

Its comparison with (16.20) allows us to find that (16.22) is further rewritten as

A A
q,-jHal- — ajH = ql(j )(a,- — aj)/(ai — aj) = tI‘A,(ql(j )HU)A’ (1623)
where ql(jA> is defined by substituting a; for b; in (16.20), and we have also used
(16.10).
The summation of both sides of (16.19) leads to
> ailla = a > Y g (a — @) (b — ). (16.24)
i<j i<j

Here, we can use (16.21) and (16.23) to rewrite the left- and right-hand sides of
(16.24) as

Y aillai — a]| = rA'Qu)A, (16.25)

i<j

> a4 (a —a;) (b — b)) = rA'Qp) B, (16.26)

i<j



16.5 Inequality for Distances 255

respectively, with

Q) =D ay Hy and Q) =Y q) H;. (16.27)

i<j i<j
Thus, (16.24) is rewritten as

tI'A/Q(A)A > tI'A’Q(B)B, (1628)

which allows us to form the MDS algorithm described in the following section.

16.6 Majorization Algorithm

Using (16.16) and (16.25), MDS loss function (16.6) is rewritten as

f(A) =ntrA'JA — 2trA'Q(A)A. (16.29)
We also consider another function in which trA'Q(A)A in (16.29) is replaced by
(16.26):

g(A,B) = ntrA’JA — 2trA’Qp)B. (16.30)
By comparing (16.29) and (16.30) with (16.28), we can find
2(A,B)>f(A). (1631)
Also, it should be noted that the substitution of B for A in (16.29) and (16.30) gives
g(B,B) =f(B). (16.32)
This equality and the inequality (16.31) lead to:

f(B) =g(B,B)>g(A",B) >f(A"), (16.33)

where A" is the matrix A that minimizes g(A, B) for a given B.
For finding A", we use the fact that Qg, in (16.27) satisfies

JQm = Qs or > g IH; = ¢/H;. (16.34)

i<j i<j
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This follows from the fact that (16.11) implies 1/, H;; = 0/, and this is equivalent to
JH;; = H;; since of (3.21). Using (16.34), we can rewrite (16.30) as

g(A,B) = ntrA’JA — 2trA'JQ)B

= ||VnJA ! B 2 LeB'Q! B (16.35)
= ||vn _%Q(B) -t Q) Q)B,

because of (2.11) and (2.12). Given B, (16.35) is minimized over A for

1
VnJA = %Q(B)B. (16.36)

Here, we can suppose A = JA; equivalently, n~ 1/ A = 0/, as the center of coor-
dinates n='1/ A may be anywhere; thus, we can set it to the origin. This allows
(16.36) to be rewritten as A = n~'Qg)B. That is, when

1
A" =JA" =-QugB, (16.37)
n

(16.33) holds true. By setting A" = A, and B = A}y in (16.33) and (16.37),
respectively, we have f(A[,]) = g(A[t]’A[l]) Zg(A[t+l], Am) Zf(A[,+1]), ie.,
F(Ay) = (Ap+ 1), and the update Formula (16.7) for the coordinate matrix A to be
obtained in MDS.

One feature of the derived algorithm is using an auxiliary function g(A,
B) beside f{A). The auxiliary function g(A, B) is called a majorizing function, as it
majorizes f{A) with (16.31). Algorithms with such majorizing functions are called

majorization algorithms, and they are included in auxiliary function algorithms, as
described in Appendix A.6.1.

16.7 Bibliographical Notes

Multidimensional scaling is detailed in Borg and Groenen (2005) and Cox and Cox
(2000). A book-length description of majorization algorithms is found in Groenen
(1993). Applications of MDS are intelligibly illustrated in Borg, Groenen, and Mair
(2013).

Though quasi-distance g;; is restricted to a nonnegative value in this chapter,
Heiser (1991) generalized the algorithm so that it is feasible for g;; being negative.
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Exercises

16.1.

16.2.

16.3.

16.4.
16.5.

16.6.

16.7.

16.8.

Let D be the n x n matrix whose (i, j) element is the squared distance
||al- —aj||2 between the ith and jth rows of A = [aj,...,a,). Show that
D? =1,1/diag(AA') — 2AA’ + diag(AA")1,1, where diag(AA’) denotes
the n x n diagonal matrix whose diagonal elements are those of AA’, as
defined in Note 12.1.

Show that —2~'JD@J = AA’, subject to A = JA, with J =1, — n"'1,1/
and D® defined in Exercise 16.1, and discuss the rationale of minimizing
||—2_1JQJ — AA'H2 over A (Gower, 1966; Torgerson, 1952).

It is known that the differentiation of (16.3) with respect to a;; is proportional
to Hai - ajHA, which implies that an algorithm using the differentiation for
MDS fails when a; = a; arises. Show that the majorization algorithm in this
chapter does not fail for a; = a;.

Show that the MDS solution minimizing (16.6) can be rotated.

Let Q, = (g4;) be an n X n quasi-distance data matrix obtained from source
s=1,...,8, with g; the (i, j) element of Q,. In an extended version of MDS
for Q, ..., Qs, the loss function is defined as 3> >iej(@si — dy;)?, with

dy;j the weighted Euclidean distance defined as

d ¢z (e — ) 1638)

k=1

The above loss function is minimized over A and wg (s=1,...,5S;
k=1,...,m) subject to a certain constraint on A. Here, A = (a;;) does not
have subscript s, while wy does, implying that wg serves to explain the
differences of Q; across sources s = 1, ..., S. Discuss how wy, explains those
differences.

Show that (1638) is rewritten as {(a; —a;)W2(a; —a;)}"/* =
Wi
|W,a; — Waaj|| = ||W,(a; — a))|| with W, = an m X
Wsm
m diagonal matrix.

Show that A cannot be rotated in the extended MDS considered in Exercise
16.5, except for special cases.

m 2
Distance (16.38) can be rewritten as dy; = 4| > %(ckaik — Ckajk)z. Show
' k=1 % '

that the solution is not unique without a constraint on A and the solution can
be determined uniquely by constraining each column of A to be
standardized.
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16.9.

16.10.

16 Multidimensional Scaling

Show that

o)
Dir.c)

= diag(FF’)l,,1;7 —2FC' + lnl;jdiag(CC’) (16.39)
expresses the n X p matrix whose (i, j) element is the squared distance
between the ith row of F (n x m) and the jth row of C (p x m). Here,
diag(FF') is defined as in Note 12.1.

Let us consider approximating n X p data matrix X = (x;;) by D¢y, ¢), whose
elements are the square roots of the corresponding ones in (16.39), i.e.,

minimizing ||X — D H2 over F and C, with m < min(n, p). Discuss for
what types of X the above minimization is useful.



Part V
Advanced Procedures

In this part, we start with advanced matrix operations (Chap. 17) as a preparation
for the chapters that follow. The matrix decomposition (MD) formulation of
exploratory factor analysis (EFA) is introduced in Chap. 18. This formulation
allows us to directly contrast the solution of EFA with that of principal component
analysis (PCA), as described in Chap. 19. Three-way PCA, which is specially
designed for three-way data, is treated in Chap. 20. Finally, in Chaps. 21 and 22,
sparse multivariate analysis procedures are introduced, in which sparse solutions are
estimated. These refer to solutions including a number of zeros. Such sparse
approaches originate in regression analysis as discussed in Chap. 21. Furthermore,
the factor analysis (FA) version can deal with the difficulties present in confirmatory
FA (Chap. 10), as explained in Chap. 22.



Chapter 17 )
Advanced Matrix Operations petic

In this chapter we introduce matrix operations that are more advanced than those
treated so far. We start by describing systems of linear equations, and then intro-
duce the Moore—Penrose (MP) inverse, considered as one of the most important
operations for statistics, as well as singular value decomposition (SVD). The MP
inverse is closely related to SVD and more useful than the ordinary inverse matrix,
which is regarded as a special case of the MP inverse. The MP inverse allows the
least squares problems to be generally formulated and is a bridge to orthogonal
complement matrices. Finally, we introduce other classes of matrix operations; the
Kronecker product, Khatri-Rao product, vec operator, and Hadamard product.

17.1 Introductory Systems of Linear Equations

A set of equations such as

3a —5b+9c =7
—a+6b—T7c=1 (17.1)
da+7b+c= -5

is called a system of linear equations. The solving of (17.1) equates to obtaining
values of a, b, and c that satisfy all equations. This problem can be easily solved

3 -5 9 a
using a matrix and vectors: by defining X=|-1 6 -7, b=|b],
4 7 1 c
7
y=| 1 [, (17.1) is rewritten as
-5
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Xb=y (17.2)

and the solution of b is given by b = X Xb = X’ly, ie.,

b=X"ly. (17.3)

2.62 324 —-0.90
Since the inverse of X can be found tobe X' = | —=1.29 —1.57 0.57 |, the
—1.48 —195 0.62
2.62 324 —-0.90
solution of b is given by b=Xly=|-129 —157 057
—1.48 —-195 0.62

7 26.10
1 | =1]-1343
=5 —15.38

Any system of linear equations can be expressed in the form of (17.2). Thus, we
define X, b, and y as an n x p matrix, p X 1 vector, andn X 1 vector, respectively.
In the last example, n = p and the existence of X ' have been supposed. In the next
section, however, they are not.

17.2 Moore-Penrose Inverse and System of Linear
Equations

3a—=5b+9c =17
—a+6b—"Tc=1
4a+7b+c=-5"
2a —8b+3c=6
equation added to (17.1), does not have a solution, i.e., no vector b = [a, b, c]
exists that satisfies those four equations. On the other hand, the system

This example of a system of linear equations: with an

—a+6b—Tc=1’ (174)

{ 3a—5b+9c =1
with one equation deleted from (17.1) has multiple solutions, i.e., the vector b = [a,
b, c]' satisfying (17.4) is not unique, in contrast to the unique solution for (17.1).
These examples show that we must consider whether a system has a solution or not,
and that we must consider how a solution is expressed if it exists. To consider them,
the Moore—Penrose (MP) inverse matrix can be useful.
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Note 17.1. The Moore—Penrose (MP) Inverse
For any n x p matrix X, the p x n matrix X" satisfying

XXFX =X, XTXX" =XT (XX7)'=XX*, and (X*X)'=X"X

(17.5)

)

can be uniquely determined. The matrix X" is called the Moore—Penrose
(MP) inverse of X.

If X is nonsingular with n = p and rank(X) = n, X* equals the inverse
matrix X' for X introduced in Note 4.2:

X! =X* if X is nonsingular. (17.6)

This implies that the inverse matrix is a special case of the MP inverse.
The MP inverse of X has the following properties:

(XH) =X and (X*)=(X)". (17.7)
Further, it holds

Xt =X if XX=I,. (17.8)

Let us consider the system of equations, Xb =y, with b (p x 1) unknown but
X (n x p)andy (n x 1) given. Using the MP inverse, the existence of the solutions
can be shown as follows:

Note 17.2. On the Existence of Solutions
The following three statements are known to be equivalent (e.g., Schott,
2015, Sect. 6.2; Seber, 2008, Sect. 13.1.1):

The equation Xb =y for given X and y has a solution of b.  (17.9)
XX*y=y. (17.10)
rank([X, y]) = rank(X). (17.11)

If (17.9), (17.10), or (17.11) holds, all solutions of Xb = y can be expressed
as

b=X"y+(I,— X" X)q, (17.12)
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with q an arbitrary p x 1 vector. This fact is proved as follows. We can find
(17.12) = Xb =y by substituting (17.12) in Xb; this leads to
X{X"y+ (I, -X"X)q} =XX"y—- (X-XX"X)g=y+ (X - X)q =
y, because of (17.5) and (17.10). Conversely, Xb = y implies X " Xb =
X'y and thus b=b+X"y - X"Xb=X"y+ (I, - X"X)b: (17.12)
holds for q = b.

Equation (17.12) implies

: XX —
bis{umque,le X=1I, (17.13)

not unique, otherwise °

To illustrate Note 17.2, we rewrite (17.4) in the form of Xb =y, with

x= {—31 —65 _97} b=[a, b, c|', y=[7, 1] Then, we have X" =

0.24 0.26
0.22 0.31 | which can be found to satisfy (17.10), and (17.12) shows that the
0.15 0.09
1.94
solution of (17.9) is given by b=X"y+ (IL—-X"X)q= |1.83| +
1.15
0.54 —-0.34 -0.37
—-0.34 0.21 0.23 |q.
—-0.37 0.23 0.25

17.3 Singular Value Decomposition
and the Moore-Penrose Inverse

Let X be an n x p matrix with rank(X) = » < min (n, p) and its singular value
decomposition (SVD) defined as in Theorem A.3.2, i.e.,

X = KAL/, (17.14)

A
with KK=LL =1, and A = . is an r x r diagonal matrix whose
Ay
diagonal elements are all positive. Then, its MP inverse is expressed as
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X" =LA 'K (17.15)

1/
with A~! = . We can easily ascertain that (17.15) satisfies
1/,
(17.5). The MP inverse of X may be defined by (17.15) rather than (17.5).

The SVD expression (17.15) for the MP inverse allows us to easily derive the
properties listed next.

Note 17.3. Properties of the MP Inverse

XX " and XX are symmetric and idempotent (17.16)
XXX =X = XXX (17.17)

XXXt =X =X"X"'X (17.18)

X'X)" =X"XT (XX))" =X*"'X* (17.19)

X'X)" X' =X =X/ (XX)* (17.20)
X(X'X)TX'X = X = XX/(XX') "X (17.21)

rank(X) = rank(X ") = rank(XX ") = rank(X " X) (17.22)

XXt =1, if rank(X) equals n(the number of the rows of X) (17.23)

X*X =1, if rank(X) equals p(the number of the columns of X)
(17.24)

For example, (17.17) can be found using the fact that (17.14) and (17.15) imply

XX+t =KK and X'X=LL. (17.25)

They lead to X’XX ™ = LAK'(KK') = LAK' = X’ and X" XX’ = (LL/)LAK’' =
LAK' = X'. Further, (17.24) follows from (17.25) and (A.3.2), and these two
equations lead to (17.23) in a parallel manner.

We can also find (17.20) as follows. (17.14) leads to X'X = LA’L’ and
XX’ = KA’K. From (17.15), their MP inverses are expressed as
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(X'’X)" =LA’L’ and (XX')" = KA’K. (17.26)

Multiplication of the matrices in (17.26) and the transposition of (17.14) lead to
(X'’X) "X’ = LAL'LAK' = LA"'K' = X* and X'(XX') "= LAK'’KA K’ =
LAT'K =X".

The properties in Note 17.3 and others are proved in Magnus and Neudecker
(2019, pp. 38-39) without using SVD.

17.4 Least Squares Problem Solved with Moore—Penrose
Inverse

As explained in Appendix A.2.2, the least square function

f(B) =||Y — XB|? (17.27)

is minimized for B = (X’ X)le if X'X is nonsingular. However, this condition of
nonsingularity is not indispensable, as shown using the MP inverse in the next
paragraph.

Function (17.27) is minimized for

B=X"Y, ie, XB=PyY, (17.28)

with

Px = XX = KK’ (17.29)

using the fact that (17.27) is decomposed as

|Y — XB|*= [|Y — PxY|* + |PxY — XB|*. (17.30)

On the right side, only the term |[PxY — XB||* is dependent on B, and this term
becomes zero for (17.28). The decomposition (17.30) is derived as follows: (17.27)
can be rewritten as

|Y — XBJ|> = |[Y — PxY + PxY — XB|?

17.31
= ||Y — PxY|]* + |[PxY — XB||* + 2trC, (1731)
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with

C = (Y — PxY) (PxY — XB) = YPxY — Y'XB — Y'P,PxY + Y'P, XB.
(17.32)

This C is found to be a zero matrix, since (17.29) leads to Px = P}, Py Px = Px,
and Py X =PxX =XX"X=X.

The above facts suggest that the regression analysis formulated as (4.8) is fea-
sible even if p (the number of the columns of X containing explanatory variables) is
greater than n (the number of the rows of X), although the uselessness of such
analysis is discussed in Sect. 21.6.

In A.2.2, a projection matrix in (A.2.10) is introduced on the supposition that
X'X is nonsingular. However, this is not requisite: A necessary and sufficient
condition for a matrix M to be a projection matrix is M' =M and MM =M
(Yanai, Takeuchi, & Takane, 2011). Thus, (17.29) is a projection matrix. In more
detail, the projection in this book refers to one in a narrow sense. It can be defined
in a wider sense (Yanai et al., 2011).

Now, let us consider a generalized least squares problem of minimizing

f(G) = |Y - XGZ/|’ (17.33)

over G for given Y, X, and Z. This is called the Penrose regression problem
(Penrose, 1956). Function (17.33) is minimized for

G=X"YZ" ie,XGZ =PxYP, (17.34)

with

Px =XX* and P, =ZZ". (17.35)

This result follows from reexpressing (17.33) as

Y - XGZ|* = |Y — PxYP, + PxYP, - XGZ'||’

_ Y pop, P L e (17.36)
= xYP||” +||PxYP), — XGZ'||” +2uN,

with

N = tr(Y — PxYP,)' (PxYP, — XGZ')
= uY'PxYP, — rY'XGZ' — tuP,Y'PyPxYP, + P, YPXGZ  (17.37)
= rY'PxYP, — rY'XGZ' — trY'PxYP, + trY'’XGZ' = 0.
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Here, we have used the fact that (17.29) and (17.35) lead to Py = Px, PixPx = Px,
and PyX = PxX = XX*X = X, which also implies P, = Pz, P,P; =Pz, and
7'P; = (P’ZZ),: (P2Z)'= Z!. Thus, on the right side of (17.36), G appears only in
[PxYP), — XGZ||* >0, which is zero in the case of (17.34).

17.5 Orthogonal Complement Matrix

Let us next consider a matrix whose columns are orthogonal to those of
X (n x p) with its SVD defined as (17.14) and r = rank(X):

Note 17.4. Orthogonal Complement Matrix
The n X g matrix X, satisfying

XX, =,0, (17.38)

is called the orthogonal complement (OC) matrix of X. A matrix of X, in
(17.38) is generally expressed as

X, = @ -X*"X)M. (17.39)

Here, M is an arbitrary n X g matrix. This fact is proved in the next
paragraph.

We can find (17.39) = (17.38), by substituting (17.39) on the left side of

(17.38): X (In X" X')M=X-XX*"X)M= X -X)M =,0,.

Conversely, (17.38) implies X' "X'X, =,0, and thus X, =X, —

X'*tX'X, = (I, - X'"X')X: (17.39) holds for M = X .
We can use (17.7) and (17.25) to rewrite (17.39) as

X, = [I,, —(xx* )’}M = (I, — KK')M. (17.40)

Now, we suppose that X is centered with
I~ o
X = Op. (17.41)
Then, the centered OC matrix of X, i.e., the n X ¢ matrix X, that satisfies both

XX, =0, and 1,X. =0, (17.42)
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is generally expressed as

X, = I, -X*X)M (17.43)

I ONA — (Y
1,=M=0, (17.44)

This fact is shown in the next paragraph.
We can find (17.43) = (17.42) as follows: (17.43) = X'X | =,0, is derived as
(17.39) = (17.38) was derived in Note 17.4, while (17.43) = 1.X, = 0; follows

from the fact that (17.43) can be rewritten as X = (I, — KK')M using (17.40).
This leads to

X, = (1, - ,KK)M = 1,M =0, (17.45)

Here, we have used (17.44) and the equality 1:1K = 01. that follows from (17.14)
implying K = XLA ! with (17.41). Conversely, (17.42) = (17.43) follows from
the  fact that (17.42) leads to XXX, =0, and thus
X, =X, XXX, =(I, - X"X)X,: (17.43) holds for M = X, with this
satisfying (17.44).

Now, let us suppose that (17.41) does not necessarily hold and
s =rank(X;) > m, with X given by (17.39). On these suppositions, we consider
an n x m matrix X, which can be called the column-orthonormal OC matrix of X,
i.e., it satisfies both

X’X*l =0,, and X{X'| =1I,. (17.46)
Such a matrix X’ can be obtained through the SVD of (17.39):
(I, - X' "X )M = VOW'. (17.47)

Here, VV=WW =1, and O is an s x s diagonal matrix with its diagonal
elements all positive. The matrix X'} defined as

X, =VS = (I, - X"X)MWO'S. (17.48)
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satisfies (17.46), with S an arbitrary s X m matrix meeting S'S = I,,, and the last
identity in (17.48) following from (17.47). That identity and S'V'VS =S'S =1,,
allow us to find that (17.48) meets (17.46).

The centered OC matrix and the column-orthonormal OC matrix were treated in
the last paragraphs. Now, we consider a centered and column-orthonormal OC
matrix of the centered X, on the supposition of # = rank(X ) > m with X given
by (17.43). That is, to be considered is the n X m matrix )_(i that satisfies the three
conditions

X'X| =0,, XX =1, ad IX] =0, (17.49)

for (17.41). This matrix Xj_ is given through the SVD of (17.43) defined as
(I, - X' "X )M = HQQ'. (17.50)
Here, M meets (17.44), HH = Q'Q =1, and Q is a ¢ x ¢ diagonal matrix whose
diagonal elements are all positive. The matrix defined as
X, =HT = (I, - X' "X )MQQ'T. (17.51)
satisfies (17.49), with T'T = I,, and the last identity following from (17.50). As

(17.45) is found, we can find (17.51) to satisfy 1/X| = 0;. This fact, the last
identity in (17.51), and T"H'HT = I,, allow us to find that (17.51) meets (17.49).

6 -2 3
3 1 -5
2 0 2 . o
For example, for X = 5 _1 5 with (17.41), X, =
-3 2 -2
-6 0 -3
—0.154 —0.500
—0.239 0.489
0.795  0.163 . . .
_0411 0460 obtained through (17.51) is one of the 6 x 2 matrices
—0.240 -0.514

0249  —0.097
satisfying (17.49).
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17.6 Kronecker Product

The operations in this and the next two sections are only used in Chap. 20. Hence,
in these three sections, symbols are used in the same convention as Chap. 20: we
express the series of integers as k = 1,...,K and p = 1, ..., P, for example, rather
than,i =1,...,nandj = 1,..., p often used so far. Thus, the case of the characters
should be carefully noted (e.g., “K” or “k”).

The Kronecker product, which is denoted by ®, is defined as follows.

Note 17.5. The Kronecker Product
From two matrices C = (ct)(K x R) and B = (b;y)(J X Q), the Kronecker
product gives the KJ X RQ matrices

cuB - cirB buC - bioC
CoB= : and B®C= :
cxciB -+ ckrB bpC - bypC
(17.52)

. 1 0 -6 4
For example, if C = {3 2} and B = [5 7}, then

—6 4 0 0
5 -7 0 0
CoB=11 1 -1 g | ™
—15 21 10 —14
—6 0 4 0
18 —-12 —-12 8
BoC=15 o 7 o
—-15 10 21 14
Let two vectors be defined as ¢ = [cy,...,ck] and b = [by,...b;]. Their
Kronecker product ¢ ® b gives the KJ x 1 vector:
C1b
cob=| : |. (17.53)

C](b
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We also find
Clb/ Clbl e Cle
cb = = :cb’:[blc,...,bjc]zb/®c.
CKb/ CKbl e C[(b]
(17.54)
The Kronecker product has the following properties:
(Co®B) =C®B, (17.55)
(CeB)(X®Y)=(CX)® (BY), (17.56)
tr(C ® B) = (trC)(trB), (17.57)
rank(C ® B) = rank(C)rank(B), (17.58)
(C®B)+ =C"®B™". (17.59)

This and (17.58) imply that (C ®@ B)"' = C™' @ B! if C and B are nonsingular.

17.7 Khatri-Rao Product

While the symbol e is used to represent various operations in the literature, we use
it to denote the Khatri—Rao Product (Rao & Mitra, 1971; Rao & Rao, 1998) in this
book. The definition of the product is as follows.

Note 17.6. The Khatri-Rao Product
From C = (c4) =[c1,...,¢p](K x P) and B = [by,...,bp](J X P), the
Khatri—Rao product gives the KJ x P matrix

CeB = [Cl,...,Cp]O[bl,...,bp] = [Cl X by,....cp ® bp]
c1iby cipbp
— : . (17.60)

ck1bi ckpbp
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. 1 0 6 4
For example, if C = { 3 2] and B [ 5 _7} , then
-6 0 -6 0
5 0 18 8
CeB = 18 3 and BeC = P 0
—-15 —-14 —-15 —-14

For A = [a;,...,ap|(I x P) and B = [by,...,bp|(J x P), we have

(BeA)(BeA)=1Ip if A’/A=BB=1I,. (17.61)

This can be proved as follows: Be A = [b; ® ay,...,b, ® a,] leads to

[(by ®a,)
(B.A)/(BOA): [b1®a1,...,bp®ap]
L (bp @ ap)’
[ (b @a))(by®a;) --- (b]®a))(bp®ap)
L (bp @ap)(by@ay) -+ (bp@a})(bp ®ap)
I (bllb1) & (3/131) e (bllbp) ® (a’lap) (17.62)
L (bpb1) @ (apa;) -+ (bybp) @ (apap)
[ (bibi)(aja;) -~ (b\bp)(ajap)
L (b;,bl).(a},al) - (b;bp).(a},ap)

where we have used (17.55), (17.56), and the inner product of vectors providing a
scalar. On the rightest side of (17.62), it can be found that (b b,)(aja,) is 1 for

p =g, but0forp # g, since A’A = B'B = Ip in (17.61) implies that b)b, and aja,
are both equal to one if p = g, and otherwise zero.
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17.8 Vec Operator

The vec operator, which is denoted by vec(), stacks the columns of a matrix
vertically to produce a vector, as shown next.

Note 19.3. The Vec Operator

For I x J matrix X = [X;,X, ..., X], the operator gives JI x 1 vector:
X1
X2
vec(X) = | . (17.63)
Xy
1
. 1 2 3 /
For example, if X = 3 o4l then vec(X) = )| = [1324].
4
For vectors X = [x1,...,x;] and y = [y}, ..., /]’
vec(x) = vec(x') = x (17.64)
yixX
vec(xy') = vec([yix,...,yx]) = | | | =y®x (17.65)
yiX
Let Xy, ..., Xk be matrices of the same size with oy, ..., ag scalars. It can then

be found that vec(e;X;) = a;vec(X;) and vec(X; + X,) = vec(X;) + vec(X,). This
implies vec(o, X + 0,X5) = ayvec(X) + apvec(X;). This can be generalized as

K K
vec (Z ocka> = Z o vec(Xg). (17.66)
=1 =1

For any I x J matrix X, P x [ matrix Y, and J X Q matrix Z,

vec(YXZ) = (Z' ® Y)vec(X) and vec(YXZ) = vec(X)(Z®Y') (17.67)
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hold true. Here, the left equality is derived as follows: Let ejf denote a
1 x J elementary vector which is filled with zeros except for the jth element which
is one. Then, we have

X = [xy,. Zx, (17.68)

Using this, (17.54), (17.56), (17.65), and (17.66), we can show

J
vec(YXZ) = vec (Y Z X;e Z) = vec (Z Yxe; Z) Z vec(Yx;e';Z)

J=1 J=1 Jj=

J J J
Z c[Yx;(Z'e;)'] Z (Z'e)) ® (Yx;)] Z (Z ®Y)(e; @ x/)]

J=1 J=1

J
=(7Z' ®Y) Z e®x)=(ZxY) Zvec x€¢)=(Z'®Y) vec(ij )

J=1 Jj=1 j=1
= (Z' ® Y)vec(X).

The right equality in (17.67) is derived from the left one using (17.55).

17.9 Hadamard Product

The Hadamard product of two matrices A = (a;;) and B = (b)) of the same size
n X p is defined as the element-wise product:

ajtbyy - apby,
AOB = (apby) = | : L. (17.69)
anlbnl e anpbnp
. 1 0 -6 4
For example, if A = 3 2 and B = s _q] then AOB=BOA =

-6 0
15 —-14}
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Exercises

17.1. Let us replace the vectors y and b in the equation Xb =y by matrices as
XB =Y: Consider the equation XB =Y for given X (n X p) and
Y (n x g). Show that if XXTY =Y, the solution of B (p x g) for the
equation is given by B=X"Y+ (I, - X*"X)Q with Q an arbitrary
p X g matrix.

17.2. Let S be symmetric and its eigenvalue decomposition (EVD) be defined as
S = E®FE/, with rank(S) = r,E'E =1,, and O being the diagonal matrix
whose diagonal elements are not zero. Show ST =EO®'E'. See
Appendix A.3.4 for the EVD.

17.3. Use the SVD of X to show (17.21) and (17.22).

17.4. Argue how the MP inverse is more useful than the inverse matrix.

17.5. Let N be n x n. Show that if rank(N) = n, the n x g orthogonal comple-
ment (OC) matrix of N is ,0,.

17.6. Let 'Y (m x p) be the row-orthogonal complement matrix of
X (n x p) satisfying YX' =,0,. Show Y =R(I, - X'X'") with R an
arbitrary m X p matrix.

17.7. Discuss the equivalence between minimizing ||X — (FA’ +F B’ )||2 over
F (2 xp) and minimizing |X— (FA'+UB)|*> over F and
U (n x q) subject to F'U =,0,, where F is the n x g OC matrix of F.

17.8. Let G =[F, U] be the n x (p + q) block matrix with F and U being
n x pandn x g, respectively. Show that G'G =1, , implies F being the
column-orthonormal OC matrix of U and this being the
column-orthonormal OC matrix of F.

17.9. Let each of I x 1 random vectors Xi, ..., Xk follows the I-variate normal
distribution whose mean vector is p (I X 1) and covariance matrix is
X (I x I). Show that we can express
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X
~Nki(1x @ p, Ig ® X),

Xk

if Xz and x; are mutually uncorrelated fork # [ (k=1,...,K;1=1,... K).

17.10. LetXy = (xj%)(k =1,...,K)anl x Jdatamatrix, whose (i, ) element is x;;
and modeled as x;; = o; + ﬁj + ejjx with e;; an error. Show that the model can
be rewritten as [vec(X)),...,vec(Xk)] = (L, @)l + (PR 1)1+
[vec(Ey),...,vec(Ex)] with o= [u,...,o0], B=I[By,...,B,], and
Ei(k =1,...,K) being the I x J matrix whose (i, j) element is e;.

17.11. Let X and Y be n x p matrices. Show 1/ (X ® Y)1, = uXY'".

17.12. Let R = VDV’ be a p x p matrix with D being an r X r diagonal matrix.
Show that (V © V)D1, =1, stands for all diagonal elements of R being
ones.

17.13. Discuss the implication of the following problem: for a n x p data matrix
X = (x;) including unobserved elements (i.e., missing ones), minimize
F(Z,W) =|[(WeX) - Z|* over W = (w;) and Z = (z;), subject to the
constraints: rank(Z) < rank(X), and w; = 1 if x;; is observed, but w;; being
unknown otherwise.



Chapter 18 M)
Exploratory Factor Analysis (Part 2) g

In Chap. 12, exploratory factor analysis (EFA) was formulated as a probabilistic
model. However, EFA can also be formulated as a kind of matrix decomposition
problem, without using the notion of probabilities. This formulation of EFA was
proposed in 2001 by Professor Henk A. L. Kiers at the University of Groningen, as
found in Socan’s (2003, p. 17) Ph.D. thesis from the same university. In this
formulation, common and unique factor scores, loadings, and unique variances are
all treated as fixed unknown parameters in matrices. As it leads to a procedure
which is fully based on matrix algebra, the EFA procedure can be referred to as
matrix decomposition factor analysis (MDFA). In contrast, the procedure in
Chapter 12 can be called latent variable factor analysis (LVFA), as factor scores are
treated as random latent variables. MDFA and LVFA are found to provide almost
equivalent solutions of factor loadings and unique variances. However, the
strengths of MDFA are that essential properties of FA are elucidated with the
frameworks of matrix algebra, the model part approximating a data set can be
identified, and the optimal factor scores can be expressed by a formula, which
cannot be done in LVFA.

18.1 Matrix Decomposition Formulation

Professor Henk A. L. Kiers at the University of Groningen, Netherlands, proposed
the matrix decomposition formulation of exploratory factor analysis (EFA) in 2001,
as mentioned in this chapter’s introduction. This formulation is introduced simply
by adding the matrix product U¥"? into the PCA model (5.1) or (5.3) (Chap. 5).
EFA can be modeled as

X =FA' +UY'/? +E (18.1)

© Springer Nature Singapore Pte Ltd. 2020 279
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
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for an n-individuals x p-variables centered data matrix X = (x;) with 1, X = 0/ and
n > p. Here, the superscript 1/2 is attached to ¥ as ¥'"?, so that its square corre-
sponds to (12.5) in Chap. 12 as explained later. The model (18.1) can also be
expressed visually as

A/

(18.2)
The matrices in (18.1) or (18.2) are listed as follows:

F = (fi): n (individuals) x m (common factors) matrix of common factor scores;
U = (u;): n (individuals) X p (unique factors) matrix of unique factor scores;

E = (e;): n (individuals) x p (variables) matrix of errors;

A = (aj): p (variables) x m (common factors) matrix of factors loadings;

W' p (unique factors) x p (variables) diagonal matrix, whose jth diagonal element

172

is expressed as ;.

A key point is that m < p (< n), i.e., the number of common factors is less than
the number of variables, as shown in (18.2), where F is narrower than X. The
relationships of p variables to m common factors are described by the loading
matrix A. On the other hand, the number of unique factors is equal to the number of
variables: X and U are of the same size as in (18.2). Further, the matrix ¥'”2 which
relates U to X, is diagonal. This implies that each column of U and X has a
one-to-one correspondence.

The differences between the common factors in F and the unique factors in
U can be seen in the diagram in Fig. 18.1, which illustrates the EFA model (18.1) or

Fig. 18.1 Graphical
representation of matrix
decomposition FA (MDFA) 12
Xi1 X2 Xi3 Xia Xi5
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(18.2) with p = 5 and m = 2. As seen here, a few common factors account for all
variables with the loadings in A = (a;) being coefficients, while the jth unique
factor u;; specifically affects the jth variable x; with %1/ 2 a coefficient. The diagram
has the same form as Fig. 12.1, with factors depicted as squares rather than ellipses
and circles in Fig. 12.1. This is in order to emphasize the difference of factor scores
being treated as elements in fixed matrices in (18.1) as opposed to latent variables in
Chap. 12, as detailed later.

The common and unique factor score matrices F and U in (18.1) or (18.2) are

constrained through
1'F=0, and 1,U=0,, (18.3)

%F’F:Im7 %U’U:Ip7 and FU=,, O,. (18.4)
The constraints in (18.3) and (18.4) imply that the factor scores are centered and
standardized, with the scores in a column of [F, U] uncorrelated to those in the other
columns. This uncorrelatedness can also be found in Fig. 18.1, where no factors are
linked with each other.

The matrices F, A, U, and ¥"? in (18.1) or (18.2) are treated as unknown
parameter matrices to be estimated. For the estimation, a least square function is
defined as the sum of the squared elements of E in (18.1) or (18.2):

2
F(FUAW2) = £(2,8) = [E|’= X - (FA’+ Uw'2)| .
18.5
1,2

where Z = [F, U] and B = [A, ¥"*] are n x (m +p) and p x (m + p) block
matrices. Using Z, the constraints in (18.3) and (18.4) are summarized as

12=0,,, (18.6)
1
~2'7=1,., (18.7)
n

That is, EFA can be formulated by minimizing (18.5) over Z and B subject to (18.6)
and (18.7) in the matrix decomposition formulation. We call this procedure as
matrix decomposition factor analysis (MDFA). Here, it should be noted that con-
straint (18.7) or (18.4) implies n > m + p, since of the following facts: (3.34) and
(18.7) lead to rank(Z) = m + p, and the comparison of this result with (3.32) allows
us to find that m + p < min(n, m + p), i.e., m + p < n is required.



282 18 Exploratory Factor Analysis (Part 2)

18.2 Comparisons to Latent Variable Formulation

The model for MDFA expressed in (18.1-18.4) can be compared to the corre-
sponding model in Chap. 12 by replacing e in the latter with ¥'?u. The replace-
ment allows (12.3) and (12.4) to be rewritten as

x = Af +¥!/2y, (18.8)
¥'/2u~N,(0,,¥), orequivalently, u~N,(0,,1,). (18.9)

with f (m x 1) and u (p x 1) common and unique factor score vectors, respectively,
Here, we note (12.6) again:

£~ N, (0,,1,,). (18.10)

The assumption of mutual independence of f and e described in Sect. 12.3 is
equivalent to assuming that f and u are distributed mutually independently. In
(18.8-18.10), the scores in f and u are treated as random latent variables which can
take various values. In this sense, we can refer to the EFA procedure in Chap. 12 as
latent variable factor analysis (LVFA).

LVFA can be related to MDFA in the last section as follows: The transposes of
the vectors f and u in the LVFA model (18.8) correspond to each row of F and U in
the MDFA model in (18.1) or (18.2). The LVFA assumption u ~ N,(0,, I,) in
(18.9) corresponds to the MDFA constraints I;U =0, in (18.3) and n'U'U = I,
in (18.4). Analogously, the LVFA assumption (18.10) corresponds to the MDFA
constraints 1/ F = 0, in (18.3) and n'F'F =1, in (18.4). Finally, the LVFA
assumption of mutual independence of f and u is associated with the MDFA
constraint F'U = ,,0, in (18.4).

The covariance matrix among the columns of the unique factor part U¥'"? in the

i
MDFA model (18.1) is given by n*I(U‘I’l/Z) JUY'2 =¥ with

J =1, —n'1,1, since of (18.4) and JU¥'*= U¥"* following from (3.20) and
(18.3). Thus, the diagonal elements of ¥, i.e., V/y, ..., ¥, can be called unique
variances, like those in LVFA (Sect. 12.3).

One difference between LVFA and MDFA is that the unique factor part
e = W¥'2u can be viewed as an error variable in LVFA (18.8), while the error matrix
E is a necessary addition to the unique factor part U¥"? in MDFA (18.1). This is
due to the fact that the part FA’ + UY¥'? in (18.1) is a fixed matrix and cannot be
equalized to X. In spite of this difference, the LVFA and MDFA solutions of A and
¥ have been found to be almost equivalent, as illustrated in the next section.

We must note that the factor scores in F and U are the parameters to be optimally
estimated in MDFA as in (18.5). On the other hand, the scores are treated as random
vectors f and u in LVFA and their optimal estimation is out of scope, in line with
f and u being absent from the LVFA objective function (12.9); its optimization only
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aims to obtain the optimal A and P, though the resulting A and ¥ allows the f value
for a particular individual to be obtained through optimizing an objective function
other than (12.9) (e.g., Yanai & Ichikawa, 2007; Mulaik, 2010).

18.3 Solution of Loadings and Unique Variances

Before explaining how (18.5) is minimized in MDFA, we illustrate its solution for
B =[A, ‘1’1/2]. Here, it must be noted that the solution can also be rotated by the
procedures in Chap. 13, as the MDFA solution has the same rotational indeter-
minacy as explained in Sect. 12.5. That is, we can substitute AT for A and FT for
Fin (18.1-18.4), without changing the equations. Here, T is an m X m orthonormal
matrix with T'T = TT' = I,,. Furthermore, this condition may be relaxed as
T being a nonsingular matrix satisfying diag(T'T) = 1,,,. Here, diag(T'T) stands for
the m x m diagonal matrix whose diagonal elements are those of T'T, as defined in
Note 12.1. Hence, we can substitute AT'"! for A and FT for F in (18.1-18.4),
without changing the equations, except n 'F'F = I,,. This exception is not a
problematic one as explained in Sect. 12.5. When the resulting F in MDFA with
constraint n 'F'F = I, is rotated to FT with diag(T'T) = I,,,, the substitution of the
resulting FT into F in n 'F'F leads to n 'T'F'FT = T'(n 'F'F)T = T'T. This
matrix can be regarded as containing factor correlations, since diag(T'T) = L.

For standard scores of the data set in Table 10.1, MDFA followed by the oblique
geomin rotation (Sect. 13.5) provides the loadings, unique variances, and factor
correlation presented in Table 18.1. Let us compare the results with the corre-
sponding LVFA ones in Table 12.1(B). One difference is that the former table has
izj for variable j is presented with ¢;;
the (i, j) element of the resulting E. This ; is explained later in Sect. 18.7. The
index r; is not presented in the LV approach, whose model does not have E as
described in Sect. 18.2.

the column “Residual”, in which r; =n~ ! Y1 e

fTalﬁf lf.ldM(iDFA solu;i(t)}? j AT W Residual

r ndard scor

b o Toble. loff&‘;’sv;’ith N 0.82 007 025 | 0.0026

AT obtained by the geomin C —0.14 0.84 0.38 0.0007

rotation 1 0.74 0.04 0.42 0.0015
B —0.04 —0.81 0.30 0.0014
T 0.03 0.89 0.18 0.0013
\" 0.88 0.01 0.22 0.0019
H —0.82 0.09 0.39 0.0028
P 0.23 0.59 0.47 0.0016
Correlation 0.48
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Except for the “Residual” column, the solutions from MDFA and LVFA [i.e.,
Tables 18.1 and 12.1(B)] are almost equivalent. Thus, the interpretation of the
loadings, unique variances, and factor correlation is also the same for the MDFA
and LVFA solutions. Such broad equivalence of MDFA and LVFA solutions can
be found for other data sets (Adachi & Trendafilov, 2019).

18.4 Iterative Algorithm

In this section, we present the MDFA algorithm for obtaining B = [A, ‘1’1/2],
leaving its derivation to be explained later. Here, we suppose

rank(XB) = p. (18.11)

This implies rank (X) = p and rank(B) = p (the number of rows in B), with the
latter leading to

BB* =1, (18.12)

because of (17.23).
Let V = n” 'X'X be the inter-variable covariance matrix and

1 1
Sxz =-X7Z = [
n

n

1
X’EnX/U] = [Sx, Sxu] (18.13)

denote the p-variables X (m + p)-factors covariance matrix, where
Sxk = n 'X'F contains the covariances of p variables to m common factors, and
Sxu = n 'X'U consists of the covariances of p variables to p unique factors. Then,
the MDFA algorithm for obtaining B = [A, ¥'?] can be listed as follows:

Note 18.1. Algorithm for Obtaining B

Step 1. Initialize B = [A, ¥']
Step 2. Perform the eigenvalue decomposition (EVD) of B'VB defined as

B'VB = QO*Q/, (18.14)

with Q'Q = I, and ®” a p x p diagonal matrix.
Step 3. Update Sy as

Sxz = BY'QOQ. (18.15)

Step 4. Update B = [A, ¥'?] as
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B = [Sxr, diag(Sxu)],i.e., A = Sxr and ¥'/? = diag(Sxy).  (18.16)
Step 5. Finish if the decrease in the standardized loss function value

trBB’

fi=l-—g (18.17)

from the previous round is small enough; otherwise, go back to Step 2.

Here, the EVD used in Step 2 is detailed in Note 6.1 and A.3.4.

In Note 18.1, we find that obtaining Z = [F, U] is unnecessary for finding the
solution of B = [A, ll‘”z]: The algorithm is only involved in Sxz and B. This is
because (18.5) can be expanded and rewritten using (18.5) as

, =1tr — 2tr +tr =ntrV — 2tr —+ ntr
f(Z,B X'X — 2uX'ZB’ + tuBZ'ZB’ V — 2uX'ZB’ BB’
= n(trV — 2tl"SXzB/ + tI'BB/) :f(SXz, B)
(18.18)

That is, (18.5) can be expressed as a function of Sy and B, but not Z. Furthermore,
only if the covariance matrix V is available, the original data X is indispensable for
obtaining the solution of B = [A, b 2]. How the formulas (18.14-18.17) are
derived is explained in the next two sections.

18.5 Estimation of Covariances Between Variables
and Factor Scores

The goal of this section is to finally show that the covariance matrix (18.13) for the
optimal Z is expressed as (18.15). In order to achieve this, we need three paragraphs
and a note, in which it is explained how the optimal Z minimizing (18.5) under
(18.6) and (18.7) are expressed for B given.

We should note f(Z,B) = ntrV — 2uX'ZB’ + ntrBB’ in (18.18), where only
—2trX'ZB’ is a function of Z. Thus, the minimization of (18.18) over Z amounts to
maximizing

g(Z) = %trX’ZB’ = %tr(XB)/Z =tr (%XB)/(\%Z). (18.19)
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Now, let us only consider the constraint (18.7), ignoring (18.6). As explained later
in Note 18.2, the maximization of (18.19) subject to (18.7) is attained for

Z = nPQ = VnPQ +nP Q| =XBQO 'Q +7P.Q,.  (1820)

Here, P = [P,P,] and 6 =1[Q,Q.] are the n x (p+m) and (p +m) X
(p + m) block matrices, respectively, and @ is an p x p diagonal matrix whose
diagonal elements are positive, with the last identity in (18.20) and the blocks of P
and Q detailed in the next paragraph.

The matrices P (n x p), Q ((p + m) X p), and, ® are obtained through the
singular value decomposition (SVD) of n~"?XB, which is defined as

1 /
7 XB= POQ (18.21)

with P'P = Q'Q = L,. The remaining P, (n x m) and Q, ((p + m) X m) are the
column-orthonormal orthogonal complement (OC) matrices of P and Q, respec-
tively. Recall the explanation in Sect. 17.5 of OC matrices. That is, P, and Q_

allow P and 6 to satisfy
S5 . PP PP QQ QQ I
PP=QQ=1,,,,ie, L } = [ L= ,
Ce=L {P;P PP |~ [QQ Q0. L,

(18.22)

with the blank blocks in the right matrix filled with zeros. The equality
n'*PQ’ = XBQO®'Q’ in (18.20) is derived by post-multiplying both sides of
(18.21) by n'*QO Q..

Note 18.2. ten Berge’s (1993) Theorem for Obtaining a Higher Rank
Matrix

The factor score matrix Z is considered the higher rank matrix, in that (18.7)
implies rank(Z) = m + p, which is greater than (18.11), with XB in (18.11)
corresponding to Z as in (18.19).

We can use Definition A.4.1 and Theorem A.4.1 (in Appendix A.4.1) to
prove that (18.19) is maximized for (18.20) subject to (18.7), as follows:
Substituting (18.21) in (18.19), this is rewritten as
¢(Z) = uQOP (n~'/?Z) = uP'(n"/?Z)QO. From (18.7), PP=QQ =1,
and (A.4.2), P'(n""Z)Q is a p x p suborthonormal matrix with its rank
< p. Further, @ is a diagonal matrix whose diagonal elements are positive.
These properties lead to g(Z) = P’ (n’l/ 2Z)QO < tr@®. The upper limit tr@
is attained for (18.20) with



18.5 Estimation of Covariances Between Variables and Factor Scores 287

g(ﬁf’é’) — P (1~’(~)’>Q® =P (PQ +P.Q,)QO = rQ'QO = tr®

which is derived using the equation P'P; =,0,,0r Q'Q, =,0,, following
from (18.22). Further, this equation shows that (18.20) satisfies (18.7) as

1 ~~ N\ L~ ~ ~ ~
~(viPQ') ViPQ' = QP'PQ = QQ' =T, .

where the fact has been used that column-orthonormal and square 6 also
satisfies 66’ =1, ,, as explained in Appendix A.1.2.

We should note that P, and Q,, i.e., the column-orthonormal OC
matrices of P and Q, are not unique, as shown in Sect. 17.5. That is, infinitely
many matirces P, and Q, exist that satisfy (18.22). Any of them can be
substituted into P, and Q, in the block matrices P = [P,P,] and Q =
[Q, Q] used in above equations.

We should remember that (18.20) has been derived without considering the
constraint (18.6). However, we can show that (18.6) is also satisfied by (18.20),
using n'?PQ =XBQO 'Q in (18.20) and 1 X= 0, They lead to
1/PQ =0, ,,, and both sides of this equation are post-multiplied by Q to give
1P = 0‘;. This guarantees the existence of P satisfying 1,P, = 0/ and (18.22), as
found from the fact that (17.51) satisfies (17.49) for (17.41). The above equalities
1,P =0, and 1,P, = 0], show that the pre-multiplication of the left side in (18.20)
by 1), leads to 1,Z = n'/?(1,PQ" + 1,P. Q' ) =0, . i.e., (18.20) satisfies (18.6).
Thus, we can conclude that (18.5) is minimized for (18.20) under (18.6) and (18.7),
for a given B.

The covariance matrix Sxz = n 'X'Z for the optimal Z (18.20) is given by
(18.15) as follows. Post-multiplying the both side of (18.21) by B leads to

1 1
%X =POQ'B", orequivalently , %X’ =B1'QOP, (18.23)
from (18.12). The right equation in (18.23) is multiplied by »n '~ and
post-multiplied by (18.20) to give n'X'Z=n"'2BT'QOP (n'/?PQ’ +
n'/?P,;Q,), and this equation is rewritten as (18.15), using (18.13) and (18.22).
Here, it should be noted that the update by (18.15) requires B, Q, and ®. Among
the three matrices, B is given in the next section, while Q and ® are given through
the EVD in (18.14) following from the pre-multiplication of (18.21) by its trans-

pose: (n~'/2XB)' (n"'/>XB) = (POQ')POQ,i.c.,B'(n 'X'X)B = QOP'POQ’ .

172
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18.6 Estimation of Loadings and Unique Variances

For a given Sxz, the optimal B is given by (18.16). This follows from decomposing
that loss function (18.5) as

£(2,B) = |X — ZB/|’= |X — Z8},||* + nlSxz — B, (18.24)

This decomposition is derived from the fact that (18.5) can be rewritten as
X — ZS}, +Z8}y, — ZB'||= || X — ZS},||* +w — 2h. Here, w = || ZS}, — ZB/||’
= n||Sxz — B|* since of (18.7), and h=tr(X—ZSy,) (ZSyx, — ZB')=
ntrSxzSxz — ntrSxzB’ — ntrSxzSy, + ntrSxzB’ = 0 since of (18.7) and (18.13).
Thus, we have (18.24).

On the right side of (18.24), B=[A, W'"?] appears only in

2
|Sxz — B|I*= H [SxF, Sxu] — [A, ‘Pl/ﬂ H . This can further be decomposed as

2
ISxz — BIP= [[Sx — All> +|diag(Sxus) — ¥'/2||" + |Sxu — diag(Sxo)|I,
(18.25)

using the fact that ¥'"? is diagonal. On the right side, the part relevant to B = [A,

2
W1 is [Sxr — A"+ |[diag(Sxu) — ¥
(18.16).

Finally, we show why (18.17) is the standardized loss function value. Let us
inspect trSxzB’ in loss function (18.18). This can be rewritten using B’ = [A, pl 2]'
and (18.13) as trSxyB’ = trSxrA’ + trSXU‘I’l/Z. Substituting (18.16) into B in
trSxzB’, we have

, whose lower limit zero is attained for

rSxzB’ = trAA’ + trSxu P2 = rAA’ + tr'V'/?¥'/? = rAA’ + r'¥ = BB’
(18.26)

where we have used trSxy¥'"/? = tr{diag(SXU)‘l’l/z}, since W2 is diagonal.
Using (18.26) in (18.18), its attained value is found to be

f(Sxz,B) = n(trV — 2trBB’ + trBB') = n(trV — trBB’). (18.27)

By dividing this by ntrV, we have (18.17), which is a standardized index in that it
takes a value within the range [0, 1]. The property of (18.17) > 0 follows from
(18.27) > 0 which is derived from the fact (18.5) > 0 and thus (18.18) > 0. On
the other hand, (18.17) < 1 follows from the fact that (18.27) > 0 allows us to find

V> tBB = ||B[*>0 .
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18.7 Identifiability of the Model Part and Residuals

In this and next sections, the solutions for Z. = [F, U] and B = [A, W] are expressed
as Z = [f, ﬁ], and B = {K, @1/2} , with ﬁ ﬁ, A, and P'/2 denoting the solutions
of F, U, A, and W, respectively. Further, we use SXE = n~'X'Z for the p-variables

x (m + p)-factors covariance matrix based on the solution of Z.
One advantage of MDFA over LVFA in Chap. 12 is that the error matrix
E based on the solution, i.e., the residual matrix

E=X— (ﬁK’+fJ‘Tﬂ/2) —X - 7B, (18.28)
can be obtained in MDFA. This follows from the fact that the model part
FA’+UWY'? = ZB' can be computed as shown next:

Note 18.3. Identifiability of the FA Model Part (Adachi & Trendafilov’s
(2018a) Theorem 3.1)

ZB' = /nPQ'B' = XBQO 'Q'B' = XV*ISXEfs’ = Xﬁs;(EV’l.
(18.29)

This is proved in the following paragraphs.

The first equality ZB' = n'/2PQ'B’ in (18.29) is derived as follows.
Pre-multiplying both sides of (18.21) by n'2 (X'X)"'X’' leads to
B = n'/2(X'’X)”'X'POQ/, which implies BQ, = ,0,, since QQ, = ,0,,
follows from (18.22). The equalities ﬁQ L =50, and (18.20) lead to
ZB' = (n'’PQ +n'’P,Q,)B' = n'’PQ'B'.

The second identity n'/?PQ'B’ = XBQO'Q'B’ in (18.29) follows from
the equation 7n'/2PQ’ = XBQ® 'Q’ in (18.20) with B rewritten as B: Both
sides of this equation, post-multiplied by ]AS/, provide the second identity.

Before deriving the third equality XBQO™'Q'B" = XV~'S ~B’, we must

prove

_vn —1
S 5 =VBQO Q. (18.30)
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This can be shown by pre-multiplying both sides of (18.20) by n~'X', which
leads to S ~=VBQO 'Q' +n'/’X'P,Q|. Here, X'P. Q| =,0,, from
(18.23) and PP, = »0,. Thus, we have (18.30), which implies
V’ISXE]?’ = BQO 'Q'B’. Pre-multiplying both sides by X leads to the
third equality in (18.29).

The last identity XV~'S ~B' = XBS,;V~! follows from BQO~'Q'B’
in (18.29) being symmetric. Thus, V_ISXEE/ = ﬁQ@‘lQ'ﬁl equals its

transpose: V’ISXE]? = ]ASS;(EV’I. Pre-multiplying both sides by X leads to
the last identity in (18.29). This completes the proof for (18.29).

Here, we should note that (18.30) may be substituted for (18.15) in Note
18.1.

Table 18.2(A) and (B) show (18.29) and (18.28) values, respectively, which
were obtained with MDFA for the standard scores of the data set in Table 10.1.
Here, we can find that the absolute values of the residuals in (B) are much smaller
than those of the model part in (A). This allows us to consider that the FA model
FA’ + U¥"? fit well to the data set X. However, we can also find a few residuals of
large absolute values in E= (é,-j). Such residuals suggest that the corresponding
observations deviate from the FA model. For example, ¢7; = 0.108 is relatively
large in Table 18.2(B). This suggests that the score of the seventh participant for A
(aggressiveness) may be substantially larger than the score predicted by the FA
model.

The “Residual” in Table 18.1 shows r; = n! H/e\jH2 with €; the jth column of
(18.28). That is, r; is the average of the squared residuals. This can be interpreted as
the size of residuals for variable j, which remain unaccounted by the FA model part

(18.29). We can also call r; = n! ||/e\_,-H2 the residual variance for variable j since
1/, =0, or equivalently, 1,E =0, (18.31)

which follows from X and ZB' on the right side of (18.28) being centered. The

. N . . ~ 12 : .
residual matrix E and the size of residuals r; = n~!||€;||” cannot be estimated in the
LVFA approach, as the term associated with E does not appear in (18.8).
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Table 18.2 Parts of the resulting model values (A) and residuals (B)
Ind. |A C I 'B T v 'H P
(A) Model part: FA' + U¥P'? = ZB'

1 2.835 1.359 1.974 | —2.393 1.940 1.986 —1.205 1.639
-2.044 |-2.356 |-—1.203 1.690 |-2.810 |—1.189 0921 |-1.841
—0.047 0.414 0.493 0.363 1.408 —0.613 0.329 0.270
—0.610 0.473 —0.418 -1.679 1.313 0.037 0.920 0.976

0.708 |-0.517 0.413 0.303 0.186 0.067 0.368 0.227
-0.693 |—0.528 |[-1.133 |-0.320 0.163 |-1.195 |-0.133 |-0.378
0.594 1.301 —0.336 | —0.367 1.409 | -—1.155 0.340 1.680

NN AW N

98 |-0.699 | 1359 |-1.121 | 0315 | 0747 |-1.135 | 1.006 |-1.160
99 |[—0.071 |-1459 |-1.167 | 2284 |-1.027 | 0055 | 0296 | 0972
100 | -0.692 |—-0493 | 0443 | 1.047 |—-1.605 | 0084 |-0674 |-1.830
(B) Residuals: E = X — (ﬁK’ L UPL2
Ind. | A I I B T v H P
~0.048 | 0.004 | 0046 | 0042 | 0006 |-0045 |—-0.043 | 0.054
~0.035 |-0014 | 0030 |-0022 | 0010 | 0019 | 0011 |—0.023
0054 | 0016 |—-0.070 |-0035 |-0056 | 0.065 | 0058 | 0.001
~0.078 |-0.044 | 0043 |—-0.002 | 0039 | 0038 | 0012 | 0.006
~0.006 | 0013 | 0010 | 0026 |-0.020 | 0008 | 0019 | 0.044
0005 | 0024 |-0.041 |-0022 | 0003 | 0025 |-0.025 |—0.063
0.108 | 0061 |—0039 | 0026 |-0.057 |-0.014 | 0.047 | 0014

NN N R W N =

98 0.011 0.003 | —-0.052 0.014 0.012 |-0.034 |-0.074 0.008
99 0.078 0.022 | -0.007 |0.053 0.006 0.020 0.091 0.010
100 0.004 |—-0.011 |[-0.020 |-0.050 |-0.008 |—-0.009 |—-0.029 |-0.034

18.8 Factor Scores as Higher Rank Approximations

The estimation of the factor score matrix Z can be viewed as a higher rank
approximation problem. This is because, we can use (18.7) to rewrite the MDFA
loss function (18.5) as

f(Z|B) = |Z — XB|* + |X|* + n|[B|*~||IXB||*~n(p +m). (18.32)
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Here, we find that only the term ||Z — XB||* is a function of Z. Thus, the mini-
mization of (18.5) over Z for a given B amounts to minimizing ||Z — XB||* over
Z. This is the problem of approximating XB by the higher rank matrix Z, as
rank(Z) = m + p > rank(XB) = p, as described in Note 18.2.

The solution of Z for the higher-rank approximation is given by (18.20), which
can be rewritten as

Z2-7,+17, (18.33)

with Z; = n'/?PQ’ = XBQO 'Q’ and Z, = n'/’P,Q’, . Here, Z, can be uniquely
determined, while Z, = n'/?P 1 Q' cannot, since infinitely many matrices P (n x
m) and Q (p x m) exist which allow to P and 6 to satisfy (18.22), as described in
Note 18.2. Hence, the optimal factor scores Z are not unique, despite the fact that

its pre-multiplication by B yields the model part ZB' determined uniquely as in
(18.29).
The two matrices on the right side of (18.33) satisfy

7\7,=,0,, (18.34)
from (18.22), with
L|| = v/nm (18.35)

following from szuzz nrQ, P P, Q| = ntrQ' Q, = ntrl,,. On the basis of
these properties, Adachi and Trendafilov (2018a) have presented the diagram in
Fig. 18.2, where the matrices Z and 21 in (18.33) are depicted as arrows (or
vectors). Here, the arrows for Z and 21 are illustrated so that 21 and Z — Zl = 22
intersect orthogonally, from (18.34). Further, the endpoint of the arrow for Zis
depicted to form a circle whose center is 21 and radius is (nm)"?, from (18.35). In
other words, in Fig. 18.2, Z forms a cone, which traces a circle around its center at

Fig. 18.2 Adachi and
Trendafilov’s cone of
common-unique factor scores
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Z,. Here, any Z whose endpoint is on the circle is optimal. This suggests that

imposing an additional constraint on Z allows for a useful Z to be found, as shown
in Uno, Adachi, and Trendafilov (2019).

18.9 Bibliographical Notes

As already mentioned, the matrix decomposition formulation of FA (MDFA) was
proposed in 2001 by Professor Henk A. L. Kiers at the University of Groningen, as
found in Socan’s thesis (2013). Independently, de Leeuw (2004) also presented a
description of MDFA. Later, Unkel and Trendafilov (2010) reviewed some for-
mulations of FA detailing MDFA. In the above literature, the MDFA algorithms
described needed the original data matrix X. In contrast, the algorithm in this
chapter which only needs the covariance matrix V was proposed by Adachi (2012).

Some properties of the MDFA solution described in this chapter have been
detailed in Adachi and Trendafilov (2018a) along with other properties. Also,
Stegeman (2016) has discussed properties of the MDFA solution. Further,
Stegeman (2016) has proposed a constrained version of MDFA which is not treated
in this book. It is argued that FA can be classified into the three types, latent
variable FA (LVFA), MDFA, and Stegeman’s (2016) constrained MDFA, in
Adachi’s (2019) comprehensive review of FA formulations.

Exercises

18.1. Let us define the rows and columns of the matrices in (18.5) as

b}
E:[el,...,ep],X:[xl,...,xp],U:[ul,...7up], B=|:]|, and
b,
ay
A =] . |. Show that (18.5) can be rewritten as f(Z,B) = lefj(Z,bj)
a,
with
£(2.b5) = |[ej]*= |}x; — Fa; - lp}/zu,HZ: % — Zb;[|>.  (18.36)

18.2. Let 1 x (p+ m) vector SJXZI denote the jth row of (18.13) with
Sxz = [T, ..., s;‘z]' (px(p + m)). Show that (18.36) can be decomposed as

2 2
£(2.0) = |5 = 25| a5~ b (18.37)
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18.3.
18.4.

18.5.

18.6.

18.7.
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under (18.7), using f; (Z, b;) = H (x,- - Zijz) n (Zsj‘Z — Zb,) Hz (Adachi &
Trendafilov, 2018a, Theorem 2.1).

Use (18.7) and (18.13) to show n ' B'Z = n~! (X - Zf;’)'i =S B
Let the covariance matrices of the residuals to the optimal common factor

I~
scores and unique factor scores be denoted as SE/F\ =n'EF and

SEG — n~'E U. Show that the equation shown in Exercise 18.3 implies

EF 7P XU

S—~=,0, and szUZOffd(s ) (18.38)

where SXG =n"1X'U contains the covariances of the variables to the

~) ~): The
XU XU
diagonal elements of Offd(SXG) are zeros and its off-diagonal elements are
those of SXG (Adachi & Trendafilov, 2018a, Theorem 4.1).

Use (18.12), (18.14), and (18.15) to show that

optimal unique factor scores, and Offd(S_~) = Sxﬁ — diag(S

S-S .=V: (18.39)
XZ Xz

the product of SX/Z\ (the covariance matrix of p variables to the m + p optimal

factor scores) and its transpose equals the inter-variable covariance matrix
(Adachi & Trendafilov, 2018a, Lemma 4.1).

Note that Z in (18.20) can be rewritten as i, since (18.20) shows the
solution of Z. Use (18.7) and (18.39) to show that when (18.20) is substituted
into Z in (18.37), the first term of in the right-hand side of (18.37)
vanishes:

2

2
=0, ie., jj-(i,b,-) =n

~

x; — Zs'* s*% — b, (18.40)

with s;.(Z/, the jth row of SX/Z\ (Adachi & Trendafilov, 2018a, Lemma 4.2).

Show that the loss function (18.5) or (18.24), in which the solution is sub-
stituted, can be expressed as

f(Z,B) = nHOffd(SXG) ’ (18.41)

using (18.16), (18.38), and (18.40), with Offd(sxﬁ) defined in Exercise 18.4.
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18.8.

18.9.

18.10.

Consider what (18.41) implies. Hints are found in Adachi and Trendafilov
(2018a, Sect. 4).

Discuss how the confirmatory FA based on MDFA can be formulated, by
making note of (18.24) and (18.25).

Let the blocks of the matrices Z 1 and 22 in (18.33) be defined as Zl =
[Fi,U;] and 22 = [F,,U,], where F and F, are n x m, while U, and U, are
n X p. Uno et al., (2019) has proposed a factor score identification proce-
dure, in which [[[GC, U] — ([F;, U;] + [F2, Us))||* is minimized over G, C,
and [F,, U,] for the unique 7, = [Fy, U] given by MDFA, where G = (g;)
is an n (individuals) x K (clusters) membership matrix defined in (7.1) and
(7.2), C is an unconstrained K (clusters) x m (common factors) matrix, and
[F,, U,] is constrained so as to satisfy (18.6) and (18.7). Discuss the purpose
of the factor score identification procedure.



Chapter 19 M)
Principal Component Analysis Versus petic
Factor Analysis

In this chapter, we refer to exploratory factor analysis simply as factor analysis and
consider the principal component analysis formulated as reduced rank approxi-
mation as in Chap. 5. Principal component analysis (PCA) and factor analysis (FA)
can be performed for identical data sets, with the purpose of dimension reduction.
This reduction means that p observed variables, i.e., the p-dimensional scores, are
reduced to lower-dimensional scores. The lower dimensions correspond to the
m principal components in PCA and the m common factors in FA, with m < p. A
major purpose of this chapter is to introduce mathematical facts that contrast PCA
and FA solutions for an identical data set. The facts elucidate crucial differences
between PCA and FA, which can suggest whether PCA or FA should be used for a
particular data set.

19.1 Motivational Examples

An identical data set can be analyzed by both principal component analysis
(PCA) and factor analysis (FA) for the purpose of dimension reduction. In doing so,
one is led to ask, “How similar/different are the resulting PCA and FA solutions?”
To answer this question, we performed PCA and FA for the correlation matrices in
Tables 19.1 and 19.2, where (5.25) was considered as a constraint in PCA. The
resulting solutions are shown in Tables 19.3 and 19.4, where the loading matrices
have been rotated by (orthogonal) varimax rotation (Chap. 13), with UV and Res
the abbreviations for unique and residual variances, respectively. In the tables, the
FA solutions are those for matrix decomposition FA (MDFA) and latent variable
FA (LVFA), which were treated in Chaps. 18 and 12, respectively. As the residual
variances for variables cannot be obtained in LVFA, the corresponding column is
not presented in Tables 19.3 and 19.4. Apart from this point, the LVFA and MDFA
solutions are found to be almost equivalent.
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Table 19.1 Correlation Variable 1 2 3 4 5
matrix for Adachi and 1

Trendafiov’s (2018a, p. 409) .- Japanese !

data set which is a part of 2. English 0.553 1

Tanaka and Tarumi’s (1995) 3. Social studies | 0363 | 0.503 |1
test score data, with the upper 4 Mathematics | 0447 0330 |0287 |1
triangular elements omitted  “57g o e 0388 10279 |0.076 |0.563 |1

We should note the following observations for the solutions in Tables 19.3 and
19.4:

[O1] We can find that a number of PCA loadings are boldfaced, where the
absolute values of the boldfaced loadings are greater than their FA coun-
terparts: the magnitudes of PCA loadings tend to be greater than the FA
ones.

[0O2] The residual variances for PCA are greater than those for MDFA.

[O3] The residual variances for PCA are smaller than the unique variances in
FA.

[O1]-[O3] are empirical findings, which will not always be the case. However,
some mathematical facts, which always hold and further suggest the tendencies
[O1]-[O3], can be deduced by comparing PCA and MDFA solutions, as described
in Sects. 19.4-19.6. These facts can also be empirically generalized to LVFA as
described in Sect. 19.7.

19.2 Comparisons of Models

Let X =[xy, ..., X,] be an n-individuals x p-variables centered data matrix, with
1,X = 0. From here to Sect. 19.6, we refer to MDFA simply as FA. As described
in Sect. 18.1, FA can be modeled as (18.1) or (18.2):

X = FA' + U¥'? 4+ Eg,. (19.1)

Here, the subscript FA has been attached to the error matrix E to distinguish it from
that appearing in the next paragraph. As listed after (18.2), F (n x m) contains
common factor scores, U (n X p) contains unique factor scores, A (p X m) consists
of factor loadings, and W' (p x p) is the diagonal matrix whose j th diagonal
element tﬁ,” 2 is the square root of the unique variance for variable j, with p > m.

By simply removing the unique factor part U¥"? from (19.1), we have the PCA
model (5.1) or (5.3) (Chap. 5). For distinguishing FA' in (5.1) from that in (19.1),
we substitute PC' for FA' in (5.1): PCA is modeled as
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Table 19.3 Solutions for the correlations in Table 19.1

Variable PCA MDFA LVFA

Loadings Res | Loadings UV  [Res Loadings uv
Japanese 051 (062 |0.13 |0.38 |0.60 |0.50 |0.001 [0.37 [0.61 |0.50
English 025 (081 |0.08 |0.21 |0.76 |0.37 |0.002 [0.21 |0.76 |0.38

Social Studies -0.02 |[0.86 [0.07 [0.03 |0.65 |0.58 |0.002 |0.02 |0.65 |0.58
Mathematics 0.80 026 |0.08 [0.59 |0.34 |0.53 |0.003 |0.58 |0.34 |0.55

Sciences 0.90 0.02 |0.03 [0.89 [0.10 [0.19 [0.001 (090 |0.11 |0.17
Sum of squares |3.62 1.38 |2.81 2.18 |0.008 |2.82 2.18
X = PC’ + Epc. (19.2)

Here, the n (individuals) x m (components) matrix P contains PC scores,
C (p x m) consists of component loadings, and Epc (n X p) contains errors.

The implication of PC' in the PCA model (19.2) can be illustrated through
Fig. 19.1a: the variables xy, ..., X,, are commonly explained by the PC score vectors
in P = [py, ..., p,] weighted by the loadings in C = (cj), while the errors in Epc
remain unexplained. At this point, we can call PC' the common part. On the other
hand, the FA model (19.1) can be illustrated through Fig. 19.1b: the common factor
vectors F = [f}, ..., f,] account for all variables with the loadings in A = (ay)
coefficients, while each unique factor vector in U = [uy, ..., u,] uniquely affects the
corresponding variable with the diagonal element lp}’ % in W' being a coefficient.
Thus, FA’ serves as the common part the same way PC' does in PCA, while U¥'?
can be called the unique part, which is absent in PCA.

At this stage, we can clearly answer

Choose FA if the unique part should be extracted (19.3)
in regards to the question of whether FA or PCA should be used for a data set.

Cases in which different answers should be given are presented in Sects. 19.4 and
19.5.

19.3 Solutions and Decomposition of the Sum of Squares

As described in Chap. 5, PCA can be formulated as minimizing the squared norm of
the error matrix Epc in (19.2), i.e.,

fec(P,C) = |[Epc|’= |X — PC'||? (19.4)
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(a) Principal Component Analysis (b) Factor Analysis

Fig. 19.1 Graphical representation of PCA and FA with p =5 and m =2

over P and C subject to

1
“PP=1I,. (19.5)
n

Let P and 6 denote the solutions of P and C, respectively, with EPC =X- 136’
containing the resulting values of errors, i.e., residuals.

As described in Chap. 18, FA can be formulated as minimizing the squared norm
of the matrix Eg, in (19.1), i.e.,

2
Foa(F, A, U, W) = ||Epa|’= Hx _ (FA’ +U\P1/2) H (19.6)

over F, A, U, and ¥ under the constraints in (18.4):

1 1
“FF=1, -UU=I,, and FU=, O,. (19.7)
n n

Here, the other constraint (18.3) need not be considered, since it is satisfied by the
solution minimizing (19.6) under (19.7) when X is centered, as explained in

Sect. 18.5. Let the solutions of F, A, U, and ¥ be f, K, U and ‘i‘, respectively,
with EFA =X- (fg' + ﬁ‘i’l/z) containing residuals.

The following decompositions play a key role for comparing the PCA and FA
solutions:
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Note 19.1. Decompositions of Sum of Squares in PCA and FA

The sum of squares for the centered data matrix, i.e., 2, can be decom-
posed into sums of squares in the PCA and FA solutions:

PCA:

X 2 lsar 2 = 2_ ~ 112 ~ 2
IX[I°= ||PC'|| +||Epc|| =n||C|| +|Epc|| (19.8)

2 ~~, 2 AAI/Z 2 ~ 2 112 ~ ~ 2
FA : [|[X||?= HFA +HU‘P H +HEFAH :nHAH —l—ntr‘l‘—i—HEFAH .

(19.9)

These equations are derived as in the next paragraphs.
The decomposition (19.8) for PCA follows from Note 5.3: through the

singular value decomposition X = KAL' in Note 5.1, the PCA solution PC/
mlnlmlzlng (19 4) is given by K,,A,,L], as shown in Notes 5.2 and 5.3, with

EPC —X-PC' = Ky, }A[m]L[m/ The orthogonahty K/ K] = mOp—m leads
0 (PC) Epc = ,0,. This property and (19.2) allow us to find the first
identity in (19.8). Its last identity follows from (19.5) which implies
Hf)é’ g ntrC'C = nH6H2
The decomposition (19.9) for FA follows from (18.27) and (19.7): using
= [A,‘I"/z] and V =n'X'X, (18.27) can be rewritten as HEFAHZZ

~ |2 N
1X]|*— (nHAH + ntr‘l’), which shows the equality of the left and right sides
in (19.9). The last identity in (19.9) is derived from that (19.7) implies
12 2 o112 N
HFA’ :nHAH and HU‘PWH —

12 2 12 2
In decompositions (19.8) and (19.9),HPC’ _ and HFA’ —n AH
stand for the sizes of the common part in the PCA solution and the FA counterpart,

~ o~ 2 ~
)U‘P‘/ZH — ntr'¥ in (19.9) stands for the size of the

respectively. On the other hand,

~ 2 2
uniquepart,whichisspeciﬁctoFA.TheremainingHEPCH andHEFAH in (19.8) and

(19.9) stand for the sizes of the residuals that remain unaccounted for by components/
factors. The decomposition of ||X]|* into the above sums of squares can be seen in
Fig. 19.2. Here, the areas of the sums of squares differ between PCA and FA. These
differences are explained by the inequalities presented in the next three sections. The
inequalities also suggest that the observations [O1]-[O3] in Sect. 19.1 are commonly
found.
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Fig. 19.2 Relative sizes of ; HXHZ R
common parts, unique parts, a "

and residuals in PCA and FA | .
solutions PCA ! WMMRGSIdual
A res

19.4 Larger Common Part of Principal Component
Analysis

~ 12
Let us consider the left part in Fig. 19.2. Here, the size of the common part nH C H =

112
HPC" for PCA is depicted so as to be greater than the FA counterpart

2 e 2
nHAH = HFA" . This follows from the next theorem:

Note 19.2. Larger Sum of Squared PCA Loadings (Adachi and
Trendafilov, 2019, Theorem 2)

For a given X, the sum of squared PCA loadings is always larger than or
equal to the FA counterpart under constraints (19.5) and (19.7):

12 a2 ~112 I~ 2

€] = | = & ] = & 0

Here, Tp and T are arbitrary m X m orthonormal matrices with Tp'Tp =1,
and TZTr = I,,,. This implies that the common part in PCA is always larger

than or equal to the FA counterpart, even after orthogonal rotation. The proof
is provided in Sect. 19.9.

The inequality (19.10) provides the guideline:

Choose PCA rather than FA for the purpose of extracting a larger common part from data.

(19.11)

We can rewrite (19.10) as

P m
lex|” > ZZWF. (19.12)
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Here, cj and ay are the (j, k) elements of éTp and KTF, respectively, with
I,€ Tp and I, € Tr. Inequality (19.12) suggests the observation [Ol] in
Sect. 19.1, i.e., that the absolute loading |c;| for PCA tends to be greater than the
FA counterpart |a;| before and after orthogonal rotation, although |cy| < |au| can
also be observed.

19.5 Better Fit of Factor Analysis

~ 2
Let us consider the right part in Fig. 19.2. Here, the size of residuals HEPCH for

2
PCA is depicted so as to be greater than the FA counterpart HEFAH . This follows

from the next theorem:

Note 19.3. Better fit of FA (Adachi and Trendafilov, 2019, Theorem 1)
For a given X, the FA solution always shows a better or equivalent fit
compared to the PCA solution. In other words, the sum of squared residuals
in FA does not exceed the PCA counterpart:

~ 2 ~ 2
[ < [ esii5)

This proof is given in Sect. 19.9.

Inequality (19.13) provides the guideline:
Choose FA for the purpose of accounting for data better. (19.14)

The index “Res” for variable j in Tables 19.3 and 19.4 are defined as

2 1 2
RES™ = éleAlH for FA and RESFC = — é}"qH for PCA,  (19.15)
' n

1
n
with é][PC] and éJ[FA} being the jth columns of EPC and EFA, respectively. These two
matrices are centered as shown in Chaps. 5 and 18, which implies that the two
indices in (19.15) stand for residual variances. From (19.15), we can find that the

sum of residual variances over variables equal to the average of squared residuals:
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ZRESFA HEFAH and ZRESPC HEPCH . (19.16)
By comparing these equalities with (19.13), we can find that it is rewritten as

q q
> RES[* < ) "RES'®. (19.17)

This inequality suggests that the residual variance RESJI-)C for each variable in PCA
tends to be greater than the FA counterpart REST, as written in [02] in Sect. 19.1,
though exceptions can exist.

~ 2 ~ 112
We should note that (19.8) and (19.9) are rewritten as HEPCH = |IX|*—n CH

o2 12 .
and HEFAH :||X||2—nHAH —ntr'¥, respectively. Using these equations in
12 . 12
(19.13), we haveHX||2—nHAH —ntr‘l‘gHXHZ—nHCH . Detracting [|X||? from both

~||2 ~ 112
sides of this inequality leads to —nHAH —ntr'¥ < — nHC , which implies the

following:

Note 19.4. Upper Limit of the Sum of Squared PCA Loadings (Adachi
and Trendafilov, 2019, Theorem 3)

For a given X, the sum of the squared PCA loadings cannot exceed the sum
of the squared loadings and unique variances in the FA solution:

~ 12 PN 2 ~ 12 = PN 2 ~
N e R

with Tp and Ty arbitrary orthonormal matrices.

This inequality shows the upper limit of the PCA common part, in contrast to
(19.10) which shows its lower limit.

19.6 Largeness of Unique Variances in Factor Analysis

Let us consider the right and middle parts in Fig. 19.2. Here, the area of the FA
unique part is greater than that of the PCA residual part. This is suggested by the
following theorem:
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Note 19.5. Lower Limit of the Sum of Unique Variances. (Adachi and
Trendafilov, 2019, Theorem 4)

For a given X, the sum of the unique variances in FA is larger than or equal to
the average of squared residuals for PCA minus the average for FA:

~ 10~ 12 10~ (2
tr‘l’Z—HEpCH - EFAH . (19.19)
n n

This proof is given in Sect. 19.9.

By comparing (19.16) with (19.19), we find that the latter is rewritten as

=D (RES}’C - REsz). (19.20)

J=1 J=1

This suggests that i; tends to be greater than RES]}.)C — RESJI.:A and further that if

RESJEA is small enough, lﬁjz tends to be greater than RESJPC, i.e., the FA unique
variance for each variable tends to be larger than the PCA residual variance for

that variable, as written in [O3] in Sect. 19.1.

19.7 Inequalities for Latent Variable Factor Analysis

The mathematical results in Notes 19.2—-19.5 are based on MDFA, rather than
LVFA. However, Adachi and Trendafilov (2019) found that LVFA almost always
provides the solutions shown by the inequalities in Notes 19.2 and 12.4. This is
suggested by a broad equivalence of the MDFA and LVFA solutions, which is
shown in Tables 19.3 and 19.4, and other data sets (Adachi and Trendafilov, 2019).

The inequalities in Notes 12.3 and 12.5 do not make sense in LVFA whose

2
model does not include Eg,. However, the relationship in (19.19) with n-! H EFAH

2
, is almost always found in the

removed, i.e., tr'¥ being greater than n! HEPC
LVFA solutions (Adachi and Trendafilov, 2019).
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19.8 Inequalities After Nonsingular Transformation

The FA (19.1) and PCA (19.2) models can be rewritten as
X = FA' + U¥'2 + Egp = FNN;'A’ + U¥'/? 4 Ega. (19.21)
X = PC' +Epc = PNpN,'C' + Epc (19.22)

with Np and Ny arbitrary nonsingular m x m matrices. Without the conditions
n 'F'F = L, and (19.5), (19.21), and (19.22) show that we can regard AN/ ! and
CNP'_1 as loading matrices, FN as a common factor score matrix, and PNp as a
PC score matrix. It implies that the oblique rotation treated in Chap. 13 can be
performed for FA and PCA solutions.

Even after the nonsingular transformations in (19.21) and (19.22) are performed,
the inequalities in (19.13) and (19.19) hold true, since the matrices Ega, Epc, and ¥
appearing in those inequalities are irrelevant to Np and N as found in (19.21) and
(19.22).

However, (19.10) and (19.18) are involved in the loading matrices A and C,
which are transformed by Nz' and Np' in (19.21) and (19.22). Since the
orthonormal matrices Tp and T in (19.10) and (19.18) cannot be replaced by Np

~ 2 ~ 2 ~ 2 —~ 2 ~
and Np, neither HCNPH < HANPH nor HCNPH < HANPH +tr'¥ hold in gen-

eral. The following inequalities described next, however, do hold.

Note 19.6. Larger PCA Common Part and its Upper Limit (Adachi and
Trendafilov, 2019, Theorems 2 and 3)

For a given X, we have
= (12 = = M2 o~ |12 —~ —~ 12
HPC’ :HPN,,N;IC" ZHFA’ :HFNFN;IA’ : (19.23)

with Np and Ny arbitrary m x m nonsingular matrices. The upper limit of

—~~ 12
HPC’ is given by

== ~ —~ 112 ~— |2 ~ ~ —~ 1|12 ~
BT = [PNeN, €| < B+ e = [ ENeNG A4 e

(19.24)

These result can be proved as follows: (19.5) and (19.7) imply
2 12 2 12
HCH = n‘lHPC’ and ”AH = n‘IHFA’ . We can use these equalities in
(19.10) and (19.18) to obtain (19.23) and (19.24).
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Inequality (19.23) shows that the suggestion in (19.11) is valid even after the
nonsingular transformations in (19.21) and (19.22), if the common parts refer to

~, 12 ~ 112 2 2
FA and ||PC’|| rather than ||A|| and ||C|| .

19.9 Proofs for Inequalities

The inequalities in Notes 19.2, 19.3, and 19.5 are proved in this section.
We can prove (19.10) in Note 19.2 as follows: The PCA loss function (19.4) is

expanded as foc (P, C) = ||X|[*=2tr X'PC’ + ||PC’||>. By substituting PC’ for PC’
in fpc(P, C) and using (19.5) and V = n 'X'X, we have

foc(P,C) = ntrV — 2uX'PC’ + ntrCC' = n(trv - tréé’). (19.25)

Here, we have also used the fact that (5.30) can be rewritten as C=n'XP using

the notation in this chapter. Now, let us substitute the FA solution FA’ into PC’ in

~ o~ —~ 12
the PCA function (19.4). Then, we have fpc(F,A):HX—FA’ -

n(trV — 2uSxrA’ + trKK’) - n(trV - mi&’) with Sxg = n~'X'F, using (19.7)
and (18.16). Clearly, foc(F, A) = n(trV - trKK’) cannot be lower than (19.25),

since the PCA solution is the best reduced rank approximation as shown in Note
5.3 and Theorem A.4.5 with (A.4.17). Thus, we have

oV — rCC’ <trV — rAA’. (19.26)

This result and the orthonormality of Tp and T give (19.10).
The inequality (19.13) in Note 19.3 can be proved as follows: if ¥ is restricted to
»0p, the FA loss function (19.6) with (19.7) is equivalent to the PCA function

(19.4) with (19.5): |X — PC'||’= || X — FA' - U,0, }2, and its minimization is
independent of the two constraints in (19.7) except n 'F'F = I, which is equivalent

to (19.5). Thus, we have fpc(f’, 6) = fea (ﬁ, 6, U,, Op), where the right term is
the FA function (19.6) with F = lA’,A = (AJ, and ¥ =,0,. Obviously,
fra (ﬁ, 6, U,, Op) cannot be lower than fFA(lAT7 K, U, ‘i’), i.e., the minimum of the

FA loss function, which leads to

~

foc (P, C) = fia (13, C,U,, o,,) > fia(F,A, U, ¥), (19.27)

ie. foc(P, C) > fia(F, A, U, ¥). This result, (19.4), and (19.6) show (19.13).
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We can prove (19.19) in Note 19.5 as follows: (18.27) and B = [A, yl2) imply
2 o~ PN N 2
n’lHEFAH =tu(V—AA" - %), ie, rV—trAA = «¥ +n’1HEFAH . We can

~ 2
also rewrite (19.25) as trV—trCC’:n’lHEch . Using these equalities in

ST TN 2
(19.26), we have n_IHEPCH < H‘I’H—i—n“HEpA| , which can be rewritten as

(19.19).

19.10 Bibliographical Notes

Major parts of this chapter are based on the results of Adachi and Trendafilov
(2019). Among the literature published prior to this, it is difficult to find any which
clearly indicate the differences between PCA and FA solutions. However, useful
comparisons between PCA and latent variable FA are found in Ogasawara (2000),
Schneeweiss and Mathes (1995), and the series of the papers in Volume 25, Issue 1
of the journal Multivariate Behavioral Research which starts with Velicer and
Jackson (1990).

Exercise

19.1. Summarize the respective cases where PCA and FA should be used.

19.2. Discuss how the PCA solution can be obtained explicitly, while FA cannot.

19.3. Discuss how singular value decomposition is used for obtaining PCA and
MDFA solutions.

19.4. Argue that (19.27) shows PCA being equivalent to the constrained FA with
unique variances restricted to zeros.

19.5. Show that the PCA loss function (19.4) can be rewritten as

foc(P|C) = [P = XC|I* + | X|1* +n]|C||* | XC|* ~nm (19.28)

subject to (19.5).

19.6. Comparing (19.28) with (18.32), discuss the following statement: in contrast
to the fact that obtaining P in PCA can be regarded as a lower rank approx-
imation problem, obtaining Z = [F, U] in FA can be viewed as a higher rank
approximation problem.

19.7. Factor indeterminacy refers to the property that the optimal factor score
matrix cannot be uniquely determined. Discuss the differences between this
indeterminacy and the rotational indeterminacy.

19.8. Discuss that the optimal PC score matrix in PCA can be uniquely determined
as a function of X, while the optimal factor score matrix in MDFA cannot be
uniquely determined.



Chapter 20 M)
Three-Way Principal Component e
Analysis

In Chap. 5, principal component analysis (PCA) was introduced as the reduced
rank approximation of a data matrix. This matrix should be noted to be a two-way
array of rows x columns. We often encounter three-way data arrays, however, an
example of which is a set of scores of examinees for multiple tests administered on
different occasions. These scores form a three-way array of exami-
nees X tests x occasions. Modified PCA procedures specified for similar
three-way data are known as three-way PCA (3WPCA). Popular 3WPCA proce-
dures are introduced in this chapter.

20.1 Tucker3 and Parafac Models

Let a three-way data array be denoted as
X={xui=1,....Lj=1,....0;k=1,...,K}. (20.1)

This can be depicted as the left cube in Fig. 20.1. For example, x;; could stand for
the brightness of the (i, j) element or pixel in an image recorded at time k. Another
example is a case where x;; is the score of examinee i for test j on occasion k.

One popular three-way principal component analysis (3WPCA) procedure is
Tucker3, which is also called Tucker decomposition. Those names follow Tucker
(1966) who proposed the procedure. Tucker3 is modeled as

P 0
Xijk = Z Z aipquck,gpqr + ek (202)
p=1 g=1 r=1
© Springer Nature Singapore Pte Ltd. 2020 311
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Fig. 20.1 Pictorial representation of the Tucker3 model

with ey an error, I > P, J > Q, and K > R. Here, we have used the sets of
symbols {a, b, ¢}, {I, J, K}, and {P, Q, R}, whose elements are simply in alpha-
betical order, for the sake of easily labeling their correspondence to each of the
three ways. Let us define three matrices as A = (ai,,) = [ay, ..., ap]
(I x P),B = (bjy) = [b1, ..., bo](J x Q), and C = (¢x,) = [ey, ... , gl (K X R),
with a three-way array

G={guip=1,...,P;q=1,...,0;r=1,...,R}. (20.3)

which is called a core array. The elements in A, B, C, and G are the unknown
parameters to be estimated in Tucker3.

The implications of the Tucker3 model (20.2) can be viewed in the
three-dimensional diagram in Fig. 20.1. This depicts the assumption that data cube
X(I x J x K) is underlain by a smaller core cube G (P x Q X R). This cube
describes the relationships among the P, Q, and R components which correspond to
the columns of A, B, and C, respectively. These three matrices describe how the 1,
J, and K entities (surrounding X) load the P, Q, and R components.

Another popular 3WPCA procedure is Parafac, which was proposed by
Harshman (1970) and Carroll and Chang (1970), and whose root is also found in
Hitchcock (1927). The name Parafac originates from the abbreviation of parallel
factor analysis. This term is misleading as explained later, but we use the name
Parafac as it is prevalent. Its model is a constrained variant of (20.2), in which g,,,,
is restricted so that g,,, =1 for p=g=r and g,, =0 otherwise, with
P = Q = R. Hence:

P
xijk = aipbjpckp -+ e,-jk. (204)
p=1

Here, g, in (20.2) disappears: Parafac can also be represented in Fig. 20.1 in
which the cube G is removed, but A (I x P), B(J x P), and C (K x P) remain
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with the numbers of their columns constrained identically to be P. The pth columns
of A, B, and C are associated mutually to give the product a;,b;,c;, and its sum over
p approximates X;j.

In Tucker3 and Parafac, the parameters are estimated with the least squares
method: the sum of the squared errors efjk is minimized over the parameters. The
algorithms for the minimization are described later in Sects. 20.5-20.8.

3WPCA used to be called three-way factor analysis. This naming is misleading,
as is the name parallel factor analysis, since 3WPCA including Tucker3 and Parafac
is clearly different from the factor analysis characterized by unique factors
(Chap. 19): these are not included in the 3WPCA models. Furthermore, in the next
section, more straightforward evidence is given showing that 3WPCA belongs to
the family of PCA.

20.2 Hierarchical Relationships Among PCA and 3WPCA

Let Xy, k=1, ..., K, denote the I x J matrices whose (i, j) element is x;; in (20.1):
Xk = (x,-jk) (k = 1, N ,K) (205)
X

These are vertically stacked to form the KI x J block matrix X = :

Xk
Table 20.1 presents an example of X, whose contents are explained in the next
section. The purpose of this section is to show that 3WPCA procedures are con-
strained versions of the PCA in Chap. 5 performed for X:

PCA > Tucker2 > Tucker3 > Parafac. (20.6)

Here, the symbol > delineates the order of constrainedness, so that the procedure
after > is a constrained version of the one before it. Tucker2 is introduced later.

The PCA model for X with the number of components O < min(KI, J) can be

A
expressed as X = KB'+E, using A= : a PC score matrix of KI x Q,
Ak
E;
E= - | aKI x Jerror matrix, and B aJ x Q loading matrix, where A; and E;
Ex
(k=1,...,K)are I x Qand [ x J, respectively. Here, we have used the characters

A and B, so that they correspond to those used for SWPCA. The above PCA model
can be rewritten as



20 Three-Way Principal Component Analysis

314

(panunuod)
S0— 0¢- 0¢— 0¢ 0¢ 0¢ 0¢ §¢ 0°¢— 00 putll Jo a9ead
0¢- §C— 0¢— $C 0¢ 0c— 0¢ S0- 0'¢— 0c 1Yo
0¢- 0¢- 01 01— ST 0c ST 0¢- 00 01 OIS [RIUSIA
00 ¢I- §C— 0¢ 0¢ 00 ¢c 0C— 0¢— 00 qof
01 00 ST 0¢- 0¢ 0¢ 0¢- 0¢- 0¢ S0- SN
0¢— §T— 0¢— 0¢ 0¢ 0c— 0¢ 0¢ 0'¢— 01 10150
0¢— 0c— 0¢— 0¢- 0¢ 0c— 0¢ 0¢ 0'¢— 0C PIYD Z AMYM 2ag
SI- 0¢— 0¢c— 01 0¢ 0 0¢ ¢1- 0¢e— ST 9A0T] D¢
00 §C— S0 00 Sl 01 0¢ S0 S S0- X8
0¢— 0¢- 0¢ 0¢— §T— 0'¢— 0¢ 0¢- 01— 0¢- uorsnjuoy
Sl- 0¢- 0¢— 0¢ 0¢ 00 0¢ - 0¢— 0c 1oyreq
0¢- 00 0¢ 0¢- 0¢- 0¢ 0¢- 0'¢— 0¢ 0'¢— paney
0¢- 0¢- 0¢— 0¢ 01 0¢ ST 01 0°¢— 00 [01UOd-J[eS
0 S1- 00 00 01 00 01 00 01— 00 esnodg
00 0¢ 0¢ 0¢- 0¢- 0'¢— 0¢- 0¢- 0¢ 0¢- pnel
0¢ 0¢- 0¢— 0¢ 0¢ 0¢ 0¢ 0¢ 0¢— S1 puiua Jo a9ead
0¢— S1- 0¢— 0¢ 0¢ 0'¢— Sl SC— 0'¢— §C— 1YION
0¢— 0¢- 0¢ 0¢— Sl 0¢ 0¢ 0¢- 0¢— 00 1S TeIUS]A
SI- 0c— 0¢— Sl 0¢ ST Sl 0c- 0¢— 01 qof
00 S0 01— 0¢— Sl Sl 0¢- 0¢- 00 00 SN
0¢— 0¢- 0¢— 0¢ 0¢ 01— 0¢ 0¢ 0'¢— 0¢ 10100
0¢- 0¢- 0¢— 0¢— 0¢ N 0¢- 00 0'¢— 00 PIUD [ 21YM a4g
0¢- 0¢- 0¢— 0¢ 0¢ 0¢ 0¢ 00 0e— 01 9A0T] x
oAIsseq Mmo[reys [nyaIseIsiq Suong ues[) MO[S 98re1 paxe[oy SSO[ULIO A JO0H
AAnRlpY jdeouo) uorseddQ

(#S61 ‘eUNT pue poogsQ) SUOISEIN0 9 X SAANIAIpe O] X s1doouod ¢T jo Aewre elep Aem-9a1y], [°(0T YL



315

20.2 Hierarchical Relationships Among PCA and 3WPCA

(panunuod)
0¢ 0¢ 0¢ 0¢- 00 00 0¢- 0¢- 0¢ 0¢- Xo§
00 00 00 0¢- §T— S0 00 gT— 0¢ 00 uorsnjuoy
0¢- 0¢ 0¢- 0¢- 0¢ 00 0¢- 0¢— 0¢e— 0¢ RELRLER |
§C— §C— 07— §cC 0¢c 0'¢— ST $c - 0¢ palieH
S0 0c— S0— 01 0] 0c— 0c 0c— S0 S0- [0UOS-J[oS
0¢ 00 Sl 00 00 0¢ SI- 00 0¢ SI- asnodg
§C— §C— 0C— 0¢ 01 g ST 0¢ 0¢— 4 pnel
0¢- 0¢- 0¢— 0¢ 0¢ 0'¢— 0¢ 0¢ 0'¢— 0¢ pulll Jo adead
0¢- 0¢ 0¢ 00 0¢ 0¢— 00 00 S0 0¢- IOYION
0¢ 00 0¢ 0¢— §C— 0°¢— 00 SI- 0¢ 0°¢- 391s [eJUSN
0¢ 0¢ 0¢ 0¢— 00 0¢ Sl 00 0¢ 0¢- qof
0¢— 0¢- 0¢— 0¢ 0¢ 0'¢— 00 0¢ 0¢— 0¢ SN
0¢- 0¢- §T— 0¢ 0¢ 0¢e— 0¢ 0¢ 0e— 0¢ Iooq
0¢ 0¢ 0¢ 0¢ 0¢- 00 0¢ 0¢- 0¢ 0°¢- PO [ yov)g 247
0¢ 0¢ 0¢ 0¢— 0c— 0¢ 0¢- 0¢- 0¢ 00 QA0 X
01 S$0- Sl Sl- 01— 00 S1- Sl- S0 0¢— Xo§
§T— 0¢- 0¢ §C- 0¢ 0c— 01 0'¢— ¢l 00 uorsnJuoy
0¢- 0¢— 0¢— 0¢ 0¢ 0¢— 0¢ 0¢ 0°¢— 01 1oyreq
0c— 0¢- 0¢ 0¢— 0¢- 01— 0¢- - 0¢ 0¢- palieH
0c— 0c— gT— 0c ST 0¢ ST 01— 0'¢— 01 [0U0S-J[oS
S0 ¢o- Sl S0- S0 00 ¢l ! §0- SI- asnodg
0c- 0¢- 0¢ 0¢- 0¢- 0c— 0¢- 0¢— 0¢ 0¢— pnel
oAIsseq Mmo[reys [nyaIseIsiq Suong ues[) MO[S 98re1 paxe[oy SSO[UMIO A JO0H
AAnRlpY jdeouo) uoIseddQ

(panunuod) 10T dlqe,



20 Three-Way Principal Component Analysis

316

(panunuod)
Sl 0¢- 0¢— 0¢ 0¢ 0¢ 0¢ 0¢ 0°¢— 00 pulll Jo sdead
0¢— 0¢- 0c— 0c— 0¢ S0- Sl - 0'¢— S0 1YION
0¢- 0¢- 01 00 0¢ 0¢ 0¢ 0¢- 0c— 00 1S [eIUS]A
S0 0¢- S0 §C 0¢ 0¢ 0¢ - 0e— 00 qof
0¢c— 0¢- S0— S0 0¢ S0 00 0¢c- 00 00 SN
0¢— 0¢- 0¢— 0¢ 0¢ 0'¢— 0¢ 0¢ 0'¢— 00 10150
0¢- 0¢- 0¢— 00 0¢ 01— 0¢ 01 0¢— 00 PIUD [ auvf
Sl- 0¢- 0¢- 0¢ 0¢ 0¢ 0¢ 0¢ 0¢e— 00 9A0T] X
0¢ 0¢ 0¢ 0¢- 0¢- ST 0¢- 0¢- 0¢ 0¢- Xa§
0¢ 00 0¢ 0¢— 0¢- gT— 0¢- 0¢- 0¢ 0¢- uolsnjuoy
0¢- 0c— 0¢— 00 0¢ §T— 00 0¢c— 0'¢— ST 1oyreq
§C— 0¢- 0c— 0¢ ST ¢CT— 0¢ 01 0Cc— 0¢C paneq
00 §C— S0 01 S0 - S0 0¢c- S0 0¢c- [01UOd-J[oS
0¢ 0¢ 0¢ 0¢— 0¢- 94 0¢- 0c— 0¢ 0¢- esnodg
§T— 0c- 0c— 0c 0¢c gT— ¢c 0¢ 0c— 0c pnel
0¢- 0¢— §C— 0¢ 0¢ 0¢— Sl 94 01— S1 puiur Jo a3ead
0¢- §C— Sl 0¢ 00 0'¢— S0 0¢- S ST 1YION
0¢ 0¢ 0¢ 0¢- 0¢- 0'¢— 0¢- 0¢- 0¢ 0¢- OIS [eIUS]A
0¢ 0¢ 0¢ 0¢- 0¢- 0¢ 0¢- 0¢- 0¢ 0¢— qof
0¢— 0¢- 0¢— 0¢ 0¢ 0¢c— 0¢ 0¢ 0°¢— 0¢ SN
0¢— 0¢- 0¢— 0¢ 0¢ 0'¢— 0¢ 0¢ 0'¢— 0¢ 10150
0¢ S1- 0cC §T— 01— Sg0- 0¢- - 0c 0¢- PIUD Z yovig aag
0¢ 0¢ 0¢ 0¢- 0c— 0¢— 0¢- 0¢— 0¢ 0¢- 9A0T] X
oAIsseq Mmo[reys [nyaIseIsiq Suong ues[) MO[S 98re1 paxe[oy SSO[UMIO A JO0H
AAnRlpY jdeouo) uoIseddQ

(panunuod) 10T dlqe,



317

20.2 Hierarchical Relationships Among PCA and 3WPCA

§T— 0¢- 0'¢— §T 0¢ 00 0¢ 0¢ 0'¢— 94 Xo§
Sl1- §T— Sl 00 00 0c— 00 - 00 S0 uorsnjuoy
0¢- §C— 0¢— 0¢ 0¢ 0Cc— 0¢ 0c- 0¢— St Ioyreq
0c— 0c— 0¢ 0c— 0c- 00 0c- SC- 0¢ SC— palieH
0c— §T— 0'¢— 0¢ 0¢ 0c 0¢ 94 0'¢— 0c [0U0S-J[oS
0¢- 0c— 0¢— 0¢ 0¢ N 0¢ 0¢ 0¢e— 0C asnodg
S0 0¢- 0¢ 0¢— 0¢- 0¢— §C— 0¢- 0¢ 0¢— pnel
Sl1- §C— 0¢— 0¢ 0¢ 0¢ 0¢ 0¢ 0'¢— 4 pulll Jo a3ead
0¢- 0c- 0e— 0c 0¢ 0c— ¢c 0¢c— 0¢e— S0 IOYION
0¢— §C— 00 01 0¢ 0¢ T 0¢- 0¢c— 00 3O1s [eJUSN
0c— §C— 0c— ST 0¢ 0¢ ST 0¢— 0'¢— 0c qof
§T— 01— 0'c— 00 0¢ 0c— 0] 0¢- 0c— Sl SN
0¢- gt- 0¢— 0¢ 0¢ 0c— 0¢ 0¢ 0e— 94 Iooq
0¢— 0¢— 0¢— 0¢ 0¢ g $C 01 0°¢— §¢ PI'YO z aunf
§C— 0¢- 0¢— 0¢ 0¢ 94 0¢ 0¢ 0'¢— 0¢ QA0 °X
00 00 0¢— 0¢ 0¢ 00 ST 0¢ 0'¢— 00 Xo§
§T— 0¢- 0¢ 00 0¢ §CT— 0¢ 0'¢— ¢1- 00 uoIsnJuoy
0¢— 0¢- 0¢— 0¢ 0¢ 0¢— 0¢ S- 0°¢— 0¢ 1oyreq
Sl- 0¢- 0¢ 0¢— 0c— 0¢ S0 0¢- 0¢ 0¢- palieH
Sl- 0¢- 0¢— 0¢ 0¢ 0¢ 0¢ 0¢ 0'¢— 00 [0UOS-J[oS
00 0¢c— 0¢— 0¢ 0¢ 01— 0¢ 0¢ 00 00 asnodg
0c 0¢- 0¢ 0¢- 0¢- §T— S0 §CT— 0¢ 0¢— pnel
oAIsseq Mmo[reys [nyaIseIsiq Suong ues[) MO[S 98re1 paxe[oy SSO[UMIO A JO0H
AAnRlpY jdeouo) uoIseddQ

(panunuod) 10T dlqe,



318 20 Three-Way Principal Component Analysis

X, = AB +E;. (20.7)

This PCA model is also called Tuckerl (Tucker, 1966), as constraining it leads to
Tucker2, and Tucker3, as explained in the following paragraphs.
The Tucker2 model is derived by constraining A; in (20.7) as A; = AHy:

X, = AH,B +E; (20.8)

with A being I x P, H; being P x Q, and I > P. Here, it should be noted that Hy,
has the subscript k£ which is not possessed by A and B: they are invariant across
different k, while Hy, serves to explain the differences in X, across k.
In order to show how the Tucker2 model is constrained to lead to Tucker3, we
arrange the POR elements in the core array (20.3) in P x Q matrices Gy, ... , G,,
, Gg, with g, the (p, g) element of G,:

G, = (gpgr) (r=1,...,R). (20.9)

Tucker3 is a constrained version of Tucker2 modeled as (20.8), in which Hy is
restricted to the sum of (20.9) weighted by ¢, in (20.2):

R
H, = cG+ ... +crGr = Z G (2010)

r=1

with R < K. Using (20.10) in (20.8) leads to the Tucker3 model

R
=A (Z ck,.G,> B +E;. (20.11)
r=1

Its equivalence to (20.2) is shown next:

Note 20.1. Product of Three Matrices
In this chapter, we often encounter the products of three matrices. An

example of them is the product A(Zle ckpG,)B’ in (20.11), which is
rewritten as Y~ | A(ck,,G )B.

Using a; = [a;1, ..., a;p) for the ith row of A and b = [ il ...,ij] for
the jth row of B, we can ﬁnd that the (i, j) element of A(ck, B’ is expressed as

P 0
HewG Z Z T2 (20.12)
p=1 g=1

The (i, j) element of A(Er 1ckpG )B' = Ele A(ciyG,)B' is given by the
sum of (20.12) over r = 1,
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R

R 5 P 0 P O R
Z Ckr b = Z Z Z azp Ckrgpqr Z Z Z daijp ]qckrgpqr

r=1 r=1 p=1 r=1 p=1 g=1 r=1
(20.13)

Equalizing this plus e;j to x;; leads to (20.2), with e the (i, j) element of E;.

Finally, Parafac is a constrained version of the Tucker3 modeled in (20.11), in
which P, O, and R are constrained through P = Q = R and G, is restricted to a
matrix filled with zeros except for the rth diagonal element which equals one.
Hence, the Parafac model can be expressed as

X = ADB' + E, (20.14)
with
Ck1
D, = (20.15)
Ckp
being the diagonal matrix whose diagonal elements are ¢y, ... , cxp. The (G,

J) element of ADB’ in (20.14) is expressed as a/Dyb; = 25:1 aipCpbjg, Which
allows us to find the equivalence of (20.4) and (20.14).

The above facts lead to the hierarchical relationship in (20.6). It shows that
3WPCA procedures are directly derived from the PCA in Chap. 5 and are not
extensions of PCA but rather constrained versions.

Before describing how the parameters are estimated in 3WPCA, we illustrate the
Parafac and Tucker3 solutions for the data set in Table 20.1 and explain how the
solutions are interpreted on the basis of (20.11) and (20.14), in Sects 20.3 and 20.4.

20.3 Parafac Solution

The data in Table 20.1 consist of the I (=15 concepts) x J (=10 adjectives)
matrices X; obtained over K = 6 occasions. The data were originally observed by
Osgood and Luria’s (1954) for a female suffering from triple personality disorder:
she had the three types of personalities named Eve White, Eve Black, and Jane.
During episodes for each of her three personality types, data were observed on two
occasions, as found in the left column in Table 20.1. Its element x;j indicates her
rating on occasion k and has been transformed from Osgood and Luria’s (1954)
original score so that x;; ranges from —3 to 3. That is, positive x;; stands for what
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extent the concept i is rated to be featured by adjective j, while negative x;
indicates how strongly the concept i is featured by the antonym of adjective j. For
example, x;;; = 1 stands for her thinking love to be hot at degree 1, while x4 = —3
indicates that she thinks love to be hot at degree —3, i.e., to be rather cold at degree
3.

For the data in Table 20.1, Parafac was performed with P = 3. The solution is
presented in Table 20.2. Here, the columns (i.e., components) in A and B are
indicated by the labels, belongings, ill feeling, ... , goodness, referring to the
interpretation of those components. For example, the second component in A has
been named ill feeling, as this can be associated with the concepts of mental sick
and confusion showing the large positive loadings for that component. On the other
hand, the third component in B can be interpreted as representing goodness, as the
adjectives large and clean associated with goodness present positive loadings, but

Table 20.2 Parafac solution for the data set in Table 20.1

Concept A B
Belongings | 1ll Routine | Adjective | Activity | Erethism | Goodness
Feeling
Love —-0.15 0.00 0.39 Hot 0.31 | —-0.19 0.11
Child -0.10 0.14 0.24 Worthless -0.07 | -0.01 —0.44
Doctor 0.50 -0.09 0.26 Relaxed 0.30 | —0.64 0.04
Me 0.34 0.19 0.00 |Large —-0.08 0.10 0.44
Job -0.33 0.15 0.31 Slow -0.73 | -0.12 0.35
Mental sick |—0.12 0.44 0.25 Clean 0.03 0.10 0.44
Mother 0.20 0.27 0.24 Strong 0.18 | —-0.30 0.27
Peace of 0.41 —0.25 0.33 Distasteful -0.15 0.27 —0.34
mind
Fraud 0.22 0.34 -0.30 Shallow -0.17 | —0.42 -0.28
Spouse -0.22 —0.05 0.19 Passive 044 | —043 -0.13
Self-control | 0.12 -0.02 0.33 C
Hatred 0.21 042 |—021 |Occasion |B-A* I-E R-G*
Father 0.25 0.15 0.28 Eve White 1.52 12.39 20.34
1
Confusion | —0.11 0.52 0.03 Eve White 3.74 11.41 17.73
2
Sex —-0.24 -0.01 0.21 Eve Black 17.47 2.59 =5.40
1
Eve Black 17.96 4.01 -9.43
2
Jane 1 2.38 12.69 21.35
Jane 2 3.32 9.70 23.20

“Belongings—Activity
"Il Feeling—Erethism
“Routine-Goodness
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Love D B — b
k
Child (Bp) Hot
Doctor Worthless
Me q ..
Belonging Activity Relaxed
Job Crl ’ L
Mental Sick Large
Mother ; : Py “ * Slow
Peace of Mind Il Feeling Erethism . ( Y Clean
Fraud "« Strong
Spouse o Distastoru!
Self-Control Routine Goodness 7 -qu‘ u1 Distastefu
Hatred i I 5. Shallow
Father c t Adiective Passive
Confusion oncep J
Sex Component Component

Fig. 20.2 Network representation of the Parafac solution in Table 20.2

worthless and distasteful associated with badness show negative loadings for the
component. The other components have been interpreted in a similar manner.

The Parafac solution can be visually represented in the network diagram in
Fig. 20.2. On the left side, the concept i and component p with |a;,| > 0.3 are
linked, while on the right side the adjective j and component p with |b;,| > 0.3 are
linked. Here, the widths of the paths expressing links are proportional to the
absolute values of the corresponding loadings, with positive or negative value
indicated by the paths being real or dotted.

As found in middle section of Fig. 20.2, the diagonal elements of D, in (20.15),
i.e., the elements of C = (cy,), indicate the relationships of the components in A to
those in B. This role of ¢, can be understood by noting that P routes exist from
concept i to adjective j. For example, from Fraud to Slow, there are possible P = 3
routes: [1] Fraud-Belongings—Activity—Slow, [2] Fraud-Ill Feeling—Erethism—
Slow, and [3] Fraud— Routine-Goodness—Slow, with the symbol “-” indicating a
path. Here, each route consists of the three paths, which are associated with
coefficients a;,, cy,, and bj,. Their product a;,c,b;, = a;,bj,cy, is summed over
p =1, ..., Pto provide the model part 25:1 aipbjpcy, in (20.4) approximating X;j.
For this reason, Fig. 20.2 can be viewed as the network representation of the
Parafac solution in Table 20.2.

We should note in (20.4) that ¢, has the subscript k, which is not possessed by
a;, and bj,. This implies that the left and right links associated with A and B in
Fig. 20.2 are invariant across k = 1, ... , K, but the inter-component links (middle
of the figure) differ across K occasions. The inter-occasion differences can be seen
by noting the C = (cy,) solution in Table 20.2. Here, we can find that the ¢y, values
for the four occasions concerning Eve White and Jane are mutually similar, but
differ from the two occasions concerning Eve Black. That is, the occasions (k = 1,
..., 6) are classified into the Eve White—Jane (EWJ) and Eve Black (EB) groups. In
the former, the ¢y, values are all positive, which implies that the three pairs of
components, [1] Belongings—Activity, [2] Ill Feeling—Erethism, and [3] Routine—
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Goodness, have positive associations. On the other hand, the c¢;3 values in the EB
group are negative, which implies that Routine is negatively associated with
Goodness. The two groups also differ in the following ways: in the EWJ group, the
associations in [2] and [3] are stronger than that in [1], as ¢4, and ¢;3 are larger than
cx1- In contrast, the association in [1] is remarkably stronger in the EB group.

20.4 Tucker3 Solution

For the data in Table 20.1, we preformed Tucker3 with P = Q = 3 and R = 2. The
resulting solution is presented in Table 20.3. Here, the names of components are the
same as in Table 20.2, as the components in A and B can be interpreted in the same
manner as in the Parafac solution.

As described in Sect. 20.2, the Tucker3 model (20.11) follows from (20.8) with
H; constrained as (20.10). On the basis of (20.8), the Tucker3 solution in
Table 20.3 can be represented in the network diagram in Fig. 20.3, which is
depicted in the same manner as in Fig. 20.2. How the diagram in Fig. 20.3 relates to
(20.8) can be understood by noting the routes from concepts to adjectives. Let
R; ,._,.; denote the route from concept i to adjective j by way of the pth component
linked to i and the gth component linked to j. Then, all possible routes from i to j are
expressed as {R;,,;:p=1,...,P;q=1, ..., Q}. Each of these routes consists of
three paths associated with coefficients a;,, h and bj,, where hy,y is the (p,

pak Ja
q) element of Hy. The product of those coefficients, a;,h,qbj;, are summed over

Pakvjq
p=1,...,Pandg=1, ..., Q to provide Zﬁ:l 23:1 aiphpgibjq, Which is the (i,
Jj) element of the model part AH;B’ in (20.8).

We should note that the inter-component links shown in the middle of Fig. 20.3
differ from the corresponding links in Fig. 20.2. In Fig. 20.2, the components in
A are linked in parallel with those in B, since the matrix D, specifying the links is
diagonal with its off-diagonal elements zeros. In contrast, in Fig. 20.3 each com-
ponent in A is linked to all of the ones in B, since the matrix H; in (20.8) specifying
the links is not diagonal.

Matrix Hj, is constrained as in (20.10). It is expressed as H; = ¢ G| + ¢G5 in
this example with R = 2. Here, G| and G, do not have the subscript k, which
implies that the differences of H; across occasions k =1, ... , K are specified by
weights ¢, In Table 20.3, the similarities/differences of the [c, c»] values among
the six occasions show that they are classified into Eve White—Jane (EWJ) and Eve
Black (EB) groups. Figure 20.4a, b illustrate H; = ¢1,G; + ¢12G, for Eve White 1
in the former group and Hy = c4;G| + c40G, for Eve Black 2 in the latter
group. Here, the striking difference between H; and H, is that the positive link
between Belongingness and Goodness is far stronger in (b) than in (a), and that the
link between Routine and Goodness in (a) shows Routine being rated Good,
whereas the counterpart in (b) does not, implying it is to some extent bad.
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Love H=( B = (b;
Child (Ftpq) (Bpp) Hot
Doctor A Worthless
Me ..
Activit
Job y h.l ... e . Relaxed
Mental Sick ‘e Large
Mother . Slow
Peace of Mind Clean
Fraud
Strong
Spouse R ) .
Self-Control 2 " Goodness mumm ﬂl.".‘  Distastefu
Hatred o Pl .ﬁ.': Shallow
Father trea ! Passive
Confusion
Sex
Fig. 20.3 Network representation of the Tucker3 solution in Table 20.3
Belonging ... Activity Belongings Activity
Ill feeling Erethism Ill feeling Erethism
Routine I Goodness Routine ‘g m m m m Goodness
(a) H;: Eve White 1 (b) Hy: Eve Black 2

Fig. 20.4 Inter-component links across two occasions, with the links whose absolute values are
less than 0.1 omitted, the widths of the paths proportional to the absolute values of the
corresponding elements, and positive or negative value indicated by the paths being real or dotted

20.5 Unconstrained Parafac Algorithm

Algorithms for 3WPCA are described in custom by arranging (20.5) horizontally in
the I x KJ block matrix

X=X .., X, -0, Xk (20.16)
For this data matrix, the Parafac model (20.4) or (20.14) can be rewritten as
X =A(CeB) +E. (20.17)

using the Khatri—Rao product defined in (17.60). Here, E = [Eq, ... , E, ..., Eg] is
the I x KJ matrix with the (i, j) element of E; being e;;. The equivalence of (20.17)
to (20.14) is explained next:
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Note 20.2. Parafac Model with the Khatri-Rao Product (Part 1)
The transpose of (17.60) pre-multiplied by A = [a;, ... , ap] is expressed as

Cllb/l CKlbll
A(CeB) =[ay, ..., ap|

/ /
ClpbP tet CKpbP

P P
/ /
= E clpapbp, ey E cK,,apbp 5
p=1 p=1

whose kth block is Z;f:l ckpapb;, with B = [by, ... , bp]. By taking account
of this result and (20.16), we can find that (20.17) is rewritten as

P Ck1 b
Xk:chpapb;,—i—Ek:[al,...,ap] + Ey,
- ce | [ bp
i.e., (20.14) with the substitution (20.15).
The Parafac model (20.17) is equivalent to
X#* =B(CeA) +E*, (20.18)
X*=C(BeA) +E*, (20.19)

as shown in the next note. Here, X" (J x KI) and X" (K x JI) are obtained by
arranging (20.5) as

X* =X, ..., X, ..., Xk (20.20)
vec(X;)'

X' — : - [X’[, X XJ} (20.21)
vec(Xg)'

and the error matrices E and E” are the variants of E whose elements are arranged
so as to correspond to (20.20) and (20.21), respectively, with vec() defined as
(17.63) and X; the K x I matrix whose (k, i) element is x;;. The equivalence of
(20.17) to (20.18) and (20.19) is shown next:
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Note 20.3. Parafac Model with the Khatri-Rao Product (Part 2)
Swapping the matrices A and B in Note 20.2 leads to

i !
C11ay cc CK1aA
i
B(C.A) :[bl,...,bp] o

i !
Cipap - -- Ckgpap

P P

l 2 : i

= E Clpbpap, coey cK,,bpap s

p=l1 p=1

whose kth block is Zﬁ:l cybpay,. Since this is the transpose of 25:1 cipayb)
in Note 20.2, we can find that Zﬁ:l cypbpa, corresponds to X' so that
(20.17) is rewritten as (20.18).

By using C = [cy, ..., cp] and swapping B and C in the above B(C o A)’,
we have

b“a’l b“a’l
C(B.A)/:[Cl,...,Cp] :

/ /
blPaP o oo bJPaP

P P
_ / /
= E bipepa),, ,E bypcpa, |,
p=1 p=1

whose jth block is the K x I matrix Z[I::l bjpe,a, with its (k, i) element

S bipCipai, = Z[i’:l aipbjyciy- This corresponds to the (k, i) element of X;
in (20.21), i.e., x;x which shows the equivalence of (20.19) to (20.4) or
(20.17).

Using (20.17)—(20.19), the sum of the squared errors for Parafac is expressed in
three forms as in

f(A,B,C) = |[X —A(CeB)|’= |X* —B(Ce A)||’= |X* —C(BeA)|’,
(20.22)

This minimization over A, B, and C can be attained by alternately solving the
following three problems:

[P1] minimize ||X — A(C o BY||* over A with B and C kept fixed,
[P2] minimize ||X# — B(C o A)'||* over B with A and C kept fixed,
[P3] minimize ||X~ — C(B @ A)||* over C with A and B kept fixed.
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Here, we can find every problem to be the regression of data onto the matrix
defined by the Khatri-Rao product. For example, ||X—A(Ce B)’H2:

X' —(Ce B)A'||2 in [P1] is the loss function for the regression of X' onto (C e B)
with A’ the coefficient matrix. Its solution is explicitly given by A’ = (C e B)"X', or
equivalently, A = X(C e B)", as explained with (17.28) in Sect. 17.4. In a parallel
manner, the solutions for [P2] and [P3] can be obtained. Thus, the Parafac algo-
rithm for minimizing (20.22) can be summarized as follows:

Step 1. Initialize B and C.

Step 2. Update A = X(C o B)*".

Step 3. Update B = X*(C o A)*".

Step 4. Update C = X' (B o A)*"".

Step 5. Finish if convergence is reached; otherwise, go back to Step 2.

20.6 Constrained Parafac Algorithm

A drawback of the procedure in the last section is that it sometimes provides the
solutions in which A, B, or C is nearly rank-deficient. This term is explained next:

Note 20.4. Nearly Rank-Deficient Matrix and Condition Number
Let N be an n X p matrix to be determined. If rank(N) is nearly less than
min(n, p), N can be said to be nearly rank-deficient. Here, we should note the
; 2?] . We find
rank(R) = 1 < rank(N) = 2, but N 2 R. Then, N can be said to be nearly
rank-deficient.

How nearly rank(N) is less than min(n, p) can be indicated by the
largeness of the condition number, which is defined as the ratio of the largest
singular value of N to its smallest nonzero singular value.

adverb nearly. For example, let R = B 2} and N = [

A solution including a nearly rank-deficient matrix is not useful, as rows/columns
are indistinctive and redundant.

A remedy for avoiding such solutions in Parafac is to impose the column-
orthonormality constraints on two of A, B and C (Kroonenberg, 2008; Smilde, Bro,
& Geladi, 2004). One example is

A'A=BB=1I,. (20.23)
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A constrained Parafac procedure can be formulated by minimizing (20.22) under
(20.23). Indeed, this procedure has been used for the solution in Table 20.2, whose
algorithm consists of alternately solving the problems [P1], [P2], and [P3] in
Sect. 20.5 subject to (20.23).

Let us consider [P1] subject to (20.23), i.e., minimizing fp(A) = || X — A(C ¢ B)’||2
over A under A'A =Ip. Using this constraint, fp(A) can be rewritten as
fo(A) = | X[*—2tr(C ¢ BYX'A + || (C # B)||*>, which shows that the problem
amounts to maximizing tr(C e B)'X'A over A subjectto A’A = Ip. This can be attained
through the singular value decomposition (SVD) defined as X(C e B) = UAV’, with
UU=V'V=1Ipand A a P x P diagonal matrix, as found in Theorem A.4.2: the
optimal A is given by A = UV'. Analogously, the solution of [P2] subjectto B'B = I
in (20.23) is given by B = U*V*, whose right side hand is obtained through the SVD
X*#(C o A)= U*A*V*._ Since the remaining parameter matrix C is unconstrained, its
solution is obtained by Step 4 in Sect. 20.5: with A and B fixed, the optimal C is given
by C = X (B e A)"". Here, (B ® A)*' can be simplified into B e A under (20.23), which
is derived using the identity (17.61) with (20.23):

(BeA)(BeA)=1Ip. (20.24)
By comparing this with (17.8), we find (Be A) ™' = (Be A)” =B e A . Thus, the
Parafac algorithm subject to (20.23) can be listed as follows:

Step 1. Initialize B and C.

Step 2. Update A with A = UV".

Step 3. Update B with B = U*V*".

Step 4. Update C = X (B o A).

Step 5. Finish if convergence is reached; otherwise, go back to Step 2.

By substituting C = X“(B e A) into the final term of (20.22), the attained value
of the loss function can be expressed as

X" —X*(BeA)(BeA)|
= ||IX*|* = 2X”X*(Be A)(Be A) +tr(Be A)(Be A)X*X*(Be A)(BeA)
= X" — tr(B ¢ A)X"X* (B 0 A) = | X|*(1 — GOF).
(20.25)

Here, (20.24) has been used and

_IX'®eA)” ||’
x| x|

GOFp (20.26)

is the standardized goodness-of-fit index, which takes a value within the range [0,
1]. The monotonic increase in (20.26) with the iteration of Steps 2 to 4 follows from
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the monotonic decrease of (20.25). We can use (20.26) to check the convergence,
definable as a change in value of (20.26) from the previous round being small
enough to be ignored. The resulting (20.26) value for the solution in Table 20.2 was
0.56.

20.7 Tucker3 Algorithm: The Optimal Core Array

For the block data matrix (20.16), the Tucker3 model (20.2) or (20.11) is rewritten
as

X = AG(C ® B)' +E, (20.27)

using the Kronecker product defined in (17.52). Here, G =[G, ... , Gg] is the
P x RQ block matrix whose rth block G, is defined as (20.9), and E = [E,, ...,
E] is the I x KJ matrix whose kth block is E; (I x J) with its (i, j) element e;;
corresponding to x;;. The equivalence of (20.27) to (20.11) is explained next:

Note 20.5. Expression of the Tucker3 Model with the Kronecker
Product
Using (17.52) and (17.55), we have

CllB/ 000 CKlB/
(Ce®B)=CoB =| : : | and
ClRB/ s CKRB,
C11B/ ce CKIB/

AG(C®B) =A[Gy, ...,G
(CoB) =AGy, ..., Gl -
ClRB/ CKRBI

R R
> e, GB, ... ckG,B
r=1 r=1
R R
A (Z c1,G,> B,....A (Z cK,G,> B'|,
r=1 r=1

whose kth block is A(Zle ckrG,)B’ (I x J). By comparing (20.27) and
(20.28) with (20.16), we find that (20.27) is equivalent to (20.11).

=A
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Tucker3 is thus formulated by minimizing the least squares function for (20.27):
f13(A,B,C,G) = |[E|’= | X - AG(C @ BY||. (20.29)

Here, we can constrain A, B, and C as
AA=1,, BB=1I,, and CC=1I (20.30)

without loss of generality, since the minimum value of (20.29) remains the same
whether (20.30) is imposed or not, as explained in Sect. 20.9.

Let us consider the minimization of (20.29) over G for given A, B, and C. We
can find that (20.29) has the same form as (17.33): the minimization of (20.29) is
the Penrose regression problem formulated by minimizing (17.33). Thus, (17.34)
shows that (20.29) is minimized for

G=A"X(C®B)" =AX(C®B). (20.31)

Here, the last identity is derived using (17.7), (17.8), (17.55), and (17.59): those and
(2030) lead to (Co®B)' =(CoB) =CT@B*=C"@B" =
C"®B" = C®B, with A* = A’ following from (17.8) and (20.30).

We can expand the right term in (20.31) as

C11B tee ClRB
AX(C®B)=A'X,,....Xk]| : j :
CKlB e CKRB
K K
= Z cAXiB, ... crA’XiB|. (20.32)
k=1 k=1

Its rth block is the P x Q matrix Zf:l c-A’X B, whose (p, g) element is
Zszl cra,Xib,, while the rth block of G in (20.31) is G, (P x Q) whose (p,
q) element is g, These facts show that (20.31) is rewritten as

1

K K 1
’
8pqr = § ckrapxkbq = § Ckr § AipXilks - -« § AipXijk bq
k=1 k=1 i=1

i=1

J
CkrE E aipXijebiq = E E E @ipbjgCar X

1 j=1 i=1 i=1 j=1 k=1

K 1 K
k=

(20.33)

By comparing this with the Tucker3 model (20.2), we can find a kind of parallel
relationship: the model part in (20.2) is the sum of the core elements g, weighted

by loadings a;,, b;,, and cy, over p, g, and r, which approximates the observation
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X;x. On the other hand, (20.33) shows that the solution of core element g, is the
sum of observations x;; weighted by loadings a;,, b;,, and ¢y, over i, j, and k. This is
similar to the fact that the PC scores in two-way PCA (Chaps. 5 and 6) are given as
the weighted composite of observations.

By substituting (20.31) into the final term of (20.29), we have

|X — AA’X(C @ B)(C @ B)||> = | X|*—20X'AA’X(C @ B)(C @ B)’
+tr(C ® B)(C ® B)X'AA'AA’X(C ® B)(C @ B)’
= ||IX|]*—2trA’X(C © B)(C @ B)'X'A
+rA’X(C®B){(C ® B)(C®B)}(C ® B)X'A
= |X|I*~5(A,B,C),
(20.34)

with
2(A,B,C) =trA’X(C®B)(C® B)/X’A = ||A’X(C® B)HZ: HGH2 (20.35)

Here, we have used the fact that (17.55), (17.56), and (20.30) imply
(COBIC®B)=(CQOB)NC®B)=(CC)® (BB) =1y, and the Ilast
identity in (20.35) follows from (20.31). Equation (20.34) shows that its mini-
mization over A, B, and C under (20.30) amounts to maximizing (20.35) subject to
(20.30). The resulting A, B, and C can be substituted in (20.31) to provide the
solution of G.

We should note that the last identity in (20.35) is the sum of the squared
elements in the core G. Upon maximizing this, Tucker3 is formulated. This is
similar to the fact that two-way PCA can be formulated as the maximization of the
variance of PC scores as described in Chap. 6.

20.8 Tucker3 Algorithm: Iterative Solution

The maximization of (20.35) subject to (20.30) can be attained by alternately
iterating steps, in each of which A, B, or C is optimally updated so that (20.35) is
maximized. The steps are described in the next paragraphs.

First, let us consider maximizing (20.35) over A subject to (20.30), i.e.,
A’A = Ip, with B and C kept fixed. It is attained for

A =EV,p[X(C®B)(C®B)X']. (20.36)



332 20 Three-Way Principal Component Analysis

Here, EV;p[M] is the function which provides the I x P matrix, whose columns
are the eigenvectors corresponding to the P largest eigenvalues of an I x [ matrix
M, with I > P. The fact that (20.35) is maximized under (20.30) for (20.36)
follows from Theorem A.4.4 in Appendix A.4.2.

Next, let us consider maximizing (20.35) over B subject to B'B = Iy, with A and
C fixed. For this problem, we use the fact that (20.35) can be rewritten as

2(A,B,C) = tB'X*(C2 A)(C2 A)X*B = |[BX*(CoA)|’.  (20.37)

with X* defined as (20.20). Function (20.35) or (20.37) is maximized under
B'B =1, for

B = EV,,o[X*(C®A)(C®A)X"], (20.38)

as (20.36) is derived from (20.35). The equivalence of (20.35) and (20.37) follows
from the fact that B'X*(C ® A) in (20.37) is expanded as
Cl |A e C]RA
BX*(C®A)=B'[X|, ..., X}]| : : :
CKIA s CKRA (2039)

K K
= Z caB XA, -, Z cwB' XA |
k=1 k=1

each block of the right matrix in (20.39) is merely the transpose of the counterpart
in (20.32).

Finally, let us consider maximizing (20.35) over C subject to C'C = I, with
A and B fixed. For this problem, we use the fact that (20.35) can be rewritten as

¢(A,B,C) =trCX*(B®A)(B®A)X'C = |[CX*B®A)|>.  (20.40)

with X" defined as (20.21). Function (20.35) or (20.40) is maximized under
C'C = I for

C=EVir[X*(B®A)(B®A)X"] (20.41)

as (20.36) is derived from (20.35). The equivalence of (20.40) and (20.35) is shown
as follows: by using (17.67) and expressing the ktk row of C as & = [cx1, - - - , Cir]s
we can rewrite C'’X (B ® A) in (20.40) as
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[vec(X;)' vec(X;)'(B® A”)
CX'BoA)=C| : |[BeA)=C :
| vee(Xk)' vec(Xk)' (B® A”)
[ vec(A’X|B)' vec(A'XB)’ .
=C : = [¢---&] : = Gvec(A'X;B)
| vec(A’XkB)' vec(AXcBY |
(20.42)
ajXyb; - a|Xybg
Here, A'X;B = and vec(A'’X;B) =
aXyb; -+ ahX;by

[a)Xiby, ... aXby, ... aXybyg, ..., a,Xbg] . Thus, we can find that (20.42)
is the R X PQ matrix whose elements are expressed as (20.33). It implies that
(20.40) equals (20.35).

The above facts are sufficient to now describe the Tucker3 algorithm:

Step 1. Initialize B and C.

Step 2. Update A with (20.36)

Step 3. Update B with (20.38)

Step 4. Update C with (20.41)

Step 5. Obtain (20.31) and finish if convergence is reached; otherwise, go back to
Step 2.

Equations (20.34) and (20.35) show that the attained value of the Tucker3 loss
function is expressed as ||X|[*(1 — GOFr3) with

¢(A,B.C) _[IG|
DUk

GOFr; = (20.43)

The value of (20.43) with its range [0, 1] expresses the standardized goodness-of-fit
of the Tucker3 solution and is convenient for checking the convergence. The
(20.43) value was 0.72 for the solution in Table 20.3.

20.9 Three-Way Rotation in Tucker3

The Tucker3 solution is not uniquely determined, as shown in the following. Let the
solutions of A, B, C, and G be transformed into
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A=AS,B=BT,C=CUand G=S"'G(U ' oT') (20.44)
with S (P x P) T (Q x Q), and U (R x R) any nonsingular matrices. Even if A

B, C and G transformed according to (20.44) are substituted into A, B, C, and
G in the loss function (20.29), respectively, it remains unchanged as

HX AG(C

- Hx ASS'IG(U ' @ T ){(CU)’<>3>(BT)'}H2
— X - AGU V@ T ){(UC) @ (TB)}|
= |x - AGU o T (U e T)(C @B
— X - AG{(U-'U) & (T'T) }(C' & B)||
=|X - AG(C®B)|’

(20.45)

where (17.55) and (17.56) have been used. Thus, if A, B, C, and G give the
Tucker3 solution minimizing (20.29) subject to (20.30), (20.44) is also the solution
that minimizes (20.29) or (20.45), but is not restricted by (20.30). For this reason,
we can impose the constraint (20.30) for A, B, and C, without loss of generality.

The property that the transformation (20.44) is allowed can be exploited so as to
produce interpretable A, B, C, and G by choosing appropriate S, T, and U:
namely, we can perform a rotation procedure for A, B, C, and G as described in
Chap. 13. However, the rotation required in Tucker 3 differs from that in Chap. 13,
in that three rotation matrices S, T, and U are to be obtained in this chapter.

From here, let A, B, C, and G be the Tucker 3 solutions satisfying (20.30) and
also K, ﬁ, and C be constrained as K/K =1Ip, ﬁlﬁ =1Ip, and (~3/(~3 = Ig. These
constraints are equivalent to

SS=8S=Ip, TT=TT =1,, UU=UU =1, (20.46)

since A, B, and C in (20.44) with (20.30) and (20.46) lead to A A = Ip,
BB =1y, and CC =1I. The constraint (20.46) simplifies G in (20.44) to
G = S'G(U®T). For obtaining suitable A, B, C and G = S'G(U ® T) subject to
(20.46), some three-way rotation procedures have been proposed (e.g.,
Kroonenberg, 2008, Chap. 10).

Out of these, we have used orthogonal three-way simplimax rotation (Kiers,
1998a) to obtain the solution in Sect. 20.4. In this rotation, the matrices S, T, and

U are obtained that allow the transformed core matrix G =S'G(U® T) to ap-
proximate a P x RQ target matrix Gt. Here, this target includes a number of zero

elements. Thus, the resulting G includes a number of the elements close to zeros,
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which may not be noted. This facilitates interpretation of the core matrix. For this
approximation, the simplimax rotation is formulated as minimizing

¢(S,T,U,Gr) = H(} - GTH2: ISGUST) — G| (20.47)

over S, T, U, and Gr subject to (20.46) and
No(Gr) = U. (20.48)

Here, No(Gt) denotes the number of zero elements in Gt and U is a specified
integer. An interesting feature of the simplimax rotation is that the target Gr is also
to be estimated: only its number of zero elements No(G) is known to be U, and
thus the locations of those elements are to be estimated jointly with the values of
nonzero parameters. The solution in Sect. 20.4 resulted with U being half of the
elements in G, i.e., U = POR/2 = (3 x 3x2)/2 =9.

The solution of the simplimax rotation can be obtained through alternately
iterating the steps, in each of which (20.47) is minimized over one of S, T, U, and
Gt under (20.46) and (20.48) with the remaining three matrices fixed.

First, let us consider minimizing (20.47) over S subject to (20.46) with T, U, and
Gr fixed. We can find this minimization to be attained by the orthogonal
Procrustes rotation (13.21) (Chap. 13), since (20.47) is rewritten as |Gy’
—{G(U ® T)}'S||> which has the same form as the function in (13.21), with the
constraint for S in (20.46) having the same form as that in (13.21). In similar
manners, the minimization of (20.47) over T and the minimization over U under
(20.46) can also be attained by the orthogonal Procrustes rotation (13.21), through
rewriting (20.47) suitably, though its details are omitted here.

Now, let us consider the step for minimizing (20.47) over Gt under (20.48) with

S, T, and U fixed. Using G = (8ps) and Gt = (gEJ), we can rewrite (20.47) as

~ ~ 2 ~
dGr)= D B+ Y. @V-g)> Y & (20.49)
(p.5)ERo (p,s)ERY (p,s)ERo
Here, Xy denotes the set of U pairs of (p, s) with elements g}ﬂ to be zero, Ny is the
(T]

set of POR=U pairs of (p, 5) with gy to be nonzero, >, ey, g;v stands for the
summation of g}m over the (p, s) contained in Ny, and we have used

T ~ 2 ~ 2 ~ . . .
Z(p,s)eNo (81[)5] - gps) = Z(p,s)eNo (0 - gps) = Z(p.s)eNo ggzm' The inequality in

(20.49) shows that ¢(Gr) attains its lower limit Z(p,s)eNu ng,s when the element g,[,E]

with (p, s)ENy is set equal to g, so that Z@_’SEN# (g},{l — gps)z =
R 2ps)° = 0. Further, the limit 2 ()R g7, is minimum, when o

contains the (p, s) for the U smallest elements among all ones of GoOG= (g;‘v),
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with ® standing for the Hadamard product defined in (17.69). The optimal Gt =
(gh9) is thus given by

e
[T] — 0 lf gps S g[U]
8 { 8ps otherwise (20.50)

with §[2U] the Uth smallest value among all elements of GoG.

The oblique version of the three-way simplimax rotation with (20.46) relaxed is
a major topic in Kiers (1998a), though we treat only the orthogonal version here.
The target matrix Gt can be said to be a sparse matrix, which will be a keyword in
the next two chapters.

20.10 Bibliographical Notes

Chemometricians Smilde et al. (2004) and psychometrician Kroonenberg (2008)
have published books in which multi-way PCA procedures are reviewed compre-
hensively. In their description, multi-way PCA includes three-, four-, and five-way
PCA as special cases: 3SWPCA procedures can be extended straightforwardly to
accommodate such cases, as found in Kroonenberg (2008) and Smilde et al. (2004).
Adachi (2016) also reviews 3WPCA compactly within one chapter.

Exercises
20.1. For a, = [ayp, ... , apl’, by = [b14, ... , by,l', and ¢, = [cy,, ... , ck]', the
three-way tensor product is defined as

a,ob,oc, = {apbjcrii=1,....Lj=1,... . Jsk=1,...,K}: (20.51)

the tensor product a,° b, ° ¢, provides the three-way I x J x K array on the
right side. Show that the Tucker3 model (20.2) can be rewritten as

P O R
X=>">"> (ayobsoc,)g+E (20.52)

p=1 g=1 r=1

with X the three-way data array defined as (20.1) and E =
{e;i=1,....Lj=1,...,J;k=1,...,K} the three-way array of errors.
20.2. Show that the Parafac model (20.4) can be rewritten as

X=Y (a,ob,0c,)+E (20.53)

P

p=1
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with a, = [alp, ...,alp}/,bp = [blp, ...,bjp],,cp = [clp, ...,cKp]/, and E
defined in Exercise 20.1.

Show the equivalence of a,° b, and a,b,": the vector product a,b,’ can be
regarded as a two-way version of the fensor product.

For a, = [ay,, ... , apl’, b, = [biy ..., by,l', ¢, = [cips ..., k], and d; =
[dis, ..., d)', the four-way tensor product is defined as

a,ob,oc 0d;
= {apbjcndy;i=1, ... . Lj=1,....J;k=1,... K;l=1,...,L}.
(20.54)

Discuss how a four-way extension of Tucker3 is modeled as

P O R S
X = Z Z Z Z (a,, obgoc, 0 ds)g,,qm +E (20.55)

p=1 g=1 r=1 s=1

for the four-way [ xJx K x L data array expressed as
X={xui=1,....Lj=1,....J;k=1,....,K;l=1,...,L}, with £ a
four-way array of errors.

By extending (20.54) and (20.55), discuss how Tucker3 can be generalized
for a N-way data array.

Show that the Parafac loss function (20.22) can be rewritten as

IXa — FycA'||*= || Xp — FeaB'[|= [[Xc — FapC'|’ (20.56)

Here, {(j — 1)K + k}-throws of X5 (JK X I) and Fgc (JK X P)are [x, ... ,
xge] and [bjicry, ..., bjpcrp), respectively; the {(k — 1)I + i}-th rows of Xy
(KI x J) and Fca (KI X P) are [xj1x ... , Xl and [cpa;q, ... , cpaipl,
respectively; the {(i — 1)J + j}-th rows of X¢ (IJ x K) and Fpag (IJ x P) are
[x;j1, ... » x5¢] and [a;1bj1, ... , a;pb;p], respectively (Adachi, 2013b).

Show a Parafac algorithm for minimizing (20.56).

Show that the Parafac model (20.14) with (20.15) can be rewritten as

vec(Xy) = Udy + vec(Ey) (20.57)

using U=[b; ®ay,...,bp®ap|(JI X P) and d; =Dilp (P x 1), with
A =[a;,...,ap]and B = [by, ..., bp] (ten Berge, 1993). Hints can be found
in (17.65), (17.66), and the fact that (20.14) is rewritten as

Xi = ZPP:l cipayh, +E, or equivalently, vec(Xy) =
vec (Z;I::l ckpapb;,) + vec(Ey).
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Show that the Tucker3 loss function (20.29) can be rewritten as

X -~ AG(C @ B)[’= |X* - BG*(C @ A)|’= |X" - CG* (B @A)’
(20.58)
with (20.20) and (20.21). Here, G* =[G/, ..., G}] (Q x RP), and G* =

vec(G,)’
: = |G}, ...,G], ...,G}| (R x QP) with G, the R x P matrix
vec(Gg)'
whose (r, p) element is g,

The indeterminacy of the Tucker3 solution is shown by (20.45) with the
transformation (20.44). Show that the indeterminacy can be also shown by

|X* — BG#(C 2 A)|| Hx# BGH(CoA)|

(20.59)

X" — CG* (B A)| Hx cGBaAy|

(20.60)

on the basis of (20.58). Here, A= AS, B= BT, C= CU, G# =
T G#*(U ' ®S ') and G* = U"IG* (T ' S').

Kiers (1998b) has proposed a three-way rotation technique for Tucker 3
alternative to the procedure in Sect. 20.9. In this method, the function

_ . ~/ . ~H . !
n(S, T,U) = WIS1mp(G~) +sz1mp(f} ) +W351m~p(G ) (20,61)
+ waSimp(A) + wsSimp(B) + weSimp(C)

is maximized over S, T, and U under (20.46), for the Tucker3 solution
subject to (20.30). Here, K, ﬁ, 6, é, (~}#, and (~}‘* are those in (20.44),

(20.59), and (20.60), with G, G, and G simplified to G = S'G(U ® T),

G' = TG*(U®S), and G = U'G*(T ®S) since of (20.46). The scalars
wi, ... , Wg in (20.61) are nonnegative weights to be prespecified, and the
function Simp(*) in (20.61) is the varimax rotation function in (13.12),
defined as

m=1 [=1

LML 1L 2
Slmp(V) = ZZ Z (Vlm - ZZ V121m>
n=1
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for an L x M matrix V = (v;,,). The maximization of (20.61) over S, T, and
U subject to (20.46) can be called three-way varimax rotation. Discuss the
differences of this rotation to the three-way simplimax rotation in Sect. 20.9.
Show how the Tucker2 modeled in (20.8) can be formulated as the mini-

mization of
F(ABH) = [|[X — AH(Ix @ B | (20.62)

over A, B, and H = [H;, ..., Hg] (P x KQ).



Chapter 21 )
Sparse Regression Analysis e

A matrix or vector is said to be sparse when it includes a number of zero elements.
Hence, the term sparse estimation refers to estimating a number of parameters as
zeros. The developments in multivariate analysis procedures with sparse estimation
started from modifications to the multiple regression analysis introduced in Chap. 4.
A number of modified regression procedures have been developed so that the
resulting regression coefficient vector is sparse, and can be generally referred to as
sparse regression analysis. Among those procedures, the first was proposed by
Tibshirani (1996) and called lasso. One of the main purposes of sparse regression
analysis can be regarded as removing useless variables computationally in order to
select useful ones: The explanatory variables, whose coefficients are estimated as
zeros, are removed from a set of variables to determine a dependent variable.

21.1 Illustration of Sparse Solution

Let us recall the regression analysis that was presented in Chap. 4. It is modeled as

n
yi X11 e x]j oo -xlp bl 1 el
y’ = Xil xlj xlp b] + C 1 + e 9 (21 . 1)
yn -x}’ll “e x}’lj - xl‘lp bp 1 en
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where the squared norm of the error vector e, i.e.,
f(b,c) = [le|*=|ly = Xb — c1,,|%, (21.2)

is minimized over the coefficient vector b and intercept c. The solution of ¢ must
satisfy (4.9). Substituting this into ¢ in (21.2), this is simplified to

f(b) = le*= |lJy — JXb|?, (21.3)

with J =1, — n_llnln’ the centering matrix. The solution of b minimizing (21.3) is
given by (4.12), and using this in (4.9) leads to the solution of c. In this section, we
call this procedure standard regression, to distinguish it from sparse regression
introduced in this chapter. Furthermore, we refer to the function (21.3) without c,
rather than (21.2) including c, as the standard regression function, as the sparse
regression procedures differ from standard regression solely in that another function
(shown in the later sections) is added to (21.3). The solution c is also given by using
the resulting b in (4.9) in sparse regression.

To illustrate what solutions are provided by sparse regression, we use an n (252
persons) x p (14 variables) matrix of the standard scores for body fat data, cited
from the website https://astro.temple.edu/ ~ alan/MMST/datasets.html in Izenman’s
(2008) textbook. Here, the variables consist of the 13 physical features shown in the
left column of Table 21.1 and a fat index. For the data set, we performed standard
and sparse regression, with the 13 physical features treated as explanatory variables
(X) for predicting the fat index (y). In the table, the sparse regression procedures
have been labeled lasso and Ly, which are explained later. The solutions are shown
in Table 21.1. Here, blank cells indicate estimates of zero, demonstrating the sparse
coefficient vectors resulting in the sparse regression. For example, the seven coef-
ficients b,, bs, by, ..., by, are estimated as zeros in lasso (Table 21.1B): Its solution
leads to the equation explaining fatness:

fat = 0.091 age — 0.088 height — 0.109 neck
+ 0.942 abdomen + 0.073 forearm — 0.168 wrist + error.

Here, the seven variables whose coefficients were estimated as zero have vanished.

The bottom row in Table 21.1 shows the values of the BIC (8.25). How BIC is
incorporated in regression analysis is explained in Sect. 21.4. As described in
Sect. 8.7, a model with a smaller BIC value is considered as better: Table 21.1
shows that the lasso solution is the best among the three ones.

In regression analysis, it is often inevitable to select a subset of the explanatory
variables useful for predicting a dependent variable among the whole set. The
selection can be restated as removing the explanatory variables that are useless for
the prediction. This selection or removal is referred to as variable selection. Sparse
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Table fjl-ld Solutions of the  ppocedure (A) Standard | (B) Lasso | (C) Lo
;;i“gg:iy; S TERTESSION T age by 0.097 0.091 0.093
Weight b, ~0.342 -0.339
Height bs -0.013 -0.088
Neck ba -0.138 —0.109 —0.144
Chest bs —0.017
Abdomen be 1.231 0.942 1.226
Hip by -0.161 ~0.160
Thigh by 0.156 0.159
Knee by 0.004
Ankle bio 0.036
Biceps 12 0.066 0.065
Forearm | by» 0.110 0.073 0.109
Wrist bis ~0.184 -0.168 -0.172
BIC 1128.5 1104.4 1107.1
Weight w=79 w = 0.56

regression procedures jointly perform both variable selection and parameter esti-
mation. They can be expressed as estimating

[1] what variables are to be excluded with their coefficients as zero
[2] the values of nonzero coefficients.

simultaneously and optimally.

21.2 Penalized Least Squares Method and Lasso

In sparse regression, the simultaneous estimation of [1] and [2] above is attained by
a penalized least squares method. This term, which is also called a regularized least
squares method, generally refers to minimizing the composite of a least squares
function and an additional function. In sparse regression, the least square function is
the standard regression function (21.3), while the latter is a penalty function which
penalizes nonzero elements in b. Using Pen(b) for the penalty function, sparse
regression can be formulated as minimizing

foen(b) = || Jy — JXb||* + nwPen(b) (21.4)

over b for a given w > 0. Here, wPen(b) has been multiplied by n merely for the
sake of the convenience during the subsequent derivations of equations. The role of
w is to tune the two functions ||Jy — JXb||* and Pen(b). A parameter w, which tunes
multiple functions, is referred to as a tuning parameter. It can also be called a
penalty weigzht, since it determines the importance (or weight) of Pen(b) relative to
[[Jy — JXb|~.
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The procedures used in sparse regression can be distinguished according to what
functions are used for Pen(b). Among them, Tibshirani’s (1996) method called
lasso was the first proposed and best known. In lasso,

P
Pen(b) = [Ib],= 3" (21.5)
j=1
Pen(b) is called the L; norm as explained next:

Note 21.1. L, Norm

As found in (21.5), ||b||; stands for the sum of the absolute values of the
elements. This sum is called the L; norm of b. More generally, the L, norm is
defined as

n P 1/q
All= (ZZ |aij}q> (g>0) (21.6)

i=1 j=1

for n X p A = (a;). According to this terminology and notation, the norm
||A|| used so far is called the L, norm and must be replaced by [|A||,. However,
we continue to use ||A|| for the L, norm and ||A|* for the squared L, norm.

Using (21.5) in (21.4), we have the lasso loss function

fi1(b) = ||Jy — JXb]|]* 4+ nw||b]|, (21.7)

Why this minimization leads to the sparse b in Table 21.1B is described in the next
section.

The name lasso originates from the abbreviation of least absolute selection and
shrinkage operator. Here, “least absolute” and “selection” stand for (21.5) being
based on absolute values and usable for variable selection, while the reference to
“shrinkage” will be mentioned in Sect. 21.5.

21.3 Coordinate Descent Algorithm for Lasso

Of the algorithms for minimizing (21.7), we introduce the alternate least squares
(ALS) approach, which is also called a coordinate descent algorithm in some sparse
regression literature (Hastie, Tibshirani, & Wainwright, 2015). In the algorithm, a
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procedure is alternately iterated to optimally update each of the coefficients b;
(G =1, ..., p). How the optimal b; is obtained is explained in the next paragraphs.
We can rewrite (21.3) as

Fb) = Iy = I(Br1xi + ...+ b,x,) = [[rg) — b (21.8)
Here, X = [x1,...,X,], b= [bl,...,bp]/, and

rg) =Jy— > bxi. (21.9)
K7

with X;;b, Jx; standing for the sum of b Jx, over all k = 1, ..., p except j. Using
(21.5) and (21.8), the lasso loss function (21.7) is rewritten as

i1 () = [[rgy — biIx||* by + w7 [y
=

= FG)IP + (x50 )67 = 2(x{ % ) by + s +mw D Il (21.10)
k#j

= [Jep "+ (X}ij)gj(bj) +”W; 1B
7

On the right side of (21.10), only g;(b;) is a function of b;, which is expressed as

r.Jx;
. 2 A W, W
g,(b,) = bj 2 X}ij bj+ Xj/-JXj |b1|

(21.11)

/

r.Jx;
= b} — ZL”ijJF K |bj| = b7 — 2r;(byy ) by +2d;(w) [y
nvjj Vi

Here, v;; = n_lxj’ij is the variance of the jth explanatory variable in x;, by; is the
(p — 1) x 1 vector consisting of by, ..., b, except b;,
roJx vk bxiJx: Y by,
ri(by) = -2 = YIG 2 bXI% v D b Ly (21.12)
nvjj nvji nvji Vij Vij
w
d; =—>0 21.13
() = 5, 20 (1.13)

with vy, = n~1x.Jx; = n~'xJx; and v = n~1y'Jx; being the covariances of the jth
j kI Xj N i Yy JX; g J

explanatory variable to the kth one and the dependent variable, respectively. The
inequality in (21.13) follows from w > 0 and v; > 0. The notations ry(bj;;) and
d;(w) are used in (21.11)-(21.13) in order to indicate that they are functions of by
and w.
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The coefficient b; minimizing (21.11) is the optimal one that minimizes the lasso
loss function (21.7) with the other coefficients by (k # j) fixed. The minimizer of
(21.11) is given by

_ 0 if [1;(byy)| < (w)
b= {Sign[rj(bm)]{)rj(bm)} —d;(w)} | Oth@fL’ise ’ (2114
as explained in Note 21.2 below. Here, sign[f] expresses the sign of a scalar #:
sign[t] = 1 for ¢ > 0, sign[f] = O for r = 0, and sign[7] = —1 for < 0. In (21.14), we
find that the solution of b; is exactly zero for |r;(by;)| < d;(w).

We can obtain the optimal b through alternate iteration of updating b; with
(21.14) for j =1, ..., p. Thus, the algorithm for lasso can be summarized as
follows:

Step 1. Initialize b

Step 2. For each of j =1, ..., p, perform the following: Obtain ry(bj;;) using the
current by values in (21.12) to update b; with (21.14).

Step 3. Finish if convergence is reached; otherwise, go back to Step 2.

Here, we should note that the current ri(by;) value must be obtained before the
update of b; in Step 2, since ri(by;)) in (21.14) is a function of the coefficients by, ...,
b, except b;. The initialization in Step 1 is made by setting b to the standard
regression solution for the computations in this chapter.

Note 21.2. Minimizing a Quadratic Function plus L; Norm

For the sake of simplicity, we omit (by;;), (w), and the subscript j from the
symbols in (21.11). Hence, (21.11) is simplified to g(b) = b* — 2rb + 2d|b|,
which can be rewritten as

g(b) = b* — 2rb+2db for b>0, (21.15)
g(b) = b* —2rb —2db for b<O0. (21.16)

Here, the inequality in (21.13), i.e., d > 0, should be kept in mind. The
shape of function g(b) and the solution of b depend on which inequality
holds, r>d (>0), r<—d (<£0), or —d < r < d. This is illustrated in
Fig. 21.1, where we can see that the solution of b is zero if —d < r < d, but
not be zero, otherwise. This is shown by formulas in the next paragraphs.

First, let us consider the cases with —d < r < d . Then, we can rewrite
(21.15) and (21.16) to find the following inequalities:

gb) =b*>+2(d—r)pb>0 forbh>0, (21.17)

g(b) =b*+2(—d —r)b>0 for b<0. (21.18)
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Here, the inequality (21.17) follows from the fact that r < d and b > 0
imply (d — r)b > 0, while the one in (21.18) follows from the fact that
—d < ryie.,—d—r < 0,and b < 0 imply (—d — r)b > 0. That is, (21.17)
and (21.18) show g(b) > O for any b, and the lower bound O is attained for

b=0 (21.19)

which is the solution for —d < r < d. This is illustrated in Fig. 21.1b.

Next, let us consider the cases with r >d > 0. Here, the inequality
in (21.18) holds true, since (—d — r)b > 0 for b < 0. However, the inequality
in (21.17) does not hold in general, since » >d > 0 and b > 0 imply
(d — r)b < 0. Further, we can rewrite g(b) in (21.17) as

gb)=b*—2r—db={b—(r—d)}* — (r—d)*> — (r—d)’

for b >0 (21.20)
with —(r — d)*> < 0. This implies that the lower bound of g(b) is —(r — d)*.
This can be attained for

b=r—d, (21.21)

which equals sign[r](|r| — d) in (21.14) since of r > d > 0. It is illustrated
how (21.21) is the solution for » > d in Fig. 21.1c, where we can find that the
minimum is attained for (21.21), i.e., b = 1.6 — 1 = 0.6.

Finally, let us consider the case of r < —d < 0. Since this implies » < 0
and thus d — r > 0, the inequality in (21.17) holds. However, the one in
(21.18) does not hold in general, since r < —d, i.e., =d — r >0, and b < 0
imply (—d — r)b < 0. Further, we can rewrite g(b) in (21.18) as

g®)

-0.5 - b 0.5 b -0.5 . b
-170%6 o 1 -1 0 1 -1 o %6

@) r=—1.6<-d=-1 (b)-d=—-1<r=08<d=1 () d=1<r=1.6

Fig. 21.1 g(b) = b2 —2rb + 2d|b| versus b (horizonal axis) for d = 1 and r = —1.6, 0.8, 1.6
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B) =0 —2(r+d)b = {b— (r+d)}* — (r+d’*> — (r+d)’
¢ for b <0, (2122)

implying that the lower bound of g(b) is —(r + d)z. This can be attained for
b=r+d, (21.23)

whose equivalence to sign[r](|r| — d) in (21.14) follows from the fact that
r < 0 implies sign[r] X (Irl = d) = =Irl + d = r + d. 1t is illustrated that
(21.23) is the solution for » < —d in Fig. 21.1a, where we can see that the
minimum is attained for (21.23), i.e., b = —1.6 + 1 = —0.6.

21.4 Selection of Penalty Weight

The lasso algorithm in the last section provides the optimal b for a given penalty
weight w: The resulting b depends on the w value. Thus, the lasso algorithm is run
multiple times for some w values, which provides multiple solutions of b. Among
these, the best b is selected. For the selection, we can use information criteria such
as AIC and BIC introduced in Chap. 8: b and the corresponding BIC value are
obtained for each w value, and the solution of b with the least BIC can be regarded
as the best one. Here, BIC may be replaced by AIC. In the remaining parts of this
subsection, we describe how the information criteria for lasso are derived and
defined.

Sparse regression procedures including lasso are formulated as minimizing
(21.4), which is included in the penalized least squares method. It differs from the
maximum likelihood (ML) method which leads to the information criteria described
in Chap. 8. However, they can be defined for (21.4), since its minimization can be
reformulated as an ML problem. This fact is shown through the two kinds of
equivalence, as explained in the next paragraphs.

First, it is known that the minimization of (21.4) is equivalent to minimizing the
least squares (LS) function (21.2) subjected to the inequality constraint

Pen(b) <u, (21.24)

where the positive scalar # can be associated with the penalty weight w (Tibshirani,
1996). However, it is beyond the scope of this book to prove the equivalence and
show the relationship of u to w.

Next, the LS problem of minimizing (21.2) is equivalent to the ML problem of
maximizing the log likelihood derived from the model (21.1) with the supposition
that e has the following multivariate normal distribution:
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e~N,(0,,0°L,). (21.25)

The equivalence is explained next:

Note 21.3. When Maximum Likelihood and Least Squares Methods are
Equivalent
Let an n x 1 data vector y be modeled as

y=(0) +e. (21.26)

Here, e is an n x 1 error vector and ¢(0) is an n x 1 vector which is a
function of the parameters contained in vector 0. The regression model (21.1)
is a special case of (21.26) in which ¢(8) = Xb + 1, with 8 = [b’, ¢]. The
following discussions hold for any model that can be expressed as (21.26).

We suppose (21.25). Then, y ~ N,(p(8), 6°L,), whose probability density
function is

PO, ) = | 51y~ 400 (L) iy 000

1 1
= (271)"/2(02”)1/23’([){—20,2”3’ - ¢(9)||2}~

= (20 ") o] s Iy — 601

(21.27)

Here, we have used (8.10) with the fact that the singular value decomposition
of ¢°I,, is expressed as ¢°I,, = In(ozln)I:l: The determinant lo°L,| is given by
the nth power of ¢*. The logarithm of (21.27) gives the log likelihood

n n 1
1(0,0%) = —5log2m — S log o — oz lly - NOIR (21.28)

The partial derivative of (21.28) with respect to ¢ is known to be given by
n(o®) = 01(8,6°)/00” = —n/(26°) + ||y — (8)[*/(25*)

= [n/(206%)] (n’1||y — ¢(0)|]*/0? — 1). See Appendix A.6.3 for partial
derivative. We can find ;7(02) = 0 for

2 =Ly - @) (21.29)

n
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with 76 >0 for o><n'y—¢(0)|* and 76> <0 for
o2 > n~!|ly — ¢(0)||>. This shows that (21.28) is maximum when (21.29) for

a given 0 and the solution of o7 must satisfy (21.29).
Substituting (21.29) into (21.28), we have

1(6) = —%10g2n—§10g<%”y—¢(0)||2) _g (21.30)

= —glogHy — (I)(G)H2 + const

with the term const not depending on 0. Here, we find that the maximization
of (21.30) over O is equivalent to minimizing the least squares function

lly — &@)* over 6.

Now, let ¢(0) in (21.26) be the regression function $(0) = Xb+ cl, with
0 = [b', ¢]'. Substituting this in (21.30) leads to —(r/2) log|ly — Xb — c1,,||* 4 const.
Its maximization is equivalent to minimizing (21.2), i.e., [y — Xb — cln||*. Further,
the ¢ minimizing this is given by (4.9) and its substitution in (21.2) leads to (21.3).
Thus, the maximum of the log likelihood (21.30) can be expressed as

I(b) = —Zlog|[Jy — IXb|* +const (2131)

in regression analysis. Here, b is the optimal b maximizing (21.31) or minimizing

(21.3) subject to the constraint (21.24) in the sparse regression, while b is the
optimal b without a constraint in the standard regression.

~

By substituting the part of (21.31) excluding const into I(®) in (8.25), BIC can
be defined as

BIC = nlog||Jy — JXb||* +ylogn. (21.32)

in regression analysis. Here, # is the number of parameters to be estimated. The
reason why const in (21.31) may be ignored is that the value of const is equivalent
among the solutions for different procedures: const is irrelevant for the comparison
of BIC among the solutions. In standard regression, n is the number of coefficients
plus two corresponding to ¢ and ¢ 7 = p + 2. What should be the value of # in
sparse regression? Some authors argue that it is the number of nonzero coefficients
plus two:
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n = Card(b) +2 (21.33)

(e.g., Zou, Hastie, & Tibshirani, 2007). Here, Card() stands for the cardinality of the
parenthesized vector or matrix, i.e., the number of its nonzero elements. We adopt
(21.33). In a parallel manner, AIC can also be defined.

The lasso solution in Table 21.1B has been selected using (21.32) with (21.33).

That is, we obtained b for each of w = 0.01, 0.02, 0.03, ..., 9.96, 9.98, 10.00, and
the b for w = 7.96 which gave the least BIC is presented in Table 21.1B.

21.5 L, Sparse Regression

In Note 21.1, the L,. norm is defined for ¢ > 0. The L, norm, i.e., ||Al|, for ¢ = 0, is
exceptionally defined as follows:

Note 21.4. Ly Norm

For g = 0, the L, norm in Note 21.1 cannot be defined. But, if exceptionally
1/q is defined as 1 and |0]7 is set to O for ¢ = 0 in Note 21.1, the Ly norm of
A = (a;) (n x p) is given by

n
IA]lp= Card(A) = > > I(az #0), (21.34)
i=1 =1
with
_f0 ifa;=0
l(a; #0) = { 1 otherwise (20.55)

In this section, we consider sparse regression with ||b|jo= "7, I(b; # 0) used for
Pen(b) in (21.4), i.e., minimizing

fuo(be) = Iy — JXb]> 4 mw|b]l,. (2136)
We refer to this minimization as Ly sparse regression. Its algorithm can be derived

by substituting I(b; # 0) for |b] in the equations of Sect. 21.3.
The Lo-norm version of (21.10) is derived by substituting /(b; # 0) for |b/:

fio(b) = g |+ (%0 )y (b5) -+ > 1(i # 0). (21.37)
e
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Here, only h(b;) is a function of b;, which is expressed as

ryJ%

(b)) = b — 4™ b
hi(bj) = b} —2 X%, bj+ X JXjl(b, #0)
2 T I% w 2
=b =2 bj+ —1(b; # 0) = b = 2rj(bjy ) b; + 5(w)I (b; # 0),
nvjj i

(21.38)

with vj; = n”'x;/Jx; the variance of the jth variable, r,(by;;) defined as (21.12), and

si(w) = — >0. (21.39)

Vii
The coefficient b; minimizing (21.38) is the optimal one that minimizes the loss

function (21.36) with the other coefficients b; (k # j) fixed. The minimizer of

(21.38) is given by

P= 0 if |rj(b[i])‘ </si(w)
b= { ri(by)) otherwise ’ (21.40)

as explained in Note 21.5 presented below. We can obtain the optimal b by iterating
the update of b; through (21.40) over j = 1, ..., p. Thus, the algorithm for the L,
sparse regression can be summarized as follows:

Step 1. Initialize b

Step 2. For each of j =1, ..., p, perform the following: Obtain ry(bj;;) using the
current by values in (21.12) to update b; with (21.40).

Step 3. Finish if convergence is reached; otherwise, go back to Step 2.

Here, we should note that the current r(by;) value must be obtained before the
update of b; in Step 2, since ri(by;;) in (21.14) is a function of the coefficients by, ...,
b, except b;. The initialization in Step 1 is made by setting b to the standard
regression for the computations in this chapter.

Note 21.5. Minimizing a Quadratic Function plus L, Norm

For the sake of simplicity, we omit (by;;), (w), and the subscript j from the
symbols in (21.38). Thus, (21.38) is simplified as i(b) = b>=2rb + sI(b # 0).
It can be rewritten as

0 ifb=0
h(b) = { (b—r)*+s—r2 otherwise’ (21.41)
Let us consider the cases of |r| > s'2 ie., s — r* < 0. Then, (21.41) shows
that the lower limit of A(b) is s — 2, which is attained for b = r. For the other
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1/ 2

cases with |r] < s 2 ie.,s—r* > 0,(21.41) implies that the lower limit of
h(b) is 0. It can be attained for b = 0. These facts lead to (21.40).

A suitable penalty weight w can be selected as described in Sect. 21.4, using BIC
defined as (21.32) with (21.33). Thus, the solution of the L, sparse regression in
Table 21.1C has been obtained using (21.32) with (21.33). That is, we run the
above algorithm to obtain b for each of w = 0.01, 0.02, 0.03, ..., 9.96, 9.98, 10.00.
This results in the b for w = 0.56 giving the least BIC. The corresponding solution
is presented in Table 21.1(C).

The absolute values of the nonzero coefficients in lasso cannot be greater than
those in the L, sparse regression. This fact can be proved as follows: The lasso
formula (21.14) shows the absolute value of nonzero b; to be |b;| = |ri(b;)| — di(w),
while the L, counterpart (21.40) shows |b}| = |ri(by)|. Since d(w) > 0,
|ri(byp| — dj(w) in lasso cannot be greater than |r;(by;))| in the Ly sparse regression.
This fact can be illustrated in Table 21.1B, C: The absolute values of the nonzero
solutions in lasso are smaller than the Ly counterparts. The property of parameters
being estimated so that their absolute values are smaller is referred to as shrinkage
of parameter estimates. For this reason, “shrinkage” is included in the name least
absolute selection and shrinkage operator, which lasso abbreviates as described in
Sect. 21.2.

21.6 Standard Regression in Ordinary
and High-Dimensional Cases

So far, we treated the cases in which regression analysis is performed for data sets
with more individuals than variables, which we call ordinary cases. In this section,
we consider the cases with more variables than individuals, which can be called
high-dimensional cases. In this section, we explain how standard regression pro-
duces unusable results in high-dimensional cases, in order to prepare for the next
section where sparse regression is shown to be useful in such cases. For the
explanation, we compare properties of the standard regression solution between the
ordinary cases of n > p + 1 (more individuals) and the high-dimensional cases of
n <p (more variables). The goal of the section is to reach the following
conclusions:

[Ordinary] 1If n > p + 1, then the value of the loss function (21.3) is usually
greater than zero. If n is sufficiently greater than p + 1, the solution of
b is useful, as seen so far.

[High-Dim] 1If n < p, then the resulting (21.3) value is zero, i.e., a perfect fit
Jy = JXb is attained, but the solution of b is useless, as it is not unique
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To arrive at this goal, a key point is whether rank(JX) is equivalent to rank([JX,
Jy]) or not, with [JX, Jy] an n x (p + 1) block matrix.
We start with the fact that

rank(JX) <min(n — 1,p) and rank([JX,Jy]) <min(n—1,p+1). (21.42)

Although (3.32) leads to rank(JX) < min(n, p), this n is replaced by n — 1 in
(21.42) since 1,/JX = 0,: The n rows of JX are not linearly independent, thus rank
(JX) is less than n. The inequalities in (21.42) imply

rank(JX) <p and rank([JX,Jy])<p+1 forn>p+1, (21.43)
rank(JX)<n—1 and rank([JX,Jy])<n—1 forn<p. (21.44)

Now, we suppose that rank(JX) and rank([JX, Jy]) attain their upper limits. Then,
(21.43) leads to that

if n>p+1, rank(JX) = p and rank([JX, Jy]) = p+ 1

21.45
thus, rank(JX) # rank([JX, Jy]), ( )

while (21.44) implies that
if n<p, rank(JX) = rank([JX,Jy]) =n—1. (21.46)

How (21.46) leads to the above conclusion [High-Dim] is explained next:

Note 21.6. High-Dimensional Regression

This title refers to the regression in the cases of n < p as in (21.46). This
implies that we can substitute JX into X and Jy into y in (17.9) and (17.11):
For given JX and Jy, the system of linear equations,

JXb = Jy, (21.47)

has a solution of b and thus the value of loss function (21.3) becomes zero.
From (17.12), the solution of b for (21.47) is given by

b= JX)"Jy+{I, — JX) " JX}q (21.48)

with q an arbitrary p x1 vector.

The resulting (21.3) value being O implies a perfect fit, but (21.48) shows
that the solution of b is not unique, since q is arbitrary: Infinitely many
solutions exist. Thus, high-dimensional regression is useless.
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In the ordinary cases with (21.45), (21.47) does not hold: In general, the value of
(21.3) is not zero. However, it is useful, as found in Chap. 4.

An illustration of how high-dimensional regression is useless is shown below,
using the high-dimensional JX (5 x 6) and Jy in Table 21.2. The solution (21.48)
obtained for q = 0y is

b = [0.010,0.198, —0.075, —0.022,0.025,0.196)’, (21.49)
while (21.48) for q = [2,2,-2,2,3,2] is
b = [1.648,-0.937, —2.276, 1.414, 1.480,0.391]’. (21.50)

These two solutions are very different, but both solutions for b attain the perfect fit
f(b) = ||Jy — JXb|*= 0 with JXb = Jy.

Indeed, the vector Jy in Table 21.2 has been artificially generated using the
formula y = JXb + e. Here, b was set to

bue = [-2,1,0,0,0,0]', (21.51)

JX was the same as in Table 21.2, and e is a centered error vector with the absolute
values of its elements somewhat smaller than those of JX. Here, it is important to
note that e is centered: e = Je. Thus, y generated by the above formula
y = JXb + e satisfies y = Jy: The formula may be written as Jy = JXb + e. Thus,
the b minimizing f(b) = ||e||*= [|[Jy — JXb|>= 0 can be expected to be close to
(21.51). In this sense, the subscript “true” has been attached to b in (21.51): If a
procedure provides a solution b close to by, the solution can be considered right.
Unfortunately, both (21.49) and (21.50) are far from by, (21.51), which demon-
strates that high-dimensional regression is unusable.

It should be noted that the third to final elements in (21.51) are zeros, which
implies Jy = JX[2)bo; + €, with X[, the 5 x 2 matrix containing the first two
columns of X, and byy; = [-2,1]’ containing the first two element of (21.51). For the
final column and the first two ones in Table 21.2 which are Jy and JX|;), respec-
tively, we performed regression analysis. This can be referred to as standard
regression in an ordinary case, since n = 5 > p = 2. The resulting coefficient vector
was b = [-0.167, 0.104]". This is fairly similar to bjp; = [-2,1]". The result can be
restated to claim that a useful solution was obtained, by excluding the last four

Table 21.2 Example of high-dimensional data withn =5<p =6

JX Jy
1.060 0.071 -1.609 -1.923 —1.482 —1.439 -0.131
-1.385 1.763 -0.539 0.652 1.514 -0.293 0.341
-0.137 0.042 0.876 0.826 0.543 1.150 0.162
-0.726 -0.686 0.116 0.442 -0.128 1.113 0.053
1.188 -1.190 1.157 0.003 -0.447 -0.531 -0.425
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columns from JX; in other words, selecting the first two variables among the six
columns of JX. Performing such variable selection computationally is considered
in the next section.

21.7 High-Dimensional Variable Selection by Sparse
Regression

The last section demonstrated the following fact: In the high-dimensional cases of
n < p, standard regression solutions are unusable, but variable selection is useful
for selecting g < n variables among p variables. Sparse regression can be used for
variable selection: It is expected that the coefficients for the g useful variables are
estimated as nonzero, while the remaining coefficients are estimated as zeros, i.e.,
corresponding variables are excluded. We illustrate this in a simulation study
example. Indeed, the illustration with Table 21.2 in the last section also falls under
the category of simulation studies. A generalized setting for such studies is intro-
duced in the following.

Note 21.7. Simulation Studies

What the term simulation stands for differs across disciplines. Here, we deal
with simulation studies used in statistics. These studies are often made for
assessing the performance of analysis procedures, in particular, for the pur-
pose of evaluating “how exactly the parameter values underlying data can be
recovered by the procedures”. What this phrase put in quotation marks means
is explained in the next paragraphs.

Let us suppose that a procedure to be assessed is modeled as

y=1(0,X)+e (21.52)

for an n x 1 data vector y, Here, e is an n x 1 error vector, and n(0, X) is an

n x 1 vector which is a function of an unknown parameter vector 0 to be

obtained and the given matrix X (n X p) containing data not included in y.
The simulation study for (21.52) proceeds via the following steps:

[1] The data vector y is artificially generated with model (21.52). Here, 0
is set to a given vector 0., whose elements, i.e., parameter values, are
specified artificially, while the elements in e are generated randomly,
that is, set to random numbers generated by machine, with the numbers
following a particular probability distribution. The elements of X in
(21.52) are specified artificially or generated randomly.

[2] The analysis procedure to be assessed is carried out for the above y and
X, in order to obtain the solution of 0. Let the resulting 0 be denoted by

0.
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[3] It is assessed whether 0 and 0. are similar or not. If they are similar,

for example, 0, = [2.0, —3.0] and 0= [2.1, =3.2], the parameters are
said to be recovered well and the procedure is considered to be
promising.

The elements of 0. are called the true parameter values, as the aim of the
above study is the assessment of whether the solution approximates 0., or
not.

Simulation studies can also be found, in which the elements of 0., are
generated randomly. The studies can be useful also for assessing procedures
modeled without X, i.e., the ones modeled as y = n(0) + e rather than
(21.52).

We illustrate a simulation study in which (21.52) is the regression model (21.1)
with the intercept ¢ set to 0: Data are artificially generated according to
y = Xb + e as in the next paragraph.

We consider the high-dimensional case with n = 100 < p = 300. The coefficient
vector b set to the true by, Whose elements were filled with zeros except for three
elements, being 2.0, —3.0, and 1.5: Among the 300 true coefficients, only these
three are nonzero. The elements of e = [ey, ..., e1go]’ Were generated randomly so
that they follow a normal distribution whose mean and variance are zero and 0'?,
while the rows of X are generated randomly so that they follow N30o(0300, 6 1500).
Here, the values of o2 and g3 were accommodated so that |le]|*/||y||* = 0.1. This
proportion implies that the 10 percent variation present in data vector y can cor-
respond to errors, roughly speaking; a full explanation is too involved to detail here.

The lasso and L sparse regression procedures were carried out for the data in
y and X generated as above. The values of the tuning parameter w were set as
w = 0.01, 0.02, ..., 0.98, 1.00 in lasso and w = 0.1, 0.2, ..., 9.8, 10.0 in the L,
sparse regression. As a result, the least BIC was attained for w = 0.77 in lasso and
w = 3.0 in Ly. The results for those least BIC are presented in Table 21.3 with the
values of the nonzero elements in by.,.. In the table, MIS stands for the number of
coefficients whose true values are zeros, but estimates are nonzero: In lasso, two
among the 297 (=300 — 3) zero elements in by, were estimated as the nonzero

Table 21.3 Lasso and L, Procedure lasso Lo
i i f

sparse regression estimates for Troe 70 153 94

the true values of nonzero

coefficients, with MIS and -3.0 —2.53 —2.93

BIC values 1.5 1.14 1.49
MIS 2 0
BIC 99.1 69.2
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values 0.03 and 0.05. However, both procedures can be said to provide proper
solutions, in that the estimates of nonzero coefficients in the L sparse regression are
close to the true values, and the lasso estimates of nonzero coefficients are fairly
similar to the true ones, though also found to shrink. The BIC result shows that the
Ly solution is better.

21.8 Bibliographical Notes

Lasso has been treated in a number of books, among which the more recent Hastie
et al. (2015) is recommended. Lasso and related methods have been also treated in
Hastie, Tibshirani, and Friedman (2009). The L, sparse regression is treated in
Bithlmann and van de Geer (2011). There, high-dimensional regression is detailed
in an advanced manner.

Beside the Ly and L; norms, some other penalty functions, which take much
more complicated forms than L, and L; norms, have been proposed for sparse
regression analysis. Fan and Li’s (2010) SCAD and Zhang’s (2010) MC+ are
among those functions.

Exercises

21.1. Summarize the cases when sparse regression procedures are to be used.

21.2. In a procedure called ridge regression (Hoerl & Kennard, 1970), the loss
function to be minimized is defined as (21.4) with Pen(b) = ||b||*= > b]z.
Describe the differences between the ridge regression and lasso.

21.3. The number of parameters (1) in (21.32) is set to (21.33) in sparse regression
procedures and # = p + 2 in standard regression. Show that the number of
parameters may be defined as # = Card(f)) for sparse regression procedures
and n = p for standard regression.

21.4. Functions which satisfy (A.6.7) in Appendix 6 are said to be convex. The
lasso loss function (21.7) is known to be convex (i.e., Hastie et al., 2015).
The proof of this is not easy. In place of it, show that (21.11) is convex.

21.5. In a procedure called adaptive lasso (Zou, 2006), the loss function (21.4)
with Pen(b) = 5‘;1 ocj|bj‘ is minimized over b = [by, ..., b,], for given

7 (std

o

—1 R
weights «;, ..., «,. For example, «; is set to , with b;sm) the solution

of the coefficient for the jth explanatory variable in the standard regression.

o (std) |71

b

21.6. Show that when the number of explanatory variables is small enough, for
example, p = 4, variable selection can be attained by comparing the BIC
values among the solutions for the standard regression analyses with all
possible subsets of the explanatory variables.

Discuss the rationality of using o; =
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21.7.

21.8.

As described in Exercise 15.7, P(Parameters)P(Data|Parameters) is maxi-
mized over parameters in the Bayesian method for estimating parameters.
Discuss how sparse regression analysis, i.e., minimizing (21.4) over b, can
be reformulated as a Bayesian method, in which P(b, az)P(y|b, o, X) is
maximized for the centered block data matrix [X, y] satisfying [X, y] =
JIX, y], where P(y|b, o2, X) is the probability density of y ~ N,(Xb, o’1,)
and P(b, 6%) = a x exp{—(2a2)71anen(b)} with a a suitable constant.
Let us consider performing the simulation study introduced in Note 21.7, in
order to evaluate a multidimensional scaling procedure (Chap. 16), in which
(16.5) is minimized over A = [ay, ..., a,]". In this study, (21.52) is replaced
by q; = |la; — a_,-||2 +e;(i=1,...,n—1,j=i+1, ..., n) with ¢; an error.
Show how [1], [2], and [3] in Note 21.7 are rewritten for the study.



Chapter 22 )
Sparse Factor Analysis e

In the last chapter, modified regression analysis procedures were presented, in
which a coefficient vector is estimated so that it is sparse, i.e., includes a number of
zero elements. Such sparse estimation can be incorporated into other multivariate
analysis procedures, so as to provide sparse solutions. They can be easily inter-
preted, as we may only focus on their nonzero elements. As such, a number of
sparse multivariate procedures have been developed, following the sparse esti-
mation techniques developed in regression. The procedures include sparse factor
analysis (FA) for providing a sparse factor loading matrix. In this chapter, we
introduce the two types of sparse FA procedures. In one of the two, a penalty
function is used, while the function is not used in the other type. This chapter starts
by describing a drawback of confirmatory FA (Chap. 10) which can be handled by
sparse FA procedures.

22.1 From Confirmatory FA to Sparse FA

Let us recall the factor analysis (FA) model in Chap. 10. We present the model
(10.3) again here: A p x 1 random variable vector x = [xy, ..., x,], whose expected
vector is 01,, 1s modeled as

x = Af +e, (22.1)

where A is the p variables x m-factors loading matrix, f is an m x 1 common
factor vector, and e is ap X 1 unique factor vector. The vectors f and e are assumed
to follow multivariate (MVN) distributions as seen in (10.4) and (10.6), which leads
to the MVN distribution (10.9) for x with its covariance matrix (10.10). Then, for
sample covariance matrix V = n~!X'X with X the n individuals x p variables
centered data matrix whose ith row is the transpose of (22.1) observed for indi-
vidual i, the log likelihood is defined as (10.11), i.e.,
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(A, W, ®) = ~log|(A®A’ +¥)"'V| - Zw(A®A’ + W) V. 22
2 2

Here, ® (m x m) is the factor correlation vector (10.5) and ¥ (p X p) is the
diagonal matrix (10.7) including unique variances.

In confirmatory FA (CFA) (Chap. 10), (22.2) is maximized over A, ®, and ¥
under the assumed relationship between variables and factors. An example of this
assumption is given by

X A f e
8x1 8x2 2x1 8x1
X1 ain 0 Factor_1 el
X2 a2l a2 Factor 2 e
X3 a1 0 e3
X4 | = 0 ax +les |, (22.3)
X5 0 asx es
X6 ast 0 e6
X7 an  an e7
X8 0 a2 es

for a data set of eight variables. This is illustrated in Fig. 22.1: Factor 1 is linked to
variables xi, x», X3, X6, and x7, while Factor 2 is linked to x,, x4, x5, X7, and xg. The
assumption can also be restated as a constraint for what loadings in A are to be zero:
In (22.3), A = (aj) is constrained as

app =axn = a4 = as; = asy = ag; = 0. (22.4)

Such zero constraints, in other words, what pairs of variables and factors should be
linked, must be specified by users.

In CFA, the users’ constraints are subjective and might be inadequate. This
problem can be avoided in sparse factor analysis (SFA): Loadings which should be
zero (in other words, what pairs of variables and factors should be linked) are
estimated computationally (i.e., automatically) and objectively. The procedure
performed by SFA can be stated in more precisely to:

Fig. 22.1 Example of CFA 3 7 Vs

T 60303008




22.1 From Confirmatory FA to Sparse FA 363

Optimally and jointly estimate
[A]what loadings in A are to be zero and
[B] the values of nonzero parameters
for a certain number of Card(A).

(22.5)

Here, Card(A) (the cardinality of A) is the number of nonzero elements in A; for
example, Card(A) = 10 in (22.3) with the constraint (22.4). Besides this, a number
of other constraints exist which satisfy Card(A) = 10. In SFA, the optimal one can
be found among these, fogether with the optimal nonzero parameter values.

In this chapter, two approaches to SFA are introduced. One is using a penalty
function whose idea was introduced in the last chapter. This penalized approach is
described in Sects. 22.2-22.5. The other approach is introduced in Sect. 22.6-22.8,
in which a penalty function is not used.

22.2 Formulation of Penalized Sparse LVFA

We introduce an SFA procedure in which the log likelihood (22.2) is combined
with a penalty function which penalizes nonzero valued loadings. It can be called a
penalized sparse latent variable FA (PS-LVFA), as (22.2) is underlain by the latent
variable formulation of FA, as discussed in Sect. 18.2. Out of the procedures that
have been proposed so far, we introduce one by Hirose and Yamamoto (2014) as a
typical PS-LVFA procedure, with only a minor modification here.

In sparse regression treated in the last chapter, the loss function of standard
regression, for which a penalty function is summed, is to be minimized. On the
other hand, the log likelihood (22.2) is to be maximized in FA, and a penalty
function is instead subtracted from (22.2) in PS-LVFA. That is, the function to be
maximized is defined as the log likelihood (22.2) minus penalty function
Pen(A) weighted by nw:

foen(A, ¥, @) = (A, ¥, ®) — nwPen(A). (22.6)

Here, w (> 0) serves as a penalty weight, and this is multiplied by n merely for the
sake of the convenience during the subsequent derivations of equations. This is
maximized over A,¥, and @, subject to ¥ being diagonal and ® being a correlation
matrix.

Hirose and Yamamoto (2014) used the function called MC+ (Zhang, 2010) as
the penalty function (though they also have considered the L;-norm penalty
introduced in the last chapter). It is rather convenient to introduce MC+ in the form
multiplied by w; i.e., w x MC+ defined as
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if |ajk| <wu

2
wMC (aj;w,u) = <|a]k| B m) (22.7)

=

otherwise

o

Here, u and w are tuning parameters to be specified. The function (22.7) takes a
complicated form in order to maintain statistically desirable properties (Zhang,
2010), the details of which are beyond the scope of this book. The sum of (22.7)
over j and k multiplied by n gives nwPen(A) =n3 0, >0, wMC(au;w,u).
Using this and (22.2) in (22.6), we have

forn(A, W, @) = glog‘ (A®A’ + ) V| - gtr(A(I)A’ Ty

— niinC(ajk;w,u).

=1 k=1

(22.8)

The function (22.8) is maximized over A, ¥, and @ for a given [w, u]. Here, we
should note that w and u specify the penalty function n )7 | 70" wMC(aj; w, u),
which controls Card(A) in (22.5). However, the correspondence of w and u values
to Card(A) is unknown before maximizing (22.8): Card(A) is found afterward in the
resulting solution. Thus, it may be more correct to rewrite the final phrase in (22.5)
as in

Optimally and jointly estimate
[A]whatloadings in A are to be zero and
[B] the values of nonzero parameters,
foragiven [w, ] controlling Card(A)

(22.9)

for PS-LVFA.

22.3 Algorithm for Penalized Sparse LVFA

As explained in Appendix A.9.9, the EM algorithm for penalized FA can be used to
maximize (22.8). That is, we may consider maximizing the function (A.9.43) with
8(®) replaced by ny 27 >7;", wMC(ap; w,u) and constant ¢ deleted:

A, Y, @) = — glog|‘l’| - gtr(V —2BA’ + AQA" )Y

m (22.10)
ZWMC Aji; W, ).
1 k=1

'M“

(10g|(1)\ +u®'Q) —n

J
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Here, B and Q are defined as (A.9.18) and (A.9.19), i.e.,
B=VH(®) and Q= W(0®)+H(O)VH(®), (22.11)

with H(®)(p x m) and W(®)(m x m) defined as (A.9.20) and (A.9.21) using
(A9.12), ie., H(®) and W(®) the matrix functions of set @ = {A, ¥, ®}
expressed as

-1
H(®) = (AQA' +¥) 'A® and W(0) = @'/ (Im + cb‘/zA"P*IAcbl/z) @',
(22.12)

In the EM algorithm, E- and M-steps are iterated until convergence is reached, as
explained in Appendices A.8.5 and A.9. In the E-step, the current ® = {A, ¥, @}
values are substituted in (22.11) for providing (22.10). In the M-step, A,¥, and @
are updated so as to increase the value of (22.10). Thus, the algorithm for PS-LVFA
can be summarized as follows:

Step 1. Initialize A,¥, and ®

Step 2. E-step: obtain (22.11).

Step 3. M-step: update A,¥, and ® so as to increase (22.10).

Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

Step 3 is detailed in the next section. Here, we describe the details for Steps 1
and 4. In Step 1, @ is set to I,. Principal component analysis followed by the
varimax rotation (Chaps 5 and 13) is used for initializing A: This is set to the matrix
resulting in the varimax rotation for L,,,A,il/ 2. Here, L,, (p x m) contains the first
m columns of L, and A,, is the first diagonal m x m block of A, with the matrices
L and A obtained by the eigenvalue decomposition in Note 6.1. The initial values of
the diagonal elements in ¥ are set to those of V — L,,A,, L . Convergence in Step 4
is defined as the difference of the value of (22.8) x 2/n from the previous round
being less than 0.1%.

22.4 M-Step for Penalized Sparse LVFA

In this section, we describe how A, ¥, and ® are updated so as to increase (22.10)
in the M-step.

First, let us consider the updating of A. We can rewrite (22.10) as
¢(A, ¥, ®) = ng(A) +const 5. Here, constjs) is the constant irrelevant to
A = (aj), and
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14 m
g(A) = —Etr(V 2BA’ + AQA"Y ZZWMC(ajk;w,u)
=1 k=1
m m )4 m
=~ ZZ!# ( 2Zalkbjk + Z Z%%k%l) Z wMC(aj; w, u)
k=1 =1 =1 k=1

(22.13)

with V = (vic), A = (ai), B = (bi),Q = (qu). and y; the jth diagonal element of
¥. It should be noted that Q is symmetric with q;; = gj. In order to rewrite (22.13)
further, we use the following fact:

Note 22.1. Summation of gya;.a,; over k and [
The summation of ggaua; over k and [ with gy = gy can be rewritten as

Xm: i qrk@jr = Z Qkka]k + Z Z qrk a1

=1 =1 k=1 £k

= qua, +2 Z Gt + Cljx]
17k

with Clik = Zl#q”afl + X Xisrquaja; not depending on ay. This fact can
be verified by the following example: for m = 3,

3 3
g E quajkajr = (1111 +q12ajla]2+ql3a]laj3)
k=1 I=1

4F (q21aj2aj1 + 6]2265% + 6]23%‘2%’3)
=+ (43161]'34;1 + g3a;ap + 613361,23)
= 612261]?2 + (Chzaﬂajz + qo1apaj + qa3apajz + 6]3zaj3djz) + i)

with Clig) = q“a + g33a 3 + q13a;1a;3 + g31a;3a; not depending on ajp. We
can use gy = qi to rewrite the above equalities as

33
Z Z Ay = 6]22%% +2(qanan + g23apa3) + ¢z
=1 =1
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Using the fact in this note, (22.13) can be rewritten as a function of an element a;;
in A:

glai) = — %h(aﬂc) + cljg- (22.14)
J

Here, c|j 4 does not depend on aj, and

1 v,
h(ag) = Y (—Zajkbjk + qkka]zk +2 Z qklajkaﬂ> + q—k]kwMC(ajk; w, i)

Ik
[, 2 v,
=—<¢a; —— | apby — q; aj + —LwMC(ap; w,u
2{ T~ ( b ./k;% ﬂ)} o (aje; w,u)
2
1 1 2
=—<a, —— | by — qua; — &+ —LwMClag;w,u),
2{ k %k(lk #Zk . ﬂ)} Gk (4 )
1 .Y
= E{ajk - rjk(aj[k])}z— ¢+ —LwMC(ap; w, u)
Gk
(22.15)

with ¢” irrelevant to a; and r(ajy) = (b — Zizquai)/qi being a function of
the (m—1) x 1 vector a;j; containing a;i, ..., a;,, except ay. We suppose ; > 0 and
the positive-definiteness of Q implying gy = w;,Qw; > 0 with w; (m x 1) con-
taining zeros except for the kth element being one (Note 8.2). Then, we can obtain
the loading matrix A that increases (22.13) by performing the minimization of
(22.15) over aj for j=1, ..., p and k=1, ..., m. Using w* :wwj/qkk and
u* = qgu/\;, the minimizer of (22.15) can be given by

ey if Jrie(aj )| < wiu” (22.16)

Signre (a)) (7 () [ -w*) |
Ajke = '
Tik (aj[k] ) otherwise

if u° > 1; otherwise,

aj being the minimizer of (22.15) among a = 0, aj = ri(a;y), and aj
= sign [ (ajy) | whu".
(22.17)
Here, sign[y] and (y), is defined for a real value y as follows: sign[y] =1 and
)+ =yify > 0,sign[y] = =1 and (y), = 0if y < 0, and sign[y] = (y), = 0if y = 0.
In this book, it is too involved to describe how (22.16) and (22.17) can be derived

from (22.15). The derivation of (22.16) is explained in Zhang (2010), and that of
(22.17) is found in Hirose, Ogura, and Shomodaira (2015).
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Next, we consider updating the diagonal elements of ¥ so as to maximize
(22.10) for given A and ®. As explained in Appendix A.9.5, the update formula of
those elements is given by (A.9.24), i.e.,

Y; =vj—2ba;+aQa; (j=1,...,p) (22.18)

Finally, let us consider updating @ so as to increase (22.10) for given A and V.
This increment is attained by decreasing

n(®) = log|®| +®'Q, (22.19)

since its multiplication by —n/2 is only relevant to @ on the right side of (22.10).
For decreasing (22.19), we use a procedure different from Hirose and Yamamoto
(2014): @ is reparameterized using a m X m matrix R as

~1/2 ~1/2

® = diag(R'R)” '"R'Rdiag(R'R) (22.20)
so that @ is a correlation matrix, i.e., a symmetric nonnegative definite matrix
whose diagonal elements are ones. For updating R = (), we use a gradient

algorithm illustrated in Appendix A.6.3: This is iterated to update R to Ry, as

on(®)
OR

Ryew =R — s (22.21)
Here, 97(®)/9R is the m x m matrix whose (k, [) element is dn(®)/dry, and s is a
positive value that guarantees 7(®) > §(®@yey ), With @, the correlation matrix
obtained by substituting (22.21) into R in (22.20). We obtain dn(®)/dry numer-
ically, i.e., through numerical differentiation, as

dn(® 1
Z’(rjk ) - oA (@l = ra +A) = n(@|rg := ru — A)]. (22.22)

Here, A is a small positive value, and n((D\rkl = r,fl) denotes the (22.19) value
following from the substitution of 7}; into r;; with the other elements of R kept
fixed. We use A = 0.01 for the computations in this chapter. Thus, ® is updated
through the following steps:

[1] Set ig = 0.

[2] Sets=1andii=0.

[3] Obtain (22.21) to evaluate n(®) and n(Pyey ).

[4] Setis:=is+ 1.If iy = 20, go to [6]. If is < 20 and 5(®) > n(Dyey ), go to [5].
Otherwise, set s: = s/2 and go back to [3].

[5] Setigr :=ir+ 1 and set R = Ry to provide (22.20).

[6] Finish, if i, =20 or ig =20 or n(®)— n(Ppew)<0.1% otherwise,
go back to [2].
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In conclusion, the M-step is summarized as follows: For all j and &, aj is updated
through (22.16) if > 1 and updated through (22.17) otherwise, after a;y is
obtained. Next, i, j = 1, ..., p, are updated through (22.18). Finally, ® is updated
through the above [1]-[6].

22.5 Using Penalized Sparse LVFA

The PS-LVFA algorithm in the last sections provides the optimal {A,¥, ®} for a
given [w, u]: The resulting {A,¥, ®} depends on the [w, u] value. In order to select
a suitable [w, u], Yamamoto and Hirose (2014) proposed to compare the values of
BIC (8.25) for the solutions following certain [w, u]. BIC for PS-LVFA can be
defined as

BIC = —2I(A, ¥, ®) + 5(w, u) log n, (22.23)

Here, n(w,u) = Card(A;w,u) +p+m(m — 1)/2 is the number of the parameters
whose values are estimated, with Card(A; w, u) the cardinality of the resulting
A which is a function of [w, u], p the number of unique variances, and m(m — 1)/2
that of factor correlations. The rational for this BIC-based selection of {w, u} is
explained in Zou, Hastie, and Tibshirani (2007). We also use this procedure.

For illustration, we performed PS-LVFA for the correlation matrix processed by
Yanai and Ichikawa (Table 19.2), setting m = 3 following their approach. Here, the
50 x 50 combinations of w and u values were considered, with w = 1/30, 2/30, ...,
50/30, while u = 1, 1 + 1/25, 1 + 2/25, ..., 1 + 49/25. The solution for w = 0.167
and u = 1.4 gave the least BIC and is presented in Table 22.1 with the blank cells
indicating estimates of zero. By noting the nonzero loadings in the table, we can
interpret the three factors reasonably, as Yanai and Ichikawa (2007, p. 291) did for
their solution resulting in the exploratory FA followed by rotation. The first, sec-
ond, and third common factors (i.e., columns) in A can be interpreted as standing
for emotional instability, extraversion-general activity, and consciousness-agree-
ableness, respectively. The factor correlations in Table 22.1 show that conscious-
ness-agreeableness is slightly positively correlated to the other two factors though
these two have a slightly negative correlation.

We also illustrate PS-LVFA using the correlation matrix in Table 22.2.
Performing an FA procedure for this matrix can be considered an application of
Thurstone’s (1947) box problem, as explained next:

Note 22.2. Thurstone’s Box Problem

In this problem, Thurstone (1947) tried to generate a data set whose variable
j (=1, ..., 20) is defined as a function of the scores in common factor vector
f=[x,y, z]'. Let the function be expressed as vj(x, y, z). This is defined as in
the “variable” column of Table 22.2: For example, v4(x, y, z) = xy for the
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Tablfe 22.1 PS—LVFA. . Variable A p
,Sr‘;lt‘)‘lzoi';‘z’r the correlations in - aversion ~041 | 054 060
Activity 030 |—0.33 0.64 [0.34
Empathy 0.52 0.74
Novelty 0.61 0.63
Durability 0.69 0.52
Regularity 0.79 0.37
Self-revelation 0.64 |0.60
Aggressiveness 0.35 046 [0.62
Lack of 0.47 0.78
cooperativeness
Inferiority feeling 0.67 —0.35 0.49
Nervousness 0.30 0.70 0.49
Depression 0.84 0.30
Factor (0]
1 1.00
2 —-0.15 1.00
3 0.20 0.15 1.00

fourth variable. A data set generated with v;(x, y, z) is known as Thurstone’s
box data, as he used the heights, widths, and lengths of boxes for x, y, and z.

Thurstone considered the ideal solution for the box data as the one in
which variables load the factor(s) used for defining the variables: For
example, the fourth variable should ideally load x and y (as in Table 22.3).
Thus, an FA procedure providing such a solution is regarded as promising.
For this reason, performing an FA procedure for the box data has been called
Thurstone’s box problem. To date, this problem has often been used as a
cornerstone for testing new FA procedures.

The correlations in Table 22.2 were obtained from the 400 x 20 matrix of
box data, which Adachi and Trendafilov (2015) synthesized as follows: The
Jjth variable is given by v(x, y, z) + e;. Here, x, y, and z are generated using a
random number which follows the uniform distribution for the interval [1, 10]
(with its probability density being equal over the real values within the
interval), and [e;, ..., eyl follows No(059, 0.1I9). See Adachi and
Trendafilov (2015) for details.

In this box problem, the w and u values were selected as in the last example. As aresult,
w =04 and u = 1.04 led to the solution with the least BIC, which is shown in
Table 22.3. Here, we can see that the solution is ideal as explained in the above note,
which demonstrates that Hirose and Yamamoto’s (2014) PS-LVFA is a promising
procedure.
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Table 22.3 PSLVFA “yijaple A v

rsr(;ltl)lltéogzlfcz)r the correlations in 2 095 0.10
y* 0.95 0.09
z 0.94 0.12
xy 0.67 0.63 0.18
Xz 0.64 0.64 0.20
¥z 0.64 0.62 0.17
o2+ )" 0.70 0.67 0.11
%+ A2 0.68 0.65 0.13
O*+ A" 0.64 0.67 0.12
2x + 2y 0.69 0.69 0.08
2x + 2z 0.68 0.69 0.08
2y + 2z 0.65 0.68 0.10
log x 0.89 0.21
log y 0.87 0.24
log z 0.89 0.22
xyz 0.47 0.49 0.54 0.25
o2+ A" 0.58 0.53 0.54 0.11
e 0.72 0.48
¢ 0.70 0.52
& 0.71 0.49
Factor [0)]
1 1.00 -0.05 -0.01
2 -0.05 1.00 0.03
3 -0.01 0.03 1.00

22.6 Formulation of Cardinality Constrained MDFA

In this section, we introduce an SFA procedure which features the following
properties: [1] it is formulated with the matrix decomposition approach in Chap. 18,
[2] a penalty function is not used, and [3] Card(A) is specified in advance. From the
properties [1] and [3], the procedure can be referred to as cardinality constrained
MDFA (CC-MDFA).

The property [3] implies that the cardinality of A is constrained in CC-MDFA a
priori as

Card(A) = ¢ (22.24)

with ¢ a specified integer. The CC-MDFA loss function is the MDFA one (18.5),
ie.,
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f<F, UA, ‘1‘1/2> —f(Z,B) = Hx - (FA +U‘I‘1/2) Hz
2225
_ Hx— IF, U] [A,\vlﬂ]’Hz: X — zB'|’. )

Here, Z = [F, U] and B = [A,‘P'/Z} are n x (m+p) and p x (m + p) block

matrices, with F and U containing common and unique factor scores, respectively.
The factor score matrix Z = [F, U] is constrained according to (18.6) and (18.7),
ie.,

12=0,,,, (22.26)
1
“7'7=1,.,. (22.27)
n

In CC-MDFA, (22.25) is minimized over Z and B subject to (22.24), (22.26), and
(22.27).

The cardinality constraint (22.24) allows the final phrase in (22.5) to be rewritten
as in

Optimally and jointly estimate
[A] what loadings in A are to be zero and
[B]the values of nonzero parameters,
for a pre-specified Card(A).

(22.28)

A key point in CC-MDFA is that the loss function (22.25) can decomposed using
Sxz =n"'X'Z as (18.24) i.e.,

2
f(Sxz:B) = [|X = ZSy, || + [ Sxz — BJ, (22.29)
where the right term ||Sxz — BJ|* can be rewritten as (18.25), i.e.,

. 2 .
ISxz — B||*= [ISxr — A||* + | diag(Sxu) — ¥ + [|Sxu — diag(Sxuv)|*.
(22.30)

This implies that (22.25) can be decomposed so that the part dependent on A is just
a simple function

g(A) = [|Sxr — A|l*. (22.31)

This property allows the CC-MDFA algorithm to be formed with a minor modi-
fication of the MDFA one (Chap. 18), as written in the next section.
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The decomposition in (22.29) follows from the constraint (22.27): The key point
in CC-MDFA, i.e., (22.29), no longer holds, without the constraint (22.27) which
implies the common factors being mutually uncorrelated with n~'F'F =1, as
found in (18.4). Hence, the common factors must be mutually uncorrelated, i.e.,
factor correlations cannot be estimated in CC-MDFA. This is a limitation of
CC-MDFA, which contrasts to PS-LVFA in which factor correlations can be
estimated.

22.7 Algorithm for Cardinality Constrained MDFA

In CC-MDFA, only a single constraint (22.24) for A is added to the MDFA con-
straints (22.26) and (22.27). Thus, the procedures for estimating parameters
excluding A is the same as listed in Note 18.1 (Chap. 18).

In the loss function (22.25) or (22.29) with (22.30), only (22.31) depends on the
loading matrix A. Thus, for finding the optimal update formula for A, we may
consider minimizing (22.31) over A subject to (22.24) with the other parameters
ﬁxed This formula can be derived from the fact that (22.31) can be rewritten using

= (a;x) and Sxp = (si) so that

Z S,k"‘ Z (ap — sjk Z s (22.32)

(]k [S3) (]k EN# (]k €Ny

Here, Ry denotes the set of the ¢ pairs of (j, k) for the loadings aj; to be nonzero, Xg

is the set of the pm—c pairs of (j, k) for the aj; to be zero, Z(/ K)ER, S]k stands for the

summation of sfk over the (j, k) contained in ¥y, and we have used

2 2 . . .
Z(j,k)eNo (aw — s)” = Z(,-,k)em (0— Sjk) = Z(j,k)eNo szk' The inequality in
(22.32) shows that g(A) attains its lower limit Z(j,k)eNo s]?k, when the loading
ay with (j, k) € Ry is set equal to sy so that Z(j,k)eN# (ap — s_,-k)2 =
Zo,k)@z# (s — sjk)2 = 0. Furthermore, the limit Z(i,k)eNo s]zk is minimal, when N,
contains (j, k) for the pm — ¢ smallest sfk among all elements of Sxg ® Sxr = (sfk)

or equivalently, when N4 contains (j, k) for the ¢ largest sfk. The update formula of
A = (aj) is thus given by

0 if s3<s?
ik = Jk le]
o { i otherwise (22.33)

with S[ZC] the cth largest value among all elements of Sxg ® Sxg.
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We can find (22.33) to imply that a}k = apsi = 0if sjzk <s[zc] and afk = ajSjik =
s}k otherwise, that is, ajzk = ajsie for every (j, k): A© A=A ©Sxg. This fact
shows that (18.26) holds true also in the CC-MDFA solution, and the use of (18.26)
in (18.18) leads to the standardized loss function value in CC-MDFA being given
by (18.17), as this is derived in Sect. 18.6. Hence, the CC-MDFA algorithm can be
stated by Note 18.1, with the replacement of Step 4 by “Update A = (ajk) and ¥ as
(22.33) and W' = diag(Sxy), respectively”. In the algorithm, A and ¥ are ini-
tialized as described in Sect. 22.3, and the convergence is defined as the difference
of the (18.17) value from the previous round being less than 0.1%.

22.8 Using Cardinality Constrained MDFA

The CC-MDFA algorithm in the last subsection provides the optimal A and ¥ for a
given c¢ in (22.24). Thus, CC-MDFA is convenient for users who wish to pre-
specify the cardinality of loadings, for example, who wish to obtain a solution with
half of the loadings being zero. Such pre-specification of the cardinality cannot be
made in PS-LVFA.

Selecting a suitable c is also possible in Adachi and Trendafilov’s (2015) pro-
cedure based on the following observation. The authors found that the CC-MDFA
solutions are broadly equivalent to the solutions of the likelihood-based CFA, in
which the log likelihood (22.2) is maximized subject to ® = I,, with the locations
of the zero loadings in A constrained to those in the CC-MDFA solutions. This
suggests that BIC (8.25) used for CFA can also be utilized in CC-MDFA. The BIC
value is obtained with

BIC = —2I"(A, ¥, 1I,,) +n(c)log n. (22.34)

Table 22.4 CC-MDFA Variable A ¥

solution for the correlations in -

Table 19.2 Extraversion 0.24 -0.35 0.47 0.59
Activity 0.45 —-0.28 0.63 |0.32
Empathy 0.54 0.67
Novelty 0.64 [0.58
Durability 0.67 0.54
Regularity 0.79 0.37
Self-revelation 0.62 [0.59
Aggressiveness 0.41 0.51 0.54
Lack of cooperativeness 0.47 0.74
Inferiority feeling 0.62 —-0.31 0.49
Nervousness 0.25 0.66 0.49
Depression 0.84 0.29
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Tz;blg 22f.5 }?C-MDIFA  Variable A v
solution tfor the correlations in X2 0.95 0.08
Table 22.2 yz 0.96 0.08
2 0.94 0.09
xy 0.67 0.61 0.17
Xz 0.64 0.64 0.17
vz 0.66 0.63 0.15
o2 +yH” 0.69 0.64 0.10
0%+ A2 0.68 0.64 0.12
O*+ A" 0.66 0.67 0.11
2x + 2y 0.68 0.67 0.08
2x + 2z 0.67 0.68 0.08
2y + 2z 0.66 0.68 0.09
log x 0.89 0.19
log y 0.87 0.23
log z 0.88 0.21
xyz 0.47 0.49 0.54 0.22
o+ + )P 0.57 0.52 0.54 0.10
& 0.71 0.48
& 0.68 0.52
& 0.71 0.49

Here, n(c) = ¢+ p is the number of the parameters (the nonzero loadings in A and
the diagonal elements of ¥) whose values are estimated, and I*(A, ¥, I,,) is the
(22.2) value in which the CC-MDFA solution is substituted with ® = I,,,. Thus, we
can select the solution with the best ¢ within possible ¢ values. They are reasonably
considered as

c=p,...,pm—m(m—1)/2. (22.35)

Here, the lower limit has been set to p, since this prevents A from having an empty
column if ¢ were smaller than the limit. On the other hand, the upper limit has been
set to the number of loadings minus m(m — 1)/2, since m(m — 1)/2 loadings can be
set to zeros, without loss of generality, as discussed in Sect. 12.9.

We performed CC-MDFA for each of the correlation matrices in Tables 19.2
and 22.2, where the solution with the best ¢ was chosen using the above method.
The resulting solutions are presented in Tables 22.4 and 22.5. They are found to be
very similar to the corresponding PS-LVFA solutions: The loadings in Table 22.4
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can be interpreted in the same manner as those in Table 22.1, and Table 22.5
demonstrates that CC-MDFA can solve Thurstone’s box problem as well as
PS-LVFA.

An advantage of CC-MDFA over PS-LVFA is that the solution with the best
BIC can be more easily selected as the number of solutions to be compared is
smaller according to (22.35): ¢ is an integer within a restricted range. In contrast,
the solutions in PS-LVFA vary across the two tuning parameters w and u, which
take continuous real values. Thus, it is impossible to consider the solutions with all
possible w and u. Additional work is required to choose candidate values for w and
u, for example, w = 1/30, 2/30, ..., 50/30, and u =1, 1 + 1/25, 1 + 2/25, ...,
1 + 49/25, as in Sect. 22.5. However, factor correlations can be estimated in
PS-LVFA, which cannot be done in CC-MDFA.

22.9 Sparse FA Versus Factor Rotation in Exploratory FA

As described in Chaps. 12, 13, and 18, the exploratory FA (EFA) solution has
rotational indeterminacy: If A is the optimal loading matrix which optimizes the
EFA objective function, At = AT is also optimal in that the function value remains
the same even if A is replaced by At. Here, T is an m X m rotation matrix
satisfying either (13.3) or (13.9). Thus, a rotation procedure follows EFA in which
the matrix T is obtained so that the resulting At = AT has a desirable property.
This is typically simple structure, as explained in Chap. 13. How this simple
structure is related to the sparseness is shown by [1] and Table 13.2 in Sect. 13.3:
[1] shows that the sparseness is a feature of simple structure and Table 13.2(A)
illustrates that ideally simple loadings are sparse.

Table 22.6 presents an example of Ar, which was obtained by varimax rotation
following EFA for the data set in Table 19.2. In Table 22.6, the loadings of the
large absolute values are boldfaced. By noting these values, we can make the same
interpretation we did for the sparse FA (SFA) solutions, demonstrating that rotation
following EFA is comparable to SFA. In the next three paragraphs, we discuss some
types of differences between the two procedures.

In general, the loadings resulting from the rotation cannot be exactly zero or
ideally simple as in Table 13.2(A), which differs from the loadings resulting in
SFA. Thus, the loadings whose absolute values are greater than 0.45 have been
boldfaced in Table 22.6, for the sake of easily capturing the loadings to be noted.
However, the threshold 0.45 is a subjectively selected benchmark: An objectively
defined threshold does not exist which distinguishes which loadings should be
noted. Furthermore, only noting the loadings whose magnitudes exceed the
threshold implies that the other loadings should be regarded as zeros. Let us
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Table 22.6 LYFA solutiqn Variable Ar p
fﬁlggg F& 4V,a$$;’;hre°tlzt;3'_‘ Extraversion 024 |-033 | 047 |06l
ings boldfaced for absolute Activity 042 |-0.25 0.65 034
values > 0.45 Empathy 0.60 -0.02 0.02 0.64
Novelty 0.04 |—-0.05 0.62 |0.62
Durability 0.66 —0.08 0.05 0.55
Regularity 0.71 0.05 0.17 047
Self-revelation 0.03 0.16 0.63 |0.58
Aggressiveness —-0.13 0.37 0.55 |[0.54
Lack of -0.23 0.45 0.17 [0.72
cooperativeness
Inferiority feeling —0.18 0.62 —0.30 0.49
Nervousness 0.26 0.72 0.02 041
Depression -0.10 0.83 0.02 [0.30

imagine that the loading matrix in Table 22.6 whose loadings are not boldfaced is
replaced by zeros. Obviously, such a matrix is not the optimally estimated solution.
In contrast, which elements are to be zero are estimated optimally in SFA (e.g.,
Trendafilov & Adachi, 2015).

Another difference of rotation from SFA is that the former does not involve the
original data: As described in Chap. 13, the function Simp(At) or Comp(Ar) is
optimized without a data set. This allows us to consider whether the loading matrix
At = AT resulting in the rotation might embody some simple structure not
underlying the original data. However, At = AT for any rotation matrix T is an
EFA solution optimally fitted to data, as described in Chaps. 12 and 18. That is, the
rotation, in which Simp(Ar) is maximized or Comp(Ar) is minimized, can be
regarded as choosing the simplest Ay = AT among elements in a set of the EFA
solutions {At = AT: T = any rotation matrix}.

Though the properties for the rotation following EFA that have been so far
described might be considered slightly disadvantageous, some advantages also
exist. One follows from the fact that SFA is a constrained version of EFA with a
penalty function such as (22.7) or constraint (22.24). This implies that the EFA
solutions fit better than the SFA ones to a given data set. Thus, the loading matrix
A resulting from the rotation is a better fit to the data set than its SFA counterpart.
Another disadvantage of SFA is that [w, u] in (22.7) or ¢ in (22.24) needs to be
chosen among candidates. Such a cumbersome procedure is not required in rotation
though instead a procedure must be chosen among a variety of the rotation pro-
cedures (Browne, 2001).
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22.10 Bibliographical Notes

Besides Hirose and Yamamoto (2014) referenced in this chapter, Hirose and
Yamamoto (2015), Trendafilov, Fontanella, and Adachi (2017), and Jin, Moustaki,
and Yang-Wallentin (2018) have proposed the procedures included in PS-LVFA. To
the best of our knowledge, only Adachi and Trendafilov (2015) have proposed a
procedure which can be considered as CC-MDFA. Its restrictive version called
sparsest FA has been presented by Adach and Trendafilov (2018b), in which each
row of a loading matrix is constrained to zeros except for a single element, i.e., each
variable is allowed to load a single factor, which implies that the resulting loading
matrix can be said to be the sparsest. The same constraint is imposed in Vichi’s
(2017) disjoint FA.

Here, we must mention that the developments in sparse FA followed on from
sparse principal component analysis (SPCA) for obtaining the sparse weight matrix
(Jolliffe et al. 2003; Shen & Huang, 2008; Zou et al. 2006). Sparse PCA procedures
are summarized well in Hastie et al. (2015) and Trendafilov (2014). Adachi and
Trendafilov (2016) have proposed a sparse PCA version of CC-MDFA for
obtaining the sparse component loading matrix, and its sparse three-way PCA
version has been presented by Ikemoto and Adachi (2016).

Exercises

22.1 Summarize in what ways sparse FA is superior to confirmatory FA.

22.2 Summarize the similarities/differences between sparse FA and EFA fol-
lowed by rotation.

22.3 Let us consider PS-LVFA in which the L;-norm of A (Note 21.1) is used for
Pen(A) in (22.6), i.e., maximizing

fu(A, ¥, ®) = glog (ADA’ +¥)'V| - gtr(A(l)A’ +W) 'V = A,
(22.36)

over A,¥, and ®. Discuss how this maximization can be attained by the EM
algorithm, i.e., the alternating iteration of obtaining B and Q in the function

b1 (AW, D) = — glog|‘l’\ - gtr(V —2BA' +AQA") ¥
2 (22.37)
-3 (log|®| + tr®'Q) — nw|[A]],.

and maximizing it over A,¥, and ®@. Here, B and Q are defined as (22.11)
with (22.12).

22.4 Discuss how the maximization of (22.37) can be attained by the procedures
in Sect. 22.4 with only the update formula of A being modified.

22.5 Show that (22.37) can be rewritten as ¢;(A,¥,®) = ngr(A) + constya).
Here, const;ja; is a constant independent of A, and
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P m
gni(A) = —Etr(V 2BA’ + AQA")Y ZZw|ajk|
=1 k=1
V4 1 m m m )4 m
== Zﬂ vi =2 apbi+ Y Y quapan | =D > wlay
j=1 J k=1 k=1 I=1 j=1 k=
(22.38)

with V= (vi),A = (ai),B = (bi),Q = (qu), and ; the jth diagonal
element of V.

22.6 Show that (22.38) can be rewritten as a function of an element aj in
A: gn (ajk) = —(qkk/npj)hu (ajk) + constyyjj . Here, constpyjy is inde-
pendent of aj, and

1 2 'z
hua (aj) = ) {afk T (ajkbjk —ap )y qkl“ﬂ) } + q—;W\aJ’H ( )
I#k 22.39

1
T2 { — 2ry(aj)aje + 2di (w) | aj }

with aj,y the m — 1) X 1 vector ajy containing a;i, ..., @, except aj,
ik (a,[k]) = (bjk — Z]#qulaﬂ) /qkk (a function of .‘rlj[k]), and
dir(w) = %W/Qkk~

227 Show that minimizing (22.39) over aj can be attained for

= { 0 if —dje(w) < rye(ajy) < di(w)
/ sign[ri (ajp)]{ | (@i )| — die(w) } otherwise ’
(22.40)

Hints are found in (21.11)-(21.14).

22.8 Determine the algorithm for maximizing (22.36) over A,¥, and @, by
considering answers for Exercises 22.3-22.7.

22.9 The definition of local minima is described in Exercise 7.6 (Chap. 7).
CC-MDFA is known to be sensitive to local minima, as is k-means clus-
tering (Chap. 7) for the same reason. This reason can be found in the
similarity between the update formulas (7.19) and (22.33). Consider and
discuss how these formulas are similar.

22.10 Discuss that the possibility of a CC-MDFA solution being a local minimizer
can be reduced with the multi-run procedure described in Exercise 7.6
(Chap. 7).

22.11 Adach and Trendafilov (2018b) proposed the constrained FA procedure, in
which each row of the loading matrix A is constrained to zeros except a
single element. Discuss how this procedure is useful for clustering
variables.
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22.12

22.13

22.14

22.15

22.16

In Adachi and Trendafilov’s (2016) procedure called unpenalized sparse

loading principal component analysis (USLPCA), ||X fPC'HZ is mini-
mized over P (n x m) and C (p x m) subject to n 'P’P=1, and
Card(C) = (pre-specified integer), with m < rank(X). Show that the
function can be decomposed as

IX — PC'|*= ||X — PSp]|* + nl|Sxp — C|I? (22.41)

with Sxp = n~X'P.

Let us consider the minimization of (22.41) over C = (cy) subject to
Card(C) = [ with P kept fixed. Explain that the minimization can be attained
for

0 if &P <g?
= a = 22.42
€k { s]?,ip otherwise ’ ( )

where s;-,((P is the (j, k) element of Sxp and S [l]2 is the Ith largest value among
all elements of Sxp ® Sxp = (sjzk).

Show that (22.41) can be rewritten as ntr(V —2n 'C'X'P+CC’) and
minimized over P for

P=/nl'Z =XCEA'Z (22.43)

subject to n~'P'’P = I,,, for a given C. Here, V = n~'X'X, and the matrices
I', A, and E are obtained through the singular value decomposition
(SVD) of n "?XC, which is defined as n~'/2XC = TAZ’, with I'T =
— —

2’2 =1, and A being a diagonal matrix whose diagonal elements are all
positive.

Show that the loss function |X — PC’||>, in which the matrix C = (c;)

updated as (22.42) is substituted, can be rewritten as ||X—PC’||2:
(ntrV) x 1 with

trCC’
trvV -

t=1- (22.44)

Show that an algorithm of USLPCA in Exercise 22.12 for obtaining the
solution of C can be formed, using (22.42)—(22.44), as follows:

Step 1. Initialize C.

Step 2. Perform the eigenvalue decomposition of C'VC defined as
C'VC = EN’E.

Step 3. Set Sxp = VCEA'Z.

Step 4. Update C = (cj) as (22.42).
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22.17

22.18

22.19

22 Sparse Factor Analysis

Step 5. Finish if the decrease in (22.44) from the previous round is small
enough to be ignored; otherwise, go back to Step 2.

A hint is found in the fact that the substitution of (22.43) in Sxp = n~'X'P
allows it to be rewritten as Sxp = VCEA™'Z'.

Ikemoto and Adachi (2016) have proposed a sparse version of the Tucker2
in Exercise 20.12. This is formulated as minimizing (20.62) over A, B, and
H subject to, A’A = 1p, B'B = Iy, and Card(H) = ¢ (pre-specified integer).
Show that (20.62) can be decomposed as

/=X - AH(Ix ® B))|’= | X - AY(Ix @ B)|* +||Y — H|?, (22.45)

with Y = A'’X(Ix ® B).
Explain that for given A and B, (22.45) is minimized over H = (h,,,) subject
to Card(H) = ¢, when hy,, =0 if y;, <yl;; otherwise fy, =y, Here,

Y = (y,y) and y[zc] is the cth largest value among all elements of
YOY= (y;q).

Discuss how the update formula of 4, in Exercise 22.20 is similar to the
Formula (20.50) in the three-way simplimax rotation (Kiers, 1998a).



Appendices

The fundamentals of matrix algebra and computations for multivariate data anal-
ysis, which had not been treated in the main chapters of this book, are described in
Appendices A.1-A.4. That is followed by supplements for Chaps. 8 and 15 in
Appendix A.5. Iterative algorithms are summarized, and a gradient method for them
is illustrated in Appendix A.6. The scale invariance of covariance structure analysis
(Chaps. 9-12) is treated in Appendix A.7. That is followed by Appendix A.8 in
which probability densities and expected values are detailed together with the
principle of EM algorithm. This appendix serves as a preparation for Appendix A.9.
Here, the EM algorithm for factor analysis is detailed which is used for the pro-
cedures treated in Chaps. 10, 12, and 22.

A.1 Geometric Understanding of Matrices and Vectors

In this appendix, fundamental properties of the vectors and matrices are described,
which are considered as geometric concepts.

A.1.1 Angles Between Vectors

Vectors can be depicted as lines (with arrows) as in Fig. A.1. There, we find the
triangle formed by a, b, and a — b with 0 the angle between a and b. For this
triangle, the cosine theorem

2 2 2
lla =b[|"= [la]|” + [Ib[|" —2[|al[|b]| cos 0 (A.L.1)
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Fig A.1 Geometric illustra-
tion of vectors a and b with
0=1[0,..,0I

holds, which readers should have learned in high school. Its left-hand side can be
expanded as ||a]|> +|[b||* — 2a’b, which implies

a’b = ||a]|||b]| cos 6 : (A.1.2)
the inner product of two vectors is the multiplication of their lengths and the cosine
of their angle. Equation (A.1.2) is rewritten as

a’b

cosf = ——.
[[all[[b|

(A.1.3)

The cosine of the angle between two vectors equals the division of their inner
product by their lengths.

Let the angle between vectors s and t be 90°, with their lengths not being zero.
Then, s and t satisfy

s't=0, (A.1.4)

because of (A.1.2) and cos 90° = 0. The two vectors in (A.1.4) are said to be
mutually orthogonal.

A.1.2 Orthonormal Matrix

The p x m matrix W = [wy, ..., W,] satisfying

WW =1, (A.1.5)

is said to be column-orthonormal, as (A.1.5) implies that the column vectors are
mutually orthogonal with W]’.Wk = 0 for j # k and of unit-length HWJH = 1 The term
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Fig A.2 Rotation of vectors
by an orthonormal matrix

“orthonormal” is a composite of “orthogonal” and “normal”, with the latter
adjective standing for ||w;|| = 1.

Let a matrix T be a column-orthonormal and square of p x p. It implies T being
nonsingular and T' = T ! (the inverse matrix of T):

TT=TT =1,. (A.1.6)
Such a T is simply said to be orthonormal. For p x 1 vectors a and b,
|Tal|*= a'T'Ta = a'a = ||a|*, (A.1.7)

|Ta—Tb|*= (a—b)T'T(a—b) = (a—b)(a—b) =|a—b|* (A.18)
the pre-multiplication of vectors by an orthonormal matrix T does not change the

length of the vectors or the distance between the vectors. This implies that the
pre-multiplication simply rotates the vectors, as illustrated in Fig. A.2.

A.1.3 Vector Space

Let H= [hl,...,hp] be an n X p matrix with n > p and b = [bl,...,bp]/ apx1
vector. The purpose of this section is to show what the linear combination of the
column vectors in H, i.e.,

h* = bih; + --- +b,h, = Hb, (A.1.9)

geometrically represents. Here, H = [hl, .. .,h,,] is fixed, while each element of

b = [b1,...,b,] can take any real value: —00 < b; < 00 forj = 1, ..., p.
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(a) Linear combinations of (b) Two-dimensional space (c) Uni-dimensional space
h, and h, for [hy, hy] with its rank 2 for [hy, h,] with its rank 1

Fig. A.3 Spaces spanned by h; and h,

We start with the cases with p = 2, where (A.1.9) is simplified as
h* = b1h; + byh,. (A.1.10)

In Fig. A.3a, the two vectors obtained with (A.1.10) are illustrated when [by, b;] =
[0.6, —1.3] and when [b,, b,] = [1.2, 0.7]. Since vectors h;, h,, and h" are n x 1,
they extend in an n-dimensional space; this is depicted as an ellipse in Fig. A.3.
However, h" cannot extend in arbitrary directions; they are restricted. As illustrated
in Fig. A.3b, h" can only extend on the grayed plane, i.e., on a fwo-dimensional
space, on which h; and h, extend. This plane is formed by (A.1.10) with —00 < b; <
00 and —00 < b, < 0, Here, it should be noted that the ranges of b, and b, are —co
< b; <00 and —00 < b, < 00, which implies the plane extends infinitely, though that
cannot be depicted in the figure due to the limitations of the page. The plane in
Fig. A.3b is called a two-dimensional space spanned by h; and h,. Obviously, this
space is included in the n-dimensional one for n > p = 2. Thus, the grayed plane is
illustrated inside the ellipse in Fig. A.3b. The notions in this paragraph can be
captured intuitively as follows:

Note A.1.1. Intuitive Understanding of Vector Spaces

Let us view the vectors h; and h, in Fig. 1.3b as pencils before our eyes,
with n = 3. Then, we can verify that a sheet (or a thin notebook) can be
located as the grayed plane in Fig. 1.3b; i.e., so that two pencils, h; and h,,
extend on the sheet.

Further, let h™ be another pencil extending in the direction satisfying
(A.1.10). Then, we can verify that pencil h* necessarily extends in the
direction of the sheet; i.e., it cannot extend in a direction different from the
sheet, regardless of the values b, and b, take. Here, the world in which we,
hy, h,, h*, and the sheet exist is a three-dimensional space, but the sheet in
whose direction h;, h,, and h”* extend is restricted to the two-dimensional
space included in the three-dimensional one.
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Though we have supposed so far that h; and h, are linearly independent with
rank([hy, hy]) = 2 in Fig. A.3a, b, the case with h, = ch; (linearly dependent) and
rank([h;, hy]) = 1 is illustrated in Fig. A.3c; linear dependence and the rank of a
matrix were introduced in Sects. 3.9 and 3.10. Then, the space spanned by h; and
h, is one-dimensional; the space is a line when rank([h;,h;]) = 1. It can also be
ascertained that h, = ch; allows (A.1.10) to be rewritten as h* = b{h; + bych; =
(b1 + byc)hy for hy = chy.

Now, let us consider the cases of p = 3, where (A.1.9) is expressed as

h* = byhy + byhy + bsh;. (A.1.11)

This gives the same story as in the previous paragraphs. The three-dimensional
space spanned by hy, h,, and h;, which are linearly independent, is depicted as the
grayed object in Fig. A.4a. Though that space (grayed object) is depicted as a
“plane” in the figure, it is of three dimensions.

In Fig. A.3b, the case is illustrated in which h;, h,, and h; are linearly
dependent, with hy = cih; + c;hs , but h; and h; are linearly independent, and
rank([hy, hy, hs]) = 2. In this case, the space spanned by h;, h,, and hj; is
two-dimensional, since (A.1.11) can be rewritten as h* =bh;+b,
(e1hy + eohs) + bshs = (by + bycy)hy + (bycs + b3 )hs, which implies that the space
spanned by hy, h,, and h; is equivalent to the two-dimensional space spanned by h;
and h;.

The space spanned by hy, ..., h, can be defined for p > 3 in the same manner as
for p =2, 3. This is illustrated in Fig. A.3c. That space is called the column space of
H = [hy,...,h,] and is formally expressed as

EH) = {h*:h* =Hb=>bh + - +Dbyh,; —co<hj<o0,j = 1,...7p}.
(A.1.12)

The dimensionality of the space is equal to r = rank(H). As n > p, this space is
included in the n-dimensional space depicted as the ellipse in Fig. A.3c. Thus, the

(a) Three-dimensional space (b) Two-dimensional space (c) r-dimensional space for
for [hy, hy, h3] with its rank 3 for [hy, hy, hs] with its rank 2 [hy, ..., h,] with its rank » < p

Fig. A4 Spaces spanned by hy, ..., h, for p = 3 and for p > 3
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r-dimensional space spanned by hy, ..., h,, ie., the column space of H, is a sub-
space of n-dimensional space, since a space included in another space is called a
subspace of the latter.

A.1.4 Projection Onto a Subspace

Let us consider a two-dimensional subspace (i.e., plane), which is included in a p-
dimensional space and spanned by the p x 1 vectors w; and w,. Here, they are of
unit length and mutually orthogonal with |w;|| = ||wz|| = 1 and w|w, = 0. Those
equations are summarized into

!
|:x/;:| [W17W2] = W,W = Im' (A113)

with m = 2 and W = [w;, w,] (p X 2). This implies that w; and w, define the
orthogonal axes on the subspace, as illustrated in Fig. A.5. Using f = [fi, 5], whose
elements can take arbitrary real values, any point on the subspace is expressed as

g =WI = fiw +fow,. (A.1.14)

Now, we consider what values the elements of f = [f}, f>]’ should take, subject to
the condition that g (p x 1) is the projection of X; (p X 1) onto the subspace (plane)
spanned by w; and w,. This condition is restated as the difference vector X; — g
being orthogonal to the subspace, which is equivalent to X; — g being orthogonal to

Fig A.5 Projection of a data
vector on a plane
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w, and w, with (X; —g)'w; =0 and (%; — g)'w, = 0. These two equations are
summarized into

(x; — g)'W =0,. (A.1.15)

Substituting (A.1.14) in (A.1.15), we have (X; — WE)'W = 0,, which is rewritten as
%W = f'W'W. In this equation, we can use (A.1.13) to get

f=xW or f=WSx,. (A.1.16)

The above discussions can be generalized to the cases with m > 2. That is,
(A.1.16) expresses the coordinates of the projection of X; onto the subspace
spanned by the columns of W = [wy, ..., w,,| under the condition W'W = I, in
(A.1.13).

A.2 Decomposition of Sums of Squares

As shown in (1.31), the squared norm ||A||*= trA’A expresses the sum of the
squared elements in A. Thus, ||A||2 is also called a sum of squares. It can often be

rewritten as the sum of other sums of squares as [|A||*= ||B||* +||C||>. Such an
equality is generally called the decomposition of the sum of squares. The decom-
position is utilized in the least squares method in which the parameter values are
found that minimize a sum of squares.

A.2.1 Decomposition Using Averages

Let us consider the sum of squares

fe) = |h—cl,|?, (A2.1)

with h an n x 1 vector and ¢ a scalar. We can find that (A.2.1) is minimized when
¢ equals the average of the elements in h:

1
¢=-1h. A22
=, (A22)
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This result follows from the fact that (A.2.1) is decomposed as

2

2
h—cl,|’=||h— l1,,1’h + 11,11/h —cl, A23
|| n n

n n

only the term g(c) = Hn 11,,1' clnH2 is relevant to c¢ in the right-hand side of
(A.2.3), and (A.2 2) allows g(c) to attain its lower limit as g(¢) =
Hn’llnlfih “1,1h—n""1,1 hH = 0. The decomposition (A.2.3)
is derived as follows: (A 2.1) can be rewritten as

|h = c1,|)* = |h — &1, + 1, — 1))

A24
= |h = &1,))* + |1, — c1,])* + 2v, ( )

with v = (h —¢1,) (¢1, — cl,) = ¢h'1, — ch'l, — &Pn+éen = é(né) — c(ne) —
¢’n+ ¢en = 0 following from (A.2.2), or equivalently, 1/h = né.
Next, let us consider the sum of the sums of squares

J
=S |F -z, (A.2.5)
=1

with F and Z; n x m matrices. We can find that (A.2.5) is minimized when F equals

_ 1
=Z=- ZZ,, (A.2.6)
]:1

using the fact that (A.2.5) is decomposed as

SlIF— 2| =gF -2Z||+ 3 |Z - 2" (A2.7)

=1 =1
In the right-hand side, only the term J HF — ZHZ is relevant to F and that term

attains zero when F equals (A.2.6). Decomposition (A.2.7) is derived as follows:
(A.2.5) can be rewritten as

ZHF zf ZHF Z+Z- 2" =J|F - Z||+Z||Z Z||" +2us,

(A.2.8)
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with

J J J J
=Y FZ- 77,
LAY FLY EEE DIl )
J
=IFZ-FY 2,-JZZ+Z ZZ
j=1 j=1
=JFZ —JFZ - JZZ+JZZ =, O,,
where we have used the fact that (A.2.6) implies ZJLI Z; = JZ.
A.2.2 Decomposition Using a Projection Matrix
The n X n matrix
Px = X(X'X)'X/ (A.2.10)

is called a projection matrix for X (n x p). Though the use of (A.2.10) allows us to
generalize the discussions in A.1.4 (e.g., Banerjee and Roy, 2014; Yanai, Takeuchi,
& Takane, 2011), that is beyond the scope of this book. Here, we focus only on the
decomposition of sums of squares using (A.2.10).

Let us consider the sum of squares

f(B) =Y —XB|, (A2.11)

with Y and B being n X g and p X g matrices, respectively, and XX nonsingular.
We find that (A.2.11) is minimized when

XB = PyY, ie,B = (X'X) XY, (A2.12)

using the fact that (A.2.11) is decomposed as
|Y — XB|*= ||Y — PxY|* + ||PxY — XB|>. (A.2.13)
On the right-hand side, only the term |[PxY — XB||* is relevant to B and that term

attains zero for (A.2.12). Decomposition (A.2.13) is derived as follows: (A.2.11)
can be rewritten as
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|Y — XB||> = |Y — PxY + PxY — XB|?

(A2.14)
= ||Y — PxY|]* + |[PxY — XB|* 4 2trC,

with

C = (Y — PxY)'(PxY — XB)

=YPxY - YXB-YPY+YP,XB=,0 (A2.15)
= X % -+ % =, 0,

where we have used Py = Px, Px = Py, and PxX = X.
Solution (4.12) in Chap. 4 is obtained by setting g = 1 and substituting JX and
y for X and Y in (A.2.12):

b= (X'JJX) 'XJy = (XIX)"'XJy, (A.2.16)

where B in (A.2.12) is replaced by b (@ x D).
We should note that n='1,1, in (A.2.3) is also a projection matrix, since sub-

stituting 1,, for X in (A.2.10) leads to Py, = 1,,(1:11”)711;1 =n"'1,1,.

A.3 Singular Value Decomposition

The author believes that singular value decomposition (SVD) is the most important
tool in matrix algebra, as SVD can be defined for any matrix, a number of facts can
be easily derived from SVD, and it plays important roles in matrix computations as
found in Appendix A.4.

A.3.1 SVD: Extended Version

Please, learn this theorem (SVD) by heart as absolute truth!
Theorem A.3.1. SVD (extended version)
Any n x p matrix X with n > p can be decomposed as
X = KAL. (A.3.1)

Here, K (n x p)is ann x p column-orthonormal matrix and L (p x p) is a
p X p orthonormal matrix:
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KK=LL=LL =1, (A3.2)

Ais a p X p diagonal matrix

iy -
R A
A= " A33
. (A33)
L 0.
with its diagonal elements arranged in decreasing order
M= >, >0, (A.34)
the number of the positive diagonal elements being the rank of X:
r = rank(X), (A3.5)

and the blank cells standing for zero elements.

Theorem A.3.1 concerns the SVD of a matrix with the number of rows greater than
or equal to that of columns. The SVD of a matrix with more columns than rows can
be defined simply by transposing both sides of (A.3.1): Any matrix X' (p x n) with
p < n can be decomposed as

X' = LAK, (A.3.6)

with (A.3.2)-(A.3.5).
Theorem A.3.1 shows that we can easily find rank(X) by counting the number of

nonzero diagonal elements in A, if the SVD of X is given. Further, SVD leads to
the following fact: for an n X p matrix X,

rank(X) = rank(X’) = rank(XX’) = rank(X'X). (A.3.7)

Here, the first equality directly follows from (A.3.6), and the rank(X) = rank(XX') =

e )~~~

rank(X'X) follows from the fact that Theorem A.3.1 implies X'X = LAK KAL

I~,/~\21~/ and XX’ = I~(/~\21~{/; the SVD of X'X and that of XX' are I~‘/~\21~Jl and I~(/~\ZI~(/,
respectively.
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A.3.2 SVD: Compact Version

Let us consider the same matrices as in Theorem A.3.1, and let K and L be the
matrices containing the first » columns of K and L, respectively, with K =
[K,K(,_] and L = [L,L(, )] being block matrices (whose introduction is found

in Sect. 14.1). Here, K(,—,, and L,-,, contain the last p — r columns of K and L,
respectively. Further, let A be the r x r diagonal matrix whose diagonal elements
are A1, > --+ > A,. Then, the right-hand side of (A.3.1) is rewritten as

I A L /
KAL = [K’ K(p—l‘)} 0 L/ — KAL . (A38)
p—rIp—r 'p—r

Theorem A.3.2. SVD (compact version)
Any n X p matrix X with rank(X) = r can be decomposed as

X = KAL'. (A.3.9)
Here, K (n x r) and L (p X r) are column-orthonormal matrices with
KK=LL=1, (A.3.10)
and A is the r X r diagonal matrix

21
, (A3.11)
I

whose diagonal elements are positive and arranged in decreasing order with
> 2>2>0. (A3.12)

The diagonal matrix A is unique; i.e., only a single A exists for X. Further,
if 21, > --- > 1,, K and L are also unique, except for that the signs (i.e.,
positive and negative) of all elements in the corresponding columns of K and
L can be changed simultaneously. That is, (A.3.9) can be rewritten as X =
KAL' = (KDL )(DLAD.)(LD.)". Here, D is an r x r diagonal matrix, each
of whose diagonal elements is either 1 or —1. Since KD_ and LD_. can be
substituted into K and L in (A.3.10), respectively, with A = D_AD,, X =
(KD_)(DLAD_)(LD.)" is also the SVD of X.

Thus, we have the compact version of Theorem A.3.1.
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The /th diagonal element (4;) of A is called the /th largest singular value of X. The
Ith columns of K and L are called the left and right singular vectors of
X corresponding to 4, respectively. Obviously, the SVD of X' is defined as X' =
LAK' with (A.3.10), (A.3.11), and (A.3.12).
Theorem A.3.2 shows that the SVD of XX' and X'X is defined as
XX' = KA’K/, (A.3.13)
X'X = LA’L, (A.3.14)

respectively. The SVDs (A.3.13) and (A.3.14) lead to the sum of squares elements
in X equaling the sum of its squared singular values:

IX|P= rX'X = XX’ = trA? = 22 4 .- + 12, (A.3.15)
since trX'X = tLAK'’KAL' = tLAAL’ = tLA’L' = tA’L'L = trA>. If
rank(X'X) = p, then it is a nonsingular square matrix and its inverse matrix is given
by

(X'’X) '=LA?L. (A3.16)
If p = n and X is nonsingular, then

X '=LA'K. (A.3.17)

A.3.3 Other Expressions of SVD

Let us express the matrices K and L in Theorem A.3.2 as K= [ky,... k;,,
km+17 .. .,k,~] = [KnnK[mﬂ and L = [lla . ~7lmalm+1> .. ~7lr} = [LmaL[mﬂ- Here,

K, = [ki,....ky,] and L, = [l;,...,1,] (A.3.18)

contain the first m columns of K and L, respectively, while
Kjy = Kni1,.. k] and Ly = [Lygq,..00 1] (A.3.19)

contain the » — m remaining columns of K and L, respectively. Then, (A.3.10) is
rewritten as

Kk, =0l =1 and Kk, =L1, =0 for u#v, (A.3.20)
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with u =1, ..., rand v = 1, ..., r. Further, SVD (A.3.9) can be rewritten as
X=/nkli+ - + k0, + A1 Kyl + -+ + 4Kk, which is expressed
in matrix form as

X = KAL' = KmAmL:n + K[m]]A[m]Lim]’ (A321)
with
2 om
Ay = s and A, = - ' ;i.e A—[Am ]
m . [m] X y LGy A[m] .
Am Ar
(A3.22)

By noting (A.3.20), we find

” i
K'K, = L'L, — Lo I, (A3.23)
m m 0 - 0 rimom . oD

0 - 0]

K'K,, = L'L,, equals the r X m matrix whose first m rows are those of I,, and the
remaining rows are filled with zeros. Post-multiplying both sides of (A.3.9) by L,,
and using (A.3.23) leads to

At N [N B
=K, A,
that is,
KAy = XLy, (A.3.24)
Further, post-multiplying both sides by L/, gives
K,A,L, = XL,L . (A.3.25)
We can also use (A.3.23) to rewrite SVD (A.3.9) as

LmAm - X/Krm (A326)
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which follows from

Am Im Am
X'K,, = LAK'’K,;, = [Lyy, L] [ A[,,J [rmom] = (Lo, L] [rmom]
= LA

A.3.4 SVD and Eigenvalue Decomposition for Sysmmetric
Matrices

Let us define C = X'X with X treated in Theorem A.3.2. As shown in A.3.14, the

SVD of C is given by C = LA%L’. This is also the eigenvalue decomposition
(EVD) of C as found in Note 6.1 and the next theorem:

Theorem A.3.3. EVD of Nonnegative-Definite Matrices

A symmetric matrix C (p X p) being nonnegative-definite is equivalent to
the property of C that it can be rewritten as C = X'X, as described in Note 8.2
(i.e., we find this fact, if the matrices S and B in Note 8.2 are rewritten as
C and X').

Let the SVD of X (n x p) be defined as in Theorem A.3.2 with
rank(X) = r. Then, the SVD of C = X'X is expressed as

C =LA, (A.3.27)

as already shown in (A.3.14). We can also refer to (A.3.27) as the EVD or
spectral decomposition of C as described in Note 6.1. Here, li (the kth
diagonal elements of A?) is called the kth largest eigenvalues of C, and the kth
column of L is called the eigenvector of C corresponding to /1,%.

As shown above, the SVD and EVD are equivalent for a nonnegative definite
symmetric matrix which is the product of a matrix and its transpose. However, it
does not hold true for a symmetric matrix which is not nonnegative-definite, as
shown next.

Let S be an arbitrary n x n symmetric matrix with rank(S) = < n. The EVD of
S can be expressed as

S = EOF'. (A.3.28)
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Here, E'E =1, and O is the r x r diagonal matrix with its kth diagonal element 0,
satisfying |0g| > |0k +1]. In general, 0, an eigenvalue of S, can be negative, which
implies that (A.3.28) is not the SVD of S. Its SVD can be expressed as

S = EDDOE. (A.3.29)

Here, D is the r x r diagonal matrix whose kth diagonal element is 1 if 0; > 0, but
—1 otherwise. We can find that D® is the diagonal matrix with positive diagonal
elements, i.e., the singular values of S, and the corresponding singular vectors are
contained in ED and E, with (EDYED = DE'ED = D* =1.,.

A.4 Matrix Computations Using SVD

The purpose of this appendix is to present solutions for the problems of maximizing
some traces of matrix products and reduced rank approximations. Their foundation
is given by the Theorem in Appendix A.4.1.

A.4.1 ten Berge’s Theorem with Suborthonormal Matrices

Definition A.4.1. Suborthonormal Matrix

A matrix is suborthonormal if it can be completed to be an orthonormal
matrix by appending rows, columns, or both, or if it is orthonormal (ten
Berge, 1993, pp. 27-28).

An example of a suborthonormal matrix is A = {gg 8(1)] (ten Berge, 1993,
0.6
p. 28), since we can append the row [0.6, 0.0] and the column | 0.0 | to A so that
—-0.8
08 00 0.6
it can be completed to be orthonormal A={00 01 00 with
06 00 -0.8

~ )~ ~

A=AA =1,

A p x m column—orthonormal matrix B (A4.1)
and B'are suborthonormal with p > m, o
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!
since the p X p matrices [B, C] and [ g, } are orthonormal, with Cap x (p —m) matrix

satisfying B'C = ,,0,,—,, and C'C =1,,—,,,. A suborthonormal matrix has the following
property:

the product of suborthonormal matrices = a suborthonormal matrix  (A.4.2)

(ten Berge, 1983, 1993).
The following theorem concerning suborthonormal matrices gives the founda-
tion for the facts shown in Appendices A.4.2—A.4.5:

Theorem A.4.1. ten Berge's (1993) Theorem

If Sis a p X p suborthonormal matrix with rank(S) =m < p and D =

d,
is ap x p diagonal matrix withd; > --- > d, > 0, then
dp
f(S)=uSD<tD,, =d; + --- +d, <trD, (A4.3)
d,
with D, = the m x m diagonal matrix whose diagonal
dn

elements are the first m ones of D.

This theorem has been proved by ten Berge (1983, Theorem 2) in a more gener-
alized setting. As d; + -+ + d,, < trD obviously holds, this has been added to ten
Berge’s (1993, p. 28) inequality in (A.4.3).

A.4.2 Maximization of Trace Functions

In this section, we consider the maximization problems for three forms of trace
functions. Here, the sentence “maximize f(B) over B s.t. g(B) = ¢” means “obtain
the matrix B that maximizes f{B) subject to the constraint g(B) = ¢” with “s.t.” the
abbreviation for “subject to”.
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Theorem A.4.2
For an n x p matrix Y with rank(Y) = p, we consider the problem:

Maximize f(C) = trY'C over C(n x p) s.t. C'C =1,. (A.4.4)
This is attained for
C=Uv. (A.4.5)

Here, U (n x p) and V (p x p) are given by the SVD of Y defined as
Y = UDV' with UU = V'V =1, and D a p x p diagonal matrix whose
diagonal elements are all positive.

Proof By substituting Y = UDV’ in f{lC) = trY'C, this is rewritten as f{C) =
trVDU'C = trU’'CVD. The column-orthonormality of U, V, and C implies that U’
CV is suborthonormal, because of (A.4.1) and (A.4.2). Further, r = rank(U'CV) <
p, while D is a p x p diagonal matrix with all diagonal elements positive. Those
facts and Theorem A.4.1 lead to fiC) = trtU'CVD < tuD. Here, the upper bound
trD is attained for (A.4.5) as AUV’) = rtVDU'UV' = trD, with (A.4.7) satisfying the
constraints in (A.4.6) as C'C = VU'UV' = VV' =1, because U'U = V'V =1, and
V being p x p implies VV' = L,.

Theorem A.4.3

For the n X p matrix X in Theorem A.3.2, we consider the following
problem:

Maximize f(A,B) = trA’XB over A(n x m) and B(p x m)

A.4.6
s.t. A’A = B'B = I, with m <r = rank(X). ( )

This is attained for
A=K,T and B=L,T (A4.7)

with K,,, and L,, defined as in (A.3.18) and T an m X m orthonormal matrix.

Proof By substituting (A.3.9) (the SVD of X) in f{A,B) = trA’XB, this is rewritten
as flA,B) = rA’KAL'B = trL'BA'’KA. As found in (A.3.10) and (A.4.6), K, L, A,
and B are column-orthonormal, and L'BA'K is suborthonormal because of (A.4.1)
and (A.4.2). Further, rank(L'BA'’K) < m < r, while A is an r X r diagonal matrix
with all diagonal elements positive. Those facts and Theorem A.4.1 lead to
f(A, B) = tL’'BA’KA < trA,, with A,, defined as (A.3.22). Here, the upper bound
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trA,, is attained for (A.4.7) as fiK,, T, L,,T) = t'T'’K,,/(KAL")L,,T = ttL'L,, TT'K,,’
KA= trK,,’KAL'L,, = trA,,, with (A.4.7) satisfying the constraints in (A.4.6) as T’
K,’K, T =TL,/'L,T = I, because of (A.1.6) and (A.3.10).

Solution (A.4.7) shows that it is not unique; we can choose an arbitrary
m X m orthonormal matrix as T. Thus, we can choose T in the rotation methods
described in Chap. 13, after obtaining (A.4.7) with T = I,,,. Solutions that can be
rotated as (A.4.7) are said to have rotational indeterminacy. This can be avoided by
adding the following constraint to (A.4.6): A'XB is a diagonal matrix whose diagonal
elements are arranged in descending order. Then, the solution is restricted to A = K,,
and B = L,,, which leads to A’XB = A,,,.

Theorem A.4.4
For the n X p matrix X in Theorem A.3.2, we consider the following
problem:

Maximize f(W) = tW'X'XW over W(p x m)

, , (A4.8)
s.t. WW =1, with m <r = rank(X).

This is attained for
wW=L,T, (A4.9)

with L,, defined as in (A.3.18) and T an m X m orthonormal matrix. The
matrix L,, can also be defined through the EVD of X'X as described in
Theorem A.3.3.

Proof By substituting (A.3.9) in AW), it is rewritten as f(W)=
trW/LA’L'W = trL’WW’'LA2. As found in (A.3.9) and (A.4.8), L and W are
column-orthonormal, and L'WW'L is suborthonormal because of (A.4.1) and
(A.4.2). Further, rank(L'WW'L) < m < r, while Alisanr x r diagonal matrix
with all diagonal elements positive. This fact and Theorem A.4.1 lead to
F(W) = trWX'XW < trAfn, with A,, defined as (A.3.22). Here, the upper bound is
attained for (A.4.9) as f(L,,T) = tr'L'L, TT'L], LA = trA2,, with (A.4.9) satisfy-
ing the constraint in (A.4.8) as T'L,,'L,,,T = L,.

Solution (A.4.9) also has rotational indeterminacy, which can be avoided by
adding the constraint (6.4) (in Chap. 6) to (A.4.8).



402 Appendices

A.4.3 Reduced Rank Approximation

In Chap. 5, principal component analysis (PCA) is introduced as a problem of
obtaining the matrix product FA' that well approximates a data matrix X, subject to
the number of the columns of F and that of A being smaller than the rank of
X. Such a problem can be restated as approximating X by another matrix of lower
rank and is called reduced rank approximation. The theorem for the approximation
is presented next:

Theorem A.4.5. Reduced Rank Approximation
For the n x p matrix X in Theorem A.3.2, we consider the following
problem:

Minimize f(M) = ||X — M||* over M s.t. rank(M) < m < rank(X).
(A.4.10)

This is attained for
M= KmAmLin. (A4.11)

Here, it should be noted that the constraint in (A.4.10) is rank(M) equaling or
being less than m, but solution (A.4.11) is restricted to rank(M) = m.

Proof Using the extended version of SVD (Theorem A.3.1) for M, it is expressed
as M = PQQ’, with PP = Q'Q =I,, and & an m X m diagonal matrix whose
elements are nonnegative. Then, M) is rewritten as

f(PQQ) = [IX - PQQ/|’
= [IX - XQQ' +XQQ' - PQQ||’ (A4.12)
= IX — XQQ'|* +[|XQQ’ — PQQ'||” + 2c.

Here, we can use Q'Q =1, to get

c = (X — XQQ) (XQQ' — PQQ)
= rX’XQQ’ — rX'PQQ’ — rQQ'X'XQQ’ + rQQ'X'PQQ (A.4.13)
= rQ'X'XQ — rX'PQQ’ — rQ’X'XQ + trX'PQQ’ = 0
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and

IX — XQQ'|’= |IX|*—2tX'’XQQ’ + rQQ'X'XQQ’ = | X|*~trQ'X'XQ.
(A.4.14)

Using (A.4.13) and (A.4.14) in (A.4.12), this is further rewritten as
/(PQQ) = [IX|*~rQX'’XQ + | XQQ' — PQQ'|>. (A4.15)

This function can be minimized, if P, Q, and Q are found that simultaneously
maximize trQ'X'XQ and minimize | XQQ' — PQQ'||2. Such P, Q, and Q are given
by

P=K,, Q=A,, and Q=L,, (A.4.16)

which is shown as follows: (A.4.16) allows ||XQQ' — PQQ'H2 to attain its lower
limit, zero, as HXLmL;n — KmAmL:nH2: 0 because of (A.3.25), while Q = L,, in
(A.4.16) maximizes trQ’X'XQ subject to Q'Q =I,,, because of Theorem A.4.4. The
substitution of (A.4.16) in M = PQQ’ leads to (A.4.11). [l

Matrix M in Theorem A.4.5 can be replaced by

M = FA/, (A.4.17)

with F and A being n x m and p x m matrices, respectively. This replacement gives
the formulation of principal component analysis in Chap. 5.

Theorem A.4.5 is referred to as Eckart and Young’s (1936) theorem in some of
the literature. The theorem has been proved in another manner by Takane (2014).

A.4.4 Modified Reduced Rank Approximation

In this section, we treat the reduced rank approximation problems for generalized
canonical correlation analysis (GCCA) and multiple correspondence analysis
(MCA). In this and the following sections, we use

rank(PQR) = rank(Q) if P and R are nonsingular (A4.18)

(e.g., Liitkepohl, 1996).
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Theorem A.4.6. GCCA Problems
For a given n x p block matrix X = [X, ..., X;] with its jth block X; (n x
p;), we consider the following problem:

J
Minimize #(F,C) = Z |F - XjCszover F and C
=1 (A4.19)

1
s.t. —F'F =1, with m <r = rank(X).
n

C
Here, C = : | isthe p X m block matrix with its jth block, C;, being p; x m.
Cy
Problem (A.4.19) is equivalent to

Ly :
Minimize f(F, C) = HXDX‘/ 2 _FC'DY?|| over F and C
n

1 (A.4.20)
s.t.—F'F =1, with m <r = rank(X).
n

X' X
Here, Dx = . is the p X p nonsingular block diagonal
X'/ X
matrix.

Those problems are solved through the SVD of XD;(I/ ?, defined as

XDy /2 = NOoM/, (A.4.21)
with N'N = M'M = I, and @ a diagonal matrix whose diagonal elements are

arranged in descending order. The minimization in (A.4.19) and (A.4.20) is
attained for

F = sN,T and C = /Dy ’M,,®,,T, (A.4.22)
where M,,, and N,,, contain the first m columns of M and N, respectively, @,

is the first m x m diagonal block of ®, and T is an m X m orthonormal
matrix.
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Proof The loss function in (A.4.19) can be expanded as
J J
n(F,C) = JuFF - 2uF Y X, C;j+1r»_ CXX,C
=1 =1

j j
= nmJ — 2tF'XC + trC'DxC,

(A.4.23)

and the function in (A.4.20) multiplied by »n is expanded as

1
x f(F,C) = ntrXDy' X' — 2uD/*X'FC'DY? + —uDY*CFFC'D./
n x f(F,C) = nuXDy Dy X +n Dy X
= ntrXDy' X' — 2X'’FC’' + rC'D C,
(A.4.24)

where the constraint n~'F'F = I,, has been used. Since the parts relevant to F and
C in (A.4.23) are the same as those in (A.4.24), the problems (A.4.19) and (A.4.20)

with the same constraints are equivalent.
Because of (A.4.18), r = rank(X) = rank(XD;(l/z), while rank(n"FC'D)l(/z) <
m <r. Thus, problem (A.4.20) is the reduced rank approximation of XD;(I/ : by

n~'F C'D;(/ * as the approximation of X by M in Theorem A.4.5; the minimization in
(A.4.20) is attained for

1
~FC'DY? =N, ®,M,. (A.4.25)
n

Matrices F and C in (A.4.22) satisfy (A.4.25) and the constraints in (A.4.19) and

(A.4.20).

The constraint of F being centered is added to the above problems in those that
follow:

Theorem A.4.7. MCA Problems

Let us suppose that an n x K block matrix G = [Gy, ..., Gj] is given, with
its jth block G; (n x K;) defined as (14.33) with (14.34). For G, we consider
the following problem:

J
Minimize 4(F,C) = " |[F — G;Gj||” over F and C
j=1
1
s.t. ~=F'F=1,,JF =F,and m <r = rank(JG).
n
(A.4.26)
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Ci
Here, J is defined as (2.10) and C = | : | is the K x m block matrix with
C,
its jth block, C; (K; x m).
Problem (A.4.26) is equivalent to

2

1
Minimize f(F,C) = HJGDG1/2 — ~FC'DY?| over F and C
n

1
s.t.—F'F =1,,JF = F,and m <r = rank(JG).
n
(A.4.27)
GG,
Here, Dg = is the K X K nonsingular block diag-
G';G,
onal matrix, which is a simply diagonal matrix as explained Sect. 14.5.
Those problems are solved through the SVD of JGD(EI/ 2, defined as

JGD;'? = seP, (A.4.28)

with S'S = P'P = I, and ® a diagonal matrix whose diagonal elements are
arranged in descending order. The minimization in (A.4.26) and (A.4.27) is
attained for

F = /nS,T and C = /nDg;"’P,,0,T, (A.4.29)

where S,, and P,, contain the first m columns of S and P, respectively, @,, is
the first m x m diagonal block of @, and T is an m X m orthonormal matrix.

Proof The loss function in (A.4.26) can be expanded as

n(F,C) = JuF'F —2uF' » G,C;+tr  CG;G,C
]Zl ]Zl (A.4.30)

= nmJ — 2uF' JGC + trC'DC,

where we have used the constraints n~'F'F = I, and JF = F. On the other hand,
(A.4.27) multiplied by n is expanded as
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n x f(F,C) = ntrtJGD5' G — 2uDg'*G'JFC'DY?
1
+ —uDy’CFFC'DY’ DY’ (A.4.31)
n
— ntrJGDG'GY' — 20G'JFC' + rC'DgC,

where the constraint n~'F'F = I, has been used. Since the parts relevant to F and
C in (A.4.30) are the same as those in (A.4.31), problems (A.4.26) and (A.4.27)
with the same constraints are equivalent.

Because of (A.4.18), r = rank(JG) = rank (JGD51/2> ,while rank(n~'F'C'DY?)

<m < r. Thus, problem (A.4.27) is the reduced rank approximation of J GD(}l/ : by

n~'FC’ DIG/ % as the approximation of X by M in Theorem A.4.5; the minimization in
(A.4.27) is attained for

1
~FC'DY* =8,0,P,. (A.4.32)
n

The F and C in (A.4.29) satisfy (A.4.32) and the constraints in (A.4.26) and
(A.4.27), where JF = F follows from the fact that F = /nS,, T, in (A.4.29), can be

rewritten as F = /iSOP'P,,0,'T =\/nJGD;'*P, 0, 'T with (2.12). 0

The GCCA and MCA solutions (A.4.22) and (A.4.29) show that they have
rotational indeterminacy. This can be avoided, if the constraint

C'DgC being a diagonal matrix whose
. ) ) (A.4.33)
diagonal elements are arranged in descending order

is added to (A.4.26) and (A.4.27) for the MCA solution. Since (A.4.29) leads to
C'DgC = T’G)iT, (A.4.33) requires T = I,. The indeterminacy of the GCCA
solution can also be avoided, by adding the constraint (A.4.33) with Dg replaced by
Dy to (A.4.19) and (A.4.20), so that the GCCA solution is unique. Then, T in
(A.4.22) is fixed to L,,,.

A.4.5 Modified Versions of Maximizing Trace Functions

In A.4.2, the parameter matrix C was constrained as C'C being the identity matrix.
In this section, C is constrained rather as C'VC being the identity matrix with V a
given positive definite matrix (Note 8.2), and the symmetric square roots V''* and
V™2 are used that satisfy V*VY? =V and V"2V ""2 = V™!, respectively. How to
obtain V2 and V™' from V is described in the following section.
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Theorem A.4.8.

Let us define matrices as Vi; (p1 X p1), Voo (P2 X p2), and Vi, (p1 X p»),
with V;; and V,, symmetric and positive definite. We consider the following
problem:

Maximize trC;Vi2C, over C;(p; x m) and Cy(py X m)

. j , (A.4.34)
s.t. C1V11Cy = C, VG, =1, with m <r = rank(V ).
It is solved through the SVD of V1{”*V,V55"* defined as
v, *V,V,)? = HOR, (A.4.35)

with HH = R'R =1, and Q the diagonal matrix whose diagonal elements are
arranged in descending order. The maximization in (A.4.34) is attained for

C, = V;”H,T and C, = V,,”’R,T, (A.4.36)

where H,, and R,, contain the first m columns of H and those of R,
respectively, and T is an m X m orthonormal matrix.

Proof By defining A, B, and Y as

A=V{c,, B=VYC, (A.4.37)
Y =V, Vv, (A.4.38)
(A.4.34) can be transformed into the equivalent problem:
Maximize trA’YB A(p x d B(py x
aximize tr over A(p; x m) and B(py x m) (A4.39)

s.t.A’A = B'B = I, with m <r = rank(Y),

where we have used r = rank(V,) = rank(Y), following from (A.4.18). Since

problem (A.4.39) is equivalent to (A.4.6) in Theorem A.4.3, the solution for
(A.4.39) is given by

A=H,T and B=R,T, (A.4.40)

when the SVD of (A.4.38) is defined as (A.4.35). Using (A.4.37) in (A.4.40), we
have (A.4.36).
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A related theorem is given next:

Theorem A.4.9.

Let V be a p x p symmetric positive definite matrix and M be a p X
p symmetric and nonnegative definite matrix with its rank . We consider the
following problem:

Maximize tr BMB over B(p x m)s.t B'VB = I, with m <r = rank(M).
(A.4.41)

This is solved through the EVD of V™MV ™2 defined as
vV-12Mv-12 = QO°Q, (A.4.42)

with Q'Q = I, and @ the diagonal matrix whose diagonal elements are
arranged in descending order. The maximization in (A.4.41) is attained for

B =V !2Q,T, (A.4.43)

where Q,,, contains the first m columns of Q, and T is an m X m orthonormal
matrix.

Proof By defining W and Y as
W = V!/?B, (A.4.44)
Y =V 2mv-12, (A.4.45)
(A.4.41) can be transformed into the equivalent problem:

Maximize tr W'YW over W (p x m) s.t W'W = I, with m < r = rank(Y),
(A.4.46)

where we have used r = rank(M) = rank(Y), following from (A.4.18). Since
(A.4.46) is equivalent to (A.4.8) in Theorem A.4.4, the solution for (A.4.46) is
given by

W= QmT7 (A447)

when the EVD of (A.4.45) is defined as (A.4.42). Using (A.4.44) in (A.4.47), we
have (A.4.43).

The solution of (A.4.36) is found to have rotational indeterminacy. Also, it is
possessed by (A.4.43). This indeterminacy is avoided by adding the following
constraint to (A.4.41): B'MB is a diagonal matrix whose diagonal elements are
arranged in descending order. Then, the solution is restricted to B = V~!/2Q,,. This
solution has been used for the canonical discriminant analysis in Chap. 15.
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A.4.6 Obtaining Symmetric Square Roots of Matrices

Let V=UU'be a p x p positive definite symmetric matrix. As in (A.3.13), the SVD
of V = UU' can be defined as V = FA’T” with I'T' = I'T’ = I, and A*ap x
p diagonal matrix. The p diagonal elements of A are all positive with rank(V) = p,
since any positive definite matrix is nonsingular as written in Note 8.2.

The symmetric square root of V is given by

V2 = TAI, (A.4.48)

with each diagonal element of A being the square root of the corresponding one of
A% We can easily verify that V'/?V!'/2 = TAI'TAT” = TAAT" = TA’T" = V.

The inverse matrix of V is expressed as V™' = TA™2I"". Its symmetric square root
is given by

V12 =rA"'I, (A.4.49)

with each diagonal element of A" being the reciprocal of the square root of the
corresponding element in A®. We can easily verify that VoI2y2 =
TA'TTA'T'=TA'A ' =TAT'=V"".

Next, we consider the symmetric square root of the block diagonal matrix

Vi (SN
D= = , which is symmetric and positive
VJ U}Uj

definite. These properties imply that the diagonal blocks V,; = U;'U; (p; X p;) (j =1,
..., J) are also symmetric and positive definite. Thus, the SVD of V; can be defined
as V; = [AT, with T;T; =TT/ = I, and A; the p; x p; diagonal matrix whose p;
diagonal elements are positive.

The symmetric square root of D is given by

vi/? AT
D2 — . — (A.4.50)
v)/? AT

and the root of D! is given by

V;l/z rlAl—lr/]
D2 — = . (A45])
V;l/z FJA;IF‘/]
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We can verify D'/?D'/2 =D and D '/?D'/2=D"! from the fact that
DATTAL] = AT, = V; and TiA ' TI0A; T = TAT, = VoL
GG,
Since Dg = in Theorem A.4.7 is diagonal, its square
G,G,
root ch/ % s simply the diagonal matrix whose diagonal elements are the square
roots of the corresponding ones in Dg. On the other hand, the root of Dal is given

by Dal/ *, whose diagonal elements are the reciprocals of the square roots of the
corresponding elements in Dg.

For the p x p symmetric positive definite matrix V = UU’ which appeared first in
this section, U is called the square root of V. It is given by U = I'A, using
V = I'A’I". The root U can also be used for solving the problems in the previous
appendices. However, we must be careful about whether U or U’ is used in solu-
tions, as U = I'A is not symmetric, which differs from the symmetric matrices in
(A.4.48-A.4.51). Therefore, we chose to use the symmetric roots in this book.

A.5 Normal Maximum Likelihood Estimates

We derive the maximum likelihoods of mean vectors and covariance matrices for
the multivariate normal distributions, which are used in Chaps. 8 and 15.

A.5.1 Estimates of Means and Covariances

Log likelihood (8.20) is presented again here:

n 1< B
i, X) = = log[Z| — 2> (xi — W)= (x; — ), (AS5.1)
=1

In this appendix, it is shown that the maximum likelihood estimates (MLE) of p and
Y maximizing (A.5.1) are given by (8.21) and (8.22), i.e.,

ﬁ:i:EE:&, (A.5.2)
E:V:%‘(m—@m—ﬂﬂ (A5.3)

respectively, on the supposition of X being positive definite.
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For proving that (A.5.2) is the MLE of p, we can use an extension of the
decomposition of the sum of squares treated in Appendix A.2.1, as follows: In the
right-hand side of (A.5.1), only the second term is relevant to p; thus, its maximum
likelihood estimate is the p minimizing that term multiplied by —2:

i=1
n n n _ n A_ .
Sy E - N - YRk Yxr A
i=1 i=1 i=1 i=1
=X I X - XL p— XX+ X T p = 0.

This implies that the term relevant to p in (A.5.4) is only n(X — p)'E (X — p),
which attains the lower limit, zero, for (A.5.2); it gives the MLE for p.
Substituting (A.5.2) in (A.5.1), it is rewritten as

1 n
I(T) = — glog|2| - 5; (x; — X)) (x; — X)

1 n
BTN D STENE] B

- —glog|):| - gtrylv = —g (log|=| + trZ V).

This shows that our remaining task is to minimize log ||+ trE™'V = rX~'V —
10g|2_1‘ over X, which is equivalent to minimizing
g(X) =X 'V —log|Z7!| — log|V| = tZ7'V — log|Z7'V|

= V!2E V2 jog [ VI2E-IYI2, (A.5.7)

where we have used (8.11).
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From Note 8.2, we can express ¥ ' as £~ ' = UU'". Let the SVD of U'V'/2 be
defined as U'V'/2 = ZQI", which implies

vi2E-iyl2 — 1’1 (A.5.8)

with I'T" =I'"T" = I, and Q7 a diagonal matrix whose jth diagonal element is ;> 0.
Using (A.5.8) in (A.5.7), this can be rewritten as

g(X) = rQ* — log(|Q*| x || x [I'))

P P P
= Q> — log|Q| = "w; — Y logw; = h(wy),
j=1 j=1 j=1

(A5.7)

with h(w;) =w; — log o,. Here, we have used the fact that I’ = T'""! and (8.12) leads
to |I'| x |I"| = 1. It is known that the differentiation of h(w;) with respect to w; is
given by I'(w;) = dh(w;)/dw; = 1 — 1/w;, which is found to satisfy

W (w;) <0 for 0<w;<1,

W (w;) =0 for w; =1, (A.5.9)

W (w;) >0 for w; > 1.

This shows that (A.5.7") is minimized for w; = 1(j = 1,...,p), i.e., Q> = I,. Using
this, (A.5.8) is rewritten as

VI2EIVI2 =TT = 1, (A.5.10)

which leads to (A.5.3).

A.5.2 Multiple Groups with Homogeneous Covariances

X
Let us consider an n X p block data matrix X = | : |, whose kth block is an n; x
Xk
p matrix X, (k =1, ..., K) with its ith row being x;;". We suppose X;; ~ N,(u, X),
i.e., that the probability density of x;; observed is given by

1 1 Ie—1
P(in|llk72):WGXP{_E(XH_M)Z (xk,-—uk)}. (A5.11)
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Here, it should be noted that p; has subscript &, but X does not, which implies that
the mean vectors of the distributions differ across K blocks, while their covariance
matrices are homogeneous across them.

We further suppose the rows of X to be mutually independently observed. Then,
the likelihood for X is expressed as the product of (A.5.11) over k=1, ..., K, and
i=1, ..., n

ng 1 , _1
P(X[py, ... pg, X) HH{ p/2|2|1/2 p{_i(x"i_“k)z (ki — 1)
S S Z"i v~ )
= Xl Xvi — R .
(Zn)np/2‘2|n/2 — ki ki k

(A.5.12)
This leads to the log likelihood
n 1
(g B) = — S logl) 7;; ke —my),  (AS.13)
where the terms irrelevant to py, ..., pg, and X have been omitted. Log likelihood
(A.5.13) is maximized for
1 nyg
=% = n_k;X"i’ (A.5.14)
. 1 K n ,
YW= -— - X i —%), A5.15
. > > (X — %) (xu — Xe) ( )

which is proved in the following paragraphs.
Let us rewrite (A.5.13) as —(2/n) log|E| — 25, m(p,) with

) =3 (v — ) S (% — )
o (A.5.16)

= (ke — )5 (v — %) + (e — ) 2 (e — ).

Only this function is relevant to p; in (A.5.13), and the right side of (A.5.16) can be
derived as (A.5.4) and (A.5.5) are derived. This fact shows that (A.5.14) is MLE
for py.
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Substituting (A.5.14) into py in (A.5.13), we can rewrite it as

m

n 1 & Ve =
logI(X) —Elog x| — EZ Z (xp — %) T (X — %)
=1 =1

(A.5.17)
n no n .
:—Elog|2|—§tr2 W:—§(10g|2|+tr2 W),

which is equivalent to (A.5.6) if W is replaced by V. Thus, MLE of X is given by
(A.5.15), i.e., (A.5.3) with V replaced by W.

A.6 Iterative Algorithms

In this appendix, iterative algorithms used in statistical data analysis are first out-
lined, followed by an illustration of a gradient algorithm. Though the descriptions in
this book are very elementary, more advanced and exhaustive descriptions of a
variety of iterative algorithms used in statistical computing are found in Lange
(2010). Further, matrix-intensive descriptions of the algorithms are found in
Hansen, Pereyra, and Scherer (2013) and Absil, Mahony, and Sepulchre (2008).

A.6.1 General Methodology

Let us use ¢(0) for a function of parameter vector 0 = [0, ..., 0,]' to be minimized

and 0 for the solution, i.e., the vector 0 minimizing ¢(0). For log likelihood 1(0), we
can set ¢(0) = —I(0) so that the maximum likelihood method for maximizing 1(0) is
equivalent to minimizing ¢(0). The following stories hold for any optimization
including least squares and maximum likelihood methods.

If the solution © is not explicitly given, we must find 0 by using an iterative
algorithm in which the update of 0 is iterated. By expressing the vector 0 at the t#th
iteration as Oy, any iterative algorithm can be described with the following steps:

Note A.6.1. General Expression of Iterative Algorithm

Step 1. Set O to an initial value vector 0, with # = 0.
Step 2. Update 0[,] to 6[,.,_1] so that ¢(0[H_1]) < (p(ﬂ[t]).

Step 3. Regard Oj,,; as 0 if convergence is reached; otherwise, increase
t by one and go back to Step 2.
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)

Here, the convergence in Step 3 can be defined as ¢(8p,)) — $(O117),

or the maximum of 0,[5] — HI[CH U over k is small enough to be ignored, with 01 the

kth element of 0.

There are various types of iterative algorithms. They can be roughly classified
into three groups: parameter partition, auxiliary function, and gradient algorithms.
They differ with respect to the way in which the update in Step 2 in Note A.6.1 is
performed. We can also combine the three groups of algorithms or two of the three
to form a whole algorithm.

In the parameter partition algorithms, the elements of @ are partitioned into
subsets as 0’ = [0/, ..., 0/, ..., 04'] with the sth subset vector 0, at the 7th iteration
expressed as 9@. Then, Step 2 in Note A.6.1 is divided into the substeps, in each of
which ¢(0) is minimized over only 0, with the other parameter sets kept fixed, and

O — O 1)

the resulting 0, gives GLH U In the most simple case, with S =2 and 0 = [0, 0,],
Step 2 in Note A.6.1 consists of the following substeps:

Step 2.1 Minimize ¢(0,,0,) over 0; with 0, fixed at 6[2’] and the resulting 0,
(that minimizes ¢(0;, 9[;])) gives G[It“].

Step 2.2. Minimize ¢(0;, 0,) over 0, with 0, fixed at G[IH'H and the resulting 0,

(that minimizes ¢(e[{+ '], 0,)) gives 9[21+ 1]‘

This approach is useful for cases in which it is easy to minimize ¢(0) over a subset
of parameters with the other parameters being fixed. The parameter partition
algorithms are also referred to as coordinate descending algorithms as described in
Chap. 21. In particular, such algorithms for least squares problems are known as
alternating least squares (ALS) algorithms (e.g., Young, 1981). Their examples
have been shown in Chaps. 7, 18, 20, and 21.

In auxiliary function algorithms, a different function #(0) is used, which satisfies
o0 =n01) > n(O11)) > P(0.1)) With 7(0) being easier to handle than ¢(0).
Here, the update of 0y leading to #(8;)) > #(Bp1) implies ¢(Orq) > P(Op.1).
One of the auxiliary function algorithms is the EM algorithm originally presented
by Dempster, Laird, and Rubin (1977). Its principle is introduced in A.8.5, and the
EM algorithm specially designed for factor analysis is detailed in A.9.
A book-length description of the EM algorithm is found in McLachlan and
Krishnan (2008). The auxiliary function algorithm also includes the majorization
algorithm introduced in Chap. 16. Majorization algorithms useful for some mul-
tivariate analysis procedures can be found in Kiers (2002).

In gradient algorithms, the differential of ¢(0) with respect to 0 is used. This
type of algorithm is illustrated in the remaining sections.
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A.6.2 Gradient Algorithm for Single Parameter Cases

For introducing the gradient algorithms, we consider an example of ¢(0) to be
minimized:

$(0) = 160" — 19260° + 8800 — 18240 + 1444, (A6.1)

which is a function of a single parameter 0 = [0]. Figure A.6 shows ¢(0) values
against 6, where (A.6.1) is found to attain its minimum at § = 3, i.e., the solution 0=

3. However, we suppose that only formula (A.6.1) is given and 0 is unknown. Then,
a gradient algorithm can be used, in which the derivative of ¢(0) with respect to 6,
%g}): 16 x 40° — 192 x 360”4 880 x 20 — 1824
= 640° — 5760 + 17600 — 1824, (A.6.2)

is noted. The value of (A.6.2) with 0 set to a specific value, 0}, that is,
3 2
Vd)(f)[t])) = 646[1] - 5760[4 +17600;) — 1824 (A.6.3)

is called the gradient of ¢(0) at 0 = 0.
For example,

if 0 =2, then V¢ (2)blank;= 64 x 2° — 576 x 2> + 1760 x 2 — 1824

96,
(A.6.4)
If 0 = 3.8, then V¢h(3.8) = 64 x 3.8° — 576 x 3.8% + 1760 x 3.8 — 1824
= 58.4.
(A.6.5)
Fig. A.6 Function ¢(0) 120
against 6 with arrows
expressing the gradients of 100
¢(0) and a dotted line for
illustrating the convexity of 80

$(0) o

¢ ()

40

20
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These values show the directions of the tangential lines represented as the arrows in
Fig. A.6. Let us note that 0, = 2, giving the negative value (=—96) as (A.6.4), is

less than the solution 0 (=3), while 0}, = 3.8, leading to the positive value (A.6.5), is
greater than 0. These relationships of 0, to the solution 0 generally hold for
(A.6.3); Vp(0,) is negative when 0, < 0; thus, 011 should be updated to a larger
value s0 as to approach the solution 0, while V(0,,)) is positive for 0}, > 0; thus, 0y,
is to be updated to a smaller value to approach 0. This implies that 0, is to be

updated in the direction of —1 x V(0y,), i.e., in the opposite direction of the sign of
V(0. This update is formally expressed as

Oy 1) = 0y — sV (0) (A.6.6)

with s a suitable positive value. The resulting 0.1, can be closer to 0 than Ory, with
dOr417) < (0, if s is suitably chosen.

We find that whether update (A.6.6) is successful or not depends on which s is
chosen. One unsuccessful example is if s = 1 is chosen for 0, = 2. Then, (A.6.4)
and (A.6.6) show Op.q) = O — sVP(0) = 2 — (—96) = 98; the updated 0, ; far
exceeds 0 and ¢ (Opi17) > @(0r). However, such cases can be avoided by choosing
s with the following steps:

Step 2.1. Set s to 1.

Step 2.2. Obtain 0}, with (A.6.6).

Step 2.3. Finish if ¢(0j117) < ¢(0p); otherwise, set s := s/2 and go back to
Step 2.2.

Here, “s := s/2” stands for reduce the s value to half; s is reduced as 1, 1/2, 1/22,
1/2°, ... . When 0, = 2, returning to Step 2.2 seven times leads to 0,1 = 0jy —
sVp(O) =2 — (127) x 98 =2 — 1/128 x (—96) = 2.75, which is close to 0.

The three steps in Sect. A.6.1, with Step 2 in Note A.6.1 replaced by the above
Steps 2.1, 2.2, and 2.3, allow us to find 0 if ¢(0) is convex. Here, the adjective
“convex”, roughly speaking, stands for the fact that the curve of ¢(0) is not a
zigzag. The exact definition, with multiple parameters considered, is as follows:
¢(0) is said to be convex,

(00 + (1 — @)02) < (6)) + (1 — 1) (62), (A6.7)

for every pair of ¢ x 1 vectors 0; and 0,, and every « taking a value within the
range from O to 1. This implies that, as a dotted line in Fig. A.6, the line connecting
the two points of ¢(0) is not lower than ¢(0).

Although more efficient procedures than the one in the above Step 2.3 have been
developed for choosing s (e.g., Boyed & Vandenberghe, 2004), they are beyond the
scope in this book.
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A.6.3 Gradient Algorithm for Multiple Parameter Cases

For multiple parameter cases with 0 = [0, ..., 0,]', update formula (A.6.6) is
extended as

0[,+ 1] = 9[,] — SV(ﬁ(e[t]), (A.6.8)

with V¢ (B, the g x 1 gradient vector, which is the vector 9¢(8)/20 at 6 = 0.
Here, 9¢(0)/90 denotes the partial derivative of ¢(0) with respect to 0. That is,
9¢(0)/30 is the g x 1 vector, and its kth element is the derivative of ¢(0) with
respect to 6; (the kth element of @), where ¢(0) is regarded as a function of only 0,
with ¢(0) = ¢(0;) and 0, (I # k) treated as a fixed constant. For example, when g = 3
and

$(8) = 307 + 605 — 40,05 + 50,05 — 70, + 905, (A.6.9)

its partial derivative is

op(0) | 4¢(01)/d0, 60, — 405
50~ = | 40(02)/d0; | = | 120,450, =7 |. (A.6.10)
d(05)/dbs —40, +50, 49

Note its second element. There, (A.6.9) has been regarded as a function of only 65,
i.e., p(02) = (6)03 + (505 — 7)0, + (307 — 40,05 + 905), with the parenthesized terms
being treated as fixed constants.

In multiple parameter cases, the three steps in the last section are simply replaced
by their vector versions:

Step 2.1. Set s to 1.

Step 2.2. Obtain 0j,,,; with (A.6.8).

Step 2.3. Finish if ¢(Op117) < ¢(B,); otherwise, set s := s/2 and go back to
Step 2.2.

The three steps in Note A.6.1, with Step 2 in Note A.6.1 replaced by the above

steps, allow us to find é, if ¢(0) is convex with (A.6.7). The algorithm with (A.6.8)
is illustrated in Fig. A.7.

Though we have only introduced a procedure using the (first) derivative, more
effective procedures, including one in which first and second derivatives are used,
have been developed, which are beyond the scope of this book. Advanced theories
for gradient and related algorithms are detailed in Absil, Mahony, and Sepulchre
(2008), and Boyed and Vandenberghe (2004). One republication of a classical book
dealing with such theories is Ortega and Rheinboldt (2000).
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Fig. A.7 Ilustration of Oy, ¢(e)
approaching the solution 0 V¢ (e[[_l])
with an increase in ¢, where /

the horizontal axis represents
the g-dimensional space for 0 \v4 ¢ (e[ t])

= [0y, ..., 0,]' and subscript /
t is attached to s, as the

s value chosen for ¢ differs
from the one for 1 — 1

0 %9[&1] O Opq

»

i
B

E_S[z‘]v(e[t]) =811V Q1)

A.7 Scale Invariance of Covariance Structure Analysis

The procedures treated in Chaps. 9—12 can be generally referred to as covariance
structure analysis (CSA), as explained in Sect. 9.4 with Note 9.2. These procedures
have the property that the value of the objective function for the unstandardized
solution is equivalent to the value for the corresponding standardized solution. This
property is called scale invariance: CSA is said to be scale invariant. In this
Appendix, the invariance is defined exactly, and we show that path analysis treated
in Chap. 9 and factor analysis in Chaps. 10 and 12 are scale invariant. Furthermore,
it is also shown that their unstandardized solutions can be straightforwardly
transformed into the corresponding standardized ones. The scale invariance of
structural equation modeling (Chap. 11) is too involved to be treated in this book.

A.7.1 Definition of Scale Invariance

Let X be an n-individuals x p-variables data matrix centered as X = JX with
J=1, - n’llnlil. As described in Sect. 9.4, CSA for X is formulated as maxi-
mizing (9.15), i.e.,

F(Z|V) = glog}z—lw - gtrE_lV (A7.1)

over the parameters in the covariance structure (i.e., model-based covariance
matrix) X (p X p) subject to constraints for X. Here, “IV” has been added to I'(X), in
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order to indicate that the log likelihood (A.7.1) is defined for a given inter-variable
sample covariance matrix V = n 'X'X. A set of the resulting parameter estimates is
referred to as the unstandardized solution.

Now, let us consider performing CSA for the transformed data matrix

Z=XD"! (A.7.2)

with D a p x p diagonal matrix whose diagonal elements d, ..., d, are all positive.
The inter-variable covariance matrix for (A.7.2) is expressed as

1 1 _
R=-7Z7Z=-D'XXD ' =D'VvD .. (A.7.3)
n n

Thus, in CSA for Z, the log likelihood is defined by substituting R into V in
(A.7.1):

I(Z|R) = glog|i‘._lR| - gtri‘._lR, (A7.4)

This maximization over the parameters in the covariance structure p) (p X p) under
the constraints for X provides the CSA solution for (A.7.2) or (A.7.3). Here, we

have attached the tilde symbol (~) to X, as the matrix ) maximizing (A.7.4) differs
from the matrix £ maximizing (A.7.1).

The following theorem can be used to show that (A.7.1) equals (A.7.4) under
certain conditions:

Theorem A.7.1.
Let X(M) denote a set of allowable values for the elements of a matrix
M. If
R(D'ZD!) = R(X) (A.7.5)
holds true, then (A.7.1) is equivalent to (A.7.4):
I*(Z|V) = I'(Z|R), (A.7.6)
which can be rewritten as
F(EV)=r({D'ED'|D'VD ). (A.7.7)

Scale invariance is defined by (A.7.7): An analysis procedure whose objective
function satisfies (A.7.7) is said to be scale invariant.
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Proof Using (4.16), (8.11), and V = DRD that follows from (A.7.3), (A.7.1) can be
rewritten as

I*(Z|V) glogyz*DRngtr):*DRD
—Zlog| (DX ™'D)R| — Str(DL'D)R (A.7.8)

~Zlog|(D'zD')"'R| - Zu(D~'ID) 'R

Comparing this equation with (A.7.4), we find that if (A.7.5) holds true, (A.7.1) or
(A.7.8) is equivalent to (A.7.4) with

r=p'Tp (A.7.9)

By substituting (A.7.3) and (A.7.9) in (A.7.6), this can be rewritten as (A.7.7). |:|

The CSA solution for (A.7.2) is called the standardized solution, when (A.7.2)
contains the standard scores of X; that is, the jth diagonal elements of D are the
standard deviation of the jth variable in centered X. Thus, scale invariance (A.7.7)
implies that the likelihood value for the unstandardized solution equals that for the
corresponding standardized one.

If (A.7.5) holds, we have (A.7.9). This and (A.7.3) lead to

X 'R = tr(D*):D*l)’lD*lVD*1 =tDZ'DD VD! = X'V

and

r(E'V-L)° (X R-1I,)
r(Z7'V)? tr(i‘.ilR)2 '

(A.7.10)

This equality implies that the GFI index (9.18) shows the same value between
unstandardized and standardized solutions, if (A.7.5) holds.

The above theorem shows that the procedures in CSA are scale invariant under
the condition (A.7.5). In the next two sections, it is shown that (A.7.5) holds for the
procedures treated in Chaps. 9, 10, and 12.

A.7.2 Scale Invariance of Factor Analysis

To show that (A.7.5) holds true in confirmatory factor analysis (CFA) (Chap. 10),
we start by considering the constraints imposed on the covariance structure X =
(0x). Among them, the main constraint is (10.10), i.e.,
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T=A0QA + V. (A.7.11)
Further, A = (aj), @, and ¥ on the right side are constrained as follows:

ay =0 if (j, k) € Ry; otherwise any real value, (A7.12)
Wis a diagonal matrix, (A.7.13)

and @ is a correlation matrix. Here, Ry denotes a set of pairs (j, k) with the

corresponding ay set to zero. Those constraints specify X(D™'ED~!) and X(E) in
(A7.5).
The constraint (A.7.11) leads to

D'ED!' =D 'A®A'D ' + D'¥YD ! = AGA’ + V. (A7.14)

with

A=D'A, ®=®, and ¥Y=D'¥D . (A.7.15)

Here, (A.7.11) and (A.7.14) take an identical form. It implies that (A.7.5) holds true
with £ = AGA' + W, if R(A) = R(A), R(®) = X(D), and R(¥) = R(¥). These
three identities are shown in the next paragraph.

We can derive X(A) = X(A) and R(¥) = RX(¥) from the fact that D in (A.7.15)
is diagonal with its diagonal elements d; (j = 1, ..., p) all positive. These properties
of D imply that the (j, k) elements of A = (&;) are expressed as @ = ay/d; and ¥
is the diagonal matrix whose jth diagonal elements are % / dj2 forj=1, ..., p. Thus,
ajx and ¥ can be substituted into aj in (A.7.12) and ¥ in (A.7.13), respectively.
This implies R(A) = R(A) and R(¥) = R(¥). Obviously, R(®) = R(®) follows
from (A.7.15). These results lead to (A.7.5) in CFA, and Theorem A.7.1 implies the
scale invariance of CFA. Furthermore, (A.7.15) show that the standardized solution
is transformed from the unstandardized one by (10.12).

Scale invariance of the exploratory FA (EFA) treated in Chap. 12 follows
straightforwardly from the invariance of CFA. As found in (12.8), £ and D"'ED "

in EFA are given by (A.7.11) and (A.7.14), respectively, with ® = @ fixed to I,
and without constraint (A.7.12). Thus, the equality (A.7.5) with T —AA' + W can
be found from R(A) = R(A) and R(¥) = R(¥) derived in the last paragraph.
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A.7.3 Scale Invariance of Path Analysis

In path analysis (Chap. 9), X = () is constrained through (9.12), i.e.,

1 -1

= (I,-B) Q(I,—B) (A.7.16)

Further, B = (bj) (p X p) and Q = (o) (p X p) on the right side have the following
constraints:

bjx = 0if (j, k) € Roy; otherwise any real value, (A7.17)

Q = (wy) is a covariance matrix among variables for which wy = 0if (k, 1)
€ Qo; otherwise any real value.

(A.7.18)

Here, Ry and 3 denote the sets of (j, k) and (k, [) with their corresponding elements
equal to zeros, respectively.
The constraint (A.7.16) leads to

D '=D' =D (I, -B) 'Q(I, - B) D!

= {@,~B)p} oD@, -B)}

= (D-BD)'Q(D-DB)"’

) (A.7.19)
~ {p(1,~p"'BD)} '2{ (1, - D"'BD) D} 1
— (I, -D'BD) 'D'QD'(I, - D 'BD)"
=(1,-B)'Q, -B)".
with
B=D 'BDand Q =D 'QD . (A.7.20)

Here, (A.7.16) and (A.7.19) take an identical form. It implies that (A.7.5) holds true
with £ = (I, — B) ' Q(I, — B) ™", if R(B) = X(B) and R(Q) = R(L). These two
identities are derived in the next paragraph.

We can show R(B) = X(B) from the fact that the (j, k) element of B being
by = by (di/d;) from (A.7.20), with di/d; > O: by can be substituted into by in
(A.7.17). We can also derive R(Q) = N(Q) from the following two properties: [1]
a matrix being a covariance matrix among variables can be rewritten in the form
n 'Y'JY, with J = I, — n'1,1,,. Thus, we have Q = n~'Y'JY, and from (A.7.20)
Q can also be written in the identical form n~'Y'JY with Y = YD~': Hence © is
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also a covariance matrix. [2] (A.7.20) also shows that the (k, [) element of Q is
O = wy/(did)), with did; > 0. Those properties allow us to find that Q and oy
can be substituted into Q and wy; in (A.7.18), respectively.

The results in the last paragraph demonstrate the scale invariance of path
analysis. Furthermore, (A.7.20) shows that the standardized solution is transformed
from the unstandardized one by (9.20).

A.8 Probability Densities and Expected Values with EM
Algorithm

In this appendix, we describe some details of probability densities and introduce
expected values to explain the foundations of the EM algorithm.

A.8.1 Joint, Conditional, and Marginal Probability Densities

Let x (p x 1) and f (m x 1) be the random vectors whose probability density
functions (PDF) are denoted as P(xI®) and P(fl®), with ® a set of the parameters
specifying those PDF. As illustrated by Fig. 8.3a in Chap. 8, the area below the
PDF expresses a probability. This implies that the integral of any PDF over all
possible values is one: [P(x|®)dx = 1. Integral calculus for probabilities is
detailed in Khuri (2003).

The PDF P(xfl®) stands for the PDF of x and f observed jointly, with
I P(x,f|®)dxdf = 1. In particular, P(x, fl®) is called the joint PDF of x and f, for
distinguishing it from P(xI®) or P(fl®) which is a function of a single vector. In
Fig. A.8, P(x,fl®) is illustrated by a three-dimensional mountain-like object, where
x and f values are represented by the width and depth, respectively. The integral of
the joint PDF P(x,fI®) over all possible f leads to P(xI®):

P(x|®) = /P(x,f|®)df. (A.8.1)

Similarly, P(fl@) is the integral of P(x,fl®) with respect to x:P(f|®) =
J P(x,f|®)dx. The PDF (A.8.1) is illustrated “behind” the mountain in Fig. A.8.
Here, “behind” can be rephrased as “in a marginal territory”. In this sense, (A.8.1) is
called the marginal PDF of P(x, fl®) for x.

PDF P(flx,®) expresses the PDF of f conditional on x being a particular vector.
Thus, P(flx,0) is called the conditional PDF of f, in particular, to distinguish it
from the marginal and joint PDF. The conditional PDF P(flx,®) is illustrated on the
right in Fig. A.8 As seen there, we may consider P(fIx,®) as the cross section of the
mountain in P(x,fl®) corresponding to a particular x value, indicated by a white
real line in Fig. A.8. Similarly, we can consider the PDF P(xIf,®), i.e., the PDF of
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P(x|®)

P(tl x,0)

section

Fig. A.8 Joint, marginal, and conditional distributions

x conditional on f. An important fact regarding probabilities is that the joint PDF of
two vectors is given by the product of the conditional PDF of one of the two
vectors and the marginal PDF of the other vector:

P(x,f|®) = P(f|x, ®)P(x|©) = P(x|f, ®)P(f|®). (A8.2)

This implies

_P(x,f|®)  P(x,f|®)  P(x|f,®)P(f|®) (A.8.3)

P(fx,0) = P(x[®)  [P(x.f|®@)df [ P(x|f,®)P(f|®)df’

which is Bayes’ theorem (15.15) extended to continuous variables.

A.8.2 Expected Values

An expected value refers to the average of a random variable derived theoretically
using probabilities. For example, let x denote a number shown by a dice. The
average of the numbers shown by the dice rolled many times is expected to be
E[x] = 32°_, xP(x) with P(x) (x = 1, ..., 6) the probability that the dice is rolled to
show the number x. The above E[x] defines the expected value of x, which is a
discrete random variable. If x is a continuous random variable taking any real value,
the definition of the expected value can be straightforwardly generalized by
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replacing the summation by an integral: E[x] = [xP(x)dx with P(x) the PDF of
x. The expected value of an m x 1 random vector f= [f}, ..., f,,]', which may also be
called an expected vector, is defined as

Elf] = / £P(f|@)df, (A.8.4)

which is an m x 1 vector with E[f] = [E[fi], ..., E[f]]".

Let us denote a matrix function of f as M(f) (n x m), where the term matrix
function refers to a function providing a matrix. Since vectors are included in
matrices and a scalar is a 1 x 1 matrix, the properties for a matrix function hold true
even if the function produces a scalar or vector. The expected value of M(f) is
expressed as

E[M(f)] = / M(f)P(f|®)df, (A8.5)

which is an n X m matrix with its (i, j) element being the expected value of the
counterpart of M(f). The expected value of M(f) pre-multiplied by a fixed matrix
Y satisfies

E[YM(f)] = YE[M(f)], orequivalently, E[M(f)'Y'] = EM(f)]'Y". (A.8.6)
Let N(f) (n x m) be a matrix function other than M(f). These functions satisfy
E[YM(f) + ZN(f) + C] = YE]M(f)] + ZE[N(f)] + C (A.8.7)

with Y, Z, and C fixed matrices.
Now, let us denote a matrix function of two vectors as H(x, f). Its expected value
over f with x a particular fixed vector is expressed as

E[H(x,f)|x] = / H(x, f)P(f]x, ©)df. (A.8.8)

Here, x being fixed is indicated by the fact that H(f,x) is followed by |x on the left
side and the PDF on the right side is a conditional PDF P(flx, ©®).

A.8.3 Covariances as Expected Values

Let us consider the covariance defined theoretically using probabilities. The
covariance between two random variables x and y is defined as the expected value
of the product of x — E[x] and y — E[y], that is, E[(x — E[x]) (y — E[y])]. Thus, the
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m X m covariance matrix among the m continuous random variables in f = [f}, ...,
]’ s defined as

VIt = E[(t — E[f)(f - E[f)] = / (- E[f))(F - EN)P(1@)df,  (A8.9)

whose (j, k) element is E[(f; — EIf;]) (fc — Elfi])], i.e., the covariance between f; and
S

Covariance matrix (A.8.9) can be rewritten as

V[f] = E[ff'] — E[f|E]f], (A.8.10)
since (A.8.9) can be rewritten as follows:
Vi) = / (] — CE[f] — E[f)f — EFE[))P(£©)df

= / tf'P(£|©)df — / fP(f|@)dfE[f]

(A.8.11)
— E[f] /f’P(f\G))dwaE[f]E[f}/ / P(f|®)df
= E[ff'] — Ef|E[f]' — EfE[f] + E[fE[f],
where we have used (A.8.4) and [ P(f|®)df = 1.
The p X m covariance matrix between X = [xy, ..., x,]" and f is defined as

E[(x — EX))(f — E[f))] = / / (x — E[x))(f — E[f]))'P(x,f|®)dxdf. (A.8.12)

The m x m covariance matrix among the m random variables in f = [f}, ..., f,.]’,
which is conditional on x being a particular vector, is expressed as

Vx| = / (f — E[f|x])(f — E[fx])'P(t|x, ®)df = E[ff'|x] — E[f|x]E[f|x]"
(A.8.13)

Here, the last identity can be derived by (A.8.11) whose E[f], E[ff'], and P(fl®) are
replaced by E[f|x], E[ff'|x], and P(f|x, ®), respectively.
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A.8.4 Expected Values and Covariances of Multivariate Normal
Variables

Let us suppose that a random vector x follows the multivariate normal (MVN)
distribution whose PDF is given by (8.9) (Chap. 8), i.e.,

P(x|p,X) = l(X —p)'E(x - p)} (A.8.14)

1
(2n)1’/2|2|1/2 exp{— 2
Then, the expected vector and covariance matrix for x are known to be
Elx] =pandV[x] = X (A.8.15)

(e.g., Anderson 2003). For this reason, (A.8.14) is described as a PDF with mean
vector p and covariance matrix X. Here, “mean” is a synonym of “average” and
“expected value”.

A.8.5 EM Algorithm

The equations of (A.8.1)—(A.8.8) still hold true, if the vectors in x and f are replaced
by scalars and matrices: For example, the matrix version of (A.8.1) is
P(X|0@) = fP(X,F|®)dF.

Let us consider the maximum likelihood method, in which the log likelihood
logP(X10®) is maximized over parameter matrix @ for a given n x p data matrix X,
as in Chap. 8. For this maximization, the EM algorithm is useful (Dempster, Laird
and Rubin, 1977), when an n x m matrix F is associated with X, and the expec-
tation logP(X, FI®) for a given X, i.e.,

E[log P(X, F|®)[X] = / log P(X, F|®)P(F|X, ®)dF, (A.8.16)

is easier to handle than log P(XI®). The algorithm deals with iteratively obtaining
(A.8.106) for the current @ and updating @ so that(A.8.16) increases. Why this leads
to the maximization of log P(XI®) can be explained by the following inequality,
which Danish mathematician Johan Jensen (1859-1925) presented:
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Theorem A.8.1. A Special Case of Jensen’s Inequality

log E[y] > E[log y]. (A.8.17)

The theorem leads to

P(X,F|B,cw)

P(X,F|O,cv)
log E| ———~ X A.8.1
8 [ P(X.F®) | (A8.18)

X[ >E|l
e ) 25|l
with @,.,, the updated version of @. As proved in this section below, the left and
right sides of (A.8.18) can be rewritten as

P(X,F|O,cv)
log E | ——2 11w | — Jog P(X|@pew) — log P(X|O), AS8.1

E[l P(X.F|Op,) |x] = E[log P(X, F|®,c, ) X] - Ellog P(X, F|@)|X],

TPX FlO)
(A.8.20)
respectively. Thus, we have
lOgP(X|®new) - IOgP(X|®) (A 8 21)

> Eflog P(X, F|@yew)|X] — Ellog P(X, F|©)|X],

by substituting (A.8.19) and (A.8.20) in (A.8.18).

In (A.8.21), we can find that log P(X|®yey) > log P(X|®) is guaranteed, if @ is
updated t0 @,y s0 that E[log P(X, F|@yew)|X] > Ellog P(X,F|®)|X]. Thus, log
P(X|®) can reach its maximum, by iterating the following two steps:

E-step : Obtain E[log P(X, F|®)|X]; (A.8.22)

M-step : Update O so as to increase E[log P(X, F|©)|X], (A.8.23)
i.e.,lead to E[log P(X, F|@yew)] > Ellog P(X, F|®)]. o
Here, the E- and M-steps are the abbreviations for expectation and maximization
steps, respectively. The name M-step follows from the fact that “maximize” can be
substituted for “increase” in that step and indicates the intent.
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Let us prove (A.8.19) and (A.8.20). The latter directly is derived using (A.8.7):

P(X,F|Oey)

E|l
7 P(X, F|O)

X| = Ellog P(X, F|@,,) — log P(X, F|©)|X]

= E[log P(X,F|B,ew)|X] — Ellog P(X,F|0)[X].

On the other hand, (A.8.19) is derived by starting from its right side. It can be
rewritten as

P(X|O®pew) [ P(X,F|Opey )dF / P(X,F|O,cv)

W =1 —————-3dF, (A.8.24

Tpxe) ¥ pxe) ¢/ pxje) U (A8

since of (A.8.1) and [ ¢(F)dF/n(X) = [{#(F)/n(X)}dF, with (X) a function of

X irrelevant to F. The parenthesized fraction in (A.8.24) can be rewritten as
P(X,F[@uey) P(X,F|Opey) PX,F|O) P(X,F|Opey)

P(X|O) B PX,F|®) P(X|O) = P(X,F|O) P(FIX,09), (A.8.25)

where the last identity is derived using (A.8.3). We can substitute
PX, FlO,.)/P(X, FI®) and P(FIX, ®) in (A.8.25) into H(x, f) and P(flx, ®) in the
right side of (A.8.8), respectively, so as to have

P(X,F|Opev) P(X,F|Oyew)
/ WF(FIX, O)dF = E {P(X,FO) |x} : (A.8.26)

This logarithm, i.e., (A.8.24), leads to the left side of (A.8.19).

A.9 EM Algorithm for Factor Analysis

The EM algorithm, whose foundation is introduced in Appendix A.8.5, can be used
for estimating the factor analysis (FA) solution. Here, FA is categorized into
confirmatory (CFA), exploratory (EFA), and sparse (SFA), which are treated in
Chaps. 10, 12, 18, and 22, though the formulation of EFA in Chap. 18 is not related
to the EM algorithm. The descriptions for the EM algorithm in Sects. A.9.1-A.9.5
are common among EFA, CFA, and SFA. The procedures specific to EFA and CFA
are treated in A.9.6—A.9.8, while those for SFA are introduced in A.9.9.
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A.9.1 Outline

Let X =[xy, ..., X,,]' be an n-individual x p-variables centered data matrix to be
analyzed by FA, with V = n”'X'X the inter-variable covariance matrix. The log
likelihood to be maximized in FA can be expressed as (10.11), i.e.,

log P(X|©)  [*(®) = glog (ADA’ + ) 'V| - gtr(AcpA/ +¥)7'V (A9

with @ = {A, ¥, @} a set of the parameters to be estimated. Here, log P(X|®) x /(@)
stands for both of its sides being mutually proportional: as found from (8.19) and
(8.20), log P(X|®) for the multivariate normal (MVN) distribution is the sum of log
likelihood and a constant that is not dependent on ®. In (A.9.1), A is the p X m matrix
containing factor loadings, ¥ is the p x p diagonal matrix whose diagonal elements
are unique variances, and @ is an m x m factor correlation matrix, which can be fixed
to I, in exploratory FA (EFA) as explained in Chap. 12.

In the EM algorithm, E[log P(X, F|®)[X] is considered in order to maximize
(A.9.1), as explained in A.8.5. In this appendix, F = [f}, ..., f,] is the n-individuals
x m-factors matrix of common factor scores, with f; the score vector for individual
i(=1, ..., n). We can view logP(X, F|0) as the log likelihood of @ for F supposed
to be a data set observed together with X (though F is not observed in reality). In
this sense, log P(X, F|®) and E[logP(X, F|®)|X] are referred to as the complete
data log likelihood and expected complete data log likelihood, respectively, in some
literature.

The E-step (A.8.22) and M-step (A.8.23) are iterated until convergence is
reached in the EM algorithm, in order to obtain the FA parameters in @. Before
describing those two steps, we must express the complete data log likelihood
logP(X, F|®) and its expected value E[logP(X, F|®)|X] explicitly. In the next two
sections, logP(X,F|®) and E[logP(X, F|®)|X] are treated subsequently.

A.9.2 Complete Data Log Likelihood

Let us explicitly express log P(X, F|®) for the FA model (10.3), with (10.4) and
(10.6). The matrix version of (A.8.2), P(X, FI®) = PXIF, @)P(FI®), leads to

logP(X,F|®) = logP(X|F, ®) + logP(F|®). (A9.2)
Supposing the mutual independence among X, ..., X,, and that among fi, ..., f, lead

to P(X|F,0) =[[_, P(x;|f;,®) and P(F|®) =[], P(f;|®). Here, the latter
logarithm is found to be
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log P(F|®) = Zlong|® ——1og2n——1og|<b\——2f' o
(A.9.3)

since of (10.4) with (8.19), while the former one can be derived using the next
theorem:

Theorem A.9.1. A Property of the Multivariate Normal Distribution

If x is a p x 1 vector of random variables satisfying x = t + u, with u ~
Ny(n, ), then x follows N,(t + p, ) conditional on t being a particular
vector. This is expressed as

X[t~ N, (t+p, Q), (A.9.4)

with the probability density function (PDF) of N,(t + p, ) denoted by P(x|t)
(e.g., Anderson, 2003).

By taking account of (10.3) and (10.6) in this theorem, we can find P(x/|f;, @) to be
the PDF of N,(Af;, ¥). This fact is expressed as

Thus, the logarithm of P(X|F, ®) = []._, P(x;|f;, ®) is expressed, using (A.9.5) in
(8.19), as

log P(X|F,®) = " log P(x[f;, ®)
i=1

np n 1< R
—710g 2n — 510g|‘l’\ - EZ (x; — Af) ¥ (x; — Af)).

i=1

(A.9.6)

Using (A.9.3) and (A.9.6) in (A.9.2) with ¢ = —271n(p + m)log 2w and V = n XX,
we have
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1 1
log P(X, F|®) = —glogm - EZ (x; — Af,) W (x; — Af;) — glog|<l)| - Engclrlf,- +e
. n n /A1 / 1
_2log‘l‘|2< Z W x,”ZfA\r X+ — ZfA‘P Af)
-z log\(l)\+12f{(b_'f~ +c
2 ni:l l I
= Ziogw| -2 [wve ! - %trix-f’.A’\rl + ltrAif»f’.A"l’*l
2 2 n i=1 Y n i=1 o
o @Hltrif-f’qu te
3 g 4 il
n n 2¢ INTE TS & AL
=—Zlog|¥| - Str( V=23 "xfIA' + —A ) fFA" W
2 2 ni:l n i=1
"o \(I)\+ltrd>’1i:ff’ +
- = - it c.
2 g n !

i=1

(A.9.7)

A.9.3 Expected Complete Data Log Likelihood

In this section, we consider the expected value of (A.9.7) for a given X, i.e.,
Ellog P(X, F|®)[X]. Using (A.8.7) and (A.8.8), the expected value is expressed as
n n 1<,
= —log|¥| - Sur (V —2F [n gx,«fi|X

A’)‘P'
Z 11X )+¢
n n 7/ ny-1_" ~1
:—ilog\‘ﬂ—itr(V—ZBA +AQA"Y —E(log|(l)\+trd) Q) +c,
(A9.8)

Ellog P(X, F|©)[X] = / log P(X, F|®)P(F|X, ©)dF

A'+AE

1 n
;;MHX

—g <log|d)| +u®'E

with

:E[%izjl:x,»fﬁlx ZE [xf|X] = Zfo|x ZXEf|x, ,

(A.9.9)
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1 n
=F|- f.£X| = E ff'X E ff' ; A.9.10
PLEE SECLTES SEL e

Here, we have used E[f;|X] = E[f;|x;] and E[f;f\|X] = E[ff]|x;] which follow
from the mutual independence supposed among xj, ..., X,, and among f;, ..., f,,.

Thus, the E-step (A.8.22) for FA is restated as obtaining (A.9.9) and (A.9.10).
The step is followed by the M-step, in which A, W, and ® are updated separatory so
as to increase (A.9.8). In the next section, we detail the E-step, followed by the
sections regarding the M-step. Here, it should be cautioned that the E-step and how
to update W in the M-step are common for EFA, CFA, and SFA. On the other hand,
the updating of A and ® in the M-step differs among EFA, CFA, and SFA: Their
update in EFA and CFA is described in Sects. A.9.6—A.9.8, while that for SFA is
treated in A.9.9.

A.9.4 E-Step

For obtaining (A.9.9) and (A.9.10), it is required to find how E[f]x;] and E [fif§|xi]
are explicitly expressed under the FA model (10.3), (10.4), (10.6), and indepen-
dence of (10.4) to (10.6). They can be summarized as

o} 2] o

with
Yo = ADA' + ¥ (A9.12)

as found in (10.10). Here, the covariance matrix between x and f being A® is
derived from the fact that E[(e — E[e])(f — E[f])] = E[ef'] =, O,, and thus
E[(x — E[x))(f — E[f])] = E[xf'] = E[(Af +e)f'| = AE[ff'| = A®, since (10.3),
(10.4), (10.9), (A.8.15), and the mutual independence of f and e.

We can derive E[f]x,] and E[f;f}|x;] in (A.9.9) and (A.9.10) from (A.9.11), using
the next theorem:

Theorem A.9.2. Conditional Multivariate Normal Distribution
Let us suppose that the (g + r) x 1 vector [y’, 2], which consists of y (¢ X
1) and z (r X 1), follows an MVN distribution:

i i . .
[ﬂ ~ qﬂ([ﬂy] [E/W ZL]) with p,, p , and X, being g x 1, r x 1,

and g X r, respectively. Then,
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vz~ Ny (y + By B (2 — ), By — 25,18, ) (A9.13)

(e.g., Anderson, 2003).

Comparing this theorem with (A.9.11), we can find

£ix; ~ N, (PA'Zg'x;, @ — GA'TS'AD). (A.9.14)

This and (A.8.15) imply
E[f;|x;] = ®A'ES'x,, (A.9.15)

VIEi|x] = ® — DAL AD. (A.9.16)

Using these two equations in E[ff'|x] = V[f|x] + E[f|x]E[f|x] following from
(A.8.13), we can find

E[tf]x;] = V[fix] + E[f:|x]E[fi[x;)

- o ol e (A.9.17)
— @ — QAT AD + DA'E xX) Tg'AD.

By substituting (A.9.15) and (A.9.17) in (A.9.9) and (A.9.10), these two equa-
tions can be rewritten as

1 n
B=- XEo'AD = VH(O), A9.18
n;XX o (©) ( )

1 n
=@ — QA AP+ DA’ I3 [ =) xx | XS AD
Q © © n; pee (A.9.19)

= W(0)+H(0)VH(O)

with V = n~'X'X. Here, H(®) (p x m) and W(®) (p x m) are matrix functions of
O={A Y 0}

H(0) = L;'A®, (A.9.20)

—1
W(0) = ® — AL AD = @'/ (I +<1)1/2A’\P*1A<1>1/2) @2, (A9.21)



Appendices 437

with ®'2 the symmetric square root of ®: ®'>®"> = ® and ®"*'= @', The last
identity in (A.9.21) has been derived by Adachi (2013, Lemma 1), using the fol-
lowing relation:

Theorem A.9.3. Inverse of a Sum of Matrices (Seber, 2008, p. 309)
Let M and N be nonsingular matrices. Then, we have

MM 'UYM 'U+N)T'YM ' = (M+UNY)™. (A9.22)

We can use (A.9.12) to rewrite ® — ®A'LG'A® in (A.9.21) as ®'"?Q®'* with
Q=1,- ® AL, AD? =1, — @A’ (ADA’ +¥) 'A®'/%. By setting M =
L, U=®"A" Y = A®"? and N = ¥ in the left side of (A.9.22), its right side is
found to be Q= (I,+® AW 'A®"/2)"". This substitution in W(®) =
®'"?Q®"? leads to (A.9.21). Using (A.9.19) with (A.9.21), Adachi (2013) has
shown that Q is positive-definite, if ¥ and @ are positive-definite and V is
nonnegative-definite. See Note 8.2 for the nonnegative- and positive-definiteness.

A.9.5 Updating Unique Variances in M-Step

Let us consider maximizing (A.9.8) over the diagonal ¥ with A = [a,, ..., a,]" and
® kept fixed. We should notice that (A.9.8) can be rewritten as
—(1n/2) 320, hi(y;)+ constyw,. Here, ) is the jth diagonal element of W, constpy is
independent of ¥, and

1
v

4

hi(W;) = logyy; + v
J

(vjj — 2bla + a]/-Qaj) — log; + (A.9.23)

with b; the jth row of (A.9.18), v; the jth diagonal element of V, and
uj = v — 2bja; + a,Qa;.

Thus, the maximization can be attained by minimizing (A.9.23) over y; forj =1,
..., p. The minimizer is given by

lﬁ~ = Mj = ij — 2b}aj + anaj, (A924)

J

from the following fact: The differentiation of (A.9.23) with respect to i; is known
to be given by 7 (1//1) = dh; (tp]) [dy; =1/ — uj/tﬁ]2 = (wj — u,)/l//]2 This shows
that 1} (;) <O for yy; <u;, hi(1;) = 0 for (A.9.24), and 1j(yy;) > Ofory; > u;.
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A.9.6 Updating Factor Covariance in M-Step for CFA

In this section, we consider updating ®. This update is skipped in EFA with @ fixed
to I,. Thus, only the case for CFA is treated here: We consider how (A.9.8) is
maximized over ® with A and ¥ fixed in CFA.

Below (A.9.1), we described that ® is a factor correlation matrix, whose
diagonal elements are restricted to ones. However, ® = (¢;) may be regarded
simply as a covariance matrix without the restriction, on the supposition of ¢;; > 0
G =1, ..., m). This follows from the fact that the log likelihood (A.9.1) can be
rewritten as

(A, W, ®) = glog

(ARORAR +¥) lV’ ~Zu(ARORAR +¥) v,

(A.9.25)

Here,
Ag = Adiag(®)"/? (A.9.26)
Oy = diag(®) > Ddiag(®) /> (A.9.27)

with diag(®)"" the m x m diagonal matrix whose jth diagonal element is (]Sj;l/ ’.
Here, we should note that the elements of (A.9.26) are zeros whose counterparts in
A are constrained to be zeros in CFA and (A.9.27) is a correlation matrix whose
diagonal elements are ones. Those points imply that the maximum attainable value
of (A.9.1) does not depend on whether @ is treated as a correlation matrix or a
covariance matrix. Thus, we choose treating @ as the latter, as a covariance matrix
which does not have the restriction possessed by a correlation one is easier to deal
with.

On the right side of (A.9.8) to be maximized over @, the term relevant to @ is
—(n/2)(log |®| +tr®~'Q). This is found to be equivalent to (A.5.6), if ® and
Q are replaced by X and V, respectively. Thus, (A.9.8) is maximized for

®=Q (A.9.28)

as (A.5.6) is maximized for (A.5.3). Here, it must be kept in mind that ® is treated
as a covariance matrix: A factor correlation matrix and the corresponding loading
matrix are given by (A.9.27) and (A.9.26), respectively. Thus, the matrices ® and
A resulting in the EM algorithm must finally be transformed into the factor cor-
relation matrix (A.9.27) and corresponding loading matrix (A.9.26).
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A.9.7 Updating Loadings in M-Step for EFA and CFA

We consider updating the loading matrix A separately in CFA with the constraint on
A and in EFA without the constraint.

First, let us consider maximizing (A.9.8) over A with ¥ fixed and ® = [, in
EFA. The function (A.9.8) can be rewritten as —(n/2)f{A) + const ) with consta;
independent of A and

f(A) = rtAQA'Y ™! — 2uBA'YP!
A.9.2
_ H\Pfl/ZAQl/Z _ \1171/2BQ—1/2HZ_H\P*I/ZBQ—I/2H2. ( 9 9)

Thus, the maximization of (A.9.8) amounts to minimizing (A.9.29). The minimizer
is given by

A=BQ ', (A.9.30)

2
since only the term H‘I’fl/zAQl/2 —yl2gQl? H is dependent on A on the right

side of (A.9.29) and that term attains the lower limit zero for (A.9.30).

Next, let us consider the case of CFA subject to some elements in A = [ay, ...,
a,]’ constrained to zeros. We can use a procedure of updating A row-wise, in which
the maximization of (A.9.8) over a; with the other parameters fixed is performed for
j =1, ..., p. This follows from the fact that (A.9.8) can be rewritten as
—(n/2) 30, fi(a) /¥ + consty; with consty;; independent of a; and

ﬁ(aj) = aj’Qaj — 2b}aj = aj’Hj’HjQHj’Hja] — Zb;Hj/Hjaj (A931)

Here, H; is the m; X m binary matrix satisfying aﬁ = Hja;, with m; being the

number of the unconstrained elements in a;, and aj# being the m; x 1 vector
aji
obtained by deleting the constrained elements from a;: For example, if a; = | 0
a3

1 00

with the first and third loadings unconstrained, then H; = [ 00 1

] , which leads

a; .. . .
to the vector ai# = Hja; = [aﬂ] containing only unconstrained loadings. The last
. 3

identity in (A.9.31) follows from

aj = H;Hjaj. (A932)
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We can further rewrite (A.9.31) using Qg = HjQH]’. (m; x m;) as
12 ~12 2 —12 2
£A) = Qi Hia; — Qi PHib | - @ Hy | (A.9.33)

Here, the elements of Qg and Hjb; are restricted to the ones of Q and b; corre-
sponding to the unconstrained loadings, respectively. We can find that (A.9.33) is
minimized for H;a; = QﬁlHjbj. Then, the vector a; to be obtained is

a; = HQ,'Hb;, (A.9.34)

since of (A.9.32).

A.9.8 Whole Steps in EFA and CFA

The EM algorithm for EFA with ® =1, consists of the following steps:

Step 1. Initialize A and Y.
Step 2. Obtain (A.9.18) and (A.9.19), with H(®) = (AA’ + ‘I’)flA and W(®) =

(L, —l—A"I’*lAY1 , i.e., the versions of (A.9.20) and (A.9.21) simplified
using ® =1,,,.

Step 3. Update A and the diagonal elements of ¥ through (A.9.30) and (A.9.24)
respectively.

Step 4. Finish if the increase in the value of (A.9.1) with ® =1,,, from the previous
round can be ignored; otherwise, go back to Step 2.

On the other hands, the EM algorithm for CFA consists of the following steps:

Step 1. Initialize A, @, and V.

Step 2. Obtain (A.9.18) and (A.9.19) using (A.9.20) and (A.9.21)

Step 3. Update @, the diagonal elements of ¥, and each row of A through
(A.9.28), (A.9.24), and (A.9.34), respectively.

Step 4. Go to Step 5 if the increase in the (A.9.1) value from the previous round
can be ignored; otherwise, go back to Step 2.

Step 5. Finish with the loading and factor correlation matrices set to (A.9.26) and
(A.9.27), respectively.
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A.9.9 Algorithm for Penalized Factor Analysis

Let g(®) be a penalty function of ® penalizing particular values of parameters in ©,
with g(®) being independent of the random variables in X and F. A penalized FA
(PFA) can be formulated as maximizing (A.9.1) minus g(®), i.e.,

log P(X|0) — (@) x I'(0) — ¢(0) £035
=%log’(A<DA’+‘l')’1V — 1 (ADA' + ) 'V - g(O@), (A.9.35)
over O. PFA includes the penalized sparse latent variable FA (PS-LVFA) treated in

Chap. 22.
To show that the EM algorithm can also be used for PFA, we define

P*(X|@) = P(X|@) exp{—¢(0©)}, (A.9.36)
P#(X,F|®) = P(X,F|®) exp{—¢(®)}. (A.9.37)

PFA can be regarded as maximizing (A.9.36), since the logarithm of (A.9.36)
equals the left side of (A.9.35), and a penalized version of (A.8.21), i.e.,

logP#(X|®neW) - IOgP#(X|®) A.9.38
> E[log P#(X,F|Oye ) [X] — E[log P*(X, F|©)[X], (A.9.38)
holds true, as shown in the next paragraph.
Let us substitute (A.9.36), (A.9.37), P# (X|@pew ), and P (X, F|@yey, ) for P(X|O),
P(X,F|0), P(X|Opew), and P(X,F|Opey) , and P(X, F|O ,.,,) on the left sides of
(A.8.19) and (A.8.20). Then, we have the following equations:

P#(X,F|O®ew P(X,F|®, .. —2(®pew
tog ] PHX.F) e>|X}:logE{< F|@ey) exp{—( e>}|X]

P#(X,F|O) P(X,F|®)exp{—g(0®)}
:log{Elip(XvF|®new) |X} " exp{—g(Onew }}

P(X,F|@®) exp{—g(®
_ P(X, F|Opev) Xp{ 2(® ne)
=t ey K] o oy e

exp{—8(Onew) }

= 10g P(X|Ouew) — log P(X|®) + log=" " o

= log P*(X|@pew) — log P*(X|®),
(A.9.39)
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P# (X, F|Opey)

E|l
7 pH(X, F|O)

X | = E[log P*(X,F|Oyey)|X] — E[log P*(X,F|O)[X].
(A.9.40)

Here, the fourth identity in (A.9.39) is derived using (A.8.19). Theorem A.8.1
shows (A.9.39) > (A.9.40), which implies (A.9.38).

As found from the fact that (A.8.21) leads to the EM algorithm with (A.8.22)
and (A.8.23), the inequality in (A.9.38) implies that the EM algorithm, in which
P(X|®) and P(X, F|O) are replaced by (A.9.36) and (A.9.37), respectively, can be
used for PFA. That is, (A.9.35) can reach its maximum, by iterating the penalized
versions of (A.8.22) and (A.8.23),

E-step: Obtain E [log P* (X, F|©)[X], (A.9.41)

- . i #
M-step : Update O so as to increase E)Hlog P*(X,F|0)[X] (A.9.42)

i.e., lead to E[log P# (X, F|@yey) | > E[log P# (X, F|O)].
Here,

Ellog P*(X, F|@)[X] = Ellog P(X, F|®)[X] — 4(O)
n n ’ _
= —log [¥| — (V- 2BA’+ AQA')¥ L (A9.43)

—g(log D]+ tr®'Q) +c—g(®) :

(A.9.8) minus g(®).

The procedures for the E-step (A.9.41) are the same as in Sect. A.9.4. On the
other hand, how ® is updated in the M-step (A.9.42) differs in general from
standard FA without penalty function. Care must be taken that @ cannot be treated
as a covariance matrix as in Sect. A.9.6, unless (A.9.35) can be rewritten as

I(©) — ¢(®) = %log’ (AR@rAR + \v)’lv‘ — 2t (ARDrAR +¥) 'V — g(Og).
(A.9.44)

with (A.9.26), (A.9.27), and O = {Ag, ®r, ¥}. PS-LVFA in Chap. 22 is one case
where (A.9.44) does not hold true. Thus, @ must be constrained to a correlation
matrix in Chap. 22. However, the PS-LVFA procedure for updating ¥ in (A.9.42)
is the same as in A.9.5.
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