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Preface to the Second Edition

In this second edition, I have added new six chapters (Chaps. 17–22) and three
Appendices (A.7–A.9) to the first edition (which spanned Chaps. 1–16 and
Appendices A.1–A.6), together with correcting all known misprints and other errors
in the first edition. Furthermore, I have made minor modifications to some parts
of the first edition, in line with the additional chapters and appendices.

The chapters added in this second edition are as follows:

17. Advanced Matrix Operations
18. Exploratory Factor Analysis (Part 2)
19. Principal Component Analysis versus Factor Analysis
20. Three-way Principal Component Analysis
21. Sparse Regression Analysis
22. Sparse Factor Analysis

which form Part V (Advance Procedures) following Parts I–IV.
Chapter 17 serves as a mathematical preparation for the following chapters. In

Chap. 17, the Moore–Penrose (MP) inverse in particular is covered in detail,
emphasizing its definition through singular value decomposition (SVD). I believe
that the MP inverse is of secondary importance among matrix operations, with SVD
being of primary importance, as the SVD-based definition of the MP inverse allows
us to easily derive its properties and various matrix operations. In this chapter, we
also introduce an orthogonal complement matrix, as it is foreseeable that the need
for this matrix will increase in multivariate analysis procedures.

Chapter 18 is titled “Exploratory Factor Analysis (Part 2)”, while “(Part 1)” was
added to the title of Chap. 12 in the first edition. The contents of Chap. 12 remain
unchanged in this second edition, but the exploratory factor analysis (EFA) in
Chap. 18 is of a new type, i.e., the EFA procedure formulated as a matrix
decomposition problem. This differs from EFA based on the latent variable model
in Chap. 12. To emphasize the difference, the former (new) EFA is referred to as
matrix decomposition FA (MDFA), while the latter is called latent variable FA

v



(LVFA) in Chap. 18. Its addition owes to recent developments after the publication
of the first edition, as studies of MDFA advanced rapidly. I believe that MDFA is
generally superior to LVFA in that the former makes the essence of FA more
transparent.

In Chap. 19, answers are given to the question of how solutions from principal
component analysis (PCA) and FA differ. No clear answer to this question is found
in other books, to the best of my knowledge. The answers in Chap. 19 also are
owing to advances in MDFA studies, with the MDFA formulation allowing for
straightforward comparisons to be made between FA and PCA.

Three-way principal component analysis (3WPCA) is treated in Chap. 20.
3WPCA refers to a specially modified PCA designed for three-way data sets. The
given example is a data array of inputs � outputs � boxes, whose elements are the
magnitudes of output signals elicited by input signals for multiple black boxes.
Three-way data are often encountered in various areas of sciences, and as such
3WPCA is a useful dimension reduction methodology. Its algorithms are very
matrix-intensive and suitably treated in this book.

Sparse estimation procedures are introduced in Chaps. 21 and 22. Here, sparse
estimation refers to estimating a number of parameters as zeros. Such procedures
are popular topics in the field of machine learning. This field can be defined as
learning attained by machines (in particular computers) as opposed to humans or
living organisms. Statistical analysis procedures are useful methodologies for
machine learning. Sparse estimation is also I believe a key property of human
learning: our perception performs sparse estimation too in that usually we only
cognize useful signals, neglecting useless ones as “zeros”. In this respect, it is very
important to enable machines to perform sparse estimation, as a complement to
humans. In Chap. 21, sparse regression analysis procedures are described, including
Tibshirani’s (1996) procedure called lasso which spurred the developments in
sparse estimation. Finally, sparse factor analysis (FA) procedures are introduced in
Chap. 22.

The Appendices added in this second edition are as follows:

A:7. Scale Invariance of Covariance Structure Analysis
A:8. Probability Densities and Expected Values with EM Algorithm
A:9. EM Algorithm for Factor Analysis.

Though the scale invariance in A.7 had been described with short notes in the first
edition, the notes were found too short and insufficient. Thus, the scale invariance is
described in more detail in Appendix A.7: Notes 9.3 and 10.2 in the first edition
have been expanded and moved to A.7 in this edition. The new Appendix A.9 is
necessary for explaining one of the two sparse FA procedures in Chap. 22 and is
also useful for deepening the understanding of the confirmatory and exploratory FA
treated in Chaps. 10 and 12. The foundations of the algorithm in A.9 are introduced
in the preceding new Appendix A.8. Further, this A.8 serves to deepen the
understanding of the treatment in Chap. 8.
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In the first edition, some parts of the bibliographical notes and exercises were
provided to allow readers to extend their understanding beyond the scope covered in
that edition. Such parts have become unnecessary in the second edition, as the
advanced contents are now described in the additional chapters. Hence, sections
of the bibliographical notes and exercises related to the new chapters (Chaps. 17–22)
have been deleted or moved to the relevant chapters in the second edition.

Yutaka Hirachi of Springer has encouraged me for publishing this revised ver-
sion, as well as when I prepared the drafts for the first edition. I am most grateful to
him. I am also thankful to the reviewers who read through drafts of this book.

Kyoto, Japan
February 2020

Kohei Adachi
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Preface to the First Edition

A set of multivariate data can be expressed as a table, i.e., a matrix, of individuals
(rows) by variables (columns), with the variables interrelated. Statistical procedures
for analyzing such data sets are generally referred to as multivariate data analysis.
The demand for this kind of analysis is increasing in a variety of fields. Each
procedure in multivariate data analysis features a special purpose. For example,
predicting future performance, classifying individuals, visualizing inter-individual
relationships, finding a few factors underlying a number of variables, and exam-
ining causal relationships among variables are included in the purposes for the
procedures.

The aim of this book is to enable readers who may not be familiar with matrix
operations to understand major multivariate data analysis procedures in matrix
forms. For that aim, this book begins with explaining fundamental matrix calcu-
lations and the matrix expressions of elementary statistics, followed by an intro-
duction to popular multivariate procedures, with chapter-by-chapter advances in the
levels of matrix algebra. The organization of this book allows readers without
knowledge of matrices to deepen their understanding of multivariate data analysis.

Another feature of this book is its emphasis on the model that underlies each
procedure and the objective function that is optimized for fitting the model to data.
The author believes that the matrix-based learning of such models and objective
functions is the shortest way to comprehend multivariate data analysis. This book is
also arranged so that readers can intuitively capture for what purposes multivariate
analysis procedures are utilized; plain explanations of the purposes with numerical
examples precede mathematical descriptions in almost all chapters.

The preceding paragraph featured three key words: purpose, model, and
objective function. The author considers that capturing those three points for each
procedure suffices to understand it. This consideration implies that the mechanisms
behind how objective functions are optimized must not necessarily be understood.
Thus, the mechanisms are only described in appendices and some exercises.
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This book is written with the following guidelines in mind:

(1) Not using mathematics except matrix algebra
(2) Emphasizing singular value decomposition (SVD)
(3) Preferring a simultaneous solution to a successive one.

Although the exceptions to (1) are found in Appendix A.6, where differential
calculus is used, and in some sections of Part III and Chap. 15, where probabilities
are used, those exceptional parts only occupy a limited number of pages; the
majority of the book is matrix-intensive. Matrix algebra is also exclusively used for
formulating the optimization of objective functions in Appendix A.4. For
matrix-intensive formulations, ten Berge’s (1983, 1993) theorem is considered to be
the best starting fact, as found in Appendix A.4.1.

Guideline (2) is due to the fact that SVD can be defined for any matrix, and a
number of important properties of matrices are easily derived from SVD. In the
former point, SVD is more general than eigenvalue decomposition (EVD), which is
only defined for symmetric matrices. Thus, EVD is only mentioned in Sect. 6.2.
Further, SVD takes on an important role in optimizing trace and least squares
functions of matrices: The optimization problems are formulated with the combi-
nation of SVD and ten Berge’s (1983, 1993) theorem, as found in Appendix A.4.2
and Appendix A.4.3.

Guideline (3) is particularly concerned with principal component analysis

(PCA), which can be formulated as minimizing X� FA0k k2 over PC score matrix
F and loading matrix A for a data matrix X. In some of the literature, PCA is
described as obtaining the first component, the second, and the remaining com-
ponents in turn (i.e., per column of F and A). This can be called a successive
solution. On the other hand, PCA can be described as obtaining F and
A matrix-wise, which can be called a simultaneous solution. This is preferred in this
book, as the above formulation is actually made matrix-wise, and the simultaneous
solution facilitates understanding PCA as a reduced rank approximation of X.

This book is appropriate for undergraduate students who have already learned
introductory statistics, as the author has used preliminary versions of the book in a
course for such students. It is also useful for graduate students and researchers who
are not familiar with the matrix-intensive formulations of multivariate data analysis.

I owe this book to the people who can be called the “matricians” in statistics,
more exactly, the ones taking matrix-intensive approaches for formulating and
developing data analysis procedures. Particularly, I have been influenced by the
Dutch psychometricians, as found above, in that I emphasize the theorem by Jos
M. F. ten Berge (Professor Emeritus, University of Groningen). Yutaka Hirachi of
Springer has been encouraging me since I first considered writing this book. I am
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most grateful to him. I am also thankful to the reviewers who read through drafts of
this book. Finally, I must show my gratitude to Yoshitaka Shishikura of the pub-
lisher Nakanishiya Shuppan, as he readily agreed to the use of the numerical
examples in this book, which I had originally used in that publisher’s book.

Kyoto, Japan Kohei Adachi
May 2016
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Part I
Elementary Statistics with Matrices

This part begins with introducing elementary matrix operations, followed by
explanations of fundamental statistics with their matrix expressions. These initial
chapters serve as preparation for learning the multivariate data analysis procedures
that are described in Part II and thereafter.



Chapter 1
Elementary Matrix Operations

The mathematics for studying the properties of matrices is called matrix algebra or
linear algebra. This first chapter treats the introductory part of matrix algebra
required for learning multivariate data analysis. We begin by explaining what a
matrix is, in order to describe elementary matrix operations.

In later chapters, more advanced properties of matrices are described, where
necessary, with references to Appendices for more detailed explanations.

1.1 Matrices

Let us note that Table 1.1 is a 6 teams � 4 items table. When such a table (i.e., a
two-way array) is treated as a unit entity and expressed as

X ¼

0:617 731 140 3:24
0:545 680 139 4:13
0:496 621 143 3:68
0:493 591 128 4:00
0:437 617 186 4:80
0:408 615 184 4:80

2
6666664

3
7777775
;

this is called a 6 (rows) � 4 (columns) matrix, or a matrix of 6 rows by 4 columns.
“Matrices” is the plural of “matrix”. Here, a horizontal array and a vertical one are
called a row and a column, respectively. For example, the fifth row of A is “0.437,
617, 0.260, 4.80”, while the third column is “140, 139, 143, 128, 186, 184”.
Further, the cell at which the fifth row and third column intersect is occupied by
186, which is called “the (5,3) element”. Rewriting the rows of a matrix as columns
(or its columns as rows) is referred to as a transpose. The transpose of X is denoted
as X′:

© Springer Nature Singapore Pte Ltd. 2020
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X0 ¼
0:617 0:545 0:496 0:493 0:437 0:408
731 680 621 591 617 615
140 139 143 128 186 184
3:24 4:13 3:68 4:00 4:80 4:80

2
664

3
775

Let us describe a matrix in a generalized setting. The array of aij (i = 1, 2, …, n;
j = 1, 2, …, m) arranged in n rows and m columns, i.e.,

A ¼
a11 a12 � � � a1m
a21 a22 � � � a2m
..
. ..

. ..
. ..

.

an1 an2 � � � anm

2
6664

3
7775; ð1:1Þ

is called an n � m matrix with aij its (i, j) element. The transpose of A is an
m � n matrix

A0 ¼
a11 a21 � � � an1
a12 a22 � � � an2
..
. ..

. ..
. ..

.

a1m a2m � � � anm

2
6664

3
7775: ð1:2Þ

The transpose of a transposed matrix is obviously the original matrix, with
(A′)′ = A.

The expression of matrix A as the right-hand side in (1.1) takes a large amount
of space. For economy of space, the matrix A in (1.1) is also expressed as

A ¼ ðaijÞ; ð1:3Þ

using the general expression aij for the elements of A. The statement “We define an
n � m matrix as A = (aij)” stands for the matrix A being expressed as (1.1).

Table 1.1 Averages of the
six-teams in Japanese Central
Baseball League 2005

Team Item

Win % Runs HR ERA

Tigers 0.617 731 140 3.24

Dragons 0.545 680 139 4.13

BayStars 0.496 621 143 3.68

Swallows 0.493 591 128 4.00

Giants 0.437 617 186 4.80

Carp 0.408 615 184 4.80

4 1 Elementary Matrix Operations



1.2 Vectors

A vertical array,

a ¼
a1
a2
..
.

an

2
6664

3
7775; ð1:4Þ

is called a column vector or simply a vector. In exactness, (1.4) is said to be an
n � 1 vector, since it contains n elements. Vectors can be viewed as a special case
of matrices; (1.4) can also be called an n � 1 matrix. Further, a scalar is a 1 � 1
matrix. The right side of (1.4) is vertically long, and for the sake of the economy of
space, (1.4) is often expressed as

a ¼ ½a1; a2; . . .; an�0 or a0 ¼ ½a1; a2; . . .; an�; ð1:5Þ

using a transpose. A horizontal array as a′ is called a row vector.
We can use vectors to express a matrix: by using n � 1 vectors

aj ¼ a1j; a2j; . . .; anj
� �0

; j ¼ 1; 2; . . .;m, and m � 1 vectors ~ai ¼ ½ai1; ai2; . . .; aim�0,
i = 1, 2, …, n, and the matrix (1.1) or (1.3) is expressed as

A ¼ a1; a2; . . .; am½ � ¼
~a01
~a02
..
.

~a0n

2
6664

3
7775 ¼ ½~a1; ~a2; . . .; ~an�0 ¼ ðaijÞ: ð1:6Þ

In this book, a bold uppercase letter such as X is used for denoting a matrix, a
bold lowercase letter such as x is used for a vector, and an italic letter (not bold)
such as x is used for a scalar. Though a series of integers has so far been
expressed as i = 1, 2, …, n, this may be rewritten as i = 1, …, n, omitting 2 when
it obviously follows 1. With this notation, (1.1) or (1.6) is rewritten as

A ¼
a11 � � � a1m
..
. ..

. ..
.

an1 � � � anm

2
64

3
75 ¼ a1; . . .; am½ � ¼ ½~a1; . . .~an�0.

1.2 Vectors 5



1.3 Sum of Matrices and Their Multiplication by Scalars

The sum of matrices can be defined when they are of the same size. Let matrices
A and B be equivalently n � m. Their sum A + B yields the n � m matrix, each of
whose elements is the sum of the corresponding ones of A = (aij) and B = (bij): The
sum is defined as

AþB ¼ ðaij þ bijÞ; ð1:7Þ

using the notation in (1.3). For example, when X ¼ 3 �2 6
8 0 �2

� �
and

Y ¼ 2 1 �9
�7 2 �3

� �
,

XþY ¼ 3þ 2 �2þ 1 6� 9
8� 7 0þ 2 �2� 3

� �
¼ 5 �1 �3

1 2 �5

� �
:

The multiplication of matrix A = (aij) by scalar s is defined as all elements of
A being multiplied by s:

sA ¼ s� aij
� �

; ð1:8Þ

using the notation in (1.3). For example, when Z ¼ 8 �2 6
�5 0 �3

� �

�0:1Z ¼ �0:1� 8 �0:1� ð�2Þ �0:1� 6
�0:1� ð�5Þ �0:1� 0 �0:1� ð�3Þ
� �

¼ �0:8 0:2 �0:6
0:5 0 0:3

� �
:

The sum of the matrices multiplied by scalars is defined simply as the combi-
nation of (1.7) and (1.8):

vAþwB ¼ vaij þwbij
� �

: ð1:9Þ

For example, when X ¼ 4 �2 6
8 0 �2

� �
and Y ¼ 2 1 �9

�7 2 �3

� �
,

0:5Xþð�2ÞY ¼ 2� 4 �1� 2 3þ 18
4þ 14 0� 4 �1þ 6

� �
¼ �2 �3 21

18 �4 5

� �
:
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Obviously, setting v = 1 and w = −1 in (1.9) leads to the definition of the matrix
difference A − B.

The above definition is generalized as

XK
k¼1

vkAk ¼ v1A1 þ � � � þ vKAK ¼
XK
k¼1

vkaijk

 !
; ð1:10Þ

whereA1,…,AK are of the same size and aijk is the (i, j) element ofAk (k = 1,…, K).

1.4 Inner Product and Norms of Vectors

The inner product of the vectors a = [a1,…, am]′ and b = [b1,…, bm]′ is defined as

a0b ¼ b0a ¼ a1; . . .; am½ �
b1
..
.

bm

2
64

3
75 ¼ a1b1 þ � � � þ ambm ¼

Xm
k¼1

akbk: ð1:11Þ

Obviously, this can be defined only for the vectors of the same size. The inner
product is expressed as a′b or b′a, i.e., the form of a transposed column vector (i.e.,
row vector) followed by a column vector, so as to be congruous to the matrix
product introduced in the next section.

The inner product of the identical vectors a and a is in particular called the
squared norm of a and denoted as ||a||2:

ak k2¼ a0a ¼ a1; . . .; am½ �0
a1
..
.

am

2
64

3
75 ¼ a21 þ � � � þ a2m ¼

Xm
k¼1

a2k : ð1:12Þ

The square root of ||a||2, that is, ||a|| is simply called the norm of the vector a = [a1,
…, am]′ with

ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ � � � þ a2m

q
: ð1:13Þ

It is also called the length of a, for the following reason. If m = 3 with a = [a1, a2,
a3]′ and a is viewed as the line extending from the origin to the point whose
coordinate is [a1, a2, a3]′, as illustrated in Fig. 1.1: (1.13) expresses the length of the
line. It also holds for m = 1, 2. If m > 3, the line cannot be depicted or seen by
those of us (i.e., the human beings living in three-dimensional world), but the length
of a is also defined as (1.13) for m > 3 in mathematics (in which the entities that do
not exist in the real world are also considered if they are treated logically).

1.3 Sum of Matrices and Their Multiplication by Scalars 7



1.5 Product of Matrices

Let n � m and m � p matrices be defined as

A

a01
..
.

a0n

2
64

3
75 ¼

a11 � � � a1m
..
. ..

. ..
.

an1 � � � anm

2
64

3
75 and B ¼ ½b1 � � � bp� ¼

b11 � � � b1p
..
. ..

. ..
.

bm1 � � � bmp

2
64

3
75;

respectively, with a0i ¼ ai1; . . .; aim½ �ði ¼ 1; . . .; nÞ and bj ¼
b1j
..
.

bmj

2
64

3
75ðj ¼ 1; . . .; pÞ.

Then, the post-multiplication of A by B is defined as

AB ¼
a01b1 � � � a01bp
..
. � � � ..

.

a0nb1 � � � a0nbp

2
64

3
75 ¼ a0ibj

� �
; ð1:14Þ

using the inner products of the row vectors of the preceding matrix A and the
column vectors of the following matrix B. The resulting matrix AB is the
n � p matrix whose (i, j) element is the inner product of the ith row of A and the jth
column of B:

a0ibj ¼ ai1; . . .; aim½ �
b1j
..
.

bmj

2
64

3
75 ¼ ai1b1j þ � � � þ aimbmi ¼

Xm
k¼1

aikbkj: ð1:15Þ

For example, if A ¼ a01
a02

� �
¼ 2 �4

1 7

� �
;B ¼ b1 b2½ � ¼ �3 1

2 �5

� �
, then

AB ¼ a01b1 a01b2
a02b1 a02b2

� �
¼ 2� ð�3Þþ ð�4Þ � 2 2� 1þð�4Þ � ð�5Þ

1� ð�3Þþ 7� 2 1� 1þ 7� ð�5Þ

� �

¼ �14 22

11 �34

� �
:

a 

[a1, … , am]

[0, … , 0]

Fig. 1.1 Graphical
representation of a vector
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As found above, the matrix product AB is defined only when the following
holds:

the number of columns inA ¼ the number of rows inB: ð1:16Þ

The resulting matrix AB is

the number of rows inAð Þ� the number of columns inBð Þ: ð1:17Þ

Thus, the product is sometimes expressed as

A
n�m

B
m�p

¼ C
n�p

; or, more simply; nAmBp ¼ nCp; ð1:18Þ

with which we can easily verify (1.16) and (1.17). If n = p, we can define products
AB and BA. Here, we should note

AB 6¼ BA; ð1:19Þ

except for special A and B, which is different from the product of scalars with
st = ts, the inner product (1.11), and that of scalar s and matrix A with

sA ¼ A� s: ð1:20Þ

For this reason, we call AB “the post-multiplication of A by B” or “the pre-
multiplication of B by A”, so as to clarify the order of the matrices.

Here, four examples of matrix products are presented as follows:

Ex. 1. For X ¼ 2 3 �1
�2 0 4

� �
and Y ¼

3 5 4
�1 0 �2
0 6 0

2
4

3
5,

XY ¼ 2� 3þ 3� ð�1Þþ ð�1Þ � 0 2� 5þ 3� 0þð�1Þ � 6 2� 4þ 3� ð�2Þþ ð�1Þ � 0

�2� 3þ 0� ð�1Þþ 4� 0 �2� 5þ 0� 0þ 4� 6 �2� 4þ 0� ð�2Þþ 4� 0

� �

¼ 3 4 2

�6 14 �8

� �
:

Ex. 2. For F ¼
2 �1
�3 0
1 3
�2 �3

2
664

3
775 and A ¼

�4 1
6 �3
2 5

2
4

3
5,

1.5 Product of Matrices 9



FA0 ¼

2 �1

�3 0

1 3

�2 �3

2
6664

3
7775 �4 6 2

1 �3 5

� �

¼

2� ð�4Þþ ð�1Þ � 1 2� 6þð�1Þ � ð�3Þ 2� 2þð�1Þ � 5

�3� ð�4Þþ 0� 1 �3� 6þ 0� ð�3Þ �3� 2þ 0� 5

1� ð�4Þþ 3� 1 1� 6þ 3� ð�3Þ 1� 2þ 3� 5

�2� ð�4Þþ ð�3Þ � 1 �2� 6þð�3Þ � ð�3Þ �2� 2þð�3Þ � 5

2
6664

3
7775

¼

�9 15 �1

12 �18 �6

�1 �3 17

5 �3 �19

2
6664

3
7775;

where it should be noted that A has been transposed in the product.

Ex. 3. In statistics, the product of a matrix and its transpose is often used.

For A ¼
�4 1
6 �3
2 5

2
4

3
5, the post-multiplication of A by A′, which we denote

by S, is

S ¼ AA0 ¼
ð�4Þ2 þ 12 �4� 6þ 1� ð�3Þ �4� 2þ 1� 5

6� ð�4Þþ ð�3Þ � 1 62 þð�3Þ2 6� 2þð�3Þ � 5

2� ð�4Þþ 5� 1 2� 6þ 5� ð�3Þ 22 þ 52

2
64

3
75

¼
17 �27 �3

�27 45 �3

�3 �3 29

2
64

3
75:

The pre-multiplication of A by A′, which we denote by T, is

T ¼ A0A ¼ ð�4Þ2 þ 62 þ 22 ð�4Þ � 1þ 6� ð�3Þþ 2� 5

1� ð�4Þþ ð�3Þ � 6þ 5� 2 12 þð�3Þ2 þ 52

" #

¼ 56 �12

�12 35

� �
:

Ex. 4. The product of vectors is a special case of that of matrices:

For u ¼
2
�1
3

2
4

3
5 and v ¼

�2
3
�4

2
4

3
5,
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the inner product yields a scalar as

u0v ¼ 2� ð�2Þþ ð�1Þ � 3þ 3� ð�4Þ ¼ �19;

but the post-multiplication of 3 � 1 vector u by 1� 3 v′ gives a 3 � 3 matrix with

uv0 ¼
2

�1

3

2
64

3
75 �2 3 �4½ � ¼

2� ð�2Þ 2� 3 2� ð�4Þ
ð�1Þ � ð�2Þ ð�1Þ � 3 ð�1Þ � ð�4Þ
3� ð�2Þ 3� 3 3� ð�4Þ

2
64

3
75

¼
�4 6 �8

2 �3 4

�6 9 �12

2
64

3
75:

1.6 Two Properties of Matrix Products

The transposed product of matrices satisfies

ðABÞ0 ¼ B0A0; ðABCÞ0 ¼ C0B0A0 ð1:21Þ

Let A and B be matrices of size n � m; let C and D be those of m � l. Then, the
product of their sums multiplied by scalars s, t, u, and v satisfies

ðsAþ tBÞðuCþ vDÞ ¼ suACþ svADþ tuBCþ tvBD: ð1:22Þ

1.7 Trace Operator and Matrix Norm

A matrix with the number of rows equivalent to that of columns is said to be

square. For a square matrix S ¼
s11 s12 � � � s1n
s21 s22 � � � s2n
..
. ..

. . .
. ..

.

sn1 sn2 � � � snn

2
6664

3
7775, the elements on the

diagonal, i.e., s11, …, snn, are called the diagonal elements of S. Their sum is called
a trace and is denoted as

trS ¼ s11 þ s22 þ � � � þ snn: ð1:23Þ

1.5 Product of Matrices 11



Obviously,

trS0 ¼ trS ð1:24Þ

The trace fulfills important roles when it is defined for the product of matrices.

Let us consider A ¼ ½a1 � � � am� ¼
~a01
..
.

~a0n

2
64

3
75 ¼

a11 � � � a1m
..
. ..

. ..
.

an1 � � � anm

2
64

3
75 and B ¼

½b1 � � �bn� ¼
~b
0
1

..

.

~bm

2
64

3
75 ¼

b11 � � � b1n
..
. ..

. ..
.

bm1 � � � bmn

2
64

3
75. Then, AB and BA are n � n and

m � m square matrices, respectively, for which traces can be defined, with

AB ¼
~a01b1 #

. .
.

# ~a0nbn

2
64

3
75 and BA ¼

~b
0
1a1 #

. .
.

# ~b
0
mam

2
64

3
75:

Here, # is used for all elements other than the diagonal ones. In this book, the
matrix product precedes the trace operation:

trAB ¼ trðABÞ: ð1:25Þ

Thus,

trAB ¼
Xn
i¼1

~a0ibi ¼
Xn
i¼1

ai1b1i þ � � � þ aimbmið Þ ¼
Xn
i¼1

Xm
j¼1

aijbji; ð1:26Þ

trBA ¼
Xm
j¼1

~b
0
jaj ¼

Xm
j¼1

bj1a1j þ � � � þ bjnanj
� � ¼Xm

j¼1

Xn
i¼1

bjiaij ¼
Xn
i¼1

Xm
j¼1

aijbji:

ð1:27Þ

Both are found to be equivalent, i.e.,

trAB ¼ trBA; ð1:28Þ

and express the sum of aijbji over all pairs of i and j.
It is an important property of the trace that (1.28) implies

trABC ¼ trCAB ¼ trBCA; trABCD ¼ trBCDA ¼ trCDAB ¼ trDABC: ð1:29Þ

12 1 Elementary Matrix Operations



Using (1.21), (1.28), and (1.29), we also have

trðABÞ0 ¼ trB0A0 ¼ trA0B0; trðABCÞ0 ¼ trC0B0A0 ¼ trA0C0B0 ¼ trB0A0C0: ð1:30Þ

Substituting A′ into B in (1.25), we have trAA0 ¼ trA0A ¼Pn
i¼1

Pm
j¼1 a

2
ij which

is the sum of the squared elements of A. This is called the squared norm of A, i.e.,
the matrix version of (1.12), and is denoted as ||A||2:

Ak k2¼ trAA0 ¼ trA0A ¼
Xn
i¼1

Xm
j¼1

a2ij: ð1:31Þ

This is also referred to as the squared Frobenius norm of A, with Frobenius (1849–
1917) a German mathematician. The squared norm of the sum of matrices weighted
by scalars is expanded as

sXþ tYk k2 ¼ trðsXþ tYÞ0ðsXþ tYÞ
¼ tr s2X0Xþ stX0Yþ tsY0Xþ t2Y0Y

� �
¼ s2trX0Xþ sttrX0Yþ sttrX0Yþ t2trY0Y

¼ s2trX0Xþ 2sttrX0Yþ t2trY0Y

¼ s2 Xk k2 þ 2sttrX0Yþ t2 Yk k2:

ð1:32Þ

1.8 Vectors and Matrices Filled with Ones or Zeros

A zero vector refers to a vector filled with zeros. The p � 1 zero vector is denoted
as 0p, using the boldfaced zero:

0p ¼
0
0
..
.

0

2
664
3
775: ð1:33Þ

A zero matrix refers to a matrix whose elements are all zeros. In this book, the
n � p zero matrix is denoted as nOp, using the boldfaced “O”:

nOp ¼
0 � � � 0
..
. � � � ..

.

0 � � � 0

2
4

3
5: ð1:34Þ
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A vector of ones refers to a vector filled with ones. The n � 1 vector of ones is
denoted as 1n, with the boldfaced one:

1n ¼
1
1
..
.

1

2
664
3
775: ð1:35Þ

The n � p matrix filled with ones is given by

1n10p ¼
1 � � � 1
..
. � � � ..

.

1 � � � 1

2
4

3
5: ð1:36Þ

1.9 Special Square Matrices

A square matrix S = (sij) satisfying

S ¼ S0; i:e:; sij ¼ sji ð1:37Þ

is said to be symmetric. An example of a 3 � 3 symmetric matrix is

S ¼
2 �4 9
�4 6 �7
9 �7 3

2
4

3
5. The products of a matrix A and its transpose, AA′ and

A′A, are symmetric; using (1.21), we have

AA0ð Þ0¼ A0ð Þ0A0 ¼ AA0 and A0Að Þ0¼ A0 A0ð Þ0¼ A0A: ð1:38Þ

This has already been exemplified in Ex. 3 (Sect. 1.5).
The elements of A = (aij) with i 6¼ j are called the off-diagonal elements of A. A

square matrix D whose off-diagonal elements are all zeros,

D ¼

d1 0 � � � 0

0 d2 0 ..
.

..

.
0 . .

.
0

0 � � � 0 dp

2
66664

3
77775; ð1:39Þ

is called a diagonal matrix. The products of two diagonal matrices are easily
obtained as
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c1 0 � � � 0

0 c2 0 ..
.

..

.
0 . .

.
0

0 � � � 0 cp

2
66664

3
77775

d1 0 � � � 0

0 d2 0 ..
.

..

.
0 . .

.
0

0 � � � 0 dp

2
66664

3
77775 ¼

c1d1 0 � � � 0

0 c2d2 0 ..
.

..

.
0 . .

.
0

0 � � � 0 cpdp

2
66664

3
77775;

ð1:40Þ

Dt ¼ DD. . .D ¼

dt1 0 � � � 0

0 dt2 0 ..
.

..

.
0 . .

.
0

0 � � � 0 dtp

2
66664

3
77775; ð1:41Þ

where Dt denotes the matrix obtained by multiplying D t times. Thus, we use the
following expression:

D�t ¼

d�t
1 0 � � � 0

0 d�t
2 0 ..

.

..

.
0 . .

.
0

0 � � � 0 d�t
p

2
66664

3
77775: ð1:42Þ

When t = 1/2, (1.42) shows D−1/2 whose diagonal elements are d1
−1/2, …, dp

−1/2.
The identity matrix refers to the diagonal matrix whose diagonal elements are all

ones. The p � p identity matrix is denoted as Ip, using the boldfaced “I”:

Ip ¼

1 0 � � � 0

0 1 0 ..
.

..

.
0 . .

.
0

0 � � � 0 1

2
6664

3
7775: ð1:43Þ

For example, I3 ¼
1 0 0
0 1 0
0 0 1

2
4

3
5. An important property of the identity matrix is

Alp ¼ A and IpB ¼ B: ð1:44Þ

The identity matrix of 1 � 1 is I1 = 1, with s � 1 = 1 � s = s. That is, Ip is a
generalization of one (or unit).

1.9 Special Square Matrices 15



1.10 Bibliographical Notes

Matrix operations, which are necessary for describing multivariate data analysis,
but have not been treated in this chapter, are introduced in the following chapters.
As in the present book, introductory matrix operations are treated intelligibly in
Carroll, Green, and Chaturvedi (1997), where geometric illustrations are empha-
sized. Banerjee and Roy (2014) and Schott (2005) are among the textbooks rec-
ommended for those who finished reading Chaps. 1–3 in the present book.
Formulas for matrix operations are exhaustively listed in Lütkepohl (1996).

Exercises

1:1. Let X = (xij) be an n � p matrix. Express X using n � 1 vectors
xj ¼ x1j; . . .; xnj

� �0
; j ¼ 1; . . .; p, and express X using p � 1 vectors

~xi ¼ xi1; . . .; xip
� �0

; i ¼ 1; . . .; n.

1:2. Let A ¼
�2 3 9
1 �6 �5
8 2 0
�4 6 �3

2
664

3
775 and B ¼

5 7
6 �8
�2 1

2
4

3
5. Compute AB, B′B, BB′,

A′A, and AA′.

1:3. Let A1 ¼
�2 3 9
1 �6 �5
8 2 0
�4 6 �3

2
664

3
775, A2 ¼

7 �1 �5
�2 �2 3
0 3 9
6 �4 0

2
664

3
775, B1 ¼

2 �3
�9 6
1 �7

2
4

3
5,

B2 ¼
5 7
6 �8
�2 1

2
4

3
5, s1 = −5, s2 = 7, t1 = 3, and t2 = −2. Compute

(s1A1 + s2A2)(t1B1 + t2B2).
1:4. Let B = [b1, …, bm]. Show AB = [Ab1, …, Abm].
1:5. Prove trABCDE = trC′B′A′E′D′.
1:6. Let W = [w1, …, wp]. Show that the (j, k) element of W′X′XW is wjX′Xwk

and trW0X0XW ¼Pp
j¼1

w0
jX

0Xwj.

1:7. Let a matrix F satisfy 1
nF

0F ¼ Im. Show X� FA0k k2¼ Xk k2
�2trF0XAþ n Ak k2.

1:8. Compute 104[4, 2, 6, 1]′ and 14[4, 2, 6, 1].
1:9. Prove In � 1

n 1n1
0
n

� �0 In � 1
n 1n1

0
n

� � ¼ In � 1
n 1n1

0
n.

1:10. Show that 1
nF

0F ¼ l3; if F ¼ f1; f2; f3½ �with f j
		 		2¼ nðj ¼ 1; 2; 3Þ and f 0jfk ¼

0 for j 6¼ k.
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Chapter 2
Intra-variable Statistics

This chapter begins with expressing data sets by matrices. Then, we introduce two
statistics (statistical indices), average and variance, where the average is an index
value that represents scores and the variance stands for how widely scores disperse.
Further, how the original scores are transformed into centered and standard scores
using the average and variance is described.

As the statistics in this chapter summarize the scores within a variable, the
chapter is named intra-variable statistics, in contrast to the immediately following
chapter entitled inter-variable statistics, where the statistics between variables
would be treated.

2.1 Data Matrices

A multivariate data set refers to a set of values arranged in a table whose rows and
columns are individuals and variables, respectively. This is illustrated in each panel of
Table 2.1. Here, the term “individuals” implies the sources from which data are
obtained; for example, individuals are examinees, cities, and baseball teams,
respectively, in Panels (A), (B), and (C) of Table 2.1. On the other hand, the term
“variables” refers to the indices or items for which individuals are measured; for
example, variables are Japanese, mathematics, English, and sciences in Table 2.1(A).
By attaching “multi-” to “variate”, which is a synonym of “variable”, we use the
adjective “multivariate” for the data sets with multiple variables, as in Table 2.1. On
the other hand, data with a single variable are called univariate data.

© Springer Nature Singapore Pte Ltd. 2020
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
https://doi.org/10.1007/978-981-15-4103-2_2
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Let us express a data set as an n-individuals � p-variables matrix

X ¼

x11 � � � x1j � � � x1p
..
. ..

. ..
.

xi1 � � � xij � � � xip
..
. ..

. ..
.

xn1 � � � xnj � � � xnp

2
6666664

3
7777775
¼ x1; . . .; xj; . . .; xp

� �
; ð2:1Þ

whose jth column

Table 2.1 Three examples of
multivariate data

(A) Test scores (artificial example)

Participant Item

Japan Mathematics English Science

1 82 70 70 76

2 96 65 67 71

3 84 41 54 65

4 90 54 66 80

5 93 76 74 77

6 82 85 60 89

(B) Weather in cities in January (http://www2m.biglobe.ne.
jp/ZenTech/world/kion/Japan/Japan.htm)

City Weather

Min °C Max °C Precipitation

Sapporo −7.7 −0.9 110.7

Tokyo 2.1 9.8 48.6

・ ・ ・ ・
・ ・ ・ ・
・ ・ ・ ・
Naha 14.3 19.1 114.5

(C) Team scores (2005 in Japan) (http://npb.jp/bis/2005/stats/)

Team Averages

Win % Runs HR Avg. ERA

Tigers 0.617 731 140 0.274 3.24

Dragons 0.545 680 139 0.269 4.13

BayStars 0.496 621 143 0.265 3.68

Swallows 0.493 591 128 0.276 4.00

Giants 0.437 617 186 0.260 4.80

Carp 0.408 615 184 0.275 4.80
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xj ¼
x1j
..
.

xnj

2
64

3
75 ¼ x1j; . . .; xnj

� �0 ð2:2Þ

stands for the jth variable. Examples of (2.1) have been given in Table 2.1(A), (B),
and (C).

A different example is presented in Table 2.2(A), where n individuals and
p variables are six students and two items, respectively, with xij the score of student
i for test j and xj the 6 � 1 vector containing the scores on the jth test:

X
6�2

¼
66 74
72 98
..
. ..

.

56 84

2
664

3
775with x1 ¼

66
72
..
.

56

2
664

3
775 and x2 ¼

74
98
..
.

84

2
664

3
775:

The scores in Table 2.2(B) and (C) will be explained later, in Sects. 2.4 and 2.6.

2.2 Distributions

The distribution of the six students’ scores for each variable in Table 2.2(A) is
graphically depicted in Fig. 2.1, where those scores are plotted on lines extending
from 0 to 100. The distributions allow us to intuitively recognize that [1] their
scores in history are lower on average than those in mathematics, and [2] the scores
disperse more widely in mathematics than in history. The statistics related to [1]
and [2] are introduced in Sects. 2.3 and 2.5, respectively.

Table 2.2 Raw, centered, and standard scores of tests with their averages, variances, and standard
deviations (SD) (artificial example)

Student (A) Raw (B) Centered (C) Standard

History Math History Math History Math

1 66 74 5 −3 0.52 −0.20

2 72 98 11 21 1.15 1.43

3 44 62 −17 −15 −1.78 −1.02

4 58 88 −3 11 −0.31 0.75

5 70 56 9 −21 0.94 −1.43

6 56 84 −5 7 −0.52 0.48

Average 61.0 77.0 0 0 0 0

Variance 91.67 214.33 91.67 214.33 1.00 1.00

SD 9.57 14.64 9.57 14.64 1.00 1.00
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2.3 Averages

Let us consider summarizing n scores into a single statistic. The most popular
statistic for the summary is the average, which is defined as

�xj ¼ 1
n

x1j þ � � � þ xnj
� � ¼ 1

n

Xn
i¼1

xij ð2:3Þ

for variable j, i.e., the jth column of X. For example, the average score in mathe-
matics (j = 2) in Table 2.2(A) is �x2 ¼ 74þ 98þ 62þ 88þ 56þ 84ð Þ=6 ¼ 77:0.
The average can be rewritten, using the n � 1 vector of ones 1n = [1, 1, …, 1]′
defined in (1.35): The sum x1j + ��� + xnj is expressed as

10nxj ¼ 1; . . .; 1½ �
x1j
..
.

xnj

2
64

3
75; ð2:4Þ

thus, the average (2.3) is also simply expressed as

�xj ¼ 1
n
10nxj; ð2:5Þ

without using the complicated “Sigma” symbol. For example, the average score in
history (j = 1) in Table 2.2(A) is expressed as 6�1106x1 with x1 = [66, 72, 44, 58,
70, 56]′. The resulting average is 6�1106x1 ¼ 61:0.

2.4 Centered Scores

The raw scores minus their average are called centered scores or deviations from
average. Let the centered score vector for variable j be denoted as yj = [y1j, …, ynj]′
(n � 1), which is expressed as

0 100 0 100
44 56  66 72 56 62  74   86  98 

58  70 84

(a) History   (b) Mathematics

Fig. 2.1 Distributions of the test scores in Table 2.2(A)
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yi ¼
y1j
..
.

ynj

2
64

3
75 ¼

x1j � �xj
..
.

xnj � �xj

2
64

3
75 ¼

x1j
..
.

xnj

2
64

3
75�

�xj
..
.

�xj

2
64

3
75 ¼ xi �

�xj
..
.

�xj

2
64

3
75: ð2:6Þ

In Table 2.2(B), the centered data for (A) are shown: The centered scores
[5, 11, …, −5]′ for history are given by subtracting 61 from all elements of [66,
72,…, 56]′ and the centered scores for mathematics are given by subtracting 77 in a
parallel manner.

Here, we rewrite (2.6) in a simpler form. First, let us note that all elements of the
subtracted vector �xj; . . .;�xj

� �0 in (2.6) are equal to an average �xj, thus, that vector can
be written as

�xj
..
.

�xj

2
64

3
75 ¼ �xj1n ¼ 1n � �xj; ð2:7Þ

where we have used (1.20). Substituting (2.5) into �xj in (2.7), this is rewritten as

�xj
..
.

�xj

2
64

3
75 ¼ 1n � 1

n
10nxj

� �
¼ 1

n
1n 10nxj
� � ¼ 1

n
1n10nxj: ð2:8Þ

Here, we have made use of the fact that “� scalar (n−1)” can be moved and A
(BC) = ABC generally holds for matrices A, B, and C, which implies 1n 10nxj

� � ¼
1n10nxj: Using (2.8) in (2.6) and noting property (1.44) for an identity matrix, the
centered score vector (2.6) can be rewritten as

yj ¼
x1j � �xj

..

.

xnj � �xj

2
64

3
75 ¼ xj �

�xj
..
.

�xj

2
64

3
75 ¼ Inxj � 1

n
1n10nxj ¼ In � 1

n
1n10n

� �
xj ¼ Jxj;

ð2:9Þ

where J ¼ In � n�11n10n, and we have made use of the fact that
BC + EC = (B + E)C holds for matrices B, C, and E. The matrix J has a special
name and important properties:
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Note 2.1. Centering Matrix
This is defined as

J ¼ In � 1
n
1n10n: ð2:10Þ

The centering matrix has the following properties:

J ¼ J0ðsymmetric), ð2:11Þ

J2 ¼ JJ ¼ JðidempotentÞ; ð2:12Þ

10nJ ¼ 00n; ð2:13Þ

Here, an idempotent matrix is defined as follows: S is said to be idempotent if
SS = S.

Equation (2.11) can easily be found. Equations (2.12) and (2.13) can be
proved as follows:

JJ ¼ In � 1
n
1n10n

� �
In � 1

n
1n10n

� �
¼ In � 1

n
1n10n �

1
n
1n10n þ

1
n2

1n10n1n1
0
n

¼ In � 1
n
1n10n �

1
n
1n10n þ

1
n2

1nðnÞ10n ¼ In � 1
n
1n10n ¼ J;

10nJ ¼ 10n In � 1
n
1n10n

� �
¼ 10n �

1
n
10n1n1

0
n ¼ 10n �

1
n
ðnÞ10n ¼ 00n;

where 1n′ 1n = n has been used.

Equations (2.12) and (2.13) further lead to the following important facts:

Note 2.2. Matrices Pre-multiplied by the Centering Matrix
A matrix sJA with A an n � p matrix and s a scalar satisfies

10nðsJAÞ ¼ s10nJA ¼ 00p; ð2:14Þ

JðsJAÞ ¼ sJJA ¼ sJA: ð2:15Þ

When A is an n � 1 vector a, those equations are rewritten as 10n(sJa) = 0
and J(sJa) = sJa, respectively.
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Comparing (2.9) with (2.14), we can find that the sum and average of centered
scores are always zero:

10nyj ¼
1
n
10nyj ¼ 0: ð2:16Þ

This is shown in the row named “Average” in Table 2.2(B). Figure 2.3(B) (on a
later page) illustrates (2.16); the centered scores are distributed with their average
being the zero which is a center between negative and positive values. This property
provides the name “centered scores”, and the transformation of raw scores into
centered ones is called centering. Comparing (2.9) with (2.15), we also find

Jyj ¼ yj: ð2:17Þ

The centered score vector, pre-multiplied by the centering matrix, remains
unchanged.

2.5 Variances and Standard Deviations

The locations of averages in the distributions of scores are indicated by triangles in
Fig. 2.1(A), which do not stand for how widely scores disperse. The most popular
statistic for indicating dispersion is variance. It is defined using the sum of squared
distances between scores and their average, which is illustrated in Fig. 2.2. The
division of the sum by the number of scores gives the variance. Denoting the
variance for variable j as vjj, it is formally expressed as

74 77

56 62 74 84 86 98

Average 
77.0

62 77

56 77

84 77

86 77

98 77

Fig. 2.2 Distances of scores to their average, which are squared, summed, and divided by n, to
give the variance of the mathematics scores in Table 2.2(A)
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vjj ¼ 1
n

x1j � �xj
�� ��2 þ � � � þ xni � �xj

�� ��2n o

¼ 1
n

x1j � �xj
� �2 þ � � � þ xni � �xj

� �2n o
¼ 1

n

Xn
i¼1

xij � �xj
� �2

;
ð2:18Þ

where the same subscript j is used twice as vjj, for the sake of accordance with the
related statistic introduced in the next chapter. The variance of the scores for
mathematics in Table 2.2(A) is obtained as 6−1{(74 − 77)2 + (98 − 77)2 + ��� +
(84 − 77)2} = 214.33, for example.
To express (2.18) in vector form, we should note that it can be rewritten as

vjj ¼ 1
n

x1j � �xj; . . .; xnj � �xj
	 
 x1j � �xj

..

.

xnj � �xj

2
64

3
75: ð2:19Þ

Comparing (2.19) with

x1j � �xj
..
.

xnj � �xj

2
64

3
75 ¼ Jxj in (2.9), the variance (2.18) or (2.19) is

expressed as

vjj ¼ 1
n

Jxj
� �0Jxj ¼ 1

n
Jxj

�� ��2¼ 1
n
x0jJ

0Jxj ¼ 1
n
x0jJxj ¼

1
n
x0jJxj; ð2:20Þ

where (1.12), (2.11), and (2.12) have been used. Further, we can use (2.9) in (2.20)
to rewrite it as

vjj ¼ 1
n
x0jJxj ¼

1
n
x0jJ

0Jxj ¼ 1
n
y0jyj ¼

1
n

yj
�� ��2: ð2:21Þ

The variance of raw scores is expressed using their centered score vector simply as
n−1||yj||

2. We can also find in (2.20) and (2.21) that the variance is the squared
length of vector yj = Jxj divided by n.

How is the variance of the centered scores (rather than raw scores) expressed?
To find this, we substitute the centered score vector yj for xj in the variance (2.20).
Then, we use (2.17) and (2.9) to get

1
n
y0jJ

0Jyj ¼
1
n
y0jyj ¼

1
n
x0jJ

0Jxj; ð2:22Þ

which is equal to (2.20); the variance of the centered scores equals that for their raw
scores.
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The square root of variance (20.20), (2.21), or (2.22)

ffiffiffiffiffi
vjj

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
x0jJxj

r
¼ 1ffiffiffi

n
p Jxj

�� �� ¼ 1ffiffiffi
n

p yj
�� �� ð2:23Þ

is called the standard deviation, which is also used for reporting the dispersion of
data. We can find in (2.23) that the standard deviation is the length of vector
yj = Jxj divided by n1/2.

2.6 Standard Scores

The centered scores (i.e., the raw scores minus their average) divided by their
standard deviation are called standard scores or z scores. Let the standard score
vector for variable j be denoted by zj ¼ z1j; . . .; znj

� �0
, which is expressed as

zj ¼
x1j � �xj
� �

=
ffiffiffiffiffi
vjj

p

..

.

xnj � �xj
� �

=
ffiffiffiffiffi
vjj

p

2
64

3
75 ¼ 1ffiffiffiffiffi

vjj
p

x1j � �xj
..
.

xnj � �xj

2
64

3
75 ¼ 1ffiffiffiffiffi

vjj
p Jxi ¼ 1ffiffiffiffiffi

vjj
p yj; ð2:24Þ

where we have used (2.9). In Table 2.2(C), the standard scores for (A) are shown;
the standard scores [−0.20, …, 0.48]′ for mathematics are given by dividing its
centered scores (B) by 14.64. Transforming raw scores into standard ones is called
standardization.

Standard scores have two important properties. One is that the sum and average
of standard scores are always zero, as are those of centered scores:

10nzj ¼
1
n
10nzj ¼ 0; ð2:25Þ

which follows from (2.16) and (2.24). The other property is that the variance of
standard scores is always one, which is shown as follows: The substitution of zj into
xj in (2.20) leads to the variance of standard scores being expressed as

n�1z0jJ
0Jzj ¼ n�1z0jzj ¼ n�1 zj

�� ��2, where we have used zj = Jzj, following from the
use of (2.17) in (2.24). Further, we can substitute (2.24) in n−1||zj||

2 and use (2.21) to
rewrite the variance of standard scores as

1
n

zj
�� ��2¼ 1

nvjj
yj

�� ��2¼ nvjj
nvjj

¼ 1 ð2:26Þ

This also implies that the length of every standard score vector is always ||zj|| = n1/2.
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2.7 What Centering and Standardization Do
for Distributions

The properties of centered and standard scores shown with (2.16), (2.22), (2.25),
and (2.26) are summarized in Table 2.3. Figure 2.3 illustrates the roles that cen-
tering and standardization (i.e., transforming raw scores into centered and standard
ones) perform for the distributions of data: Centering simply moves the distribu-
tions of raw scores so that the average of the moved distributions is zero, and
standardization further accommodates the scale of the moved distributions so that
their variances are equal to one. The standard scores are unified among different
variables so that the averages and variances are zero and one, respectively, thus, the
greatness/smallness of the standard scores can be compared reasonably between
variables.

0 100 0 100
44  56  66 72 56 62  74   86  98 

58  70 84

History   Mathematics

Centering
x xij j

0

00

0

variance 1 variance 1 

Centered 
Scores + +

++

Raw
Scores (a)

(c)

(b)

Standard  
Scores

Fig. 2.3 Distributions of raw, centered, and standard scores in Table 2.2

Table 2.3 Averages and
variances of centered and
standard scores

Average Variance

Centered scores 0 Variance of raw scores

Standard scores 0 1
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2.8 Matrix Representation

We will now introduce a basic formula in matrix algebra:

Note 2.3. A Property of Matrix Product
If A is a matrix of n � m and b1, …, bK are m � 1 vectors, then

Ab1; . . .;AbK½ � ¼ A b1; . . .; bK½ �: ð2:27Þ

Using this and (2.5), the 1 � p row vector containing the averages of p variables
is expressed as

�x1; . . .;�xp
� � ¼ 1

n
10nx1; . . .;

1
n
10nxp

 �
¼ 1

n
10n x1; . . .; xp
� � ¼ 1

n
10nX: ð2:28Þ

For example, when X consists of the six students’ scores in Table 2.2(A),
6�1106X ¼ ½61:0; 77:0�.

Let Y = [y1, …, yp] denote the n � p matrix of centered scores whose jth
column is defined as (2.9) for the corresponding column of X. Then, we can use
(2.9) and (2.27) to express Y as

Y ¼ Jx1; . . .; Jxp
� � ¼ J x1; . . .; xp

� � ¼ JX; ð2:29Þ

an example of which is presented in Table 2.2(B).
Let Z = [z1, …, zp] denote the n � p matrix of standard scores whose jth

column is defined as (2.24) for the corresponding columns of X and Y. Then, Z is
expressed as

Z ¼ 1ffiffiffiffiffiffi
v11

p y1; . . .;
1ffiffiffiffiffiffi
vpp

p yp

" #
¼ y1; . . .; yp

� � 1ffiffiffiffiffi
v11

p

. .
.

1ffiffiffiffiffi
vpp

p

2
664

3
775 ¼ YD�1: ð2:30Þ

Here, the blanks in

1ffiffiffiffiffi
v11

p

. .
.

1ffiffiffiffiffi
vpp

p

2
64

3
75 stand for the corresponding elements being

zeros and D ¼

ffiffiffiffiffiffi
v11

p

. .
. ffiffiffiffiffiffi

vpp
p

2
64

3
75 is the p � p diagonal matrix whose diagonal

elements are the standard deviations for p variables: We should recall (1.42) to
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notice that D−1 is the diagonal matrix whose diagonal elements are the reciprocals
of the standard deviations. Those readers who have difficulties in understanding
(2.30) should note the following simple example with Y being 3 � 2:

YD�1 ¼
y11 y12
y21 y22
y31 y32

2
4

3
5 1ffiffiffiffiffi

v11
p

1ffiffiffiffiffi
v22

p

 �
¼

y11=
ffiffiffiffiffiffi
v11

p
y12=

ffiffiffiffiffiffi
v22

p
y21=

ffiffiffiffiffiffi
v11

p
y22=

ffiffiffiffiffiffi
v22

p
y31=

ffiffiffiffiffiffi
v11

p
y23=

ffiffiffiffiffiffi
v22

p

2
4

3
5; ð2:31Þ

which illustrates the equalities in (2.30) in the reverse order. The standard score
matrix Z can also be expressed as

Z ¼ JXD�1; ð2:32Þ

using (2.29) in (2.30).

2.9 Bibliographical Notes

Carroll, Green, and Chaturvedi (1997, Chap. 3) and Reyment and Jöreskog (2002,
Chap. 2) are among the literature in which the matrix expressions of intra-variable
statistics are intelligibly treated.

Exercises

2:1. Compute J ¼ I5 � 5�115105 and obtain the centered score matrix Y = JX for
the 5 � 3 matrix X in Table 2.3.

2:2. Compute the variance vjj ¼ 5�1x0jJxj ðj ¼ 1; 2; 3Þ; the diagonal matrix

D�1 ¼
1ffiffiffiffiffi
v11

p
1ffiffiffiffiffi
v22

p
1ffiffiffiffiffi
v33

p

2
4

3
5, and the standard score matrix Z = JXD−1 for

X = [x1, x2, x3] (5 � 3) in Table 2.4.
2:3. Discuss the benefits of standardizing the data in Table 2.4.
2:4. Show that if the average for each column of Y (n � p) is zero, then the

average for each column of YA is also zero.

Table 2.4 Data matrix X of
5 persons � 3 variables

Person Height Weight Sight

Bill 172 64 0.8

Brian 168 70 1.4

Charles 184 80 1.2

Keith 176 64 0.2

Michael 160 62 1.0
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2:5. Let Z be an n-individuals � p-variables matrix containing standard scores.
Show that ||Z||2 = trZ′Z = trZZ′ = np.

2:6. Let x be an n � 1 vector with v = n−1x′Jx the variance of the elements in
x. Show that the variance of the elements in bx + c1n is b

2v.
2:7. Let y = [y1, …, yn]′ contain centered scores. Show that the average of the

elements in −y + c1n = [−y1 + c, …, −yn + c]′ is c and their variance is
equivalent to that for y.

2:8. Let z = [z1, …, zn]′ contain standard scores. Show that the average of the
elements in bz + c1n = [bz1 + c, …, bzn + c]′ is c and their standard deviation
is b.
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Chapter 3
Inter-variable Statistics

In the previous chapter, we described the two statistics, average and variance, which
summarize the distribution of scores within a variable. In this chapter, we introduce
covariance and the correlation coefficient, which are the inter-variable statistics
indicating the relationships between two variables. Finally, the rank of a matrix, an
important notion in linear algebra, is introduced.

3.1 Scatter Plots and Correlations

As in the previous chapter, we consider an n-individuals � p-variables data matrix
(2.1), i.e., X = [x1, … , xj, … , xp]. An example of X is presented in Table 3.1(A).
There, n individuals are 10 kinds of foods (n = 10) and p variables are their
sweetness, degree of spice, and sales (p = 3). The relationship between two vari-
ables, j and k (j, k = 1, … , p), which is called a correlation, can be captured by the
scatter plot in which n individuals are plotted as points with their coordinates [xij,
xik], i = 1,… , n, where xij and xik are the scores of individual i for variables j and k,
respectively. The plots for Table 3.1(A) are shown in Fig. 3.1a–c. For example,
(c) is the scatter plot for sweetness and sales, where 10 foods are plotted as points
with their coordinates [xi1, xi3], i = 1, … , 10, i.e., [32, 62], [28, 83], … , [22, 63].

In Fig. 3.1, distributions are easily captured by the ellipses roughly surrounding
the points. The slope of the ellipse in Fig. 3.1c shows that sales are positively
proportional to sweetness. Two variables with such a proportional relation are said
to have a positive correlation. The inverse relationship is found between spice and
sweetness in Fig. 3.1a; the former tends to decrease with an increase in the latter,
which is expressed as the variables having a negative correlation. On the other
hand, the ellipse in Fig. 3.1b is not sloped; no correlation is found between spice
and sales.
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3.2 Covariances

The correlation between two variables j and k can be indicated by a covariance,
which is defined as

vjk ¼ 1
n

Xn
i¼1

ðxij � xjÞðxik � xkÞ; ð3:1Þ

the average of the product ðxij � xjÞ � ðxik � xkÞ over i = 1, … , n, with xij � xj and
xik � xk being the centered scores for variables j and k, respectively. It takes a
positive value when variables j and k have a positive correlation, while vjk shows a
negative value when the variables have a negative correlation, and vjk is close to

Table 3.1 Data matrices of 10 individuals � 3 variables (artificial example)

Food (A) Raw score: X (B) Centered Scores: Y (C) Standard Scores: Z
x1 x2 x3 y1 y2 y3 z1 z2 z3
Sweet Spice Sales Sweet Spice Sales Sweet Spice Sales

1 32 10 62 3.5 −7.7 −5.5 0.69 −1.77 −0.35

2 28 20 83 −0.5 2.3 15.5 −0.10 0.53 0.98

3 20 19 34 −8.5 1.3 −33.5 −1.68 0.30 −2.11

4 34 21 91 5.5 3.3 23.5 1.09 0.76 1.48

5 25 16 53 −3.5 −1.7 −14.5 −0.69 −0.39 −0.91

6 35 14 70 6.5 −3.7 2.5 1.28 −0.85 0.16

7 25 20 62 −3.5 2.3 −5.5 −0.69 0.53 −0.35

8 30 18 73 1.5 0.3 5.5 0.30 0.07 0.35

9 34 13 84 5.5 −4.7 16.5 1.09 −1.08 1.04

10 22 26 63 −6.5 8.3 −4.5 −1.28 1.90 −0.28

Average 28.5 17.7 67.5 0.00 0.00 0.00 0.00 0.00 0.00

Variance 25.65 19.01 251.45 25.65 19.01 251.45 1.00 1.00 1.00

SD 5.06 4.36 15.86 5.06 4.36 15.86 1.00 1.00 1.00
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Fig. 3.1 Scatter plots for the pairs of the variables in Table 3.1(A)
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zero when j and k have no correlation. This property can be verified as follows: The
covariance between the variables sweet and spice in Table 3.1(A) is computed as

v12 ¼ 1
10

f3:5� ð�7:7Þþ ð�0:5Þ � 2:3þ � � � þ ð�6:5Þ � 8:3g ¼ �12:65; ð3:2Þ

using the centered scores in (B). Those variables are found negatively correlated in
Fig. 3.1a and their covariance (3.2) is also negative. In a parallel manner, we can
have the positive v13 = 60.15, which is the covariance between sweet and sales
correlated positively, as in Fig. 3.1b, while we can find v23 = 0.15 closing to zero,
which is the covariance between spices and sales uncorrelated, as in Fig. 3.1c.
Those covariances are summarized in Table 3.2.

To express (3.1) in a vector form, (3.1) can be rewritten as

vjk ¼ 1
n

x1j � xj; . . .; xnj � xj½ �
x1k � xk

..

.

xnk � xk

2
64

3
75: ð3:3Þ

Here, (2.9) should be recalled, noticing that the right vector in (3.3) can be

expressed as

x1k � xk
..
.

xnk � xk

2
64

3
75 ¼ yk ¼ Jxk by replacing the subscript j in (2.9) by k, with

yk the n � 1 vector of centered scores corresponding to the raw scores xk and J the
n � n centering matrix defined in (2.10). Thus, (3.3) is rewritten as

vjk ¼ 1
n

Jxj
� �0Jxk ¼ 1

n
x0jJ

0Jxk ¼ 1
n
x0jJJxk ¼

1
n
x0jJxk ¼

1
n
y0jyk; ð3:4Þ

in which (2.9), (2.11), and (2.12) have been used. That is, the covariance between
variables j and k is the inner product of the centered score vectors yj = Jxj and
yk = Jxk divided by n.

A p-variables � p-variables matrix containing covariances, as in Table 3.2, is
called a covariance matrix. Each of its diagonal elements expresses the covariance
for the same variable.

vjj ¼ 1
n
x0jJxj ¼

1
n
y0jyj; ð3:5Þ

Table 3.2 Covariance matrix
for Table 3.1(A)

Variable Sweet Spice Sales

Sweet 25.65 −12.65 60.15

Spice −12.65 19.01 0.15

Sales 60.15 0.15 251.45
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which equals (2.21), i.e., the variance for that variable. This implies that covariance
is an extension of the concept of variance for two variables. We should thus
consider covariance as including variance as a special case.

Let us substitute the centered score vector yj for xj in covariance (3.4). Then, we
have

vjk ¼ 1
n

Jyj
� �0Jyk ¼ 1

n
y0jJyk ¼

1
n
y0jyk ¼

1
n
x0jJ

0Jxk; ð3:6Þ

which equals (3.4); the covariance of centered scores equals that of their raw scores.
Though the covariance is a theoretically important statistic, an inconvenient

property of the covariance is that its value does not allow us to easily capture how
strong the positive/negative correlations between variables are. For example, (3.2)
shows that sweet and spice are negatively correlated with its sign (negative), but its
absolute value of 12.65 does not show to what degree those variables are negatively
correlated. This problem can easily be dealt with by modifying the covariance into a
correlation coefficient, as described next.

3.3 Correlation Coefficients

A correlation coefficient between variables j and k is given by dividing the co-
variance (3.1) or (3.4) by the square roots of the variances of variables j and k (i.e.,
by the standard deviations of j and k). That is, the coefficient is defined using (2.23)
as

rjk ¼ vjkffiffiffiffiffi
vjj

p ffiffiffiffiffiffi
vkk

p ¼
1
nx

0
jJxkffiffiffiffiffiffiffiffiffiffiffi

1
nx

0
jJxj

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nx

0
kJxk

p : ð3:7Þ

Here, it should be noted that n−1 and the two square roots of n−1 in the right-hand
side can be canceled out; (3.7) is rewritten as

rjk ¼
x0jJxkffiffiffiffiffiffiffiffiffiffi

x0jJxj
q ffiffiffiffiffiffiffiffiffiffiffi

x0kJxk
p ¼ x0jJxkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJxjÞ0Jxj
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJxkÞ0Jxk
q ¼ ðJxjÞ0Jxk

Jxj
�� �� Jxkk k ¼ y0jyk

yj
�� �� ykk k ð3:8Þ

which shows that the correlation coefficient is defined as the inner product of the
centered score vectors yj = Jxj and yk = Jxk divided by their lengths. The coeffi-
cient (3.7) or (3.8) is also called Pearson’s product-moment correlation coefficient,
named after Karl Pearson (1857–1936, British statistician), who derived the
coefficient.

The correlation coefficient rjk between variables j and k has the following
properties:
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[1] Its absolute value cannot exceed one with −1 � rjk � 1.
[2] It takes a positive value when j and k have a positive correlation.
[3] It takes a negative value when j and k have a negative correlation.
[4] It approximates zero when j and k have no correlation.

Property [1], which is not possessed by covariances, allows us to easily capture the
strength of the correlation, as illustrated in the following paragraph. Before that, we
will show some numerical examples. The coefficient between sweet and spice can
be obtained as

r12 ¼ v12ffiffiffiffiffiffi
v11

p ffiffiffiffiffiffi
v22

p ¼ �12:65ffiffiffiffiffiffiffiffiffiffiffi
25:65

p ffiffiffiffiffiffiffiffiffiffiffi
19:01

p ¼ �0:57; ð3:9Þ

using (3.2) and vjj (Table 3.2) in (3.7). The value from (3.9) shows that sweetness is
negatively correlated with spice. In a parallel manner, the coefficient between spice
and sales is computed as

r23 ¼ v23ffiffiffiffiffiffi
v22

p ffiffiffiffiffiffi
v33

p ¼ 0:15ffiffiffiffiffiffiffiffiffiffiffi
19:01

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
251:45

p ¼ 0:00; ð3:10Þ

indicating that spice and sales have no correlation, while r13 is found to be 0.75,
which shows that sweetness is positively correlated to sales.

The upper limit rjk = 1, shown in Property [1], is attained for yj = ayk with
a > 0; its substitution in (3.8) leads to rjk = ayj′yj/(||yj||�a||yj||) = 1. On the other
hand, the lower limit rjk = −1 is attained when yj = byk with b < 0. The scatter
plots of the variables with rjk = 1 and rjk = −1 are presented at the far left and right
in Fig. 3.2, respectively. In each plot, all points are located on a straight line. Any
rjk takes a value between the two extremes ±1, as shown in Fig. 3.2. There, we can
find that the strength of a positive or negative correlation is captured by noting to
what degree rjk is far from the 0 point corresponding to no correlation and close to

1 0 1
Negative
Correlation 

Positive
Correlation 

No
Correlation 

Sweet-Spice
r12 = 0.57

Spice-Sales
r23 = 0.00

Sweet-Sales
r13 = 0.75 

50

55

60

65

70

75

80

85

90

15 20 25 30 35 40
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140

30 40 50 60 70 80 90 100

30

40

50

60

70

80

90

100

15 20 25 30 35 40
20

40

60

80

100

5 10 15 20 25 30

5

10

15

20

25

30

15 20 25 30 35 40

r = 1.00r = 1.00

Fig. 3.2 Scatter plots and the corresponding correlation coefficients with their locations on the
scale ranging from −1 to 1
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±1. For example, r13 = 0.75 is close to 1, which indicates sweetness and sales are
highly positively correlated. On the other hand, r12 = −0.57 is located a little to the
left of the midpoint between 0 and −1, which indicates that sweetness and spice
have a fairly negative correlation, though the correlation might not be said to be
high.

The correlation coefficients among the variables in Table 3.1(A) are shown in
Table 3.3. Such a p-variables � p-variables matrix is called a correlation matrix.
As found in its diagonal elements, the correlation for the same variable is always
one: rjj = yj′yj/(||yj||||yj||) = 1.

3.4 Variable Vectors and Correlations

In this section, vector yj = [y1j, … , ynj]′ is regarded as the line extending from [0,
… , 0]′ to [y1j, … , ynj]′. As explained in Appendix A.1.1 with (A.1.3), the cosine of
the angle between two vectors is equal to the division of their inner product by the
product of their lengths. Thus, (3.8) shows that the correlation coefficient equals the
cosine of the angle hjk between vectors yj = Jxj and yk = Jxk with

rjk ¼
y0jyk

yj
�� �� ykk k ¼ cos hjk

¼ 1 if hjk ¼ 0�

[ 0 if hjk\90�

¼ 0 if hjk ¼ 90�

\0 if hjk [ 90�

¼ �1 if hjk ¼ 180�

8>>>><
>>>>:

: ð3:11Þ

Here, the right-hand side shows the relationships of hjk to cos hjk. In (3.11), we can
find that the angles between the vectors of positively correlated variables are less
than 90°, while the angles between negatively correlated ones are more than 90°,
and the angle between uncorrelated variable vectors is 90°. When the angles
between two vectors are 90°, they are said to be orthogonal. Using (3.11), we can
find that r12 = −0.57, r13 = 0.75, and r23 = 0.00 lead to h12 = 125°, h13 = 41°, and
h23 = 90°, respectively, which allows us to visually illustrate the variable vectors as
in Fig. 3.3.

Table 3.3 The correlation
matrix for Table 3.1

Variable Sweet Spice Sales

Sweet 1.00 −0.57 0.75

Spice −0.57 1.00 0.00

Sales 0.75 0.00 1.00

36 3 Inter-variable Statistics



3.5 Covariances and Correlations for Standard Scores

Let us recall (2.24), i.e., the definition of standard scores. By substituting (2.24) into
xj in (3.4), the covariance between standard score vectors zj and zk is expressed as

v½z�jk ¼ 1
n

Jzj
� �0Jzk ¼ 1

n
z0jzk ¼

1
n

1ffiffiffiffiffi
vjj

p yj

 !0
1ffiffiffiffiffiffi
vkk

p yk ¼
1
n y

0
jykffiffiffiffiffi

vij
p ffiffiffiffiffiffi

vkk
p ¼ vjkffiffiffiffiffi

vij
p ffiffiffiffiffiffi

vkk
p :

ð3:12Þ

Here, zj = Jzj has been used. We can find (3.12) be equal to (3.7); the covariance of
standard scores is equivalent to the correlation coefficient of raw scores.

The correlation coefficient between standard score vectors zj and zk is expressed

as r½z�jk ¼ v½z�jk =
ffiffiffiffiffiffi
v½z�jj

q ffiffiffiffiffiffi
v½z�kk

q� �
by replacing vjk in (3.7) by the covariance (3.12). Here,

the variances v½z�jj and v½z�kk for standard scores are equal to one, as found in Table 2.3,

thus, r½z�jk ¼ v½z�jk or (3.12); the correlation coefficient of standard scores equals the
correlation coefficients of the raw scores.

Table 3.4 summarizes the properties of the covariances and correlation coeffi-
cients for standard and centered scores. The correlation coefficients for centered/
standard scores and the covariances for standard scores equal the correlation
coefficients of their original raw scores, and the covariances for centered scores
equal those for the raw scores. We can regard the correlation coefficient as a
standardized version of the covariance, as the covariances for standard scores equal
the correlation coefficients of the raw scores.

y1: Sweet

y2: Spice

y3: Sales

125

41

Fig. 3.3 Illustration of
correlations with variable
vectors in a three-dimensional
space

Table 3.4 Covariances and correlations of centered and standard scores

Covariance Correlation coefficient

Centered scores Covariance for raw scores Correlation coefficient for raw scores

Standard scores Correlation coefficient for raw scores
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3.6 Matrix Expressions of Covariances and Correlations

Using (3.6) with (2.27), the p-variables � p-variables covariance matrix V = (vjk)
for the data matrix X (2.1) can be expressed as

V ¼ 1
n

x01J
0Jx1 � � � x01J

0Jxk � � � x01J
0Jxp

..

. � � � . . . � � � ..
.

x0jJ
0Jx1 � � � x0jJ

0Jxk � � � x0jJ
0Jxp

..

. ..
. ..

. � � � ..
.

x0pJ
0Jx1 � � � x0pJ

0Jxk � � � x0pJ
0Jxp

2
6666666664

3
7777777775

¼ 1
n

x01J
0

..

.

x0jJ
0

..

.

x0pJ
0

2
6666666664

3
7777777775

Jx1 � � � Jxk � � � Jxp
� 	

¼ 1
n

x01
..
.

x0j

..

.

x0p

2
666666664

3
777777775
J0J x1 � � � xk � � � xp
� 	 ¼ 1

n
X0J0JX ¼ 1

n
X0JX;

ð3:13Þ

in which (2.11) and (2.12) have been used. We can use (2.29) to rewrite the
covariance matrix (3.13) simply as

V ¼ 1
n
Y0Y: ð3:14Þ

Let R = (rjk) denote the p-variables � p-variables correlation matrix R = (rjk)
for X. Since the covariance for the standard scores is equal to the correlation
coefficient for the raw scores as shown in Table 3.4, the (j, k) element R = (rjk) is
expressed as (3.12):

38 3 Inter-variable Statistics



R ¼ 1
n

z01Jz1 � � � z01Jzk � � � z01Jzp
..
. � � � . . . � � � ..

.

z0jJz1 � � � z0jJzk � � � z0jJzp
..
. ..

. ..
. � � � ..

.

z0pJz1 � � � z0pJzk � � � z0pJzp

2
6666664

3
7777775
¼ 1

n

z01z1 � � � z01zk � � � z01zp
..
. � � � . . . � � � ..

.

z0jz1 � � � z0jzk � � � z0jzp
..
. ..

. ..
. � � � ..

.

z0pz1 � � � z0pzk � � � z0pzp

2
6666664

3
7777775

¼ 1
n
Z0Z;

ð3:15Þ

where Z = [z1, … , zp] is the n-individuals � p-variables matrix of standard scores
matrix. Using (2.32) in (3.15), R is also expressed as

R ¼ 1
n
D�1X0J0JXD�1 ¼ 1

n
D�1X0JXD�1; ð3:16Þ

with D ¼

ffiffiffiffiffiffi
v11

p

. .
. ffiffiffiffiffiffi

vpp
p

2
64

3
75, as defined in Sect. 2.8. Further, if we compare

(3.16) with (3.13), we have

R ¼ D�1VD�1: ð3:17Þ

3.7 Unbiased Covariances

For covariances (and variances), a definition exists that is different from (3.4). In
this definition, xj′Jxk is divided by n − 1 in place of n; the covariance matrix for
X may be defined as

V# ¼ 1
n� 1

X0JX ¼ n
n� 1

V: ð3:18Þ

This is called an unbiased covariance matrix. Its off-diagonal and diagonal ele-
ments are called unbiased covariances and unbiased variances, respectively, for
distinguishing (3.18) from (3.13); one may use either equation. In this book, we
refrain from explaining why two types of definition exist, and (3.13) is used
throughout. For example, see Hogg, McKean, and Craig (2005) for the statistical
theory about the adjective “unbiased” and its antonym “biased”.

Though the covariance is defined in the two above manners, the correlation
coefficient is defined uniquely, i.e., in a single way, as follows: If we use covariance
(3.18), the correlation in (3.7) is rewritten as
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rjk ¼ vjkffiffiffiffiffi
vij

p ffiffiffiffiffiffi
vkk

p ¼
1

n�1 x
0
jJxkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1 x

0
jJxj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1 x
0
kJxk

q ¼ x0jJxkffiffiffiffiffiffiffiffiffiffi
x0jJxj

q ffiffiffiffiffiffiffiffiffiffiffi
x0kJxk

p : ð3:19Þ

Here, n − 1 in the numerator and denominator are canceled out so that (3.19)
becomes equivalent to (3.8), i.e., (3.7).

3.8 Centered Matrices

When a data matrix X contains centered scores, i.e., is already centered, with

1n0X ¼ 0p0; or, equivalently; X ¼ JX; ð3:20Þ

X is said to be centered, where J = In − n−11n1n′ is the centering matrix (2.10). The
equivalence of the two equations in (3.20) will now be proved.

Note 3.1. Two Expressions of Zero Average
The sum and average of the elements in each column of an n � m vector
F being zero are equivalent to the pre-multiplication of F by the centering
matrix being F:

1n0F ¼ 1
n
1n0F ¼ 0m0 is equivalent to JF ¼ F: ð3:21Þ

This is proved by showing both [1] JF = F )1n′F = 0m and [2]
1n′F = 0m′ ) JF = F. [1] is easily found by using (2.13) in 1n′F = 1n′JF,
while [2] follows from pre-multiplying of both sides of 1n′F = 0m′ by −n−11n
yields −n−11n1n′F = nOm, to whose both sides we can add F so as to have
F −n−11n1n′F = F, i.e., (In −n

−11n1n′)F = F.

When X is centered, (3.13) and (3.16) are expressed as

V ¼ 1
n
X0X; ð3:22Þ

R ¼ 1
n
D�1X0XD�1; ð3:23Þ

respectively, simply without using J.
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The covariance matrix, which has been treated so far, contains covariances
among the variables in a single data matrix X. Now, let us consider the p � m
matrix containing covariances between the variables in X (n � p) and those cor-
responding to the columns of F (n � m). The covariance matrix is expressed as

VXF ¼ 1
n
X0JF: ð3:24Þ

If both X and F are centered with X = JX and F = JF, (3.24) is simplified as

VXF ¼ 1
n
X0F: ð3:25Þ

Further, when both X and F contain standard scores, (3.25) also expresses a cor-
relation matrix.

3.9 Ranks of Matrices: Intuitive Introduction

For every matrix, its rank is given as an integer. It is an important number that
stands for a property of the matrix and is used in the following chapters. In this
section, we introduce rank so that it can be intuitively captured using the four 5 � 3
matrices in Table 3.5.

First, note the matrix in Table 3.5(A). The values seem to be different among the
three columns. Indeed, no relationships exist between x1, x2, and x3. That is, those
three columns are regarded as, respectively, conveying three different kinds of
information. Such a matrix is said to be the one whose rank is three. Next, note (B),
whose third column is the same as the first one; though the matrix has three
columns, it conveys to us only two kinds of information. The rank of this matrix is
said to be two.

The third column in Table 3.5(C) is different from the first one, but multipli-
cation of the latter by −3 gives the third column. Its elements can be considered as
expressing the same information as those in the first column, except that the signs of
the values are reversed and their scales differ. The rank of this matrix is also said to
be two, not three.

Table 3.5 Four matrices for illustrating their ranks

(A) (B) (C) (D)

x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3
1 2 3 −2 2 3 2 2 3 −6 2 9 −2

2 4 5 9 4 5 4 4 5 −12 4 −21 9

3 −1 7 3 −1 7 −1 −1 7 3 −1 −10.5 3

4 −5 0 3 −5 0 −5 −5 0 15 −5 −16.5 3

5 7 5 2 7 5 7 7 5 −21 7 4.5 2
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Finally, let us note Table 3.5(D). Though the three columns seem to mutually
differ, x2 = 1.5x1−3x3. The rank of this matrix is also said to be two, in that the
information conveyed by the second column can be found by knowing that found in
the other two.

In the next section, the rank of a matrix is precisely defined.

3.10 Ranks of Matrices: Mathematical Definition

A sum of the vectors h1, … , hp multiplied by scalars

b1h1 þ � � � þ bphp ¼ Hb ð3:26Þ

is called the linear combination of h1, … , hp. Here, H = [h1, … , hp] is an n � p
matrix, and b = [b1, … , bp]′ is a p � 1 vector. Before defining the rank of H, we
introduce the following two notions:

Note 3.2. Linear Independence
The set of vectors h1, … , hp is said to be linearly independent, if

b1h1 þ � � � þ bphp ¼ Hb ¼ 0p implies b ¼ 0p: ð3:27Þ

The inverse of the above is defined as follows:

Note 3.3. Linear Dependence
The set of vectors h1,… , hp is said to be linearly dependent, if Hb = 0p does
not imply b = 0p, that is, if

b1h1 þ � � � þ bphp ¼ Hb ¼ 0p holds,

with at least bJð1� J� pÞ not being zero:
ð3:28Þ

This implies that bJhJ ¼ �Pj6¼J bjhj and we can divide both sides by bJ to
have

hJ ¼ �
X
j6¼J

bj
bJ

hj: ð3:29Þ

the vector hJ is a linear combination of the other vectors with coefficients
−bj/bJ. Here,

P
j 6¼J aj denotes the sum of aj over j excluding aJ. When j = 1,

2, 3,
P

j6¼2 aj ¼ a1 þ a3, for example.
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The rank of H, which we denote as rank(H), is defined as follows:

Note 3.4. Rank of a Matrix

rankðHÞ ¼ the maximum number of linearly independent columns in H:

ð3:30Þ

For illustrating the definition of rank, we present the following three examples:

[1] Let P ¼ p1; p2; p3½ � ¼
1 1 9
2 2 6
1 3 4
2 4 7

2
664

3
775. Then, rank(P) = 3,

since b1p1 + b2p2 + b3p3 = 03 implies b1 = b2 = b3 = 0; we cannot find nonzero
bJ with pJ = −Rj 6¼Jbj/bJ pj.

[2] Let Q ¼ q1; q2; q3½ � ¼
1 2 3
2 4 6
1 2 3
2 4 6

2
664

3
775. Then, rank(Q) = 1,

since q2 = 2q1 and q3 = 3q1; the linearly independent vector sets are {q1}, {q2},
and {q3}, each of which consists of a single vector.

[3] Let R ¼ r1; r2; r3½ � ¼
1 1 3
2 2 6
1 3 5
2 4 8

2
664

3
775. Then, rank(R) = 2,

since r3 = 2r1 + r2, thus, rank(R) < 3, but the set of r1 and r2 is linearly
independent.

It is difficult to find the rank of a matrix by glancing at it, but we can easily find
the rank through the extended version of the singular value decomposition intro-
duced in Appendix A3.1.

Here, we introduce properties of the rank without proof. The rank of an n �
p matrix A satisfies

rankðAÞ ¼ rank A0ð Þ; ð3:31Þ

which implies that the “columns” in (3.30) may be replaced by “rows”. Further,
(3.31) implies
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rankðAÞ�minðn; pÞ: ð3:32Þ

The following properties are also used in the remaining chapters:

rankðBAÞ�minðrankðAÞ; rankðBÞÞ ð3:33Þ

A0A ¼ Ip implies rank(AÞ ¼ p: ð3:34Þ
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of a matrix is detailed in those books introduced in Sect. 1.9.

Exercises

3:1. Prove the Cauchy–Schwarz inequality

a0bð Þ2 � ak k2 bk k2 ð3:35Þ

by defining matrix C = ab′ − ba′ and using ||C||2 � 0.
3:2. Use (3.35) to show

x01Jx2 � Jx1k k Jx2k k; ð3:36Þ

with x1 and x2 n � 1 vectors and J = In − n−11n1n′ the centering matrix.
3:3. Use (3.36) to show that the correlation coefficient takes a value within the

range from −1 to 1.
3:4. Let x = [x1, … , xn]′ and y = [y1, … , yn]′, with v = n−1x′Jy the covariance

between x and y. Show that the covariance between axþ c1n ¼
ax1 þ c

..

.

axn þ c

2
64

3
75

and byþ d1n ¼
by1 þ d

..

.

byn þ d

2
64

3
75 is given by abv = n−1abx′Jy.

3:5. Let r denote the correlation coefficient between vectors x = [x1, … , xn]′ and
y = [y1, … , yn]′. Show that the correlation coefficient between ax + c1n and
by + d1n is also r for ab > 0, but is −r for ab < 0, with the coefficient not
defined for ab = 0.
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3:6. Let X and Y be the matrices containing n rows, with VXY = n−1X′JY the
covariance matrix between the columns of X and those of Y. Show that
A′VXYB gives the covariance matrix between the columns of XA and those
of YB.

3:7. Let X and Y be the matrices containing n rows, DX be the diagonal matrix
whose jth diagonal element is the standard deviation of the elements in the
jth column of X, and DY be defined for Y in a parallel manner. Show that
RXY = n−1DX

−1X′JYDY
−1 gives the correlation matrix between the columns of

X and those of Y.
3:8. Consider the matrices defined in Exercise 3.7. Show that RXY =

n−1DX
−1X′YDY

−1 gives the correlation matrix between the columns of X and
Y, when they are centered.

3:9. Let A ¼
1 0 1
0 2 2
3 0 3
0 4 4

2
664

3
775. Show rank(A) = 2 by noting the columns of A and

rank(A′) = 2 by noting the rows of A.
3:10. Let G be p � q and H be q � r, with q � p � r. Show rank(GH) � r.
3:11. Let F be n � m and A be p � m, with m � min(n, p). Show rank(FA′) � m.
3:12. Show rank(In) = n, with In the n � n identity matrix.
3:13. Show that rank(JX) � min(n − 1, p), with X an n � p matrix and J = In −

n−11n1n′ the centering matrix.
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Part II
Least Squares Procedures

Regression, principal component, and cluster analyses are introduced as least
squares procedures. Here, principal component analysis is treated in two chapters,
as it can be described in various ways. The three analysis procedures are formulated
as minimizing least squares functions, though other formulations are also possible.



Chapter 4
Regression Analysis

In the previous two chapters, we expressed elementary statistics in matrix form as
preparation for introducing multivariate analysis procedures. The introduction to
those procedures begins in this chapter. Here, we treat regression analysis, whose
purpose is to predict or explain a variable from a set of other variables. The origin
of regression analysis is found in the studies of Francis Golton (1822–1911, British
scientist) on heredity stature in the mid-1880s. The history of developments in
regression analysis is well summarized in Izenman (2008, pp. 107–108).

4.1 Prediction of a Dependent Variable by Explanatory
Variables

In Table 4.1, we show a 50-products � 4-variables (quality, price, appearance,
and sales) data matrix. Let us consider predicting or explaining the sales of
products by their quality, price, and appearance, with the formula

sales ¼ b1 � qualityþ b2 � priceþ b3 � appearanceþ cþ error: ð4:1Þ

Here, the term “error” must be attached to the right-hand side, because a perfectly
exact prediction of sales is impossible.

Let us use xi1, xi2, xi3, and yi for the quality, price, appearance, and sales of the
i-th product in Table 4.1, respectively. Then, (4.1) is rewritten as

yi ¼ b1xi1 þ b2xi2 þ b3xi3 þ cþ ei; ð4:2Þ

with ei the error value for product i. Since (4.2) is supposed for all products, i = 1,
… , 50 in Table 4.1. Thus, we have
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Table 4.1 Data matrix for
the quality, price,
appearance, and sales of
products, which is an artificial
example found in Adachi
(2006)

Product Quality Price Appearance Sales

1 10 1800 2.6 48

2 5 1550 4.2 104

3 5 1250 3.0 122

4 5 1150 1.0 104

5 6 1700 7.0 125

6 6 1550 4.0 105

7 5 1200 3.6 135

8 3 1000 1.8 128

9 3 1300 5.8 145

10 5 1300 3.0 124

11 6 1550 5.8 99

12 9 1800 4.2 102

13 8 1400 4.4 146

14 6 1300 3.0 138

15 5 1400 3.8 122

16 10 1950 3.0 13

17 4 1550 5.2 103

18 2 1300 4.0 86

19 7 1800 6.8 109

20 4 1300 3.4 103

21 6 1350 4.0 113

22 9 1450 1.8 100

23 5 1300 4.2 111

24 6 1450 4.0 138

25 8 1750 4.0 101

26 4 1500 4.2 126

27 3 1700 4.6 29

28 6 1500 2.2 73

29 4 1250 3.4 129

30 9 1650 3.2 77

31 5 1500 3.4 84

32 4 1350 3.8 103

33 4 1350 3.8 112

34 3 1550 4.6 77

35 3 1200 3.6 135

36 1 1450 6.0 112

37 4 1600 4.8 106

38 5 1600 3.8 99

39 1 1100 4.2 143

40 6 1600 3.8 54

41 4 1450 6.6 139
(continued)
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48
104
..
.

106

2
664

3
775 ¼ b1

10
5
..
.

7

2
664

3
775þ b2

1800
1550
..
.

1600

2
664

3
775þ b3

2:6
4:2
..
.

5:4

2
664

3
775þ

c
c
..
.

c

2
664
3
775þ

e1
e2
..
.

e50

2
6664

3
7775: ð4:3Þ

Further, it is rewritten as

48
104
..
.

106

2
664

3
775 ¼

10 1800 2:6
5 1550 4:2
..
. ..

. ..
.

7 1600 5:4

2
664

3
775

b1
b2
b3

2
4

3
5þ c

1
1
..
.

1

2
664
3
775þ

e1
e2
..
.

e50

2
6664

3
7775 ð4:4Þ

by summarizing the vectors for quality, price, and appearance into a matrix.
Expressing this matrix as X and using y for the sales vector, (4.4) can expressed as

y ¼ Xbþ c1n þ e; ð4:5Þ

with b = [b1, b2, b3]′, e = [e1, … , e50]′, and 1n the n � 1 vector of ones (n = 50 in
this example). Regression analysis refers to a procedure for obtaining the optimal
values of c and the elements of b from data y and X. Though y was used for a
centered score vector in the last two chapters, it is not so in this chapter.

Hereafter, we generally describe X as an n-individuals � p-variables matrix,
which implies that y and e are n � 1 vectors and b is a p � 1 vector. The model
(4.5) for regression analysis is thus expressed as

Table 4.1 (continued) Product Quality Price Appearance Sales

42 2 1300 1.6 90

43 4 1200 5.2 203

44 3 1150 2.4 96

45 7 1350 3.2 125

46 7 1200 1.2 107

47 5 1550 5.0 130

48 5 1600 4.2 72

49 7 1400 3.8 137

50 7 1600 5.4 106
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y X b 1n e
y1
..
.

yi
..
.

yn

2
6666664

3
7777775

¼

x11 � � � x1p
..
.

xi1 � � � xip
..
.

xn1 � � � xnp

2
6666664

3
7777775

b1
..
.

bp

2
64

3
75 þ c

1
..
.

1
..
.

1

2
666664

3
777775 þ

e1
..
.

ei
..
.

en

2
666664

3
777775

ð4:6Þ

The term model refers to a formula that expresses the idea underlying an analysis
procedure.

In this paragraph, we explain the terms used in regression analysis. The pre-
dicted or explained vector, i.e., y, is called a dependent variable, while the columns
of X are called explanatory variables. On the other hand, the elements of b are
referred to as regression coefficients, and c is called an intercept. In particular,
regression analysis with p = 1, i.e., a single exploratory variable, is called simple
regression analysis, while the procedure with p � 2 is called multiple regression
analysis; (4.6) is its model.

The terms generally for describing analysis procedures are summarized next:

Note 4.1. Data Versus Parameters
In contrast to y and X given as data beforehand, the values of b and c are
unknown before regression analysis is performed. Such entities as b and c,
whose values are estimated by an analysis procedure, are generally called
parameters. When one sees symbols in equations, it is very important to note
whether the symbols express data or parameters.

Besides the data and parameters, errors (e) are included in (4.6). So as to
minimize their amount, the parameter values are estimated, as described in the
next section.

4.2 Least Squares Method

Parameters b and c can be estimated using a least squares method. It generally
refers to a class of the procedures for obtaining parameter values that minimize the
sum of squared errors. This sum for (4.5) is expressed as

ek k2 ¼ e21 þ � � � þ e2n ¼ y� Xb� c1nk k2; ð4:7Þ

since (4.5) is rewritten as e = y − Xb − c1n. Thus, regression analysis is formu-
lated as
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minimizing f ðb; cÞ ¼ ek k2¼ y� Xb� c1nk k2 over b and c; ð4:8Þ

which can be restated as obtaining the optimal b and c (i.e., their solutions) that
minimize (4.7). Let us express the solutions of b and c for (4.8) as b̂ and ĉ,
respectively, which are given as described in the following paragraphs.

It is known that ĉ must satisfy

ĉ ¼ 1
n
10ny�

1
n
10nXb: ð4:9Þ

This result can be derived as follows: We can define h = y − Xb to rewrite (4.7) as
||h − c1n||

2, which is minimized for c = n−11n′h, as shown with (A.2.2) in
Appendix A.2.1. The use of h = y − Xb in ĉ ¼ n�11n 0h leads to (4.9).

Substituting (4.9) into c in e = y − Xb − 1n � c, which follows from (4.5), we
have

e ¼ y� Xb� 1
n
1n10ny�

1
n
1n10nXb

� �

¼ y� 1
n
1n10ny

� �
� Xb� 1

n
1n10nXb

� �
¼ Jy� JXb;

ð4:10Þ

with J = In − n−11n10n the centering matrix defined in (2.10). Thus, (4.7) is
rewritten as

ek k2 ¼ Jy� JXbk k2: ð4:11Þ

This is minimized when b is

b̂ ¼ X0JXð Þ�1X0Jy; ð4:12Þ

as shown with (A.2.16) in Appendix A.2.2. Here, (X′JX)−1 is the inverse matrix of
X′JX, which is introduced below.

Note 4.2. Inverse Matrix
A p � p square matrix H is said to be nonsingular if

rankðHÞ ¼ p; ð4:13Þ

otherwise, H is said to be singular. If H is nonsingular, the p � p matrix H−1

exists that satisfies

4.2 Least Squares Method 53



H�1H ¼ HH�1 ¼ Ip: ð4:14Þ

The matrix H−1 is called the inverse matrix of H. For example,

H ¼
3 �1 2
�4 6 �3
1 0 5

2
4

3
5 is nonsingular; and H�1

¼
0:49 0:08 �0:15
0:28 0:21 0:02
�0:10 �0:02 0:23

2
4

3
5:

We can find in (4.14) that H is the inverse matrix of H−1 with H = (H−1)−1.
The inverse matrix H−1 does not exist if H is singular.

Two basic properties of inverse matrices are

H0ð Þ�1 ¼ H�1� �0
; ð4:15Þ

ðGHÞ�1 ¼ H�1G�1; ð4:16Þ

which includes (sH) −1 = s−1H−1 as a special case with s 6¼ 0 a scalar. The
inverse matrix of a symmetric matrix S is also symmetric:

S�1 ¼ S�10 : ð4:17Þ

As found in the note, we suppose that X′JX is nonsingular in (4.12). Actually, the
data set in Table 4.1 gives such a X′JX.

Thus, the solution of regression analysis is given by obtaining (4.12) and sub-
stituting b̂ into b in (4.9). The solution (4.12) for b is also geometrically derived, as
explained later, in Sect. 4.7.

4.3 Predicted and Error Values

The solutions (4.9) and (4.12) for the data set in Table 4.1 are shown in Table 4.2
(A); b̂ ¼ 7:61;�0:18; 18:23½ �0 and ĉ ¼ 256:4. Substituting these values into (4.1),
we have
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sales ¼ 7:61� quality� 0:18� priceþ 18:23� appearanceþ 256:4þ error:

ð4:18Þ

This equation is useful for predicting the future sales of a product, which is not
included in Table 4.1. For example, let us suppose that a product has not yet been
sold, but its quality, price, and appearance have been found to be 6, 1500, and 4.
We can substitute those values into (4.18) to predict the sales as follows:

sales ¼ 7:61� 6� 0:18� 1500þ 18:23� 4þ 256:4þ error ¼ 105þ error:

ð4:19Þ

That is, future sales can be counted as 105, although any future error is unknown.
However, existent errors can be assessed as described in the following paragraph.

Let us consider substituting the solutions b̂ and ĉ into (4.5), giving
y ¼ Xb̂þ ĉ1n þ ê, which is rewritten as

y ¼ ŷþ ê; i:e:; ê ¼ y� ŷ ð4:20Þ

by defining a predicted value vector as

ŷ ¼ Xb̂þ ĉ1n: ð4:21Þ

In (4.20), we have attached the “hat” mark to the e in (4.5), i.e., replaced it with ê, in
order to emphasize that the error vector e, which had been unknown before analysis,
becomes known, as shown next: Using b̂ ¼ ½7:61;�0:18; 18:23�0, ĉ ¼ 256:4, and
X in Table 4.1, the values in (4.21) are given by

ŷ ¼
10 1800 2:6
5 1550 4:2
..
. ..

. ..
.

7 1600 5:4

2
664

3
775

7:61
�0:18
18:23

2
4

3
5þ 256:4

1
1
..
.

1

2
664
3
775 ¼

56:0
92:1
..
.

120:2

2
664

3
775; ð4:22Þ

Table 4.2 Results of regression analysis for the data in Table 4.1

Solution Regression coefficient Intercept
ĉ

Variance
explained

Multiple
correlationb̂1:

quality
b̂2:
price

b̂3:
appearance

(A)
Unstandardized

7.61 −0.18 18.23 256.4 0.73 0.85

(B)
Standardized

0.51 −1.17 0.77 0.0

4.3 Predicted and Error Values 55



while y = [48, 104, … , 106]′ as seen in Table 4.1. This vector and (4.22) are used
in (4.20) to provide

ê ¼ y� ŷ ¼
48
104
..
.

106

2
664

3
775�

56:0
92:1
..
.

120:2

2
664

3
775 ¼

�8:0
11:9
..
.

�14:2

2
664

3
775: ð4:23Þ

Its squared norm

êk k2 ¼ ð�8:0Þ2 þ 11:92 þ � � � þ ð�14:2Þ2 ð4:24Þ

indicates the largeness of errors.

4.4 Proportion of Explained Variance and Multiple
Correlation

The purpose of this section is to introduce a statistic that indicates how successful
the results of regression analysis are, using (4.24) and the three properties for ŷ and
ê described in the following paragraph.

The first property is

Jŷ ¼ JXb̂; ð4:25Þ

which is derived as follows: (4.21) implies Jŷ ¼ JXb̂þ J ĉ1nð Þ, with J ĉ1nð Þ ¼
ĉ 1n 0Jð Þ0¼ 0n following from (2.11) and (2.13). The second property is

Jê ¼ ê; ð4:26Þ

which follows from the use of (2.12) in (4.10). Property (4.26) shows that the
average of an error vector is always zero; n�110nê ¼ n�110nJê ¼ 0, because of (2.13).
The third property is that errors are uncorrelated to predicted values with their covari-
ance n�1ê0Jŷ ¼ 0, i.e.,

ê0Jŷ ¼ 0: ð4:27Þ

Readers interested in the proof of (4.27) should see the following note:

Note 4.3. No Correlation between Errors and Predictive Values
The use of (4.21) and (4.25) in (4.20) leads to Jê ¼ Jy� JXb̂. Substituting
this and (4.25) in ê0Jŷ ¼ ê0J0Jŷ, this is rewritten as
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ê0Jŷ ¼ Jy� JXb̂
� �0

JXb̂ ¼ y0JXb̂� b̂
0
X0JXb̂;

where (2.11) and (2.12) have been used. We can further substitute (4.12) in
the above equation to have

ê0Jŷ ¼ y0JX X0JXð Þ�1X0Jy� y0J0X X0JXð Þ�1X0JX X0JXð Þ�IX0Jy

¼ y0JX X0JXð Þ�1X0Jy� y0JX X0JXð Þ�1X0Jy ¼ 0
ð4:28Þ

The pre-multiplication of the first equality in (4.20) by J leads to Jy ¼
Jŷþ Jê ¼ Jŷþ ê because of (4.26). Further, the angle between Jŷ and ê being 90°
is found in (4.27). This fact implies that Jy, Jŷ, and ê form the right triangle
illustrated in Fig. 4.1. We can thus use the Pythagorean theorem to have

Jyk k2¼ Jŷk k2 þ êk k2: ð4:29Þ

From (4.29) we can derive a statistic indicating how successful the results of
regression analysis are, as follows: The division of both sides of (4.29) by ||Jy||2

leads to

1 ¼ Jŷk k2
Jyk k2 þ êk k2

Jyk k2 : ð4:30Þ

Here, the proportion êk k2= Jyk k2 taking a value within the range [0, 1] stands for
the relative largeness of errors; equivalently, one minus that proportion,

Jŷk k2
Jyk k2 ¼ 1� êk k2

Jyk k2 ; ð4:31Þ

Jy

e

J y 

Fig. 4.1 Geometric
relationship among e (errors),
Jy (centered dependent
variable), and Jŷ (centered
predicted values)
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taking a value within the range [0, 1] indicates the smallness of errors, i.e., suc-
cessfulness of regression analysis. Statistic (4.31) is called the proportion of
explained variance, as it can be rewritten as:

Jŷk k2
Jyk k2 ¼

n�1 Jŷk k2
n�1 Jyk k2 ¼

n�1 JXb̂
�� ��2

n�1 Jyk k2 ð4:32Þ

using (4.25). That is, the denominator of (4.32), n−1||Jy||2, is the variance of a

dependent variable, while the numerator, n�1 JXb̂
�� ��2, is the variance of predicted

values based on the explanatory variables in X, which implies that (4.32) indicates
the proportion of the variance explained by explanatory variables in the variance of
the dependent variable. The resulting proportion of the explained variance in
Table 4.2 is found to be 0.73, which is interpreted to mean that 73% of the variance
of the dependent variable (i.e., how much more/less sales are) is explained by
quality, price, and appearance. Statistic (4.32) is also called a coefficient of
determination.

Let us consider the square root of (4.32). This can be rewritten as

Jŷk k
Jyk k ¼ Jŷk k

Jyk k �
Jŷk k
Jŷk k ¼ ŷ0Jŷ

Jyk k Jŷk k ¼ y0Jŷ
Jyk k Jŷk k ¼ ðJyÞ0Jŷ

Jyk k Jŷk k ð4:33Þ

where we have used y0Jŷ ¼ ŷþ êð Þ0Jŷ ¼ ŷ0Jŷ because of (4.27). Comparing (4.33)
with (3.8), we can find (4.33) to be the correlation coefficient between y and ŷ. In
particular, (4.33) is called the multiple correlation coefficient between dependent
and explanatory variables, as we can use (4.25) to rewrite (4.33) as

ðJyÞ0Jŷ
Jyk k Jŷk k ¼ ðJyÞ0JXb̂

Jyk k JXb̂
�� �� ð4:34Þ

which stands for the relationship of y to the multiple variables in X. Its value,
0:85 ¼ ffiffiffiffiffiffiffiffiffi

0:73
p

in Table 4.2, is near the upper limit of 1 and indicates a close
relationship of sales to quality, price, and appearance.

4.5 Interpretation of Regression Coefficients

Simple regression analysis with a single explanatory variable can be formulated in
the same manner as the multiple regression analysis described so far, except that
p is restricted to one, i.e., X is set to an n � 1 vector x. Simple regression analysis
with the model “sales = b � quality + c + error” for the data in Table 4.1 pro-
duces the result
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sales ¼ �4:02� qualityþ 128:73þ error: ð4:35Þ

Here, it should be noted that the regression coefficient for quality is negative. The
covariance and correlation coefficients between sales and quality in Table 4.3 are
also negative. Those negative values show that the products of lower quality tend to
sell better. This seems to be unreasonable. This is due to the fact that the above
coefficients are obtained only from a pair of two variables (quality and sales)
without using the other variables (prices and appearance), as explained next.

Let us note the positive correlation of quality to price, which tends to decrease
sales. That is, a third variable, price, intermediates between quality and sales.
These may also be intermediated by appearance. The effects of intermediate
variables cannot be considered by the statistics obtained for two variables
excluding the intermediate ones.

On the other hand, we can find in Table 4.2 that the coefficient for quality,
b̂1 ¼ 7:61, resulting from multiple regression, is reasonably positive. This is
because the other variables are included in the model, as found in (4.1). The
coefficient value b̂1 ¼ 7:61 is interpreted as indicating the following relationship:
The sales increase by 7.61 on average with a unit increase in quality, while the
values of the other variables are kept fixed. Why this interpretation is derived
should be understood in a rather subjective manner: A unit increase in quality with
price and appearance fixed in (4.1) can be expressed as

sales� ¼ b1 � ðqualityþ 1Þþ b2 � priceþ b3 � appearanceþ cþ error�; ð4:36Þ

where asterisks have been attached to sales and error, since an increase in quality
changes their values from those of the sales and error in (4.1), i.e.,

sales ¼ b1 � qualityþ b2 � priceþ b3 � appearanceþ cþ error:

The subtraction of both sides of (4.1) from those of (4.36) gives

sales� � sales ¼ b1 þ error� � errorð Þ; ð4:37Þ

whose average equals b1, since the average of errors is zero, i.e., (4.26) leads to
n�11n0ê ¼ 0, implying that the average of error* − error in (4.37) is zero.

Table 4.3 Covariances and correlations among the four variables in Table 4.1

Variable V: covariance matrix R: correlation matrix

Quality Price Appeara Sales Quality Price Appeara Sales

Quality 4.5 1

Price 245.5 41,801 0.57 1

Appeara −0.4 104.6 1.8 −0.16 0.39 1

Sales −18 −3748 10 985 −0.27 −0.58 0.24 1
aAppearance
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The other coefficients are also interpreted in the same manner. For example,
b̂2 ¼ �0:18 in Table 4.2 allows us to consider the following: sales tend to decrease
by 0.18 on average with a unit increase in price, while quality and appearance are
fixed.

4.6 Standardization

It is senseless to compare the largeness of the three regression coefficients in
Table 4.2(A) (b̂1 ¼ 7:61, b̂2 ¼ �0:18, b̂3 ¼ 18:23), since they are obtained from
the raw scores in which the variances (i.e., how widely the values range) differ
across variables. For the comparison of coefficients to make sense, regression
analysis must be carried out for the standardized data in which the values in all
variables have been transformed into standard scores, so that the variances are
equivalent among the variables (i.e., all unity). The solutions for standard scores are
called standardized solutions, while those for raw scores, which we have seen so
far, are called unstandardized solutions. However, the standardized and unstan-
dardized solutions of regression analysis for the same data set can be regarded as
the two different expressions of the same solution, as shown next.

The standard score vector for y is expressed as

yS ¼
1ffiffiffiffi
vy

p Jy ð4:38Þ

by substituting y for xj and vy for vjj in (2.24), where vy is the variance of the
dependent variable; it should be noticed that yj in (2.24) is different from y in this
chapter. The standard score matrix for X is expressed as (2.32), i.e.,

Z ¼ JXD�1: ð4:39Þ

Here, D ¼

ffiffiffiffiffiffi
v11

p

. .
. ffiffiffiffiffiffi

vpp
p

2
64

3
75 is the p � p diagonal matrix, with its jth diagonal

element vjj
1/2 being the standard deviation of the jth explanatory variable, implying

that its variance is vjj. Substituting (4.38) and (4.39) into y and X in (4.12),
respectively, we have the standardized solution of the regression coefficient vector

b̂S ¼ Z0JZð Þ�1Z0JyS ¼ D�1X0JXD�1� ��1
D�1X0J0
� � 1ffiffiffiffi

vy
p Jy

 !

¼ 1ffiffiffiffi
vy

p D X0JXð Þ�1DD�1X0Jy ¼ 1ffiffiffiffi
vy

p D X0JXð Þ�1X0Jy ¼ 1ffiffiffiffi
vy

p Db̂:

ð4:40Þ
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Here, (4.16) has been used: (D−1X′JXD−1)−1 = (X′JXD−1)−1D = D(X′JX)−1D.
Formula (4.40) shows that b̂S is easily transformed from the unstandardized solution
b̂, i.e., the pre-multiplication of b̂ by vy

−1/2D. Further, the substitution of (4.38) and
(4.39) into y and X in (4.9) leads to the standardized solution of the intercept
simply being zero:

ĉS ¼ 0: ð4:41Þ

Let us substitute (4.38), (4.39), and (4.40) for y, X, and b̂ in (4.32). Then, we have

n�1 JZb̂S
�� ��2

n�1 JySk k2 ¼
n�1 JXD�1 1ffiffiffi

vy
p Db̂
� 	��� ���2

n�1 1ffiffiffi
vy

p Jy
��� ���2 ¼ n�1 JXb̂

�� ��2
n�1 Jyk k2 : ð4:42Þ

This shows that the proportion of explained variance remains equal to (4.32) and
its square root (4.33) or (4.34) (multiple correlation coefficient) also remains
unchanged, even if the data set is standardized. That is, the index value for the
successfulness of regression analysis is equivalent between unstandardized and
standardized solutions.

Let us see the regression coefficient b̂S in the standardized solution, which is
called the standardized regression coefficient, in Table 4.2(B). A comparison of
their values makes sense. We can find that the absolute value of the coefficient for
price is the largest among the three exploratory variables, showing that the effect of
price on sales is the largest among the three. Further, the coefficient of price is
negative, implying that sales tend to decrease with an increase in price. The effect
of quality is found to be the least among the three variables.

4.7 Geometric Derivation of Regression Coefficients

This section can deepen our understanding of regression analysis, with knowledge
of the vector space explained in Appendix A.1.3 being necessary here.

The minimization of (4.11) over b is also restated as minimizing the squared
length of the vector (4.10), i.e., e = Jy − JXb. To solve this problem, let us con-
sider what JXb geometrically stands for when the elements of b take any real
values. It can be represented as the grayed plane in Fig. 4.2a. Though it has been
depicted as a two-dimensional plane in the figure, the grayed plane indeed repre-
sents a p-dimensional space, which is formally expressed as
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NðJXÞ ¼ JX� : Jx� ¼ JXb ¼ Jx1; . . . ; Jxp

 �

b
�

¼ b1JX1 þ � � � þ bpJxp;�1\bj\1; j ¼ 1; . . . ; p

;

ð4:43Þ

with X = [x1, … , xp] and b = [b1, … , bp]; (4.43) is equivalent to (A.1.12) in
Appendix A.1.3, with h* and H in (A.1.12) replaced by Jx* and JX in (4.43),
respectively. We can set b1, …, bp to any real values so that the terminus of the
vector Jx* = JXb moves in the space (4.43), i.e., on the grayed plane in Fig. 4.2a.

The function (4.11) to be minimized is the squared length of the difference
vector e = Jy − JXb, which is depicted as a dotted line in Fig. 4.2a. It is found to
be the shortest, i.e., the minimum, when e = Jy − JXb is orthogonal to JXb, as in
Fig. 4.2b, that is, when

ðJXbÞ0ðJy� JXbÞ ¼ b0X0Jy� b0X0JXb ¼ 0; ð4:44Þ

which holds for b equaling (4.12). This is shown by the fact that the substitution of
(4.12) into b in b′X′Jy − b′X′JXb [i.e., the middle side of (4.44)] leads to the
second and last equalities in (4.28). We should also note that the right triangle
found in Fig. 4.2b is the one in Fig. 4.1.

4.8 Bibliographical Notes

There are a number of books in which regression analysis is exhaustively detailed.
Among them are Montgomery, Peck, and Vining (2012) and Fahrmeir, Kneib,
Lang, and Marx (2013).

Multivariate data analysis procedures including regression analysis are exhaus-
tively introduced in Lattin et al. (2003) with a number of real data examples.
Izenman (2008) and Koch (2014) are examples of advanced books on multivariate

(JX) (JX)

Jy Jy

JXb

Jy JXb JXbJy

(a) When b is arbitrary (b) When b b is the solution 

JXb

Fig. 4.2 JXb in space N(JX) with vector Jy
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data analysis procedures recommended for those who have finished reading the
present book.

One topic that has not been mentioned in this chapter is variable selection, i.e.,
the problem of selecting useful exploratory variables and discarding useless ones
among the initial set of variables. A modern approach to this problem is treated in
Chap. 21.

Exercises

4:1. Show that

A�1 ¼ 1
a11a22 � a12a21

a22 �a12
�a21 a11

� �
ð4:45Þ

is the inverse matrix of A ¼ a11 a12
a21 a22

� �
.

4:2. Let us consider the system of equations
�6x1 þ 2x2 ¼ 7
3x1 þ 9x2 ¼ �12

�
, i.e., Ax = c, with

A ¼ �6 2
3 9

� �
and c ¼ 7

�12

� �
. Compute the solution of x ¼ x1

x2

� �
for the

system using A−1 in (4.45).
4:3. Show (AB)−1′ = A′−1B′−1 with A and B being nonsingular.
4:4. Consider the model yi = c + ei (i = 1, … , n), i.e., y = c1n + e, for a data

vector y = [y1, … , yn]′, with e = [e1, … , en]′ containing errors and c the
parameter to be obtained. Show that the average �y ¼ n�1Pn

i¼1 yi is the least
squares solution of c in the model, i.e., that f(c) = ||y − c1n||

2 is minimized for
c ¼ �y, using the facts in Appendix A.2.1.

4:5. Show that the solution of intercept c in (4.9) is zero if y and each column of
X contain centered scores.

4:6. Show that the regression model (4.5) can be rewritten as

y ¼ ~Xbþ e; ð4:46Þ

with ~X ¼
x11 � � � x1p 1

..

. ..
.

xn1 � � � xnp 1

2
64

3
75 an n � (p + 1) matrix and b ¼

b1
..
.

bp
c

2
6664

3
7775 aðpþ 1Þ � 1

vector.

4:7. Show that b̂ ¼ ð ~X0 ~XÞ�1 ~X0y is the least squares solution of b for (4.46), i.e.,

y� ~Xb
�� ��2 is minimized for b ¼ b̂, using the facts in Appendix A.2.2.
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4:8. Show that (4.12) can be rewritten as b̂ ¼ V�1
XXvXy. Here, VXX = n−1X′JX is the

covariance matrix among explanatory variables, and vXy = n−1X′Jy is the
vector containing the covariances between explanatory and dependent vari-
ables, with n the number of individuals.

4:9. Show that (4.40) can be rewritten as b̂S ¼ R�1
XXrXy. Here, RXX =

n−1D−1X′JXD−1 is the correlation matrix among explanatory variables, and
rXy = n−1d−1D−1X′Jy is the vector containing the correlation coefficients
between explanatory and dependent variables, with n the number of individ-
uals, D the diagonal matrix whose jth diagonal element is the standard devi-
ation for the jth variable in X, and d the standard deviation of the elements in
y.

4:10. Discuss how JXb̂ in Fig. 4.2b is the image of a pencil reflected in a mirror,
when Jy and NðJXÞ stand for the pencil and mirror, respectively, with p = 2.

4:11. In some procedures, a combination of function f(h) and another one g(h), i.e.,

f ðhÞþ sgðhÞ; ð4:47Þ

is minimized, where h is a parameter vector, s is a given nonnegative scalar value,
and g(h) is called a penalty function in that it penalizes h for increasing g(h). In a
special version of regression analysis (Hoerl & Kennard, 1970), function f(h) is
defined as f(b) = ||Jy − JXb||2 for a dependent variable vector y (n � 1) and ex-
planatory variable matrix X (n � p), while a penalty function is defined as
g(b) = ||b||2 which penalizes b for having a large squared norm. That is,
||Jy − JXb||2 + s||b||2 is minimized over b for a given s. Show that the solution is
given by b = (X′JX + sIp)

−1X′Jy.
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Chapter 5
Principal Component Analysis (Part 1)

In regression analysis (Chap. 4), variables are classified as dependent and ex-
planatory variables. Such a distinction does not exist in principal component
analysis (PCA), which is introduced in this chapter. A single data matrix X is
analyzed in PCA. This was originally conceived by Pearson (1901) and formulated
by Hotelling (1933) who named the procedure PCA. As found in this chapter and
the next, PCA can be formulated apparently in different manners. In some text-
books, PCA is firstly formulated as in Sect. 6.3 (in the next chapter), or the for-
mulation found in this chapter is not described. However, the author believes that
the latter formulation should precede the former one, in order to comprehend what
PCA is. According to ten Berge and Kiers (1996), in which the formulations of
PCA are classified into types based on Hotelling (1933), Pearson (1901), and Rao
(1973), the formulation in this chapter is based on Pearson, while the next chapter is
based on Hotelling.

5.1 Reduction of Variables into Components

PCA is usually used for an n-individuals � p-variables centered data matrix X, with
(3.20), i.e., 1n′X = 0p′. Table 5.1(B) shows an example of X which is a 6-students �
5-courses matrix of the centered scores transformed from the test scores in
Table 5.1(A).

For such a data matrix X, PCA can be formulated with

X ¼ FA0 þE: ð5:1Þ

Here, F is an n-individuals � m-components matrix whose elements are called
principal component (PC) scores, A is a p-variables � m-components matrix whose
elements are called component loadings, and E contains errors, with
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m� rankðXÞ�minðn; pÞ: ð5:2Þ

The term “components” roughly means those entities into which p variables are
summarized or reduced. The kth columns of F and A are called the kth components.

Inequality (5.2) implies that (5.1) takes the form

ð5:3Þ

That is, X is assumed to be approximated by the product of unknown matrices
F and transposed A, with the number of columns (components) in F and A being
smaller than that of X, as illustrated by the rectangles in (5.3).

The matrices to be obtained in PCA are PC score matrix F and loading matrix
A. For obtaining them, a least squares method is used; the sum of the squares of the
errors in E = X − FA′,

f ðF;AÞ ¼ Ek k2¼ X� FA0k k2; ð5:4Þ

is minimized over F and A. When X is the 6 � 4 matrix in Table 5.1(B) and m is set
to 2, the function (5.4) is minimized for the matrices F and A shown in Table 5.2
(whose W is introduced later). There, it should be noticed that A is of variables �
components, i.e., not transposed as in (5.1) or (5.3). As found in the table, the
students (individuals), which have been assessed by four kinds of scores (variables)
in X, are described by the two kinds of PC scores in F, while the relationships of the

Table 5.1 Test scores for four courses, M (mathematics), P (physics), C (chemistry), and
B (biology), with their averages and standard deviations (SD) (artificial example)

Student (A) Raw scores (B) Centered scores (C) Standard scores

M P C B M P C B M P C B

S1 69.0 66.4 77.0 74.1 −4.9 −10.6 0.3 5.3 −0.45 −0.70 0.02 0.38

S2 67.2 53.6 53.9 58.7 −6.7 −23.4 −22.8 −10.1 −0.61 −1.54 −1.75 −0.73

S3 78.6 96.9 97.3 96.2 4.7 19.9 20.6 27.4 0.43 1.31 1.58 1.97

S4 84.4 87.7 83.9 69.8 10.5 10.7 7.2 1.0 0.96 0.70 0.55 0.07

S5 56.3 68.7 72.1 56.8 −17.6 −8.3 −4.6 −12.0 −1.62 −0.55 −0.35 −0.86

S6 87.9 88.8 76.0 57.2 14.0 11.8 −0.7 −11.6 1.29 0.78 −0.05 −0.83

Average 73.9 77.0 76.7 68.8 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00

SD 10.9 15.2 13.0 13.9 10.9 15.2 13.0 13.9 1.00 1.00 1.00 1.00

66 5 Principal Component Analysis (Part 1)



PC scores to the original four variables are described in A. How F and A are
interpreted is explained in Sect. 5.4. Currently, readers need only keep in mind that
the original four variables have been reduced to two components, which implies
that variables are explained by the components whose number is smaller than that
of variables. Such a reduction is called reduced rank approximation, which is
detailed in Appendix A.4.3.

5.2 Singular Value Decomposition

PCA solutions are given through the singular value decomposition (SVD) intro-
duced in the note below. As SVD is one of the most important properties of
matrices, carefully memorizing the following note as absolute truth is strongly
recommended.

Note 5.1. Singular Value Decomposition (SVD)
Any n � p matrix X with rank(X) = r can be decomposed as

X ¼ KKL0: ð5:5Þ

Here, K (n � r) and L (p � r) satisfy

K0K ¼ L0L ¼ Ir ð5:6Þ

and

K ¼
k1

. .
.

kr

2
64

3
75 ð5:7Þ

Table 5.2 Matrices F, A, and W obtained for the centered data matrix in Table 5.1(B)

F (PC scores) A (loadings) W (weights)

F1 F2 A1 A2 W1 W2

S1 −0.23 −0.93 M 7.16 6.87 M 0.01 0.05

S2 −1.46 −0.18 P 14.28 4.34 P 0.03 0.03

S3 1.65 −1.04 C 12.52 −1.96 C 0.02 −0.01

S4 0.62 0.73 B 11.02 −7.86 B 0.02 −0.06

S5 −0.81 −0.41

S6 0.25 1.82
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is an r � r diagonal matrix whose diagonal elements are positive and
arranged in decreasing order:

k1 � � � � � kr [ 0: ð5:8Þ

This decomposition is called singular value decomposition (SVD) and kk (the
kth diagonal element of K) is called the kth largest singular value of X.

In (5.7) the blank elements of K represent their being zero, with this expression
used in the remaining parts of this book. SVD is described in more detail in
Appendix A.3, where the theorem in the above note is presented as a compact form
of SVD in Theorem A.3.2.

Another expression of the SVD explained in Note 5.1 is given next:

Note 5.2. Another Expression of SVD (1)
Let us express the matrices K and L in Note 5.1 asK = [k1,… , km, km+1,… ,
kr] = [Km, K[m]] and L = [l1, … , lm, lm+1, … , lr] = [Lm, L[m]], with

Km ¼ k1; . . .; km½ � and Lm ¼ l1; . . .; lm½ �ðthe first m columnsÞ; ð5:9Þ

K½m� ¼ kmþ 1; . . .; kr½ � and L½m� ¼ lmþ 1; . . .; lr½ � (the remaining columns):

ð5:10Þ

Then, (5.6) can be rewritten as ku′ku = lu′lu = 1 and ku′kv = lu′lv = 0 for u 6¼
v (u = 1, … , r; v = 1, … , r). Further, (5.5) can be rewritten as
X = k1k1l1′ + ��� + kmkmlm′ + km+1 km+1lm+1′ + ��� + krkrlr′, which is expre-
ssed in matrix form as

X ¼ KKL0 ¼ KmKmLm
0 þK½m�K½m�L½m�0; ð5:11Þ

with

Km ¼
k1

. .
.

km

2
64

3
75 andK½m� ¼

kmþ 1

. .
.

kr

2
64

3
75;

i:e:;K ¼ Km

K½m�

� �
:

ð5:12Þ
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Further, SVD has the following important property, which is directly related
to the PCA solution minimizing (5.4):

Note 5.3. SVD and Least Squares Solution
LetX be an n� pmatrix whose SVD is defined as in Notes 5.1 and 5.2, F be an
n � m matrix, and A be a p � m matrix, with m � r = rank(X) � min(n, p).
Then,

f FA0ð Þ ¼ X� FA0k k2 ð5:13Þ

is minimized for

FA0 ¼ KmKmLm0 ; ð5:14Þ

with Km, Lm, and Km defined as in (5.9) and (5.12).

The fact in the above note is proved by Theorem A.4.5 with (A.4.17) in Appendix
A.4.3. The theorem is referred to as Eckart and Young’s (1936) theorem in some of
the literature.

Let us illustrate the SVD in Note 5.1 and the solution in Note 5.3. The SVD (5.5)
for the X in Table 5.1(B) is given as

–4.9 –10.6 0.3 5.3 –0.38 0.19 –0.71 56.57 0.31 0.62 0.54 0.48
–6.7 –23.4 –22.8 –10.1 –0.07 0.52 0.42 28.10 0.60 0.38 –0.17 –0.68

4.7 19.9 20.6 27.4 = –0.42 0.07 0.44 15.72 0.68 –0.37 –0.40 0.49
10.5 10.7 7.2 1.0 0.30 0.05 –0.33 5.16 –0.29 0.58 –0.72 0.25

–17.6 –8.3 –4.6 –12.0 –0.17 –0.82 0.11
14.0 11.8 –0.7 –11.6 0.74 – 0.02 0.09

–0.10 
–0.60 

0.67 
0.25 

–0.33 
0.10 

ð5:15Þ
Note 5.3 thus shows that the solution of FA′ for minimizing (5.13) is given by

–0.10 –0.38 56.57 0.31 0.62 0.54 0.48
–0.60 –0.07 28.10 0.60 0.38 –0.17 –0.68
0.67 –0.42 
0.25 0.30 

–0.33 –0.17 
0.10 0.74 

ð5:16Þ

We should note that SVD provides the solution of FA′ in function (5.4) for PCA,
but not each of F and A is given. Their solutions are generally expressed as

F ¼ KmKm
aS; ð5:17Þ
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A ¼ LmK
1�a
m S�10; ð5:18Þ

with a and S being arbitrary scalar and nonsingular matrices, respectively. We can
easily verify that (5.17) and (5.18) meet (5.14). That is, the solution is not unique:
There are infinitely many solutions for {F, A}. One of the solutions has been shown
in Table 5.2, as explained in Sect. 5.4.

5.3 Formulation with a Weight Matrix

Notes 5.1 and 5.2 lead to the following facts:

Note 5.4. Another Expression of SVD (2)
Let Km, Lm, and Km be the matrices defined in Note 5.2. The
post-multiplication of Km and Lm by Km can be expressed as

KmKm ¼ XLm; ð5:19Þ

LmKm ¼ X0Km: ð5:20Þ

The facts in the above note are proved in Appendix A.3.3.
By comparing (5.19) with (5.17), we can rewrite the latter as

F = KmKmKm
a−1S = XLmKm

a−1S, i.e.,

F ¼ XW ð5:21Þ

with

W ¼ LmK
a�1
m S ð5:22Þ

a p-variables � m-components matrix that we refer to as a weight matrix.
Equation (5.21) shows that the PC score matrix F is expressed as the data matrix
post-multiplied by the weight matrix.

This fact shows that PCA may be formulated, by using (5.21) in (5.4), as
minimizing

f ðW;AÞ ¼ X� XWA0k k2 ð5:23Þ

over W and A. This minimization is equivalent to minimizing (5.4) over F and
A. Some authors have first presented (5.23) rather than (5.4) as the loss function for
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PCA, where the term loss function refers to the one to be minimized; its examples
are (5.23), (5.4), and (4.7).

Equation (5.21) implies that the resulting PC scores are centered ones with

10nF ¼ 00m; i:e:; JF ¼ F; ð5:24Þ

when PCA is performed for a data matrix of centered scores with 1n′X = 0p′, since
1n′F = 1n′XW = 0p′W = 0m′, and it is equivalent to JF = F, as proved in Note 3.1.

5.4 Constraints for Components

For selecting a single set of F and A from the multiple solutions satisfying (5.17)
and (5.18), we must impose constraints onto F and A. There are various types of
constraints, and one of them is that

1
n
F0F ¼ Im; ð5:25Þ

A0A is a diagonal matrix whose

diagonal elements are arranged in decreasing order:
ð5:26Þ

The solution that satisfies this constraint is

F ¼ ffiffiffi
n

p
Km; ð5:27Þ

A ¼ 1ffiffiffi
n

p LmKm; ð5:28Þ

which are derived from (5.17) and (5.18) by setting a = 0 and S = n1/2Im. We can
verify that (5.27) and (5.28) satisfy (5.25) and (5.26) by noting that (5.6) and (5.9)
imply Km′Km = Lm′Lm = Im. Under (5.25) and (5.26), the weight matrix is
expressed as

W ¼ ffiffiffi
n

p
LmK

�1
m ; ð5:29Þ

which is derived from (5.22) by setting a = 0 and S = n1/2Im. Table 5.2 shows the
solutions of (5.27), (5.28), and (5.29) for the data in Table 5.1(B).

To consider the implications of constraints (5.25) and (5.26), we express the col-
umns of F andA as F = [f1,… , fm] andA = [a1,… , am], where the elements of fk are
called the kth PC scores and those of ak are called the kth loadings (k = 1,… ,m). Let
us note (5.24) and recall (3.22). They show that the left-hand side n−1F′F in (5.25) is
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the inter-component covariancematrix of PC scores, whose diagonal elements n−1f′kfk
are variances, and whose off-diagonal elements n−1f′kfl (k 6¼ l) are covariances. The
variances and covariances are constrained to be one and zero, respectively, in (5.25).
This implies the following:

[1] PC scores are standardized.
[2] The kth PC scores are uncorrelatedwith the lth PC ones with f 0kfl = 0 for k 6¼ l.

Similarly, the constraint of A′A being a diagonal matrix in (5.26) is rewritten
as ak′al = 0 for k 6¼ l, which does not imply that ak is uncorrelated to al, since
1p′A 6¼ 0m, in general, but allows the loadings to have the following property:

[3] The kth loading vector ak is orthogonal to the lth one al.

The properties are desirable in that [2] and [3] allow different components to be
distinct and [1] makes it easier to compare PC scores between different components.
Further, [1] leads to the following property:

[4] A (p � m) is the covariance matrix between p variables and m components,
in particular, the correlation matrix when X is standardized.

It is proved as follows: We can use (5.20) and (5.27) to rewrite (5.28) as

A ¼ 1ffiffiffi
n

p LmKm ¼ 1ffiffiffi
n

p X0Km ¼ 1
n
X0F; ð5:30Þ

which equals (3.25) and is the covariance matrix for X and F, since of 1n′X = 0p′
and (5.24). Further, if X is standardized, (5.30) is the correlation matrix, because of
property [1] and (3.25).

Note that the loading matrix A in Table 5.2 is the covariance matrix for X and F,
but is not their correlation matrix, since it is the result for the data set which is not
standardized. On the other hand, Table 5.3 shows the PCA solution for the stan-
dard scores in Table 5.1(C), where the constraints (5.25) and (5.26) are imposed.
The A in Table 5.3 is the correlation matrix between variables and components.
The solution has been given through SVD:

Table 5.3 Matrices F, A, W obtained for the standard scores in Table 5.1(C)

F (PC scores) A (loadings) W (weights)

F1 F2 A1 A2 W1 W2

S1 −0.23 −0.78 M 0.70 0.66 M 0.24 0.79

S2 −1.43 0.13 P 0.94 0.20 P 0.33 0.24

S3 1.58 −1.10 C 0.94 −0.24 C 0.33 −0.28

S4 0.66 0.72 B 0.77 −0.56 B 0.27 −0.66

S5 −0.92 −0.74

S6 0.33 1.76
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–0.45 –0.70 0.02 0.38 –0.09 –0.32 –0.26 0.72 4.15 0.41 0.56 0.56 0.46

–0.61 –1.54 –1.75 –0.73 –0.58 0.05 –0.55 –0.41 2.24 0.72 0.22 –0.26 –0.61

0.43 1.31 1.58 1.97 = 0.65 –0.45 –0.13 –0.44 1.23 –0.51 0.47 0.40 –0.60

0.96 0.70 0.55 0.07 0.27 0.29 0.02 0.33 0.38 0.23 -0.65 0.68 –0.25

–1.62 –0.55 –0.35 –0.86 –0.38 –0.30 0.77 –0.10

1.29 0.78 –0.05 –0.83 0.14 0.72 0.16 –0.10

ð5:31Þ
with X being the matrix in Table 5.1(C).

5.5 Interpretation of Loadings

Let us define the columns of matrices as X = [x1, … , xp], A′ = [a1, … , ap], and
E = [e1,… , ep], with xj, aj, and ej (j = 1,… , p) corresponding to variable j (i.e., aj′
the jth row vector of A). Then, the PCA model (5.1) is rewritten as

xi ¼ Faj þ ej ðj ¼ 1; . . . ; pÞ: ð5:32Þ

This takes the same form as (4.5) except that (5.32) does not include an intercept.
That is, PCA can be regarded as the regression of xj onto F. When m = 2, as in
Table 5.3, (5.32) is expressed as

xi ¼ aj1f1 þ aj2f2 þ ej ðj ¼ 1; . . . ; pÞ; ð5:33Þ

with F = [f1, f2] and aj = [aj1, aj2]′. That is, f1 and f2 can be viewed as the ex-
planatory variables for a dependent variable xj, with loadings aj1 and aj2 as the
regression coefficients. The equation is further rewritten as

xij ¼ aj1fi1 þ aj2fi2 þ eij ði ¼ 1; . . .; p; j ¼ 1; . . .; pÞ; ð5:34Þ

using X = (xij), F = (fik), and A = (ajk).
On the basis of (5.34), we can interpret the loadings in Table 5.3 as follows:

[A1] All aj1 show fairly large positive values for all variables (courses), which
implies that students with higher values of fi1 (the 1st PC score) tend to
show higher scores xij for all courses (j = 1, … , p). The 1st component can
thus be interpreted as standing for a general ability common to M, P, C, and
B.

[A2] aj2 show positive loadings for M and P, but negative ones for C and B. The
2nd component can be interpreted as standing for a specific ability advan-
tageous for M and P, but disadvantageous for C and B.
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As described with (5.30) in Sect. 5.4, the loadings in Table 5.3 can also be
regarded as the correlation coefficients of variables to components. For example,
courses P and C are very highly correlated with Component 1, since the corre-
sponding coefficient 0.94 is close to the upper limit.

5.6 Interpretation of Weights

The role of weight matrix W is easily understood by rewriting (5.21) as

fk ¼ Xwk ¼ w1kx1 þ � � � þwpkxp ðk ¼ 1; . . .;mÞ; ð5:35Þ

with wk = [w1k, … , wpk]′ the kth column of W = (wjk). In (5.35), we find that the
elements inW provide the weights by which variables are multiplied to form the PC
scores in F. We can further rewrite (5.35) as

fik ¼ w1kxi1 þ � � � þwpkxip ði ¼ 1; . . .; n; k ¼ 1; . . .;mÞ: ð5:36Þ

This allows us to interpret the W in Table 5.3 as follows:

[W1] All wj1 show positive values for all variables (courses), which shows that
the 1st PC score fi1 = w11xi1 + w21xi2 + w31xi3 + w41xi4 is the sum of all
variables positively weighted. Thus, the score can be interpreted as standing
for a general ability common to M, P, C, B.

[W2] wj2 show positive values for M and P, but negative ones for C and B; the
2nd PC scores fi2 = w12xi1 + w22xi2 + w32xi3 + w42xi4 are higher for stu-
dents who are superior in M and P, while the scores are lower for those who
are superior in C and B. The scores can thus be interpreted as standing for a
specific ability advantageous for M and P, but disadvantageous for C and B.

Those interpretations are congruous with [A1] and [A2] in the last section.

5.7 Percentage of Explained Variance

In this section, we consider assessing the amount of the errors for the resulting
solutions. Substituting SVD (5.5) and the solution (5.14) into X and FA′, respec-
tively, in the squared sum of errors (5.4), its resulting value can be expressed as

Ek k2 ¼ KKL0 �KmKmL0
m

�� ��2
¼ trLKK0KKL0 � 2trLKK0KmKmL0

m þ trLmKmK0
mKmKmL0

m

¼ trK2 � trK2
m � 0:

ð5:37Þ
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Here, we have used trLKK′KmKmLm′ = tr(Lm′LK)(K′KmKm) = tr(Km)(Km) =
trKm

2Km. This result follows from

K0Km ¼ L0Lm ¼

1
. .
.

1
0 � � � 0

..

.

0 � � � 0

2
66666664

3
77777775
:

K′Km = L′Lm equals the r � m matrix whose first m rows are those of Im and the
remaining rows are filled with zeros. Dividing (5.37) by trK2 leads to

Ek k2
trK2 ¼ 1� PEVm � 0; ð5:38Þ

with

PEVm ¼ trK2
m

trK2 ¼ trK2
m

Xk k2 : ð5:39Þ

Here, we have used

Xk k2¼ trX0X ¼ trLKK0KKL0 ¼ trK2: ð5:40Þ

Since (5.38) expresses the largeness of errors with taking a nonnegative value,
(5.39) indicates the smallness of errors, i.e., how well FA′ approximates X, by
taking a value within the range [0, 1]. Some different terms are used for proportion
(5.39). One of them is the proportion of explained variance (PEV), since (5.39) can
be rewritten as

PEVm ¼
1
ntrðKmKmL0

mÞ0KmKmL0
m

1
ntrX0X

¼
1
ntrðFA0Þ0FA0

trV
; ð5:41Þ

with V = n−1X′X the covariance matrix given in (3.22); the denominator of (5.41)
is the sum of the variances of p variables, while the numerator is the sum of the
variances of the columns of FA′, i.e., (5.14), since (5.24) implies that FA′ is
centered with 1n′FA′ = 0p′.

The PEV for the solution with m = 2 in Table 5.3 is obtained as

PEV2 ¼ 4:152 þ 2:242

4:152 þ 2:242 þ 1:232 þ 0:382
¼ 22:24

23:90
¼ 0:93; ð5:42Þ
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using (5.31). This implies that 93% of the data variances are accounted for by two
components; in other words, 7% (=100–93) of the variances remain unexplained. If
we adopt the m = 3 solution, the PEV is

PEV3 ¼ 4:152 þ 2:242 þ 1:232

4:152 þ 2:242 þ 1:232 þ 0:382
¼ 23:75

23:90
¼ 0:99:

The PEV for the solution with m = 2 in Table 5.2 (i.e., the solution for the
centered data matrix without standardization) is obtained as

PEV2 ¼ 56:572 þ 28:102

56:572 þ 28:102 þ 15:722 þ 5:162
¼ 3989:78

4263:52
¼ 0:94; ð5:43Þ

using (5.15) and (5.16). This differs from (5.42); the difference is not due to a
round-off error. This shows that the PCA solution for a centered data matrix without
standardization differs from that for the standard scores for the same data matrix.
The latter solution cannot be straightforwardly transformed from the former, which
differs from the regression analysis in the last chapter.

5.8 High-Dimensional Data Analysis

Recently, we have often encountered data sets with much more variables than
individuals, i.e., an n � p data matrix X with p � n. Such a data set is said to be
high-dimensional (e.g., Kock, 2014). In order to find a few components underlying
a number of variables, PCA is useful. In this section, we illustrate PCA for
high-dimensional data using Yeung and Ruzzo’s (2001) gene expression data with
n = 17 time points and p = 384 genes. The data matrix is publicly available at
http://faculty.washington.edu/kayee/pca.

We performed PCA for the data set with m = 4. The solution shows
PEV4 = 0.81, which implies that 81% of the variances in 384 variables are
explained by only four components. For the resulting loading matrix, we performed
a varimax rotation, which is described in Chap. 13, for the following reason:

Note 5.5. Rotation of Components
If constraint (5.26) is removed and only (5.25) is considered, (5.1) can be
rewritten as

X ¼ FA0 þE ¼ FTT0A0 þE ¼ FTAT
0 þE: ð5:44Þ

76 5 Principal Component Analysis (Part 1)

http://faculty.washington.edu/kayee/pca


Here,

FT ¼ FT and AT ¼ AT; ð5:45Þ

with T a special matrix satisfying T′T = TT′ = Im, which is detailed in
Appendix A.1.2. If F meets (5.25), FT also satisfies it:

1
n
FT

0FT ¼ 1
n
T0F0FT ¼ T0 1

n
F0F

� �
T ¼ T0 Imð ÞT ¼ T0T ¼ Im: ð5:46Þ

Equations (5.44) and (5.46) imply that if F and A are the PCA solution that
minimizes (5.4) subject to (5.25), so are FT and AT.

The above T can be chosen by the rotation techniques in Chap. 13, so that
the resulting AT is easily interpreted.

The resulting loading matrix AT is of 384 � 4, which is too big to capture the values
of its elements. Such a matrix can be effectively presented by a heat map, in which
the largeness of the absolute values of each element is represented as the depth of
color in the cell corresponding to each element. Figure 5.1 shows a heat map for the
resulting loadings, block-wise. There, the blocks correspond to the five groups, into
which the 384 genes are known to be categorized; each block is a matrix whose
rows and columns are occupied by the genes in the corresponding group and the
four components (C1–C4), respectively, though the genes in Group 2 are divided
into two blocks. The solution is considered to be reasonable, as each phase has a
unique feature of the loadings: the genes in Groups 1, 2, 4, and 5 positively load
Components 1, 2, 3, and 4, respectively, while those in Group 3 positively load
both Components 2 and 3.

5.9 Bibliographical Notes

Jolliffe (2002) exhaustively details various aspects of PCA. A subject that has not
been treated in this book is the graphical biplot methodology for jointly repre-
senting the PC scores of individuals and the loadings of variables in a single
configuration (Gower, Lubbe, & le Roux, 2011). The author of the present book has
proposed a modified PCA procedure for easily capturing the biplot (Adachi, 2011).

A three-way data array is often observed whose element can be expressed as xijk,
with i, j, and k standing for an individual, a variable, and an occasion, respectively,
for example. The PCA formulation in this chapter can be modified to the
approximation of the three-way data array by the reduced components, as intro-
duced in Chap. 20.
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Exercises

5:1. Write Eqs. (5.5)–(5.8) ten times, using different characters for matrices, in
order to learn SVD by heart.

5:2. Show that (5.5) can be rewritten as X ¼ ~K~K~L
0
for n � p. Here, ~K and ~L are

the n � p and p � p matrices, respectively, satisfying ~K
0 ~K ¼ ~L

0~L ¼ Ip,

while ~K is a p � p diagonal matrix with ~K ¼

k1
. .
.

kr
0

. .
.

0

2
66666664

3
77777775
:

This is the extended version of SVD in Appendix A.3.1.
5:3. Show that the error matrix E = X − FA′ resulting in the minimization of

(5.4) is expressed as E = K[m]K[m]L[m]′, with its right-hand side defined
as in (5.11) and the resulting PC scores are uncorrelated to the errors with
F′E = mOp.

5:4. Show that (5.14) can be rewritten as FA′ = k1k1l1′ + ��� + kmkmlm′ using
(5.9).

5:5. Show that the problem in Note 5.3 would be trivial with its solution
FA′ = X, if m � rank(X) were not supposed.

5:6. Show that (5.27) and (5.28) must be replaced by F = KmKm
1/2 and A = LmKm

1/2,
respectively, if constraint (5.25) was replaced by F′F = A′A,

5:7. Show that the SVD in Notes 5.1, 5.2, and 5.4 implies Km = XLmKm
−1.

5:8. Discuss the similarities and differences between the loading matrix A and the
weight matrix W.

5:9. Show PEVm � PEVm+1 for (5.39).
5:10. Let us define

Xþ ¼ LK�1K0 ð5:47Þ

for the matrix X whose SVD is defined in Note 5.1. Show that X+ satisfies
XX+X = X, X+XX+ = X+, (XX+)′ = XX+, and (X+X)′ = X+X. Matrix (5.47)
is called the Moore–Penrose inverse of X, as introduced in Chap. 17.

5:11. If X is nonsingular, show that its inverse matrix X−1 is a special case of the
Moore–Penrose inverse X+ (5.47).

5:12. Show that the Moore–Penrose inverse (5.47) is defined for every matrix.
5:13. As with SVD and the Moore–Penrose inverse, QR decomposition is also

defined for everymatrix. Here, theQRdecomposition ofA (p�m) is expressed
as A = QR, with Q′Q = Im and the elements of R = (rjk) (m � m) being zero
for j > k. Verify that
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A                            Q                   R 

–0.27 –1.74 1.24 1.58  –0.09 –0.32 –0.26 0.72 3 –2 4 6

–1.74 1.46 –2.57 –6.48  –0.58 0.05 –0.55 –0.41 0 6 –5 3

1.95 –4.00 4.85 0.09 = 0.65 –0.45 –0.13 –0.44 0 0 0 2

0.81 1.20 –0.37 4.18 0.27 0.29 0.02 0.33 0 0 0 5

–1.14 –1.04 –0.02 –2.14  –0.38 –0.30 0.77 –0.10 

0.42 4.04 –3.04 2.82 0.14 0.72 0.16 –0.10 

represents a QR decomposition.
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Chapter 6
Principal Component Analysis (Part 2)

In this chapter, principal component analysis (PCA) is reformulated. The loss
function to be minimized is the same as that in the previous chapter, but the
constraints for the matrices are different. This reformulation gives two purposes of
PCA that were not found in the previous chapter. They are [1] forming a weighted
composite score with the maximum variance and [2] visualizing a high-dimensional
invisible distribution of individuals. In Sects. 6.1 and 6.2, the reformulation of PCA
is mathematically described, followed by illustrations of the two purposes in
Sects. 6.3, 6.4, and 6.5. Finally, a subject parallel to that in Sect. 5.7 is treated in
Sect. 6.6.

6.1 Reformulation with Different Constraints

Let X denote an n-individuals � p-variables centered data matrix with 1n′X = 0p′,
as in the last chapter. As described there, PCA is formulated as minimizing (5.4),
which is equivalent to (5.23), i.e., minimizing

f ðW;AÞ ¼ X� FA0k k2¼ X� XWA0k k2 ð6:1Þ

over weight matrix W and loading matrix A with F = XW containing PC scores.
Using the singular value decomposition (SVD) in Notes 5.1 and 5.2, the solutions
for W and A are expressed as (5.18) and (5.22), which are presented again here:

A ¼ LmK
1�a
m S�10; ð6:2Þ

W ¼ LmK
a�1
m S: ð6:3Þ

Here, a and S are arbitrary scalar and nonsingular matrices, respectively, which
show that infinitely many solutions exist.
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To select a single solution among them, we consider the following constraints:

F0F ¼ W0X0XW ¼ a diagonal matrix whose diagonal elements

are arranged in descending order;
ð6:4Þ

W0W ¼ Im; ð6:5Þ

which differ from constraints (5.25) and (5.26) in the last chapter. Then, the solution
for W and A is expressed as

W ¼ A ¼ Lm: ð6:6Þ

Both matrices are identical, which are given by (6.2) and (6.3) with a = 0 and
S = Km. Obviously, (6.5) is satisfied by (6.6). This also allows F = XW to satisfy
(6.4) as follows: (6.6) and (5.19) lead to F = XW = XLm = KmKm. This fact and
Km′Km = Im imply

F0F ¼ W0X0XW ¼ Km
2: ð6:7Þ

where the diagonal elements of Km
2 are in descending order, because of (5.8) and

(5.12).
The identity of W to A in (6.6) shows that we may rewrite (6.1) as:

f ðWÞ ¼ X� XWW0k k2 ð6:8Þ

without A.

6.2 Maximizing the Sum of Variances

Minimization of (6.8) subject to (6.4) and (6.5) is equivalent to maximizing

gðWÞ ¼ tr
1
n
F0F ¼ 1

n
trW0X0XW ð6:9Þ

subject to the same constraints. The equivalence is shown by expanding (6.8) as

f ðWÞ ¼ trX0X� 2trX0XWW0 þ trWW0X0XWW0

¼ trX0X� 2trW0X0XWþ trW0X0XWW0W:
ð6:10Þ

Using (6.5), the function (6.10) can be further rewritten as
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f ðWÞ ¼ trX0X� 2trW0X0XWþ trW0X0XW ¼ trX0X� trW0X0XW: ð6:11Þ

Here, we should note that only −trW′X′XW is a function of W in the right-hand
side. This implies that the minimization of f(W) overW is equivalent to minimizing
−trW′X′XW or maximizing trW′X′XW. Further, this maximization is equivalent to
trW′X′XW divided by n, i.e., (6.9).

Thus, PCA can also be formulated as maximizing (6.9) subject to (6.4) and (6.5).
Here, the matrix n–1F′F in (6.9) is the covariance matrix of PC scores between
components, since F = XW is centered: 1n′X = 0p′ leads to 1n′F = 0m′. Thus, the
diagonal elements of n−1F′F are the variances of m PC scores, implying that (6.9) is
the sum of the variances of the 1st, … , mth PC scores:

gðWÞ ¼ 1
n
f 01f1 þ � � � þ 1

n
f 0mfm ¼

Xm
k¼1

1
n
f 0kfk

� �
; ð6:12Þ

with F = [f1, … , fm].
We can also rewrite (6.9) as

gðWÞ ¼ trW0 1
n
X0X

� �
W ¼ trW0VW; ð6:13Þ

where

V ¼ 1
n
X0X ð6:14Þ

is the covariance matrix for centered X. In some books, PCA is introduced with the
following decomposition:

Note 6.1. Eigenvalue Decomposition of a Covariance Matrix
The singular value decomposition X = KKL′ in (5.5) with (5.6) and (5.7)
leads to X′X = LK2L′. Comparing it with X′X = nV following from (6.14),
we have nV = LK2L′. This equation can be rewritten as

V ¼ LDL0: ð6:15Þ

Here,

D ¼
d1

. .
.

dr

2
64

3
75 ¼ 1

n
K2; ð6:16Þ
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with r = rank(X) and d1 � ��� � dr � 0. Decomposition (6.15) is referred to
as the eigenvalue decomposition (EVD) or spectral decomposition of V, dk
(k = 1, … , r) is called the kth largest eigenvalue of V, and the kth column of
L is called the eigenvector of V corresponding to dk.

6.3 Weighted Composite Scores with Maximum Variance

Let us express the columns of a data matrix as X = [x1, … , xp]. An example of
X with n = 9 (examinees) and p = 3 (tests) is given in Table 6.1(B), which contains
the centered scores of the raw ones in (A). They are the scores of the entrance
examinations for a company. The examinations consist of the following items:

ES: essay,

IN: interview,

PR: presentation,

which define the three variables in X.
We perform PCA for this data set with the number of components m equaling

one, i.e., W = w1 (p � 1) and F = f1 = Xw1 (n � 1) being vectors. By defining
w1 = [w11, …. , wp1]′, the PC score vector f1 is written as

f1 ¼ Xw1 ¼ w11x1 þ � � � þwp1xp ¼ w11ESþw21INþw31PR, ð6:17Þ

Table 6.1 Scores for an entrance examination and its PCA scores, which are artificial examples
found in Adachi (2006)

Examinee (A) Raw scores (B) Centered scores (C) PC scores

ES IN PR ES IN PR 1st 2nd 3rd

1 88 70 65 21.2 4.3 −3.0 10.8 −19.0 0.6

2 52 78 88 −14.8 12.3 20.0 13.3 24.3 −1.8

3 77 87 89 10.2 21.3 21.0 31.3 4.7 −1.4

4 35 40 43 −31.8 −25.7 −25.0 −46.5 10.9 −3.3

5 60 43 40 −6.8 −22.7 −28.0 −34.8 −11.4 −0.7

6 97 95 91 30.2 29.3 23.0 46.9 −10.3 −1.1

7 48 62 83 −18.8 −3.7 15.0 −1.8 23.4 6.5

8 66 66 65 −0.8 0.3 −3.0 −2.0 −0.9 −2.2

9 78 50 48 11.2 −15.7 −20.0 −17.1 −21.6 3.4

Average 66.8 65.7 68.0 0.0 0.0 0.0 0.0 0.0 0.0

Variance 358.0 324.2 380.2 358.0 324.2 380.2 793.3 260.4 8.5
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with the abbreviations for the variables in Table 6.1 used in the right-hand side.
Here, f1 is found to contain the weighted composite scores for the examinees, i.e.,
the sum of the data in xj weighted by wj1 over j = 1, … , p.

Using W = w1 and F = f1 = Xw1, the function (6.9) or (6.12) is rewritten as

g w1ð Þ ¼ w0
1

1
n
X0X

� �
w1 ¼ w0

1Vw1 ¼ 1
n
f 01f1: ð6:18Þ

This stands for the variance of the weighted composite scores in (6.17); their
variance is defined as n−1f′1Jf1 = w1′(n

−1X′JX)w1 = w1′(n
−1X′X)w1 = n−1f1′f1,

since X is centered with X = JX. This variance is to be maximized subject to (6.5),
i.e., w1′w1 = 1 for m = 1 (where (6.4) may not be considered for m = 1, since
F′F = f1′f1 is a single scalar). That is, the PC scores in f1 are the composite scores
obtained by weighting the variables so that the variance of the scores is maximized,
in other words, so that individuals are best distinguished.

PCA for the data set in Table 6.1(B) provides

w1 ¼ ½0:47; 0:63; 0:62�0; ð6:19Þ

which implies that

PC score ¼ 0:47 ESþ 0:63 INþ 0:62 PR ð6:20Þ

is to be obtained for each examinee. For example, the centered scores for the second
examinee are −14.8, 12.3, and 20.0, thus, that examinee’s first PC score is obtained
as

0:47� ð�14:8Þþ 0:63� 12:3þ 0:62� 20:0 ¼ 13:3: ð6:21Þ

The PC scores computed for all examinees in this way are shown in the first column
of Table 6.1(C).

In everyday life, we often use a composite score:

Simple Sum Score ¼ x1 þ � � � þ xp ¼ ESþ INþ PR, ð6:22Þ

i.e., the sum of the equally weighted variables. As compared to this score, the PC
score (6.20) is more useful for distinguishing individuals.
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6.4 Projecting Three-Dimensional Vectors
onto Two-Dimensional Ones

Though the maximization of (6.9) (for m = 1) was considered in the last section, the
purpose of this section is to explain that the minimization of (6.8) implies projecting
a three-dimensional (3D) space onto one that is two-dimensional (2D), for p = 3, as
in Table 6.1(B), and m = 2. For that purpose, let us use F = XW in (6.8) to rewrite
it as

f ðWÞ ¼ X� XWW0k k2¼ X� FW0k k2: ð6:80Þ

Further, we use row vector ~x0ið1� pÞ for the data vector of individual i, and ~f 0ið1�
mÞ for the PC score vector of i:

X ¼

~x01
..
.

~x0i
..
.

~x0n

2
6666664

3
7777775
; F ¼

~f 01
..
.

~f 0i
..
.

~f 0n

2
6666664

3
7777775
¼ XW ¼

~x01W
..
.

~x0iW
..
.

~x0nW

2
6666664

3
7777775

ð6:23Þ

with W being p � m. Then, the rows of FW′ = XWW′ in (6.8′) are expressed as

FW0 ¼

~f 01W
0

..

.

~f 0iW
0

..

.

~f 0nW
0

2
6666664

3
7777775
¼ XWW0 ¼

~x01WW0

..

.

~x0iWW0

..

.

~x0nWW0

2
6666664

3
7777775
: ð6:24Þ

Using (6.23) and (6.24) in (6.8′), this is rewritten as

f ðWÞ ¼

~x01
..
.

~x0i
..
.

~x0n

2
6666664

3
7777775
�

~x01WW0

..

.

~x0iWW0

..

.

~x0nWW0

2
6666664

3
7777775

������������

������������

2

¼

~x01
..
.

~x0i
..
.

~x0n

2
6666664

3
7777775
�

~f 01W
0

..

.

~f 0iW
0

..

.

~f 0nW
0

2
6666664

3
7777775

������������

������������

2

: ð6:800Þ
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When p = 3 and m = 2, the minimization of (6.8′′) amounts to matching indi-

viduals’ data vectors ~x0i ¼ xi1; xi2; xi3½ � to ~x0iWW0 ¼ ~f 0i W
0ð1� 3Þ; which can be

expressed as

~x0iWW0 ¼ ~f
0
iW

0 ¼ fi1; fi2½ � w0
1

w0
2

� �
¼ fi1w0

1 þ fi2w0
2; ð6:25Þ

with W = [w1, w2] (3 � 2) and ~f i0 ¼ fi1; fi2½ �: A key point involves capturing what
(6.25) geometrically stands for. This is explained in the following two paragraphs.

As the data vector ~x0i ¼ xi1; xi2; xi3½ � is 1 � 3, ~x0i can be depicted in a 3D space, as

in Fig. 6.1a; ~x0i is the line extending to the coordinate [xi1, xi2, xi3]. There, we can
also depict a plane whose direction in the 3D space is defined by vectors w1′ and
w2′. As found there, the projection of ~x0i on the plane is expressed as (6.25), where
the projection refers to the vector that extends to the intersection of the plane and

the line drawn from ~x0i , vertical to the plane. Further, the PC scores in ~f 0i ¼
fi1; fi2½ � ¼ ~x0iW stand for the coordinates of the projection within the plane. Why
this fact holds is explained in Appendix A.1.4. The plane seen head-on is shown in
Fig. 6.1b. There, the first and second PC scores in [fi1, fi2]′ are the coordinates on
the horizontal and vertical axes of the plane. Below, we note the difference in this
plane compared with that used in Chap. 4:

Note 6.2. Differences from Fig. 4.2
The plane in Fig. 4.2 differs from the one in Fig. 6.1a and the remaining ones
in this chapter, in that variable vectors extend on the plane in Fig. 4.2, while
individuals’ vectors extend/are distributed on the planes in the figures
appearing in this chapter.

w2

w1

fi1w1

fi
f i

i

2w
W

X

2

fi1w1 + fi2w2

= 
0

fi1 

fi2 

0

(a) (b) 

~

~

f i
~

Fig. 6.1 The projection of a data vector onto a plane (a) with its front view (b)
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We can freely define spaces (i.e., planes); which spaces are to be con-
sidered depends on one’s research interests.

Now, let us recall function (6.8′′), which is minimized over W = [w1′, w2′]′ in
PCA. This minimization implies bringing the projection (6.25) as close to ~x0i as
possible for all i = 1, … , n. In other words, one purpose of PCA is to find the
matrix W = [w1′, w2′]′ that defines the direction of the plane so that the projections
(6.25) are closest to the original data vectors ~x0i. The plane obtained by PCA is thus
called a best-fitting plane, since it is closest, i.e., the best fitted to the data vectors

We illustrate the above case with the data in Table 6.1(B), whose data vec-
tors ~x0iði ¼ 1; . . . ; 9Þ can be depicted as in Fig. 6.2a. Here, the endpoints of the

vectors ~x0i have been indicated by circles (not by lines as in Fig. 6.1a) for the sake of
ease in viewing. For the data set, PCA provides the solution ofW = [w1′, w2′]′ with
w1 given by (6.19) and

w2 ¼ ½�0:84; 0:11; 0:53�0: ð6:26Þ

w2

w1

(b) (c) 

(a) 

-19.0

10.8

~

Fig. 6.2 Projections of data vectors (a) on a plane (b) with its front view (c)
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These vectors define the best-fitting plane in Fig. 6.2b, on which the projections
~f 0i W

0ði ¼ 1; . . . ; 9Þ for data vectors ~x0i exist. A head-on view of the plane is shown
in Fig. 6.2c. Here, the coordinates of the points are the first and second PC scores in
~f i0 ¼ fi1; fi2½ �; whose values are presented in Table 6.1(C). For example, the PC
score vector for Examinee 1 is found to be ~f10 ¼ ½10:8;�19:0� in the table, and it is
located at the point with the coordinates [10.8, −19.0] in Fig. 6.2c. Here, the second
PC score, −19.0, has been obtained as f12 = −0.84 � 21.2 + 0.11 � 4.3 + 0.53 �
(−3.0) = −19.0 using her/his centered scores [21.2, 4.3, −3.0] and the weights in
(6.26).

This section deals with the logic in PCA by which the original 3D data distri-
butions (as in Fig. 6.2a) are projected on a 2D plane (as in (b)), whose front view is
a scatter plot (as in (c)). This 2D plot is useful, in that it is easier to capture than the
original 3D plot. However, this section is merely a preparation for the one that
follows, where the distributions in the space of a higher dimension can be projected
onto a lower-dimensional space in the same way as in this section. It is one of the
most important benefits gained by using PCA.

6.5 Visualization of Invisible Distributions

We consider a new data set in Table 6.2 (Committee for Guiding Psychological
Experiments, 1985). It contains the results of the rating by participants for to what
extent 12 adjectives characterize 14 occupational categories. The table shows the
average rating values for the categories on a scale of 1–5. For example, let us note
the final column “busy”: the busyness of “bank clerk” is rated at 4.2, while that of
“professor” is 3.0, that is, people think that bank clerks are busier than professors.

Let X = (xij) (14 � 12) contain the centered scores of the data in Table 6.2. For
example, x32 is 3.2–3.7 = −0.5 (the usefulness of “cartoonist” minus the average of
usefulness). Can we depict the distribution of the 14 categories’ scores on the 12
variables? That would require a 12-dimensional (12D) space with its 12 coordinate
axes orthogonally intersected. Unfortunately, a space of dimensionality m > 3 can
neither be drawn nor seen by us, as we live in a 3D world! However, such a
high-dimensional space can be considered in logic, i.e., mathematically, regardless
of how high the dimensionality is.

Let us suppose that ~x0i ¼ xi1; . . .; xi;12
� �

(i = 1, … , 14; categories) are distributed
in a 12D space as depicted in Fig. 6.3a. PCA for X yields the weight matrix
W = [w1, w2] in Table 6.3(A). It defines the best-fitting plane on which the pro-
jections ~f i0 W0ði ¼ 1; . . . ; 14Þ are located, as illustrated in Fig. 6.3b. This plane can
be seen head-on, as shown in Fig. 6.4. There, the 14 categories are plotted,
with their coordinates being the PC scores ~f i0 ¼ fi1; fi2½ �; whose values are obtained
as in Table 6.3(B) using the centered scores for Table 6.2 and the weights in
Table 6.3(A).

6.4 Projecting Three-Dimensional Vectors onto Two-Dimensional Ones 89



T
ab

le
6.
2

Im
pr
es
si
on

s
of

14
oc
cu
pa
tio

na
l
ca
te
go

ri
es

ra
te
d
fo
r
12

ad
je
ct
iv
es

C
at
eg
or
y

N
ob

le
U
se
fu
l

G
oo

d
B
ig

Po
w
er
fu
l

St
ro
ng

Q
ui
ck

N
oi
sy

Y
ou

ng
Fa
ith

fu
l

St
ri
ct

B
us
y

M
on

k
3.
2

2.
7

3.
7

2.
8

2.
6

2.
6

2.
2

1.
4

1.
7

3.
3

3.
8

1.
8

B
an
k
cl
er
k

3.
4

3.
5

3.
4

2.
5

2.
2

2.
6

3.
2

2.
1

3.
6

4.
1

4.
7

4.
2

C
ar
to
on

is
t

3.
0

3.
2

3.
5

2.
2

2.
1

2.
2

3.
3

3.
4

4.
1

3.
4

1.
3

4.
3

D
es
ig
ne
r

3.
2

3.
2

3.
5

2.
6

2.
5

2.
6

3.
6

2.
9

4.
2

3.
2

1.
5

4.
0

N
ur
se

a
4.
2

4.
6

4.
5

3.
1

3.
0

3.
2

2.
8

3.
3

4.
1

4.
5

2.
3

4.
9

Pr
of
es
so
r

4.
0

4.
0

3.
8

3.
4

3.
2

3.
1

2.
4

1.
5

1.
6

3.
7

3.
9

3.
0

D
oc
to
rb

4.
0

4.
8

3.
9

3.
5

3.
8

3.
7

3.
2

2.
1

2.
6

3.
7

3.
6

4.
5

Po
lic
em

an
3.
7

4.
6

4.
1

3.
4

4.
0

4.
1

4.
3

3.
4

3.
5

4.
2

4.
4

4.
0

Jo
ur
na
lis
t

3.
6

4.
3

3.
7

2.
9

3.
5

3.
6

4.
7

4.
2

4.
1

3.
9

3.
7

5.
0

Sa
ilo

r
3.
6

3.
6

3.
5

3.
5

4.
2

4.
2

3.
5

3.
5

3.
7

3.
5

2.
5

3.
5

A
th
le
te

3.
7

3.
2

3.
7

3.
9

4.
7

4.
7

4.
9

3.
5

4.
2

3.
7

2.
8

4.
1

N
ov

el
is
t

3.
4

3.
7

3.
5

3.
1

2.
7

2.
4

2.
3

1.
8

2.
3

3.
3

2.
9

3.
3

A
ct
or

3.
2

3.
2

3.
6

2.
9

2.
2

2.
5

3.
3

3.
3

3.
4

2.
8

1.
8

4.
3

St
ew

ar
de
ss

3.
2

3.
8

3.
8

2.
8

2.
3

2.
4

3.
9

2.
5

4.
7

3.
9

2.
3

4.
3

A
ve
ra
ge

c
3.
5

3.
7

3.
7

3.
0

3.
1

3.
1

3.
4

2.
8

3.
4

3.
7

3.
0

3.
9

a I
n
nu

rs
in
g
sc
ho

ol
b M

ed
ic
al

do
ct
or

c C
ol
um

n
av
er
ag
e

90 6 Principal Component Analysis (Part 2)



Although the original distribution of ~x0i in Fig. 6.3a was invisible, the projection

of ~x0i on the best-fitting 2D plane is visible, as found in Fig. 6.4. This shows that a
benefit of PCA is the visualization of a high-dimensional invisible space. The
resulting plot in Fig. 6.4 can be captured in the same manner as for a usual map;
two objects close to each other can be viewed as similar, while those that are distant

(a) 12D space (invisible!) (b) Plane in 12D space

w2

w1

Xi

f i W

Fig. 6.3 Projecting the distributions in a 12D space (a) on a 2D plane (b)

Table 6.3 Weights and PC scores obtained for the centered scores transformed from the data in
Table 6.2

(A) W (weights) (B) F (PC scores)

w1 w2 f1 f2
Noble 0.03 0.18 Monk −3.46 0.27

Useful 0.12 0.23 Bank clerk −0.91 0.19

Good 0.04 0.07 Cartoonist 0.43 −2.57

Big 0.06 0.25 Designer 0.43 −1.93

Powerful 0.22 0.46 Nurse 1.06 −0.25

Strong 0.26 0.42 Professor −2.41 1.40

Quick 0.44 0.09 Doctor −0.24 1.60

Noisy 0.48 −0.07 Policeman 1.13 2.11

Young 0.50 −0.27 Journalist 2.16 0.72

Faithful 0.09 0.15 Sailor 0.95 0.67

Strict −0.19 0.59 Athlete 2.24 1.30

Busy 0.39 −0.09 Novelist −2.06 −0.29

Actor 0.04 −1.78

Stewardess 0.65 −1.43
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can be regarded as dissimilar. For example, Fig. 6.4 shows that “designer” and
“cartoonist” are similar occupations, while “monk” and “journalist” are very
different.

6.6 Goodness of Projection

It should be noticed that the original distribution in Fig. 6.3a is not perfectly
reflected on the plane in Fig. 6.3b, which in turn gives Fig. 6.4; some information
in the original distribution has been lost in Figs. 6.3b and 6.4. The amount of the
loss can be assessed by the resulting value of loss function (6.8) or (6.8′′), since it
expresses the differences between the data vectors ~x0iði ¼ 1; . . .; nÞ in Fig. 6.3a and

their projections ~f 0i W
0ð1� 3Þ in (b).

The resulting value of (6.8), into which solution (6.6) is substituted, is expressed as

X� XLmL0
m

�� ��2¼ X�KmKmL0
m

�� ��2¼ KKL0 �KmKmL0
m

�� ��2; ð6:27Þ

where we have used (5.5) and (5.19). It can be found that (6.27) is equivalent to
(5.37), which implies that the proportion of explained variance (5.39), i.e.,
PEVm = trKm

2/trK2 = trKm
2/||X||2, is also an index for the goodness of projection.

For the centered scores of the data in Table 6.2, PCA gives trK2
2 = 64.1 and

trK2 = ||X||2 = 86.6, thus PEV2 = 64.1/86.6 = 0.74. This implies that 74%
(=0.74 � 100%) of the information of the distribution in Fig. 6.3a is reflected in
Fig. 6.4; the former invisible distribution is visualized in the latter and, furthermore,
we can see 74% of the former. This demonstrates the benefit of PCA.

Policeman

Athlete

Journalist

Nurse

Sailor 

Doctor

Stewardess
Actor

Cartoonist

Designer

Monk

Professor

Novelist

Bank Clerk

Fig. 6.4 Front view of the
plane in Fig. 6.3b
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6.7 Bibliographical Notes

As described in Sect. 5.9, various aspects of PCA are exhaustively detailed in
Jolliffe (2002). Visualization as a benefit of PCA in the natural sciences has been
illustrated in Izenman (2008) and Koch (2014), which are among the advanced
books recommended for a deeper understanding of multivariate analysis, though the
term visualization is not used in those books.

Here, we must mention sparse PCA for obtaining the sparse weight matrix
W (Jolliffe et al., 2003; Zou et al., 2006). Here, a sparse matrix refers to a matrix
including a number of zero elements. That is, sparse PCA refers to the modified
PCA procedures in which the elements of W to be zero are computationally chosen
jointly with estimating the values of the nonzero elements. The resulting W can be
easily interpreted, as only nonzero elements may be noted. The procedures related
to the sparse PCA would be treated in Chap. 22.

Exercises

6:1. Show trV = trD for V and D in Note 6.1.
6:2. Show that the eigenvalue decomposition (EVD) in Note 6.1 implies

Vlk = dklk (k = 1, … , r) with lk the kth column of L. The equation is called
the eigen equation for V.

6:3. Show that the EVD in Note 6.1 can be rewritten as X′X = LK2L′ and
post-multiplying its both sides by LL′ leads to X′XLL′ = X′X, i.e.,

X0X Ip � LL0	 
 ¼p Op: ð6:28Þ

6:4. Show that (6.28) leads to (Ip − LL′)X′X(Ip − LL′) = pOp, which implies

X Ip � LL0	 
 ¼n Op; ð6:29Þ

using the fact that M′M = pOp implies M = nOp for M being n � p.
6:5. Show that the SVD in Note 5.1 can be derived from the EVD in Note 6.1,

noting the fact that (6.29) implies X = XLK−1KL′ and XLK−1 can be
regarded as K in Note 5.1.

6:6. A square matrix N is said to be nonnegative definite if f(w) = w′Nw � 0 for
any vector w. It is known that S being nonnegative definite and symmetric is
equivalent to the property of S that it can be rewritten as S = BB′. Show that
the covariance matrix V = n−1X′JX is nonnegative definite.

6:7. A square matrix P is said to be positive definite, if f(w) = w′Pw > 0 for any
vector w other than the zero vector. Show that a diagonal matrix D being
positive definite is equivalent to all diagonal elements of D being positive.

6:8. Let v(fk) denote the variance of the kth PC scores, i.e., the elements in
fk = Xwk. Show that v(fk) equals dk, i.e., the kth eigenvalue of V defined in
Note 6.1.
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6:9. Show that the vectors ~f i0W0 and ~x0i � ~f i0W0 intersect orthogonally, as in
Fig. 6.1, i.e., ~f i0W0 ~xi �W~f ið Þ ¼ 0:

6:10. Show that (6.6) is replaced by W = A = LmT, with T the orthonormal
matrix satisfying (A.1.6) in Appendix A.1.2, if constraint (6.4) is removed
and only (6.5) is imposed in PCA.
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Chapter 7
Cluster Analysis

The term “cluster” is synonymous with both “group” as a noun and “classify” as a
verb. Cluster analysis, which is also simply called clustering, generally refers to the
procedures for computationally classifying (i.e., clustering) individuals into groups
(i.e., clusters) so that similar individuals are classified into the same group and
mutually dissimilar ones are allocated to different groups. There are various proce-
dures for performing cluster analysis. One of themost popular of these, called k-means
clustering (KMC), whichwas first presented byMacQueen (1967), is introduced here.

7.1 Membership Matrices

An example of a membership matrix is given here:

It indicates the nationalities of individuals, and the blank cells stand for the
elements taking zero. In general, a membership matrix G = (gik) is defined as the
matrix of n individuals � K-clusters satisfying

gik ¼ 1 if individual i belongs to cluster k
0 otherwise

�
; ð7:1Þ

G1K ¼ 1n: ð7:2Þ

© Springer Nature Singapore Pte Ltd. 2020
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
https://doi.org/10.1007/978-981-15-4103-2_7
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These equations imply that each row of G has only one element taking 1, i.e.,
each individual belongs to only one cluster. Such a matrix is also called an indicator
matrix or a design matrix. A major purpose of clustering procedures including k-
means clustering (KMC) is to obtain G from an n-individuals � p-variables data
matrix X.

7.2 Example of Clustering Results

For a data matrix X, KMC provides a membership matrix G together with a K-
clusters � p-variables cluster feature matrix C, which expresses how each cluster is
characterized by variables.

Before explaining how to obtain G and C, we show the KMC solution for the
14-occupations � 12-adjectives data matrix X = (xij) in Table 6.2 in the last
chapter. It describes to what extent the occupations are characterized by the
adjectives. For the data matrix, KMC with K set at 4 provides the solutions of G and
C shown in Tables 7.1 and 7.2. First, let us note the resulting membership matrix
G in Table 7.1. The cluster numbers 1, 2, 3, and 4 are merely for the purpose of
distinguishing different clusters; G simply shows that the occupations having 1 in
the same column belong to the same cluster. For example, monk, professor, and
novelist are members of a cluster, while policeman, journalist, sailor, and athlete
are members of another cluster. Next, let us note Table 7.2. There, the resulting
cluster feature matrix C is shown, which describes the values of variables char-
acterizing each cluster. For example, Cluster 2, whose members include bank clerk
and doctor, are found to be very useful, strict, and busy.

Table 7.1 Membership
matrix G obtained for the data
in Table 6.2

Occupation Cluster
1

Cluster
2

Cluster
3

Cluster
4

Monk 1

Bank clerk 1

Cartoonist 1

Designer 1

Nurse 1

Professor 1

Doctor 1

Policeman 1

Journalist 1

Sailor 1

Athlete 1

Novelist 1

Actor 1

Stewardess 1
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7.3 Formulation

KMC is underlain by the model

X ¼ GCþE; ð7:3Þ

with E containing errors. To obtain G and C, a least squares method is used; the
sum of squared errors

f ðG;CÞ ¼ Ek k2¼ X�GCk k2 ð7:4Þ

is minimized over G and C subject to G satisfying (7.1) and (7.2).
For the sake of ease in understanding (7.3) and (7.4), we use the example of X in

Fig. 7.1, which is more compact than the data set in Table 6.2. In Fig. 7.1, a 10 � 2
data matrix X is shown together with a scatter plot of the 10 row vectors in X. For
this data matrix, KMC with K = 3 gives the solution expressed as follows:

X G C E
1 4 1 2.0 4.0 -1.0 0.0 
7 3 1 6.3 7.3 -0.5 0.5 
6 1 1 7.5 2.5 -1.5 -1.5 
8 6 1 1.7 -1.3 
3 5 = 1 + 1.0 1.0 
5 7 1 -1.3 -0.3 
9 2 1 1.5 -0.5 
2 3 1 0.0 -1.0 
8 4 1 0.5 1.5 
6 9 1 -0.3 1.7 

ð7:5Þ

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

X 
1 4 
7 3
6 1 
8 6
3 5 
5 7
9 2 
2 3
8 4 
6 9

Fig. 7.1 Data matrix X and the scatter plot of the row vectors in X
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Here, model (7.3) is shown, into which the data and the resulting solution were
substituted. Further, we can obtain the product of G and C to rewrite (7.5) as

X GC E
1 4 2.0 4.0 -1.0 0.0 
7 3 7.5 2.5 -0.5 0.5 
6 1 7.5 2.5 -1.5 -1.5 
8 6 6.3 7.3 1.7 -1.3 
3 5 = 2.0 4.0 + 1.0 1.0 
5 7 6.3 7.3 -1.3 -0.3 
9 2 7.5 2.5 1.5 -0.5 
2 3 2.0 4.0 0.0 -1.0 
8 4 7.5 2.5 0.5 1.5 
6 9 6.3 7.3 -0.3 1.7 

ð7:6Þ

where white, light gray, and dark gray have been used for the background colors of
the rows corresponding to Clusters 1, 2, and 3, respectively. In (7.6), we find that
the ith row of X is matched to the row of C ¼ ~c1;~c2;~c3½ �0 associated with the cluster
into which individual i is classified; for example, ~x03 ¼ ½8; 6� is matched to
~c02 ¼ 6:3; 7:3½ �.

Solution (7.6) can be illustrated graphically, as in Fig. 7.2, in which the rows of
X and C are plotted. There, we can find that ~c0k (the kth row of C) expresses the
representative point of cluster k that is located at the center of the individuals (~x0i s)
belonging to that cluster. For this reason, C is also called a cluster center matrix. In
Fig. 7.2, each of the lines connects ~x0i for individual i and ~c0k for the cluster
including i. The lines in the figure indicate the row vectors of error matrix

E =

~e01
..
.

~e0n

264
375. For example, the line extending from center ~c03 to ~x08 indicates ~e08 ¼

~x08 � ~c03 with ~e0i the ith row of E. Here, we should note that the function (7.4) to be

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

6x
4x

10x

2x 9x

7x

3x

8x

1x
5x

Fig. 7.2 Joint plot of the
rows of X in Fig. 7.1 with
those of C
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minimized is rewritten as Ek k2¼ ~e1k k2 þ � � � þ ~enk k2 Its minimization is restated
as minimizing the sum of the squared lengths of the lines in Fig. 7.2, which implies
making each individual vector (~x0i) close to the center of the cluster (~c0k) including
the individual.

7.4 Iterative Algorithm

Let us remember that the PCA solution is obtained through (5.14) and the solution
for regression analysis is given by (4.9) and (4.12); those solutions are expressed
explicitly as formulas. On the other hand, the KMC solution minimizing (7.4)
cannot be given explicitly by a formula. In general, statistical analysis procedures
can be classified into the following two types:

[1] those with explicit solutions (as regression analysis and PCA)
[2] those without explicit solutions (as KMC)

How are solutions for [2] obtained? They can be attained with iterative algorithms,
where steps are iterated for finding the solution. There are some types of iterative
algorithms, as described in Appendix A.6.1.

The algorithm for KMC is formed using the following fact: although the G and
C minimizing (7.4), i.e., f(G, C), cannot be expressed as formulas, the matrices

C that minimizes f ðG; CÞwhileG is fixed at a specifiedmatrix ð7:7Þ

and

G that minimizes f ðG; CÞwhileC is fixed at a specifiedmatrix ð7:8Þ

can be explicitly given, as shown in the next sections. This fact allows us to form
the iterative algorithm for KMC, described by the following steps:

Step 1. Set G and C to specified matrices G[t] and C[t], respectively, with t = 0.
Step 2. Obtain C defined as (7.7) with G being fixed at G[t], and express the

resulting C as C[t+1].
Step 3. Obtain G defined as (7.8) with C fixed at C[t+1], and express the resulting

G as G[t+1].
Step 4. Finish and regard C[t+1] and G[t+1] as the solution, if convergence is reached;

otherwise, go back to Step 2 with increasing t by one.

Here, t stands for the number of iterations, and the convergence in Step 4 is
explained later. The central part of the algorithm is the alternate iteration of Steps 2
and 3. With this iteration, the value of function (7.4) decreases monotonically (or
remains unchanged), regardless of what is used for the specified matrices in Step 1,
as described in the following paragraphs.
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Let us consider the value of (7.4) at Step 1, i.e., f(G[0], C[0]) = f(G[t], C[t]) for
t = 0, which is followed by Steps 2 and 3, providing f(G[0], C[1]) and f(G[1], C[1]),
respectively. They are found to satisfy

f G½0�;C½0�
� �� f G½0�;C½1�

� �� f G½1�;C½1�
� �

: ð7:9Þ

Here, the first inequality f(G[0], C[0]) � f(G[0], C[1]) follows from the fact that C[1]

is the matrix C that minimizes f(G, C) with G fixed to G[0] as found in (7.7), and
the second inequality f(G[0], C[1]) � f(G[1], C[1]) follows from (7.8), i.e., G[1] being
the matrix G that minimizes f(G, C[1]) with C fixed to C[1].

As described in Step 4, unless convergence is reached, the algorithm must go
back to Step 2, with an increase in t from one to two. Then, Steps 2 and 3 are
performed again to have C[2] and G[2], which allows (7.9) to be followed by two
inequalities � f(G[1], C[2]) � f(G[2], C[2]): it leads to

f G½0�;C½0�
� �� f G½0�;C½1�

� �� f G½1�;C½1�
� �� f G½1�;C½2�

� �� f G½2�;C½2�
� �

: ð7:10Þ

We can generalize (7.9) and (7.10) as

f G½t�;C½t�
� �� f G½t�;C½tþ 1�

� �� f G½tþ 1�;C½tþ 1�
� � ð7:11Þ

for t ¼ 0; 1; 2; . . ., where C[t+1] denotes the matrix C obtained in Step 2 and G[t+1]

denotes the matrix G obtained in Step 3 at the tth iteration. That is, the value of f(G,
C) decreases monotonically with an increase in t so that the value is expected to
converge to the minimum. Convergence can be defined as having a difference in the
valueof (7.4) from the previous roundof iteration that is small enough tobe ignored, i.e.,

f G½t�;C½t�
� �� f G½tþ 1�;C½tþ 1�

� �� e; ð7:12Þ

with e being a small value, such as 0.16 or 0.15.
Figure 7.3 shows the change in f(G, C) with the iterative KMC algorithm for the

data in Fig. 7.1, where the elements of the specified matrices in Step 1 were

0

20

40

60

80

100

f(
G

,C
)

0 02 03 12 13 22 23 32

Fig. 7.3 Values of f(G, C) at
steps in the t-iteration (t = 0,
1, 2, 3) with subscripts 2 and
3 indicating Steps 2 and 3
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randomly chosen. In Fig. 7.3 we find the monotonic decrease in the f(G, C) value
with t, and the value is unchanged from t = 2 to 3, i.e., convergence is reached at
t = 3. The matrices C and G at this time are their solution in (7.5). The compu-
tations that were used in Steps 2 and 3 are described in the following two sections.

7.5 Obtaining Cluster Features

In this section, we consider Step 2 from the previous section, i.e., obtaining the
cluster feature matrix C defined as (7.7). The matrix C to be obtained is the one

minimizing f ðCÞ ¼ X�G½t�C
�� ��2, i.e., the function (7.4) with G fixed at G[t]. This

C is given by

C½tþ 1� ¼ G0
½t�G½t�

� ��1
G0

½t�X ¼ D�1G0
½t�X; ð7:13Þ

with D ¼ G½t�0G½t�, as explained in Appendix A.2.2. There, we can compare
(A.2.11) with (7.4) to find that (A.2.12) leads to (7.13).

Let us consider what matrixD ¼ G½t�0G½t� is, with a simple example of G[t]:

If G½t�¼

1
1

1
1

1
1

26666664

37777775; thenD ¼
1 1

1 1 1
1

24 35
1

1
1

1
1
1

26666664

37777775
¼

2
3

1

24 35:
In general, D ¼ G½t�0G½t� is a K � K diagonal matrix, with its kth diagonal ele-
ment is nk which denotes the number of individuals belonging to cluster k. Thus, the
inverse matrix D−1 is found to be the diagonal matrix whose kth diagonal element is

1/nk. Further, in the above example, D�1G½t�0 ¼
1=2 1=2

1=3 1=3 1=3
1

24 35.
This is post-multiplied by 6 � 2 X to give an example of (7.13):
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C½tþ 1� ¼ D�1G0
½t�X ¼ 1=2 1=2

1=3 1 1=3 1=3

� 	 x11 x12
x21 x22
x31 x32
x41 x42
x51 x52
x61 x62

26666664

37777775
¼

x11 x12
x21 x22
x31 x32

24 35: ð7:14Þ

Here,

xkj ¼ 1
nk

X
i2cluster k

xij; ð7:15Þ

with
P

i2cluster k xij denoting the summation of xij over the individuals belonging to
cluster k. That is, (7.15) is the average of the data within cluster k for variable j, and
such cluster averages are the elements of (7.13) and its example (7.14). The term “k-
means” originates in the fact that “mean” which is a synonym of “average”plays an
important role in the algorithm.

7.6 Obtaining Memberships

In this section, Step 3 from Sect. 7.4 is considered; it is shown how the membership

matrix G is obtained that minimizes f ðGÞ ¼ X�GC½tþ 1�
�� ��2, i.e., the function

(7.4) with C fixed at C[t+1].
Using ~g0i for the ith row of G, the function f(G) can be rewritten as

X�GC½tþ 1�
�� ��2¼ ~x01

..

.

~x0n

264
375�

~g01
..
.

~g0n

264
375C½tþ 1�

�������
�������
2

¼
Xn
i¼1

~x0i � ~g0iC½tþ 1�
�� ��2; ð7:16Þ

which is the sum of the least squares function of ~g0i,

fi eg0i� � ¼ ~x0i � ~g0iC½tþ 1�
�� ��2; ð7:17Þ

over i = 1, …, n. Here, it should be noted that ~g0i appears only in fi ~g
0
i

� �
, i.e., not in

the other functions fu ~g 0
u

� �
with u 6¼ i. This implies that the optimal ~g0i, which

minimizes (7.17), can be obtained independently of ~g 0
u with u 6¼ i; the repetition of
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obtaining the optimal ~g0i over i = 1, …, n provides the rows of the membership
matrix G that minimizes (7.16).

Let us recall (7.1) and (7.2), i.e., that ~g0i is filled with zeros except for one
element taking 1. For example, if K = 3 and individual i belongs to cluster 2, then

~g0i ¼ 0; 1; 0½ �, thus, ~g0iC½tþ 1� ¼ ~c02 and (7.17) can be rewritten as ~x0i � ~c02
�� ��2, with ~c0k

the kth row of C[t+1]. This example allows us to find that (7.17) takes one of
K distinct values as

fi ~g
0
i

� � ¼ ~x0i � ~g0iC
�� ��2¼

~x0i � ~c01
�� ��2 if ~g0i ¼ ½1; 0; 0; . . .; 0�
~x0i � ~c02

�� ��2 if ~g0i ¼ ½0; 1; 0; . . .; 0�
..
.

~x0i � ~c0K
�� ��2 if ~g0i ¼ ½0; 0; 0; . . .; 1�

8>>>><>>>>: : ð7:18Þ

Therefore, we can compare the largeness of ~x0i � ~c0k
�� ��2 across k = 1,… , K to select

the vector ~g0i corresponding to the minimal one among ~x0i � ~c0k
�� ��2; k ¼ 1; . . .;K.

This selection is formally expressed as

gik ¼ 1 if ~xi � ~c0k
�� ��2¼ min

1� l�K
~xi � ~c0l

�� ��2
0 otherwise

(
: ð7:19Þ

The selected vector is the optimal ~g0i ¼ gi1; . . .; giK½ � minimizing (7.17). Repeating
the selection (7.19) over i = 1, …, n provides the vectors ~g01; . . .; ~g

0
n, that form the

rows of G[t+1] to be obtained.

7.7 Brief Description of Algorithm

The steps of the KMC algorithm in Sect. 7.4 can be rewritten in a simpler manner
(without using the subscript t indicating the number of iteration) as follows:

Step 1. Initialize G.
Step 2. Obtain C = D−1G′X
Step 3. Update G with (7.19)
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

Here, the facts in Sects. 7.5 and 7.6 have been used in Steps 2 and 3. The phrase
“initialize G” in Step 1 refers to “set G to a matrix”, as the elements of the latter
matrix are called initial values. It should be noted that C may not be initialized in
Step 1, since C is obtained in the next step.

Another version of the KMC algorithm can be formed in which rather C is
initialized with Steps 2 and 3 interchanged. The version can be listed as follows:
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Step 1. Initialize C.
Step 2. Update G with (7.19).
Step 3. Obtain C = D−1G′X.
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

7.8 Bibliographical Notes

Everitt (1993) has intelligibly treated the cluster analysis procedures, including
hierarchal clustering, which was not introduced in the present book. The recent
developments in clustering have been exhaustively detailed in Gan et al. (2007).
Hartigan and Wang (1979) have proposed a modified version of the KMC algo-
rithm described in this chapter.

Exercises

7:1. Show that (7.2) could not be satisfied if two or more elements took one with
the other elements being zero in a row of G.

7:2. Let D = G′G. Show that D is a K � K diagonal matrix and G′1n= D1K with
the kth element of D1K and the kth diagonal element of D being the number
of the individuals in group k.

7:3. Show that (7.4) can be rewritten as
Pn

i¼1 ~xi � ~cyi
�� ��2, with yi the index

representing the cluster to which individual i belongs and ~c0yi being the yith
row of C.

7:4. Show that (7.4) can be rewritten as
Pn

i¼1

PK
k¼1 gik ~xi � ~ckk k2.

7:5. One drawback of the k-means clustering (KMC) is that it tends to give local
minima, but not the global minimum. Here, the global minimum is defined as
the minimum of f(h) for all possible h, using f(h) for the loss function of h
(parameter vector or a parameter) to be minimized. On the other hand, a local
minimum is defined as the minimum of f(h) for the h value within a restricted
range. Those minima are illustrated in Fig. 7.4. To avoid the selection of h
for a local minimum as the solution, the algorithm is run multiple times by
starting with different initial values, in the procedures sensitive to local
minima. Let us use f(hl) for the loss function value resulting in the lth run of
the algorithm with l = 1, … , L. Then, hl* is selected as the solution with
f hl�ð Þ ¼ min1� l�L f hlð Þ. Describe why this multi-run procedure decreases
the possibility of selecting h for a local minimum as the solution.

7:6. The iterative algorithm in Sects. 7.4–7.7 is included in a family of algorithms
generally called alternating least squares (ALS) algorithms, as described in
Appendix A.6.1. In this exercise, let us consider an ALS algorithm for a
problem different from KMC. The problem is the minimization of f ða; bÞ ¼
y� ax1 � abx2k k2 over a and b for n � 1 data vectors y, x1, and x2. Here, it

should be noted that the coefficient of x2 is the product of a and b. Show that
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f(a, b) can be rewritten as ||y − ax||2 with x = x1 + bx2 and also as ||y* −
bx*||2 with y* = y − ax1 and x* = ax2, leading to an ALS algorithm in which
the minimization can be attained by the following steps:

Step 1. Initialize b.
Step 2. Obtain x = x1 + bx2 to update a with a = (x′x)−1x′y.
Step 3. Obtain y* = y − ax1 and x

* = ax2 to update b with b = (x*′x*)−1x*′y*.
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

Hints are found in Appendix A.2.2.

7:7. Show that (7.4) can be decomposed as

X�GCk k2¼ X�GD�1G0X
�� ��2 þ GD�1G0X�GC

�� ��2; ð7:20Þ

with D = G′G, by noting

X�GCk k2 ¼ X�GD�1G0XþGD�1G0X�GC
�� ��2

¼ X�GD�1G0X
�� ��2 þ GD�1G0X�GC

�� ��2
þ 2tr X�GD�1G0X

� �0
GD�1G0X�GC
� �

:

7:8. Show that GD�1G0X�GC
�� ��2 in (7.20) can be rewritten as

D�1=2G0X� D1=2C
�� ��2, i.e., (7.4) can be decomposed as

X�GCk k2¼ X�GD�1G0X
�� ��2 þ D�1=2G0X� D1=2C

�� ��2: ð7:21Þ

7:9. De Soete and Carroll (1994) have proposed reduced k-means analysis (RKM)
in which clustering is performed simultaneously with principal component
analysis. In RKM, the matrix C (K � p) in (7.4) is constrained as C = FA′.

f( )

local
minimum

local
minimum

global
minimum

Fig. 7.4 Illustration of local
minima and the global
minimum

106 7 Cluster Analysis



Here,F isK�m,A isp�m,A′A = Im, andF′DFbeing adiagonalmatrixwhose
diagonal elements are arranged in descending order, with m � min(K, p) and
D = G′G. That is, RKM is formulated as minimizing ||X −GFA′||2 overG, F,
and A subject to the above constraints, (7.1) and (7.2). Show that an ALS
algorithm for RKM can be formed by the following steps:

Step 1. Initialize C = FA′.
Step 2. Obtain G with (7.19).
Step 3. Perform SVD of D−1/2G′X, defined as D−1/2G′X = KKL′.
Step 4. Obtain C ¼ D�1=2KmKmLm

0 with Km (K � m) and Lm (p � m)
containing the first m columns of K and L, respectively, and Km

(m � m) the diagonal matrix whose lth diagonal element is that of K.
Step 5. Set F ¼ D�1=2KmKm and A = Lm to finish if convergence is reached;

otherwise, go back to Step 2.

Here, (7.21) has been used in Steps 3 and 4 with the hints for those steps
found in Note 5.3.

7:10. Show that the algorithm in Sects. 7.4–7.7 can give a G whose columns
include 0n during iteration, which implies that D−1 = (G′G)−1 does not exist
and stops the algorithm, i.e., makes KMC fail.
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Part III
Maximum Likelihood Procedures

This part starts with the introduction of the principle underlying the maximum
likelihood method. This is followed by introductions to path analysis, factor
analysis, and structural equation modeling, whose solutions are estimated by the
maximum likelihood method. Their solutions can also be obtained by least squares
methods, and the procedures in Part II can also be formulated with the maximum
likelihood method. However, the latter are often introduced with the least squares
methods, while the maximum likelihood method is often used for the procedures
discussed in this part.



Chapter 8
Maximum Likelihood and Multivariate
Normal Distribution

In the analysis procedures introduced in the last four chapters, parameters are
estimated by the least squares (LS) method, as reviewed in Sect. 8.1. The remaining
sections in this chapter serve to prepare readers for the following chapters, in which
a maximum likelihood (ML) method, which differs from LS, is used for estimating
parameters. That is, the ML method is introduced in Sect. 8.2, which is followed by
describing the notion of probability density function and the ML method with
multivariate normal distribution. Finally, ML-based model selection with infor-
mation criteria is introduced.

8.1 Model, Parameter, Objective Function,
and Optimization

This section deals with a very big subject: We discuss a general framework in
which almost all statistical analysis procedures can be formulated; namely, any
procedure is underlain by a model that can be expressed as

Data ffi /ðHÞ or Data ¼ /ðHÞþErrors, ð8:1Þ

with H standing for the parameters to be obtained. For example, in K-means
clustering (Chap. 6), H is {G, C} and /(H) = /(G, C) = GC, as found in (7.3).
Another example is regression analysis (Chap. 4). In its model (4.5), the “Data” in
(8.1) are denoted as dependent variable vector y, while H ¼ fb; cg and /ðHÞ ¼
/ðb; cÞ ¼ Xbþ c1; with X containing explanatory variables.

An analysis procedure modeled as (8.1) obtains or estimates parameterH values.
This is formulated as “Obtaining H that optimizes an objective function obj(H)
subject to a constraint on H”. This phrase is rewritten as
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Optimizing objðHÞover H subject to a constraint onH: ð8:2Þ

Here, the term “optimizes” refers to either “minimizes” or “maximizes”, and some
function can be used as obj(H). In Chaps. 4, 5, 6, and 7, least squares functions are
used as obj(H), which are generally expressed as ||Data − /(H)||2, i.e., the sum of
the squared Errors = Data − /(H), with “optimizes” referring to “minimizes”. The
phrase “subject to a constraint on H” in (8.2) is not indispensable; whether the
phrase is necessary or not depends on analysis procedures. For example, it is
necessary in the k-means clustering in which G in H = {G, C} is constrained to
satisfy (7.1) and (7.2), while the phrase is unnecessary in the regression analysis, in
which H ¼ fb; cg is unconstrained.

A methodology formulated by rephrasing “Optimizing obj(H) over H” in (8.2)
as “minimizing a least squares function” is generally called a least squares (LS)
method, which is used for the procedures in Part 2. Another methodology, which is
as important as the LS method, is introduced next.

8.2 Maximum Likelihood Method

A maximum likelihood (ML) method can be formulated by rephrasing “optimizing”
and “an objective function” in (8.2) as “maximizing” and “probability”, respec-
tively. One feature of the ML method is that it uses the notion of probabilities,
which are not used in the LS method. In this section, we introduce the ML method
using a simple example.

We suppose that a black box contains black and white balls, where the total
number of the balls is known to be 100, but the number of black/white balls is
unknown. We use h for the number of black ones. Let us consider a case illustrated
in Fig. 8.1: In order to estimate h, a ball was chosen from the box and returned five
times, which gave the data set

d ¼ ½1; 0; 0; 1; 0�0: ð8:3Þ

Here, di = 1 and di = 0 indicate black and white balls chosen, respectively, with di
the ith element of d.

Let us consider the probability of the data set in (8.3) being observed. On the
supposition of a ball randomly chosen, P di ¼ 1jhð Þ and P di ¼ 0jhð Þ; which denote
the probability of di = 1 observed (i.e., a black ball chosen) and that of di = 0 (i.e., a
white one chosen), respectively, are expressed as

P di ¼ 1jhð Þ ¼ h
100

and P di ¼ 0jhð Þ ¼ 1� h
100

: ð8:4Þ

Further, we suppose the balls were chosen mutually independently. Then, the
probability of the data set d = [1, 0, 0, 1, 0]′ observed in (8.3), i.e., d1 = 1, d2 = 0,
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d3 = 0, d4 = 1, and d5 = 0 is given by the product P d1 ¼ 1jhð Þ�
P d2 ¼ 0jhð Þ � P d3 ¼ 0jhð Þ � P d4 ¼ 1jhð Þ � P d5 ¼ 0jhð Þ:

PðdjhÞ ¼ h
100

� 1� h
100

� �
� 1� h

100

� �
� h
100

� 1� h
100

� �

¼ h
100

� �2

1� h
100

� �3

: ð8:5Þ

For estimating the value of h, the ML method can be used. Without using
mathematics, the idea of the method can be stated as “Obtaining the parameter
value such that the occurrence of an event is the most likely”, which can be
rephrased as

Obtaining the parameter valuewhich

maximizes how likely it is that the eventwill occur:
ð8:6Þ

Here, the “event” refers to the observation of a data set, i.e., observing d in (8.3),
and “how likely it is that the event will occur” is measured by its probability. That
is, we can use statistical terms to rephrase (8.6) as:

Obtaining the parameter value thatmaximizes

the probability of the data being observed:
ð8:7Þ

Black box Data

Fig. 8.1 Data of balls chosen from a black box that contains white and black balls with their
numbers unknown
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Therefore, the ML method for the data set in (8.3) is to obtain the value of h that
maximizes (8.5). Figure 8.2a shows that the values of h = 0, 1, …, 100. There, we
can find that the solution of h that maximizes the probability is 40. The ML method
is similar to a human psychological process; most people seem to think in a manner
similar to that in the ML method. For example, in order to determine who caused an
event as “James caused it? Jim? Or Miller did?”, one would consider the person
most likely to cause the event is the person to be found!

Let us note that PðdjhÞ is treated as a function of parameter h for a fixed d in the
ML method (Fig. 8.2a), in contrast to cases where PðdjhÞ is regarded as expressing
how probable it is that data set d occurs for a fixed value of h. As in Fig. 8.2a, the
probability, if it is treated as a function of parameters, is rephrased as likelihood,
from which the name maximum likelihood method originates.

For the sake of ease in mathematical operation, the parameter value that maxi-
mizes the logarithm of probability (log likelihood) rather than the probability
(likelihood) is often obtained in the ML method, since a function, f(y), and its
logarithm, log f(y), take their maximums at the same value of y. The log of (8.5) is
given by

logPðdjhÞ ¼ 2 log
h

100
þ 3 log 1� h

100

� �
: ð8:8Þ

Figure 8.2b shows the change in (8.8), where it is also found to attain its maximum
for h = 40.

A solution in the ML method is called a maximum likelihood estimate (MLE).
The MLE h = 40 divided by 100 gives 0.4, which equals the proportion of black
balls in (8.3). Thus, one may only glance at (8.3) to intuitively conjecture that h is
about 40, without using the ML method. However, when solutions cannot be
intuitively conjectured, the ML method serves as an effective parameter estimation
methodology.

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70 80 90 100
-6

-5

-4

-3

-2

-1

0 10 20 30 40 50 60 70 80 90 100

P 
( d

)

lo
g 

Pr
 ( d

)

(a) (b)

Fig. 8.2 Probability values (a) and their logarithms (b) against h

114 8 Maximum Likelihood and Multivariate Normal Distribution



8.3 Probability Density Function

In the last section, we used an example of cases where a variable can only take
discrete values as 1 and 0. In the remaining sections of this chapter, we do not treat
such discrete variables, but rather those variables taking continuous or almost
continuous values.

The probability of a genuinely continuous variable being a specific value cannot
reasonably be defined. For example, “the probability of a person’s stature being
exactly 170.0 cm” stands for “the probability of it completely equaling 170.0 cm”,
which have to be said to be zero. However, the probability can reasonably be
defined for the intervals of a continuous variable by letting P(x±d) be the proba-
bility of variable x taking the values within the interval of x − d to x + d with d > 0.
The density of the probability is given by dividing P(x ± d) by the width of interval
d − (−d) = 2d as P(x ± d)/(2d). The density P(x) = P(x ± d)/(2d), in which the
width 2d is reduced to be small enough to be ignored, can be used to express how
likely x is to take a specific value, and P(x) is called a probability density or the
probability density function (PDF) of variable x. An example of PDF is given in
Fig. 8.3a. Its horizontal axis shows the values that x can take and its vertical axis
indicates the value of PDF P(x). The following two points should be known about
PDF:

x

P(x)

a b
x

P(x)

(a) An example of functions (b) Normal distribution

Fig. 8.3 Probability density functions
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Note 8.1 Probability Density
A probability density stands for how likely it is that a value will be observed;
an x value with a greater value of probability density P(x) is more likely to be
observed. For example, P(a) < P(b) in Fig. 8.3a implies that x = b is more
likely to occur than x = a.

The probability density also has the following property: The area below
PDF P(x) expresses a probability. In Fig. 7.3a, the probability of x taking the
values within the interval [a, b] is indicated by the area with the horizontal
lines.

For a variable taking almost continuous values, its probability of being a specific
value can be reasonably considered. For example, it makes sense to consider “the
probability of a test score being 8” for a test whose scores take the integers from 0
to 10. However, such a variable is also usually treated as a continuous variable for
which a probability density is defined, as it is more efficiently analyzed than in
cases where it is treated as a discrete variable.

Among a variety of PDFs, the symmetric bell-shaped function shown in
Fig. 8.3b is used in a number of univariate statistical procedures. The distribution of
x with this PDF is called the normal distribution or Gaussian distribution, the latter
name originating from the German mathematician Gauss (1777–1855), who derived
the function. Its generalization is introduced next.

8.4 Multivariate Normal Distribution

For multivariate analysis, a PDF for multiple variables is needed, for example, in
order to express how likely a person’s stature, weight, and waist measurement are to
show the values 170.6 cm, 65.3 kg, and 80.7 cm, respectively. As such a PDF,

P xjl;Rð Þ ¼ 1

ð2pÞp=2jRj1=2
exp � 1

2
ðx� lÞ0R�1ðx� lÞ

� �
ð8:9Þ

is very often used, where x ¼ x1; . . .; xp
� �0

is the p � 1 vectors of p variables, l
is a p � 1 vector containing fixed values, p (≅3.14) denotes the circle ratio,
exp{•} = e{•} with e (≅2.72) the base of the natural logarithm, R is not the symbol
of summation but a p � p positive-definite matrix containing fixed values, and Rj j
denotes the determinant of R. The positive-definiteness and determinant are
explained in the next notes.
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Note 8.2 Nonnegative and Positive Definite Matrices
A p � p square matrix S is said to be nonnegative definite if f(w) = w′Sw �
0 for any vector w. It is known that S being nonnegative definite and sym-
metric is equivalent to the property of S that it can be rewritten as S = BB′.

Nonnegative matrix S is particularly said to be positive definite if
f(w) = w′Sw 6¼ 0, i.e., f(w) > w′Sw for any vector w 6¼ 0p. It is known that
any positive definite matrix is nonsingular; i.e., its inverse matrix exists, and
this matrix is also positive definite.

A determinant is defined for any square matrix to yield a scalar as a function of
the matrix. However, only the determinants of positive-definite matrices are treated
in this book, which can be obtained as follows:

Note 8.3 Determinants
Let S be a p � p positive-definite matrix whose singular values are k1, …, kp;
the determinant of S is given as

jSj ¼ k1 � k2 � � � � � kp: ð8:10Þ

The determinant has the following properties:

SUj j ¼ Sj j � Uj j; ð8:11Þ

S�1
�� �� ¼ Sj j�1: ð8:12Þ

The distribution of x whose PDF is (8.9) is called a multivariate normal (MVN)
distribution. The value of (8.9) for a specified x can be obtained, with l and R
given. We next describe cautions for notations:

Note 8.4 Three Types of Vector Expressions for Data
Until the last chapter,

X ¼ x1; . . .; xj; . . .; xp
� � ¼

~x01
..
.

~x0i
..
.

~x0p

2
6666664

3
7777775
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had been used for an n-individuals � p-variables data matrix; we had
expressed the p � 1 vector for individual i as ~xi with the tilde symbol (*)
attached to xi, in order to distinguish ~xi from the vector xj (n � 1) standing for
variable j.

The p � 1 vector x in (8.9) is associated with ~xi. However, a tilde is not
used in (8.9) for the sake of simplicity. We do not attach the tilde to the
vectors standing for individuals from this chapter; they are expressed as

X ¼

x01
..
.

x0i
..
.

xp

2
6666664

3
7777775
: This is the same for the other vectors. Thus, readers should be

careful about whether vectors stand for the rows of matrices or their columns.
The reason for vector x in (8.9) not having a subscript is that x is a random

vector. This term means that the elements of that vector can take arbitrary
values. Thus, xi for any i can be substituted into x, with the probability
density of x = xi expressed as P(xi). An element of a random vector is called
a random variable.

An expected value for a random variable is introduced next:

Note 8.5 Expected Value
Let us consider a trial in which an infinite number of random vector x = [x1,
…, xp]′ (p � 1) are observed. The average of those x is called the expected
vector of x and denoted as E[x], with “E” the abbreviation for “expected”.
The expected vector E[x] is p � 1 and expressed as E[x] = E[[x1, …,
xp]′] = [E[x1], …, E[xp]]′. Its jth element E[xj] is called the expected value of
random variable xj. The expected value and vector are described in more
detail in Appendix 8.2.

In particular, it is known that if x follows the MVN distribution with its
PDF (8.9), E[x] and the corresponding inter-variable covariance matrix (p �
p) equal l and R in (8.9), respectively. This fact is described more exactly in
Appendix A.8.4, following Appendices A.8.1–A.8.3 which serve as prepa-
rations for A.8.4.

Thus, vector x with its PDF (8.9) is said to have (or follow) the MVN distribution
with its mean vector l and covariance matrix R. This statement is denoted as
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x�Npðl;RÞ; ð8:13Þ

where N and its subscript p stand for “normal distribution” and the number of
variables, respectively. The term “mean” in “mean vector l” is a synonym of
“average” (as mentioned in Sect. 7.5).

The PDF (8.9) with p = 2, l = [165, 70], and R ¼ 150 136
136 159

	 

is drawn in

Fig. 8.4a. It resembles a bell. The vector x closer to the place corresponding to the
top of Pðxjl;RÞ is more likely to be observed. A bird’s-eye view of the distribution
in (a) is shown in Fig. 8.4b. There, we can find that the center corresponding to the
top of Pðxjl;RÞ is the mean vector l. It is surrounded by ellipses which express
the contours of Pðxjl;RÞ; that is, each of the ellipses stands for the terminus of the
vector x providing an equivalent value of Pðxjl;RÞ. The shapes of those ellipses are
known to be determined by the covariance matrix R. If p is reduced to one, the
shape of Pðxjl;RÞ is equal to that drawn in Fig. 8.3b. If p � 3, then we need
graphs of more than three dimensions, which cannot be drawn or seen. But, we can
imagine “a bell in a multidimensional space”.

8.5 Maximum Likelihood Method for Normal Variables

In Fig. 8.4, the PDF Pðxjl;RÞ for MVN distribution is illustrated on the assumption
that l and R are known. But, in practical situations, l and R are often unknown and
x is observed as specific vectors xi (i = 1, …, n), for example, as the rows of X in

150
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(a) Probability density function (PDF) (b) Bird’s-eye view of PDF

x1 

x1 

x2 

x2 

P(x , ) 

1 = 165 

2 

Contours of P(x , ) 

= 

70

Fig. 8.4 Illustration of a multivariate normal distribution for p = 2, i.e., x = [x1, x2]′
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Table 8.1. In this section, we consider estimating parameters l and R from an n �
p data matrix X = [x1, …, xn]′ on the assumption that their row vectors follow the
MVN distribution with its average vector l and covariance matrix R:

xi �Npðl;RÞ ði ¼ 1; . . .; nÞ: ð8:14Þ

For this estimation, we can use the ML method introduced in Sect. 7.2. The ML
method for continuous variables can be expressed simply by attaching “density” to
“probability” in (8.7), as

Obtaining the parameter value thatmaximizes

the probability density of the data being observed:
ð8:15Þ

It is because both a probability density and a probability stand for how likely it is
that a value will be observed, as described in Sect. 8.2 and Note 8.1.

By substituting xi for x in (8.9), the probability density of x = xi is expressed as

P xijl;Rð Þ ¼ 1

ð2pÞp=2jRj1=2
exp � 1

2
xi � lð Þ0R�1 xi � lð Þ

� �
: ð8:16Þ

For example, the probability density of x = x1 in Table 8.1 is

P x1jl;Rð Þ ¼ 1

ð2pÞp=2jRj1=2
exp � 1

2
½80; 77; 68�0 � l
� �0

R�1 ½80; 77; 68�0 � l
� �� �

:

ð8:17Þ

Table 8.1 Data matrix
showing scores of 11 students
� 3 subject tests, with the first
five and the remaining six
students belonging to two
different classes (artificial
example)

Physics Chemistry Biology

X = x1′ 80 77 68

x2′ 65 46 70

x3′ 82 57 76

x4′ 66 61 60

x5′ 73 72 76

x6′ 79 84 89

x7′ 89 74 78

x8′ 67 60 61

x9′ 91 87 85

x10′ 81 64 72

x11′ 71 73 75
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Mathematical operations for probabilities also hold for probability densities (e.g.,
Hogg, McKean, & Craig, 2005). On the supposition that the rows of X = [x1, …,
xn]′ are observed mutually independently, the probability density of the n rows in
X being jointly observed is given by the product of (8.16) over i = 1, …, n:

P Xjl;Rð Þ ¼
Yn
i¼1

1

ð2pÞp=2 Rj j1=2
(

exp � 1
2
ðxi � lÞ0R�1ðxi � lÞ

� ��

¼ 1

ð2pÞnp=2 Rj jn=2
Yn
i¼1

exp � 1
2
ðxi � lÞ0R�1ðxi � lÞ

� �

¼ 1

ð2pÞnp=2 Rj jn=2
exp � 1

2

Xn
i¼1

ðxi � lÞ0R�1ðxi � lÞ
( )

;

ð8:18Þ

with the operator
Q

defined as follows:

Note 8.6 Repetition of Products

Ym
i¼1

ai ¼ a1 � a2 � � � � � am

The probability density, if it is treated as a function of parameters, is also
rephrased as the likelihood. That is, (8.18) can be called the likelihood of l and R
for the data matrix X.

8.6 Maximum Likelihood Estimates of Means
and Covariances

The l and R values are obtained in the ML method, such that the data matrix X is
the most likely to be observed. That is, the maximum likelihood estimates (MLE) of
l and R are estimated that maximizes (8.18) or its logarithm. This is given by

logP Xjl;Rð Þ ¼ � np
2
log 2p� n

2
log jRj � 1

2

Xn
i¼1

xi � lð Þ0R�1
xi � lð Þ: ð8:19Þ
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Here, −(np/2)log2p is a constant irrelevant to l and R. Thus, the maximization of
(8.19) is equivalent to maximizing the function

lðl;RÞ ¼ � n
2
log jRj � 1

2

Xn
i¼1

xi � lð Þ0R�1 xi � lð Þ; ð8:20Þ

with the constant term deleted from (8.19). We refer to (8.20) as the log likelihood
below. As shown in Appendix A.5.1, the MLE of l and R is given by

l̂ ¼ x ¼ 1
n

Xn
i¼1

xi; ð8:21Þ

R̂ ¼ 1
n

Xn
i¼1

ðxi � xÞðxi � xÞ0 ¼ V: ð8:22Þ

Here, V is the matrix defined in (3.13) as shown next:

Note 8.7 Another Expression of V
Let us recall (3.13). It can be rewritten as V = n−1X′JX = n−1(JX)′JX, where

JX contains the centered scores: JX ¼
x1 � xð Þ0

..

.

xn � xð Þ0

2
64

3
75: Thus, n−1(JX)′JX is

found to equal n�1 Pn
i¼1 ðxi � xÞðxi � xÞ0 in (8.22).

In (8.21) and (8.22), we find that the MLE of l and R is found to equal the average
vector and covariance matrix obtained from the data set, respectively.

Though both l and x are referred to as average/mean vectors, and both R and
V are called covariance matrices, l and R differ from x and V, in that the former are
the parameters determining Np(l,R), while x and V are the statistics obtained from
X. However, the MLE of l and R equals x and V, respectively, as shown in (8.21)
and (8.22) on the assumption of the rows of X following Np(l, R) mutually
independently. For distinguishing l and R from x and V, the latter statistics are
called a sample average vector and a sample covariance matrix, respectively.

By substituting MLE (8.21) and (8.22) into the log likelihood (8.20), its maxi-
mum is expressed as
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lðl̂; R̂Þ ¼ � n
2
log jVj � 1

2

Xn
i¼1

ðxi � xÞ0V�1ðxi � xÞ

¼ � n
2
log jVj � 1

2
tr
Xn
i¼1

xi � xð Þ0V�1 xi � xð Þ

¼ � n
2
log jVj � 1

2
tr
Xn
i¼1

xi � xð Þ xi � xð Þ0V�1

¼ � n
2
log jVj � n

2
trVV�1 ¼ � n

2
log jVj � np

2
:

ð8:23Þ

8.7 Model Selection

Cases exist for which several models are considered to explain a single data set, as
illustrated in Fig. 8.5. Model selection refers to comparing models and selecting the
model best fitted to a data set. An advantage of the ML method is that its MLE can
be used for model selection with statistics generally called information criteria.

One statistic included in such information criteria was first derived by the
Japanese statistician Hirotsugu Akaike (1927–2009). The statistic is known as
Akaike’s (1974) information criterion (AIC), which is defined as

AIC ¼ �2lðĤÞþ 2g ð8:24Þ

for a model in which η is the number of parameters to be estimated in the model, Ĥ
stands for a set of MLEs of parameters, and l(ĤÞ expresses the value of the log
likelihood l(H) for H = Ĥ: AIC is defined for each of the models considered for a
data set, and the model with a smaller AIC value is regarded as the better model.

Following AIC, similar statistics have been proposed. Among them, a popular
one is Schwarz’s (1978) Bayesian information criterion (BIC), defined as

BIC ¼ �2lðĤÞþ g log n; ð8:25Þ

Model 1

Model 2 

Model q

…
 

Data Set…
 

Fig. 8.5 Several models for a
data set
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with n the number of individuals in a data set. As with AIC, (8.25) is defined for
each model, and a smaller value implies that the model is better. It should be noted
that both (8.24) and (8.25) penalize a model for having more parameters, which can
be related to the philosophy of science, as in the following note:

Note 8.8 Information Criteria and Philosophy
How information criteria such as (8.24) and (8.25) are derived is beyond the
scope of this book. However, the following arguments are to be born in mind:

Let us view Fig. 8.5 by replacing “model” with “theory” and “data set”
with “phenomenon”. In the philosophy of science, it had been argued that the
goodness of a theory should be evaluated by

[1] how well it explains a phenomenon;
[2] how simple (parsimonious, in philosophical terms) it is.

(e.g., Hempel, 1966). We can reasonably consider that [1] corresponds to the
attained value of the log likelihood l(ĤÞ and [2] is associated with the
smallness of η (the number of parameters). Thus, [1] and [2] are found to
correspond to smaller values of (8.24) and (8.25). In this sense, information
criteria can be viewed as a mathematical validation of the philosophical
argument.

Sometimes, the model chosen by AIC is different from that by BIC. For such a
case, the model must be chosen by users’ subjective consideration. This shows that
no absolute index exists for model selection, which should be kept in mind.

8.8 Assessment of Between-Group Heterogeneity

In order to illustrate model selection by information criteria, we consider two
models for the data matrix X in Table 8.1. Model 1 is expressed as (8.14); all row
vectors of X are assumed to follow an identical MVN distribution, Np(l, R), in
Model 1. On the other hand, let us consider Model 2 expressed as

xi �Np l1;R1ð Þ for i ¼ 1; . . .; 5 and xi �Np l2;R2ð Þ for i ¼ 6; . . .; 11 ð8:26Þ

The row vectors for the first five students and those for the remaining six students
are assumed to follow different MVN distributions in Model 2, where the former and
the latter students belong to two different classes.

The MLEs for Model 1 are given by (8.21) and (8.22) with n = 11, and their
values are obtained as in Table 8.2(A). As found there, η (the number of param-
eters) is 3 + 6 = 9, where 3 is the number of elements in l and 6 is the number of
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different covariances in R; it has 3 � 3 elements, but the number of different ones is
6, since R is symmetric. Substituting those MLEs into (8.23), we have lðl̂; R̂Þ ¼
� 11

2 log 202139:9ð Þ � 33
2 ¼ �285:268: Further, this is substituted into l(ĤÞ in (8.24)

and (8.25) to give AIC = −2�(−285.268) + 2 � 9 = 588.54 and BIC = −2 �
(−285.268) + 9log11 = 592.12, as shown in Table 8.2(A).

Note 8.9 Base of Logarithm
In this book, “log x” stands for “loge x”, with e ≅ 2.72 the base of the natural
logarithm.

Next, let us obtain the MLE, AIC, and BIC for Model 2. On the supposition that
the rows of X = [x1, …, xn]′ are observed mutually independently, the probability
density of the n rows in X being observed jointly is expressed as

P Xjl1;R1; l2;R2ð Þ ¼ 1

ð2pÞ5p=2 R1j j5=2
exp � 1

2

X5
i¼1

xi � l1ð Þ0R�1
1 xi � l1ð Þ

( )

� 1

ð2pÞ6p=2 R2j j6=2
exp � 1

2

X11
i¼6

xi � l2ð Þ0R�1
2 xi � l2ð Þ

( )
;

ð8:27Þ

because of (8.26), where

1

ð2pÞ5p=2 R1j j5=2
exp � 1

2

X5
i¼1

ðxi � l1Þ0R�1
1 ðxi � l1Þ

( )

stands for the probability density of x1, …, x5 being jointly observed, while

Table 8.2 MLE, η (the number of parameters), AIC, and BIC for the data in Table 8.1, with the
lower triangular elements omitted in symmetric covariance matrices

Model (A) Model 1 (B) Model 2

Parameter l̂ R̂ l̂1 R̂1 l̂2 R̂2

Physics 76.7 73.7 63.9 48.4 73.2 48.6 38.9 22.0 79.7 75.6 52.2 50.9

Chemistry 68.6 136.8 64.6 62.6 121.0 2.0 73.7 94.2 83.2

Biology 73.6 71.9 70.0 35.2 76.7 82.2

η 9 18

AIC 588.54 189.45

BIC 592.12 196.61
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1

ð2pÞ6p=2 R2j j6=2
exp � 1

2

X11
i¼6

ðxi � l2Þ0R�1
2 ðxi � l2Þ

( )

is the probability density for x6, …, x11.
The log likelihood corresponding to (8.27) can be expressed as

l l1;R1;l2;R2ð Þ ¼ l1 l1;R1ð Þþ l2 l2;R2ð Þ; ð8:28Þ

where

l1 l1;R1ð Þ ¼ � 5
2
log R1j j � 1

2

X5
i¼1

xi � l1ð Þ0R�1
1 xi � l2ð Þ; ð8:29Þ

l2 l2;R2ð Þ ¼ � 6
2
log R2j j � 1

2

X11
i¼6

xi � l2ð Þ0R�1
2 xi � l2ð Þ; ð8:30Þ

with the constants irrelevant to parameters being deleted.
As found in (8.28), the log likelihood is decomposed into l1(l1, R1) and l2(l2,

R2). Since they are functions of different sets of parameters, the sets {l1, R1}
maximizing l1(l1, R1) and {l2, R2} maximizing l2(l2, R2) are found to be the
MLEs that maximize (8.28). By comparing (8.29) and (8.30) with (8.20), we can
find that (8.29) or (8.30) is equivalent to log likelihood (8.20), in which l and R
have the subscript 1 or 2, and the series i = 1, …, n is replaced by i = 1, …, 5 or
i = 6, …, 11. This fact, along with (8.21) and (8.22), shows that l1 and R1 max-
imizing l1(l1, R1) are given by

l̂1 ¼
1
5

X5
i¼1

xi; R̂1 ¼ 1
5

X5
i¼1

xi � l̂1ð Þ xi � l̂1ð Þ0

while l2 and R2 maximizing l2(l2, R2) are given by

l̂2 ¼
1
6

X11
i¼6

xi; R̂2 ¼ 1
6

X11
i¼6

xi � l̂2ð Þ xi � l̂2ð Þ0:

Those values are shown in Table 8.2(B), whose substitution into (8.28) gives the
value of the maximum log likelihood:

log l l̂1; R̂1; l̂2; R̂2
� � ¼ � 5

2
logð98;328:73Þ � 15

2
� 6
2
logð36;140:64Þ � 18

2
¼ �76:73;

with η = 18 for Model 2 and n = 5 + 6 = 11. Using them in (8.24) and (8.25), we
get the AIC and BIC values in Table 8.2(B).
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In Table 8.2, both the AIC and BIC are found to show that Model 2 is better; the
11 students are classified into the two groups characterized by different MVN
distributions. It should be kept in mind that comparing the AIC and BIC values is
senseless; the comparison is to be made within the same index. Comparing AIC
values for different data sets as well as BIC values for different data sets is also
senseless. A model comparison must be made for a single data set (Fig. 8.5).

8.9 Bibliographical Notes

This chapter can serve as a preliminary stage before learning statistical inferences,
which are not treated in the present book. Statistical inferences refer to the theories
in which the relationships of the estimates of parameters to their true values are
discussed on the basis of probabilities. One of the established books on elementary
statistical inferences was written by Hogg, McKean, and Craig (2019). Books on
multivariate statistical inferences include Anderson (2003), Rao (2001), Rencher
and Christensen (2012), Seber (1984), and Timm (2002). Searl and Khuri’s (2017)
book is among the ones in which the matrix algebra for probabilities and statistical
inferences is introduced. Detailed treatments of information criteria are found in
Konishi (2014) and Konishi and Kitagawa (2008). In those books, properties of
maximum likelihood estimates are detailed.

Exercises

8:1. Let d be an n � 1 data vector whose m elements take one and whose
remaining elements are zero, with x the probability of an element in d taking
one. The likelihood of parameter x for the data set d is expressed as

PðxÞ ¼ xmð1� xÞn�m; ð8:31Þ

on the supposition that the elements in d are mutually independently
observed. Show that the MLE of x is given by m/n, using the fact that
dlogP(x)/dx, i.e., the differentiation of the logarithm of (8.31) with
respect to x, is zero for the x value being MLE, with dlogx/dx = 1/x
and dlog(1 − x)/dx = −1/(1 − x).

8:2. The function

/ðxjb; cÞ ¼ 1
1þ expð�bxþ cÞ ð8:32Þ

is called a logistic function and is used for relating a continuous variable x to
probability /ðxjb; cÞ: Verify that the function /ðxjb; cÞ takes the forms in
Fig. 8.6 with 0	/ðxjb; cÞ	 1; by substituting some values into x with b and
c fixed at specific values.
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8:3. Let us suppose that the probability of engine i (= 1, …, n) having trouble is
expressed as 1/{1 + exp(−bxi + c)} with xi the value of the variable for
i explaining the trouble probability. Show that the likelihood of b and c can
be expressed as

Yn
i¼1

1
1þ expð�bxi þ cÞ

� �di expð�bxi þ cÞ
1þ expð�bxi þ cÞ

� �1�di

ð8:33Þ

for observed data xi and di, i = 1, …, n, with di = 1 if i has trouble; di = 0
otherwise. Here, d1, …, dn are assumed to be mutually independently
observed.

8:4. Show that the logarithm of (8.33) can be written as

Xn
i¼1

ð1� diÞð�bxi þ cÞ � log½1þ expð�bxi þ cÞ�f g: ð8:34Þ

8:5. Let us consider another model for engine trouble in which the probability of
engine i (= 1, …, n) having trouble is expressed as 1/{1 + exp(−azi −
bxi+ c)}, with xi the one in (8.33) and zi the value of another explanatory
variable for i. The likelihood for this model is expressed as

Yn
i¼1

1
1þ expð�azi � bxi þ cÞ

� �di expð�azi � bxi þ cÞ
1þ expð�azi � bxi þ cÞ

� �1�di

: ð8:35Þ

Let b̂ and ĉ denote the MLE of b and c for maximizing (8.33) or (8.34). On
the other hand, let â; b̂; and ĉ be the MLE of a, b, and c for maximizing
(8.35). Show that BIC is expressed as

b > 0 b < 0

1

0

(x)

1

0
x x

(x)

Fig. 8.6 Illustrations of logistic functions
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�2
Xn
i¼1

ð1� diÞð�b̂xi þ ĉÞ � log½1þ expð�b̂xi þ ĉÞ� �þ 2 log n

for (8.33) or (8.34), while it is expressed as

�2
Xn
i¼1

ð1� diÞð�âzi � b̂xi þ ĉÞ � log½1þ expð�âzi � b̂xi þ ĉÞ�
n o

þ 3 log n

for (8.35).

8:6. The similarity of the ML method to a human psychological process was
mentioned with an example in Sect. 8.2. Present another example for illus-
trating the similarity.

8:7. If x * Np(l, R), it is known that x + a* Np(l + a, R) for fixed a. Use this
fact to show the equivalence between x* Np(l, R) and x = l + e with
e * Np (0p, R).

8:8. Use the fact that r2Ip
�� �� ¼ r2p to show that the probability density function

(PDF) of x * Np(l, r2Ip) is the product of P xjjlj; r2
� � ¼

1ffiffiffiffi
2p

p
r
exp � 1

2
ðxj�ljÞ2

r2

n o
over j = 1, …, p, with xj the jth element of x, lj that of

l, and P(xj | lj, r2) being the PDF of the (univariate) normal distribution with
its mean lj and variance r2.

8:9. Show that the MLE of r2 is given by r̂2 ¼ 1
npR

n
i¼1 xi � xk k2, if x * Np(l,

r2Ip), where x1, …, xn are the p � 1 observed vectors for x and
x ¼ n�1Rn

i¼1xi.
8:10. Let us consider the model xi = fi(H) + ei for p � 1 data vectors xi, i = 1, …,

n, observed mutually independently, with ei * N(0p, r2Ip) and fi(H) a
function of parameter H yielding a p � 1 data vector. Show the equivalence
between the MLE of H and the least squares estimate of H minimizing
Rn
i¼1 xi � f iðHÞk k2, using the facts in Exercises 8.7 to 8.9.

8:11. For nk vectors xki (p � 1), i = 1, …, nk, observed mutually independently, for
group k = 1, 2, 3, let us consider the following models:
Model 1. xki * Np(l, R): All observations follow an identical distribution.
Model 2. xki * Np(lk, Rk): Each group has a specific distribution.
Model 3. x1i * Np(l1, R1) and xki * Np(l2, R2) for k = 2, 3: Group 1 differs
from 2 and 3.
Express AIC for the models as functions of xki and the number of parameters.

8:12. For nk vectors xki (p � 1), i = 1, …, nk observed mutually independently, for
group k = 1, …, K, let us consider the following models:
Model 1. xki * Np(lk, R): The covariances are homogeneous among groups.
Model 2. xki * Np(lk, Rk): The covariances are heterogeneous across
groups.
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Express BIC for the models as functions of xki and the number of parameters,
using the facts described in Appendix A5.2.

8:13. For n vectors xi (p � 1), i = 1, …, n, observed mutually independently, let us
consider the models:
Model 1. xi * Np(l, R): The covariances are unconstrained.
Model 2. xi* Np(l,r

2Ip): The covariances are constrained.
Express AIC for the models as functions of xki and the number of parameters.
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Chapter 9
Path Analysis

Let us assume three variables, A, B, and C, to be analyzed. The regression analysis
for predicting C from A and B is based on the causal model, with A and B causes
and C the result. However, this model is not guaranteed to indicate the true rela-
tionships among A, B, and C. The true causal model might be “A causes B which
causes C” or “A causes B and C”. Path analysis is a procedure in which users form
causal models by themselves and select the model fitted well to a data set. The
origins of path analysis can be found in Wright’s (1918, 1960) biometric studies
and Haavelmo’s (1943) econometric ones (Kaplan, 2000).

9.1 From Multiple Regression Analysis to Path Analysis

In this chapter, we use the data set of 60 students by 5 variables in Table 9.1(A).
The five variables concern a lecture:

IN: to what extent students were interested in the lecture

KN: the amount of prior knowledge of the lecture subjects

AB: how often students were absent from the lecture

SH: study hours that students took at home for the lecture

RE: records that students were finally given.

For this data set, the regression analysis for predicting RE is modeled as

RE ¼ b1 � INþ b2 � KNþ b3 � ABþ b4 � SHþ cþ error: ð9:1Þ

This model can be expressed as the path diagram in Fig. 9.1a. There,
double-headed arrows indicate linked variables being merely correlated, and
single-headed arrows indicate the causal relationships; they extend from causes
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Table 9.1 A data set for five variables for a lecture (artificial example)

IN KN AB SH RE

(A) Raw data

1 4 54 13.8 120 82

2 7 68 0 150 96

3 4 66 19.6 90 82

4 4 68 17.5 90 80

5 4 68 35.1 60 70

6 4 66 24 90 58

7 3 76 26.1 30 82

8 3 66 32.2 60 66

9 2 58 41.2 0 40

10 6 70 1.1 150 90

11 6 98 10.6 60 90

12 2 48 48 60 44

13 4 70 11.9 150 98

14 6 76 13.7 120 90

15 3 50 39.7 90 70

16 5 62 11.8 120 96

17 3 52 25.2 60 60

18 2 74 34 0 54

19 3 52 33.1 90 64

20 5 70 13 150 86

21 5 80 9.5 150 88

22 1 56 39.7 0 48

23 7 74 11.5 180 84

24 4 60 15.5 90 80

25 1 64 53.6 0 52

26 5 60 23.4 150 80

27 5 50 16.7 180 74

28 5 66 13.9 90 74

29 5 76 26.2 120 80

30 5 62 10.4 120 88

31 3 64 25.5 60 78

32 3 62 27.4 60 68

33 3 72 37 30 64

34 3 74 22.8 90 90

35 6 68 24.2 180 94

36 3 64 35.8 60 76

37 5 70 16.8 90 94

38 4 58 17.5 90 90

39 2 56 25.2 0 58
(continued)
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Table 9.1 (continued)

IN KN AB SH RE

40 5 64 9.4 120 90

41 5 66 6.2 120 86

42 3 52 38 30 48

43 6 66 5.8 150 86

44 5 62 19.4 90 86

45 5 82 9.9 30 92

46 3 60 36.4 60 62

47 4 58 24 120 82

48 2 56 32.1 60 60

49 4 58 38.8 60 56

50 2 40 30.7 90 64

51 4 50 31.9 90 72

52 4 64 10.5 120 78

53 3 44 19.8 60 66

54 5 70 9.4 150 82

55 4 50 24.5 120 74

56 4 66 25.6 120 76

57 5 62 26 120 86

58 5 74 15.8 60 90

59 5 64 4.8 90 94

60 4 52 43.3 90 58

Av 4.03 63.47 22.78 90.50 75.77

SD 1.35 9.99 12.08 46.63 14.61

(B) Centered data = X

1 −0.03 −9.47 −8.97 29.50 6.23

2 2.97 4.53 −22.78 59.50 20.23

3 −0.03 2.53 −3.17 −0.50 6.23

4 −0.03 4.53 −5.28 −0.50 4.23

5 −0.03 4.53 12.33 −30.50 −5.77

6 −0.03 2.53 1.23 −0.50 −17.77

7 −1.03 12.53 3.33 −60.50 6.23

8 −1.03 2.53 9.43 −30.50 −9.77

9 −2.03 −5.47 18.43 −90.50 −35.77

10 1.97 6.53 −21.68 59.50 14.23

11 1.97 34.53 −12.18 −30.50 14.23

12 −2.03 −15.47 25.23 −30.50 −31.77

13 −0.03 6.53 −10.88 59.50 22.23

14 1.97 12.53 −9.08 29.50 14.23

15 −1.03 −13.47 16.93 −0.50 −5.77

16 0.97 −1.47 −10.98 29.50 20.23
(continued)
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Table 9.1 (continued)

IN KN AB SH RE

17 −1.03 −11.47 2.43 −30.50 −15.77

18 −2.03 10.53 11.23 −90.50 −21.77

19 −1.03 −11.47 10.33 −0.50 −11.77

20 0.97 6.53 −9.78 59.50 10.23

21 0.97 16.53 −13.28 59.50 12.23

22 −3.03 −7.47 16.93 −90.50 −27.77

23 2.97 10.53 −11.28 89.50 8.23

24 −0.03 −3.47 −7.28 −0.50 4.23

25 −3.03 0.53 30.83 −90.50 −23.77

26 0.97 −3.47 0.63 59.50 4.23

27 0.97 −13.47 −6.08 89.50 −1.77

28 0.97 2.53 −8.87 −0.50 −1.77

29 0.97 12.53 3.43 29.50 4.23

30 0.97 −1.47 −12.38 29.50 12.23

31 −1.03 0.53 2.73 −30.50 2.23

32 −1.03 −1.47 4.63 −30.50 −7.77

33 −1.03 8.53 14.23 −60.50 −11.77

34 −1.03 10.53 0.03 −0.50 14.23

35 1.97 4.53 1.43 89.50 18.23

36 −1.03 0.53 13.03 −30.50 0.23

37 0.97 6.53 −5.97 −0.50 18.23

38 −0.03 −5.47 −5.28 −0.50 14.23

39 −2.03 −7.47 2.43 −90.50 −17.77

40 0.97 0.53 −13.38 29.50 14.23

41 0.97 2.53 −16.58 29.50 10.23

42 −1.03 −11.47 15.23 −60.50 −27.77

43 1.97 2.53 −16.98 59.50 10.23

44 0.97 −1.47 −3.38 −0.50 10.23

45 0.97 18.53 −12.88 −60.50 16.23

46 −1.03 −3.47 13.63 −30.50 −13.77

47 −0.03 −5.47 1.23 29.50 6.23

48 −2.03 −7.47 9.33 −30.50 −15.77

49 −0.03 −5.47 16.03 −30.50 −19.77

50 −2.03 −23.47 7.93 −0.50 −11.77

51 −0.03 −13.47 9.13 −0.50 −3.77

52 −0.03 0.53 −12.28 29.50 2.23

53 −1.03 −19.47 −2.97 −30.50 −9.77

54 0.97 6.53 −13.38 59.50 6.23

55 −0.03 −13.47 1.73 29.50 −1.77

56 −0.03 2.53 2.83 29.50 0.23
(continued)
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(explanatory variables) to a result (dependent variable). That is, regression analysis
is based on the causal model with multiple causes and a single result.

But, other causal models may better describe the relationships of variables. An
example of other models is shown by the path diagram in Fig. 9.1b, in which it is
considered that IN influences RE by way of AB and SH, while KN influences RE
directly and by way of SH. In other words, [1] AB is influenced by IN; [2] SH is
influenced by IN and KN; and [3] RE is influenced by KN, AB, and SH. These
causal relationships are expressed as a set of regression analysis models:

AB ¼ b1 � INþ c3 þ e3;

SH ¼ b2 � INþ b3 � KNþ c4 þ e4;

RE ¼ b4 � KNþ b5 � ABþ b6 � SHþ c5 þ e5;

ð9:2Þ

with cj and ej (j = 3, 4, 5) intercepts and errors, respectively. Here, the subscripts 3,
4, and 5 attached to c and e merely correspond to AB, SH, and RE being the third,
fourth, and fifth variables. The set of the three equations is equivalent to the path
diagram in Fig. 9.1b, where the intercepts are omitted. Parameters b1,…, b6 in (9.2)
are called path coefficients.

Table 9.1 (continued)

IN KN AB SH RE

57 0.97 −1.47 3.23 29.50 10.23

58 0.97 10.53 −6.97 −30.50 14.23

59 0.97 0.53 −17.98 −0.50 18.23

60 −0.03 −11.47 20.53 −0.50 −17.77

Av 0.00 0.00 0.00 0.00 0.00

SD 1.35 9.99 12.08 46.63 14.61

IN

SH

AB

KN
ErrorRE

(a) Multiple Regression (b) Path Analysis
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Fig. 9.1 Multiple regression model and an example of path analysis models for the data in
Table 9.1
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In path analysis, the variables are classified into explanatory and dependent
variables as follows:

[1] An explanatory variable is one to which no single-headed arrow extends in a
path diagram; in Fig. 9.1b, IN and KN are explanatory variables. The errors
e3, e4, and e5 are also included in explanatory variables.

[2] A dependent variable is one to which at least a single-headed arrow extends;
AB, SH, and RE are dependent variables in Fig. 9.1b.

Explanatory and dependent variables are also called exogenous and endogenous
variables, respectively.

9.2 Matrix Expression

Table 9.1(B) contains the centered scores transformed from the raw scores in (A). It
is known that the path analysis for (A) and that for (B) give an identical solution,
except for the resulting intercepts (c3, c4, c5) being zero in the latter analysis. We
thus omit the intercepts in the models for path analysis, for the sake of simplicity,
supposing that a data set to be analyzed contains centered scores. Thus, (9.2) is
simplified without c3, c4, and c5 as

AB ¼ b1 � INþ e3;

SH ¼ b2 � INþ b3 � KNþ e4;

RE ¼ b4 � KNþ b5 � ABþ b6 � SHþ e3:

ð9:3Þ

Using matrices and vectors, the three equations in (9.3) are summarized in the
following single equation:

x B x u
IN IN IN
KN KN KN
AB = b1 AB + e3 ,
SH b2 b3 SH e4
RE b4 b5 b6 RE e5

ð9:4Þ

with the blank cells in B occupied by zeros. Here, the first and second rows in the
left- and right-hand sides of (9.4) stand for “IN = IN” and “KN = KN”, which
obviously hold true, and the remaining rows are found to equal (9.3). Any model
for path analysis can be expressed in the form of (9.4), i.e.,

x ¼ Bxþ u; ð9:5Þ

for a p � 1 random vector x for p variables, with the expected vector E[x] for
x supposed to be 0p. This corresponds to the above supposition that a data set to be
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analyzed contains centered. The p � 1 u in (9.5) is a random vector containing
p explanatory variables, and B is the p � p path coefficient matrix, in which the (i, j)
element being nonzero implies that variable i is influenced by variable j.

Equation (9.5) is rewritten as x − Bx = u, thus, (Ip − B)x = u. We can further
rewrite it as

x ¼ Ip � B
� ��1u; ð9:6Þ

supposing the existence of (Ip − B)−1, i.e., that the inverse matrix of Ip − B can be
obtained. For the model in Fig. 9.1b, (9.6) is expressed in the concrete form:

x (Ip−B)−1 u
IN 1 −1 IN
KN 1 KN
AB = −b1 1 e3 .
SH −b2 −b3 1 e4
RE −b4 −b5 −b6 1 e5

ð9:7Þ

9.3 Distributional Assumptions

Let us assume that explanatory variable vector u follows the multivariate normal
(MVN) distribution with its mean vector 0p and covariance matrix X:

u�Np 0p;X
� �

: ð9:8Þ

The elements of the covariance matrix are described as

IN KN e3 e4 e5

IN ω11 ω12
KN ω12 ω22

ΩΩ = e3 ω33
e4 ω44
e5 ω55

ð9:9Þ

for the model in Fig. 9.1b. Here, the blank cells indicate zero elements, which
implies that errors are assumed to be uncorrelated with explanatory variables and
that errors are assumed to be mutually uncorrelated. Those assumptions are found
in Fig. 9.1b; they are not linked by paths there.

Here, we introduce a property of MVN variables without its proof:
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Note 9.1. A Property of MVN Distribution
If u is a random vector with u * Np(l, X), then

Auþ c�Np Alþ c;AXA0ð Þ ð9:10Þ

for fixed A (p � p) and c (p � 1).
Here, the difference of random u to fixed A and c should be noted; the
elements of u take a variety of values as x in Note 8.4, while the elements in
A and c are constant.

Because of (9.6), (9.8), and (9.10), variable vector x is found to follow an MVN
distribution as follows:

x�Np 0p;R
� �

; ð9:11Þ

with its covariance matrix

R ¼ Ip � B
� ��1

X Ip � B
� ��1 0

: ð9:12Þ

9.4 Likelihood for Covariance Structure Analysis

Let a 60 (students) � 5 (variables) data matrix X contain the centered scores in
Table 9.1(B) and xi′ denote the ith row of X. If xi * Np(l, R), the log likelihood
for X is expressed as (8.20) in Chap. 8. However, in the path analysis model, l is
restricted to 0p, as in (9.11), with R constrained as (9.12).

The substitution of 0p into l in (8.20) leads to the log likelihood of R for path
analysis:

lðRÞ ¼ � n
2
log Rj j � 1

2

Xn
i¼1

x0iR
�1xi

¼ � n
2
log Rj j � 1

2
trR�1

Xn
i¼1

xix0i

¼ � n
2
log Rj j � n

2
trR�1 1

n

Xn
i¼1

xix0i

 !
¼ � n

2
log jRj � n

2
trR�1V;

ð9:13Þ
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where R is constrained as (9.12) and

V ¼ 1
n

Xn
i¼1

xix0i ¼
1
n
X0X ð9:14Þ

is the inter-variable covariance matrix for the centered score matrix X.
Let us note that the matrix R maximizing (9.13) is equivalent to the one

maximizing

l�ðRÞ ¼ n
2
log R�1V
�� ��� n

2
trR�1V; ð9:15Þ

since we can use (8.11) and (8.12) in (9.15) to rewrite this as

l�ðRÞ ¼ n
2
log R�1

�� ��� jVj� �� n
2
trR�1V ¼ � n

2
log Rj j þ n

2
log Vj j � n

2
trR�1V:

ð9:150Þ

Its parts relevant to R are the same as in (9.13); that is, (9.15) can be regarded as the
log likelihood equivalent to (9.13). The former is easier to treat than (9.13) in that
the same matrix R−1V appears in the determinant and trace. We thus use (9.15) for
the log likelihood of R from here. The log likelihoods for the procedures in
Chaps. 10, 11, and 12 are also written in the form of (9.15).

Note 9.2. Covariance Structure Analysis
Likelihood (9.15) is a function of the covariance matrices V and R that are
obtained from data and derived from a model as in (9.6), respectively. To
distinguish the two matrices from one another, the data-based V is called a
sample covariance matrix, while the model-based R is called a covariance
structure. Further, the path analysis and the procedures in Chaps. 10, 11, and
12 are generally called covariance structure analysis, as those procedures
share in common log likelihoods that are written in the form of (9.15) and
differ only in the covariance structure; it is constrained as (9.12) in the path
analysis, while constraints different from (9.12) are imposed upon R in the
other procedures.

9.5 Maximum Likelihood Estimation

Substituting (9.12) into R in (9.15) leads to the log likelihood of parameters B and
X for the data matrix X:
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l�ðB;XÞ ¼ � n
2
log Ip � B

� �0
X�1 Ip � B

� �
V

��� ���� n
2
tr Ip � B
� �0

X�1 Ip � B
� �

V:

ð9:16Þ

Here, we have used the fact that the inverse matrix of (9.12) is expressed as

R�1 ¼ Ip � B
� ��1

X Ip � B
� �0�1

n o�1
¼ Ip � B
� �0

X�1 Ip � B
� �

because of (4.16).
In path analysis, log likelihood (9.16) is maximized; in other words, its negative

−l*(B, X) is minimized, over B and X. In model (9.7), the number of parameters to
be obtained is 12, since the distinct nonzero elements in B and X are b1, …, b6 and
x11, x22, x33, x44, x55, x12, respectively, with X symmetric, i.e., its (1, 2) and (2,
1) elements being the same. Since the solution is not explicitly given, the mini-
mization of −l*(B, X) is attained by iterative algorithms. A popular approach is the
one using a gradient algorithm, which is illustrated in Appendix A.6.3. Setting the
vector h in A6.3 to [b1, …, b6, x11, x22, x33, x44, x55, x12]′, the solution can be
obtained. We express the solution of B, X, and (9.12) as B̂, X̂, and R̂, respectively.

9.6 Estimated Covariance Structure

For the data set in Table 9.1(B), the solution of the path analysis with its model
(9.7) is given by

IN KN AB SH RE IN KN e3 e4 e5

IN IN 1.83 6.38

B̂
KN

ΩΩ̂
KN 6.38 99.72

= AB -6.90 , = e3 58.55
SH 31.94 -1.65 e4 706.86
RE 0.40 -0.62 0.10 e5 51.36

ð9:17Þ
Figure 9.2a presents a path diagram with the values in the above solution shown in
the corresponding parts. The GFI statistic, defined as

GFI ¼ 1� trðR̂�1
V� IpÞ2

trðR̂�1
VÞ2

; ð9:18Þ

is convenient for assessing whether a solution is satisfactory or not. Index (9.18)
indicates the closeness of the sample covariance matrix V and the estimated co-
variance structure
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R̂ ¼ Ip � B̂
� ��1

X̂ Ip � B̂
� ��10

; ð9:19Þ

i.e., (9.12) in which the solutions B̂ and X̂ have been substituted. If R̂ ¼ V, which

implies that a model is fitted completely to a data set with R̂
�1
V ¼ Ip, then (9.18)

attains the one at the upper limit; the largeness of the GFI stands for how well
solution-based covariances approximate sample covariances. A value of 0.9 is
sometimes used as a benchmark with a GFI � 0.9 showing a satisfactory model,
though selecting 0.9 does not have any theoretical rationale.

The sample covariance matrix for the data in Table 9.1 and the estimated co-
variance structure for the solution in Fig. 9.2a are given as

IN KN AB SH RE IN KN AB SH RE
IN 1.83 IN 1.83
KN 6.38 99.72 Sym

ΣΣ̂
KN 6.38 99.72 Sym

V = AB -12.65 -51.10 145.87 , = AB -12.65 -44.08 145.87
SH 47.98 39.27 -350.54 2174.75 SH 47.98 39.27 -331.26 2174.75
RE 15.34 75.14 -144.42 443.12 213.48 RE 15.01 70.81 -139.75 431.23 207.71

respectively, where R̂ has been obtained by substituting solution (9.17) in (9.19),
and the upper triangular elements in V and R̂ have been omitted by writing “Sym”,
since they are symmetric. The above V and R̂ are substituted in (9.18) to give a GFI
of 0.984, which is higher than 0.9, suggesting that the solution in Fig. 9.2a is
satisfactory.
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Fig. 9.2 Solution of the model in Fig. 9.1b for the data in Table 9.1
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9.7 Unstandardized and Standardized Solutions

The result in Fig. 9.2a is called unstandardized solution, as it is obtained from
unstandardized data with variables having different variances. Thus, it is senseless
to compare the largeness of the resulting parameter values. For the comparison to
make sense, we must obtain the standardized solution obtained for the standard
scores transformed from the raw data.

The unstandardized and standardized solutions can be considered two different
expressions of the same solution, as the maximum value of log likelihood (9.16) is
equivalent between unstandardized and standardized solutions, which is shown in
Appendix A.7. This equivalence is called scale invariance: The path analysis
solution can be said to be scale invariant. This property leads to the equivalence of
the value of GFI (9.18) between both solutions, as shown by (A.7.10) in
Appendix A.7. Furthermore, the standardized solutions of B and X, which we
denote ~B and ~X, can be obtained straightforwardly from the unstandardized solu-
tions B̂ and X̂ with the simple transformations:

~B ¼ D�1B̂D and ~X ¼ D�1X̂D�1: ð9:20Þ

This fact is also shown in Appendix A.7 with (A.7.20).
The standardized solutions transformed from (9.17) by (9.20) are shown in

Fig. 9.2b. There, it makes sense to compare the parameter values. For example, we
can find AB to be the most influential for RE among the three explanatory variables
AB, SH, and KN that extend paths to RE, since the absolute value of the coefficient
(−0.52) attached to the path from AB to RE is the largest. Further, the sign of that
coefficient is negative, implying that AB tends to considerably decrease RE. The
covariance ~x12 ¼ 0:47 in the standardized solution ~X ¼ ð~xklÞ is viewed as the
correlation coefficient, since all variables are standard scores.

9.8 Other and Extreme Models

Let us refer to the model in Fig. 9.1b as Model 1. Although this model was
regarded as satisfactory, with a GFI exceeding 0.9, a model may exist that is better
fitted to the data set in Table 9.1(B). This suggests that other models should be
considered and compared; that is, the model selection illustrated in Fig. 8.5
(Sect. 8.7) is to be performed. Figure 9.3 shows two examples of other models,
which we call Models 2 and 3. In Model 2, one path is added to Model 1 in
Fig. 9.1b. On the other hand, in Model 3, one path deleted from Model 1. For
Model 2, (9.6) is expressed as
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x (I−B)−1 u
IN 1 −1 IN
KN 1 KN
AB = −b1 1 e3 .
SH −b2 −b3 1 e4
RE −b7 −b4 −b5 −b6 1 e5

ð9:21Þ

Here, a parameter, b7, is added to (9.7): that model has one more parameters than
Model 1. The covariance matrix among explanatory variables is the same as that in
(9.9). Except for the difference between (9.7) and (9.21), the same procedure is
performed for Model 2: The maximum likelihood method gives the solutions for
Model 2 and other possible models.

Now, let us consider two types of extreme models. One is the independent model
shown in Fig. 9.4a, where we find that no variable is linked to the others. It implies
that all variables are assumed to be mutually independent. This model is the most
restrictive, with its number of parameters the least among possible models. That
number is p, i.e., the number of variables; only their variances are to be estimated,
which are denoted as rjj (j = 1, …, p) in Fig. 9.4a.

The other extreme type is called the saturated model, whose number of
parameters equals p(p + 1)/2, the number of the distinctive covariances in V or
R = (rjk); this is 15 for the data set in Table 9.1(B). This number is the maximum
among those for all possible models. The saturated models contain several ones,
and a typical saturated model is shown in Fig. 9.4b, where all variables are con-
nected by double-headed arrows, implying that all variables are assumed to be
merely correlated. That is, the model in Fig. 9.4b states nothing for the causal
relationships among the variables.

The covariance structures of the independent and saturated models are expressed
as
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Fig. 9.3 Examples of models that differ from the one in Fig. 9.1b
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IN KN AB SH RE IN KN AB SH RE

ΣΣ =

IN σ11

Σ =

IN σ11
KN σ22 KN σ21 σ22 Sym
AB σ33 , AB σ31 σ32 σ33
SH σ44 SH σ41 σ42 σ43 σ44
RE σ55 RE σ51 σ52 σ53 σ54 σ55

respectively. The former is a diagonal matrix, while the latter is a simple uncon-
strained covariance matrix without a special structure.

9.9 Model Selection

So far, we have Models 1, 2, and 3, and two extreme models. For comparing those
five models with respect to the goodness of fit to the data set, we cannot use GFI,
since the GFI values increase with the number of parameters in the models, and the
GFI for the saturated models always attains the upper limit. This can be found in
Table 9.2, where the models are arranged according to their numbers of parameters.

Table 9.2 Number of
parameters (NP) and the
resulting index values for
each model

Model NP GFI AIC BIC

Saturated 15 1.000 30.000 61.415

Model 2 13 0.987 28.035 55.262

Model 1 12 0.984 26.364 51.496

Model 3 11 0.908 39.792 62.830

Independent 5 0.389 231.480 241.952

(a) Independent model (b) Saturated model

KN

REIN

SH

AB

11

22

33

44

55

12

13

23

14

24

34

15

25

35

45

44

11

22

33

KN

REIN

SH

AB

55

Fig. 9.4 Two extreme models with the least and the most parameters
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This property of GFI is due to the fact that the number of parameters is not
considered for defining the GFI, as found in (9.18). GFI is thus only useful for
assessing whether a considered model is satisfactory or not.

The information criteria introduced in Sect. 8.7 are useful for comparing
models, since the number of parameters is considered in the criteria. The typical
information criteria AIC and BIC for path analysis are obtained by substituting the
maximum (9.16) value l�ðB̂; X̂Þ into lðĤÞ in (8.24) and (8.25). The AIC and BIC
values for each model are shown in Table 9.2. Since smaller values of the infor-
mation criteria indicate better models, Model 1, for which both the AIC and BIC
show the lowest values, is found to be the best of the five models. Different from
this example, cases often arise when AIC and BIC indicate different models are
best.

9.10 Bibliographical Notes

It is difficult to find books in which path analysis is exclusively treated. It is,
however, detailed in chapters of books for structural equation modeling, which
include Bollen (1989) and Kaplan (2000).

Exercises

9:1. Present an example of a set of the variables V1, V2, and V3 whose rela-
tionships are represented as the following path diagram:

V1 V2 V3

e2 e3

9:2. Present an example of a set of the variables V1, V2, V3, and V4 whose
relationships are represented as the following path diagram:

V1 V4

e3

e2

e4

V3

V2
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9:3. Present an example of a set of the variables V1, …, V5 whose relationships
are represented as the following path diagram:

V5

V3

e5

V4

e4

e3
V1

V2

9:4. Let the elements of the p � 1 vector x in (9.5) denoted as x = [z1, …, zq,
y1, …, yr]′ = [z′, y′]′, with z = [z1, …, zq]′ the q � 1 vector containing
explanatory variables, y = [y1, …, yr]′ the r � 1 vector consisting of de-
pendent variables, and p = q + r. Show that the path analysis model (9.5)
can be rewritten as

y ¼ AyþCzþ e; ð9:27Þ

with A (r � r) and C (r � q) containing path coefficients.
9:5. Rewrite the diagram in Fig. 9.1b using the elements of A and C in (9.27).
9:6. Let the path analysis model be expressed as (9.27) with z * Nq(0q, U),

e * Nr(0r, W), and no correlation found between z and e, where W is an
r � r diagonal matrix. Then, the fact is known that the q � r covariance
matrix between the q explanatory variables in z and the r dependent ones in
y is given by UC′(Ir − A)′−1. Using this fact, show that the covariance
structure (9.12) can be rewritten as

R ¼ U UC0ðIr � AÞ0�1

ðIr � AÞ�1CU ðIr � AÞ�1ðCUC0 þWÞðIr � AÞ0�1

� �
; ð9:28Þ

where (9.28) is one of the block matrices which are detailed in Sect. 14.1.
9:7. For an n � p centered data matrix, the independent model can formally be

expressed as x * Np(0p, R) with R = (rjk) being constrained as a diagonal
matrix. Show that the PDF of x = [x1, …, xp]′ in this model is expressed as

PðxjRÞ ¼
Yp
j¼1

1ffiffiffiffiffiffiffiffiffiffi
2prjj

p exp � x2j
2rjj

( )
; ð9:29Þ

using the fact that Rj j ¼ Qp
j¼1 rjj if R = (rjk) is diagonal.

9:8. Show that the MLE of R in the independent model treated in Exercise 9.7 is
given by the diagonal matrix whose diagonal elements are those of
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V = n−1XX, with X the n � p centered data matrix whose rows are filled
with x′ for n individuals.

9:9. Let us consider model (9.27) with z * Nq(0q, U), e * Nr(0r, W), and no
correlation found between z and e, where W is an r � r diagonal matrix. If
the jth variable in y cannot be a cause for the (j-1)th variable, the log
likelihood of the parameters in (9.27) for the n � p centered data matrix
X = [Z, Y], whose rows are filled with the observations of x′ = [z′, y′]′, is
known to be given by

log lðH;W;UÞ ¼ � n
2

log jWj þ trMW�1 þ log jUj þ trVZZU
�1� 	

¼ � n
2

log jWj þ tr HVXXH0 � 2VXXH0ð ÞW�1þ trVYYW
�1 þ log jUj þ trVZZU

�1� 	
ð9:28Þ

(Adachi, 2014). Here, H = [C, A] (r � p), VYY = n−1Y′Y, VYX = n−1Y′X,
VXX = n−1X′X, VZZ = n−1Z′Z, and M = HVXXH′ − 2VYXH′+VYY,
with Z (n � q) and Y (n � r) the blocks of X. Show that the two terms tr
(HVXXH′−2VYXH′)W−1 and log|W| + trMW−1 in (9.28) can be rewritten as

tr HVXXH0 � 2VYXH0ð ÞW�1 ¼
Xr
i¼1

1
wi

Xp
j¼1

vjjh
2
ij þ 2

Xp
j¼1

Xp
k 6¼j

vjkhijhik � 2
Xp
j¼1

wijhij

 !

ð9:29Þ

log jWj þ trMW�1 ¼
Xr
i¼1

ðlogwi þ
mii

wi
Þ; ð9:30Þ

with VXX = (vjk), VYX = (wij), H = (hij), mii the ith diagonal element of M,
and wi that of W. For (9.30), use the fact that |D| = d1 � ��� � dr if D is the
r � r diagonal matrix whose diagonal elements are d1, …, dr.

9:10. Let us consider maximizing (9.28). The MLE of U is explicitly given by
U = VZZ, but the MLE of the nonzero elements in H andW must be obtained
by an iterative algorithm. Use (9.29) and (9.30) to show that the algorithm
can be formed by the following steps:

Step 1. Initialize the nonzero elements of H.
Step 2. Set wi = mii for i = 1, …, r.
Step 3. Repeat updating hij as hij ¼ 1

vjj
ðwij �

Pp
k 6¼j vjkhikÞ over all indexes

i and j for the nonzero elements in H.
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

The hint for Step 2 can be found in Exercise 8.1.
9:11. Show that the minimization of ||XD − FA′||2 over F and A gives an essen-

tially different solution from that of (5.4), which implies that the solutions
of principal component analysis do not have scale invariance. Here, X is an
n � p centered data matrix the number of the column of F is not greater than
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min(n, p), and D is a p � p diagonal matrix whose diagonal elements are all
positive and take mutually different values.

9:12. Show that the k-means clustering (KMC) for an n � p data matrix X gives an
essentially different solution from that for XD, which implies that the KMC
solutions do not have scale invariance, with D a diagonal matrix whose p � p
diagonal elements are all positive and take mutually different values.
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Chapter 10
Confirmatory Factor Analysis

Let the positive correlations be observed among the test scores for physics,
chemistry, and biology. In order to investigate the causal relationships among the
three variables, we can use the path analysis from the previous chapter. For
example, we can evaluate the model in which a person’s ability in physics influ-
ences his/her scores in chemistry and biology; ability in physics is a cause, while
the scores in chemistry and biology are the results. However, it may be rather
reasonable to assume that all of the scores for physics, chemistry, and biology are
the results of a single factor, namely “an aptitude for the natural sciences”. This is
the idea underlying factor analysis (FA). British psychologist Spearman (1904) had
such a conception in his studies of human intelligence, which is the origin of FA. Its
key point is that all observed variables are regarded as the results caused by a few
unobserved latent variables called common factors, in contrast to path analysis, in
which causal relationships among observed variables are modeled.

FA can be classified into exploratory FA (EFA), confirmatory FA (CFA), and
sparse FA, where sparse FA is beyond the scope of Part III and treated in Part V.
EFA refers to the FA procedures for exploring common factors underlying
observed variables for cases without prior knowledge of underlying common fac-
tors (Thurstone, 1935, 1947). In contrast, CFA refers to the procedures for con-
firming a model describing the relationships of common factors to variables
(Jöreskog, 1969). Historically, the development of EFA preceded that of CFA, and
EFA is often simply called “factor analysis”. However, CFA is dealt with in this
chapter, as introducing CFA before EFA suits the context of this book and CFA is
easier to understand than EFA.

© Springer Nature Singapore Pte Ltd. 2020
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10.1 Example of Confirmatory Factor Analysis Model

We use the data set of 100 (participants) by 8 (behavioral features) in Table 10.1a
containing the self-ratings evaluating to what extent participants’ behaviors are
characterized by eight variables (features): A (Aggressive), C (Cheerful), I
(Initiative), B (Blunt), T (Talkative), V (Vigor), H (tendency to Hesitate), and P
(being Popular). For these eight variables, we consider the model with the
assumption that A, I, V, and H are caused by a common factor (Factor_1) inter-
preted as an activity, while C, B, T, and P are caused by another common factor
(Factor_2) that stands for sociability. The model is expressed as a set of eight
equations:

A ¼ a1 � Factor 1þ c1 þ e1
I ¼ a2 � Factor 1þ c2 þ e2
V ¼ a3 � Factor 1þ c3 þ e3
H ¼ a4 � Factor 1þ c4 þ e4
C ¼ a5 � Factor 2þ c5 þ e5
B ¼ a6 � Factor 2þ c6 þ e6
T ¼ a7 � Factor 2þ c7 þ e7
P ¼ a8 � Factor 2þ c8 þ e8

ð10:1Þ

Here, cj and ej (j = 1, …, 8) express an intercept and an error, respectively. Each
equation in (10.1) is a model for regression analysis, though the factor is not an
observed but rather an unobserved latent random variable. The model in (10.1) can
be represented as the path diagram in Fig. 10.1.

10.2 Matrix Expression

Table 10.1b shows the centered scores for the raw data in (a). As in path analysis
(Chap. 9), CFA for (a) and (b) produces the same solution, except for the resulting
intercepts (c1, …, c8) being zero in the latter analysis. We thus omit the intercepts
in CFA models, for the sake of simplicity, on the supposition that a data matrix to
be analyzed contains centered scores. The model in (10.1) without intercepts can be
expressed in the matrix form
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x A f~ e
8×1 8×2 2×1 8×1

A a1 Factor_1 e1
I a2 Factor_2 e2
V a3 e3
H = a4 + e4 ,
C a5 e5
B a6 e6
T a7 e7
P a8 e8

ð10:2Þ

with the blank cells in A occupied by zeros.
In any CFA model, a p � 1 random variable vector x, whose expected vector E

[x] = 0p, is expressed as

x ¼ Af þ e: ð10:3Þ

Here, A is the p variables � m-factors matrix whose elements are called factor
loadings (or path coefficients), f is an m � 1 vector whose elements are called
common factor scores or simply common factors, e contains errors, and E[x] = 0p
corresponds to the above supposition that a data set to be analyzed contains cen-
tered scores.

10.3 Distributional Assumptions for Common Factors

The common factor vector f is assumed to follow the multivariate normal
(MVN) distribution whose average vector is 0m and whose covariance matrix is
U = U′, respectively:

f �Nm 0m;Uð Þ: ð10:4Þ

Here, the covariance matrix U (m � m) is constrained to be a correlation matrix
with

U ¼

1 /12 � � � /1m

/12 1 . .
. ..

.

..

. . .
. . .

.
/m�1;m

/1m � � � /m�1;m 1

2
66664

3
77775: ð10:5Þ

It is equivalent to the assumption that common factor scores are standard scores
with their variances ones.
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Let us consider the rationale of the above assumptions for averages and co-
variances. The average vector 0m is matched by supposing that a data set to be
analyzed being centered scores. The reason for assuming the factor scores to be
standard ones is that factors are unobserved latent variables, thus, their variances
can be freely determined; we may consider the values of a factor to be distributed
over the range [−100, 90], [−50, 60], or [−0.01, 0.01]. For this reason, the variance
is usually set to one, as it is a comprehensible value. This implies that the common
factor scores are standardized and the covariance matrix between factors is their
correlation matrix. Thus, U in (10.5) is called a factor correlation matrix.

10.4 Distributional Assumptions for Errors

The error vector e is assumed to follow the MVN distribution whose average vector
is 0p and whose covariance matrix is W, respectively:

e�Np 0p;W
� �

; ð10:6Þ

with W the p � p diagonal matrix, i.e.,

W ¼
w1

. .
.

wp

2
64

3
75: ð10:7Þ

Assumption (10.7) implies that the errors for different variables are mutually
uncorrelated, as found in Fig. 10.1, where each of the errors is only linked to the
corresponding variable. This is an important feature of factor analysis. In contrast to
the common factors in vector f being the common causes for multiple variables,
each error in e can be viewed as the factor that exclusively or uniquely contributes

1 1

PHVIA TBC

Factor_1
activity

e1 e2 e3 e7e4 e5 e6 e8

a1 a3 a4 
a2 a5 a6 a7 a8 

1 2 3 4 5 6 7 8 

Factor_2
sociability

Fig. 10.1 Example of CFA
models for the personality
data
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to the corresponding variable. For addressing this contrast, the errors in e are called
unique factors. Further, the diagonal elements of W are called unique variances, as
they are the variances of the unique factors.

10.5 Maximum Likelihood Method

We start with a property of the MVN distribution without its proof:

Note 10.1. A Property of MVN Distribution
If u1* Nr(l1, X1), u2 * Nr(l2, X2), and u1 is distributed independently of
u2, then

B1u1 þB2u2 �Nr B1l1 þB2l2;B1X1B0
1 þB2X2B0

2

� � ð10:8Þ

for fixed matrices B1 and B2.

The common and unique factor vectors, f and e, are assumed to be distributed
mutually independently. Using this assumption and (10.8) in (10.3), (10.4) and
(10.6), the observation vector x in (10.3) is found to follow an MVN distribution, as
follows:

x�Np 0p;R
� �

; ð10:9Þ

with its covariance matrix

R ¼ AUA0 þW; ð10:10Þ

which is called a covariance structure, as described in Note 9.2.
Let X denote the centered data matrix and V = n−1X′X be the sample covariance

matrix. As explained in Sect. 9.4, the log likelihood for CFA can be written in the
form of (9.15), i.e., I�ðRÞ ¼ ðn=2Þ log R�1V

�� ��� ðn=2ÞtrR�1V. Substituting (10.10)
into l*(R), we have

l�ðA;W;UÞ ¼ n
2
log AUA0 þWð Þ�1V

��� ���� n
2
tr AUA0 þWð Þ�1V: ð10:11Þ

This is maximized over A, W, and U, i.e., the 17 parameters a1, …, a8, v11, …, v88,
/ for the model in Fig. 10.1.
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Since the solution is not explicitly given, the maximization is attained by iter-
ative algorithms. An approach is the one using a gradient algorithm, which is
illustrated in Appendix A.6.3. Setting the vector h in A.6.3 to [a1, …, a8, v11, …,
v88, /]′, the solution can be obtained. We express the resulting A, W, and U as Â;
Ŵ; and Û; respectively. Another approach is the one using an EM algorithm
(Dempster et al., 1977). The EM algorithm specialized for CFA (Rubin & Thayer,
1982; Adachi, 2013) is detailed in Appendix 9.

10.6 Solutions

The solution given by the maximum likelihood method is shown in Fig. 10.2a,
where the estimated parameter values are presented at the corresponding parts. As
in path analysis, the GFI statistic defined as (9.18) can be used for assessing
whether a solution is satisfactory or not. A value of 0.9 is used as a benchmark, with
GFI � 0.9 indicating that a model is satisfactory. The GFI value for the solution in
Fig. 10.2a was 0.953, which shows that the solution is to be accepted.

V

.53
1 1

PHVIA TBC

Factor_1 Factor_2

e1 e2 e3 e7e4 e5 e6 e8

.86 .88
-.77

.77 .75
-.84 .91

.71

.26 .41 .23 .40 .43 .29 .18 .50

(b) Standardized  
solution

e2 e4e1 e2 e3 e4 e5 e6 e7 e8

IA HV BC PT

Factor_1 Factor_2

1 1.53

.53 .64 .60 1.36 .49 .66 .50 .98

1.24 .98
1.41

-1.42 .81
-1.25 1.53

1.00

(a) Unstandardized  
solution

Fig. 10.2 Solution of the model in Fig. 10.1 for the data in Table 10.1
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The result in Fig. 10.2a is the unstandardized solution obtained from variables
with different variances. Thus, it is senseless to compare the largeness of the
resulting parameter values. For the comparison to make sense, we must note the
standardized solution obtained for the standard scores transformed from the original
data set. The unstandardized and standardized solutions in CFA can be considered
as two different expressions of the same solution, since CFA is scale invariant with
the attained (10.11) and GFI values are the same between both solutions, as is path
analysis. This property is shown in Appendix 7. There, the fact is also proved that
~A; ~U; and ~W; which denote the standardized solutions of the loading, factor cor-
relation, and unique variance matrices, respectively, are transformed from the un-
standardized solutions Â; Ŵ; and Û; with

~A ¼ D�1Â; ~U ¼ Û; and ~W ¼ D�1ŴD�1: ð10:12Þ

The standardized version of the solution in Fig. 10.2a is shown b.

10.7 Other and Extreme Models

Let us refer to the model in Fig. 10.1 as “Two-factor Model 1”. Though this model
is regarded as satisfactory, with a GFI exceeding the benchmark value of 0.9, a
model may exist that is better fitted to the data set in Table 10.1b. This suggests that
other models should be considered and compared, that is, the model selection
illustrated in Fig. 8.5 should be performed. Figure 10.3 shows two examples of
other models. Figure 10.3a presents the one-factor model in which only one factor
underlies the eight observed variables. For this model, the A and f in (10.3) are a
vector and a scalar, respectively. Figure 10.3b shows the “Two-factor Model 2” in
which the variables “Initiative” and “Cheerful” load both factors. This model is
written as

x ΛΛ f e
8×1 8×2 2×1 8×1

A a1 Factor_1 e1
I a2 a9 Factor_2 e2
V a3 e3
H = a4 + e4 .
C a10 a5 e5
B a6 e6
T a7 e7
P a8 e8

ð10:13Þ

As in path analysis, the two types of extreme models are the independent and
saturated models. In the former, all variables are mutually independent, without any
factor. This is represented as the path diagram in which only eight variables are
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depicted, without any link among them. On the other hand, one of the saturated
models is represented in the path diagram in which each of the eight variables are
linked to the other seven by double-headed arrows, without any factors. This
implies that all variables are merely correlated.

10.8 Model Selection

So far, we have the two-factor models (1 and 2), the one-factor model, and two
extreme ones. For comparing those models with respect to the goodness of fit to the
data set, we cannot use the GFI (9.18) for the reason explained in Sect. 9.9. On the
other hand, the information criteria introduced in Sect. 8.7 are useful for com-
paring models since the number of parameters is considered in the criteria. The
typical information criteria AIC and BIC for CFA are obtained by substituting the
maximum (10.11) value l�ðÂ; Ŵ; ÛÞ into lðĤÞ in (8.24) and (8.25). The AIC and
BIC values for each model are shown in Table 10.2. There, the BIC shows that
Two-factor Model 1 is the best, while it is found to be slightly worse than

b

c

Fig. 10.3 Example of other CFA models
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Two-factor Model 2 in the AIC values. This demonstrates that model selection
statistics indicate different models as the best. For such a case, the model must be
chosen by users’ subjective consideration. This shows that no absolute index exists
for model selection, which should be kept in mind.

10.9 Bibliographical Notes

It is difficult to find books in which CFA is exclusively treated. CFA is, however,
described in chapters of books on structural equation modeling or factor analysis,
which include Kaplan (2000), Mulaik (2010), and Wang and Wang (2012).

One drawback of CFA is that the model, i.e., the elements that are set to be zero
in A, must be selected by users in a subjective manner. Such a drawback can be
dealt with by the sparse factor analysis treated in Chap. 22.

Exercises

10:1. Let us consider the model x = t + e, with x an observed variable, e an error,
and t a true score which is an unobserved latent variable. For example,
t stands for the ability of mathematics possessed by an examinee, while x is
the test score on mathematics shown by the examinee, and an error e must
be considered, since t (ability) cannot be perfectly exactly measured by
x (score). Present another example for a set of x, t, and e in the model.

10:2. Spearman (1904) hit upon the idea of factor analysis, by considering the
scores of achievement tests as variables, and personality test scores have
been used as an example in this chapter. Present an example of a data set
that is not related to such tests and for which factor analysis is useful.

10:3. Consider another two-factor model for the data in Table 10.1.
10:4. Depict the path diagram of a saturated model for the data in Table 10.1

without a factor and a single-headed path.
10:5. Present an example of the CFA model for 15 observed variables with three

factors.
10:6. Eq. (10.3) can be rewritten as x = Af + e = A*f* + e with f* = S−1f and

A* = AS. It suggests that f* and A* could also be regarded as a factor score
vector and a loading matrix, respectively, with S an m � m arbitrary non-
singular matrix. However, in CFA, except for special cases, it is not possible

Table 10.2 Number of
parameters (NP) and the
resulting index values for
each model

Model NP GFI AIC BIC

Saturated 36 1.000 72.000 165.786

Two-factor model 2 19 0.964 54.168 103.666

Two-factor model 1 17 0.953 55.464 99.751

One-factor mode l 16 0.642 193.494 235.176

Independent 8 0.354 504.322 525.163

Italic font refers to the least AIC and BIC values
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to regard f* and A* as above. Show the reason for this, noting that A is
constrained in CFA.

10:7. Model (10.3) can be rewritten as x = Hg, with H = [A, Ip] being p �
(m + p) and g ¼ f

e

� �
(m + p) � 1. If A and x are given, x = Hg is

regarded as a system of equations with g unknown. The necessary and
sufficient condition of the system having the solutions of g is known to be
HH+x = x. If this equation holds true, show that the solution of g satisfying
x = Hg is expressed as

g ¼ Hþ xþ Imþ p �HþH
� �

q; ð10:14Þ

with H+ the Moore–Penrose inverse of H defined in Exercise 5.10 and q an
arbitrary (m + p) � 1 vector. This inverse and the solution of a system of
equations are also detailed in Chap. 17.

10:8. Show the following: (10.14) implies that factor score vector f cannot be
uniquely determined, i.e., we cannot select a single vector as f for given
A and x.

10:9. Let us consider the CFA model with intercept vector c: x = Af + c + e,
f * Nm(0m, U), and e * Np(0p, W). Show that the MLE of transposed
intercept vector c′ is given by n−11n′X for the n � p data matrix X whose
rows are the observations of x′ for individuals i = 1, …, n.

10:10. Let us consider a confirmatory principal component analysis (PCA)
procedure formulated as minimizing ∥X − FA′∥2 over F and A subject to
n−1F′F = Im and some elements of A constrained to be zero. Show that the
function can be decomposed as

X� FA0k k2¼ X� FB0k k2 þ n B� Ak k2; ð10:15Þ

with B ¼ n�1X0F (Adachi & Trendafilov, 2016).
10:11. Show that an algorithm for the confirmatory PCA in Exercise 10.10 can be

formed by the following steps:

Step 1. Initialize F.
Step 2. Set the unconstrained elements ofA to the corresponding ones of n−1X′F.
Step 3. Obtain the SVD XA = KKL′ and set F = n1/2KL′.
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

The hints for Steps 2 and 3 can be found in (10.15) and Theorem A.4.2
(Appendix A.4.2), respectively.
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Chapter 11
Structural Equation Modeling

In confirmatory factor analysis (CFA), introduced in the previous chapter, all fac-
tors (latent variables) were causes (explanatory variables). An extended variant of
CFA is structural equation modeling (SEM), in which the causal relationships
among factors are considered, i.e., factors appear that are dependent variables.

To the best of the author’s knowledge, SEM was first presented by the Swedish
statistician Jöreskog (1970), who combined path analysis and factor analysis to
formulate SEM. This has been elaborated on and popularized, particularly with the
developments of computer software, by the efforts of psychometricians including
Bentler (1985).

11.1 Causality Among Factors

We will introduce structural equation modeling (SEM) by starting with the for-
mation of a model, which is followed by the description of the data to be observed.

Let us consider a model of the causality among four factors, depicted in
Fig. 11.1, with the factors as follows:

[F1] Prior achievements before PostGraduate School (PGS);
[F2] Adaptation to PGS;
[F3] Achievements in PGS;
[F4] Satisfaction with having gone to PGS.

The path diagram in the figure is expressed as a set of formulas

F3 ¼ b1F1þ b2F2þ eF3;

F4 ¼ b3F2þ b4F3þ eF4;
ð11:1Þ
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with eF3 and eF4 being errors. Here, intercepts are omitted, since it is known that
they may be zero, assuming that the averages of the factors are zeros. The set of
formulas is a kind of path analysis model, though the variables are not observed but
rather latent factors, which differs from the ordinary path analysis in Chap. 9.
A model such as (11.1) is called a structural equation model for latent variables.

11.2 Observed Variables as Indicator of Factors

It is reasonable to consider that the above four factors are difficult to measure
directly, but each of them (F1, F2, F3, F4) can be measured with several indices
(observed variables). Then, let us suppose that each factor can be measured by the
four variables shown in Table 11.1. For example, we suppose that X9 (scores for
lecture courses), X10 (scores for practice courses), X11 (evaluation of the thesis for

F1

F2

F3

F4

eF3
b1

b2

b3

b4c

eF4

Fig. 11.1 Path diagram for a
structural equation model for
latent variables

Table 11.1 Variables indicating factors

F Variable

F1 X1 Scores for languages when one was a student in a faculty

X2 Scores for sciences when one was a student in a faculty

X3 Scores for the entrance examination for a postgraduate school

X4 Evaluation of a graduation thesis

F2 X5 Goodness of fit to the education in the postgraduate school

X6 Goodness of fit to the atmosphere in the postgraduate school

X7 Goodness of fit to the facilities in the postgraduate school

X8 Inconvenience found in the systems of the postgraduate school

F3 X9 Scores for lecture courses in the postgraduate school

X10 Scores for practice courses in the postgraduate school

X11 Evaluation of the thesis for master degree

X12 Self-rating of achievement

F4 X13 Fulfillment felt from life in the postgraduate school

X14 How well one enjoyed life in the postgraduate school

X15 Regret that one went to the postgraduate school

X16 Hope for the future
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master degree), and X12 (self-rating of achievement) can be used as the indicators
for F3 (achievements in PGS).

The four path diagrams in Fig. 11.2 represent the fact that F1, F2, F3, and F4 are
indicated by the variables in Table 11.1. Each diagram can be expressed by a set of
formulas; for example, the third diagram is expressed as the set of four equations

X9 ¼ a9F3þ e9;
X10 ¼ a10F3þ e10;
X11 ¼ a11F3 þ e11;
X12 ¼ a12F3þ e12:

ð11:2Þ

This is just a factor analysis model, which is also called a measurement equation
model, as (11.2) stands for how an unobserved common factor (F3), which cannot
be measured directly, is measured using several observed variables as the indi-
cators of the common factor.

Let 300 � 16 data matrix X contain the centered scores of 300 postgraduate
students for the 16 items in Table 11.1 with covariance matrixV = n−1X′X for the 16
variables shown in Table 11.2. The datamatrixX is too big to be presented; in place of
it, the sample covariance matrix V is presented here. As described in Note 9.2, the
procedures in Chaps. 9–12 can be feasible only with V, even if X is not available.

11.3 SEM Model

The structural equation model in Fig. 11.1 and the four measurement equation
models in Fig. 11.2 are integrated into a single model in Fig. 11.3. This is a SEM
model for the covariance matrix in Table 11.2. The outer parts of the diagram in
Fig. 11.3 are a–d in Fig. 11.2, while the inner part in Fig. 11.3 is the diagram in
Fig. 11.1. In other words, the outer parts stand for measurement equation models
(i.e., factor analysis models), while the inner part represents a structural equation
model (i.e., a path analysis model with latent factors). That is, SEM is an analysis
procedure with a model into which structural and measurement equation models
are integrated. However, the procedure is called structural equation modeling,
without the use of the term “measurement”.

11.4 Matrix Expression

The path diagram in Fig. 11.3 is formally expressed using the two equations in
(11.1) and the four sets of measurement equations, with an example of a set pre-
sented in (11.2). Those equations can be written as a single equation in matrix form:
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t B t u
F1

=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F1

+

F1
F2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F2 F2
F3 b1 b2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F3 eF3
F4 0 b3 b4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F4 eF4
X1 a1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X1 e1
X2 a2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X2 e2
X3 a3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X3 e3
X4 a4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X4 e4
X5 0 a5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X5 e5
X6 0 a6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X6 e6
X7 0 a7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X7 e7
X8 0 a8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X8 e8
X9 0 0 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X9 e9
X10 0 0 a10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X10 e10
X11 0 0 a11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X11 e11
X12 0 0 a12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X12 e12
X13 0 0 0 a13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X13 e13
X14 0 0 0 a14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X14 e14
X15 0 0 0 a15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X15 e15
X16 0 0 0 a16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X16 e16

ð11:3Þ
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Figure 11.1 

X1 X2 X3 X4

X5 X6 X7 X8

X9 X10 X11 X12

X13 X14 X15 X16

e1 e4e2 e3 e7e5 e8e6

e9 e10 e11 e12 e13 e14 e16e15

eF3

eF4

b1

b2

b3

b4

Fig. 11.3 A SEM model
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Here, t is the random vector whose first elements are common factors and the
remaining ones are observed variables, while u is the vector whose first elements
are the common factors being explanatory variables and the remaining ones are the
errors for the dependent common factors and observed variables. Matrix B is filled
with zeros except for the path coefficients corresponding to the links between
common factors and the links of common factors to observed variables. The first
and second rows in the left- and right-hand sides of (11.3) stand for F1 = F1 and
F2 = F2, which obviously hold true; the third and fourth rows express (11.1), and
the remaining ones stand for the measurement equation models (Fig. 11.2), with the
rows for X9 to X12 corresponding to (11.2).

Any SEM model is expressed as

t ¼ Btþ u: ð11:4Þ

Here, B is an (m + p) � (m + p) path coefficient matrix, with m and p being the
numbers of common factors and observed variables, respectively. Vector t is
(m + p) � 1 with

t ¼ f
x

� �
: ð11:5Þ

Its first m elements are those of an m � 1 common factor vector f and the (m + 1)th,
…, (m + p)th elements of t are the 1st, …, pth observed variables in x. Vector u is
(m + p) � 1 with

u ¼
fE
eD
eX

2
4

3
5: ð11:6Þ

Its first mE elements are those of the mE � 1 vector fE containing common factors
being explanatory variables; the next mD elements are those of the mD � 1 vector eD
consisting of the errors for dependent common factors; and the remaining p ones are
the elements of the p � 1 vector eX containing the errors for x.

Equation (11.4) can be rewritten as ðImþ p � BÞt ¼ u with Im+p the ðmþ pÞ �
ðmþ pÞ identity matrix. It can be further rewritten as

t ¼ Imþ p � B
� ��1u; i:e:;

f
x

� �
¼ Imþ p � B

� ��1u; ð11:7Þ

where we have supposed the existence of (Im+p − B)−1. Now, let us define a p �
(m + p) matrix as
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H ¼

0 � � � 0 1 0 � � � 0

0 � � � 0 0 1 . .
. ..

.

..

. ..
. ..

. ..
. . .

. . .
.

0
0 � � � 0 0 � � � 0 1

2
6664

3
7775; ð11:8Þ

whose first m columns are filled with zeros and whose remaining p columns are the
columns of Ip. We find that

x ¼ H
f
x

� �
; i:e:; x ¼ Ht: ð11:9Þ

Using (11.7) in (11.9), it is expressed as

x ¼ H Imþ p � B
� ��1u: ð11:10Þ

This is the SEM model for the observation vector x.

11.5 Distributional Assumptions

Let us assume that vector u is distributed according to the multivariate normal
(MVN) distribution, with its mean vector 0mþ p and covariance matrix X:

u�Nmþ pð0mþ p;XÞ: ð11:11Þ

The elements of the covariance matrix are described as

ð11:12Þ

for the model in Fig. 11.3, where the blanks (=zeros) indicate no correlation be-
tween errors and no correlation of errors to explanatory variables. They are not
linked by paths, as found in the figure.

In (11.12), we should note the following constraints:

VðF1Þ ¼ VðF2Þ ¼ VðeF3Þ ¼ V eF4ð Þ ¼ 1; ð11:13Þ

172 11 Structural Equation Modeling



with V(F1) denoting the variance of F1. The reason for constraining the variances
of factors to be one with V(F1) = V(F2) = 1 is the same in factor analysis
(Sect. 10.3); the variances can be set to one, as the common factors are unobserved
latent variables and their variances can be freely determined. The errors eF3 and eF4
for factors F3 and F4, respectively, are also unobserved and their variances can be
freely determined. Thus, V(eF3) and V(eF4) can be set to one. The constraint V
(F1) = V(F2) = 1 implies that factors F1 and F2 are standardized; thus, their co-
variance r is a correlation coefficient.

Because of (9.10), (10.8), (11.10), and (11.11), observed variable vector x is
found to follow an MVN distribution as

x�Np 0p;R
� �

; ð11:14Þ

with the covariance matrix

R ¼ H Imþ p � B
� ��1

X Imþ p � B
� ��10H0: ð11:15Þ

11.6 Maximum Likelihood Method

Let X denote the centered data matrix and V = n−1X′X be the sample covariance
matrix. As explained in Sect. 9.4, the log likelihood for SEM can be written in the
form of (9.15), i.e., l�ðRÞ ¼ ðn=2Þ log R�1V

�� ��� ðn=2ÞtrR�1V: Substituting (11.15)
into l*(R), we have the log likelihood of parameter matrices B and X:

l�ðB;XÞ ¼ n
2
log H Imþ p � B

� ��1
X Imþ p�B
� �0�1H0

n o�1
V

����
����

� n
2
trfHðImþ p � BÞ�1XðImþ p � BÞ0�1H0g�1V:

ð11:16Þ

This is maximized over B and X, that is, the 37 parameters a1; . . .; a16; b1,
b2; b3; b4;x1; . . .;x16; r: The maximization of (11.16) is equivalent to minimizing
− l*(B,X). Since the solution is not explicitly given, the minimization is attained by
iterative algorithms. A popular approach is the one using a gradient algorithm,
illustrated in Appendix A6.3; setting the vector h in A.6.3 to [a1, …, a16, b1, b2, b3,
b4, x1, …, x16, r]′, the solution can be obtained. We express the resulting B and X

as B̂ and X̂, respectively.
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11.7 Solutions

The solution given by the maximum likelihood method is shown in Fig. 11.4; the
estimated parameter values are presented at the corresponding parts. As in path
analysis and confirmatory factor analysis, the GFI statistic defined in (9.18) can be
used for assessing whether a solution is satisfactory or not. A value of 0.9 is used as
a benchmark with a GFI � 0.9 showing that a model is satisfactory. The GFI value
for the solution was 0.96, which shows that the solution is to be accepted.

The result in Fig. 11.4 is the unstandardized solution obtained from those
variables with different variances. Thus, it is senseless to compare the largeness of
the resulting parameter values. For the comparison to make sense, we must obtain
the standardized solution obtained for the standard scores transformed from the
original data set. The standardized solution is shown in Fig. 11.5. In this solution,
the variances of the dependent common factors are also adjusted to be unity.

As in path analysis and confirmatory factor analysis, SEM also has scale
invariance, (though its proof is too complicated to be treated in this book). Thus, the
attained value of the maximum of log likelihood (11.15) is equivalent for unstan-
dardized and standardized solutions, and so is the GFI. Further, the standardized
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Fig. 11.4 Unstandardized solution

174 11 Structural Equation Modeling



solution is easily transformed from the unstandardized one. We may thus consider
unstandardized and standardized solutions to be two different expressions of the
same solution.

11.8 Model Selection

As in path analysis and confirmatory factor analysis, several models, including two
extreme (independent and saturated) models, should be compared in SEM. For the
comparison, information criteria such as the AIC and BIC are useful for selecting a
good model, although the GFI cannot be used. The AIC and BIC values for SEM are
obtained by substituting the maximum (11.16) value l�ðB̂; X̂Þ into lðĤÞ in (8.24) and
(8.25).

An example of SEM models differing from the model in Fig. 11.3 is shown in
Fig. 11.5, where the path connecting F2 and F4 in Fig. 11.3 has been deleted. In
Table 11.3, the AIC and BIC for the model in Fig. 11.3 are found to be the least,
which shows that model to be the best among the four considered.
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Fig. 11.5 Standardized solution
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11.9 Bibliographical Notes

The books in which SEM is exhaustively detailed include Bollen (1989), Kaplan
(2000), and Wang and Wang (2012). SEM is also illustrated in a chapter of Lattin,
Carroll, and Green (2003). The formulation of SEM in this chapter is based on
Toyoda (1998), which is a very excellent book, but written in Japanese.

Exercises

11:1. Present an example of a set of the variables (V1–V5) and common factors (F1
and F2) whose relationships are represented as the following path diagram:
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F4

a1 a2 a3 a4 a9
a10 a11 a12

a5 a6 a7 a8 a13 a14 a15 a16

r
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X1 X2 X3 X4

X5 X6 X7 X8

X9 X10 X11 X12

X13 X14 X15 X16

e1 e4e2 e3 e7e5 e8e6

e9 e10 e11 e12 e13 e14 e16e15

eF3

eF4

b1

b2

b3

1 2 3 4 9 10    11 12

5 6 7 8 13 14 15 16

Fig. 11.6 Another SEM model

Table 11.3 Number of
parameters (NP) and the
resulting index values for
each model

Model NP GFI AIC BIC

Saturated 136 1.000 272.000 775.714

Figure 11.3 37 0.960 175.052 312.092

Figure 11.6 36 0.957 183.703 317.039

Independent 16 0.332 2034.899 2036.828
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11:2. The above diagram can be changed into the one for CFA by changing a few
parts. Show those changes.

11:3. Present another SEM model for the covariance matrix in Table 11.2.
11:4. Describe what is implied by removing the double-headed path between F1

and F2 from Fig. 11.3.
11:5. Show that the structural equation model describing the causal relationships

among factors can be expressed as

fD ¼ CfD þQfE þ eD: ð11:17Þ

Here, fD (mD � 1) contains the common factors as dependent variables, fE
(mE � 1) contains the common factors as explanatory variables, and eD (mD

� 1) consists of the errors for fD, as defined in Sect. 11.4, with C and Q path
coefficient matrices.

11:6. Discuss how the elements of C and Q in (11.17) correspond to the diagram in
Fig. 11.1.

11:7. Show that the measurement equations describing the relationships of the
common factor vectors fD and fE in (11.17) to observed variables can be
expressed as

y ¼ AY fD þ eY ; ð11:18Þ

z ¼ AzfE þ eZ : ð11:19Þ

Here, y (pD � 1) and z (pE � 1) are the observed variable vectors
corresponding to fD and fE, respectively; y, z, eY, and eZ form the p � 1
vectors x = [z′, y′]′ and eX = [eZ′, eY′]′ in (11.5) and (11.6), respectively, with
p = pD+pE; AY and AZ are path coefficient matrices.

11:8. Show that model (11.4) is equivalent to a set of (11.17), (11.18), and (11.19).
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Chapter 12
Exploratory Factor Analysis (Part 1)

As described in Chap. 10, factor analysis (FA) is classified into exploratory FA
(EFA) and confirmatory FA (CFA), except the sparse FA treated in Chap. 22. EFA
refers to the procedures for exploring factors underlying observed variables for
cases without prior knowledge of what factors explain the variables. EFA is
introduced in this chapter. Two features of EFA are that [1] all common factors are
assumed to be linked to all variables, and [2] multiple solutions exist for a data set.

The FA model conceived by Spearman (1904), the originator of FA, was
restricted to one common factor. In the single-factor case, CFA is not distinguished
from EFA, as only that model can be considered in which the common factor is
linked to all variables. Spearman’s single-factor FA was extended to FA with
multiple common factors by Thurstone (1935, 1947). Then, he chose the EFA
approach with all common factors linked to all variables. That was the origin of
EFA.

Part 1 follows EFA in the title of this chapter, as the next part for EFA is
introduced in Chap. 18. The formulation of EFA in this chapter is prevalent cur-
rently, while the formulation in Chap. 18 is the one established recently.

12.1 Example of Exploratory Factor Analysis Model

We use the same data set as that in Chap. 10, the 100 (participants) � 8 (behavioral
features) data matrix in Table 10.1(A). It contains the self-ratings regarding to what
extent participants’ behaviors are characterized by eight variables (features): A
(Aggressive), C (Cheerful), I (Initiative), B (Blunt), T (Talkative), V (Vigor), H
(tendency to Hesitate), and P (being Popular).

Let us suppose that two common factors underlie the eight variables, though it is
unknown what variables are related to each factor. Thus, those links are considered
which connect all variables to all common factors, as illustrated in Fig. 12.1. This is
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a key point in EFA. The model in Fig. 12.1 can be written as the set of eight
equations:

A ¼ a11 � Factor�1þ a12 � Factor�2þ c1 þ e1
C ¼ a21 � Factor�1þ a22 � Factor�2þ c2 þ e2
I ¼ a31 � Factor�1þ a32 � Factor�2þ c3 þ e3
B ¼ a41 � Factor�1þ a42 � Factor�2þ c4 þ e4
T ¼ a51 � Factor�1þ a52 � Factor�2þ c5 þ e5
V ¼ a61 � Factor�1þ a62 � Factor�2þ c6 þ e6
H ¼ a71 � Factor�1þ a72 � Factor�2þ c7 þ e7
P ¼ a81 � Factor�1þ a82 � Factor�2þ c8 þ e8:

ð12:1Þ

Here, cj and ej (j = 1,…, 8) express an intercept and an error, respectively; the first
subscript j and the second k in ajk indicate a variable and a common factor,
respectively. The path coefficients ajk are also called factor loadings.

In Fig. 12.1, we can find that each error is a cause for a single variable, in
contrast to the common factors which are a common cause for all variables. For this
contrast, an error is also called a unique factor (a factor uniquely influencing a
single variable) with its variance called a unique variance, as already mentioned in
Chap. 10.

12.2 Matrix Expression

Table 10.1(B) shows the centered scores of the raw data in (A). EFA for (A) and
that for (B), on the assumption of the averages of factors being zeros, produces the
same solution except for the resulting intercepts being zero in the latter analysis.
We thus omit the intercepts in EFA models, for the sake of simplicity, by supposing
that a data matrix to be analyzed contains centered scores. Model (12.1) without
intercepts can be expressed in matrix form:

1 1

PBICA HVT

e1 e2 e3 e7e4 e5 e6 e8

a12
a82

a81

Factor_2Factor_1

a11

1 2 3 4 5 6 7 8 Fig. 12.1 EFA model with
two factors for personality
data
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x A f e
8×1 8×2 2×1 8×1

A a11 a12 Factor_1 e1
C a21 a22 Factor_2 e2
I a31 a32 e3
B = a41 a42 + e4 .
T a51 a52 e5
V a61 a62 e6
H a71 a72 e7
P a81 a82 e8

ð12:2Þ

In any EFA model, a p � 1 random variable vector x, whose expected vector
E[x] is 0p, is expressed as

x ¼ Af þ e; ð12:3Þ

where A = (ajk) is the p (variables) � m (common factor) matrix containing factor
loadings, f is an m � 1 vector whose elements are called common factor scores, and
e contains errors, in other words, unique factor scores. This is the same as the CFA
model in Chap. 10 except that A is unconstrained in EFA.

12.3 Distributional Assumptions

The error or unique factor vector e is assumed to be distributed according to the
multivariate normal (MVN) distribution whose average vector and covariance
matrix are 0p and W, respectively:

e � Np 0p;W
� �

; ð12:4Þ

with W the diagonal matrix including unique variances, i.e.,

W ¼
w1

. .
.

wp

2
64

3
75: ð12:5Þ

The common factor vector f is supposed to be distributed according to the MVN
distribution whose average vector and covariance matrix are 0 m and Im,
respectively:

f � Nm 0m; Imð Þ: ð12:6Þ
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This differs from assumption (10.4) for CFA in Chap. 10 in that the covariance
matrix is the identity matrix. However, this can be transformed into a factor cor-
relation matrix U, as in (10.4), for the reason described in Sect. 12.5.

The common factor vector f and error vector e are assumed to be distributed
mutually independently. Because of (10.8), the independence of f from e, (12.4),
and (12.6) imply that the observed variable vector x is distributed according to the
following MVN distribution:

x � Np 0p;R
� �

; ð12:7Þ

with its covariance matrix

R ¼ AA0 þW. ð12:8Þ

12.4 Maximum Likelihood Method

Let X denote the centered data matrix in Table 10.1(B) and V = n−1X′X be the
sample covariance matrix. As explained in Sect. 9.4, the log likelihood is written in
the form of (9.15). By substituting (12.8) in (9.15), we have

l�ðA;WÞ ¼ n
2
log AA0 þWð Þ�1V
��� ���� n

2
tr AA0 þWð Þ�1V: ð12:9Þ

This is maximized over A and W. Since the solution is not explicitly given, the
maximization is attained by iterative algorithms. One of the algorithms is a gradient
algorithm, which is illustrated in Appendix A.6.3. Another approach is the one
using an EM algorithm (Dempster, Laird, & Rubin, 1977). The EM algorithm
specialized for EFA (Rubin & Thayer, 1982, Adachi, 2013) is detailed in
Appendix A.9, following Appendix A.8 which serves as a preparation for
Appendix A.9. We express the resulting solutions of A and W as Â and Ŵ,
respectively.

12.5 Indeterminacy of EFA Solutions

The property is called indeterminacy that the solution of a procedure is not unique,
i.e., is not a single; in other words, multiple solutions exist. This property is pos-
sessed by EFA. Infinitely many solutions exist in EFA. This is true because the FA
model (12.3) can be rewritten as
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x ¼ Af þ e ¼ ATT0f þ e ¼ ATfT þ e: ð12:10Þ

Here,

AT ¼ AT and fT ¼ T0f; ð12:11Þ

with T an m � m matrix satisfying

T0T ¼ TT0 ¼ Im: ð12:12Þ

This T is called an orthonormal matrix, which is detailed in Appendix A.1.2.
Because of (9.10) and (12.12), (12.6) leads to

fT ¼ T0f �Nm 0m; Imð Þ : ð12:13Þ

fT follows the same distribution as that for f. That is, (12.11) satisfies the
assumptions of EFA, which implies that ÂT ¼ ÂT is also the solution of A if Â is
the solution.

We can also relax the condition (12.12) for T as

T0T ¼
1 #

. .
.

# 1

2
64

3
75; or equivalently; diag T0Tð Þ ¼ Im: ð12:14Þ

Here,

1 #

. .
.

# 1

2
64

3
75 stands for a square matrix whose diagonal elements are

restricted to one and diag() is defined next:

Note 12.1. Operator diag(M)
For an m � m square matrix M, diag(M) expresses the m � m diagonal
matrix whose diagonal elements are those of M. For example, if

M ¼ a b
c d

� �
, then diag(MÞ ¼ a 0

0 d

� �
.

When T is defined as (12.14), the EFA model (12.3) can be rewritten as

x ¼ Af þ e ¼ AT0�1T0f þ e ¼ ATfT þ e: ð12:15Þ
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with

AT ¼ AT0�1 and fT ¼ T0f: ð12:16Þ

Because of (9.10), (12.6) and (12.14) imply

fT ¼ T0f � Nm 0m;Uð ÞwithU ¼ T0T: ð12:17Þ

Though this differs from (12.6), (12.17) is a reasonable assumption, if factors are
assumed to be correlated, since (12.14) implies that U ¼ T0T is a factor correlation
matrix with its diagonal elements ones. This shows that ÂT0�1 is also the solution
of A with (12.14) providing the corresponding factor correlation matrix.

As discussed above, the EFA solution of A is not unique. But, the solution of the
diagonal matrix W is uniquely determined; the solution of W is single.

12.6 Two-Stage Procedure

As described in the last section, if Â is the solution of A, ÂT is that with (12.12),
and, further, ÂT0�1 is also a solution with (12.14). Thus, EFA involves the fol-
lowing two-stage procedure:

Stage 1. A set of solutions for A and W, i.e., Â and Ŵ, is obtained.
Stage 2. A suitable T is found to have a solution ÂT with (12.12) or ÂT0�1 (and

U ¼ T0T) with (12.14).

Indeed, the procedure in Sect. 12.4 corresponds to Stage 1. On the other hand,
the procedure in Stage 2, which is called rotation, is not treated in this chapter, but
is detailed in the next chapter. In the next two sections, we illustrate the interpre-
tation of the solution after Stage 2.

12.7 Interpretation of Loadings

The EFA solutions obtained with the above procedures also have scale invariance,
as explained in Appendix A.7. Thus, the unstandardized and standardized solutions
of EFA can be viewed as two expressions of the same solution. In this chapter, only
the standardized one is shown. For the data in Table 10.1(B), Stage 1 in the last
section, the EFA procedure with m = 2 in Sect. 12.4, provides the solution in
Table 12.1(A), where the inter-factor correlation is found to be zero, as shown in
(12.6). For this solution, Stage 2 in the last section provides the result in Table 12.1
(B), where a rotation technique called “oblique geomin rotation”, which will be
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detailed in Sect. 13.5, has been used for finding T. In this rotation technique, T with
(12.14) is obtained, and thus an inter-factor factor correlation is also provided.

Let us consider interpreting what each factor in Table 12.1(B) stands for. For
facilitating the interpretation, bold font is used for the loadings of large absolute
values in Table 12.1(B). Further, the factor loadings can be visually captured in
Fig. 12.2, where the widths of paths are proportional to the absolute values of the
corresponding loadings and their signs are distinguished by solid and dotted lines.
In the figure, we can find that the variables A, I, and V load Factor_1 heavily and
positively, while H loads that factor negatively; i.e., the higher Factor_1 leads to
less H (tendency to hesitate). This result allows us to call Factor_1 “the factor of
activity”. On the other hand, the variables C, T, and P load Factor_2 heavily and
positively, while B loads that factor negatively. This allows us to interpret Factor_2
as “the factor of sociability”. Table 12.1(B) shows that the correlation between
those two factors is 0.48, which implies the factor of activity is positively correlated
with the sociability factor.

Table 12.1 Standardized
solutions for the data in
Table 10.1, with /12 the cor-
relation between the first and
second factors

(A) Before rotation (B) After rotation

Â wj ÂT wj

A 0.77 −0.38 0.26 0.82 0.08 0.26

C 0.61 0.50 0.38 −0.13 0.84 0.38

I 0.67 −0.36 0.41 0.74 0.04 0.41

B −0.74 −0.40 0.30 −0.04 −0.82 0.30

T 0.79 0.43 0.18 0.04 0.88 0.18

V 0.76 −0.44 0.22 0.87 0.01 0.22

H −0.63 0.46 0.39 −0.82 0.08 0.39

P 0.70 0.18 0.47 0.23 0.58 0.47

/12 0.00 0.48

e1 e2 e3 e4 e5 e6 e7 e8

PTBC IA V H

1 1 

Factor_2Factor_1

Fig. 12.2 Path diagram in
which the widths of paths are
proportional to the absolute
values of loadings and unique
variances, with solid and
dotted lines indicating
positive and negative values,
respectively
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12.8 Interpretations of Unique Variances

Unique variances are uniquely determined, as they are unrelated to the indetermi-
nacy discussed in Sect. 12.5: their values are equivalent between Table 12.1(A) and
(B). The table shows that the unique variance for A (aggressive) is 0.26. This
implies that 26% of the variance of variable A remains unexplained by the two
common factors; in other words, 74% (=[1 − 0.26] � 100%) of the aggressiveness
(A) of individuals are accounted for by the two common factors. That proportion
(one minus a unique variance in the standardized solution) is called communality. It
makes sense to compare the largeness of unique variances among variables in
Table 12.1, since the solution is standardized. The largest is that of P (popular)
(0.47). It is least explained by the common factors; in other words, P is charac-
terized by a feature unique to that variable beside the two common factors.

12.9 Selecting the Number of Factors

When EFA is used, the suitable number of factors (m) is often unknown for a data
set. In order to select m, information criteria such as AIC and BIC can be used.
Those values for EFA are obtained by substituting the maximum (12.9) value
l�ðÂ; ŴÞ into lðĤÞ in (8.24) and (8.25). For a data set, we can carry out EFA with
m set at some candidate numbers, so as to choose the solution with the least AIC or
BIC as the solution with the suitable m. In EFA, the number of parameters η in
(8.24) and (8.25), which is used for obtaining AIC and BIC, is given by

g ¼ pþ pm� mðm� 1Þ
2

: ð12:18Þ

Here, p + pm is the number of unique variances and loadings, from which
mðm� 1Þ=2 must be subtracted for the reason described next:

Note 12.2. Loadings Set to Zero
EFA loadings have indeterminacy shown by (12.10) to (12.13). An
orthonormal matrix T0 is known to exist, which can be substituted into T in
(12.12) and leads to

A0 ¼ ÂT0 ð12:19Þ

with

mðm� 1Þ
2

elements inA0 being zero: ð12:20Þ
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This is illustrated in Table 12.2. The post-multiplication of the left Â by

T0 ¼
0:47 0:20 0:86
�0:40 0:92 0:00
�0:79 �0:35 0:51

2
4

3
5 leads to the right A0 ¼ ÂT0 whose upper

left 3(3 − 1)/2 elements are zero.
The above fact implies the following: “If Â is a solution, then A0 is also

so”. This can be rewritten as “If A0 is a solution, A0T is so, with T satisfying
(12.12)”. That is, once the {pm − m(m − 1)/2} nonzero elements in A0 are
estimated, we can obtain any solution of the loading matrix for a data set.
This leads to (12.18).

Table 12.2 Two solutions of loading matrices for the correlation matrix in Table 12.4

Â: maximum likelihood estimate A0 ¼ ÂT
0
0 with 3 zero elements

0.60961 0.00029 0.36018 0.00000 0.00000 0.70806

0.38404 −0.03143 0.24305 0.00000 −0.03454 0.45426

0.42288 −0.13882 0.37412 −0.04198 −0.17035 0.55433

0.49556 −0.09901 0.22700 0.09179 −0.06804 0.54208

0.68417 −0.28993 −0.31198 0.68124 −0.01740 0.43022

0.67711 −0.40867 −0.24367 0.67191 −0.15122 0.45884

0.66746 −0.38456 −0.32760 0.72385 −0.10202 0.40785

0.67352 −0.17645 −0.12146 0.48046 0.01826 0.51801

0.68557 −0.45757 −0.25595 0.70521 −0.19000 0.45986

0.48125 0.58511 −0.46732 0.35695 0.79602 0.17686

0.55191 0.30992 −0.12420 0.23023 0.43959 0.41212

0.48094 0.51620 −0.10070 0.09563 0.60577 0.36305

0.60801 0.24713 0.03432 0.15671 0.33861 0.54103

0.40242 0.00397 0.00947 0.17839 0.08261 0.35128

0.37857 0.03413 0.08833 0.09299 0.07800 0.37088

0.50229 0.03928 0.32167 −0.03533 0.02711 0.59609

0.44799 0.13903 0.00273 0.15057 0.21790 0.38714

0.51477 0.26950 0.16531 0.00104 0.29462 0.52739

0.44212 0.06012 0.11279 0.09286 0.10630 0.43804

0.61658 −0.13514 0.11094 0.25417 −0.03614 0.58722

0.60193 0.23149 0.06913 0.13274 0.31099 0.55349

0.61152 −0.12704 0.11541 0.24503 −0.03131 0.58515

0.69611 −0.05113 0.12739 0.24444 0.05132 0.66410

0.65299 0.18337 −0.20214 0.38966 0.37142 0.45944
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The AIC and BIC values for some m are shown in Table 12.3, which were
obtained by the EFA solutions for the correlation matrix in Table 12.4. This is a
famous data set known as the 24 psychological test data (Holzinger and Swineford,
1939). The least AIC and BIC are found for m = 4 and m = 3, which suggest that
the best number of factors is 3 or 4. The loading matrices with m = 3 in Table 12.2
have been obtained by EFA for the correlations in Table 12.4.

12.10 Difference to Principal Component Analysis

Let the ith rows of X (n � p), F (n � m), and E (n � p) be x′, f′, and e′ observed for
individual i, respectively. Then, the EFA model (12.3) can be rewritten in matrix
form as X = FA′ + E. This takes the same form as the model (5.1) for principal
component analysis (PCA). This begs the question “In what points does EFA differ
from PCA?” One might answer that EFA is a maximum likelihood (ML) procedure,
while PCA is a least squares (LS) one. But, this is incorrect, since EFA can be
formulated as LS procedures through the approach in Chap. 18 and the other ones
(Harman, 1976; Mulaik, 2011), while PCA can be formulated as an ML procedure
(Bishop, 2006; Tipping & Bishop, 1999). Clear answers for the question are found
in Chap. 19. In this section, we describe only answers that can be given within the
scopes of this and fifth chapters.

A crucial difference between EFA and PCA is found in the errors. No
assumption is made for E in PCA. Thus, it can be formulated simply as minimizing

(5.4), i.e., Ek k2¼ X� FA0k k2. In contrast, the covariance matrix for errors in EFA
is constrained to be a diagonal matrix W, as in (12.4). That is, the error for a
variable is assumed to be uncorrelated with those for the other variables. Thus,
errors are called unique factors, and its variances (i.e., the diagonal elements of W)
are called unique variances in EFA. On the other hand, the error for a variable in
PCA are not unique to that variable; the correlations are found among variables,
i.e., among the columns of the resulting E ¼ X� FA0.

Table 12.5 shows the EFA and PCA solutions for the correlation matrix in
Table 12.4 with m = 3. Here, the PCA solution for loadings has been given by
(5.28), which can be obtained if only a covariance or correlation matrix is available,
as found in Note 6.1. The varimax rotation has been performed for the EFA and

Table 12.3 AIC and BIC values as functions of m for the data in Table 12.4 with the number of
parameters

m 1 2 3 4 5 6 7

η 48 71 93 114 134 153 171

AIC 4247.5 4077.3 3987.9 3956.1 3968.3 3962.9 3972.4

BIC 4390.4 4288.6 4264.7 4295.4 4367.2 4418.3 4481.5
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PCA loading matrices. The PCA loading matrix can be rotated if constraint (5.26) is
removed, as explained in Note 5.5. In Table 12.4, var(ej) for PCA is the variance of
the resulting error values for variable j, i.e., the jth diagonal elements of the n−1E′E,
while the unique variance wj for EFA can be associated with var(ej) for PCA. There,
we can find the similarity between EFA and PCA solutions. The difference is the
interpretation for errors. For example, w1 = 0.5 for EFA can be interpreted as that
50% of the variance in “visual perception” being uniquely and exclusively explained

Table 12.5 Solutions obtained by the varimax rotation for the data in Table 12.4

EFA PCA

1 2 3 wj 1 2 3 Var(ej)

Visual perception 0.64 0.14 0.26 0.50 0.69 0.17 0.23 0.44

Cubes 0.41 0.06 0.18 0.79 0.55 0.01 0.14 0.67

Paper form board 0.54 −0.06 0.22 0.66 0.64 −0.08 0.20 0.54

Flags 0.46 0.06 0.30 0.69 0.56 0.01 0.30 0.60

General
information

0.11 0.22 0.77 0.35 0.10 0.20 0.80 0.30

Paragraph
comprehension

0.15 0.09 0.81 0.32 0.16 0.10 0.83 0.28

Sentence
completion

0.08 0.14 0.82 0.30 0.07 0.12 0.86 0.24

Word
classification

0.27 0.23 0.61 0.50 0.26 0.20 0.67 0.44

Word meaning 0.14 0.06 0.85 0.26 0.14 0.09 0.86 0.23

Addition −0.06 0.87 0.16 0.21 −0.12 0.82 0.19 0.28

Code 0.24 0.55 0.23 0.58 0.13 0.71 0.22 0.44

Counting dots 0.23 0.67 0.05 0.49 0.15 0.72 0.05 0.45

Straight-curved
capitals

0.39 0.47 0.25 0.57 0.36 0.53 0.23 0.54

Word recognition 0.24 0.19 0.27 0.84 0.20 0.32 0.27 0.79

Number
recognition

0.29 0.17 0.20 0.85 0.29 0.30 0.16 0.80

Figure recognition 0.55 0.14 0.18 0.64 0.62 0.22 0.13 0.55

Object-number 0.27 0.32 0.22 0.78 0.22 0.49 0.18 0.68

Number-figure 0.45 0.39 0.12 0.64 0.46 0.52 0.04 0.52

Figure-word 0.35 0.21 0.22 0.79 0.36 0.31 0.18 0.74

Deduction 0.43 0.14 0.45 0.59 0.46 0.14 0.48 0.53

Numerical puzzles 0.42 0.44 0.24 0.58 0.42 0.47 0.23 0.55

Problem reasoning 0.43 0.14 0.44 0.60 0.44 0.17 0.47 0.56

Series completion 0.50 0.23 0.45 0.50 0.51 0.23 0.47 0.46

Arithmetic
problems

0.22 0.53 0.41 0.50 0.17 0.57 0.43 0.45
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by the corresponding unique factor, but var(e1) = 0.44 for PCA cannot be inter-
preted so: it is interpreted simply as that 44% of the variance in “visual perception”
remains unexplained by the three principal components.

12.11 Bibliographical Notes

Various subjects on EFA are exhaustively detailed in Bartholomew et al. (2011),
Harman (1976), and Mulaik (2011). Papers reviewing EFA well include Yanai and
Ichikawa (2007). Approaches to the noniterative estimation of parameters have also
been found in EFA studies (e.g., Ihara & Kano, 1986; Kano, 1990).

Exercises

12:1. Present another example of a set of the variables for which EFA is useful.
12:2. Show that EFA model (12.3) with (12.4) can be rewritten as x ¼ Af þW1=2u

with u � Np 0p; Ip
� �

.
12:3. In model (12.3), factor vector f is regarded as a random vector. In contrast to

this, the EFA model also exists in which f is regarded as a fixed parameter
vector (Anderson & Rubin, 1956). This model is called a fixed factor model,
which is expressed as

xi ¼ Af i þ ei ð12:21Þ

by attaching subscript i to x, f, and e in (12.3) for explicitly showing that they
are related to individual i. Show that if A is given, the squared norm of the

error for i, eik k2¼ xi � Af ik k2, is minimized for f i ¼ A0Að Þ�1A0xi.
12:4. Model (12.21) with ei � Np 0m;Wð Þ implies xi � Np Af i;Wð Þ. Show that it

leads to the log likelihood for X ¼
x01
..
.

x0n

2
64

3
75 ¼ y1; . . .; yp

� �
being expressed as

log lðF;A;WÞ ¼ � n
2
log Wj j � 1

2

Xn
i¼1

ðxi � Af iÞ0W�1ðxi � Af iÞ

¼ � n
2
log Wj j � 1

2
tr X� FA0ð ÞW�1 X� FA0ð Þ0

¼ � 1
2

n
Xp
j¼1

logwj þ
Xp
j¼1

1
wj

Xj � Faj
		 		2 !

;

ð12:22Þ

with F ¼ f1; . . .; fn½ �0;A ¼ a1; . . .; ap
� �0, wj the jth diagonal element of W,

and the term irrelevant to X, F, A, and W omitted.
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12:5. Show that f i ¼ A0W�1A
� ��1

A0W�1xiði ¼ 1; . . .; nÞ maximizes (12.22) for

given A and W, using W�1=2xi �W�1=2Af i
			 			2¼ xi � Af ið Þ0W�1 xi � Af ið Þ.

12:6. Show that wj ¼ n�1 xj � Faj
		 		2 maximizes (12.22) for given F and A, by

noting the fact in Exercise 8.1.
12:7. Show that the MLE of F, A, and W does not exist for (12.22), since this

diverges to infinity when F, A, andW are jointly estimated. A hint is found in
the fact that xj can be equal to Faj.

12:8. Let us consider the model (12.21) with ei * Np(Afi, wIm), i.e., the error
variance for every variable constrained to equal w. Show that its log likeli-
hood for the data matrix X is expressed as

log lðF;A;wÞ ¼ � np
2
logw� 1

2w
X� FA0k k2: ð12:23Þ

12:9. The maximization of log likelihood (12.23) has been introduced as a max-
imum likelihood estimation for principal component analysis (PCA) in
Bishop (2006, p. 571). Show that maximizing (12.23) over F, A, and w is
equivalent to minimizing (5.4) over F and A, i.e., PCA.

12:10. A least squares method for EFA is formulated as minimizing

R� AA0 þWð Þk k2 ð12:24Þ

over p � m loading matrix A ¼ a1; . . .; am½ �0 and p � p diagonal matrix

W ¼
w1

. .
.

wp

2
64

3
75 for the p � p inter-variable correlation coefficient

matrix R = (rjk) obtained from a data set. Discuss how this method is
rational.

12:11. Let rj be the (p − 1) � 1 vector obtained by deleting rjj from the jth column
of the correlation matrix R in (12.24). Show that the minimization of
(12.24) over A and W can be attained by the following algorithm (Harman
& Jones, 1966):

Step 1. Initialize A.

Step 2. Repeat the update of the ith row of A by the transpose of aj ¼

A0
jAj


 ��1
A0

jrj for j = 1, …, m, where Aj is the (p − 1) � m matrix

obtained by deleting aj′ from the current A
Step 3. Set wj ¼ 1� a0jaj to finish if convergence is reached; otherwise, go

back to Step 2.
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12:12. Independent component analysis (ICA) refers to a class of procedures,
the most general form of whose models can be expressed as
x = f(s) + e (Izenman, 2008, p. 558). Here, x is a p � 1 observed variable
vector, e is an error vector, s is an m � 1 vector containing unobserved
signals originating from m mutually independent sources, and f(s) is a
function of s providing a p � 1 vector. Discuss relationships of ICA to EFA.
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Part IV
Miscellaneous Procedures

The types of matrices to be analyzed by the procedures in this part differ from those
in Parts II and III. The techniques in Chap. 13 are not procedures for analyzing
data, but rather for transforming solutions. The data sets to be analyzed by the
procedures in Chap. 14 are given as block and categorical data matrices. In
Chap. 15, data sets are treated in which individuals are classified into some groups,
while data are considered which describe the quasi-distances among objects in
Chap. 16.



Chapter 13
Rotation Techniques

In some analysis procedures, the solution for a data set is not uniquely determined;
multiple solutions exist. An example of such procedures is exploratory factor
analysis (EFA). In this procedure, one of the solutions is first found, and then it is
transformed into a useful solution that is included in multiple solutions. A family of
such transformations is the rotation treated in this section. The rotation for EFA
solutions in particular is called factor rotation, although the rotation can be used for
solutions of procedures other than EFA. This chapter starts with illustrating why the
term “rotation” is used, before explaining which solutions are useful in Sect. 13.3.
This is followed by the introduction of some rotation techniques.

13.1 Geometric Illustration of Factor Rotation

As discussed with (12.16) in Sect. 12.5, when loading matrix Â is an EFA solution
of a loading matrix, its transformed version,

AT ¼ ÂT0�1; ð13:1Þ

is also a solution. Here, T is an m � m matrix that satisfies (12.14), which is written
again here:

T0T ¼
1 #

. .
.

# 1

2
64

3
75; or equivalently; diag T0Tð Þ ¼ Im: ð13:2Þ

where diag() is defined in Note 12.1. In this section, we geometrically illustrate the
transformation of Â into AT ¼ ÂT0�1, supposing that T is given.
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Let us use aj′ for the jth row of the original matrix Â and use aðTÞj ′ for that of the

transformed AT. Then, AT ¼ ÂT0�1 is rewritten as

aðTÞ0j ¼ a0iT
0�1 ðj ¼ 1; . . .; pÞ: ð13:3Þ

Post-multiplying both sides of (13.3) by T′ leads to aðTÞj
0T0 ¼ a0j, i.e.,

a0j ¼ aðTÞj
0T0 ðj ¼ 1; . . .; pÞ; ð13:4Þ

which shows that the original loading vector aj′ for variable j is expressed by the

post-multiplication of the transformed aðTÞ0j by T′. We suppose m = 2 and define the
columns of T as

T ¼ t1; t2½ �;with t1k k ¼ t2k k ¼ 1 ð13:5Þ

which satisfies (13.2). Using (13.5) and aðTÞ0j ¼ ½aðTÞj1 ; aðTÞj2 �; (13.4) is rewritten as

a0j ¼ aðTÞj1 t01 þ aðTÞj2 t01: ð13:6Þ

It shows that the original loading vector for variable j is equal to the sum of tk
(k = 1, 2) multiplied by the transformed loadings. Its geometric implications are
illustrated in the next two paragraphs.

In Table 13.1(A), we again show the original loading matrix Â in Table 12.1(A)
obtained by EFA. Its row vectors aj′ (j = 1, …, 8) corresponding to variables are
shown in Fig. 13.1a; the vector a7′ for H is depicted by the line extending to [−0.63,
0.46], and the other vectors are done in parallel manners. Now, let us consider
transforming Â into AT ¼ ÂT0�1 by

Table 13.1 A solution
obtained with EFA
(Table 12.1A) and an exam-
ple of its rotated version

(A) Before rotation (B) After rotation

Â wj AT wj

A 0.77 −0.38 0.26 1.03 −0.76 0.26

C 0.61 0.50 0.38 0.56 0.32 0.38

I 0.67 −0.36 0.41 0.90 −0.69 0.41

B −0.74 −0.40 0.30 −0.75 −0.15 0.30

T 0.79 0.43 0.18 0.80 0.16 0.18

V 0.76 −0.44 0.22 1.04 −0.82 0.22

H −0.63 0.46 0.39 −0.89 0.79 0.39

P 0.70 0.18 0.47 0.77 −0.09 0.47

/12 0.00 0.57
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T0�1 ¼ 10:18 �0:42
�0:32 1:14

� �
; following fromT ¼ t1; t2½ � ¼ 0:94 0:26

0:34 0:97

� �
: ð13:7Þ

This T′−1 leads to AT ¼ ÂT0�1 in Table 13.1(B). There, we find that the vector for

H is aðTÞ07 ¼ a07T
0�1 ¼ ½�0:89; 0:79�; transformed from a07 ¼ ½�0:63; 0:46� in (A).

Those two vectors satisfy the relationship in (13.6):

½�0:63; 0:46� ¼ �0:89t01 þ 0:79t02; ð13:8Þ

with t01 ¼ ½0:94; 0:34� and t02 ¼ ½0:26; 0:97�.
The geometric implication of (13.8), which is an example of (13.6), is illustrated

in Fig. 13.1b. There, the axes extending in the directions of t1′ = [0.94, 0.34],
t2′ = [0.26, 0.98] are depicted, together with the original loading vectors a1′, …, a8′
whose locations are the same as in (A). Let us note that vector a07 for H satisfies
(13.8); i.e., the −0.89 times of t01 plus the 0.79 times of t02 is equivalent to
a07 = [−0.63, 0.64]. Here, the transformed loadings −0.89 and 0.79 can be viewed
as the coordinates of point H on t1 and t2 axes, as shown by the dotted lines L1 and
L2 in Fig. 13.1b, where L1 and L2 extend in parallel to t2 and t1, respectively. This
relationship holds for the other loading vectors.

In summary, transformation (13.1) implies the rotation of the original horizontal
and vertical axes in Fig. 13.1a to the new axes extending in the direction of the
column vectors of T as in Fig. 13.1b, where the transformed loadings are the
coordinates on the new axes. The reason why (13.1) is called rotation is found
above.
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Fig. 13.1 Illustration of rotation as that of axes
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13.2 Oblique and Orthogonal Rotation

Rotation is classified into oblique and orthogonal. The transformation illustrated in
the last section is oblique rotation, since the new axes are intersected obliquely, as
in Fig. 13.1b. On the other hand, orthogonal rotation refers to the rotation of axes
by keeping their orthogonal intersection, whose example is described later in
Fig. 13.2a. In orthogonal rotation, constraint (13.2) is strengthened so that it is the
m � m identity matrix:

T0T ¼ Im: ð13:9Þ

The matrix T satisfying (13.9) is said to be orthonormal, and its properties are
detailed in Appendix A.1.2. Customarily, the rotation made by orthonormal T is not
called orthonormal rotation, but rather orthogonal rotation. Using (13.9), (13.1) is
simplified as

AT ¼ ÂT ð13:10Þ

in orthogonal rotation.
In summary, rotation is classified into two types:

[1] Oblique rotation (13.1) with T constrained as (13.2)
[2] Orthogonal rotation (13.10) with T constrained as (13.9)

Orthogonal rotation can be viewed as a special case of oblique rotation in which
(13.2) is strengthened as (13.9).

13.3 Rotation to Simple Structure

The transformed loading matrix in Table 13.1(B) is not a useful one. That matrix is
merely an example for illustrating rotation. A “good rotation procedure” is one that
gives a useful matrix. Here, we have the question: “What matrix is useful?” A
variety of answers exist; which answer is right varies from case to case.

When a matrix is a variables � factors loading matrix, usefulness can be defined
as “interpretability”, i.e., being easily interpreted. What matrix is interpretable? An
ideal example is shown in Table 13.2(A), where # indicates a nonzero (positive or
negative) value. This matrix has two features:

[1] Sparse, i.e., a number of elements are zero
[2] Well classified, i.e., different variables load different factors

Feature [1] allows us to focus on the nonzero elements to capture the relationships
of variables to factors. Feature [2] clarifies the differences between factors. The
matrix in Table 13.2(A) is said to have a simple structure (Thurstone, 1947).
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Table 13.2(A) shows an ideally simple structure, but it is almost impossible to
have such a matrix; T cannot be chosen so that some elements of AT ¼ ÂT0�1 are
exactly zero as in (A). However, it is feasible to obtain AT ¼ ÂT0�1 that approx-
imates the ideal. It is illustrated in Table 13.2(B). There, “Small” stands for a value
close to zero, but not exactly being zero, while “Large” expresses a value with a
large absolute value. A matrix, which is not ideal but approximates ideal structure,
is also said to have a simple structure in the literature for psychometrics (statistics
for psychology).

Let us remember that AT ¼ ÂT0�1 can be viewed as the coordinates on rotated
axes. How should the axes be rotated so as to make the loading matrix AT be of a
simple structure? One answer is found in Fig. 13.2, where the useful orthogonal and
oblique rotation for the variable vectors in Fig. 13.1a is illustrated. First, let us note
the axes of t1 and t2 in Fig. 13.2b. The former axis is approximately parallel to the
vectors for a group of variables {A, V, I, H} (Group 1), while the latter is almost
parallel to those for another group {C, T, B, P} (Group 2). Thus, Group 1 has the
coordinates of large absolute values on the t1 axis, but shows those of small
absolutes on the t2 axis. On the other hand, Group 2 shows the coordinates of large
and small absolutes for t2 and t1 axes, respectively. The resulting loading matrix is
presented in Table 13.3(C). There, the matrix successfully attains the simple
structure as in Table 13.2(B). Orthogonal rotation is illustrated in Fig. 13.2a, where
t1 and t2 are orthogonally intersected; (13.9) is satisfied. On the other hand, the axes
are obliquely intersected in Fig. 13.2b. Also in (A), the t1 and t2 axes are almost
parallel to Groups 1 and 2, respectively, which provides the matrix having a simple
structure in Table 13.3(B).

In the above paragraph, we visually illustrated how T = [t1, t2] is set to be
parallel to groups of variable vectors so that AT ¼ ÂT0�1 has a simple structure.
But, this task can only be attained by human vision and is impossible even by that
when m exceeds three-dimensions. Indeed, the optimal T is obtained not visually
but computationally with

Table 13.2 Simple structure
in a matrix of variables �
factors

(A) Ideally simple (B) Simple

Variable F1 F2 F1 F2

1 # 0 Large Small

2 0 # Small Large
3 0 # Small Large
4 # 0 Large Small

5 0 # Small Large
6 # 0 Large Small

7 # 0 Large Small

8 0 # Small Large
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maximize Simp ATð Þ ¼ SimpðÂT0�1Þ overT subject to ð13:2Þ or ð13:9Þ: ð13:11Þ

Here, Simp(ÂT0�1) is the abbreviation for the simplicity of ÂT0�1 and is a function
of T that stands for how well AT ¼ ÂT0�1 approximates the ideal simple structure,
that is, how simple the structure in AT is. The procedures formulated as (13.11) are
generally called (algebraic) rotation techniques. In exactness, we should call them
simple structure rotation techniques in order to distinguish them from the rotation
that does not involve a simple structure. A number of simple structure rotation
techniques have been proposed so far, which differ in terms of how to define

SimpðATÞ ¼ SimpðÂT0�1Þ: Two popular techniques are introduced in the next two
sections.

Table 13.3 A solution obtained with EFA (Table 12.1A) and its rotated versions

(A) Before rotation (B) After varimax
rotation

(C) After geomin rotation

A wj AT wj AT wj

A 0.77 −0.38 0.26 0.81 0.28 0.26 0.82 0.08 0.26

C 0.61 0.50 0.38 0.07 0.78 0.38 −0.13 0.84 0.38

I 0.67 −0.36 0.41 0.73 0.22 0.41 0.74 0.04 0.41

B −0.74 −0.40 0.30 −0.24 −0.80 0.30 −0.04 −0.82 0.30

T 0.79 0.43 0.18 0.25 0.87 0.18 0.04 0.88 0.18

V 0.76 −0.44 0.22 0.85 0.23 0.22 0.87 0.01 0.22

H −0.63 0.46 0.39 −0.77 −0.12 0.39 −0.82 0.08 0.39

P 0.70 0.18 0.47 0.37 0.63 0.47 0.23 0.58 0.47

/12 0.00 0.00 0.48

(a) Orthogonal Rotation        (b) Oblique Rotation
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Fig. 13.2 Illustrations of rotation to a simple structure
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13.4 Varimax Rotation

The rotation techniques with (13.9) chosen as the constraint in (13.11) are called
orthogonal rotation techniques. Among them, the varimax rotation method pre-
sented by Kaiser (1958) is well known. In this method, the simplicity of AT ¼ ÂT
is defined as

Simp ATð Þ ¼ SimpðÂTÞ ¼
Xm
k¼1

var aðTÞ 21k � � � aðTÞ 2pk

� �
ð13:12Þ

to be maximized. Here, we have used the fact that (13.1) is simplified as (13.10) and

varðaðTÞ 21k � � � aðTÞ 2pk Þ stands for the variance of the squared elements in the kth col-

umn of AT ¼ ðaðTÞjk Þ:

var aðTÞ 21k � � � aðTÞ 2pk

� �
¼ 1

p

Xp
j¼1

aðTÞ 2jk � 1
p

Xp
l¼1

aðTÞ 2lk

 !2

: ð13:13Þ

That is, the varimax rotation is formulated as

maximize simpðÂTÞ ¼ 1
p

Xm
k¼1

Xp
j¼1

aðTÞ2jk � 1
p

Xp
l¼1

aðTÞ2lk

 !2

overT subject T0T ¼ Im:

ð13:14Þ

For this maximization, an iterative algorithm is needed. One of the algorithms can
be included in the gradient methods introduced in Appendix A.6.3 (Jennrich, 2001).
However, that is out of the scope of this book.

We should note that variance (13.13) is not defined for loadings aðTÞjk but for its

squares aðTÞjk ; they are irrelevant to whether aðTÞjk are positive or negative, but are

relevant to the absolute values of aðTÞjk . If variance (13.13) is larger, the absolute
values of the loadings in each column of AT would take a variety of values so that

some absolute values are larger; but others are small; ð13:15Þ

as illustrated in Table 13.2(B).
The sum of the above variances over m columns defines the simplicity as in

(13.12). By maximizing the sum, all m columns can have loadings with (13.15).
This allows us to consider the two different AT results illustrated in Table 13.4(A)
and (B). There, we find that (A) is equivalent to Table 13.2(B); i.e., it shows a
simple structure, while Table 13.4(B) is not simple, in that the same variables
heavily load two factors. However, (13.14) hardly provides a loading matrix AT, as
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in Table 13.4(B), since it necessitates t1 and t2 extending almost in parallel, which
contradicts constraint (13.9).

The varimax rotation for loading matrix Â in Table 13.3(A) provides the rotation
matrix

T ¼ 0:705 0:710
�0:711 0:704

� �
; ð13:16Þ

which is the solution for (13.14). Post-multiplication of Â in Table 13.3(A) by
(13.16) yields the matrix AT ¼ ÂT in Table 13.3(B) that shows a simple structure.
Indeed, Fig. 13.2a has been depicted according to (13.16).

Let us compare Â in Table 13.3(A) and AT in (B). It is difficult to reasonably
interpret the former loadings in (A), as all variables show the loadings of large
absolute values for Factor 1 and those of rather small absolutes for Factor 2. It
obliges one to consider that Factor 1 explains all variables, while Factor 2 is
irrelevant to all variables, which implies that Factor 2 is trivial. On the other hand,
AT ¼ ÂT can be reasonably interpreted in the same manner as described in
Sect. 12.7.

13.5 Geomin Rotation

The phrase “maximize Simp(AT)” in (13.11) is equivalent to “minimize −1 � Simp
(AT)”. Here, −1 � Simp(AT) can be rewritten as Comp(AT) which abbreviates the
complexity of AT and represents to what extent AT deviates from a simple structure.
Some rotation techniques are formulated as substituting “minimize Comp(AT)” for
“maximize Simp(AT)” in (13.11). One of them is Yates’s (1987) geomin rotation
method, in which complexity is defined as

Table 13.4 Variables �
factors matrices with and
without a simple structure

Variable (A) Simple (B) Not simple

F1 F2 F1 F2

1 Large Small Large Large
2 Small Large Small Small

3 Small Large Small Small

4 Large Small Large Large
5 Small Large Small Small

6 Large Small Large Large
7 Large Small Large Large
8 Small Large Small Small
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CompðATÞ ¼ CompðÂT0�1Þ ¼
Xp
j¼1

Ym
k¼1

aðTÞ 2jk þ e
� �( )1=m

; ð13:17Þ

with e a specified small positive value such as 0.01. The geomin rotation method
has orthogonal and oblique versions. In this section, we treat the latter, i.e., the
oblique geomin rotation, which is formulated as

minimize CompðÂT0�1Þ ¼
Xp
j¼1

Ym
k¼1

ðaðTÞ 2jk þ eÞ
( )1=m

overT subject to ð13:2Þ:

ð13:18Þ

For this minimization, an iterative algorithm is needed. One of the algorithms can
be included in the gradient methods introduced in Appendix A.6.3 (Jennrich, 2002).
However, that is beyond the scope of this book.

Let us note the parenthesized part in the right-hand side of (13.17):

Ym
k¼1

aðTÞ2jk þ e
� �

¼ aðTÞ2j1 þ e
� �

� � � � � aðTÞ2jm þ e
� �

: ð13:19Þ

It is close to zero, if some of aðTÞjk are close to zero, which would give a matrix
approximating that in Table 13.2(A). The sum of (13.19) over p variables is
minimized as in (13.18). This minimization for Â in Table 13.3(A) provides the
rotation matrix

T0�1 ¼ 0:581 0:582
�0:979 0:979

� �
: ð13:20Þ

Post-multiplication of Â in Table 13.3(A) by (13.20) yields AT ¼ ÂT0�1 in
Table 13.3(C). This has also been presented in Table 12.1(B), as described in
Sect. 12.7.

The reason for adding a small positive constant e to loadings, as in (13.19), is as

follows: (13.19) would be
Qm

k¼1 a
ðTÞ 2
jk ¼ aðTÞ 2j1 � � � � � aðTÞ 2jm without e. Then, the

solution which allows
Qm

k¼1 a
ðTÞ 2
jk to attain the lower bound 0 is not uniquely

determined; multiple solutions could exist. For example, let m be 2. If aðTÞj1 ¼ 0;

then aðTÞ 2j1 � aðTÞ 2j2 ¼ 0 whatever value aðTÞj2 takes. This existence of multiple solu-
tions is avoided by adding e as in (13.19).
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13.6 Orthogonal Procrustes Rotation

In this section, we introduce Procrustes rotation, whose purpose is different from
the procedures treated so far. Procrustes rotation generally refers to a class of
rotation techniques to rotate Â so that the resulting AT is matched with a target
matrix B. The rotation was originally conceived by Mosier (1939) and named by
Hurley and Cattell (1962) after a figure appearing in Greek mythology.

Let us consider orthogonal Procrustes rotation with (13.9), i.e., T (m �
m) constrained to be orthonormal. This is formulated as

minimize f ðTÞ ¼ B� ÂT
�� ��2 overT subject toT0T ¼ Im: ð13:21Þ

This is useful for every case, in which one wishes to match ÂT to target B and
examine how similar the resulting matrix AT ¼ ÂT is to the target, under constraint
(13.9).

The function f(T) in (13.21) can be expanded as

f ðTÞ ¼ Bk k2�2trB0ÂTþ trT0Â
0
ÂT ¼ Bk k2�2trB0ÂTþ Ak k2; ð13:22Þ

where we have used TT′ = Im following from (13.9). In the right-hand side of

(13.22), only �2trT0Â
0
B is relevant to T. Thus, the minimization of (13.22)

amounts to

maximize gðTÞ ¼ trB0ÂT overT subject toT0T ¼ Im: ð13:23Þ

This problem is equivalent to the one in Theorem A.4.2 (Appendix A.4.2). As
found there, the solution of T is given through the singular value decomposition of

Â
0
B:
A numerical example is given in Table 13.5. The matrices B and Â presented

there seem to be very different. The orthogonal Procrustes rotation for them provide

T ¼ 0:53 0:85
�0:85 0:53

� �
: The resulting ÂT is shown in the right-hand side of

Table 13.5, where ÂT is found to be very similar to B.

Table 13.5 Example of
orthogonal Procrustes rotation

B Â Â T

0.0 0.8 0.6 0.4 −0.02 0.72

0.3 0.7 0.8 0.1 0.34 0.73

0.6 0.6 0.8 −0.2 0.59 0.57

0.8 0.1 0.5 −0.6 0.77 0.11

0.9 0.0 0.5 −0.8 0.94 0.00
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13.7 Bibliographical Notes

Simple structure rotation techniques are exhaustively described in Browne (2001)
and Mulaik (2011). Procrustes rotation techniques are detailed in Gower and
Dijksterhuis (2004), with its special extended version presented by Adachi (2009).
The simple structure rotation can be related to the sparse estimation, as discussed in
Sect. 22.9 and other literature (e.g., Trendafilov, 2014).

Exercises

13:1. Show that T ¼ SdiagðS0SÞ�1=2 satisfies (13.2), where diag(S′S) denotes the
m � m diagonal matrix whose diagonal elements d1, …, dm are those

of S′S (Note 12.1) and diagðS0SÞ�1=2 is the m � m diagonal matrix whose

diagonal elements are 1=d1=21 ; . . .; 1=d1=2m .
13:2. Show that a 2 � 2 orthonormal matrix T is expressed as

T ¼ cos h � sin h
sin h cos h

� �
:

13:3. Thurstone (1947) defined simple structure with provisions, which have been
rewritten more clearly by Browne (2001, p. 115) as follows:

[1] Each row should contain at least one zero.
[2] Each column should contain at least m zeros, with m the number of

factors.
[3] Every pair of columns should have several rows with a zero in one

column but not the other.
[4] If m � 4, every pair of columns should have several rows with zeros

in both columns.
[5] Every pair of columns should have a few rows with nonzero loadings

in both columns.
Present an example of a 20 � 4 matrix meeting provisions [1]–[5].

13:4. Minimizing 1
m

Pm�1
k¼1

Pm
l¼kþ 1

Pp
j¼1 ðaðTÞ2jk � �aðTÞ2:k ÞðaðTÞ2jl � �aðTÞ2:l Þ over

T subject to diag(T′T) = Im is included in a family of oblique rotation

called oblimin rotation (Jennrich & Sampson, 1966), where aðTÞjk is the

(j, k) element of the rotated loading matrix ÂT
0�1

. Discuss the purpose of
the above minimization.

13:5. Oblique rotation tends to give a matrix of a simpler structure than orthog-
onal rotation. Explain its reason.

13:6. Show that orthogonal rotation is feasible for the p � m matrix A that

minimizes V� AA0k k2 subject to A0A ¼ Im for given V.
13:7. Show that oblique rotation is feasible for the solution of principal compo-

nent analysis, if constraint (5.25) is relaxed as n−1diag(F′F) = Im without
(5.26). Here, diag() defined in Note 12.1.
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13:8. Show the objective function (13.12) in the varimax rotation can be rewritten
as

f ¼ 1
n
trT0Â0fðÂTÞ � ðÂTÞ � ðÂTÞg � 1

n2
trT0Â0ÂTfdiagðT0Â0ÂTÞg:

(ten Berge, Knol, & Kiers, 1988). Here, diag() is defined in Note 12.1, and
� denotes the element-wise product called the Hadamard product and
defined as (17.69):

X� Y ¼
x11y11 � � � x1py1p

..

.

xn1yn1 � � � xnpynp

2
664

3
775 ¼ xijyij

� �ðn� pÞ for n� pmatrices

X ¼
x11 � � � x1p

..

.

xn1 � � � xnp

2
664

3
775andY ¼

y11 � � � y1p

..

.

yn1 � � � ynp

2
664

3
775:

13:9. Generalized orthogonal rotation is formulated as minimizingPK
k¼1 H� AkTkk k2 over H;T1; . . .;TK subject to T0

kTk ¼ TkT0
k ¼ lm,

k ¼ 1; . . .;K, for given p � m matrices A1, …, AK. Show that the mini-
mization can be attained by the following algorithm:

Step 1. Initialize T1; . . .;TK .
Step 2. Set H ¼ K�1PK

k¼1 AkTk .
Step 3. Compute the SVDA0

kH ¼ KkKkL0
k to setTk ¼ KkL0

k for k = 1,…,K.
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

13:10. Show

K ¼
XK
k¼1

H� AkTkk k2 ¼
XK�1

k¼1

XK
l¼kþ 1

AkTk � AlTlk k2

for H in Step 2 described in Exercise 13.9.
13:11. Let us consider the minimization of ½M; c� � ATk k2 over Tðm� mÞ and

c (p � 1) subject to T0T ¼ TT0 ¼ Im for given Mðp� ðm� 1ÞÞ and Aðp�
mÞ: Here, [M, c] is the p � m matrix whose final column c is unknown.
Show that the minimization can be attained by the following algorithm:

Step 1. Initialize T.
Step 2. Set c to the final column of AT.
Step 3. Compute the SVD A0½M; c� ¼ KKL0 to set T = KL′.
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.
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13:12. Kier’s (1994) simplimax rotation, which is used for having a matrix of
simple structure, is a generalization of the Procrustes rotation introduced in
Sect. 13.6. In the simplimax rotation, target matrix B is unknown except for
that B is constrained to have a specified number of zero elements:

B� ÂT
0�1

��� ���2 is minimized over B and T subject to (13.2) or (13.9) and

s elements being zero in B, though the locations of the s zero elements are
unknown. Show that, for fixed T, the optimal B = (bjk) is given by

bjk ¼
0 if a½T�2jk � a½T�2\s[

a½T�jk otherwise

(
, where a½T�jk is the (j,k) element of ÂT0�1 and

a½T�2\s[ is the sth smallest value among the squares of the elements in ÂT
0�1

.
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Chapter 14
Canonical Correlation and Multiple
Correspondence Analyses

In this chapter, we treat procedures for the data set in which variables are classified
into some groups. Such a data set is expressed as a block matrix, introduced in
Sect. 14.1. Then, we describe canonical correlation analysis (CCA) for data with
two groups of variables, which is followed by the introduction of generalized CCA
(GCCA) for more than two groups of variables in Sect. 14.3. GCCA provides a
foundation for a procedure, in which the multivariate categorical data described in
Sect. 14.4 are analyzed. This procedure is called multiple correspondence analysis
(MCA), whose purpose is to quantify un-numerical categories, i.e., finding the
optimal scores to be given to the categories, as shown in Sect. 14.5.

CCA was originally formulated by Hotelling (1936), and some types of GCCA
have been presented (Gifi, 1990; Kettenring, 1984; van de Geer, 1984), among which
Gifi’s (1990) approach is chosen for describing GCCA and MCA in this chapter.

14.1 Block Matrices

We start with introducing the blocks of a matrix by the following note:

Note 14.1. Blocks of a Matrix
We can rewrite a 5 � 4 matrix Y as follows:

y11 y12 y13 y14

y21 y22 y23 y24

Y = y31 y32 y33 y34 = Y11 Y12

y41 y42 y43 y44 Y21 Y22

y51 y52 y53 y54

© Springer Nature Singapore Pte Ltd. 2020
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
https://doi.org/10.1007/978-981-15-4103-2_14
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where
y11 y12 y13 y14

Y11 = y21 y22 , Y12 = y23 y24 , Y21 = y41 y42 , Y22 = y43 y44

.
y31 y32 y33 y34 y51 y52 y53 y54

Y11, Y12, Y21, and Y22 are called the blocks of Y, while Y is called a block
matrix consisting of Y11, Y12, Y21, and Y22.

This example is generalized as follows: an n � p matrix Y can be rewritten
as

Y ¼

Y11 � � � Y1j � � � Y1J

..

.

Yi1 � � � Yij � � � YiJ

..

.

YI1 � � � YIj � � � YIJ

26666664

37777775: ð14:1Þ

Here, Yij is called the (i, j) block of Y, while Y is called a block matrix
containing Yij (i = 1, …, I; j = 1, …, J). If Yij is ni � pj, then n ¼ PI

i¼1 ni
and p ¼ PJ

j¼1 pj.

In this chapter, a block matrix of data is treated in which blocks X1, …, XJ are
arranged horizontally:

X ¼ X1; . . .;Xj; . . .;XJ
� �

; ð14:2Þ

while a block matrix of parameters is considered in which C1, …, CJ are stacked
vertically:

C ¼

C1

..

.

Cj

..

.

CJ

26666664

37777775: ð14:3Þ

Here, Xj and Cj are called the jth block of X and C, respectively.
A weighted sum of matrices can be expressed block-wise as follows:
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Note 14.2. Weighted Sum of Block Matrices

Let the block matrices A ¼
A11 � � � A1J

..

.

AI1 � � � AIJ

264
375 and B ¼

B11 � � � B1J

..

.

BI1 � � � BIJ

264
375

be of the same order and their blocks Aij and Bij (i = 1,…, I; j = 1,…, J) also
be so. Then, the sum of A and B multiplied by scalars s and t is defined as

sAþ tB ¼
sA11 þ tB11 � � � sA1J þ tB1J

..

.

sAI1 þ tBI1 � � � sAIJ þ tBIJ

264
375; ð14:4Þ

whose (i, j) block is sAij+ tBij.

The product of the matrices can also be expressed block-wise:

Note 14.3. Product of Block Matrices

Let us define n � p and p � m block matrices as A ¼
A11 � � � A1J

..

.

AI1 � � � AIJ

264
375 and

Q ¼
Q11 � � � Q1K

..

.

QJ1 � � � QJK

264
375, respectively, with Aij being the (i, j) block of A,

Qjk the (j, k) one of Q and the number of the columns of Aij equaling the
number of rows of Qjk. Post-multiplication of A by Q provides the n �
m matrix

V ¼ AQ ¼
V11 � � � V1K

..

.

VI1 � � � VIK

264
375; ð14:5Þ

whose (i, k) block is
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Vik ¼
XJ
j¼1

AijQjk ¼ Ai1Q1k þAi2Q2k þ � � � þAiJQJk: ð14:6Þ

In this chapter, the special case of (14.5),

XC ¼
XJ
j¼1

XjCj ¼ X1C1 þX2C2 þ � � � þXJCJ ; ð14:7Þ

is often used with X = [X1, …, XJ] and C ¼
C1

..

.

CJ

264
375.

14.2 Canonical Correlation Analysis

Let us consider an n-individuals � p-variables data matrix X= [X1, X2] consisting
of the two blocks X1 ¼ x11; . . .; x1p1

� �
n� p1ð Þ and X2 ¼ x21; . . .; x2p2

� �
n� p2ð Þ.

That is, the p variables in X are classified into a group of p1 variables and into a
group of p2 variables. We suppose that X is centered with 10nX ¼ 00p. An example of
such data is presented in Table 14.1.

For X = [X1, X2], canonical correlation analysis (CCA) is formulated as
minimizing

f C1;C2ð Þ ¼ X1C1 � X2C2k k2 ð14:8Þ

over p1 � m coefficient matrix C1 and p2 � m coefficient matrix C2 subject to the
constraints

1
n
C0

1X
0
1X1C1 ¼ 1

n
C0

2X
0
2X2C2 ¼ Im; ð14:9Þ
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with m� rank X0
1X2

� �
. That is, the purpose of CCA is to obtain the coefficient

matrices C1 and C2 that allow X1C1 and X2C2 to be mutually best matched. Loss
function (14.8) can be rewritten using (14.9) as
l ¼ trC0

1X
0
1X1C1 þ trC0

2X
0
2X2C2 � 2trC0

1X
0
1X1C1 ¼ 2m� 2trC0

1X
0
1X2C2, whose

minimization is equivalent to maximizing

1
n
trC0

1X
0
1X2C2: ð14:10Þ

This maximization subject to (14.9) is attained as in Theorem A.4.8 (Appendix
A.4.5; where we can set V11 ¼ n�1X0

1X1;V22 ¼ n�1X0
2X2, and V12 ¼ n�1X0

1X2 to
find the solution for the above CCA problem).

We illustrate CCA by performing it to the data set in Table 14.1, setting m = 1.
In this unidimensional case, C1 and C2 are simplified as vectors c1 ¼ ½c11; . . .; c1p1 �0
and c2 ¼ c21; . . .; c2p2

� �0
, respectively; X1C1 and X2C2 are expressed as X1c1 ¼

c11x11 þ � � � þ c1p1x1p1 and X2c2 ¼ c21x21 þ � � � þ c2p2x2p2 , respectively. The CCA
for the data set gives the following solution:

X1c1 ¼ 0:442� RJþ 0:267� VJþ 0:588� DM

þ 0:061� GPþ 0:222� SMþ 0:091� DBþ 0:014� BW;
ð14:11Þ

X2c2 ¼ �0:426� SPþ 0:233� Lþ 0:370� LTþ 0:004� CE� 0:356�MA;

ð14:12Þ

where the resulting coefficient for each variable is followed by the abbreviation of
its name in Table 14.1. The solutions in (14.11) and (14.12) stand for the weighted
sums of strength and athletic test scores that are best matched.

Since 10nX ¼ 00p, the correlation coefficient between X1c1 and X2c2 is expressed
as

n�1c1X0
1X2c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1c1X0
1X1c1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1c2X0

2X2c2
p ; ð14:13Þ

whose denominator equals one because of (14.9): (14.10) with m = 1 is equivalent
to (14.13). This particular coefficient is called a canonical correlation coefficient
between the variables in X1 and those in X2. The CCA solution for the data set in
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Table 14.1 gives the (14.13) value equaling 0.85, which shows that the items in the
strength test are strongly related to those in the athletic test.

14.3 Generalized Canonical Correlation Analysis

Let us compare the CCA loss function (14.8) and the function

f F;C1;C2ð Þ ¼ F� X1C1k k2 þ F� X2C2k k2 ð14:14Þ

with a new matrix F (n � m) whose rows correspond to individuals. The mini-
mization of (14.8) is equivalent to minimizing (14.14) over F, C1, and C2. It
follows from the fact that the solution of F must satisfy F ¼ 2�1 X1C1 þX2C2ð Þ, as
shown with (A.2.6) in Appendix A.2.1. Substituting the equation for F in (14.14), it
is rewritten as

f F;C1;C2ð Þ ¼ 1
2

X1C1 þX2C2ð Þ � X1C1

���� ����2 þ 1
2

X1C1 þX2C2ð Þ � X2C2

���� ����2
¼ 1

2
X2C2 � 1

2
X1C1

���� ����2 þ 1
2
X1C1 � 1

2
X2C2

���� ����2
¼ 1

2
X1C1 � X2C2k k2;

ð14:15Þ

which equals half of (14.8).
Generalized canonical correlation analysis (GCCA) can be formulated through

the extension of (14.14) to the cases when the n � p data matrix X is expressed as
X = [X1, …, Xj, …, XJ] with J � 2. Here, Xj is n � pj and p ¼ PJ

j¼1 pj. For the
data set X, the loss function of GCCA is defined as

gðF;CÞ ¼
XJ
j¼1

F� XjCj

�� ��2; ð14:16Þ

with C ¼
C1

..

.

CJ

264
375. In GCCA, F rather than XjCj is constrained as

1
n
F0F ¼ Im; ð14:17Þ
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with m � r = rank(X). That is, GCCA can be formulated as minimizing (14.16)
over F and C subject to (14.17). The implication of this minimization is illustrated
in Fig. 14.1, where a single F and multiple XjCj (j = 1, …, J) are depicted. The
double-headed arrows in the figure express the deviations of XjCj from F. The
deviations are expressed as squared differences and summated as in (14.16), which
is minimized so that XjCj are well matched with F. As a result, XjCj (j = 1, …,
J) becomes similar across different j, and XjCj is summarized into a single matrix F.

As explained later, the matrix XD�1=2
x plays an important role in GCCA with

DX ¼
X0

1X1

X0
2X2

. .
.

X0
JXJ

26664
37775 ð14:18Þ

a p � p block diagonal matrix in which the blank cells are filled with zeros. We
explain the term block diagonal matrix and the superscript −1/2 in D�1=2

x in the
following two notes.

Note 14.4. Block Diagonal Matrices
A matrix B whose (i, j) block is a zero matrix for i 6¼ j, i.e.,

B ¼
B1

B2

. .
.

BI

26664
37775 ð14:19Þ

is called a block diagonal matrix and Bi (i = 1,…, I) is called the ith diagonal
block of B.

The products of block matrices are given as

X1C1 

X2C2 

XJ CJ 

F

. . .

. . .

Fig. 14.1 Illustration of
generalized canonical
correlation analysis
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B1

B2

. .
.

BI

26664
37775

H1

H2

. .
.

HI

26664
37775

¼
B1H1

B2H2

. .
.

BIHI

26664
37775; ð14:20Þ

X1;X2; . . .;XJ½ �
C1

C2

. .
.

CJ

26664
37775 ¼ X1C1;X2Cj; . . .;XJCJ

� �
;

ð14:21Þ

B1

B2

. .
.

BI

26664
37775

Q1

Q2

..

.

QI

26664
37775 ¼

B1Q1

B2Q2

..

.

BIQI

26664
37775: ð14:22Þ

Here, we have supposed that the products of the blocks are defined. If (14.19)
and B1, …, BI are square and nonsingular, the inverse matrix of (14.19) is
expressed as

B�1

B�1
1

B�1
2

. .
.

B�1
I

26664
37775: ð14:23Þ

Note 14.5. Square and Square Root of a Matrix
The square of an n � n matrix V is expressed as

V2 ¼ VV: ð14:24Þ

The square root of V, denoted as V1/2, is the matrix satisfying
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V1=2V1=2 ¼ V ð14:25Þ

and the inverse matrix of V1/2, denoted as V−1/2, satisfies

V�1=2V�1=2 ¼ V�1: ð14:26Þ

Thus, D�1=2
X is the matrix satisfying D�1=2

X D�1=2
X ¼ D�1

X . Comparing (14.18) with
(14.23) and (14.26), we find

D�1=2
X

ðX0
1X1Þ�1=2

ðX0
2X2Þ�1=2

. .
.

ðX0
JXJÞ�1=2

26664
37775; ð14:27Þ

and use (14.21) to get

XD�1=2
X ¼ X1 X1X1ð Þ�1=2; . . .;XJ XJXJð Þ�1=2

h i
: ð14:28Þ

How to obtain X0
jXj

� 	�1=2
is described in Appendix A.4.6.

As described in Theorem A.4.6 (Appendix A.4.4), the GCCA problem, i.e., the
minimization of (14.16) subject to (14.17), is equivalent to minimizing

f ðF;CÞ ¼ XD�1=2
X � 1

n
FC0D1=2

X

���� ����2 ð14:29Þ

over F and C subject to (14.17), which can be viewed as the reduced rank

approximation of XD�1=2
X with rankðXD�1=2

X Þ ¼ r as explained in Appendix A.4.4.
The solution of F and C is given by

F ¼ ffiffiffi
n

p
NmT; ð14:30Þ

C ¼ ffiffiffi
n

p
D�1=2

X MmUmT; ð14:31Þ

as found in Theorem A.4.6. Here, T is an m � m orthonormal matrix, and Nm, Mm,

and Um are obtained through the singular value decomposition (SVD) of XD�1=2
X

defined as
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XD�1=2
X ¼ NUM0; ð14:32Þ

with N0N ¼ M0M ¼ Ir and U a diagonal matrix whose diagonal elements are
ordered in descending order; Nm andMm contain the first m columns of N and those
ofM, respectively, withUm the first m � m diagonal block. The matrix T appearing
in (14.30) and (14.31) implies that the solution can be rotated as in EFA.

The importance of GCCA may not be its usefulness in real data analysis, but
rather that it leads to multiple correspondence analysis for the categorical data
described in the next sections.

14.4 Multivariate Categorical Data

An example of multivariate categorical data is given by a 10-individuals �
3-variables matrix Y ¼ yij

� �
in Table 14.2a, where the variables are

[V1] Faculty to which each individual belongs,
[V2] Subject at which she/he is best,
[V3] Sciences, basic or applied, to which she/he is oriented.

We should note that the elements of Y are not quantitative scores, but the code
numbers referring to categories. For example, those for [V1] are coded as
1 = Sciences, 2 = Medicine, 3 = Engineering. In Table 14.2b, the elements of
Y are presented as category names.

Table 14.2 Artificial example describing the faculties (FC) of students (ST), the subjects (SJ) at
which they are best, and their orientation (OT), which is found in Adachi and Murakami (2011)

ST (a) Data matrix
Y

(b) Data matrix Y (c) Indicator matrix G = [G1, G2, G3]

Code number Category* G1 (FC) G2 (SJ) G3 (OT)

FC SJ OT FC SJ OT Sci Med Eng Math Bio Phy Chemo Bs Ap

1 3 4 2 Eng Che Ap 0 0 1 0 0 0 1 0 1

2 1 2 1 Sci Bio Bs 1 0 0 0 1 0 0 1 0

3 2 3 2 Med Phy Ap 0 1 0 0 0 1 0 0 1

4 1 1 1 Sci Mat Bs 1 0 0 1 0 0 0 1 0

5 2 2 1 Med Bio Bs 0 1 0 0 1 0 0 1 0

6 3 3 2 Eng Phy Ap 0 0 1 0 0 1 0 0 1

7 2 2 2 Med Bio Ap 0 1 0 0 1 0 0 0 1

8 1 3 1 Sci Phy Bs 1 0 0 0 0 1 0 1 0

9 2 4 2 Med Che Ap 0 1 0 0 0 0 1 0 1

10 3 1 1 Eng Mat Bs 0 0 1 1 0 0 0 1 0
*The names of categories are abbreviated as follows: Eng engineering, Sci sciences, Med medicine; Che chemistry,
Bio biology, Phy physics, Mat mathematics; Ap applications, Bs basis
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Each column of the data matrix in (a) or (b) can also be expressed as the n-
individuals � Kj-categories indicator matrices

Gj ¼

g01j
..
.

g0ij
..
.

g0nj

266666664

377777775 ðj ¼ 1; 2; 3Þ; ð14:33Þ

as in Table 14.2c. Here, the jth variable in (a) or (b) corresponds to Gj, and the kth
element gijk in the ith row g0ij is defined as

gijk ¼ 1 if k ¼ yij
0 otherwise



: ð14:34Þ

For example, g082 ¼ ½0; 0; 1; 0�, since y82 = 3: individual 8 shows 3 (=Physics) for
variable 2. The indicator matrix Gj in (14.33) can also be called a membership
matrix, as described in Sect. 7.1, as Gj stands for the membership of individuals to
categories.

Let the number of columns of Gj be Kj, j = 1, …, J, and K ¼ PJ
j¼1 Kj. We

further define an n � K block matrix as

G ¼ G1; . . .;Gj; . . .;GJ
� �

: ð14:35Þ

In the next sections, we refer to G rather than Gj as an indicator matrix.

14.5 Multiple Correspondence Analysis

The loss function for multiple correspondence analysis (MCA) is given by replacing
Xj by Gj in the GCCA function (14.16). That is, MCA is formulated as minimizing

gðF;CÞ ¼
XJ
j¼1

F�GjCj

�� ��2 ð14:36Þ

subject to (14.36) and an additional constraint,

10nF ¼ 00m; or equivalently,F ¼ JF; ð14:37Þ
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with m � rank(JG). The equivalence in (14.37) has been proved in Note 3.1
(Chap. 3). The Kj-categories � m-dimensions matrix Cj to be obtained is called a
category score matrix, as its kth row stands for the vector of scores which is suitable
to be given to category k, as explained in the next section. There, we also explain
why we refer to the columns of Cj as dimensions. For the same reason, an n-
individuals � m-dimensions matrix F is called an individual score matrix. Why
constraint (14.37) is added is explained next:

Note 14.6. Avoiding Trivial Solutions
Let m = 1 for the sake of simplicity. Then, F and Cj in (14.36) are the column
vectors. Without (14.37), the MCA loss function (14.36) would attain the
lower limit zero for

F ¼ 1n andCj ¼ 1Kj ; ð14:38Þ

because (14.34) implies Gj1Kj ¼ 1n. The solution in (14.38) is trivial, since it
implies that the same score of “one” is given to all individuals and categories.
This trivial solution does not satisfy (14.37); by adding it, the trivial one can
be excluded from the solution.

As the minimization of (14.16) is equivalent to that of (14.29) in GCCA, the
MCA problem, i.e., the minimization of (14.36) subject to (14.17) and (14.37), is
equivalent to minimizing

hðF;CÞ ¼ JGD�1=2
G � 1

n
FC0D1=2

G

���� ����2 ð14:39Þ

over F and C under the same constraints, which is detailed in Theorem A.4.7
(Appendix A.4.4). Further, the theorem shows that the MCA solution is given by

F ¼ ffiffiffi
n

p
SmT; ð14:40Þ

C ¼ ffiffiffi
n

p
D�1=2

G PmHmT: ð14:41Þ

Here,

DG ¼
G0

1G1

G0
2G2

. .
.

G0
JGJ

26664
37775 ð14:42Þ
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is the matrix in (14.18) with Xj replaced by Gj, T is an m � m orthonormal matrix,

and Sm, Pm, and Hm are obtained through the SVD of JGD�1=2
G defined as

JGD�1=2
G ¼ SHP0: ð14:43Þ

Here, S0S ¼ P0P ¼ Iq with q = rank(JG) and H is a diagonal matrix whose diag-
onal elements are arranged in descending order. That is, Sm and Pm contain the first
m columns of S and P, respectively, with Hm the first m � m diagonal block of H.
In this chapter, we do not use a rotation technique by setting T in (14.40) and
(14.41) at Im, as explained with (A.4.33) in Appendix A.4.4.

We must mention that the block diagonal matrix D�1=2
G in (14.43) is simply a

diagonal one. This can be verified by the fact that the G1 in Table 14.2c implies

G0
1G1 ¼

3
4

3

24 35. Thus, ðG0
1G1Þ�1=2 ¼

1=
ffiffiffi
3

p
1=

ffiffiffi
4

p
1=

ffiffiffi
3

p

24 35. In general,

G0
jGj and ðG0

jGjÞ�1=2ðj ¼ 1; . . .; JÞ are diagonal matrices, which implies that DG

and D�1=2
G are also diagonal.

14.6 Homogeneity Assumption

Table 14.3 presents the MCA solution of F and C ¼ C0
1; . . .;C

0
J

� �0
for the data set

in Table 14.2 with m = 2. In Table 14.3, f 0i denotes the ith row of F, which cor-
responds to the ith individual in Table 14.2, and c0jk denotes the kth row of Cj,
which is associated with category k in variable j; for example, c023 contains the
scores for Phy (physics). The solution in Table 14.3 can be graphically represented

Table 14.3 MCA solution for the data in Table 14.2

F C

f 01 1.20 1.20 C1 c011 Sci −1.19 −0.10

f 02 −1.12 −0.94 c012 Med 0.63 −0.84

f 03 0.83 −0.38 c013 Eng 0.36 1.23

f 04 −1.56 0.59 C2 c021 Math −1.19 1.03

f 05 −0.27 −1.44 c022 Bio −0.26 −1.25

f 06 0.71 1.01 c023 Phy 0.21 0.23

f 07 0.61 −1.37 c024 Che 1.26 0.50

f 08 −0.90 0.05 C3 c031 Bs −0.93 −0.05

f 09 1.32 −0.19 c032 Ap 0.93 0.05

f 010 −0.83 1.48
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as in Fig. 14.2, where individual i (= 1, …, n) is plotted as the point with its
coordinate fi, and category k in variable j is plotted with its coordinate cjk. We can
interpret the plot by noting inter-point distances. The rationale for this
distance-based interpretation of MCA solutions is explained in the following
paragraph.

MCA can be reformulated with the homogeneity assumption:

the scores for an individual should be homogeneous to

the scores for the categories to which the individual belongs:
ð14:44Þ

Here, the underlined scores are expressed as the vector cjyij , which is the category
score vector c0jk with k set to the category yij (the category number that individual

i shows for variable j). Assumption (14.44) requires f 0i � c0jyij

��� ���2 to be small, and its

sum over i and j can be expressed as

XJ
j¼1

Xn
i¼1

f 0i � c0jyij

��� ���2 ¼ XJ
j¼1

Xn
i¼1

f 0i � g0ijCj

��� ���2 ¼ XJ
j¼1

f 01
..
.

f 0n

264
375�

g01j
..
.

g0nj

264
375Cj

�������
�������
2

:

ð14:45Þ

Here, we have used
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Fig. 14.2 Scatterplot of
categories and individuals
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g0ijCj ¼ g0ij

c0j1
..
.

c0jKj

264
375 ¼

XKj

k¼1

gijkc0jk ¼ c0jyij ; ð14:46Þ

because of (14.34). We can find the equivalence of (14.45) to (14.36) by noting
(14.33) and F ¼ ½f1; . . .; fn�0.

The inter-point distances in Fig. 14.2 allow us to capture the relationships
among categories, among individuals, and between categories and individuals; we
can consider the entities near one another to share similar features. For example,
(1) the point for “Sciences” is found to be close to that for “Basis”, which shows
that the students in the department of “Sciences” tend to regard “Basic” sciences as
important; (2) individuals 1 and 6 are similar students; (3) individual 3 is involved
with “Medicine” and “Applications” (or applied sciences).

The spatial representation of the MCA solution as in Fig. 14.2 and its spatial
interpretation show the reason why we refer to the columns of F and Cj as
dimensions.

14.7 Bibliographical Notes

CCA is intelligibly introduced in Lattin, Carroll, and Green (2003) with real data
examples, and detailed in Izenman (2008) and Kock (2014). The formulations of
GCCA and MCA in this chapter are detailed in Gifi (1990). MCA is also intelli-
gibly treated in Greenacre (2007). The analysis procedure called correspondence
analysis, with the “multiple” deleted from MCA, is treated only in the next exer-
cises. The relationships between correspondence analysis and MCA are detailed in
Greenacre (1984, 2007).

We must mention that various terms have been used for referring to MCA and
related procedures. For example, the term homogeneity analysis has been used in
Gifi (1990). Other terms can be found in Hayashi (1952), Nishisato (1980), and
Young (1981).

Recently, Shimodaira (2016) has proposed a procedure which can be viewed as a
generalization of GCCA.

Exercises

14:1 Show that (14.16) can be rewritten as jjIJ� F� X#Cjj2, where X# ¼

X1

. .
.

XJ

264
375 is the nJ � p block diagonal matrix whose jth diagonal
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block is Xj, and IJ � F ¼
F
..
.

F

24 35 is the nJ � m block matrix whose all blocks

are F. The operator ⊗ is called Kronecker product and is detailed in
Chap. 17.

14:2 Discuss how the generalized orthogonal rotation in Exercise 13.9 and GCCA
are similar/different.

14:3 Let Z = [z1, …, zp] contain standard scores with 10nzj ¼ 0 and
n�1z0jzj ¼ 1ðj ¼ 1; . . .; pÞ. We can substitute zj for Xj in (14.16) to rewrite it

as gðF;AÞ ¼ Pp
j¼1 F� zja0j

�� ��2, with C in (14.16) replaced by

A ¼ a1; . . .; ap
� �0

. By noting the equivalence between (14.16) and (14.29),
show that the minimization of η(F, A) subject to (14.17) is equivalent to the
principal component analysis (PCA) for Z, i.e., minimizing jjZ� FA0jj2
under (14.17).

14:4 Show that the function (14.29) multiplied by n can be rewritten as:

nf F;Cð Þ ¼ jjXD�1=2
V � FC0D1=2

V jj2

with DV ¼
V1

. .
.

VJ

264
375 the block diagonal matrix, whose jth block Vj

is defined as Vj ¼ n�1X0
jXj and is the covariance matrix for Xj if it is

centered.
14:5 Let us constrain Cj in (14.36) to be Cj ¼ qja

0
j, with qj and aj being Kj � 1

and m � 1 vectors, respectively. Then, (14.36) is rewritten as

g F; qj; aj
� � ¼ XJ

j¼1

F�Gjqja
0
j

�� ��2:
Show that its minimization over F, q1, …, qJ, and A = [a1, …, aJ] subject to
(14.17), (14.37), 10nGjqj ¼ 0, and n�1 Gjqi

� �0Gjqi ¼ 1 is equivalent to min-

imizing jjGQ � FA0jj2 under the same constraints with GQ ¼
G1q1;G2q2; . . .;GJqJ½ � an n � J matrix (Gifi, 1990).

14:6 Discuss how the assignment of quantitative scores to categories and PCA are
simultaneously performed in the procedure considered in Exercise 14.5.

14:7 Show that N ¼ nklð Þ ¼ G0
1G2 represents the K1 � K2 contingency table,

whose element nkl expresses the number of individuals classified into cate-
gory k for variable 1 and category l for variable 2.
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14:8 Show that G0
1JG2 ¼ N� n�1D11K11

0
K2
D2, with N defined in Exercise 14.7,

J ¼ In � n�11n10n the centering matrix, and Dj the Kj � Kj diagonal matrix
whose kth diagonal element is the number of the individuals classified into
category k for variable j (=1, 2).

14:9 The procedure called correspondence analysis with removing “multiple”
from “multiple correspondence analysis” is performed for the contingency
table N defined in Exercise 14.7 (Benzécri, 1992; Greenacre 1984). The loss
function of correspondence analysis is expressed as:

f C1;C2ð Þ ¼ jjeN � 1
n
D1=2

1 C1C0
2D

1=2
2 jj2; ð14:48Þ

which is minimized over C1 and C2, witheN ¼ D�1=2
1 ðN� n�1D11K11

0
K2
D2ÞD�1=2

2 ¼ D�1=2
1 G0

1JG2D
�1=2
2 :

Show that (14.48) is minimized for

C1 ¼
ffiffiffi
n

p
D�1=2

1 UmD
1=2
m and C2 ¼

ffiffiffi
n

p
D�1=2

2 VmD
1=2
m ð14:49Þ

subject to C0
1D1C1 ¼ C0

2D2C2 being a diagonal matrix. Here, Um and Vm

contain the first m columns of U and V, respectively, while Dm is the first
m � m diagonal block of D, with U, V, and D obtained from the SVDeN ¼ UDV0.

14:10 The solution of MCA for G with K = 2, i.e., G = [G1, G2], is given through
the SVD (14.43) with K = 2, which is rewritten as:

J G1;G2½ � D�1=2
1

D�1=2
2

" #
¼ SH½P0

1;P0
2�; ð14:50Þ

with P1 (K1 � r) and P2 (K2 � r) the blocks of P ¼ P1

P2

� �
. Show that

(14.50) leads to

D�1=2
1

D�1=2
2

" #
G0

1

G0
2

� �
J G1;G2½ � D�1=2

1

D�1=2
2

" #
¼ P1

P2

� �
H½P0

1;P0
2�

and that its left-hand side can be rewritten as M1 eNeN0 M2

� �
, which imply the

equivalence of the correspondence analysis to MCA for [G1, G2] with the
constraint of C0

1D1C1 ¼ C0
2D2C2 being a diagonal matrix. Here, the symbols

have been the ones defined in Exercises 14.8 and 14.9, with

Mj ¼ IKj � n�1D1=2
j 1Kj1

0
Kj
D1=2

j .
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Chapter 15
Discriminant Analysis

Discriminant analysis refers to a group of statistical procedures for analyzing a data
set with individuals classified into certain groups, where the results of the analysis
are used for finding the group of a new individual that is not included in the above
data set. The sections in this chapter can be classified into two parts:
(1) Sects. 15.1–15.3 concern an approach without using probabilities, and (2) the
remaining sections concern probabilistic approaches. In (1), a canonical discrim-
inant analysis (CDA) procedure is introduced by modifying the multiple corre-
spondence analysis in the last chapter. In (2), we introduce two probabilistic
procedures using multivariate normal distributions. One of them is linear dis-
criminant analysis (LDA), which is rooted in Fisher (1936) and found to be
equivalent to CDA. The other is a generalization of LDA.

15.1 Modification of Multiple Correspondence Analysis

The multiple correspondence analysis (MCA) in the last chapter is performed for
the n individuals � K-categories membership matrix (14.35). Here, let us consider a
case where J = 1, i.e., G = G1, and an n individuals � p-variables quantitative data
matrix X corresponding to G is also given, with 10nX ¼ 00p. That is, the data set is
expressed as an n � (K + p) block matrix [G, X]. An example of [G, X] is shown in
Table 15.1 (Fisher, 1936), in which individuals are irises whose categories are
indicated by G and the individuals’ features are described by X. In this chapter, the
column entities of G are called groups rather than categories.
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For the above G, the MCA loss function (14.36) is simplified into F�GCk k2
without the symbol of summation and the subscript for C. Here, let the individual
score matrix F be constrained as

F ¼ XB; ð15:1Þ

with B a p � m coefficient matrix. Using (15.1) in F�GCk k2, it is rewritten as

gðB;CÞ ¼ XB�GCk k2: ð15:2Þ

Further, the substitution of (15.1) into constraint (14.17) leads to

1
n
B0X0XB ¼ Im: ð15:3Þ

Minimizing (15.2) over B and C subject to (15.3) is called canonical discriminant
analysis (CDA), whose solution is detailed in Sect. 15.2. Before it, discriminant
analysis is compared with clustering in the following note.

Table 15.1 Membership of irises for groups 1, 2, and 3 (G) and standardized scores for features
of the irises (X). The original data are available at http://astro.temple.edu/*alan/MMST/datasets.
htm (Izenman, 2008)

Iris G X

1 2 3 SL* SW* PL* PW*

1 1 0 0 −0.90 1.02 −1.34 −1.31

2 1 0 0 −1.14 −0.13 −1.34 −1.31

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

50 1 0 0 −1.02 0.56 −1.34 −1.31

51 0 1 0 1.40 0.33 0.53 0.26

52 0 1 0 0.67 0.33 0.42 0.39

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

100 0 1 0 −0.17 −0.59 0.19 0.13

101 0 0 1 0.55 0.56 1.27 1.71

102 0 0 1 −0.05 −0.82 0.76 0.92

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

150 0 0 1 0.07 −0.13 0.76 0.79
*SL sepal length, SW sepal width, PL petal length, PW petal width
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Note 15.1. Comparison to Cluster Analysis
Let us compare (15.2) with the loss function (7.4) in k-means clustering
(Chap. 7). Deleting B from (15.2) leads to (7.4). Further, the matrix G, which
indicates the memberships of individuals to groups, is known in (15.2)
(discriminant analysis), while G is unknown and to be obtained in (7.4)
(cluster analysis). For this difference, discriminant analysis is referred to as
supervised classification, while cluster analysis is called unsupervised clas-
sification, as the former is concerned with the classification when the data set
exists that serves as the supervisor indicating the memberships, while such a
data set or supervisor does not exist in the latter.

15.2 Canonical Discriminant Analysis

As shown in Appendix A.2.2, (15.2) is minimized for

C ¼ G0Gð Þ�1G0F ¼ D�1
G G0XB; ð15:4Þ

given G, with DG ¼ G0G; aK � K diagonal matrix. We can substitute (15.4) in
(15.2) to rewrite it as

gðBÞ ¼ XB�GD�1
G G0XB

�� ��2
¼ trB0X0XB� 2trB0X0GD�1

G G0XBþ trB0X0GD�1
G G0Gð ÞD�1

G G0XB

¼ nm� trB0X0GD�1
G G0XB;

ð15:5Þ

where we have used (15.3) and G0G ¼ DG. The minimization of (15.5) under (15.3)
is equivalent to maximizing trB0X0GD�1

G G0XB subject to (15.3), whose solution is
given as in Theorem A.4.9 (Appendix A.4.5). There, by setting M and V in
(A.4.41) to X0GD�1

G G0X and V ¼ n�1X0X, respectively, we have the solution for B,
as in (A.4.43).

Note 15.2. Another Formulation of CDA
As found above, CDA can be formulated as maximizing qðBÞ ¼ trB0SB over
B subject to (15.3) with S ¼ X0GD�1

G G0X. In a more popular introduction of
CDA, (15.3) is replaced by B0WB ¼ Im with W ¼ n�1 X0X� Sð Þ: CDA is
also formulated as maximizing q(B) under B0WB ¼ Im. A reason for using
(15.3) in this book is relating CDA to MCA.
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Let us express the ith row of X (n � p) as x0i ¼ xi1; . . .; xip
� �

and the lth column

of B ¼ b1; . . .; bm½ �ðp� mÞ as bl ¼ b1l; . . .; bpl
� �0. Then, the (i, l) element of (15.1)

is expressed as

fil ¼ x0ibl ¼ b1lxi1 þ � � � þ bplxip; ð15:6Þ

i.e., the weighted sum of the p variables in xi. Sum (15.6) is called the lth dis-
criminant score for individual i, and the weights b1l, …, bpl are called the lth
discriminant coefficients, with l = 1, …, m. The other parameter matrix in CDA is
C. Its rows of C ¼ c1; . . .; cK½ �0 are associated with groups, and the kth row ck′ (1 �
m) can be called the kth group score vector, as it stands for the features of the
group.

Let us consider performing CDA for the iris data in Table 15.1, setting m = 2.
This gives us F, whose ith row is expressed as f 0i ¼ ½fi1; fi2� ¼ x0ib1; x

0
ib2

� � ¼ x0iB,
i.e., two discriminant scores for each individual. The resulting scores for the data set
are expressed as

x0ib1 ¼ 0:12� SLþ 0:12� SW� 0:68� PL� 0:38� PW; ð15:7Þ

x0ib2 ¼ �0:02� SL� 0:84� SWþ 1:47� PL� 1:94� PW; ð15:8Þ

where the names of the variables in Table 15.1 and the solutions of the coefficients
are substituted into xi1, …, xip and b1l, …, bpl in (15.6), respectively. For example,
the elements of the data vector x01ð=[SL; SW; PL;PW]Þ ¼
½�0:90; 1:02;�1:34;�1:31� for individual 1 can be substituted into the variables in
(15.7) and (15.8) so that the discriminant score vector for individual 1 is given as
f 01 ¼ x01B ¼ x01b1; x

0
1b2

� � ¼ ½1:42;�0:28�. In Fig. 15.1, the vectors for all individ-
uals, f 0i ¼ x0iBði ¼ 1; . . .; 150Þ, are plotted, with squares, circles, and triangles used
for the individuals in Group 1, 2, and 3, respectively.

The CDA for the data in Table 15.1 also gives the solution of the group scores as

C ¼
c01
c02
c03

2
4

3
5 ¼

1:33 �0:19
�0:31 0:65
�1:01 �0:46

2
4

3
5: ð15:9Þ

In Fig. 15.1, c1, c2, and c3 are represented as a filled square, circle, and triangle,
respectively. There, we can find that the discriminant scores for the individuals in
the same group are distributed mutually close, with their center being the group
score vector. This can be mathematically shown in the next section.
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15.3 Minimum Distance Classification

Equation (15.4) for C ¼ c1; . . .; cK½ �0 implies that its kth row c0k is the centroid, i.e.,
the averaged vector of the discriminant score vectors f 0i for the individuals
belonging to group k:

c0k ¼
1
nk

X
i2gk

f 0i ¼
1
nk

X
i2gk

x0iB: ð15:10Þ

Here, gk expresses the set of the individuals in group k with their number denoted
by nk, and

P
i2gk f

0
i stands for the summation of f 0i over the individuals belonging to

group k. The rows of C being averages can be verified by the following example:
(15.4) is expressed as

C ¼ D�1
G G0

f 01
f 02
f 03
f 04
f 05

2
6666664

3
7777775
¼

1
3ðf 02 þ f 03 þ f 05Þ

1
2ðf 01 þ f 04Þ

� �
; whenG ¼

0 1

1 0

1 0

0 1

1 0

2
6666664

3
7777775
with

DG ¼ 3 0

0 2

� �
:

-2.00 -1.00 0.00 1.00 2.00

-2.00

-1.00

0.00

1.00

2.00

c1

c2

c3

group 1
group 2
group 3

?

Fig. 15.1 Plots of
individuals’ discriminant
scores and group scores
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Further, we can ascertain the closeness of the vectors f 0i ¼ x0iB in group k to c0k
from the fact that (15.2) is rewritten as

gðB;CÞ ¼
Xn
i¼1

x0iB� g0iC
�� ��2 ¼ Xn

i¼1

x0iB� c0yi

��� ���2: ð15:11Þ

Here, g0i is the ith row of G, yi is the index number of the group to which individual
i belongs, and we have used g0iC ¼ c0yi . This implies that CDA is also based on the
homogeneity assumption:

the scores for an individual should be homogeneous to

the scores for the group to which the individual belongs;
ð15:12Þ

which is the same as (14.44) except the term “categories” has been replaced by
“group”. Minimizing (15.11) allows f 0i ¼ x0iB to be close to c0yi , with c0yi being the
score of the group including individual i, which is also the centroid of the individual
scores in that group, as shown in (15.10).

Let x0? be a 1 � p vector which is not included in X so that it is unknown to what
group x0? belongs. That is, our task is to classify x0? into one of the groups k = 1, …,
K, in other words, to find the group to which x0? should belong. Assumption (15.12)
leads to the following minimum distance classification:

x is classified into group k� with x0B� c0k�
�� �� ¼ min

1� k�K
x0B� c0k

�� ��: ð15:13Þ

Here, x′ generally expresses a 1 � p vector whose elements are associated with the
p variables in X. We illustrate the classification rule (15.13) with x equaling
x? = [1.8, 0.4, 0.1, −0.6]. This is substituted into (15.6) to provide
x0?B ¼ ½0:42; 0:94�, with the elements of B given as in (15.7) and (15.8). The
location of x0?B is shown by “?” in Fig. 15.1. By comparing its distances to c1, c2,
and c3, we can find that x0?B is closest to c2, and thus, x? is reasonably classified into
Group 2.

15.4 Maximum Probability Classification

Beginning with this section, discriminant analysis will be formulated in a different
manner: We start with a classification rule, in which the distances and “min” in
(15.13) are replaced by probabilities and “max”, respectively. The rule is stated as
follows:
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x is classified into group k� withP gk� jxð Þ ¼ max
1� k�K

P gk xjð Þ: ð15:14Þ

Here, P(gk∣x) stands for the probability that the individual showing x belongs to
group k. This particular probability is called a posterior probability as it is related to
considering the group from which x arises a posteriori, after x was observed.
Interchanging gk and x in P(gk∣x) gives the symbol P(x∣gk), which is called a group-
conditional density, and stands for the probability density of an individual in group
k showing x. Between P(gk∣x) and P(x∣gk), the following equation is known to hold:

P gk xjð Þ ¼ P gkð ÞP x gkjð ÞPK
l¼1 P glð ÞP x gljð Þ : ð15:15Þ

Here, P(gk) is a probability of a randomly chosen individual belonging to group
k and called a prior probability, as it is given a priori, before x is observed.
Equation (15.15) is known as the Bayes’ theorem, as it was found by English
pastor, Thomas Bayes (1701–1761). Thus, (15.14) is called the Bayes’ classifica-
tion rule.

As found in (15.15), we can obtain the posterior probability P(gk∣x) necessary
for classifying x with (15.14) if group-conditional densities P(x∣gk) and prior
probabilities P(gk) (k = 1, …, K) are estimated. This estimation is made using the
data set [G, X]. The facts described in [G, X] can also be expressed without using
G, by means of rearranging the individuals in X so that the ones belonging to the
same group are collected in the same block. The rearrangement gives an n indi-
viduals � p-variables block matrix

X ¼

X1

..

.

Xk

..

.

XK

2
666664

3
777775 with Xk ¼

x0k1
..
.

x0ki
..
.

x0knk

2
6666664

3
7777775
: ð15:16Þ

Here, n = n1 + ��� + nK, and xki is the p � 1 data vector for the ith one of the
individuals belonging to group k. In the remaining sections, (15.16) is used for a
data matrix with the memberships of individuals to groups known. Further, P(x∣gk)
is supposed to be the probability density of a multivariate normal (MVN)
distribution:

x�Np lk;Rkð Þ for x 2 gk; ð15:17Þ
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with x 2 gk representing the fact that the individual showing x belongs to group
k. That is, the group-conditional density for group k is given as

P xjgkð Þ ¼ P xjlk;Rkð Þ ¼ 1

ð2pÞp=2 Rkj j1=2
exp � 1

2
ðx� lkÞ0R�1

k ðx� lkÞ
� �

ð15:18Þ

by adding the subscript k to (8.9).

15.5 Normal Discrimination for Two Groups

In this section, the number of groups is restricted to two (K = 2), and the covari-
ance matrix in (15.18) is supposed to be homogeneous between two groups:

R1 ¼ R2 ¼ R ð15:19Þ

Then, using (15.15), the rule (15.14) is rewritten as follows: x is classified into g1 if
P g1ð ÞP xjg1ð Þ	P g2ð ÞP xjg2ð Þ or, equivalently,

p x g1jð Þ
p x g2jð Þ 	

p g2ð Þ
p g1ð Þ ; ð15:20Þ

otherwise, x is classified into g2. By changing both sides of (15.20) into their
logarithm, we can rewrite it as log P(x∣g1) − log P(x∣g2) 	 logP(g2) − logP(g1), or
equivalently,

f ðxÞ ¼ logP xjg1ð Þ � logP xjg2ð Þþ log P g1ð Þ=P g2ð Þf g	 0: ð15:21Þ

Further, by substituting (15.18) into (15.21) with the use of (15.19), we can rewrite
the function in (15.21) as

f ðxÞ ¼ � 1
2

x� l1ð Þ0R�1 x� l1ð Þþ 1
2

x� l2ð Þ0R�1 x� l2ð Þþ log P g1ð Þ=P g2ð Þf g

¼ x0R�1 l1 � l2ð Þþ 1
2

l02R
�1l2 � l01R

�1l1
	 
þ log P g1ð Þ=P g2ð Þf g

¼ b0xþ c ¼ b1x1 þ � � � þ bpxp þ c;

ð15:22Þ
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with

b ¼ b1; . . .; bp
� �0¼ R�1 l1 � l2ð Þ; ð15:23Þ

c ¼ 1
2

l02R
�1l2 � l01R

�1l1
	 
þ log P g1ð Þ=P g2ð Þf g: ð15:24Þ

Rule (15.14) is thus simplified as

x is classified intoGroup 1 if f xð Þ[ 0; otherwise; into Group 2: ð15:25Þ

As (15.22) is a linear function of x, which is the weighted composite of vari-
ables, (15.22) is called a linear discriminant function (LDF), and the procedure for
obtaining (15.22) is called linear discriminant analysis (LDA). As described in
Appendix A.5.2, the maximum likelihood estimates of l1, l2, and R needed for
obtaining (15.22) are given by

l̂0k ¼ �x0k ¼
1
n
10nkXk ðk ¼ 1; 2Þ; ð15:26Þ

R̂ ¼ 1
n

Xn1
i¼1

ðx1i � �x1Þðx1i � �x1Þ0 þ
Xn2
i¼1

ðx2i � �x2Þðx2i � �x2Þ0
( )

: ð15:27Þ

These are substituted into l1, l2, and R in (15.23) and (15.24) for providing b and
c, though P(g1)/P(g2) must also be estimated for obtaining c.

For example, we consider a case of p = 2, where

P g1ð Þ ¼ P g2ð Þ ð15:28Þ

is supposed, and l̂1 ¼ ½76:20; 61:42�0, l̂2 ¼ ½66:93; 72:16�0, and

R̂ ¼ 120:77 60:05
60:05 146:98

� �
. By substituting these into (15.23) and (15.24), we have

b = [0.14, −0.13] and c = −1.40. They lead to the LDF

f ðxÞ ¼ 0:14x1 � 0:13x2 � 1:40: ð15:29Þ

The classification in which (15.29) is used for (15.25) can be graphically illustrated
as in Fig. 15.2, where the bird’s-eye view of the group-conditional densities for the
two groups is depicted. As found there, the LDF (15.29) value of x = [x1, x2] is the
coordinate on the axis called a discriminant axis. For example, let the point “?” in
the figure indicate x? ¼ ½58; 62�0, i.e., a new observation to be classified. This leads
to
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f ½58; 62�0	 
 ¼ 0:14� 58� 0:13� 62� 1:40 ¼ �1:34; ð15:30Þ

which is a coordinate on the discriminant axis. The LDF value in (15.30) is called a
discriminant score. Since (15.30) is negative, (15.25) shows that x? ¼ ½58; 62�0 is to
be classified into Group 2. Let us note the boundary line in Fig. 15.2. It defines the
regions for two groups: The observations x located to the right of/below the line are
classified into g1 and those on the other side are classified into g2.

15.6 Interpreting Solutions

For illustrating the interpretation of LDA solutions, we consider performing LDA
for the 27 (employees) � 4 (personality traits) data matrix X ¼ ½X0

1; X
0
2�0 in

Table 15.2a. Here, it is supposed that the personality traits of the employees are fit
to their groups (i.e., departments). Substituting the solution of (15.23) and (15.24)
in (15.22) leads to the LDF as

P(x g1)

P(x g2) Boundary line

?

Discriminant Axis

Classify into g
1

Classify into g
2

f(x) = 0.14 x1 0.13 x2 1.40

60 70        80

50

60

70

80

x1

x2

Fig. 15.2 Illustration of linear discriminant analysis
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f ðxÞ ¼ 0:719x1 þ 0:139x2 � 0:462x3 � 0:084x4 � 2:069; ð15:31Þ

where we have set the prior probabilities in (15.24) as P(g1) = 15/27 and P
(g2) = 12/27, i.e., the proportions of the members in groups 1 and 2 in Table 15.2.

Let us consider assessing how correctly/incorrectly individuals are classified by
the LDF in (15.31). An easy way to do so is to substitute each row vector of X into
(15.31) and examine whether the resulting discriminant score shows the correct

Table 15.2 Artificial example of the data for LDF (Adachi, 2006) and the resulting classification
based on the discriminant scores

Department Employ. (a) Data (b) Result

Social Cooperative Diligent Creative Score Classi.

g1 1 15 14 15 14 2.56 g1
2 11 13 17 17 −1.64 g2

*

3 16 14 17 26 1.34 g1
4 19 21 18 15 4.94 g1
5 18 26 21 15 3.93 g1
6 15 28 18 12 3.28 g1
7 17 19 12 10 6.41 g1
8 12 15 18 12 −0.68 g2

*

9 13 22 16 10 2.10 g1
10 14 26 18 6 2.79 g1
11 16 20 18 18 2.39 g1
12 11 15 20 15 −2.58 g2

*

13 20 21 17 20 5.70 g1
14 15 20 19 12 1.71 g1
15 13 13 17 16 −0.11 g1

g2 16 11 15 18 17 −1.82 g2
17 10 13 16 9 −1.22 g2
18 11 14 24 16 −4.65 g2
19 10 10 13 12 −0.50 g2
20 10 14 22 18 −4.61 g2
21 13 19 23 24 −2.72 g2
22 11 10 20 28 −4.36 g2
23 15 20 20 16 0.91 g1

*

24 12 22 23 13 −2.10 g2
25 10 11 18 10 −2.51 g2
26 12 10 19 27 −3.10 g2
27 10 14 21 19 −4.23 g2

*Misclassification
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classification or not. For example, the substitution of the first and second row
vectors in Table 15.2a yields

f x11 ¼ ½15; 14; 15; 14�0	 

¼ 0:719� 15þ 0:139� 14� 0:462� 15� 0:084� 14� 2:069 ¼ 2:56;

ð15:32Þ

f x12 ¼ ½11; 13; 17; 17�0	 

¼ 0:719� 11þ 0:139� 13� 0:462� 17� 0:084� 17� 2:069 ¼ �1:64;

ð15:33Þ

respectively. Here, (15.32) implies correct classification since it gives a positive
value, showing that x11 is to be classified into Group 1, and in reality, x11 belongs to
Group 1. On the other hand, (15.33) implies misclassification, since (15.33) is
negative and shows that x12 is to be classified into Group 2, but the examinee 2
belongs to Group 1 in fact. The scores obtained as above are shown in Table 15.2b,
with the asterisks indicating misclassification.

By counting those asterisks, we can assess misclassification rates; the rate is 4/
15 in Group 1, while it is 1/12 for Group 2, and the total rate is (4 + 1)/27 = 0.185.
This assessment is known to underestimate the misclassification rate since the
classification is made for the data vectors from which LDFs are obtained. This
differs from a usual setting, in which a new data vector x? to be classified is not
included in the data set X. However, procedures for more accurately assessing the
rate are out of the scope of this book.

LDA is used not only for classification but also for finding the variables that
characterize groups. For this purpose, the standardized discriminant coefficients are
to be used that are obtained with LDA for standardized data. The coefficients for the
standard scores transformed from the data in Table 15.2a are presented in
Table 15.3. There, we can find the following:

(1) The persons to be classified into Group 1 are social and cooperative, but not
diligent and creative, with particularly important characteristics being social
and less diligent.

(2) The persons to be classified into Group 2 are diligent and creative, but not
social and cooperative, with important characteristics being diligent and less
social.

Let us consider performing the CDA in earlier sections for the data set in
Table 15.2a with m = 1. CDA provides B ¼ b ¼ ½0:226; 0:044;�0:145;�0:26�0,

Table 15.3 Standardized
discriminant coefficients for
the data in Table 15.2a

Social Cooperative Diligent Creative

2.079 0.704 −1.289 −0.459
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every element of which equals the corresponding coefficient in (15.31) divided by
3.1. Indeed, it is known that the coefficients for CDA are proportional to those of
LDA, and the classifications made by CDA with m = 1 are equivalent to those by
LDA when P(g1) = P(g2), though its proof is omitted here. The discriminant
analysis procedure differing from LDA and CDA is described in the following
section.

15.7 Generalized Normal Discrimination

In this section, the classification by (15.14) is illustrated for the cases where R1, …,
RK are supposed to be heterogeneous among groups. We consider the data matrix
(15.16) with n = 150, p = 2, K = 3, and the 150 individuals randomly sampled. Let
the statistics obtained from X1, X2, and X3 be summarized as in Fig. 15.3a; for
example, the average vector 40�11040X2 for Group 2 is [25.9, 74.8], and the co-

variance matrix 44�1X0
3JX3 for Group 3 is

435:1 212:6
212:6 168:4

� �
with J the centering

matrix defined as (2.10).
Prior probabilities can be estimated as P(gk) = nk/n:

P g1ð Þ ¼ 66
150

; P g2ð Þ ¼ 40
150

; andP g3ð Þ ¼ 44
150

ð15:34Þ
for the data set in Fig. 15.3a. The group-conditional density is given as (15.18),
whose parameters lk and Rk can be estimated by the maximum likelihood method
as described in Sect. 8.6 and illustrated in Sect. 8.8. The MLE of lk and Rk is given
by Eqs. (8.21) and (8.22) with the subscript k added as

[40,60]
Group g1 g2 g3

nk 66 40 44
Variable x1 x2 x1 x2 x1 x2

Average 52.1 43.3 25.9 74.8 71.0 23.4
Covar- 
iances

355.7 203.8 180.4 -198.8 435.1 212.6 
203.8 252.5- 198.8 369.4 212.6 168.4

(a) Statistics for each group
x1

x2

P(x g2)

P(x g1)

P(x g3)

(b) Group-conditional densities

Fig. 15.3 Statistics and probability densities for generalized normal discrimination
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l̂k ¼ �xk ¼ 1
nk

Xnk
i¼1

xki; ð15:35Þ

R̂k ¼ 1
nk

Xnk
i¼1

ðxki � �xkÞðxki � �xkÞ0: ð15:36Þ

Let us substitute the statistics in Fig. 15.3a into the corresponding parts of (15.35)
and (15.36). Using these results in (15.18), we have the group-conditional densities

P xjg1ð Þ ¼ ð2pÞ�p=2 355:7 203:8

203:8 252:5

� �����
����
�1=2

�

exp � 1
2

x� 52:1

43:3

� �� 0 355:7 203:8

203:8 252:5

� ��1

x� 52:1

43:3

� �� ( )
;

ð15:37Þ

P xjg2ð Þ ¼ ð2pÞ�p=2 180:4 �198:8

�198:8 369:4

� �����
����
�1=2

�

exp � 1
2

x� 25:9

74:8

� �� 0 180:4 �198:8

�198:8 369:4

� ��1

x� 25:9

74:8

� �� ( )
;

ð15:38Þ

P xjg3ð Þ ¼ ð2pÞ�p=2 435:1 212:6

212:6 166:4

� �����
����
�1=2

�

exp � 1
2

x� 71:0

23:4

� �� 0 435:1 212:6

212:6 166:4

� ��1

x� 71:0

23:4

� �� ( )
;

ð15:39Þ

with p = 3.1416 … the circle ratio. In Fig. 15.3b, a bird’s-eye view of (15.37)–
(15.39) is drawn as in Fig. 8.4b. We may consider the figure as a map depicting
three mountains whose tops are indicated by filled circles and counter lines are
expressed by ellipses.

Let x? ¼ ½40; 60�0 indicated by a blank square in Fig. 15.3b be a new data vector
for the individual whose membership to a group is unknown; our task is to classify
x? into one of groups 1, 2, and 3. This can be achieved by performing the calculus
in the Bayes’ theorem (15.15) and by using the classification rule (15.14).

By substituting x? ¼ ½40; 60�0 into (15.37), (15.38), and (15.39), we have the
values of the group-conditional densities as P ½40; 60�0jg1

	 
 ¼ 7:534� 10�5;
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P ½40; 60�0jg2
	 
 ¼ 5:560� 10�4, and P ½40; 60�0jg3

	 
 ¼ 1:600� 10�13, respec-
tively. Using these with (15.34), the numerator in the right-hand side of (15.15) is
obtained as

P g1ð ÞP ½40; 60�0jg1
	 
 ¼ 66

150
� 7:534� 10�5 ¼ 3:315� 10�5; ð15:40Þ

P g2ð ÞP ½40; 60�0jg2
	 
 ¼ 40

150
� 5:560� 10�4 ¼ 1:483� 10�4; ð15:41Þ

P g3ð ÞP ½40; 60�0jg3
	 
 ¼ 44

150
� 1:600� 10�13 ¼ 4:693� 10�14 ð15:42Þ

for each group. Here, it should be noted that the denominator in the right-hand side
of (15.15) is equivalent among different groups; we may only compare its nu-
merator between groups for classification. This implies that (15.14) may be sim-
plified to

x is classified into group k�withP gk�ð ÞP xjgk�ð Þ ¼ max
1� k�m

P gkð ÞP x gkjð Þ: ð15:43Þ

By this rule, we can compare (15.40), (15.41), and (15.42) to classify x? ¼ ½40; 60�0
into Group 2 since (15.41) is the highest of the three values.

If we wish to perform not only the classification but also obtain the posterior
probability of x? belonging to the group, the denominator in the right-side hand of
(15.15) must be obtained, which is the sum of P(gk)P(gk∣x) over k. The sum of
(15.40)–(15.42) is given by

Xm
l¼1

P glð ÞP x gljð Þ ¼ 3:315� 10�5 þ 1:483� 10�4 þ 4:693� 10�14

¼ 1:815� 10�4: ð15:44Þ

The use of this value and (15.41) in (15.15) leads to the posterior probability

P g2j½40; 60�0
	 
 ¼ 1:483� 10�4

1:815� 10�4 ¼ 0:82: ð15:45Þ

Thus, the probability of x? belonging to Group 2 is 0.82. This value can be regarded
as expressing the confidence with which we classify x? into g2. In a parallel manner,
the probability of x? belonging to Group 1 can be obtained as
P g1j½40; 60�0
	 
 ¼ 3:315�10�5

1:815�10�4 ¼ 0:18, and P g3j½40; 60�0
	 
 ¼ 1� P g1j½40; 60�0

	 
�
P g2j½40; 60�0
	 


can be found to be almost zero.
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15.8 Bibliographical Notes

A variety of discriminant analysis procedures are described in McLachlan (1992)
and Hand (1997). Some new procedures in discriminant analysis are detailed in
Hastie, Tibshirani, and Friedman (2009). An introduction to CDA as a modification
of MCA is found in Adachi (2004).

Exercises

15:1 Matrices
VB ¼ 1

n

PK
k¼1

Pnk
i¼1 ð�xk � �xÞð�xk � �xÞ0� � ¼ 1

n

PK
k¼1 nkð�xk � �xÞð�xk � �xÞ0� �

,

VW ¼ 1
n

PK
k¼1

Pnk
i¼1 ðxki � �xkÞðxki � �xkÞ0

� �
, and VT ¼

1
n

PK
k¼1

Pnk
i¼1 ðxki � �xÞðxki � �xÞ0� �

are called between-group, within-group,
and total covariance matrices, respectively, with xki the p � 1 data vector for
the ith individual in group k, n ¼ PK

i¼1 nk, �xk ¼ n�1
k

Pnk
i¼1 xki, and

�x ¼ n�1 PK
k¼1

Pnk
i¼1 xki. Show VT = VB + VW.

15:2 Let x0l be the lth row vector of n individuals � p-variables data matrix

X ¼ X0
1;X

0
2

� �0¼ x1; . . .; xn½ �0 in (15.16) and X[l] be the (n − 1) � p matrix
obtained by removing xl′ from X. In a leaving-one-out procedure, the fol-
lowing assessment is replicated over l = 1, …, n: (15.23) and (15.24) are
estimated with X[l] and classification (15.25) with x = xl performed in order
to assess whether the resulting classification is correct or not. It is known that
misclassification rates are estimated better in the leaving-one-out procedure
than in that illustrated in Sect. 15.6. Discuss why the rates are estimated
better in the former procedure.

15:3 In logistic discriminant analysis for two groups, the posterior probability for
Group 1 is expressed as P g1jxð Þ ¼ 1

1þ expð�b0x�cÞ, with x the vector containing
observed variables, b the vector of coefficients, and P(g2|x) =1 − P(g1|x).
Discuss how the logistic and linear discriminant analyses are similar/
different.

15:4 The Mahalanobis distance of x to group k is defined as
x� lkð Þ0R�1

k x� lkð Þ, with lk and Rk the mean vector and covariance matrix
for group k, respectively. Show that the classification rule (15.13), with its
distances replaced by the Mahalanobis distances, is equivalent to the clas-
sification procedure in Sect. 15.7 with P(gk) and ∣Rk∣ constrained to be
homogeneous among the groups.

15:5 Let us consider a case in which each element of the vector x in (15.15) takes
either one or zero, and the jth element xj takes one with probability hjk for
x being included in group k. Show that if the elements of x are observed
mutually independently, classification (15.14) is feasible using P xjgkð Þ ¼Qp

j¼1 h
xj
jkð1� hjkÞ1�xj in (15.15).

15:6 Let us consider a variant of CDA with G unknown. This procedure is for-
mulated as minimizing ||XB − GC||2 over G = (gik), C ¼ c1; . . .; cK½ �0 and
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B subject to (7.1), (7.2), and (15.3). Show that the minimization can be
attained by the following algorithm:

Step 1. Initialize G and obtain V ¼ V1=2V1=2 with V ¼ n�1X0X.
Step 2. Obtain the EVD X0GD�1

G G0X ¼ QH2Q0 to set B ¼ V�1=2Qm with
DG ¼ G0G.

Step 3. Obtain C by (15.4).

Step 4. Set gik = 1 if x0iB� c0k
�� ��2¼ min1� l�K x0iB� c0l

�� ��2 and gik = 0
otherwise, for i = 1, …, n; k = 1, …, K.

Step 5. Finish if convergence is reached; otherwise, go back to Step 2.

In Vichi and Kiers’ (2001) factorial K-means analysis (FKM), (15.3) is
replaced by B0B ¼ Im.

15:7 There exists a Bayesian method for estimating parameters besides the least
squares and maximum likelihood methods. In the Bayesian method, the fact
is used that Bayes’ theorem (15.15) can be generalized as

P h Xjð Þ ¼ P hð ÞP X hjð Þ
PðXÞ : ð15:46Þ

Here, h is the vector containing parameters, while X is a data matrix, with P
(h) denoting the probability density function (PDF) of h, P(X) the PDF of
X observed, P(X|h) the PDF of X for given h, and P(h|X) the PDF of h for
given X. As found in (15.46), the parameters are also viewed as being
randomly distributed in the Bayesian method. This method is formulated as
the maximization of (15.46) over h, or equivalently, maximizing P(h)P(X|h).
Argue that P(h)P(X|h) is the product of the prior information for parameters
and their likelihood.

15:8 A penalized least squares method for n � p data matrix X can be formulated
as minimizing X�HðhÞk k2 þ sgðhÞ over parameter vector h, with H(h) a
function of h providing an n � p matrix, g(h) a function of h giving a
nonnegative scalar value, and s a specified nonnegative scalar value. An
example of the method is found in Exercise 4.11. Show that the Bayesian
estimation method in Exercise 15.7 is equivalent to the penalized least

squares one if P(X|h) in (15.46) takes the form of PðXjhÞ ¼ a�
exp �b X�HðhÞk k2

n o
and s is set to a certain value.
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Chapter 16
Multidimensional Scaling

The keywords for describing multidimensional scaling (MDS) are the coordinates
of objects, the distances between objects, and the corresponding quasi-distances
observed as data. For example, let us suppose that the objects are cities such as
London, Paris, and Amsterdam. Then, their coordinates are the locations of those
cities on a map, which define the inter-city distances. We further suppose that the
flight-times between those cities are observed as data, which are regarded as quasi-
distance data, since they are approximately proportional to distances, but are not
equivalent to them. The purpose of MDS is to estimate the coordinates of objects,
i.e., their locations, from quasi-distance data; the coordinates are obtained so that
their defined distances approximate quasi-distance data.

The origin of MDS can be found in Torgerson (1952). His approach is called
classical scaling, which is equivalent to Gower’s (1966) principal coordinate
analysis. Those procedures are formulated with inter-object inner products rather
than distances. Also, though they are not treated, their squares are considered in
Takane, Young, and de Leeuw’s (1977) procedure known as alternate least squares
scaling (ALSCAL). In this chapter, only an MDS procedure is introduced in which
distances themselves are considered and a computational technique called a ma-
jorization algorithm is used. This technique for MDS is rooted in de Leeuw (1977)
and has been developed by Groenen (1993), Heiser (1991), and others.

16.1 Linking Coordinates to Quasi-distances

Let us use qij for the observed quasi-distance between objects i and j. Then, the data
set of quasi-distances among n objects can be expressed as an n � n matrix

© Springer Nature Singapore Pte Ltd. 2020
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
https://doi.org/10.1007/978-981-15-4103-2_16

247
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Q ¼

q12 q13 � � � q1n
q23 � � � q2n

. .
. ..

.

qn�1;n

2
666664

3
777775: ð16:1Þ

Here, the lower left elements, i.e., the parts for qij with i � j, are blank, as it is
supposed that Q is symmetric with qij = qji, and qii (the quasi-distance between an
object and itself) is not observed. We also suppose qij � 0 in this chapter. One
feature of data matrix Q is that the same set of entities occupies the rows and
columns, which differs from the n-observations � p variables data matrices that
have been treated in other chapters. Table 16.1 presents an example of Q, which
describes the perceived dissimilarities between objects (sports). They are
quasi-distance data in that a pair of objects perceived similar/dissimilar corresponds
to their being close/distant; however, the dissimilarities differ from the genuine
distances defined mathematically as found in the next paragraph.

The purpose of MDS is to obtain an n-objects � m-dimensions matrix of the
objects’ coordinates,

A ¼ aikð Þ ¼
a01
..
.

a0n

2
64

3
75; ð16:2Þ

from (16.1). Here, ai (m � 1) is the coordinate vector indicating the location of
object i, with the kth element aik the coordinate of i on dimension k. The distance
between ai and aj is expressed as

ai � aj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

ðaik � ajkÞ2
s

: ð16:3Þ

Table 16.1 An example of Q: rated dissimilarities between sports

Baseball Volleyball Football Tennis Ping-pong Basketball Rugby Softball

Baseball 5.6 5.0 4.6 4.4 5.4 6.0 1.2

Volleyball 5.4 4.4 4.2 3.0 5.4 5.4

Football 5.6 6.2 4.0 2.8 4.8

Tennis 2.0 5.8 6.4 4.2

Ping-pong 5.2 6.4 4.8

Basketball 4.6 5.2

Rugby 5.6

Softball
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This particular distance is called Euclidean distance, from the ancient Greek
mathematician Euclid (or Eukleídēs in Greek), for distinguishing it from the other
special definitions of distances.

Distance (16.3) can be linked with its quasi-version qij in (16.1) as

qij ¼ ai � aj
�� ��þ eij; ð16:4Þ

with eij an error. Thus, MDS is formulated as minimizing the sum of squared errors,
i.e.,

h Að Þ ¼
X
i\j

qij � ai � aj
�� ��� �2

; ð16:5Þ

is minimized over A.

Note 16.1. Summation for i < j
The symbol

P
i\j xij stands for the summation of a set of xij that satisfies

i < j. For example, let X = (xij) be a 4 � 4 matrix, thenP
i\j

xij ¼ x12 þ x13 þ x14 þ x23 þ x24 þ x34.

As found in (16.3), the distance is the squared root of ai � aj
�� ��2, which is far more

difficult to handle than ai � aj
�� ��2. For dealing with that difficulty, some MDS

procedures are formulated as fitting ai � aj
�� ��2¼ aik k2 þ aj

�� ��2 � 2a0iaj to squared
qij (Takane et al., 1977) or fitting inner product a0iaj to the corresponding coun-
terpart transformed from qij (Togerson, 1952; Gower, 1966), rather than minimizing
(16.5). But, we will directly treat it in this chapter.

16.2 Illustration of an MDS Solution

For matrix Q in Table 16.1, MDS loss function (16.5) is minimized for the coor-
dinate matrix A in Fig. 16.1A. This solution is graphically represented as in
Fig. 16.1B, where the objects (sports) are plotted according to their coordinates in
(A). We can see the plot as a usual map; the close/distant objects in the plot are
similar/dissimilar in their features. For example, baseball and softball are closely
located, which implies both are perceived to be similar, while rugby and ping-pong
are distant, implying that they are dissimilar. This illustrates that we can visually
capture inter-objects relationships in MDS solutions.
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The solution in Fig. 16.1 cannot explicitly be given. The iterative algorithm that
provides the solution is described in the remaining sections.

16.3 Iterative Algorithm

Loss function (16.5) is expanded as h Að Þ ¼ P
i\j q

2
ij þ

P
i\j ai � aj

�� ��2
�2

P
i\j qij ai � aj

�� ��. Here, Pi\j q
2
ij is a constant irrelevant to A. Thus, the min-

imization of (16.5) is equivalent to minimizing

f Að Þ ¼
X
i\j

ai � aj
�� ��2 � 2

X
i\j

qij ai � aj
�� ��: ð16:6Þ

We will consider the latter.
Using A[t] (n � m) for the coordinate matrix A obtained at the tth iteration, the

outline of the iterative algorithm for minimizing (16.6) can be listed as follows:

Step 1. Initialize A[t] with t = 0.
Step 2. Update A[t] to A[t+1] so that f A½t�

� �� f A½tþ 1�
� �

.
Step 3. Finish if convergence is reached; otherwise, increase t by one and return to

Step 2.

Dimension 1 2
Baseball 1.7 2.7 
Volleyball -2.8 -1.4 
Football 2.6 -1.7 
Tennis -2.4 1.9 
Ping-pong -2.2 2.7 
Basketball -1.1 -2.7 
Rugby 2.2 -3.4 
Softball 1.9 2.0 

(a) Coordinate Matrix (b) Configuration

Baseball

Volleyball

Football

Tennis

Ping-pong

Basketball

Rugby

Softball

Fig. 16.1 MDS solution for the data in Table 16.1
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In Step 3, the convergence can be defined as f A½t�
� �� f A½tþ 1�

� �
is small enough to

be ignored.
The update formula in Step 2 is given by

A tþ 1½ � ¼ 1
n
QðA½t�ÞA t½ �: ð16:7Þ

Here, QðA½t�Þ is the n � n matrix which is a function of A[t] and is expressed as

QðA½t�Þ ¼
Pn

i¼1 q
ðA½t�Þ
i1

. .
. Pn

i¼1 q
ðA½t�Þ
in

2
64

3
75�

q
ðA½t�Þ
11 � � � q

ðA½t�Þ
1n

..

. � � � ..
.

q
ðA½t�Þ
n1 � � � q

ðA½t�Þ
nn

2
64

3
75; ð16:8Þ

with the blanks standing for zero elements and q
ðA½t�Þ
ij defined, using a½t�i

0ð1� mÞ for
the ith row of A[t], as

q
ðA½t�Þ
ij ¼ 0 if a½t�i ¼ a½t�j

qij
a½t�i �a½t�jk k otherwise

(
: ð16:9Þ

Why does (16.7) guarantee f A½t�
� �� f A½tþ 1�

� �
? In order to explain this, we need a

long story continuing over the next three sections. There, the following tasks are
attained in turn:

(1)
P

i\j ai � aj
�� ��2 in (16.6) is expressed in matrix form (Sect. 16.4).

(2) An inequality for
P

i\j qij ai � aj
�� �� in (16.6) is derived (Sect. 16.5).

(3) We use the results of (1) and (2) to derive (16.7) (Sect. 16.6).

16.4 Matrix Expression for Squared Distances

In order to express squared distance ai � aj
�� ��2 in matrix form using A, we

introduce the elementary vectors in the following note:

Note 16.2. Elementary Vectors
Let ei denote the n � 1 vector filled with zeros, except only the ith element
taking one. Such a vector is called an elementary vector. For example,
e2 = [0, 1, 0]′ for n = 3. We can easily find that e0iA ¼ a0i with A defined as
(16.2); e0i serves for selecting the ith row of a matrix.
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Let B ¼
b01
..
.

b0n

2
64

3
75 be an n � m matrix, like A. Then, we have

ðai � ajÞ0ðbi � bjÞ ¼ ðe0iA� e0jAÞðe0iB� e0jBÞ0 ¼ ðei � ejÞ0AB0ðei � ejÞ
¼ trðei � ejÞ0AB0ðei � ejÞ ¼ trB0ðei � ejÞðei � ejÞ0A
¼ trA0HijB;

ð16:10Þ
with

Hij ¼ ðei � ejÞðei � ejÞ0: ð16:11Þ

For example, when n = 3,

H12 ¼
1 �1 0
�1 1 0
0 0 0

2
4

3
5;H13 ¼

1 0 �1
0 0 0
�1 0 1

2
4

3
5;H23 ¼

0 0 0
0 1 �1
0 �1 1

2
4

3
5:

ð16:12Þ

If B is set to A in (16.10), we have the squared distance

ai � aj
�� ��2¼ trA0HijA: ð16:13Þ

This summation over i < j is expressed in a simple form, using the following result:

Note 16.3. Use of Centering Matrix
It can be found that

X
i\j

Hij ¼ nIn � 1n10n ¼ nJ; ð16:14Þ

with J ¼ In � n�11n10n the centering matrix defined in (2.10). Using (16.12),
we can verify (16.14) as
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X
i\j

Hij ¼ H12 þH13 þH23 ¼
2 �1 �1
�1 2 �1
�1 �1 2

2
4

3
5

¼ 3
1 0 0
0 1 0
0 0 1

2
4

3
5�

1 1 1
1 1 1
1 1 1

2
4

3
5: ð16:15Þ

Using (16.13) and (16.14), we can rewrite
P

i\j ai � aj
�� ��2 in (16.6) as

X
i\j

ai � aj
�� ��2 ¼ X

i\j

trA0HijA ¼ trA0 X
i\j

HijA ¼ ntrA0JA: ð16:16Þ

16.5 Inequality for Distances

This section concerns the term
P

i\j qij ai � aj
�� �� in (16.6). The distance ai � aj

�� ��
in that term is more difficult to handle than ai � aj

�� ��2. This difficulty can be dealt
with by finding an inequality for

P
i\j qij ai � aj

�� �� and
P

i\j qijðai � ajÞ0ðbi � bjÞ,
with b0i being a row vector of B defined in Note 16.2. The first step for that task is
using the following famous theorem:

Note 16.4. The Cauchy-Schwarz Inequality

xk k � yk k� x0y: ð16:17Þ

Setting x ¼ ai � aj and y ¼ bi � bj in (16.17) and using qij � 0, we have

qij ai � aj
�� ��� bi � bj

�� ��� qijðai � ajÞ0ðbi � bjÞ; ð16:18Þ

which leads to

qij ai � aj
�� ��� qðBÞij ðai � ajÞ0ðbi � bjÞ ð16:19Þ
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with

qðBÞij ¼
0 if bi ¼ bj

qij
bi�bjk k otherwise

(
: ð16:20Þ

Here, it has been taken into consideration that the division by bi � bj
�� �� ¼ 0 cannot

be defined, and qðBÞij has the superscript “(B)” because qðBÞij is a function of the rows
of B.

We can use (16.10) to rewrite the right-hand side of (16.19) as

qðBÞij ðai � ajÞ0ðbi � bjÞ ¼ trA0ðqðBÞij HijÞB: ð16:21Þ

The left-hand side of (16.19) can be rewritten as

qij ai � aj
�� �� ¼

0 if ai ¼ aj
qij

ai�ajk k ðai � ajÞ0ðai � ajÞ otherwise

(
: ð16:22Þ

Its comparison with (16.20) allows us to find that (16.22) is further rewritten as

qij ai � aj
�� �� ¼ qðAÞij ðai � ajÞ0ðai � ajÞ ¼ trA0ðqðAÞij HijÞA; ð16:23Þ

where qðAÞij is defined by substituting ai for bi in (16.20), and we have also used
(16.10).

The summation of both sides of (16.19) leads to

X
i\j

qij ai � aj
�� ��� X

i\j

qðBÞij ðai � aiÞ0ðbi � bjÞ: ð16:24Þ

Here, we can use (16.21) and (16.23) to rewrite the left- and right-hand sides of
(16.24) as X

i\j

qij ai � aj
�� �� ¼ trA0Q Að ÞA; ð16:25Þ

X
i\j

qðBÞij ðai � aiÞ0ðbi � bjÞ ¼ trA0Q Bð ÞB; ð16:26Þ
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respectively, with

Q Að Þ ¼
X
i\j

qðAÞij Hij and QðBÞ ¼
X
i\j

qðBÞij Hij: ð16:27Þ

Thus, (16.24) is rewritten as

trA0Q Að ÞA� trA0Q Bð ÞB; ð16:28Þ

which allows us to form the MDS algorithm described in the following section.

16.6 Majorization Algorithm

Using (16.16) and (16.25), MDS loss function (16.6) is rewritten as

f Að Þ ¼ ntrA0JA� 2trA0Q Að ÞA: ð16:29Þ

We also consider another function in which trA0Q Að ÞA in (16.29) is replaced by
(16.26):

g A;Bð Þ ¼ ntrA0JA� 2trA0Q Bð ÞB: ð16:30Þ

By comparing (16.29) and (16.30) with (16.28), we can find

g A;Bð Þ� f Að Þ: ð16:31Þ

Also, it should be noted that the substitution of B for A in (16.29) and (16.30) gives

g B;Bð Þ ¼ f Bð Þ: ð16:32Þ

This equality and the inequality (16.31) lead to:

f Bð Þ ¼ g B;Bð Þ� g A�;Bð Þ� f A�ð Þ; ð16:33Þ

where A* is the matrix A that minimizes g(A, B) for a given B.
For finding A*, we use the fact that Q(B) in (16.27) satisfies

JQ Bð Þ ¼ QðBÞ or
X
i\j

qðBÞij JHij ¼
X
i\j

qðBÞij Hij: ð16:34Þ
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This follows from the fact that (16.11) implies 10nHij ¼ 00n and this is equivalent to
JHij = Hij since of (3.21). Using (16.34), we can rewrite (16.30) as

g A;Bð Þ ¼ ntrA0JA� 2trA0JQ Bð ÞB

¼ ffiffiffi
n

p
JA� 1ffiffiffi

n
p Q Bð ÞB

����
����
2

� 1
n
trB0Q0

Bð ÞQ Bð ÞB;
ð16:35Þ

because of (2.11) and (2.12). Given B, (16.35) is minimized over A for

ffiffiffi
n

p
JA ¼ 1ffiffiffi

n
p Q Bð ÞB: ð16:36Þ

Here, we can suppose A = JA; equivalently, n�110nA ¼ 00n, as the center of coor-
dinates n�110nA may be anywhere; thus, we can set it to the origin. This allows
(16.36) to be rewritten as A ¼ n�1Q Bð ÞB. That is, when

A� ¼ JA� ¼ 1
n
Q Bð ÞB; ð16:37Þ

(16.33) holds true. By setting A� ¼ A½tþ 1� and B ¼ A½t� in (16.33) and (16.37),
respectively, we have f A½t�

� � ¼ gðA½t�;A½t�Þ � g A½tþ 1�;A½t�
� �� f A½tþ 1�

� �
, i.e.,

f A½t�
� �� f A½tþ 1�

� �
, and the update Formula (16.7) for the coordinate matrix A to be

obtained in MDS.
One feature of the derived algorithm is using an auxiliary function g(A,

B) beside f(A). The auxiliary function g(A, B) is called a majorizing function, as it
majorizes f(A) with (16.31). Algorithms with such majorizing functions are called
majorization algorithms, and they are included in auxiliary function algorithms, as
described in Appendix A.6.1.

16.7 Bibliographical Notes

Multidimensional scaling is detailed in Borg and Groenen (2005) and Cox and Cox
(2000). A book-length description of majorization algorithms is found in Groenen
(1993). Applications of MDS are intelligibly illustrated in Borg, Groenen, and Mair
(2013).

Though quasi-distance qij is restricted to a nonnegative value in this chapter,
Heiser (1991) generalized the algorithm so that it is feasible for qij being negative.
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Exercises

16:1. Let D(2) be the n � n matrix whose (i, j) element is the squared distance

ai � aj
�� ��2 between the ith and jth rows of A ¼ a1; . . .; an½ �0. Show that

D 2ð Þ ¼ 1n10ndiagðAA0Þ � 2AA0 þ diagðAA0Þ1n10n, where diag(AA′) denotes
the n � n diagonal matrix whose diagonal elements are those of AA′, as
defined in Note 12.1.

16:2. Show that �2�1JD 2ð ÞJ ¼ AA0, subject to A = JA, with J ¼ In � n�11n10n
and D(2) defined in Exercise 16.1, and discuss the rationale of minimizing

�2�1JQJ� AA0�� ��2 over A (Gower, 1966; Torgerson, 1952).
16:3. It is known that the differentiation of (16.3) with respect to aij is proportional

to ai � aj
�� ���1

, which implies that an algorithm using the differentiation for
MDS fails when ai = aj arises. Show that the majorization algorithm in this
chapter does not fail for ai = aj.

16:4. Show that the MDS solution minimizing (16.6) can be rotated.
16:5. Let Qs = (qsij) be an n � n quasi-distance data matrix obtained from source

s ¼ 1; . . .; S, with qsij the (i, j) element of Qs. In an extended version of MDS
for Q1; . . .;QS, the loss function is defined as

PS
s¼1

P
i\j ðqsij � dsijÞ2, with

dsij the weighted Euclidean distance defined as

dsij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

w2
skðaik � ajkÞ2

s
: ð16:38Þ

The above loss function is minimized over A and wsk (s ¼ 1; . . .; S;
k ¼ 1; . . .;m) subject to a certain constraint on A. Here, A = (aik) does not
have subscript s, while wsk does, implying that wsk serves to explain the
differences of Qs across sources s ¼ 1; . . .; S. Discuss how wsk explains those
differences.

16:6. Show that (16.38) is rewritten as fðai � ajÞ0W2
s ðai � ajÞg1=2 ¼

Wsai �Wsaj
�� �� ¼ Wsðai � ajÞ

�� �� with Ws ¼
ws1

. .
.

wsm

2
64

3
75 an m �

m diagonal matrix.
16:7. Show that A cannot be rotated in the extended MDS considered in Exercise

16.5, except for special cases.

16:8. Distance (16.38) can be rewritten as dsij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1

w2
sk
c2k
ðckaik � ckajkÞ2

s
. Show

that the solution is not unique without a constraint on A and the solution can
be determined uniquely by constraining each column of A to be
standardized.
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16:9. Show that

D 2ð Þ
F;Cð Þ ¼ diagðFF0Þ1n10p � 2FC0 þ 1n10pdiagðCC0Þ ð16:39Þ

expresses the n � p matrix whose (i, j) element is the squared distance
between the ith row of F (n � m) and the jth row of C (p � m). Here,
diag(FF′) is defined as in Note 12.1.

16:10. Let us consider approximating n � p data matrix X = (xij) by D(F, C), whose
elements are the square roots of the corresponding ones in (16.39), i.e.,

minimizing X� D F;Cð Þ
�� ��2 over F and C, with m � min(n, p). Discuss for

what types of X the above minimization is useful.
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Part V
Advanced Procedures

In this part, we start with advanced matrix operations (Chap. 17) as a preparation
for the chapters that follow. The matrix decomposition (MD) formulation of
exploratory factor analysis (EFA) is introduced in Chap. 18. This formulation
allows us to directly contrast the solution of EFA with that of principal component
analysis (PCA), as described in Chap. 19. Three-way PCA, which is specially
designed for three-way data, is treated in Chap. 20. Finally, in Chaps. 21 and 22,
sparse multivariate analysis procedures are introduced, in which sparse solutions are
estimated. These refer to solutions including a number of zeros. Such sparse
approaches originate in regression analysis as discussed in Chap. 21. Furthermore,
the factor analysis (FA) version can deal with the difficulties present in confirmatory
FA (Chap. 10), as explained in Chap. 22.



Chapter 17
Advanced Matrix Operations

In this chapter we introduce matrix operations that are more advanced than those
treated so far. We start by describing systems of linear equations, and then intro-
duce the Moore–Penrose (MP) inverse, considered as one of the most important
operations for statistics, as well as singular value decomposition (SVD). The MP
inverse is closely related to SVD and more useful than the ordinary inverse matrix,
which is regarded as a special case of the MP inverse. The MP inverse allows the
least squares problems to be generally formulated and is a bridge to orthogonal
complement matrices. Finally, we introduce other classes of matrix operations; the
Kronecker product, Khatri–Rao product, vec operator, and Hadamard product.

17.1 Introductory Systems of Linear Equations

A set of equations such as

3a� 5bþ 9c ¼ 7
�aþ 6b� 7c ¼ 1
4aþ 7bþ c ¼ �5

8<
: ð17:1Þ

is called a system of linear equations. The solving of (17.1) equates to obtaining
values of a, b, and c that satisfy all equations. This problem can be easily solved

using a matrix and vectors: by defining X ¼
3 �5 9
�1 6 �7
4 7 1

2
4

3
5, b ¼

a
b
c

2
4
3
5,

y ¼
7
1
�5

2
4

3
5, (17.1) is rewritten as
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Xb ¼ y ð17:2Þ

and the solution of b is given by b ¼ X�1Xb ¼ X�1y, i.e.,

b ¼ X�1y: ð17:3Þ

Since the inverse of X can be found to be X�1 ¼
2:62 3:24 �0:90
�1:29 �1:57 0:57
�1:48 �1:95 0:62

2
4

3
5, the

solution of b is given by b ¼ X�1y ¼
2:62 3:24 �0:90
�1:29 �1:57 0:57
�1:48 �1:95 0:62

2
4

3
5

7
1
�5

2
4

3
5 ¼

26:10
�13:43
�15:38

2
4

3
5.

Any system of linear equations can be expressed in the form of (17.2). Thus, we
define X, b, and y as an n � p matrix, p � 1 vector, and n � 1 vector, respectively.
In the last example, n = p and the existence of X−1 have been supposed. In the next
section, however, they are not.

17.2 Moore–Penrose Inverse and System of Linear
Equations

This example of a system of linear equations:

3a� 5bþ 9c ¼ 7
�aþ 6b� 7c ¼ 1
4aþ 7bþ c ¼ �5
2a� 8bþ 3c ¼ 6

8>><
>>: , with an

equation added to (17.1), does not have a solution, i.e., no vector b = [a, b, c]′
exists that satisfies those four equations. On the other hand, the system

3a� 5bþ 9c ¼ 7
�aþ 6b� 7c ¼ 1

�
; ð17:4Þ

with one equation deleted from (17.1) has multiple solutions, i.e., the vector b = [a,
b, c]′ satisfying (17.4) is not unique, in contrast to the unique solution for (17.1).
These examples show that we must consider whether a system has a solution or not,
and that we must consider how a solution is expressed if it exists. To consider them,
the Moore–Penrose (MP) inverse matrix can be useful.
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Note 17.1. The Moore–Penrose (MP) Inverse
For any n � p matrix X, the p � n matrix X+ satisfying

XXþX ¼ X; XþXXþ ¼ Xþ ; XXþð Þ0¼ XXþ ; and XþXð Þ0¼ XþX
ð17:5Þ

can be uniquely determined. The matrix X+ is called the Moore–Penrose
(MP) inverse of X.

If X is nonsingular with n = p and rank(X) = n, X+ equals the inverse
matrix X−1 for X introduced in Note 4.2:

X�1 ¼ Xþ if X is nonsingular: ð17:6Þ

This implies that the inverse matrix is a special case of the MP inverse.
The MP inverse of X has the following properties:

Xþð Þþ¼ X and Xþð Þ0¼ ðX0Þþ : ð17:7Þ

Further, it holds

Xþ ¼ X0 if X0X ¼ Ip: ð17:8Þ

Let us consider the system of equations, Xb = y, with b (p � 1) unknown but
X (n � p) and y (n � 1) given. Using the MP inverse, the existence of the solutions
can be shown as follows:

Note 17.2. On the Existence of Solutions
The following three statements are known to be equivalent (e.g., Schott,
2015, Sect. 6.2; Seber, 2008, Sect. 13.1.1):

The equation Xb ¼ y for given X and y has a solution of b: ð17:9Þ

XXþ y ¼ y: ð17:10Þ

rank X; y½ �ð Þ ¼ rank Xð Þ: ð17:11Þ

If (17.9), (17.10), or (17.11) holds, all solutions of Xb ¼ y can be expressed
as

b ¼ Xþ yþðIp � XþXÞq; ð17:12Þ
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with q an arbitrary p � 1 vector. This fact is proved as follows. We can find
(17.12) ) Xb ¼ y by substituting (17.12) in Xb; this leads to
X Xþ yþ Ip � XþX

� �
q

� � ¼ XXþ y� X� XXþXð Þq ¼ yþðX� XÞq ¼
y, because of (17.5) and (17.10). Conversely, Xb ¼ y implies XþXb ¼
Xþ y and thus b ¼ bþXþ y� XþXb ¼ Xþ yþ Ip � XþX

� �
b: (17.12)

holds for q ¼ b.
Equation (17.12) implies

b is unique; if XþX ¼ Ip
not unique; otherwise

�
: ð17:13Þ

To illustrate Note 17.2, we rewrite (17.4) in the form of Xb = y, with

X ¼ 3 �5 9
�1 6 �7

� �
, b = [a, b, c]′, y = [7, 1]′. Then, we have Xþ ¼

0:24 0:26
0:22 0:31
0:15 0:09

2
4

3
5 which can be found to satisfy (17.10), and (17.12) shows that the

solution of (17.9) is given by b ¼ Xþ yþ ðI3 � XþXÞq =
1:94
1:83
1:15

2
4

3
5þ

0:54 �0:34 �0:37
�0:34 0:21 0:23
�0:37 0:23 0:25

2
4

3
5q.

17.3 Singular Value Decomposition
and the Moore–Penrose Inverse

Let X be an n � p matrix with rank(X) = r � min (n, p) and its singular value
decomposition (SVD) defined as in Theorem A.3.2, i.e.,

X ¼ KKL0; ð17:14Þ

with K0K ¼ L0L ¼ Ir and K ¼
k1

. .
.

kr

2
64

3
75 is an r � r diagonal matrix whose

diagonal elements are all positive. Then, its MP inverse is expressed as
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Xþ ¼ LK�1K0 ð17:15Þ

with K�1 ¼
1=k1

. .
.

1=kr

2
64

3
75. We can easily ascertain that (17.15) satisfies

(17.5). The MP inverse of X may be defined by (17.15) rather than (17.5).
The SVD expression (17.15) for the MP inverse allows us to easily derive the

properties listed next.

Note 17.3. Properties of the MP Inverse

XXþ and XþX are symmetric and idempotent ð17:16Þ

X0XXþ ¼ X0 ¼ XþXX0 ð17:17Þ

X0Xþ 0Xþ ¼ Xþ ¼ XþXþ 0X0 ð17:18Þ

ðX0XÞþ ¼ XþXþ 0; ðXX0Þþ ¼ Xþ 0Xþ ð17:19Þ

ðX0XÞþX0 ¼ Xþ ¼ X0ðXX0Þþ ð17:20Þ

XðX0XÞþX0X ¼ X ¼ XX0ðXX0ÞþX ð17:21Þ

rank Xð Þ ¼ rank Xþð Þ ¼ rank XXþð Þ ¼ rank XþXð Þ ð17:22Þ

XXþ ¼ In if rank Xð Þ equals n the number of the rows of Xð Þ ð17:23Þ

XþX ¼ Ip if rank Xð Þ equals pðthe number of the columns of XÞ
ð17:24Þ

For example, (17.17) can be found using the fact that (17.14) and (17.15) imply

XXþ ¼ KK0 and XþX ¼ LL0: ð17:25Þ

They lead to X0XXþ ¼ LKK0 KK0ð Þ ¼ LKK0 ¼ X0 and XþXX0 ¼ LL0ð ÞLKK0 ¼
LKK0 ¼ X0. Further, (17.24) follows from (17.25) and (A.3.2), and these two
equations lead to (17.23) in a parallel manner.

We can also find (17.20) as follows. (17.14) leads to X0X ¼ LK2L0 and
XX0 ¼ KK2K. From (17.15), their MP inverses are expressed as

17.3 Singular Value Decomposition and the Moore–Penrose Inverse 265



ðX0XÞþ ¼ LK�2L0 and ðXX0Þþ ¼ KK�2K0: ð17:26Þ

Multiplication of the matrices in (17.26) and the transposition of (17.14) lead to
X0Xð ÞþX0 ¼ LK�2L0LKK0 ¼ LK�1K0 ¼ Xþ and X0 XX0ð Þþ¼ LKK0KK�2K0 ¼
LK�1K0 ¼ Xþ .

The properties in Note 17.3 and others are proved in Magnus and Neudecker
(2019, pp. 38–39) without using SVD.

17.4 Least Squares Problem Solved with Moore–Penrose
Inverse

As explained in Appendix A.2.2, the least square function

f Bð Þ ¼ Y� XBk k2 ð17:27Þ

is minimized for B ¼ X0Xð Þ�1X if X′X is nonsingular. However, this condition of
nonsingularity is not indispensable, as shown using the MP inverse in the next
paragraph.

Function (17.27) is minimized for

B ¼ XþY; i:e:; XB ¼ PXY; ð17:28Þ

with

PX ¼ XXþ ¼ KK0 ð17:29Þ

using the fact that (17.27) is decomposed as

Y� XBk k2¼ Y� PXYk k2 þ PXY� XBk k2: ð17:30Þ

On the right side, only the term PXY� XBk k2 is dependent on B, and this term
becomes zero for (17.28). The decomposition (17.30) is derived as follows: (17.27)
can be rewritten as

Y� XBk k2 ¼ Y� PXYþPXY� XBk k2

¼ Y� PXYk k2 þ PXY� XBk k2 þ 2trC;
ð17:31Þ
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with

C ¼ ðY� PXYÞ0ðPXY� XBÞ ¼ Y0PXY� Y0XB� Y0P0
XPXYþY0P0

XXB:

ð17:32Þ

This C is found to be a zero matrix, since (17.29) leads to PX ¼ P0
X, P

0
XPX ¼ PX,

and P0
XX ¼ PXX ¼ XXþX ¼ X.

The above facts suggest that the regression analysis formulated as (4.8) is fea-
sible even if p (the number of the columns of X containing explanatory variables) is
greater than n (the number of the rows of X), although the uselessness of such
analysis is discussed in Sect. 21.6.

In A.2.2, a projection matrix in (A.2.10) is introduced on the supposition that
X′X is nonsingular. However, this is not requisite: A necessary and sufficient
condition for a matrix M to be a projection matrix is M′ = M and MM = M
(Yanai, Takeuchi, & Takane, 2011). Thus, (17.29) is a projection matrix. In more
detail, the projection in this book refers to one in a narrow sense. It can be defined
in a wider sense (Yanai et al., 2011).

Now, let us consider a generalized least squares problem of minimizing

f ðGÞ ¼ Y� XGZ0k k2 ð17:33Þ

over G for given Y, X, and Z. This is called the Penrose regression problem
(Penrose, 1956). Function (17.33) is minimized for

G ¼ XþYZþ 0; i:e:;XGZ0 ¼ PXYP0
Z ð17:34Þ

with

PX ¼ XXþ and PZ ¼ ZZþ : ð17:35Þ

This result follows from reexpressing (17.33) as

Y� XGZk k2 ¼ Y� PXYP0
Z þPXYP0

Z � XGZ0		 		2
¼ Y� PXYP0

Z

		 		2 þ PXYP0
Z � XGZ0		 		2 þ 2trN;

ð17:36Þ

with

trN ¼ tr Y� PXYP0
Z

� �0 PXYP0
Z � XGZ0� �

¼ trY0PXYP0
Z � trY0XGZ0 � trPZY0P0

XPXYP0
Z þ trPZY0P0

XXGZ0

¼ trY0PXYP0
Z � trY0XGZ0 � trY0PXYP0

Z þ trY0XGZ0 ¼ 0:

ð17:37Þ
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Here, we have used the fact that (17.29) and (17.35) lead to P0
X ¼ PX, P0

XPX ¼ PX,
and P0

XX ¼ PXX ¼ XXþX ¼ X, which also implies P0
Z ¼ PZ, P0

ZPZ ¼ PZ, and

Z0PZ ¼ P0
ZZ

� �0¼ PZZð Þ0¼ Z0. Thus, on the right side of (17.36), G appears only in

PXYP0
Z � XGZ0		 		2 � 0, which is zero in the case of (17.34).

17.5 Orthogonal Complement Matrix

Let us next consider a matrix whose columns are orthogonal to those of
X (n � p) with its SVD defined as (17.14) and r = rank(X):

Note 17.4. Orthogonal Complement Matrix
The n � q matrix X⊥ satisfying

X0X? ¼pOq ð17:38Þ

is called the orthogonal complement (OC) matrix of X. A matrix of X⊥ in
(17.38) is generally expressed as

X? ¼ In � X0 þX0ð ÞM: ð17:39Þ

Here, M is an arbitrary n � q matrix. This fact is proved in the next
paragraph.

We can find (17.39) ) (17.38), by substituting (17.39) on the left side of
(17.38): X0 In � X0 þX0ÞM ¼ X0 � X0X0 þX0ð ÞM ¼ X0 � X0ð ÞM ¼ pOq

�
.

Conversely, (17.38) implies X0 þX0X? ¼ nOq and thus X? ¼ X? �
X0 þX0X? ¼ In � X0 þX0ð ÞX?: (17.39) holds for M = X⊥.

We can use (17.7) and (17.25) to rewrite (17.39) as

X? ¼ In � XXþð Þ0
h i

M ¼ In �KK0ð ÞM: ð17:40Þ

Now, we suppose that X is centered with

10nX ¼ 00p: ð17:41Þ

Then, the centered OC matrix of X, i.e., the n � q matrix �X? that satisfies both

X0 �X? ¼pOq and 10n �X? ¼ 00q; ð17:42Þ
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is generally expressed as

�X? ¼ ðIn � X0 þX0Þ �M ð17:43Þ

with �M an arbitrary n � q matrix satisfying

10n ¼ �M ¼ 00q: ð17:44Þ

This fact is shown in the next paragraph.
We can find (17.43) ) (17.42) as follows: (17.43) ) X0 �X? ¼pOq is derived as

(17.39) ) (17.38) was derived in Note 17.4, while (17.43) ) 10n �X? ¼ 00q follows
from the fact that (17.43) can be rewritten as �X? ¼ ðIn �KK0Þ �M using (17.40).
This leads to

10n �X? ¼ ð10n � 10nKK0Þ �M ¼ 10n �M ¼ 00q: ð17:45Þ

Here, we have used (17.44) and the equality 10nK ¼ 00r that follows from (17.14)
implying K ¼ XLK�1 with (17.41). Conversely, (17.42) ) (17.43) follows from
the fact that (17.42) leads to X0 þX0 �X? ¼nOq and thus
�X? ¼ �X? � X0 þX0 �X? ¼ ðIn � X0 þX0Þ�X?: (17.43) holds for �M ¼ �X? with this
satisfying (17.44).

Now, let us suppose that (17.41) does not necessarily hold and
s = rank(X⊥) � m, with X⊥ given by (17.39). On these suppositions, we consider
an n � m matrix X�

?, which can be called the column-orthonormal OC matrix of X,
i.e., it satisfies both

X0X�
? ¼pOm and X�0

?X
�
? ¼ Im: ð17:46Þ

Such a matrix X�
? can be obtained through the SVD of (17.39):

ðIn � X0 þX0ÞM ¼ VHW0: ð17:47Þ

Here, V0V ¼ W0W ¼ Is, and H is an s � s diagonal matrix with its diagonal
elements all positive. The matrix X�

? defined as

X�
? ¼ VS ¼ ðIn � X0 þX0ÞMWH�1S: ð17:48Þ
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satisfies (17.46), with S an arbitrary s � m matrix meeting S0S ¼ Im and the last
identity in (17.48) following from (17.47). That identity and S0V0VS ¼ S0S ¼ Im
allow us to find that (17.48) meets (17.46).

The centered OC matrix and the column-orthonormal OC matrix were treated in
the last paragraphs. Now, we consider a centered and column-orthonormal OC
matrix of the centered X, on the supposition of t = rank(�X?) � m with �X? given
by (17.43). That is, to be considered is the n � m matrix �X�

? that satisfies the three
conditions

X0 �X�
? ¼pOm; �X�0

? �X
�
? ¼ Im; and 10n �X

�
? ¼ 00q: ð17:49Þ

for (17.41). This matrix �X�
? is given through the SVD of (17.43) defined as

ðIn � X0 þX0Þ �M ¼ HXQ0: ð17:50Þ

Here, �M meets (17.44), H0H ¼ Q0Q ¼ It, and X is a t � t diagonal matrix whose
diagonal elements are all positive. The matrix defined as

�X�
? ¼ HT ¼ ðIn � X0 þX0Þ �MQX�1T: ð17:51Þ

satisfies (17.49), with T0T ¼ Im and the last identity following from (17.50). As
(17.45) is found, we can find (17.51) to satisfy 10n �X

�
? ¼ 00q. This fact, the last

identity in (17.51), and T0H0HT ¼ Im allow us to find that (17.51) meets (17.49).

For example, for X ¼

6 �2 3
3 1 �5
2 0 2
�2 �1 5
�3 2 �2
�6 0 �3

2
6666664

3
7777775

with (17.41), �X�
? ¼

�0:154 �0:500
�0:239 0:489
0:795 0:163
�0:411 0:460
�0:240 �0:514
0:249 �0:097

2
6666664

3
7777775

obtained through (17.51) is one of the 6 � 2 matrices

satisfying (17.49).
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17.6 Kronecker Product

The operations in this and the next two sections are only used in Chap. 20. Hence,
in these three sections, symbols are used in the same convention as Chap. 20: we
express the series of integers as k ¼ 1; . . .;K and p ¼ 1; . . .;P, for example, rather
than, i ¼ 1; . . .; n and j ¼ 1; . . .; p often used so far. Thus, the case of the characters
should be carefully noted (e.g., “K” or “k”).

The Kronecker product, which is denoted by ⊗, is defined as follows.

Note 17.5. The Kronecker Product
From two matrices C ¼ ckrð ÞðK � RÞ and B ¼ bjq

� �ðJ � QÞ, the Kronecker
product gives the KJ � RQ matrices

C� B ¼
c11B 	 	 	 c1RB

..

.

cK1B 	 	 	 cKRB

2
64

3
75 and B� C ¼

b11C 	 	 	 b1QC

..

.

bJ1C 	 	 	 bJQC

2
64

3
75:

ð17:52Þ

For example, if C ¼ 1 0
�3 2

� �
and B ¼ �6 4

5 �7

� �
, then

C� B ¼
�6 4 0 0
5 �7 0 0
18 �12 �12 8
�15 21 10 �14

2
664

3
775 and

B� C ¼
�6 0 4 0
18 �12 �12 8
5 0 �7 0

�15 10 21 �14

2
664

3
775:

Let two vectors be defined as c ¼ c1; . . .; cK½ �0 and b ¼ b1; . . .bJ½ �. Their
Kronecker product c ⊗ b gives the KJ � 1 vector:

c� b ¼
c1b
..
.

cKb

2
64

3
75: ð17:53Þ
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We also find

c� b0 ¼
c1b0

..

.

cKb0

2
64

3
75 ¼

c1b1 	 	 	 c1bJ
..
. ..

. ..
.

cKb1 	 	 	 cKbJ

2
64

3
75 ¼ cb0 ¼ b1c; . . .; bJc½ � ¼ b0 � c:

ð17:54Þ

The Kronecker product has the following properties:

ðC� BÞ0 ¼ C0 � B0; ð17:55Þ

ðC� BÞðX� YÞ ¼ CXð Þ � BYð Þ; ð17:56Þ

trðC� BÞ ¼ ðtrCÞðtrBÞ; ð17:57Þ

rankðC� BÞ ¼ rank Cð Þrank Bð Þ; ð17:58Þ

ðC� BÞþ ¼ Cþ � Bþ : ð17:59Þ

This and (17.58) imply that ðC� BÞ�1 ¼ C�1 � B�1 if C and B are nonsingular.

17.7 Khatri–Rao Product

While the symbol 
 is used to represent various operations in the literature, we use
it to denote the Khatri–Rao Product (Rao & Mitra, 1971; Rao & Rao, 1998) in this
book. The definition of the product is as follows.

Note 17.6. The Khatri–Rao Product
From C ¼ ckp

� � ¼ c1; . . .; cP½ �ðK � PÞ and B ¼ b1; . . .; bP½ �ðJ � PÞ, the
Khatri–Rao product gives the KJ � P matrix

C 
 B ¼ c1; . . .; cP½ � 
 b1; . . .; bP½ � ¼ ½c1 � b1; . . .; cP � bP�

¼
c11b1 c1PbP
..
. 	 	 	 ..

.

cK1b1 cKPbP

2
64

3
75: ð17:60Þ
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For example, if C ¼ 1 0
�3 2

� �
and B ¼ �6 4

5 �7

� �
, then

C 
 B ¼
�6 0
5 0
18 8
�15 �14

2
664

3
775 and B 
 C ¼

�6 0
18 8
5 0

�15 �14

2
664

3
775:

For A ¼ a1; . . .; aP½ �ðI � PÞ and B ¼ b1; . . .; bP½ �ðJ � PÞ, we have

ðB 
 AÞ0ðB 
 AÞ ¼ IP if A0A ¼ B0B ¼ IP: ð17:61Þ

This can be proved as follows: B 
 A ¼ ½b1 � a1; . . .; bp � ap� leads to

ðB 
 AÞ0ðB 
 AÞ ¼
ðb1 � a1Þ0

..

.

ðbP � aPÞ0

2
664

3
775½b1 � a1; . . .; bP � aP�

¼
ðb01 � a01Þðb1 � a1Þ 	 	 	 ðb01 � a01ÞðbP � aPÞ

..

. ..
. ..

.

ðb0P � a0PÞðb1 � a1Þ 	 	 	 ðb0P � a0PÞðbP � aPÞ

2
664

3
775

¼
ðb01b1Þ � ða01a1Þ 	 	 	 ðb01bPÞ � ða01aPÞ

..

. ..
. ..

.

ðb0Pb1Þ � ða0Pa1Þ 	 	 	 ðb0PbPÞ � ða0PaPÞ

2
664

3
775

¼
ðb01b1Þða01a1Þ 	 	 	 ðb01bPÞða01aPÞ

..

. ..
. ..

.

ðb0Pb1Þða0Pa1Þ 	 	 	 ðb0PbPÞða0PaPÞ

2
664

3
775;

ð17:62Þ

where we have used (17.55), (17.56), and the inner product of vectors providing a
scalar. On the rightest side of (17.62), it can be found that ðb0pbqÞða0paqÞ is 1 for
p = q, but 0 for p 6¼ q, since A0A ¼ B0B ¼ IP in (17.61) implies that b0pbq and a

0
paq

are both equal to one if p = q, and otherwise zero.
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17.8 Vec Operator

The vec operator, which is denoted by vec(), stacks the columns of a matrix
vertically to produce a vector, as shown next.

Note 19.3. The Vec Operator
For I � J matrix X ¼ x1; x2; . . .; xJ½ �, the operator gives JI � 1 vector:

vec Xð Þ ¼
x1
x2
..
.

xJ

2
6664

3
7775 ð17:63Þ

For example, if X ¼ 1 2
3 4

� �
, then vec Xð Þ ¼

1
3
2
4

2
664
3
775 ¼ 1 3 2 4½ �0.

For vectors x ¼ x1; . . .; xI½ �0 and y ¼ y1; . . .; yJ½ �0

vec xð Þ ¼ vecðx0Þ ¼ x ð17:64Þ

vecðxy0Þ ¼ vec y1x; . . .; yJx½ �ð Þ ¼
y1x
..
.

yJx

2
64

3
75 ¼ y� x ð17:65Þ

Let X1; . . .;XK be matrices of the same size with a1; . . .; aK scalars. It can then
be found that vec(a1X1) = a1vec(X1) and vec(X1 + X2) = vec(X1) + vec(X2). This
implies vec(a1X1 + a2X2) = a1vec(X1) + a2vec(X2). This can be generalized as

vec
XK
k¼1

akXk

 !
¼
XK
k¼1

akvecðXkÞ: ð17:66Þ

For any I � J matrix X, P � I matrix Y, and J � Q matrix Z,

vecðYXZÞ ¼ Z0 � Yð ÞvecðXÞ and vecðYXZÞ0 ¼ vecðXÞ0 Z� Y0ð Þ ð17:67Þ
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hold true. Here, the left equality is derived as follows: Let e0j denote a
1 � J elementary vector which is filled with zeros except for the jth element which
is one. Then, we have

X ¼ x1; . . .; xJ½ � ¼
XJ
j¼1

xje0j: ð17:68Þ

Using this, (17.54), (17.56), (17.65), and (17.66), we can show

vecðYXZÞ ¼ vec Y
XJ
j¼1

xje0jZ

 !
¼ vec

XJ
j¼1

Yxje0jZ

 !
¼
XJ
j¼1

vecðYxje0jZÞ

¼
XJ
j¼1

vec½YxjðZ0ejÞ0� ¼
XJ
j¼1

½ðZ0ejÞ � ðYxjÞ� ¼
XJ
j¼1

½ðZ0 � YÞðej � xjÞ�

¼ ðZ0 � YÞ
XJ
j¼1

ðej � xjÞ ¼ ðZ0 � YÞ
XJ
j¼1

vecðxje0jÞ ¼ ðZ0 � YÞvec
XJ
j¼1

xje0j

 !

¼ Z0 � Yð ÞvecðXÞ:

The right equality in (17.67) is derived from the left one using (17.55).

17.9 Hadamard Product

The Hadamard product of two matrices A = (aij) and B = (bij) of the same size
n � p is defined as the element-wise product:

A� B ¼ aijbij
� � ¼

a11b11 	 	 	 a1pb1p
..
. ..

. ..
.

an1bn1 	 	 	 anpbnp

2
64

3
75: ð17:69Þ

For example, if A ¼ 1 0
�3 2

� �
and B ¼ �6 4

�5 �7

� �
, then A� B ¼ B� A ¼

�6 0
15 �14

� �
.
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17.10 Bibliographical Notes

Banerjee and Roy (2014) and Schott (2005) are among the textbooks recommended
for learning the advanced matrix operation. Exhaustive descriptions for the matrix
operation are also found in Harville (1997) and Seber (2008). Although differential
calculus for matrices is the main subject in Magnus and Neudecker (2019), its
Chaps. 1–3 and 11 are useful for understanding matrix algebra. The computational
aspects in matrices are specially emphasized in Eldén (2007) and Gentle (2017).
Formulas for matrix operations are exhaustively listed in Lütkepohl (1996).

Horn and Johnson (2019) is among the most advanced books of matrix algebra,
as is Golub and van Loan (2013) for matrix computations.

Exercises

17:1. Let us replace the vectors y and b in the equation Xb = y by matrices as
XB = Y: Consider the equation XB = Y for given X (n � p) and
Y (n � q). Show that if XXþY ¼ Y, the solution of B (p � q) for the
equation is given by B ¼ XþYþ Ip � XþX

� �
Q with Q an arbitrary

p � q matrix.
17:2. Let S be symmetric and its eigenvalue decomposition (EVD) be defined as

S ¼ EHE0, with rankðSÞ ¼ r;E0E ¼ Ir, and H being the diagonal matrix
whose diagonal elements are not zero. Show Sþ ¼ EH�1E0. See
Appendix A.3.4 for the EVD.

17:3. Use the SVD of X to show (17.21) and (17.22).
17:4. Argue how the MP inverse is more useful than the inverse matrix.
17:5. Let N be n � n. Show that if rank(N) = n, the n � q orthogonal comple-

ment (OC) matrix of N is nOq.
17:6. Let Y (m � p) be the row-orthogonal complement matrix of

X (n � p) satisfying YX0 ¼mOn. Show Y ¼ R Ip � X0X0 þ� �
with R an

arbitrary m � p matrix.

17:7. Discuss the equivalence between minimizing X� FA0 þF?B0ð Þk k2 over

F (n � p) and minimizing X� FA0 þUB0ð Þk k2 over F and
U (n � q) subject to F0U ¼ pOq, where F⊥ is the n � q OC matrix of F.

17:8. Let G = [F, U] be the n � (p + q) block matrix with F and U being
n � p and n � q, respectively. Show that G0G ¼ Ipþ q implies F being the
column-orthonormal OC matrix of U and this being the
column-orthonormal OC matrix of F.

17:9. Let each of I � 1 random vectors x1; . . .; xK follows the I-variate normal
distribution whose mean vector is l (I � 1) and covariance matrix is
R (I � I). Show that we can express
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x1
..
.

xK

2
64

3
75�NKIð1K � l; IK � RÞ;

if xK and xl are mutually uncorrelated for k 6¼ l (k ¼ 1; . . .;K; l ¼ 1; . . .;K).

17:10. LetXk ¼ xijk
� �

k ¼ 1; . . .;Kð Þ an I � J data matrix, whose (i, j) element is xijk
andmodeled as xijk ¼ ai þ bj þ eijk with eijk an error. Show that the model can
be rewritten as ½vecðX1Þ; . . .; vecðXKÞ� ¼ ð1J � aÞ10K + ðb� 1IÞ10K þ
½vecðE1Þ; . . .; vecðEKÞ� with a ¼ ½a1; . . .; aI �0, b ¼ ½b1; . . .; bJ �0, and
Ek k ¼ 1; . . .;Kð Þ being the I � J matrix whose (i, j) element is eijk.

17:11. Let X and Y be n � p matrices. Show 10nðX� YÞ1p ¼ trXY0.

17:12. Let R ¼ VDV′ be a p � p matrix with D being an r � r diagonal matrix.
Show that ðV� VÞD1r ¼ 1p stands for all diagonal elements of R being
ones.

17:13. Discuss the implication of the following problem: for a n � p data matrix
X = (xij) including unobserved elements (i.e., missing ones), minimize
f Z;Wð Þ ¼ ðW� XÞ � Zk k2 over W = (wij) and Z ¼ (zij), subject to the
constraints: rank(Z) < rank(X), and wij = 1 if xij is observed, but wij being
unknown otherwise.
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Chapter 18
Exploratory Factor Analysis (Part 2)

In Chap. 12, exploratory factor analysis (EFA) was formulated as a probabilistic
model. However, EFA can also be formulated as a kind of matrix decomposition
problem, without using the notion of probabilities. This formulation of EFA was
proposed in 2001 by Professor Henk A. L. Kiers at the University of Groningen, as
found in Sǒcan’s (2003, p. 17) Ph.D. thesis from the same university. In this
formulation, common and unique factor scores, loadings, and unique variances are
all treated as fixed unknown parameters in matrices. As it leads to a procedure
which is fully based on matrix algebra, the EFA procedure can be referred to as
matrix decomposition factor analysis (MDFA). In contrast, the procedure in
Chapter 12 can be called latent variable factor analysis (LVFA), as factor scores are
treated as random latent variables. MDFA and LVFA are found to provide almost
equivalent solutions of factor loadings and unique variances. However, the
strengths of MDFA are that essential properties of FA are elucidated with the
frameworks of matrix algebra, the model part approximating a data set can be
identified, and the optimal factor scores can be expressed by a formula, which
cannot be done in LVFA.

18.1 Matrix Decomposition Formulation

Professor Henk A. L. Kiers at the University of Groningen, Netherlands, proposed
the matrix decomposition formulation of exploratory factor analysis (EFA) in 2001,
as mentioned in this chapter’s introduction. This formulation is introduced simply
by adding the matrix product UW1/2 into the PCA model (5.1) or (5.3) (Chap. 5).
EFA can be modeled as

X ¼ FA0 þUW1=2 þE ð18:1Þ

© Springer Nature Singapore Pte Ltd. 2020
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
https://doi.org/10.1007/978-981-15-4103-2_18
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for an n-individuals � p-variables centered data matrix X = (xij) with 1
0
nX ¼ 00p and

n > p. Here, the superscript 1/2 is attached to W as W1/2, so that its square corre-
sponds to (12.5) in Chap. 12 as explained later. The model (18.1) can also be
expressed visually as

X = F 

A′

+ U + E 
ΨΨ1/2

ð18:2Þ
The matrices in (18.1) or (18.2) are listed as follows:

F = (fik): n (individuals) � m (common factors) matrix of common factor scores;
U = (uij): n (individuals) � p (unique factors) matrix of unique factor scores;
E = (eij): n (individuals) � p (variables) matrix of errors;
A = (ajk): p (variables) � m (common factors) matrix of factors loadings;
W1/2: p (unique factors) � p (variables) diagonal matrix, whose jth diagonal element
is expressed as wj

1/2.

A key point is that m < p (< n), i.e., the number of common factors is less than
the number of variables, as shown in (18.2), where F is narrower than X. The
relationships of p variables to m common factors are described by the loading
matrix A. On the other hand, the number of unique factors is equal to the number of
variables: X and U are of the same size as in (18.2). Further, the matrix W1/2, which
relates U to X, is diagonal. This implies that each column of U and X has a
one-to-one correspondence.

The differences between the common factors in F and the unique factors in
U can be seen in the diagram in Fig. 18.1, which illustrates the EFA model (18.1) or

xi1 xi5xi4xi3xi2

1
1/2

2
1/2

3
1/2

4
1/2

5
1/2

a11

a12

a21

a22

a31

a32

a42

a51

a52

a41

fi1 fi2

ui1 ui2 ui3 ui4 ui5
Fig. 18.1 Graphical
representation of matrix
decomposition FA (MDFA)
with p = 5 and m = 2
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(18.2) with p = 5 and m = 2. As seen here, a few common factors account for all
variables with the loadings in A = (ajk) being coefficients, while the jth unique
factor uij specifically affects the jth variable xij with wj

1/2 a coefficient. The diagram
has the same form as Fig. 12.1, with factors depicted as squares rather than ellipses
and circles in Fig. 12.1. This is in order to emphasize the difference of factor scores
being treated as elements in fixed matrices in (18.1) as opposed to latent variables in
Chap. 12, as detailed later.

The common and unique factor score matrices F and U in (18.1) or (18.2) are
constrained through

10nF ¼ 0m and 10nU ¼ 0p; ð18:3Þ

1
n
F0F ¼ Im;

1
n
U0U ¼ Ip; and F0U ¼ m Op: ð18:4Þ

The constraints in (18.3) and (18.4) imply that the factor scores are centered and
standardized, with the scores in a column of [F, U] uncorrelated to those in the other
columns. This uncorrelatedness can also be found in Fig. 18.1, where no factors are
linked with each other.

The matrices F, A, U, and W1/2 in (18.1) or (18.2) are treated as unknown
parameter matrices to be estimated. For the estimation, a least square function is
defined as the sum of the squared elements of E in (18.1) or (18.2):

f F;U;A;W1=2
� �

¼ f ðZ;BÞ ¼ Ek k2¼ X� FA0 þUW1=2
� ���� ���2

¼ X� ½F;U� A;W1=2
h i0��� ���2¼ X� ZB0k k2;

ð18:5Þ

where Z = [F, U] and B = [A, W1/2] are n � (m + p) and p � (m + p) block
matrices. Using Z, the constraints in (18.3) and (18.4) are summarized as

10nZ ¼ 0mþ p; ð18:6Þ

1
n
Z0Z ¼ Imþ p: ð18:7Þ

That is, EFA can be formulated by minimizing (18.5) over Z and B subject to (18.6)
and (18.7) in the matrix decomposition formulation. We call this procedure as
matrix decomposition factor analysis (MDFA). Here, it should be noted that con-
straint (18.7) or (18.4) implies n � m + p, since of the following facts: (3.34) and
(18.7) lead to rank(Z) = m + p, and the comparison of this result with (3.32) allows
us to find that m + p � min(n, m + p), i.e., m + p � n is required.
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18.2 Comparisons to Latent Variable Formulation

The model for MDFA expressed in (18.1–18.4) can be compared to the corre-
sponding model in Chap. 12 by replacing e in the latter with W1/2u. The replace-
ment allows (12.3) and (12.4) to be rewritten as

x ¼ Af þW1=2u; ð18:8Þ

W1=2u�Np 0p;W
� �

; or equivalently, u�Np 0p; Ip
� �

: ð18:9Þ

with f (m � 1) and u (p �1) common and unique factor score vectors, respectively,
Here, we note (12.6) again:

f �Nm 0m; Imð Þ: ð18:10Þ

The assumption of mutual independence of f and e described in Sect. 12.3 is
equivalent to assuming that f and u are distributed mutually independently. In
(18.8–18.10), the scores in f and u are treated as random latent variables which can
take various values. In this sense, we can refer to the EFA procedure in Chap. 12 as
latent variable factor analysis (LVFA).

LVFA can be related to MDFA in the last section as follows: The transposes of
the vectors f and u in the LVFA model (18.8) correspond to each row of F and U in
the MDFA model in (18.1) or (18.2). The LVFA assumption u * Np(0p, Ip) in
(18.9) corresponds to the MDFA constraints 10nU ¼ 0p in (18.3) and n�1U0U ¼ Ip
in (18.4). Analogously, the LVFA assumption (18.10) corresponds to the MDFA
constraints 10nF ¼ 0p in (18.3) and n�1F0F ¼ Im in (18.4). Finally, the LVFA
assumption of mutual independence of f and u is associated with the MDFA
constraint F′U = mOp in (18.4).

The covariance matrix among the columns of the unique factor part UW1/2 in the

MDFA model (18.1) is given by n�1 UW1=2
� �0

JUW1=2 ¼ W with

J ¼ In � n�11n10n, since of (18.4) and JUW1/2= UW1/2 following from (3.20) and
(18.3). Thus, the diagonal elements of W, i.e., w1, …, wp, can be called unique
variances, like those in LVFA (Sect. 12.3).

One difference between LVFA and MDFA is that the unique factor part
e = W1/2u can be viewed as an error variable in LVFA (18.8), while the error matrix
E is a necessary addition to the unique factor part UW1/2 in MDFA (18.1). This is
due to the fact that the part FA′ + UW1/2 in (18.1) is a fixed matrix and cannot be
equalized to X. In spite of this difference, the LVFA and MDFA solutions of A and
W have been found to be almost equivalent, as illustrated in the next section.

We must note that the factor scores in F and U are the parameters to be optimally
estimated in MDFA as in (18.5). On the other hand, the scores are treated as random
vectors f and u in LVFA and their optimal estimation is out of scope, in line with
f and u being absent from the LVFA objective function (12.9); its optimization only
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aims to obtain the optimal A andW, though the resulting A andW allows the f value
for a particular individual to be obtained through optimizing an objective function
other than (12.9) (e.g., Yanai & Ichikawa, 2007; Mulaik, 2010).

18.3 Solution of Loadings and Unique Variances

Before explaining how (18.5) is minimized in MDFA, we illustrate its solution for
B = [A, W1/2]. Here, it must be noted that the solution can also be rotated by the
procedures in Chap. 13, as the MDFA solution has the same rotational indeter-
minacy as explained in Sect. 12.5. That is, we can substitute AT for A and FT for
F in (18.1–18.4), without changing the equations. Here, T is an m � m orthonormal
matrix with T′T = TT′ = Im. Furthermore, this condition may be relaxed as
T being a nonsingular matrix satisfying diag(T′T) = Im. Here, diag(T′T) stands for
the m � m diagonal matrix whose diagonal elements are those of T′T, as defined in
Note 12.1. Hence, we can substitute AT′−1 for A and FT for F in (18.1–18.4),
without changing the equations, except n−1F′F = Im. This exception is not a
problematic one as explained in Sect. 12.5. When the resulting F in MDFA with
constraint n−1F′F = Im is rotated to FT with diag(T′T) = Im, the substitution of the
resulting FT into F in n−1F′F leads to n−1T′F′FT = T′(n−1F′F)T = T′T. This
matrix can be regarded as containing factor correlations, since diag(T′T) = Im.

For standard scores of the data set in Table 10.1, MDFA followed by the oblique
geomin rotation (Sect. 13.5) provides the loadings, unique variances, and factor
correlation presented in Table 18.1. Let us compare the results with the corre-
sponding LVFA ones in Table 12.1(B). One difference is that the former table has
the column “Residual”, in which rj ¼ n�1 Pn

i¼1 e
2
ij for variable j is presented with eij

the (i, j) element of the resulting E. This rj is explained later in Sect. 18.7. The
index rj is not presented in the LV approach, whose model does not have E as
described in Sect. 18.2.

Table 18.1 MDFA solution
for the standard scores of the
data in Table 10.1(A) with
AT obtained by the geomin
rotation

j AT wj Residual

A 0.82 0.07 0.25 0.0026

C −0.14 0.84 0.38 0.0007

I 0.74 0.04 0.42 0.0015

B −0.04 −0.81 0.30 0.0014

T 0.03 0.89 0.18 0.0013

V 0.88 0.01 0.22 0.0019

H −0.82 0.09 0.39 0.0028

P 0.23 0.59 0.47 0.0016

Correlation 0.48
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Except for the “Residual” column, the solutions from MDFA and LVFA [i.e.,
Tables 18.1 and 12.1(B)] are almost equivalent. Thus, the interpretation of the
loadings, unique variances, and factor correlation is also the same for the MDFA
and LVFA solutions. Such broad equivalence of MDFA and LVFA solutions can
be found for other data sets (Adachi & Trendafilov, 2019).

18.4 Iterative Algorithm

In this section, we present the MDFA algorithm for obtaining B = [A, W1/2],
leaving its derivation to be explained later. Here, we suppose

rankðXBÞ ¼ p: ð18:11Þ

This implies rank (X) = p and rank(B) = p (the number of rows in B), with the
latter leading to

BBþ ¼ Ip ð18:12Þ

because of (17.23).
Let V = n−1X′X be the inter-variable covariance matrix and

SXZ ¼ 1
n
X0Z ¼ 1

n
X0F;

1
n
X0U

� �
¼ SXE; SXU½ � ð18:13Þ

denote the p-variables � (m + p)-factors covariance matrix, where
SXF = n−1X′F contains the covariances of p variables to m common factors, and
SXU = n−1X′U consists of the covariances of p variables to p unique factors. Then,
the MDFA algorithm for obtaining B = [A, W1/2] can be listed as follows:

Note 18.1. Algorithm for Obtaining B

Step 1. Initialize B = [A, W1/2]
Step 2. Perform the eigenvalue decomposition (EVD) of B′VB defined as

B0VB ¼ QH2Q0; ð18:14Þ

with Q′Q = Ip and H2 a p � p diagonal matrix.
Step 3. Update SXZ as

SXZ ¼ Bþ 0QHQ0: ð18:15Þ

Step 4. Update B = [A, W1/2] as
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B ¼ SXF; diag SXUð Þ½ �; i:e:;A ¼ SXF and W1=2 ¼ diag SXUð Þ: ð18:16Þ

Step 5. Finish if the decrease in the standardized loss function value

fs ¼ 1� trBB0

trV
ð18:17Þ

from the previous round is small enough; otherwise, go back to Step 2.

Here, the EVD used in Step 2 is detailed in Note 6.1 and A.3.4.
In Note 18.1, we find that obtaining Z = [F, U] is unnecessary for finding the

solution of B = [A, W1/2]: The algorithm is only involved in SXZ and B. This is
because (18.5) can be expanded and rewritten using (18.5) as

f ðZ;BÞ ¼ trX0X� 2trX0ZB0 þ trBZ0ZB0 ¼ ntrV� 2trX0ZB0 þ ntrBB0

¼ n trV� 2trSXZB0 þ trBB0ð Þ ¼ f SXZ;Bð Þ:
ð18:18Þ

That is, (18.5) can be expressed as a function of SXZ and B, but not Z. Furthermore,
only if the covariance matrix V is available, the original data X is indispensable for
obtaining the solution of B = [A, W1/2]. How the formulas (18.14–18.17) are
derived is explained in the next two sections.

18.5 Estimation of Covariances Between Variables
and Factor Scores

The goal of this section is to finally show that the covariance matrix (18.13) for the
optimal Z is expressed as (18.15). In order to achieve this, we need three paragraphs
and a note, in which it is explained how the optimal Z minimizing (18.5) under
(18.6) and (18.7) are expressed for B given.

We should note f ðZ;BÞ ¼ ntrV� 2trX0ZB0 þ ntrBB0 in (18.18), where only
−2trX′ZB′ is a function of Z. Thus, the minimization of (18.18) over Z amounts to
maximizing

gðZÞ ¼ 1
n
trX0ZB0 ¼ 1

n
trðXBÞ0Z ¼ tr

1ffiffiffi
n

p XB

 �0 1ffiffiffi

n
p Z


 �
: ð18:19Þ
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Now, let us only consider the constraint (18.7), ignoring (18.6). As explained later
in Note 18.2, the maximization of (18.19) subject to (18.7) is attained for

Z ¼ ffiffiffi
n

p eP eQ0 ¼ ffiffiffi
n

p
PQ0 þ ffiffiffi

n
p

P?Q0
? ¼ XBQH�1Q0 þ ffiffiffi

n
p

P?Q0
?: ð18:20Þ

Here, eP ¼ P;P?½ � and eQ ¼ Q;Q?½ � are the n � (p + m) and (p + m) �
(p + m) block matrices, respectively, and H is an p � p diagonal matrix whose
diagonal elements are positive, with the last identity in (18.20) and the blocks of ~P
and ~Q detailed in the next paragraph.

The matrices P (n � p), Q ((p + m) � p), and, H are obtained through the
singular value decomposition (SVD) of n−1/2XB, which is defined as

1ffiffiffi
n

p XB ¼ PHQ0 ð18:21Þ

with P′P = Q′Q = Ip. The remaining P⊥ (n � m) and Q⊥ ((p + m) � m) are the
column-orthonormal orthogonal complement (OC) matrices of P and Q, respec-
tively. Recall the explanation in Sect. 17.5 of OC matrices. That is, P⊥ and Q⊥

allow eP and eQ to satisfy

eP0eP ¼ eQ0 eQ ¼ Ipþm; i:e:;
P0P P0P?
P0
?P P0

?P?

� �
¼ Q0Q Q0Q?

Q0
?Q Q0

?Q?

� �
¼ Ip

Im

� �
;

ð18:22Þ

with the blank blocks in the right matrix filled with zeros. The equality
n1/2PQ′ = XBQH−1Q′ in (18.20) is derived by post-multiplying both sides of
(18.21) by n1/2QH−1Q′.

Note 18.2. ten Berge’s (1993) Theorem for Obtaining a Higher Rank
Matrix
The factor score matrix Z is considered the higher rank matrix, in that (18.7)
implies rank(Z) = m + p, which is greater than (18.11), with XB in (18.11)
corresponding to Z as in (18.19).

We can use Definition A.4.1 and Theorem A.4.1 (in Appendix A.4.1) to
prove that (18.19) is maximized for (18.20) subject to (18.7), as follows:
Substituting (18.21) in (18.19), this is rewritten as
gðZÞ ¼ trQHP0 n�1=2Z

� � ¼ trP0 n�1=2Z
� �

QH: From (18.7), P′P = Q′Q = Ip,
and (A.4.2), P′(n−1/2Z)Q is a p � p suborthonormal matrix with its rank
� p. Further, H is a diagonal matrix whose diagonal elements are positive.
These properties lead to gðZÞ ¼ trP0 n�1=2Z

� �
QH� trH. The upper limit trH

is attained for (18.20) with
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g
ffiffiffi
n

p eP eQ0
� �

¼ trP0 eP eQ0
� �

QH ¼ trP0 PQ0 þP?Q0
?

� �
QH ¼ trQ0QH ¼ trH

which is derived using the equation P0P? ¼ pOmor Q0Q? ¼ pOm following
from (18.22). Further, this equation shows that (18.20) satisfies (18.7) as

1
n

ffiffiffi
n

p eP eQ0
� �0 ffiffiffi

n
p eP eQ0 ¼ eQeP0eP eQ0 ¼ eQ eQ0 ¼ Ipþm;

where the fact has been used that column-orthonormal and square eQ also
satisfies eQ eQ0 ¼ Ipþm as explained in Appendix A.1.2.

We should note that P⊥ and Q⊥, i.e., the column-orthonormal OC
matrices of P and Q, are not unique, as shown in Sect. 17.5. That is, infinitely
many matirces P⊥ and Q⊥ exist that satisfy (18.22). Any of them can be
substituted into P⊥ and Q⊥ in the block matrices eP ¼ P;P?½ � and eQ ¼
Q;Q?½ � used in above equations.

We should remember that (18.20) has been derived without considering the
constraint (18.6). However, we can show that (18.6) is also satisfied by (18.20),
using n1=2PQ0 ¼ XBQH�1Q0 in (18.20) and 10nX ¼ 00p. They lead to
10nPQ

0 ¼ 0pþm0 , and both sides of this equation are post-multiplied by Q to give
10nP ¼ 00p. This guarantees the existence of P⊥ satisfying 1nP? ¼ 00m and (18.22), as
found from the fact that (17.51) satisfies (17.49) for (17.41). The above equalities
10nP ¼ 00p and 1nP? ¼ 00m show that the pre-multiplication of the left side in (18.20)

by 10n leads to 10nZ ¼ n1=2 10nPQ
0 þ 10nP?Q0

?
� � ¼ 0pþm0 , i.e., (18.20) satisfies (18.6).

Thus, we can conclude that (18.5) is minimized for (18.20) under (18.6) and (18.7),
for a given B.

The covariance matrix SXZ = n−1X′Z for the optimal Z (18.20) is given by
(18.15) as follows. Post-multiplying the both side of (18.21) by B+ leads to

1ffiffiffi
n

p X ¼ PHQ0Bþ ; or equivalently ;
1ffiffiffi
n

p X0 ¼ Bþ 0QHP0; ð18:23Þ

from (18.12). The right equation in (18.23) is multiplied by n−1/2 and
post-multiplied by (18.20) to give n�1X0Z ¼ n�1=2Bþ 0QHP0 n1=2PQ0 þ�
n1=2P?Q0

?Þ, and this equation is rewritten as (18.15), using (18.13) and (18.22).
Here, it should be noted that the update by (18.15) requires B, Q, and H. Among
the three matrices, B is given in the next section, while Q and H are given through
the EVD in (18.14) following from the pre-multiplication of (18.21) by its trans-

pose: n�1=2XB
� �0

n�1=2XB
� � ¼ PHQ0ð Þ0PHQ0; i:e:;B0 n�1X0Xð ÞB ¼ QHP0PHQ0 .
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18.6 Estimation of Loadings and Unique Variances

For a given SXZ, the optimal B is given by (18.16). This follows from decomposing
that loss function (18.5) as

f ðZ;BÞ ¼ X� ZB0k k2¼ X� ZS0XZ
�� ��2 þ n SXZ � Bk k2: ð18:24Þ

This decomposition is derived from the fact that (18.5) can be rewritten as

X� ZS0XZ þ
�� ZS0XZ � ZB0��2¼ X� ZS0XZ

�� ��2 þw� 2h. Here, w ¼ ZS0XZ � ZB0�� ��2
¼ n SXZ � Bk k2 since of (18.7), and h ¼ tr X� ZS0XZ

� �0 ZS0XZ ��
ZB0Þ ¼

ntrSXZSXZ0 � ntrSXZB0 � ntrSXZS0XZ þ ntrSXZB0 ¼ 0 since of (18.7) and (18.13).
Thus, we have (18.24).

On the right side of (18.24), B = [A, W1/2] appears only in

SXZ � Bk k2¼ SXF; SXU½ � � A;W1=2
h i��� ���2. This can further be decomposed as

SXZ � Bk k2¼ SXF � Ak k2 þ diag SXUð Þ �W1=2
��� ���2 þ SXU � diag SXUð Þk k2;

ð18:25Þ

using the fact that W1/2 is diagonal. On the right side, the part relevant to B = [A,

W] is SXF � Ak k2 þ diag SXUð Þ �W1=2
��� ���2, whose lower limit zero is attained for

(18.16).
Finally, we show why (18.17) is the standardized loss function value. Let us

inspect trSXZB′ in loss function (18.18). This can be rewritten using B′ = [A, W1/2]′
and (18.13) as trSXZB0 ¼ trSXFA0 þ trSXUW1=2. Substituting (18.16) into B in
trSXZB′, we have

trSXZB0 ¼ trAA0 þ trSXUW1=2 ¼ trAA0 þ trW1=2W1=2 ¼ trAA0 þ trW ¼ trBB0

ð18:26Þ

where we have used trSXUW1=2 ¼ tr diag SXUð ÞW1=2
n o

, since W1/2 is diagonal.

Using (18.26) in (18.18), its attained value is found to be

f SXZ;Bð Þ ¼ n trV� 2trBB0 þ trBB0ð Þ ¼ n trV� trBB0ð Þ: ð18:27Þ

By dividing this by ntrV, we have (18.17), which is a standardized index in that it
takes a value within the range [0, 1]. The property of (18.17) � 0 follows from
(18.27) � 0 which is derived from the fact (18.5) � 0 and thus (18.18) � 0. On
the other hand, (18.17) � 1 follows from the fact that (18.27) � 0 allows us to find
trV� trBB0 ¼ Bk k2 � 0 .
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18.7 Identifiability of the Model Part and Residuals

In this and next sections, the solutions for Z = [F, U] and B = [A,W] are expressed

as bZ ¼ ½bF; bU�, and bB ¼ bA; bW1=2
h i

, with bF; bU; bA, and bW1=2 denoting the solutions

of F, U, A, and W, respectively. Further, we use S
XbZ ¼ n�1X0bZ for the p-variables

� (m + p)-factors covariance matrix based on the solution of Z.
One advantage of MDFA over LVFA in Chap. 12 is that the error matrix

E based on the solution, i.e., the residual matrix

bE ¼ X� bF bA0 þ bU bW1=2
� �

¼ X� bZbB0; ð18:28Þ

can be obtained in MDFA. This follows from the fact that the model partbF bA0 þ bU bW1=2 ¼ bZbB0 can be computed as shown next:

Note 18.3. Identifiability of the FA Model Part (Adachi & Trendafilov’s
(2018a) Theorem 3.1)

bZbB0 ¼ ffiffiffi
n

p
PQ0bB0 ¼ XbBQH�1Q0bB0 ¼ XV�1S

XbZ bB0 ¼ XbBS0
XbZV�1:

ð18:29Þ

This is proved in the following paragraphs.
The first equality bZbB0 ¼ n1=2PQ0bB0 in (18.29) is derived as follows.

Pre-multiplying both sides of (18.21) by n1/2(X′X)−1X′ leads tobB ¼ n1=2 X0Xð Þ�1X0PHQ0, which implies bBQ? ¼ pOm since Q0Q? ¼ pOm

follows from (18.22). The equalities bBQ? ¼ pOm and (18.20) lead tobZbB0 ¼ n1=2PQ0 þ n1=2P?Q0
?

� �bB 0 ¼ n1=2PQ0bB0.

The second identity n1=2PQ0bB0 ¼ XbBQH�1Q0bB0
in (18.29) follows from

the equation n1=2PQ0 ¼ XbBQH�1Q0 in (18.20) with B rewritten as bB: Both
sides of this equation, post-multiplied by bB0

, provide the second identity.

Before deriving the third equality XbBQH�1Q0bB0 ¼ XV�1S
XbZ bB0

, we must

prove

S
XbZ ¼ VbBQH�1Q0: ð18:30Þ
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This can be shown by pre-multiplying both sides of (18.20) by n−1X′, which
leads to S

XbZ ¼ VbBQH�1Q0 þ n1=2X0P?Q0
?. Here, X0P?Q0

? ¼pOp; from

(18.23) and P0P? ¼ pOp. Thus, we have (18.30), which implies

V�1S
XbZ bB0 ¼ bBQH�1Q0bB0. Pre-multiplying both sides by X leads to the

third equality in (18.29).

The last identity XV�1S
XbZ bB0 ¼ XbBS0XbZV�1 follows from bBQH�1Q0bB0

in (18.29) being symmetric. Thus, V�1S
XbZ bB0 ¼ bBQH�1Q0bB0

equals its

transpose: V�1S
XbZ bB 0 ¼ bBS0XbZV�1. Pre-multiplying both sides by X leads to

the last identity in (18.29). This completes the proof for (18.29).
Here, we should note that (18.30) may be substituted for (18.15) in Note

18.1.

Table 18.2(A) and (B) show (18.29) and (18.28) values, respectively, which
were obtained with MDFA for the standard scores of the data set in Table 10.1.
Here, we can find that the absolute values of the residuals in (B) are much smaller
than those of the model part in (A). This allows us to consider that the FA model
FA′ + UW1/2

fit well to the data set X. However, we can also find a few residuals of
large absolute values in bE ¼ êij

� �
. Such residuals suggest that the corresponding

observations deviate from the FA model. For example, ê71 ¼ 0:108 is relatively
large in Table 18.2(B). This suggests that the score of the seventh participant for A
(aggressiveness) may be substantially larger than the score predicted by the FA
model.

The “Residual” in Table 18.1 shows rj ¼ n�1 bej�� ��2 with êj the jth column of
(18.28). That is, rj is the average of the squared residuals. This can be interpreted as
the size of residuals for variable j, which remain unaccounted by the FA model part

(18.29). We can also call rj ¼ n�1 bej�� ��2 the residual variance for variable j since

10nbej ¼ 0; or equivalently; 10nbE ¼ 0p0 ð18:31Þ

which follows from X and bZbB 0
on the right side of (18.28) being centered. The

residual matrix bE and the size of residuals rj ¼ n�1 bej�� ��2 cannot be estimated in the
LVFA approach, as the term associated with E does not appear in (18.8).

290 18 Exploratory Factor Analysis (Part 2)



18.8 Factor Scores as Higher Rank Approximations

The estimation of the factor score matrix Z can be viewed as a higher rank
approximation problem. This is because, we can use (18.7) to rewrite the MDFA
loss function (18.5) as

f ðZjBÞ ¼ Z� XBk k2 þ Xk k2 þ n Bk k2� XBk k2�nðpþmÞ: ð18:32Þ

Table 18.2 Parts of the resulting model values (A) and residuals (B)

Ind. A C I B T V H P

(A) Model part: bF bA0 þ bU bW1=2 ¼ bZbB 0

1 2.835 1.359 1.974 −2.393 1.940 1.986 −1.205 1.639

2 −2.044 −2.356 −1.203 1.690 −2.810 −1.189 0.921 −1.841

3 −0.047 0.414 0.493 0.363 1.408 −0.613 0.329 0.270

4 −0.610 0.473 −0.418 −1.679 1.313 0.037 0.920 0.976

5 0.708 −0.517 0.413 0.303 0.186 0.067 0.368 0.227

6 −0.693 −0.528 −1.133 −0.320 0.163 −1.195 −0.133 −0.378

7 0.594 1.301 −0.336 −0.367 1.409 −1.155 0.340 1.680

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

98 −0.699 1.359 −1.121 0.315 0.747 −1.135 1.006 −1.160

99 −0.071 −1.459 −1.167 2.284 −1.027 0.055 0.296 0.972

100 −0.692 −0.493 0.443 1.047 −1.605 0.084 −0.674 −1.830

(B) Residuals: Ê ¼ X� bF bA0 þ bU bW1=2
� �

Ind. A C I B T V H P

1 −0.048 0.004 0.046 0.042 0.006 −0.045 −0.043 0.054

2 −0.035 −0.014 0.030 −0.022 0.010 0.019 0.011 −0.023

3 0.054 0.016 −0.070 −0.035 −0.056 0.065 0.058 0.001

4 −0.078 −0.044 0.043 −0.002 0.039 0.038 0.012 0.006

5 −0.006 0.013 0.010 0.026 −0.020 0.008 0.019 0.044

6 0.005 0.024 −0.041 −0.022 0.003 0.025 −0.025 −0.063

7 0.108 0.061 −0.039 0.026 −0.057 −0.014 0.047 0.014

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

98 0.011 0.003 −0.052 0.014 0.012 −0.034 −0.074 0.008

99 0.078 0.022 −0.007 0.053 0.006 0.020 0.091 0.010

100 0.004 −0.011 −0.020 −0.050 −0.008 −0.009 −0.029 −0.034
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Here, we find that only the term ||Z − XB||2 is a function of Z. Thus, the mini-
mization of (18.5) over Z for a given B amounts to minimizing ||Z − XB||2 over
Z. This is the problem of approximating XB by the higher rank matrix Z, as
rank(Z) = m + p > rank(XB) = p, as described in Note 18.2.

The solution of Z for the higher-rank approximation is given by (18.20), which
can be rewritten as

bZ ¼ bZ1 þ bZ2 ð18:33Þ

with bZ1 ¼ n1=2PQ0 ¼ XBQH�1Q0 and bZ2 ¼ n1=2P?Q0
? . Here, bZ1 can be uniquely

determined, while bZ2 ¼ n1=2P?Q0
? cannot, since infinitely many matrices P?ðn�

mÞ and Q?ðp� mÞ exist which allow to eP and eQ to satisfy (18.22), as described in
Note 18.2. Hence, the optimal factor scores bZ are not unique, despite the fact that

its pre-multiplication by bB0
yields the model part bZbB0

determined uniquely as in
(18.29).

The two matrices on the right side of (18.33) satisfy

bZ0
1
bZ2 ¼ p Om; ð18:34Þ

from (18.22), with

Ẑ2
�� �� ¼ ffiffiffiffiffiffi

nm
p ð18:35Þ

following from bZ2

��� ���2¼ ntrQ?P0
?P?Q0

? ¼ ntrQ0
?Q? ¼ ntrIm. On the basis of

these properties, Adachi and Trendafilov (2018a) have presented the diagram in
Fig. 18.2, where the matrices bZ and bZ1 in (18.33) are depicted as arrows (or
vectors). Here, the arrows for bZ and bZ1 are illustrated so that bZ1 and bZ � bZ1 ¼ bZ2

intersect orthogonally, from (18.34). Further, the endpoint of the arrow for bZ is
depicted to form a circle whose center is bZ1 and radius is (nm)1/2, from (18.35). In
other words, in Fig. 18.2, bZ forms a cone, which traces a circle around its center at

Fig. 18.2 Adachi and
Trendafilov’s cone of
common-unique factor scores
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bZ1. Here, any bZ whose endpoint is on the circle is optimal. This suggests that
imposing an additional constraint on Z allows for a useful bZ to be found, as shown
in Uno, Adachi, and Trendafilov (2019).

18.9 Bibliographical Notes

As already mentioned, the matrix decomposition formulation of FA (MDFA) was
proposed in 2001 by Professor Henk A. L. Kiers at the University of Groningen, as
found in Sǒcan’s thesis (2013). Independently, de Leeuw (2004) also presented a
description of MDFA. Later, Unkel and Trendafilov (2010) reviewed some for-
mulations of FA detailing MDFA. In the above literature, the MDFA algorithms
described needed the original data matrix X. In contrast, the algorithm in this
chapter which only needs the covariance matrix V was proposed by Adachi (2012).

Some properties of the MDFA solution described in this chapter have been
detailed in Adachi and Trendafilov (2018a) along with other properties. Also,
Stegeman (2016) has discussed properties of the MDFA solution. Further,
Stegeman (2016) has proposed a constrained version of MDFA which is not treated
in this book. It is argued that FA can be classified into the three types, latent
variable FA (LVFA), MDFA, and Stegeman’s (2016) constrained MDFA, in
Adachi’s (2019) comprehensive review of FA formulations.

Exercises

18:1. Let us define the rows and columns of the matrices in (18.5) as

E ¼ e1; . . .; ep
� 

;X ¼ x1; . . .; xp
� 

;U ¼ u1; . . .; up
� 

, B ¼
b01
..
.

b0p

2
64

3
75, and

A ¼
a01
..
.

a0p

2
64

3
75. Show that (18.5) can be rewritten as f ðZ;BÞ ¼ Pp

j¼1 fj Z; bj
� �

with

fj Z; bj
� � ¼ ej

�� ��2¼ xj � Faj � w1=2
j uj

��� ���2¼ xj � Zbj
�� ��2: ð18:36Þ

18:2. Let 1 � (p + m) vector sXZ
0

j denote the jth row of (18.13) with

SXZ ¼ ½sXZ1 ; . . .; sXZp �0 (p�(p + m)). Show that (18.36) can be decomposed as

fj Z; bj
� � ¼ xj � ZXZ

sj

��� ���2 þ n sxzj � bj
��� ���2 ð18:37Þ
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under (18.7), using fj Z; bj
� � ¼ xi � ZsXZj

� �
þ ZsXZj � Zbj
� ���� ���2 (Adachi &

Trendafilov, 2018a, Theorem 2.1).

18:3. Use (18.7) and (18.13) to show n−1 bE0bZ ¼ n�1 X� bZbB0
� �0bZ ¼ S

XbZ � bB.
18:4. Let the covariance matrices of the residuals to the optimal common factor

scores and unique factor scores be denoted as SbEbF ¼ n�1bE0bF and

SbEbU ¼ n�1bE0 bU. Show that the equation shown in Exercise 18.3 implies

SbEbF ¼ p Om and SbEbU ¼ Offd S
XbU

� �
; ð18:38Þ

where S
XbU ¼ n�1X0 bU contains the covariances of the variables to the

optimal unique factor scores, and OffdðS
XbUÞ ¼ S

XbU � diagðS
XbUÞ: The

diagonal elements of OffdðS
XbUÞ are zeros and its off-diagonal elements are

those of S
XbU (Adachi & Trendafilov, 2018a, Theorem 4.1).

18:5. Use (18.12), (18.14), and (18.15) to show that

S
XbZS0XbZ ¼ V : ð18:39Þ

the product of S
XbZ (the covariance matrix of p variables to the m + p optimal

factor scores) and its transpose equals the inter-variable covariance matrix
(Adachi & Trendafilov, 2018a, Lemma 4.1).

18:6. Note that Z in (18.20) can be rewritten as bZ, since (18.20) shows the
solution of Z. Use (18.7) and (18.39) to show that when (18.20) is substituted
into Z in (18.37), the first term of in the right-hand side of (18.37)
vanishes:

xj � bZsXbZj

����
����2¼ 0; i:e:; fj bZ; bj� �

¼ n sXbZj � bj

����
����2 ð18:40Þ

with sXbZ 0
j , the jth row of S

XbZ (Adachi & Trendafilov, 2018a, Lemma 4.2).

18:7. Show that the loss function (18.5) or (18.24), in which the solution is sub-
stituted, can be expressed as

f ðbZ; bBÞ ¼ n Offd S
XbU

� ���� ���2; ð18:41Þ

using (18.16), (18.38), and (18.40), with OffdðS
XbUÞ defined in Exercise 18.4.
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18:8. Consider what (18.41) implies. Hints are found in Adachi and Trendafilov
(2018a, Sect. 4).

18:9. Discuss how the confirmatory FA based on MDFA can be formulated, by
making note of (18.24) and (18.25).

18:10. Let the blocks of the matrices bZ1 and bZ2 in (18.33) be defined as bZ1 ¼
F1;U1½ � and bZ2 ¼ F2;U2½ �, where F1 and F2 are n � m, while U1 and U2 are
n � p. Uno et al., (2019) has proposed a factor score identification proce-
dure, in which GC;U1½ � � F1;U1½ � þ F2;U2½ �ð Þk k2 is minimized over G, C,
and [F2, U2] for the unique bZ1 ¼ F1;U1½ � given by MDFA, where G = (gik)
is an n (individuals) � K (clusters) membership matrix defined in (7.1) and
(7.2), C is an unconstrained K (clusters) � m (common factors) matrix, and
[F2, U2] is constrained so as to satisfy (18.6) and (18.7). Discuss the purpose
of the factor score identification procedure.
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Chapter 19
Principal Component Analysis Versus
Factor Analysis

In this chapter, we refer to exploratory factor analysis simply as factor analysis and
consider the principal component analysis formulated as reduced rank approxi-
mation as in Chap. 5. Principal component analysis (PCA) and factor analysis (FA)
can be performed for identical data sets, with the purpose of dimension reduction.
This reduction means that p observed variables, i.e., the p-dimensional scores, are
reduced to lower-dimensional scores. The lower dimensions correspond to the
m principal components in PCA and the m common factors in FA, with m < p. A
major purpose of this chapter is to introduce mathematical facts that contrast PCA
and FA solutions for an identical data set. The facts elucidate crucial differences
between PCA and FA, which can suggest whether PCA or FA should be used for a
particular data set.

19.1 Motivational Examples

An identical data set can be analyzed by both principal component analysis
(PCA) and factor analysis (FA) for the purpose of dimension reduction. In doing so,
one is led to ask, “How similar/different are the resulting PCA and FA solutions?”
To answer this question, we performed PCA and FA for the correlation matrices in
Tables 19.1 and 19.2, where (5.25) was considered as a constraint in PCA. The
resulting solutions are shown in Tables 19.3 and 19.4, where the loading matrices
have been rotated by (orthogonal) varimax rotation (Chap. 13), with UV and Res
the abbreviations for unique and residual variances, respectively. In the tables, the
FA solutions are those for matrix decomposition FA (MDFA) and latent variable
FA (LVFA), which were treated in Chaps. 18 and 12, respectively. As the residual
variances for variables cannot be obtained in LVFA, the corresponding column is
not presented in Tables 19.3 and 19.4. Apart from this point, the LVFA and MDFA
solutions are found to be almost equivalent.
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We should note the following observations for the solutions in Tables 19.3 and
19.4:

[O1] We can find that a number of PCA loadings are boldfaced, where the
absolute values of the boldfaced loadings are greater than their FA coun-
terparts: the magnitudes of PCA loadings tend to be greater than the FA
ones.

[O2] The residual variances for PCA are greater than those for MDFA.
[O3] The residual variances for PCA are smaller than the unique variances in

FA.

[O1]–[O3] are empirical findings, which will not always be the case. However,
some mathematical facts, which always hold and further suggest the tendencies
[O1]–[O3], can be deduced by comparing PCA and MDFA solutions, as described
in Sects. 19.4–19.6. These facts can also be empirically generalized to LVFA as
described in Sect. 19.7.

19.2 Comparisons of Models

Let X = [x1, …, xp] be an n-individuals � p-variables centered data matrix, with
10nX ¼ 00p. From here to Sect. 19.6, we refer to MDFA simply as FA. As described
in Sect. 18.1, FA can be modeled as (18.1) or (18.2):

X ¼ FA0 þUW1=2 þEFA: ð19:1Þ

Here, the subscript FA has been attached to the error matrix E to distinguish it from
that appearing in the next paragraph. As listed after (18.2), F (n � m) contains
common factor scores, U (n � p) contains unique factor scores, A (p � m) consists
of factor loadings, and W1/2 (p � p) is the diagonal matrix whose j th diagonal
element wj

1/2 is the square root of the unique variance for variable j, with p > m.
By simply removing the unique factor part UW1/2 from (19.1), we have the PCA

model (5.1) or (5.3) (Chap. 5). For distinguishing FA′ in (5.1) from that in (19.1),
we substitute PC′ for FA′ in (5.1): PCA is modeled as

Table 19.1 Correlation
matrix for Adachi and
Trendafiov’s (2018a, p. 409)
data set which is a part of
Tanaka and Tarumi’s (1995)
test score data, with the upper
triangular elements omitted

Variable 1 2 3 4 5

1. Japanese 1

2. English 0.553 1

3. Social studies 0.363 0.503 1

4. Mathematics 0.447 0.330 0.287 1

5. Sciences 0.388 0.279 0.076 0.563 1
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X ¼ PC0 þEPC: ð19:2Þ

Here, the n (individuals) � m (components) matrix P contains PC scores,
C (p � m) consists of component loadings, and EPC (n � p) contains errors.

The implication of PC′ in the PCA model (19.2) can be illustrated through
Fig. 19.1a: the variables x1, …, xp are commonly explained by the PC score vectors
in P = [p1, …, pm] weighted by the loadings in C = (cjk), while the errors in EPC

remain unexplained. At this point, we can call PC′ the common part. On the other
hand, the FA model (19.1) can be illustrated through Fig. 19.1b: the common factor
vectors F = [f1, …, fm] account for all variables with the loadings in A = (ajk)
coefficients, while each unique factor vector in U = [u1, …, up] uniquely affects the
corresponding variable with the diagonal element wj

1/2 in W1/2 being a coefficient.
Thus, FA′ serves as the common part the same way PC′ does in PCA, while UW1/2

can be called the unique part, which is absent in PCA.
At this stage, we can clearly answer

Choose FA if the unique part should be extracted ð19:3Þ

in regards to the question of whether FA or PCA should be used for a data set.
Cases in which different answers should be given are presented in Sects. 19.4 and
19.5.

19.3 Solutions and Decomposition of the Sum of Squares

As described in Chap. 5, PCA can be formulated as minimizing the squared norm of
the error matrix EPC in (19.2), i.e.,

fPCðP;CÞ ¼ EPCk k2¼ X� PC0k k2 ð19:4Þ

Table 19.3 Solutions for the correlations in Table 19.1

Variable PCA MDFA LVFA

Loadings Res Loadings UV Res Loadings UV

Japanese 0.51 0.62 0.13 0.38 0.60 0.50 0.001 0.37 0.61 0.50

English 0.25 0.81 0.08 0.21 0.76 0.37 0.002 0.21 0.76 0.38

Social Studies –0.02 0.86 0.07 0.03 0.65 0.58 0.002 0.02 0.65 0.58

Mathematics 0.80 0.26 0.08 0.59 0.34 0.53 0.003 0.58 0.34 0.55

Sciences 0.90 0.02 0.03 0.89 0.10 0.19 0.001 0.90 0.11 0.17

Sum of squares 3.62 1.38 2.81 2.18 0.008 2.82 2.18
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over P and C subject to

1
n
P0P ¼ Im: ð19:5Þ

Let bP and bC denote the solutions of P and C, respectively, with bEPC ¼ X� bP bC0

containing the resulting values of errors, i.e., residuals.
As described in Chap. 18, FA can be formulated as minimizing the squared norm

of the matrix EFA in (19.1), i.e.,

fFAðF;A;U;WÞ ¼ EFAk k2¼ X� FA0 þUW1=2
� ���� ���2 ð19:6Þ

over F, A, U, and W under the constraints in (18.4):

1
n
F0F ¼ Im;

1
n
U0U ¼ Ip; and F0U ¼m Op: ð19:7Þ

Here, the other constraint (18.3) need not be considered, since it is satisfied by the
solution minimizing (19.6) under (19.7) when X is centered, as explained in

Sect. 18.5. Let the solutions of F, A, U, and W be bF, bA, bU and bW, respectively,

with bEFA ¼ X� bF bA0 þ bU bW1=2
� �

containing residuals.

The following decompositions play a key role for comparing the PCA and FA
solutions:

x1 x5x4x3x2

1
1/2

2
1/2

3
1/2

4
1/2

5
1/2

a11

a12

a21

a22

a31

a32

a42

a51

a52

x1 x5x4x3x2

a41

c11

c12

c21

c22

c31

c32
c42

c41 c51

c52

f1 f2

u1 u2 u3 u4 u5

p1 p2

(a) Principal Component Analysis (b) Factor Analysis

Fig. 19.1 Graphical representation of PCA and FA with p = 5 and m = 2
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Note 19.1. Decompositions of Sum of Squares in PCA and FA
The sum of squares for the centered data matrix, i.e., Xk k2, can be decom-
posed into sums of squares in the PCA and FA solutions:

PCA:

Xk k2¼ bP bC0
��� ���2 þ bEPC

��� ���2¼ n bC��� ���2 þ bEPC

��� ���2; ð19:8Þ

FA : Xk k2¼ bF bA0
��� ���2 þ bU bW1=2

��� ���2 þ bEFA

��� ���2¼ n bA��� ���2 þ ntr bWþ bEFA

��� ���2:
ð19:9Þ

These equations are derived as in the next paragraphs.
The decomposition (19.8) for PCA follows from Note 5.3: through the

singular value decomposition X ¼ KKL0 in Note 5.1, the PCA solution bP bC0

minimizing (19.4) is given by KmKmL0
m as shown in Notes 5.2 and 5.3, withbEPC ¼ X� bP bC0 ¼ K½m�K½m�L½m�0 . The orthogonality K0

mK½m� ¼ mOp�m leads

to bP bC0
� �0bEPC ¼ pOp. This property and (19.2) allow us to find the first

identity in (19.8). Its last identity follows from (19.5) which implies

bP bC0
��� ���2¼ ntrbC0 bC ¼ n bC��� ���2.

The decomposition (19.9) for FA follows from (18.27) and (19.7): using

B ¼ ½A;W1=2� and V = n−1X′X, (18.27) can be rewritten as bEFA

��� ���2¼
Xk k2� n bA��� ���2 þ ntr bW� �

, which shows the equality of the left and right sides

in (19.9). The last identity in (19.9) is derived from that (19.7) implies

bF bA0
��� ���2¼ n bA��� ���2 and bU bW1=2

��� ���2¼ ntr bW.

In decompositions (19.8) and (19.9), bP bC0
��� ���2¼ n bC��� ���2and bF bA0

��� ���2¼ n bA��� ���2
stand for the sizes of the common part in the PCA solution and the FA counterpart,

respectively. On the other hand, bU bW1=2
��� ���2¼ ntr bW in (19.9) stands for the size of the

unique part, which is specific to FA. The remaining bEPC

��� ���2 and bEFA

��� ���2 in (19.8) and
(19.9) stand for the sizes of the residuals that remain unaccounted for by components/
factors. The decomposition of ||X||2 into the above sums of squares can be seen in
Fig. 19.2. Here, the areas of the sums of squares differ between PCA and FA. These
differences are explained by the inequalities presented in the next three sections. The
inequalities also suggest that the observations [O1]–[O3] in Sect. 19.1 are commonly
found.
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19.4 Larger Common Part of Principal Component
Analysis

Let us consider the left part in Fig. 19.2. Here, the size of the common part n bC��� ���2¼
bP bC0

��� ���2 for PCA is depicted so as to be greater than the FA counterpart

n bA��� ���2¼ bF bA0
��� ���2. This follows from the next theorem:

Note 19.2. Larger Sum of Squared PCA Loadings (Adachi and
Trendafilov, 2019, Theorem 2)
For a given X, the sum of squared PCA loadings is always larger than or
equal to the FA counterpart under constraints (19.5) and (19.7):

bC��� ���2¼ bCTP

��� ���2 � bA��� ���2¼ bATF

��� ���2: ð19:10Þ

Here, TP and TF are arbitrary m � m orthonormal matrices with TP′TP = Im
and TF′TF = Im. This implies that the common part in PCA is always larger
than or equal to the FA counterpart, even after orthogonal rotation. The proof
is provided in Sect. 19.9.

The inequality (19.10) provides the guideline:

Choose PCA rather than FA for the purpose of extracting a larger common part from data:

ð19:11Þ

We can rewrite (19.10) as

Xp
j¼1

Xm
k¼1

cjk
�� ��2 � Xp

j¼1

Xm
k¼1

ajk
�� ��2: ð19:12Þ

Common Unique Res

Common ResidualPCA

FA

X 2Fig. 19.2 Relative sizes of
common parts, unique parts,
and residuals in PCA and FA
solutions
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Here, cjk and ajk are the (j, k) elements of bCTP and bATF , respectively, with
Im 2 TP and Im 2 TF. Inequality (19.12) suggests the observation [O1] in
Sect. 19.1, i.e., that the absolute loading |cjk| for PCA tends to be greater than the
FA counterpart |ajk| before and after orthogonal rotation, although |cjk| � |ajk| can
also be observed.

19.5 Better Fit of Factor Analysis

Let us consider the right part in Fig. 19.2. Here, the size of residuals bEPC

��� ���2 for

PCA is depicted so as to be greater than the FA counterpart bEFA

��� ���2. This follows
from the next theorem:

Note 19.3. Better fit of FA (Adachi and Trendafilov, 2019, Theorem 1)
For a given X, the FA solution always shows a better or equivalent fit
compared to the PCA solution. In other words, the sum of squared residuals
in FA does not exceed the PCA counterpart:

bEFA

��� ���2 � bEPC

��� ���2 ð19:13Þ

This proof is given in Sect. 19.9.

Inequality (19.13) provides the guideline:

Choose FA for the purpose of accounting for data better: ð19:14Þ

The index “Res” for variable j in Tables 19.3 and 19.4 are defined as

RESFAj ¼ 1
n

ê½FA�j

��� ���2 for FA and RESPCj ¼ 1
n

ê½PC�j

��� ���2for PCA; ð19:15Þ

with ê½PC�j and ê½FA�j being the jth columns of bEPC and bEFA, respectively. These two
matrices are centered as shown in Chaps. 5 and 18, which implies that the two
indices in (19.15) stand for residual variances. From (19.15), we can find that the
sum of residual variances over variables equal to the average of squared residuals:
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Xp
j¼1

RESFAj ¼ 1
n

bEFA

��� ���2 and
Xp
j¼1

RESPCj ¼ 1
n

bEPC

��� ���2: ð19:16Þ

By comparing these equalities with (19.13), we can find that it is rewritten as

Xq
j¼1

RESFAj �
Xq
j¼1

RESPCj : ð19:17Þ

This inequality suggests that the residual variance RESPCj for each variable in PCA

tends to be greater than the FA counterpart RESFAj , as written in [O2] in Sect. 19.1,
though exceptions can exist.

We should note that (19.8) and (19.9) are rewritten as bEPC

��� ���2¼ Xk k2�n bC��� ���2
and bEFA

��� ���2¼ Xk k2�n bA��� ���2�ntr bW, respectively. Using these equations in

(19.13), we have Xk k2�n bA��� ���2�ntr bW� Xk k2�n bC��� ���2. Detracting ||X||2 from both

sides of this inequality leads to �n bA��� ���2�ntr bW� � n bC��� ���2, which implies the

following:

Note 19.4. Upper Limit of the Sum of Squared PCA Loadings (Adachi
and Trendafilov, 2019, Theorem 3)
For a given X, the sum of the squared PCA loadings cannot exceed the sum
of the squared loadings and unique variances in the FA solution:

bC��� ���2¼ bCTP

��� ���2 � bA��� ���2 þ tr bW ¼ bATF

��� ���2 þ tr bW; ð19:18Þ

with TP and TF arbitrary orthonormal matrices.

This inequality shows the upper limit of the PCA common part, in contrast to
(19.10) which shows its lower limit.

19.6 Largeness of Unique Variances in Factor Analysis

Let us consider the right and middle parts in Fig. 19.2. Here, the area of the FA
unique part is greater than that of the PCA residual part. This is suggested by the
following theorem:
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Note 19.5. Lower Limit of the Sum of Unique Variances. (Adachi and
Trendafilov, 2019, Theorem 4)
For a given X, the sum of the unique variances in FA is larger than or equal to
the average of squared residuals for PCA minus the average for FA:

tr bW� 1
n

bEPC

��� ���2� 1
n

bEFA

��� ���2: ð19:19Þ

This proof is given in Sect. 19.9.

By comparing (19.16) with (19.19), we find that the latter is rewritten as

Xp
j¼1

wj �
Xp
j¼1

RESPCj � RESFAj
� �

: ð19:20Þ

This suggests that wj tends to be greater than RESPCj � RESFAj and further that if

RESFAj is small enough, wj
2 tends to be greater than RESPCj , i.e., the FA unique

variance for each variable tends to be larger than the PCA residual variance for
that variable, as written in [O3] in Sect. 19.1.

19.7 Inequalities for Latent Variable Factor Analysis

The mathematical results in Notes 19.2–19.5 are based on MDFA, rather than
LVFA. However, Adachi and Trendafilov (2019) found that LVFA almost always
provides the solutions shown by the inequalities in Notes 19.2 and 12.4. This is
suggested by a broad equivalence of the MDFA and LVFA solutions, which is
shown in Tables 19.3 and 19.4, and other data sets (Adachi and Trendafilov, 2019).

The inequalities in Notes 12.3 and 12.5 do not make sense in LVFA whose

model does not include EFA. However, the relationship in (19.19) with n�1 bEFA

��� ���2
removed, i.e., tr bW being greater than n�1 bEPC

��� ���2, is almost always found in the

LVFA solutions (Adachi and Trendafilov, 2019).
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19.8 Inequalities After Nonsingular Transformation

The FA (19.1) and PCA (19.2) models can be rewritten as

X ¼ FA0 þUW1=2 þEFA ¼ FNFN�1
F A0 þUW1=2 þEFA: ð19:21Þ

X ¼ PC0 þEPC ¼ PNPN�1
P C0 þEPC ð19:22Þ

with NP and NF arbitrary nonsingular m � m matrices. Without the conditions
n−1F′F = Im and (19.5), (19.21), and (19.22) show that we can regard ANF′

−1 and
CNP′

−1 as loading matrices, FNF as a common factor score matrix, and PNP as a
PC score matrix. It implies that the oblique rotation treated in Chap. 13 can be
performed for FA and PCA solutions.

Even after the nonsingular transformations in (19.21) and (19.22) are performed,
the inequalities in (19.13) and (19.19) hold true, since the matrices EFA, EPC, andW
appearing in those inequalities are irrelevant to NP and NF as found in (19.21) and
(19.22).

However, (19.10) and (19.18) are involved in the loading matrices A and C,
which are transformed by NF

−1 and NP
−1 in (19.21) and (19.22). Since the

orthonormal matrices TP and TF in (19.10) and (19.18) cannot be replaced by NP

and NF, neither bCNP

��� ���2 � bANP

��� ���2 nor bCNP

��� ���2 � bANP

��� ���2 þ tr bW hold in gen-

eral. The following inequalities described next, however, do hold.

Note 19.6. Larger PCA Common Part and its Upper Limit (Adachi and
Trendafilov, 2019, Theorems 2 and 3)
For a given X, we have

bP bC0
��� ���2¼ bPNpN�1

p
bC0

��� ���2 � bF bA0
��� ���2¼ bFNFN�1

F
bA0

��� ���2: ð19:23Þ

with NP and NF arbitrary m � m nonsingular matrices. The upper limit of

bP bC0
��� ���2 is given by

bP bC0
��� ���2¼ bPNPN�1

p
bC0

��� ���2 � bF bA0
��� ���2 þ ntr bW ¼ bFNFN�1

F
bA0

��� ���2 þ ntr bW
ð19:24Þ

These result can be proved as follows: (19.5) and (19.7) implybC��� ���2¼ n�1 bP bC0
��� ���2and bA��� ���2¼ n�1 bF bA0

��� ���2. We can use these equalities in

(19.10) and (19.18) to obtain (19.23) and (19.24).
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Inequality (19.23) shows that the suggestion in (19.11) is valid even after the
nonsingular transformations in (19.21) and (19.22), if the common parts refer to

bF bA0
��� ���2 and bP bC0

��� ���2 rather than bA��� ���2 and bC��� ���2.

19.9 Proofs for Inequalities

The inequalities in Notes 19.2, 19.3, and 19.5 are proved in this section.
We can prove (19.10) in Note 19.2 as follows: The PCA loss function (19.4) is

expanded as fPC P;Cð Þ ¼ Xj jj j2�2trX0PC0 þ PC0k k2. By substituting bP bC0 for PC′
in fPC(P, C) and using (19.5) and V = n−1X′X, we have

fPCðbP; bCÞ ¼ ntrV� 2trX0bP bC0 þ ntrbC bC0 ¼ n trV� trbC bC0
� �

: ð19:25Þ

Here, we have also used the fact that (5.30) can be rewritten as bC ¼ n�1X0bP using

the notation in this chapter. Now, let us substitute the FA solution bF bA0 into PC′ in

the PCA function (19.4). Then, we have fPCðbF; bAÞ ¼ X� bF bA0
��� ���2¼

n trV� 2trSXF bA0 þ trbA bA0
� �

¼ n trV� trbA bA0
� �

with SXF ¼ n�1X0bF, using (19.7)

and (18.16). Clearly, fPCðbF; bAÞ ¼ n trV� trbA bA0
� �

cannot be lower than (19.25),

since the PCA solution is the best reduced rank approximation as shown in Note
5.3 and Theorem A.4.5 with (A.4.17). Thus, we have

trV� trbC bC0 � trV� trbA bA0: ð19:26Þ

This result and the orthonormality of TP and TF give (19.10).
The inequality (19.13) in Note 19.3 can be proved as follows: ifW is restricted to

pOp, the FA loss function (19.6) with (19.7) is equivalent to the PCA function

(19.4) with (19.5): X� PC0k k2¼ X� FA0 � UpOp

�� ��2, and its minimization is
independent of the two constraints in (19.7) except n−1F′F = Im which is equivalent

to (19.5). Thus, we have fPCðbP; bCÞ ¼ fFA bP; bC;U; p Op

� �
, where the right term is

the FA function (19.6) with F ¼ bP;A ¼ bC, and W = pOp. Obviously,

fFA bP; bC;U; p Op

� �
cannot be lower than fFAðbF; bA; bU; bWÞ, i.e., the minimum of the

FA loss function, which leads to

fPCðbP; bCÞ ¼ fFA bP; bC;U; p Op

� �
� fFAðbF; bA; bU; bWÞ; ð19:27Þ

i.e., fPCðbP; bCÞ� fFAðbF; bA; bU; bWÞ. This result, (19.4), and (19.6) show (19.13).
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We can prove (19.19) in Note 19.5 as follows: (18.27) and B = [A, W1/2] imply

n�1 bEFA

��� ���2¼ trðV� bA bA0 � bWÞ, i.e., trV� trbA bA0 ¼ tr bWþ n�1 bEFA

��� ���2. We can

also rewrite (19.25) as trV� trbC bC0 ¼ n�1 bEPC

��� ���2. Using these equalities in

(19.26), we have n�1 bEPC

��� ���2 � bW��� ���þ n�1 bEFA

��� ���2, which can be rewritten as

(19.19).

19.10 Bibliographical Notes

Major parts of this chapter are based on the results of Adachi and Trendafilov
(2019). Among the literature published prior to this, it is difficult to find any which
clearly indicate the differences between PCA and FA solutions. However, useful
comparisons between PCA and latent variable FA are found in Ogasawara (2000),
Schneeweiss and Mathes (1995), and the series of the papers in Volume 25, Issue 1
of the journal Multivariate Behavioral Research which starts with Velicer and
Jackson (1990).

Exercise

19:1. Summarize the respective cases where PCA and FA should be used.
19:2. Discuss how the PCA solution can be obtained explicitly, while FA cannot.
19:3. Discuss how singular value decomposition is used for obtaining PCA and

MDFA solutions.
19:4. Argue that (19.27) shows PCA being equivalent to the constrained FA with

unique variances restricted to zeros.
19:5. Show that the PCA loss function (19.4) can be rewritten as

fPCðPjCÞ ¼ P� XCk k2 þ Xk k2 þ n Ck k2� XCk k2�nm ð19:28Þ

subject to (19.5).
19:6. Comparing (19.28) with (18.32), discuss the following statement: in contrast

to the fact that obtaining P in PCA can be regarded as a lower rank approx-
imation problem, obtaining Z = [F, U] in FA can be viewed as a higher rank
approximation problem.

19:7. Factor indeterminacy refers to the property that the optimal factor score
matrix cannot be uniquely determined. Discuss the differences between this
indeterminacy and the rotational indeterminacy.

19:8. Discuss that the optimal PC score matrix in PCA can be uniquely determined
as a function of X, while the optimal factor score matrix in MDFA cannot be
uniquely determined.
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Chapter 20
Three-Way Principal Component
Analysis

In Chap. 5, principal component analysis (PCA) was introduced as the reduced
rank approximation of a data matrix. This matrix should be noted to be a two-way
array of rows � columns. We often encounter three-way data arrays, however, an
example of which is a set of scores of examinees for multiple tests administered on
different occasions. These scores form a three-way array of exami-
nees � tests � occasions. Modified PCA procedures specified for similar
three-way data are known as three-way PCA (3WPCA). Popular 3WPCA proce-
dures are introduced in this chapter.

20.1 Tucker3 and Parafac Models

Let a three-way data array be denoted as

vX ¼ xijk; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J; k ¼ 1; . . . ;K
� �

: ð20:1Þ

This can be depicted as the left cube in Fig. 20.1. For example, xijk could stand for
the brightness of the (i, j) element or pixel in an image recorded at time k. Another
example is a case where xijk is the score of examinee i for test j on occasion k.

One popular three-way principal component analysis (3WPCA) procedure is
Tucker3, which is also called Tucker decomposition. Those names follow Tucker
(1966) who proposed the procedure. Tucker3 is modeled as

xijk ¼
XP
p¼1

XQ
q¼1

XR
r¼1

aipbjqckrgpqr þ eijk ð20:2Þ

© Springer Nature Singapore Pte Ltd. 2020
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
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with eijk an error, I � P, J � Q, and K � R. Here, we have used the sets of
symbols {a, b, c}, {I, J, K}, and {P, Q, R}, whose elements are simply in alpha-
betical order, for the sake of easily labeling their correspondence to each of the
three ways. Let us define three matrices as A ¼ aip

� � ¼ a1; . . . ; aP½ �
ðI � PÞ;B ¼ bjq

� � ¼ b1; . . . ; bQ½ �ðJ � QÞ, and C = (ckr) = [c1, … , cR] (K � R),
with a three-way array

G
...

¼ gpqr; p ¼ 1; . . . ;P; q ¼ 1; . . . ;Q; r ¼ 1; . . . ;R
� �

: ð20:3Þ

which is called a core array. The elements in A, B, C, and vG are the unknown
parameters to be estimated in Tucker3.

The implications of the Tucker3 model (20.2) can be viewed in the
three-dimensional diagram in Fig. 20.1. This depicts the assumption that data cube
vX(I � J � K) is underlain by a smaller core cube vG (P � Q � R). This cube
describes the relationships among the P, Q, and R components which correspond to
the columns of A, B, and C, respectively. These three matrices describe how the I,
J, and K entities (surrounding vX) load the P, Q, and R components.

Another popular 3WPCA procedure is Parafac, which was proposed by
Harshman (1970) and Carroll and Chang (1970), and whose root is also found in
Hitchcock (1927). The name Parafac originates from the abbreviation of parallel
factor analysis. This term is misleading as explained later, but we use the name
Parafac as it is prevalent. Its model is a constrained variant of (20.2), in which gpqr
is restricted so that gpqr = 1 for p = q = r and gpqr = 0 otherwise, with
P = Q = R. Hence:

xijk ¼
XP
p¼1

aipbjpckp þ eijk: ð20:4Þ

Here, gpqr in (20.2) disappears: Parafac can also be represented in Fig. 20.1 in
which the cube vG is removed, but A (I � P), B (J � P), and C (K � P) remain

A

B

C
I I 

J
J

K K

P

Q

R

P

Q

R
X G

Fig. 20.1 Pictorial representation of the Tucker3 model
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with the numbers of their columns constrained identically to be P. The pth columns
of A, B, and C are associated mutually to give the product aipbjpcjp and its sum over
p approximates xijk.

In Tucker3 and Parafac, the parameters are estimated with the least squares
method: the sum of the squared errors eijk

2 is minimized over the parameters. The
algorithms for the minimization are described later in Sects. 20.5–20.8.

3WPCA used to be called three-way factor analysis. This naming is misleading,
as is the name parallel factor analysis, since 3WPCA including Tucker3 and Parafac
is clearly different from the factor analysis characterized by unique factors
(Chap. 19): these are not included in the 3WPCA models. Furthermore, in the next
section, more straightforward evidence is given showing that 3WPCA belongs to
the family of PCA.

20.2 Hierarchical Relationships Among PCA and 3WPCA

Let Xk, k = 1, … , K, denote the I � J matrices whose (i, j) element is xijk in (20.1):

Xk ¼ xijk
� � ðk ¼ 1; . . . ;KÞ ð20:5Þ

These are vertically stacked to form the KI � J block matrix eX ¼
X1

..

.

XK

2
64

3
75:

Table 20.1 presents an example of eX, whose contents are explained in the next
section. The purpose of this section is to show that 3WPCA procedures are con-
strained versions of the PCA in Chap. 5 performed for eX:

PCA � Tucker2 � Tucker3 � Parafac: ð20:6Þ

Here, the symbol � delineates the order of constrainedness, so that the procedure
after � is a constrained version of the one before it. Tucker2 is introduced later.

The PCA model for eX with the number of components Q � min(KI, J) can be

expressed as eX ¼ eAB0 þ eE, using eA ¼
A1

..

.

AK

2
64

3
75 a PC score matrix of KI � Q,

eE ¼
E1

..

.

EK

2
64

3
75 a KI � J error matrix, and B a J � Q loading matrix, where Ak and Ek

(k = 1, … , K) are I � Q and I � J, respectively. Here, we have used the characters
A and B, so that they correspond to those used for 3WPCA. The above PCA model
can be rewritten as
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Xk ¼ AkB0 þEk: ð20:7Þ

This PCA model is also called Tucker1 (Tucker, 1966), as constraining it leads to
Tucker2, and Tucker3, as explained in the following paragraphs.

The Tucker2 model is derived by constraining Ak in (20.7) as Ak = AHk:

Xk ¼ AHkB0 þEk ð20:8Þ

with A being I � P, Hk being P � Q, and I � P. Here, it should be noted that Hk

has the subscript k which is not possessed by A and B: they are invariant across
different k, while Hk serves to explain the differences in Xk across k.

In order to show how the Tucker2 model is constrained to lead to Tucker3, we
arrange the PQR elements in the core array (20.3) in P � Q matrices G1, … , Gr,
… , GR, with gpqr the (p, q) element of Gr:

Gr ¼ gpqr
� � ðr ¼ 1; . . . ;RÞ: ð20:9Þ

Tucker3 is a constrained version of Tucker2 modeled as (20.8), in which Hk is
restricted to the sum of (20.9) weighted by ckr in (20.2):

Hk ¼ ck1G1 þ . . . þ ckRGR ¼
XR
r¼1

ckrGr ð20:10Þ

with R � K. Using (20.10) in (20.8) leads to the Tucker3 model

Xk ¼ A
XR
r¼1

ckrGr

 !
B0 þEk: ð20:11Þ

Its equivalence to (20.2) is shown next:

Note 20.1. Product of Three Matrices
In this chapter, we often encounter the products of three matrices. An
example of them is the product A

PR
r¼1 ckpGr

� �
B0 in (20.11), which is

rewritten as
PR

r¼1 A ckpGr
� �

B0.
Using ~a0i ¼ ai1; . . . ; aiP½ � for the ith row of A and ~b0j ¼ bj1; . . . ; bjQ

� �
for

the jth row of B, we can find that the (i, j) element ofA(ckrGr)B′ is expressed as

~a0iðckrGrÞ~bj ¼
XP
p¼1

XQ
q¼1

aipðckrgpqrÞbjq: ð20:12Þ

The (i, j) element of A
PR

r¼1 ckpGr
� �

B0 ¼PR
r¼1 A ckpGr

� �
B0 is given by the

sum of (20.12) over r = 1, … , R:
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XR
r¼1

~a0iðckrGrÞ~bj ¼
XR
r¼1

XP
p¼1

XQ
r¼1

aipðckrgpqrÞbjq ¼
XP
p¼1

XQ
q¼1

XR
r¼1

aipbjqckrgpqr:

ð20:13Þ

Equalizing this plus eijk to xijk leads to (20.2), with eijk the (i, j) element of Ek.

Finally, Parafac is a constrained version of the Tucker3 modeled in (20.11), in
which P, Q, and R are constrained through P = Q = R and Gr is restricted to a
matrix filled with zeros except for the rth diagonal element which equals one.
Hence, the Parafac model can be expressed as

Xk ¼ ADkB0 þEk; ð20:14Þ

with

Dk ¼
ck1

. .
.

ckP

2
64

3
75 ð20:15Þ

being the diagonal matrix whose diagonal elements are ck1, … , ckP. The (i,
j) element of ADkB′ in (20.14) is expressed as ~a0iDk~bj ¼

PP
p¼1 aipckpbjq, which

allows us to find the equivalence of (20.4) and (20.14).
The above facts lead to the hierarchical relationship in (20.6). It shows that

3WPCA procedures are directly derived from the PCA in Chap. 5 and are not
extensions of PCA but rather constrained versions.

Before describing how the parameters are estimated in 3WPCA, we illustrate the
Parafac and Tucker3 solutions for the data set in Table 20.1 and explain how the
solutions are interpreted on the basis of (20.11) and (20.14), in Sects 20.3 and 20.4.

20.3 Parafac Solution

The data in Table 20.1 consist of the I (=15 concepts) � J (=10 adjectives)
matrices Xk obtained over K = 6 occasions. The data were originally observed by
Osgood and Luria’s (1954) for a female suffering from triple personality disorder:
she had the three types of personalities named Eve White, Eve Black, and Jane.
During episodes for each of her three personality types, data were observed on two
occasions, as found in the left column in Table 20.1. Its element xijk indicates her
rating on occasion k and has been transformed from Osgood and Luria’s (1954)
original score so that xijk ranges from −3 to 3. That is, positive xijk stands for what
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extent the concept i is rated to be featured by adjective j, while negative xijk
indicates how strongly the concept i is featured by the antonym of adjective j. For
example, x111 = 1 stands for her thinking love to be hot at degree 1, while x114 = −3
indicates that she thinks love to be hot at degree −3, i.e., to be rather cold at degree
3.

For the data in Table 20.1, Parafac was performed with P = 3. The solution is
presented in Table 20.2. Here, the columns (i.e., components) in A and B are
indicated by the labels, belongings, ill feeling, … , goodness, referring to the
interpretation of those components. For example, the second component in A has
been named ill feeling, as this can be associated with the concepts of mental sick
and confusion showing the large positive loadings for that component. On the other
hand, the third component in B can be interpreted as representing goodness, as the
adjectives large and clean associated with goodness present positive loadings, but

Table 20.2 Parafac solution for the data set in Table 20.1

Concept A B

Belongings Ill
Feeling

Routine Adjective Activity Erethism Goodness

Love −0.15 0.00 0.39 Hot 0.31 −0.19 0.11

Child −0.10 0.14 0.24 Worthless −0.07 −0.01 −0.44
Doctor 0.50 −0.09 0.26 Relaxed 0.30 −0.64 0.04

Me 0.34 0.19 0.00 Large −0.08 0.10 0.44
Job −0.33 0.15 0.31 Slow −0.73 −0.12 0.35
Mental sick −0.12 0.44 0.25 Clean 0.03 0.10 0.44
Mother 0.20 0.27 0.24 Strong 0.18 −0.30 0.27

Peace of
mind

0.41 −0.25 0.33 Distasteful −0.15 0.27 −0.34

Fraud 0.22 0.34 −0.30 Shallow −0.17 −0.42 −0.28

Spouse −0.22 −0.05 0.19 Passive −0.44 −0.43 −0.13

Self-control 0.12 −0.02 0.33 C
Hatred 0.21 0.42 −0.21 Occasion B-Aa I-Eb R-Gc

Father 0.25 0.15 0.28 Eve White
1

1.52 12.39 20.34

Confusion −0.11 0.52 0.03 Eve White
2

3.74 11.41 17.73

Sex −0.24 −0.01 0.21 Eve Black
1

17.47 2.59 −5.40

Eve Black
2

17.96 4.01 −9.43

Jane 1 2.38 12.69 21.35

Jane 2 3.32 9.70 23.20
aBelongings–Activity
bIll Feeling–Erethism
cRoutine–Goodness
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worthless and distasteful associated with badness show negative loadings for the
component. The other components have been interpreted in a similar manner.

The Parafac solution can be visually represented in the network diagram in
Fig. 20.2. On the left side, the concept i and component p with |aip| > 0.3 are
linked, while on the right side the adjective j and component p with |bjp| > 0.3 are
linked. Here, the widths of the paths expressing links are proportional to the
absolute values of the corresponding loadings, with positive or negative value
indicated by the paths being real or dotted.

As found in middle section of Fig. 20.2, the diagonal elements of Dk in (20.15),
i.e., the elements of C = (ckp), indicate the relationships of the components in A to
those in B. This role of ckp can be understood by noting that P routes exist from
concept i to adjective j. For example, from Fraud to Slow, there are possible P = 3
routes: [1] Fraud–Belongings–Activity–Slow, [2] Fraud–Ill Feeling–Erethism–
Slow, and [3] Fraud– Routine–Goodness–Slow, with the symbol “–” indicating a
path. Here, each route consists of the three paths, which are associated with
coefficients aip, ckp, and bjp. Their product aipckpbjp = aipbjpckp is summed over
p = 1, … , P to provide the model part

PP
p¼1 aipbjpckp in (20.4) approximating xijk.

For this reason, Fig. 20.2 can be viewed as the network representation of the
Parafac solution in Table 20.2.

We should note in (20.4) that ckp has the subscript k, which is not possessed by
aip and bjp. This implies that the left and right links associated with A and B in
Fig. 20.2 are invariant across k = 1, … , K, but the inter-component links (middle
of the figure) differ across K occasions. The inter-occasion differences can be seen
by noting the C = (ckp) solution in Table 20.2. Here, we can find that the ckp values
for the four occasions concerning Eve White and Jane are mutually similar, but
differ from the two occasions concerning Eve Black. That is, the occasions (k = 1,
… , 6) are classified into the Eve White–Jane (EWJ) and Eve Black (EB) groups. In
the former, the ckp values are all positive, which implies that the three pairs of
components, [1] Belongings–Activity, [2] Ill Feeling–Erethism, and [3] Routine–

Concept 
Component

Belonging

Ill Feeling

Routine

Love 
Child 

Doctor 
Me
Job 

Mental Sick 
Mother 

Peace of Mind 
Fraud

Spouse 
Self-Control

Hatred 
Father 

Confusion 
Sex 

Activity

Erethism

Goodness

Hot 

Worthless 

Relaxed 

Large 

Slow 

Clean 

Strong 

Distasteful 

Shallow 

Passive

A = (aip) B = (bjp)Dk 

ck1

ck2

ck3

Adjective 
Component

Fig. 20.2 Network representation of the Parafac solution in Table 20.2
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Goodness, have positive associations. On the other hand, the ck3 values in the EB
group are negative, which implies that Routine is negatively associated with
Goodness. The two groups also differ in the following ways: in the EWJ group, the
associations in [2] and [3] are stronger than that in [1], as ck2 and ck3 are larger than
ck1. In contrast, the association in [1] is remarkably stronger in the EB group.

20.4 Tucker3 Solution

For the data in Table 20.1, we preformed Tucker3 with P = Q = 3 and R = 2. The
resulting solution is presented in Table 20.3. Here, the names of components are the
same as in Table 20.2, as the components in A and B can be interpreted in the same
manner as in the Parafac solution.

As described in Sect. 20.2, the Tucker3 model (20.11) follows from (20.8) with
Hk constrained as (20.10). On the basis of (20.8), the Tucker3 solution in
Table 20.3 can be represented in the network diagram in Fig. 20.3, which is
depicted in the same manner as in Fig. 20.2. How the diagram in Fig. 20.3 relates to
(20.8) can be understood by noting the routes from concepts to adjectives. Let
Ri-p-q-j denote the route from concept i to adjective j by way of the pth component
linked to i and the qth component linked to j. Then, all possible routes from i to j are
expressed as {Ri-p-q-j: p = 1, … , P; q = 1, … , Q}. Each of these routes consists of
three paths associated with coefficients aip, hpqk, and bjq, where hpqk is the (p,
q) element of Hk. The product of those coefficients, aiphpqkbjq, are summed over
p = 1, … , P and q = 1, … , Q to provide

PP
p¼1

PQ
q¼1 aiphpqkbjq, which is the (i,

j) element of the model part AHkB′ in (20.8).
We should note that the inter-component links shown in the middle of Fig. 20.3

differ from the corresponding links in Fig. 20.2. In Fig. 20.2, the components in
A are linked in parallel with those in B, since the matrix Dk specifying the links is
diagonal with its off-diagonal elements zeros. In contrast, in Fig. 20.3 each com-
ponent in A is linked to all of the ones in B, since the matrix Hk in (20.8) specifying
the links is not diagonal.

Matrix Hk is constrained as in (20.10). It is expressed as Hk = ck1G1 + ck2G2 in
this example with R = 2. Here, G1 and G2 do not have the subscript k, which
implies that the differences of Hk across occasions k = 1, … , K are specified by
weights ckr. In Table 20.3, the similarities/differences of the [ck1, ck2] values among
the six occasions show that they are classified into Eve White–Jane (EWJ) and Eve
Black (EB) groups. Figure 20.4a, b illustrate H1 = c11G1 + c12G2 for Eve White 1
in the former group and H4 = c41G1 + c42G2 for Eve Black 2 in the latter
group. Here, the striking difference between H1 and H4 is that the positive link
between Belongingness and Goodness is far stronger in (b) than in (a), and that the
link between Routine and Goodness in (a) shows Routine being rated Good,
whereas the counterpart in (b) does not, implying it is to some extent bad.
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20.5 Unconstrained Parafac Algorithm

Algorithms for 3WPCA are described in custom by arranging (20.5) horizontally in
the I � KJ block matrix

X ¼ X1; . . . ;Xk; . . . ;XK½ �: ð20:16Þ

For this data matrix, the Parafac model (20.4) or (20.14) can be rewritten as

X ¼ AðC � BÞ0 þE: ð20:17Þ

using the Khatri–Rao product defined in (17.60). Here, E = [E1,… , Ek,… , EK] is
the I � KJ matrix with the (i, j) element of Ek being eijk. The equivalence of (20.17)
to (20.14) is explained next:

Hot 
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Distasteful 
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A = (aip) B = (bjp)H = (hpqk)
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Fig. 20.3 Network representation of the Tucker3 solution in Table 20.3

Activity
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Goodness

Ill feeling

Routine
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Routine

Belongings Activity

Erethism

Goodness

(a)  H1: Eve White 1        (b)  H4: Eve Black 2

Fig. 20.4 Inter-component links across two occasions, with the links whose absolute values are
less than 0.1 omitted, the widths of the paths proportional to the absolute values of the
corresponding elements, and positive or negative value indicated by the paths being real or dotted
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Note 20.2. Parafac Model with the Khatri–Rao Product (Part 1)
The transpose of (17.60) pre-multiplied by A = [a1, … , aP] is expressed as

AðC � BÞ0 ¼ a1; . . . ; aP½ �
c11b01 � � � cK1b01
..
. ..

. ..
.

c1Pb0P � � � cKPb0P

2
64

3
75

¼
XP
p¼1

c1papb0p; . . . ;
XP
p¼1

cKpapb0p

" #
;

whose kth block is
PP

p¼1 ckpapb
0
p, with B = [b1, … , bP]. By taking account

of this result and (20.16), we can find that (20.17) is rewritten as

Xk ¼
XP
p¼1

ckpapb0p þEk ¼ a1; . . . ; aP½ �
ck1

. .
.

ckP

2
64

3
75

b01
..
.

b0P

2
64

3
75þEk;

i.e., (20.14) with the substitution (20.15).

The Parafac model (20.17) is equivalent to

X# ¼ BðC � AÞ0 þE#; ð20:18Þ

X	 ¼ CðB � AÞ0 þE	; ð20:19Þ

as shown in the next note. Here, X# (J � KI) and X* (K � JI) are obtained by
arranging (20.5) as

X# ¼ X0
1; . . . ;X

0
k; . . . ;X

0
K

� �
; ð20:20Þ

X	 ¼
vec X1ð Þ0

..

.

vec XKð Þ0

2
64

3
75 ¼ X	

1; . . . ;X
	
j ; . . . ;X

	
J

h i
; ð20:21Þ

and the error matrices E# and E* are the variants of E whose elements are arranged
so as to correspond to (20.20) and (20.21), respectively, with vec() defined as
(17.63) and Xj

* the K � I matrix whose (k, i) element is xijk. The equivalence of
(20.17) to (20.18) and (20.19) is shown next:
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Note 20.3. Parafac Model with the Khatri–Rao Product (Part 2)
Swapping the matrices A and B in Note 20.2 leads to

BðC � AÞ0 ¼ b1; . . . ; bP½ �
c11a01 � � � cK1a01
..
. ..

. ..
.

c1Pa0P � � � cKPa0P

2
64

3
75

¼
XP
p¼1

c1pbpa0p; . . . ;
XP
p¼1

cKpbpa0p

" #
;

whose kth block is
PP

p¼1 ckpbpa
0
p. Since this is the transpose of

PP
p¼1 ckpapb

0
p

in Note 20.2, we can find that
PP

p¼1 ckpbpa
0
p corresponds to Xk′ so that

(20.17) is rewritten as (20.18).
By using C = [c1, … , cP] and swapping B and C in the above B(C � A)′,

we have

CðB � AÞ0 ¼ c1; . . . ; cP½ �
b11a01 � � � bJ1a01
..
. ..

. ..
.

b1Pa0P � � � bJPa0P

2
64

3
75

¼
XP
p¼1

b1pcpa0p; . . . ;
XP
p¼1

bJpcpa0p

" #
;

whose jth block is the K � I matrix
PP

p¼1 bjpcpa
0
p with its (k, i) elementPP

p¼1 bjpckpaip ¼
PP

p¼1 aipbjpckp. This corresponds to the (k, i) element of Xj
*

in (20.21), i.e., xijk, which shows the equivalence of (20.19) to (20.4) or
(20.17).

Using (20.17)–(20.19), the sum of the squared errors for Parafac is expressed in
three forms as in

fPðA;B;CÞ ¼ X
 AðC � BÞ0�� ��2¼ X# 
 BðC � AÞ0�� ��2¼ X	 
 CðB � AÞ0�� ��2;
ð20:22Þ

This minimization over A, B, and C can be attained by alternately solving the
following three problems:

[P1] minimize ||X − A(C � B)′||2 over A with B and C kept fixed,
[P2] minimize ||X# − B(C � A)′||2 over B with A and C kept fixed,
[P3] minimize ||X* − C(B � A)′||2 over C with A and B kept fixed.
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Here, we can find every problem to be the regression of data onto the matrix

defined by the Khatri–Rao product. For example, X
 AðC � BÞ0�� ��2¼
X0 
 ðC � BÞA0k k2 in [P1] is the loss function for the regression of X′ onto (C � B)

with A′ the coefficient matrix. Its solution is explicitly given by A′ = (C � B)+X′, or
equivalently, A = X(C � B)+′, as explained with (17.28) in Sect. 17.4. In a parallel
manner, the solutions for [P2] and [P3] can be obtained. Thus, the Parafac algo-
rithm for minimizing (20.22) can be summarized as follows:

Step 1. Initialize B and C.
Step 2. Update A = X(C � B)+′.
Step 3. Update B = X#(C � A)+′.
Step 4. Update C = X*(B � A)+′.
Step 5. Finish if convergence is reached; otherwise, go back to Step 2.

20.6 Constrained Parafac Algorithm

A drawback of the procedure in the last section is that it sometimes provides the
solutions in which A, B, or C is nearly rank-deficient. This term is explained next:

Note 20.4. Nearly Rank-Deficient Matrix and Condition Number
Let N be an n � p matrix to be determined. If rank(N) is nearly less than
min(n, p), N can be said to be nearly rank-deficient. Here, we should note the

adverb nearly. For example, let R ¼ 1 3
2 6

	 

and N ¼ 1 2:9

2 6:1

	 

. We find

rank(R) = 1 < rank(N) = 2, but N ≅ R. Then, N can be said to be nearly
rank-deficient.

How nearly rank(N) is less than min(n, p) can be indicated by the
largeness of the condition number, which is defined as the ratio of the largest
singular value of N to its smallest nonzero singular value.

A solution including a nearly rank-deficient matrix is not useful, as rows/columns
are indistinctive and redundant.

A remedy for avoiding such solutions in Parafac is to impose the column-
orthonormality constraints on two of A, B and C (Kroonenberg, 2008; Smilde, Bro,
& Geladi, 2004). One example is

A0A ¼ B0B ¼ IP: ð20:23Þ
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A constrained Parafac procedure can be formulated by minimizing (20.22) under
(20.23). Indeed, this procedure has been used for the solution in Table 20.2, whose
algorithm consists of alternately solving the problems [P1], [P2], and [P3] in
Sect. 20.5 subject to (20.23).

Let us consider [P1] subject to (20.23), i.e., minimizing fP(A) = ||X − A(C � B)′||2
over A under A′A = IP. Using this constraint, fP(A) can be rewritten as
fPðAÞ ¼ Xk k2
 2trðC � BÞ0X0Aþ ðC � BÞk k2, which shows that the problem
amounts tomaximizing tr(C �B)′X′A overA subject toA′A = IP. This can be attained
through the singular value decomposition (SVD) defined as X(C � B) = UDV′, with
U′U = V′V = IP and D a P � P diagonal matrix, as found in Theorem A.4.2: the
optimalA is given byA = UV′. Analogously, the solution of [P2] subject toB′B = IP
in (20.23) is given by B = U#V#′, whose right side hand is obtained through the SVD
X#(C � A)= U#D#V#′. Since the remaining parameter matrix C is unconstrained, its
solution is obtained by Step 4 in Sect. 20.5: withA andB fixed, the optimalC is given
byC = X*(B �A)+′. Here, (B �A)+′ can be simplified intoB �A under (20.23), which
is derived using the identity (17.61) with (20.23):

ðB � AÞ0ðB � AÞ ¼ IP: ð20:24Þ

By comparing this with (17.8), we find ðB � AÞþ 0 ¼ ðB � AÞ00 ¼ B � A . Thus, the
Parafac algorithm subject to (20.23) can be listed as follows:

Step 1. Initialize B and C.
Step 2. Update A with A = UV′.
Step 3. Update B with B = U#V#′.
Step 4. Update C = X*(B � A).
Step 5. Finish if convergence is reached; otherwise, go back to Step 2.

By substituting C = X*(B � A) into the final term of (20.22), the attained value
of the loss function can be expressed as

X	 
 X	ðB � AÞðB � AÞ0�� ��2
¼ X	k k2 
 2trX	0X	ðB � AÞðB � AÞ0 þ trðB � AÞðB � AÞ0X	X	ðB � AÞðB � AÞ0

¼ X	k k2 
 trðB � AÞ0X	0X	ðB � AÞ ¼ Xk k2 1
 GOFPð Þ:
ð20:25Þ

Here, (20.24) has been used and

GOFP ¼ X	ðB � AÞk k2
Xk k2 ¼ Ck k2

Xk k2 : ð20:26Þ

is the standardized goodness-of-fit index, which takes a value within the range [0,
1]. The monotonic increase in (20.26) with the iteration of Steps 2 to 4 follows from

328 20 Three-Way Principal Component Analysis



the monotonic decrease of (20.25). We can use (20.26) to check the convergence,
definable as a change in value of (20.26) from the previous round being small
enough to be ignored. The resulting (20.26) value for the solution in Table 20.2 was
0.56.

20.7 Tucker3 Algorithm: The Optimal Core Array

For the block data matrix (20.16), the Tucker3 model (20.2) or (20.11) is rewritten
as

X ¼ AGðC � BÞ0 þE; ð20:27Þ

using the Kronecker product defined in (17.52). Here, G = [G1, … , GR] is the
P � RQ block matrix whose rth block Gr is defined as (20.9), and E = [E1, … ,
EK] is the I � KJ matrix whose kth block is Ek (I � J) with its (i, j) element eijk
corresponding to xijk. The equivalence of (20.27) to (20.11) is explained next:

Note 20.5. Expression of the Tucker3 Model with the Kronecker
Product
Using (17.52) and (17.55), we have

ðC� BÞ0 ¼ C0 � B0 ¼
c11B0 � � � cK1B0

..

. ..
. ..

.

c1RB0 � � � cKRB0

2
664

3
775 and

AGðC� BÞ0 ¼ A G1; . . . ;GR½ �
c11B0 � � � cK1B0

..

. ..
. ..

.

c1RB0 � � � cKRB0

2
664

3
775

¼ A
XR
r¼1

c1rGrB0; . . . ;
XR
r¼1

cKGrB0
" #

¼ A
XR
r¼1

c1rGr

 !
B0; . . . ;A

XR
r¼1

cKrGr

 !
B0

" #
;

ð20:28Þ

whose kth block is A
PR

r¼1 ckrGr
� �

B0 (I � J). By comparing (20.27) and
(20.28) with (20.16), we find that (20.27) is equivalent to (20.11).
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Tucker3 is thus formulated by minimizing the least squares function for (20.27):

fT3ðA;B;C;GÞ ¼ Ek k2¼ X
 AGðC� BÞ0�� ��2: ð20:29Þ

Here, we can constrain A, B, and C as

A0A ¼ IP; B0B ¼ IQ; and C0C ¼ IR ð20:30Þ

without loss of generality, since the minimum value of (20.29) remains the same
whether (20.30) is imposed or not, as explained in Sect. 20.9.

Let us consider the minimization of (20.29) over G for given A, B, and C. We
can find that (20.29) has the same form as (17.33): the minimization of (20.29) is
the Penrose regression problem formulated by minimizing (17.33). Thus, (17.34)
shows that (20.29) is minimized for

G ¼ AþXðC� BÞþ 0 ¼ A0XðC� BÞ: ð20:31Þ

Here, the last identity is derived using (17.7), (17.8), (17.55), and (17.59): those and
(20.30) lead to ðC� BÞ0þ ¼ C0 � B0ð Þþ¼ C0 þ � B0 þ ¼ Cþ 0 � Bþ 0 ¼
C00 � B00 ¼ C� B, with A+ = A′ following from (17.8) and (20.30).

We can expand the right term in (20.31) as

A0XðC� BÞ ¼ A0 X1; . . . ;XK½ �
c11B � � � c1RB
..
. ..

. ..
.

cK1B � � � cKRB

2
64

3
75

¼
XK
k¼1

ck1A0XkB; . . . ;
XK
k¼1

clRA0XkB

" #
: ð20:32Þ

Its rth block is the P � Q matrix
PK

k¼1 ckrA
0XkB, whose (p, q) element isPK

k¼1 ckra
0
pXkbq, while the rth block of G in (20.31) is Gr (P � Q) whose (p,

q) element is gpqr. These facts show that (20.31) is rewritten as

gpqr ¼
XK
k¼1

ckra0pXkbq ¼
XK
k¼1

ckr
XI
i¼1

aipxi1k; . . . ;
XI
i¼1

aipxiJk

" #
bq

¼
XK
k¼1

ckr
XJ
j¼1

XI
i¼1

aipxijkbjq ¼
XI
i¼1

XJ
j¼1

XK
k¼1

aipbjqckrxijk:

ð20:33Þ

By comparing this with the Tucker3 model (20.2), we can find a kind of parallel
relationship: the model part in (20.2) is the sum of the core elements gpqr weighted
by loadings aip, bjq, and ckr over p, q, and r, which approximates the observation
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xijk. On the other hand, (20.33) shows that the solution of core element gpqr is the
sum of observations xijk weighted by loadings aip, bjq, and ckr over i, j, and k. This is
similar to the fact that the PC scores in two-way PCA (Chaps. 5 and 6) are given as
the weighted composite of observations.

By substituting (20.31) into the final term of (20.29), we have

X
 AA0XðC� BÞðC� BÞ0�� ��2 ¼ Xk k2
2trX0AA0XðC� BÞðC� BÞ0
þ trðC� BÞðC� BÞ0X0AA0AA0XðC� BÞðC� BÞ0

¼ Xk k2
2trA0XðC� BÞðC� BÞ0X0A

þ trA0XðC� BÞ ðC� BÞ0ðC� BÞ� �ðC� BÞ0X0A

¼ Xk k2
gðA;B;CÞ;
ð20:34Þ

with

gðA;B;CÞ ¼ trA0XðC� BÞðC� BÞ0X0A ¼ A0XðC� BÞk k2¼ Gk k2: ð20:35Þ

Here, we have used the fact that (17.55), (17.56), and (20.30) imply
(C ⊗ B)′(C ⊗ B) = (C′ ⊗ B′)(C ⊗ B) = (C′C) ⊗ (B′B) = IQR, and the last
identity in (20.35) follows from (20.31). Equation (20.34) shows that its mini-
mization over A, B, and C under (20.30) amounts to maximizing (20.35) subject to
(20.30). The resulting A, B, and C can be substituted in (20.31) to provide the
solution of G.

We should note that the last identity in (20.35) is the sum of the squared
elements in the core G. Upon maximizing this, Tucker3 is formulated. This is
similar to the fact that two-way PCA can be formulated as the maximization of the
variance of PC scores as described in Chap. 6.

20.8 Tucker3 Algorithm: Iterative Solution

The maximization of (20.35) subject to (20.30) can be attained by alternately
iterating steps, in each of which A, B, or C is optimally updated so that (20.35) is
maximized. The steps are described in the next paragraphs.

First, let us consider maximizing (20.35) over A subject to (20.30), i.e.,
A′A = IP, with B and C kept fixed. It is attained for

A ¼ EVI�P XðC� BÞðC� BÞ0X0� �
: ð20:36Þ
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Here, EVI�P[M] is the function which provides the I � P matrix, whose columns
are the eigenvectors corresponding to the P largest eigenvalues of an I � I matrix
M, with I � P. The fact that (20.35) is maximized under (20.30) for (20.36)
follows from Theorem A.4.4 in Appendix A.4.2.

Next, let us consider maximizing (20.35) over B subject to B′B = IQ, with A and
C fixed. For this problem, we use the fact that (20.35) can be rewritten as

gðA;B;CÞ ¼ trB0X#ðC� AÞðC� AÞ0X#0B ¼ B0X#ðC� AÞ�� ��2: ð20:37Þ

with X# defined as (20.20). Function (20.35) or (20.37) is maximized under
B′B = IQ for

B ¼ EVJ�Q X#ðC� AÞðC� AÞ0X#0� �
; ð20:38Þ

as (20.36) is derived from (20.35). The equivalence of (20.35) and (20.37) follows
from the fact that B′X#(C ⊗ A) in (20.37) is expanded as

B0X#ðC� AÞ ¼ B0 X0
1; . . . ;X

0
K

� � c11A � � � c1RA

..

. ..
. ..

.

cK1A � � � cKRA

2
664

3
775

¼
XK
k¼1

ck1B0X0
kA; � � � ;

XK
k¼1

ckRB0X0
kA

" #
:

ð20:39Þ

each block of the right matrix in (20.39) is merely the transpose of the counterpart
in (20.32).

Finally, let us consider maximizing (20.35) over C subject to C′C = IR, with
A and B fixed. For this problem, we use the fact that (20.35) can be rewritten as

gðA;B;CÞ ¼ trC0X	ðB� AÞðB� AÞ0X	0C ¼ C0X	ðB� AÞk k2: ð20:40Þ

with X* defined as (20.21). Function (20.35) or (20.40) is maximized under
C′C = IR for

C ¼ EVK�R X	ðB� AÞðB� AÞ0X	0� � ð20:41Þ

as (20.36) is derived from (20.35). The equivalence of (20.40) and (20.35) is shown
as follows: by using (17.67) and expressing the ktk row of C as ~c0k ¼ ck1; . . . ; ckR½ �,
we can rewrite C′X*(B ⊗ A) in (20.40) as
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C0X	ðB� AÞ ¼ C0
vec X1ð Þ0

..

.

vec XKð Þ0

2
664

3
775ðB� AÞ ¼ C0

vec X1ð Þ0 B� A00ð Þ
..
.

vec XKð Þ0 B� A00ð Þ

2
664

3
775

¼ C0
vec A0X1Bð Þ0

..

.

vec A0XKBð Þ0

2
664

3
775 ¼ ~c1 � � �~cK½ �

vec A0X1Bð Þ0

..

.

vec A0XKBð Þ0

2
664

3
775 ¼

XK
k¼1

~ckvec A0XkBð Þ0:

ð20:42Þ

Here, A0XkB ¼
a01Xkb1 � � � a01XkbQ

..

. ..
. ..

.

a0PXkb1 � � � a0PXkbQ

2
64

3
75 and vec A0XkBð Þ0¼

a01Xkb1; . . . ; a0PXkb1; . . . ; a01XkbQ; . . . ; a0PXkbQ�
�

. Thus, we can find that (20.42)
is the R � PQ matrix whose elements are expressed as (20.33). It implies that
(20.40) equals (20.35).

The above facts are sufficient to now describe the Tucker3 algorithm:

Step 1. Initialize B and C.
Step 2. Update A with (20.36)
Step 3. Update B with (20.38)
Step 4. Update C with (20.41)
Step 5. Obtain (20.31) and finish if convergence is reached; otherwise, go back to

Step 2.

Equations (20.34) and (20.35) show that the attained value of the Tucker3 loss
function is expressed as ||X||2(1 − GOFT3) with

GOFT3 ¼ gðA;B;CÞ
Xk k2 ¼ Gk k2

Xk k2 : ð20:43Þ

The value of (20.43) with its range [0, 1] expresses the standardized goodness-of-fit
of the Tucker3 solution and is convenient for checking the convergence. The
(20.43) value was 0.72 for the solution in Table 20.3.

20.9 Three-Way Rotation in Tucker3

The Tucker3 solution is not uniquely determined, as shown in the following. Let the
solutions of A, B, C, and G be transformed into
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eA ¼ AS; eB ¼ BT; eC ¼ CU; and eG ¼ S
1G U
1 � T
1� �0 ð20:44Þ

with S (P � P), T (Q � Q), and U (R � R) any nonsingular matrices. Even if eA,eB, eC, and eG transformed according to (20.44) are substituted into A, B, C, and
G in the loss function (20.29), respectively, it remains unchanged as

X
 eA eGðeC � eBÞ0��� ���2 ¼ X
 ASS
1G U
1 � T
1� �0 ðCUÞ0 � ðBTÞ0� ���� ���2
¼ X
 AG U
10 � T
10� �

U0C0ð Þ � T0B0ð Þf g�� ��2
¼ X
 AG U0
1 � T0
1� �

U0 � T0ð Þ C0 � B0ð Þ�� ��2
¼ X
 AG U0
1U0� �� T0
1T0� �� �

C0 � B0ð Þ�� ��2
¼ X
 AGðC� BÞ0�� ��2;

ð20:45Þ

where (17.55) and (17.56) have been used. Thus, if A, B, C, and G give the
Tucker3 solution minimizing (20.29) subject to (20.30), (20.44) is also the solution
that minimizes (20.29) or (20.45), but is not restricted by (20.30). For this reason,
we can impose the constraint (20.30) for A, B, and C, without loss of generality.

The property that the transformation (20.44) is allowed can be exploited so as to
produce interpretable eA, eB, eC, and eG by choosing appropriate S, T, and U:
namely, we can perform a rotation procedure for A, B, C, and G as described in
Chap. 13. However, the rotation required in Tucker 3 differs from that in Chap. 13,
in that three rotation matrices S, T, and U are to be obtained in this chapter.

From here, let A, B, C, and G be the Tucker 3 solutions satisfying (20.30) and

also eA, eB, and eC be constrained as eA0 eA ¼ IP, eB0eB ¼ IQ, and eC0 eC ¼ IR. These
constraints are equivalent to

S0S ¼ SS0 ¼ IP; T0T ¼ TT0 ¼ IQ; U0U ¼ UU0 ¼ IR; ð20:46Þ

since eA, eB, and eC in (20.44) with (20.30) and (20.46) lead to eA0 eA ¼ IP,eB0eB ¼ IQ, and eC0 eC ¼ IR. The constraint (20.46) simplifies eG in (20.44) toeG ¼ S0GðU� TÞ. For obtaining suitable eA, eB, eC and eG ¼ S0GðU� TÞ subject to
(20.46), some three-way rotation procedures have been proposed (e.g.,
Kroonenberg, 2008, Chap. 10).

Out of these, we have used orthogonal three-way simplimax rotation (Kiers,
1998a) to obtain the solution in Sect. 20.4. In this rotation, the matrices S, T, and
U are obtained that allow the transformed core matrix eG ¼ S0GðU� TÞ to ap-
proximate a P � RQ target matrix GT. Here, this target includes a number of zero

elements. Thus, the resulting eG includes a number of the elements close to zeros,
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which may not be noted. This facilitates interpretation of the core matrix. For this
approximation, the simplimax rotation is formulated as minimizing

/ S;T;U;GTð Þ ¼ eG 
GT

��� ���2¼ S0GðU� TÞ 
GTk k2 ð20:47Þ

over S, T, U, and GT subject to (20.46) and

N0 GTð Þ ¼ U: ð20:48Þ

Here, N0(GT) denotes the number of zero elements in GT and U is a specified
integer. An interesting feature of the simplimax rotation is that the target GT is also
to be estimated: only its number of zero elements N0(GT) is known to be U, and
thus the locations of those elements are to be estimated jointly with the values of
nonzero parameters. The solution in Sect. 20.4 resulted with U being half of the
elements in GT, i.e., U = PQR/2 = (3 � 3�2)/2 = 9.

The solution of the simplimax rotation can be obtained through alternately
iterating the steps, in each of which (20.47) is minimized over one of S, T, U, and
GT under (20.46) and (20.48) with the remaining three matrices fixed.

First, let us consider minimizing (20.47) over S subject to (20.46) with T, U, and
GT fixed. We can find this minimization to be attained by the orthogonal
Procrustes rotation (13.21) (Chap. 13), since (20.47) is rewritten as ||GT′
−{G(U ⊗ T)}′S||2 which has the same form as the function in (13.21), with the
constraint for S in (20.46) having the same form as that in (13.21). In similar
manners, the minimization of (20.47) over T and the minimization over U under
(20.46) can also be attained by the orthogonal Procrustes rotation (13.21), through
rewriting (20.47) suitably, though its details are omitted here.

Now, let us consider the step for minimizing (20.47) over GT under (20.48) with

S, T, and U fixed. Using eG ¼ ð~gpsÞ and GT ¼ ðg½T�ps Þ, we can rewrite (20.47) as

/ GTð Þ ¼
X

ðp;sÞ2@0

~g2ps þ
X

ðp;sÞ2@#

ðg½T�ps 
 ~gpsÞ2 �
X

ðp;sÞ2@0

~g2ps: ð20:49Þ

Here, @0 denotes the set of U pairs of (p, s) with elements g½T�ps to be zero, @# is the

set of PQR−U pairs of (p, s) with g½T�ps to be nonzero,
P

ðp;sÞ2@0
~g2ps stands for the

summation of ~g2ps over the (p, s) contained in @0, and we have usedP
ðp;sÞ2@0

ðg½T�ps 
 ~gpsÞ2 ¼
P

ðp;sÞ2@0
ð0
 ~gpsÞ2 ¼

P
ðp;sÞ2@0

~g2ps. The inequality in

(20.49) shows that /(GT) attains its lower limit
P

ðp;sÞ2@0
~g2ps when the element g½T�ps

with (p, s)2@# is set equal to ~gps so that
P

ðp;sÞ2@#
ðg½T�ps 
 ~gpsÞ2 ¼P

ðp;sÞ2@#
ð~gps 
 ~gpsÞ2 ¼ 0. Further, the limit

P
ðp;sÞ2@0

~g2ps is minimum, when @0

contains the (p, s) for the U smallest elements among all ones of eG � eG ¼ ð~g2psÞ,
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with � standing for the Hadamard product defined in (17.69). The optimal GT ¼
ðg½T�ps Þ is thus given by

g½T�ps ¼ 0 if ~g2ps � ~g2½U�
~gps otherwise

�
ð20:50Þ

with ~g2½U� the Uth smallest value among all elements of eG � eG.

The oblique version of the three-way simplimax rotation with (20.46) relaxed is
a major topic in Kiers (1998a), though we treat only the orthogonal version here.
The target matrix GT can be said to be a sparse matrix, which will be a keyword in
the next two chapters.

20.10 Bibliographical Notes

Chemometricians Smilde et al. (2004) and psychometrician Kroonenberg (2008)
have published books in which multi-way PCA procedures are reviewed compre-
hensively. In their description, multi-way PCA includes three-, four-, and five-way
PCA as special cases: 3WPCA procedures can be extended straightforwardly to
accommodate such cases, as found in Kroonenberg (2008) and Smilde et al. (2004).
Adachi (2016) also reviews 3WPCA compactly within one chapter.

Exercises

20:1. For ap = [a1p, … , aIp]′, bq = [b1q, … , bJq]′, and cr = [c1r, … , cKr]′, the
three-way tensor product is defined as

ap  bq  cr ¼ aipbjqckr; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J; k ¼ 1; . . . ;K
� �

: ð20:51Þ

the tensor product ap° bq ° cr provides the three-way I � J � K array on the
right side. Show that the Tucker3 model (20.2) can be rewritten as

X
...
¼
XP
p¼1

XQ
q¼1

XR
r¼1

ap  bq  cr
� �

gpqr þ E
...

ð20:52Þ

with vX the three-way data array defined as (20.1) and vE ¼
eijk; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J; k ¼ 1; . . . ;K
� �

the three-way array of errors.
20:2. Show that the Parafac model (20.4) can be rewritten as

X
...
¼
XP
p¼1

ap  bp  cp
� �þ E

...
ð20:53Þ
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with ap ¼ a1p; . . . ; aIp
� �0

; bp ¼ b1p; . . . ; bJp
� �0

; cp ¼ c1p; . . . ; cKp
� �0

, and vE
defined in Exercise 20.1.

20:3. Show the equivalence of ap° bq and apbq′: the vector product apbq′ can be
regarded as a two-way version of the tensor product.

20:4. For ap = [a1p, … , aIp]′, bq = [b1q, … , bJq]′, cr = [c1r, … , cKr]′, and ds =
[d1s, … , dLs]′, the four-way tensor product is defined as

ap  bq  cr  ds
¼ aipbjqckrdls; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J; k ¼ 1; . . . ;K; l ¼ 1; . . . ; L
� �

:

ð20:54Þ

Discuss how a four-way extension of Tucker3 is modeled as

X
...:

¼
XP
p¼1

XQ
q¼1

XR
r¼1

XS
s¼1

ap  bq  cr  ds
� �

gpqrs þ E
...:

ð20:55Þ

for the four-way I � J � K � L data array expressed as
{X ¼ xijkl; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J; k ¼ 1; . . . ;K; l ¼ 1; . . . ; L

� �
, with {E a

four-way array of errors.
20:5. By extending (20.54) and (20.55), discuss how Tucker3 can be generalized

for a N-way data array.
20:6. Show that the Parafac loss function (20.22) can be rewritten as

XA 
 FBCA0k k2¼ XB 
 FCAB0k k2¼ XC 
 FABC0k k2 ð20:56Þ

Here, {( j − 1)K + k}-th rows of XA (JK � I) and FBC (JK � P) are [x1jk,… ,
xIjk] and [bj1ck1, … , bjPckP], respectively; the {(k − 1)I + i}-th rows of XB

(KI � J) and FCA (KI � P) are [xi1k, … , xiJk] and [ck1ai1, … , ckPaiP],
respectively; the {(i − 1)J + j}-th rows of XC (IJ � K) and FAB (IJ � P) are
[xij1, … , xijK] and [ai1bj1, … , aiPbjP], respectively (Adachi, 2013b).

20:7. Show a Parafac algorithm for minimizing (20.56).
20:8. Show that the Parafac model (20.14) with (20.15) can be rewritten as

vec Xkð Þ ¼ Udk þ vec Ekð Þ ð20:57Þ

using U ¼ b1 � a1; . . . ; bP � aP½ �ðJI � PÞ and dk = Dk1P (P � 1), with
A = [a1, … , aP] and B = [b1, … , bP] (ten Berge, 1993). Hints can be found
in (17.65), (17.66), and the fact that (20.14) is rewritten as
Xk ¼

PP
p¼1 ckpapb

0
p þEk, or equivalently, vec Xkð Þ ¼

vec
PP

p¼1 ckpapb
0
p

� 
þ vec Ekð Þ.
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20:9. Show that the Tucker3 loss function (20.29) can be rewritten as

X
 AGðC� BÞ0�� ��2¼ X# 
 BG#ðC� AÞ0�� ��2¼ X	 
 CG	ðB� AÞ0�� ��2
ð20:58Þ

with (20.20) and (20.21). Here, G# ¼ ½G0
1; . . . ;G

0
R� ðQ� RPÞ, and G	 ¼

vecðG1Þ0
..
.

vecðGRÞ0

2
64

3
75 ¼ G	

1; . . . ;G
	
q; . . . ;G

	
Q

h i
ðR� QPÞ with Gq

* the R � P matrix

whose (r, p) element is gpqr.
20:10. The indeterminacy of the Tucker3 solution is shown by (20.45) with the

transformation (20.44). Show that the indeterminacy can be also shown by

X# 
 BG#ðC� AÞ0�� ��2¼ X# 
 eB eG#ðeC � eAÞ0
��� ���2; ð20:59Þ

X	 
 CG	ðB� AÞ0�� ��2¼ X	 
 eC eG	ðeB � eAÞ0
��� ���2; ð20:60Þ

on the basis of (20.58). Here, eA ¼ AS; eB ¼ BT; eC ¼ CU; eG# ¼
T
1 G#ðU
1 � S
1Þ0 and eG	 ¼ U
1G	ðT
1 � S
1Þ0:

20:11. Kiers (1998b) has proposed a three-way rotation technique for Tucker 3
alternative to the procedure in Sect. 20.9. In this method, the function

gðS;T;UÞ ¼ w1Simp eG0
� 

þw2Simp eG#0
� 

þw3Simp eG	0
� 

þw4SimpðeAÞþw5SimpðeBÞþw6SimpðeCÞ
ð20:61Þ

is maximized over S, T, and U under (20.46), for the Tucker3 solution

subject to (20.30). Here, eA, eB, eC, eG, eG#
, and eG	

are those in (20.44),

(20.59), and (20.60), with eG, eG#
, and eG	

simplified to eG ¼ S0GðU� TÞ,eG# ¼ T0G#ðU� SÞ, and eG	 ¼ U0G	ðT� SÞ since of (20.46). The scalars
w1, … , w6 in (20.61) are nonnegative weights to be prespecified, and the
function Simp(•) in (20.61) is the varimax rotation function in (13.12),
defined as

Simp Vð Þ ¼ 1
L

XM
m¼1

XL
l¼1

v2lm 
 1
L

XL
n¼1

v2nm

 !2
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for an L � M matrix V = (vlm). The maximization of (20.61) over S, T, and
U subject to (20.46) can be called three-way varimax rotation. Discuss the
differences of this rotation to the three-way simplimax rotation in Sect. 20.9.

20:12. Show how the Tucker2 modeled in (20.8) can be formulated as the mini-
mization of

f ðA;B;HÞ ¼ X
 AH IK � Bð Þ0�� ��2 ð20:62Þ

over A, B, and H = [H1, … , HK] (P � KQ).
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Chapter 21
Sparse Regression Analysis

A matrix or vector is said to be sparse when it includes a number of zero elements.
Hence, the term sparse estimation refers to estimating a number of parameters as
zeros. The developments in multivariate analysis procedures with sparse estimation
started from modifications to the multiple regression analysis introduced in Chap. 4.
A number of modified regression procedures have been developed so that the
resulting regression coefficient vector is sparse, and can be generally referred to as
sparse regression analysis. Among those procedures, the first was proposed by
Tibshirani (1996) and called lasso. One of the main purposes of sparse regression
analysis can be regarded as removing useless variables computationally in order to
select useful ones: The explanatory variables, whose coefficients are estimated as
zeros, are removed from a set of variables to determine a dependent variable.

21.1 Illustration of Sparse Solution

Let us recall the regression analysis that was presented in Chap. 4. It is modeled as

y
y1
..
.

yi
..
.

yn

2
6666664

3
7777775

¼

X
x11 � � � x1j � � � x1p
..
. ..

. ..
.

xi1 � � � xij � � � xip
..
. ..

. ..
.

xn1 � � � xnj � � � xnp

2
6666664

3
7777775

b
b1
..
.

bj
..
.

bp

2
6666664

3
7777775
þ c

1n
1
..
.

1
..
.

1

2
666664

3
777775
þ

e
e1
..
.

ei
..
.

en

2
666664

3
777775
; ð21:1Þ
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where the squared norm of the error vector e, i.e.,

f ðb; cÞ ¼ ek k2¼ y� Xb� c1nk k2; ð21:2Þ

is minimized over the coefficient vector b and intercept c. The solution of c must
satisfy (4.9). Substituting this into c in (21.2), this is simplified to

f ðbÞ ¼ ek k2¼ Jy� JXbk k2; ð21:3Þ

with J = In − n−11n1n′ the centering matrix. The solution of b minimizing (21.3) is
given by (4.12), and using this in (4.9) leads to the solution of c. In this section, we
call this procedure standard regression, to distinguish it from sparse regression
introduced in this chapter. Furthermore, we refer to the function (21.3) without c,
rather than (21.2) including c, as the standard regression function, as the sparse
regression procedures differ from standard regression solely in that another function
(shown in the later sections) is added to (21.3). The solution c is also given by using
the resulting b in (4.9) in sparse regression.

To illustrate what solutions are provided by sparse regression, we use an n (252
persons) � p (14 variables) matrix of the standard scores for body fat data, cited
from the website https://astro.temple.edu/*alan/MMST/datasets.html in Izenman’s
(2008) textbook. Here, the variables consist of the 13 physical features shown in the
left column of Table 21.1 and a fat index. For the data set, we performed standard
and sparse regression, with the 13 physical features treated as explanatory variables
(X) for predicting the fat index (y). In the table, the sparse regression procedures
have been labeled lasso and L0, which are explained later. The solutions are shown
in Table 21.1. Here, blank cells indicate estimates of zero, demonstrating the sparse
coefficient vectors resulting in the sparse regression. For example, the seven coef-
ficients b2, b5, b7, …, b11 are estimated as zeros in lasso (Table 21.1B): Its solution
leads to the equation explaining fatness:

fat ¼ 0:091 age� 0:088 height � 0:109 neck

þ 0:942 abdomenþ 0:073 forearm� 0:168wristþ error:

Here, the seven variables whose coefficients were estimated as zero have vanished.
The bottom row in Table 21.1 shows the values of the BIC (8.25). How BIC is

incorporated in regression analysis is explained in Sect. 21.4. As described in
Sect. 8.7, a model with a smaller BIC value is considered as better: Table 21.1
shows that the lasso solution is the best among the three ones.

In regression analysis, it is often inevitable to select a subset of the explanatory
variables useful for predicting a dependent variable among the whole set. The
selection can be restated as removing the explanatory variables that are useless for
the prediction. This selection or removal is referred to as variable selection. Sparse

342 21 Sparse Regression Analysis

https://astro.temple.edu/%7ealan/MMST/datasets.html


regression procedures jointly perform both variable selection and parameter esti-
mation. They can be expressed as estimating

[1] what variables are to be excluded with their coefficients as zero
[2] the values of nonzero coefficients.

simultaneously and optimally.

21.2 Penalized Least Squares Method and Lasso

In sparse regression, the simultaneous estimation of [1] and [2] above is attained by
a penalized least squares method. This term, which is also called a regularized least
squares method, generally refers to minimizing the composite of a least squares
function and an additional function. In sparse regression, the least square function is
the standard regression function (21.3), while the latter is a penalty function which
penalizes nonzero elements in b. Using Pen(b) for the penalty function, sparse
regression can be formulated as minimizing

fPENðbÞ ¼ Jy� JXbk k2 þ nwPenðbÞ ð21:4Þ

over b for a given w � 0. Here, wPen(b) has been multiplied by n merely for the
sake of the convenience during the subsequent derivations of equations. The role of
w is to tune the two functions ||Jy − JXb||2 and Pen(b). A parameter w, which tunes
multiple functions, is referred to as a tuning parameter. It can also be called a
penalty weight, since it determines the importance (or weight) of Pen(b) relative to
||Jy − JXb||2.

Table 21.1 Solutions of the
standard and sparse regression
for bodyfat data

Procedure (A) Standard (B) Lasso (C) L0
Age b1 0.097 0.091 0.093

Weight b2 −0.342 −0.339

Height b3 −0.013 −0.088

Neck b4 −0.138 −0.109 −0.144

Chest b5 −0.017

Abdomen b6 1.231 0.942 1.226

Hip b7 −0.161 −0.160

Thigh b8 0.156 0.159

Knee b9 0.004

Ankle b10 0.036

Biceps b11 0.066 0.065

Forearm b12 0.110 0.073 0.109

Wrist b13 −0.184 −0.168 −0.172

BIC 1128.5 1104.4 1107.1

Weight w = 7.9 w = 0.56
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The procedures used in sparse regression can be distinguished according to what
functions are used for Pen(b). Among them, Tibshirani’s (1996) method called
lasso was the first proposed and best known. In lasso,

PenðbÞ ¼ bk k1¼
Xp
j¼1

bj
�� �� : ð21:5Þ

Pen(b) is called the L1 norm as explained next:

Note 21.1. Lq Norm
As found in (21.5), ||b||1 stands for the sum of the absolute values of the
elements. This sum is called the L1 norm of b. More generally, the Lq norm is
defined as

Ak kq¼
Xn
i¼1

Xp
j¼1

aij
�� ��q !1=q

ðq[ 0Þ ð21:6Þ

for n � p A = (aij). According to this terminology and notation, the norm
||A|| used so far is called the L2 norm and must be replaced by ||A||2. However,
we continue to use ||A|| for the L2 norm and ||A||2 for the squared L2 norm.

Using (21.5) in (21.4), we have the lasso loss function

fL1ðbÞ ¼ Jy� JXbk k2 þ nw bk k1 ð21:7Þ

Why this minimization leads to the sparse b in Table 21.1B is described in the next
section.

The name lasso originates from the abbreviation of least absolute selection and
shrinkage operator. Here, “least absolute” and “selection” stand for (21.5) being
based on absolute values and usable for variable selection, while the reference to
“shrinkage” will be mentioned in Sect. 21.5.

21.3 Coordinate Descent Algorithm for Lasso

Of the algorithms for minimizing (21.7), we introduce the alternate least squares
(ALS) approach, which is also called a coordinate descent algorithm in some sparse
regression literature (Hastie, Tibshirani, & Wainwright, 2015). In the algorithm, a
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procedure is alternately iterated to optimally update each of the coefficients bj
(j = 1, …, p). How the optimal bj is obtained is explained in the next paragraphs.

We can rewrite (21.3) as

f ðbÞ ¼ Jy� J b1x1 þ . . .þ bpxp
� ��� ��2¼ rðjÞ � bjJxj

�� ��2: ð21:8Þ

Here, X ¼ x1; . . .; xp
� �

; b ¼ b1; . . .; bp
� �0

, and

rðjÞ ¼ Jy�
X
k 6¼j

bkJxk: ð21:9Þ

with Rk6¼jbkJxk standing for the sum of bkJxk over all k = 1, …, p except j. Using
(21.5) and (21.8), the lasso loss function (21.7) is rewritten as

fL1ðbÞ ¼ rðjÞ � bjJxj
�� ��2 þ nw bj

�� ��þ nw
X
k 6¼j

bkj j

¼ rðjÞk k2 þ x0jJxj
� 	

b2j � 2 r0ðjÞJxj
� 	

bj þ nw bj
�� ��þ nw

X
k 6¼j

bkj j

¼ rðjÞ
�� ��2 þ x0jJxj

� 	
gj bj
� �þ nw

X
k 6¼j

bkj j;

ð21:10Þ

On the right side of (21.10), only gj(bj) is a function of bj, which is expressed as

gj bj
� � ¼ b2j � 2

r0ðjÞJxj
x0jJxj

bj þ nw
x0jJxj

bj
�� ��

¼ b2j � 2
r0ðjÞJxj
nvjj

bj þ w
vjj

bj
�� �� ¼ b2j � 2rj b½j�

� �
bj þ 2djðwÞ bj

�� ��:
ð21:11Þ

Here, vjj = n−1xj′Jxj is the variance of the jth explanatory variable in xj, b[j] is the
(p − 1) � 1 vector consisting of b1, …, bp except bj,

rjðb½j�Þ ¼
r0ðjÞJxj
nvjj

¼ y0Jxj
nvjj

�
P

k 6¼j bkx
0
kJxj

nvjj
¼ v½y�j

vjj
�
P

k 6¼j bkvjk
vjj

; ð21:12Þ

djðwÞ ¼ w
2vjj

� 0; ð21:13Þ

with vjk ¼ n�1x0kJxj ¼ n�1x0jJxk and v
½y�
j ¼ n�1y0Jxj being the covariances of the jth

explanatory variable to the kth one and the dependent variable, respectively. The
inequality in (21.13) follows from w � 0 and vjj > 0. The notations rj(b[j]) and
dj(w) are used in (21.11)–(21.13) in order to indicate that they are functions of b[j]
and w.
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The coefficient bj minimizing (21.11) is the optimal one that minimizes the lasso
loss function (21.7) with the other coefficients bk (k 6¼ j) fixed. The minimizer of
(21.11) is given by

bj ¼ 0 if rjðb½j�Þ
�� ��� djðwÞ

sign½rjðb½j�Þ� rjðb½j�Þ
�� ��� djðwÞ

 �

otherwise

�
; ð21:14Þ

as explained in Note 21.2 below. Here, sign[t] expresses the sign of a scalar t:
sign[t] = 1 for t > 0, sign[t] = 0 for t = 0, and sign[t] = −1 for t < 0. In (21.14), we
find that the solution of bj is exactly zero for rj b½j�

� ��� ��� djðwÞ.
We can obtain the optimal b through alternate iteration of updating bj with

(21.14) for j = 1, …, p. Thus, the algorithm for lasso can be summarized as
follows:

Step 1. Initialize b
Step 2. For each of j = 1, …, p, perform the following: Obtain rj(b[j]) using the

current bk values in (21.12) to update bj with (21.14).
Step 3. Finish if convergence is reached; otherwise, go back to Step 2.

Here, we should note that the current rj(b[j]) value must be obtained before the
update of bj in Step 2, since rj(b[j]) in (21.14) is a function of the coefficients b1, …,
bp except bj. The initialization in Step 1 is made by setting b to the standard
regression solution for the computations in this chapter.

Note 21.2. Minimizing a Quadratic Function plus L1 Norm
For the sake of simplicity, we omit (b[j]), (w), and the subscript j from the
symbols in (21.11). Hence, (21.11) is simplified to g(b) = b2 − 2rb + 2d|b|,
which can be rewritten as

gðbÞ ¼ b2 � 2rbþ 2db for b� 0; ð21:15Þ

gðbÞ ¼ b2 � 2rb� 2db for b\0: ð21:16Þ

Here, the inequality in (21.13), i.e., d � 0, should be kept in mind. The
shape of function g(b) and the solution of b depend on which inequality
holds, r > d (� 0), r < −d (� 0), or −d � r � d. This is illustrated in
Fig. 21.1, where we can see that the solution of b is zero if −d � r � d, but
not be zero, otherwise. This is shown by formulas in the next paragraphs.

First, let us consider the cases with −d � r � d . Then, we can rewrite
(21.15) and (21.16) to find the following inequalities:

gðbÞ ¼ b2 þ 2ðd � rÞb� 0 for b� 0; ð21:17Þ

gðbÞ ¼ b2 þ 2ð�d � rÞb� 0 for b\0: ð21:18Þ
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Here, the inequality (21.17) follows from the fact that r � d and b � 0
imply (d − r)b � 0, while the one in (21.18) follows from the fact that
−d � r, i.e., −d – r � 0, and b < 0 imply (−d − r)b � 0. That is, (21.17)
and (21.18) show g(b) � 0 for any b, and the lower bound 0 is attained for

b ¼ 0 ð21:19Þ

which is the solution for −d � r � d. This is illustrated in Fig. 21.1b.
Next, let us consider the cases with r > d � 0. Here, the inequality

in (21.18) holds true, since (−d − r)b > 0 for b < 0. However, the inequality
in (21.17) does not hold in general, since r > d � 0 and b � 0 imply
(d − r)b � 0. Further, we can rewrite g(b) in (21.17) as

gðbÞ ¼ b2 � 2ðr � dÞb ¼ fb� ðr � dÞg2 � ðr � dÞ2 � � ðr � dÞ2
for b� 0

ð21:20Þ

with −(r − d)2 � 0. This implies that the lower bound of g(b) is −(r − d)2.
This can be attained for

b ¼ r � d; ð21:21Þ

which equals sign[r]( rj j − d) in (21.14) since of r > d � 0. It is illustrated
how (21.21) is the solution for r > d in Fig. 21.1c, where we can find that the
minimum is attained for (21.21), i.e., b = 1.6 − 1 = 0.6.

Finally, let us consider the case of r < −d � 0. Since this implies r � 0
and thus d − r � 0, the inequality in (21.17) holds. However, the one in
(21.18) does not hold in general, since r < −d, i.e., −d − r > 0, and b < 0
imply (−d − r)b < 0. Further, we can rewrite g(b) in (21.18) as

(a) r = 1.6 < d = 1 (b) d = 1 < r =0.8 < d = 1 (c)  d = 1< r =1.6

bb b

g
(b

)

0.6 0.6

Fig. 21.1 g(b) = b2 − 2rb + 2d|b| versus b (horizonal axis) for d = 1 and r = −1.6, 0.8, 1.6
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gðbÞ ¼ b2 � 2ðrþ dÞb ¼ fb� ðrþ dÞg2 � ðrþ dÞ2 � � ðrþ dÞ2
for b\0;

ð21:22Þ

implying that the lower bound of g(b) is −(r + d)2. This can be attained for

b ¼ rþ d; ð21:23Þ

whose equivalence to sign[r]( rj j − d) in (21.14) follows from the fact that
r � 0 implies sign[r] � (∣r∣ − d) = −∣r∣ + d = r + d. It is illustrated that
(21.23) is the solution for r < −d in Fig. 21.1a, where we can see that the
minimum is attained for (21.23), i.e., b = −1.6 + 1 = −0.6.

21.4 Selection of Penalty Weight

The lasso algorithm in the last section provides the optimal b for a given penalty
weight w: The resulting b depends on the w value. Thus, the lasso algorithm is run
multiple times for some w values, which provides multiple solutions of b. Among
these, the best b is selected. For the selection, we can use information criteria such
as AIC and BIC introduced in Chap. 8: b and the corresponding BIC value are
obtained for each w value, and the solution of b with the least BIC can be regarded
as the best one. Here, BIC may be replaced by AIC. In the remaining parts of this
subsection, we describe how the information criteria for lasso are derived and
defined.

Sparse regression procedures including lasso are formulated as minimizing
(21.4), which is included in the penalized least squares method. It differs from the
maximum likelihood (ML) method which leads to the information criteria described
in Chap. 8. However, they can be defined for (21.4), since its minimization can be
reformulated as an ML problem. This fact is shown through the two kinds of
equivalence, as explained in the next paragraphs.

First, it is known that the minimization of (21.4) is equivalent to minimizing the
least squares (LS) function (21.2) subjected to the inequality constraint

PenðbÞ� u; ð21:24Þ

where the positive scalar u can be associated with the penalty weight w (Tibshirani,
1996). However, it is beyond the scope of this book to prove the equivalence and
show the relationship of u to w.

Next, the LS problem of minimizing (21.2) is equivalent to the ML problem of
maximizing the log likelihood derived from the model (21.1) with the supposition
that e has the following multivariate normal distribution:
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e�Nn 0n;r2In
� �

: ð21:25Þ

The equivalence is explained next:

Note 21.3. When Maximum Likelihood and Least Squares Methods are
Equivalent
Let an n � 1 data vector y be modeled as

y ¼ /ðhÞþ e: ð21:26Þ

Here, e is an n � 1 error vector and /(h) is an n � 1 vector which is a
function of the parameters contained in vector h. The regression model (21.1)
is a special case of (21.26) in which /ðhÞ ¼ Xbþ c1n with h ¼ b0; c½ �0. The
following discussions hold for any model that can be expressed as (21.26).

We suppose (21.25). Then, y * Nn(/(h), r
2In), whose probability density

function is

P yjh; r2� � ¼ 1

ð2pÞn=2 r2Inj j1=2
exp � 1

2
½y� /ðhÞ�0 r2In

� ��1½y� /ðhÞ�
� 

¼ 1

ð2pÞn=2 r2nð Þ1=2
exp � 1

2r2
y� /ðhÞk k2

� 
:

¼ ð2pÞ�n=2 r2
� ��n=2

exp � 1
2r2

y� /ðhÞk k2
� 

:

ð21:27Þ

Here, we have used (8.10) with the fact that the singular value decomposition
of r2In is expressed as r2In ¼ In r2Inð ÞI0n: The determinant ∣r2In∣ is given by
the nth power of r2. The logarithm of (21.27) gives the log likelihood

l h; r2
� � ¼ � n

2
log 2p� n

2
log r2 � 1

2r2
y� /ðhÞk k2: ð21:28Þ

The partial derivative of (21.28) with respect to r2 is known to be given by
gðr2Þ ¼ @l h; r2ð Þ=@r2 ¼ �n= 2r2ð Þþ y� /ðhÞk k2= 2r4ð Þ
¼ n= 2r2ð Þ½ � n�1 y� /ðhÞk k2=r2 � 1

� 	
. See Appendix A.6.3 for partial

derivative. We can find η(r2) = 0 for

r2 ¼ 1
n

y� /ðhÞk k2; ð21:29Þ
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with η(r2) > 0 for r2\n�1 y� /ðhÞk k2 and η(r2) < 0 for
r2 [ n�1 y� /ðhÞk k2. This shows that (21.28) is maximum when (21.29) for
a given h and the solution of r2 must satisfy (21.29).

Substituting (21.29) into (21.28), we have

lðhÞ ¼ � n
2
log 2p� n

2
log

1
n

y� /ðhÞk k2
� �

� n
2

¼ � n
2
log y� /ðhÞk k2 þ const

ð21:30Þ

with the term const not depending on h. Here, we find that the maximization
of (21.30) over h is equivalent to minimizing the least squares function
||y − /(h)||2 over h.

Now, let /(h) in (21.26) be the regression function /ðhÞ ¼ Xbþ c1n with
h = [b′, c]′. Substituting this in (21.30) leads to �ðn=2Þ log y� Xb� c1nk k2 þ const.
Its maximization is equivalent to minimizing (21.2), i.e., ||y − Xb − c1n||2. Further,
the c minimizing this is given by (4.9) and its substitution in (21.2) leads to (21.3).
Thus, the maximum of the log likelihood (21.30) can be expressed as

lðb̂Þ ¼ � n
2
log Jy� JXb̂
�� ��2 þ const ð21:31Þ

in regression analysis. Here, b̂ is the optimal b maximizing (21.31) or minimizing
(21.3) subject to the constraint (21.24) in the sparse regression, while bb is the
optimal b without a constraint in the standard regression.

By substituting the part of (21.31) excluding const into lð bHÞ in (8.25), BIC can
be defined as

BIC ¼ n log Jy� JXb̂
�� ��2 þ g log n: ð21:32Þ

in regression analysis. Here, η is the number of parameters to be estimated. The
reason why const in (21.31) may be ignored is that the value of const is equivalent
among the solutions for different procedures: const is irrelevant for the comparison
of BIC among the solutions. In standard regression, η is the number of coefficients
plus two corresponding to c and r2: η = p + 2. What should be the value of η in
sparse regression? Some authors argue that it is the number of nonzero coefficients
plus two:
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g ¼ Cardðb̂Þþ 2 ð21:33Þ

(e.g., Zou, Hastie, & Tibshirani, 2007). Here, Card() stands for the cardinality of the
parenthesized vector or matrix, i.e., the number of its nonzero elements. We adopt
(21.33). In a parallel manner, AIC can also be defined.

The lasso solution in Table 21.1B has been selected using (21.32) with (21.33).
That is, we obtained b̂ for each of w = 0.01, 0.02, 0.03, …, 9.96, 9.98, 10.00, and
the b̂ for w = 7.96 which gave the least BIC is presented in Table 21.1B.

21.5 L0 Sparse Regression

In Note 21.1, the Lq- norm is defined for q > 0. The L0 norm, i.e., ||A||q for q = 0, is
exceptionally defined as follows:

Note 21.4. L0 Norm
For q = 0, the Lq norm in Note 21.1 cannot be defined. But, if exceptionally
1/q is defined as 1 and |0|q is set to 0 for q = 0 in Note 21.1, the L0 norm of
A = (aij) (n � p) is given by

Ak k0¼ CardðAÞ ¼
Xn
i¼1

Xp
j¼1

I aij 6¼ 0
� �

; ð21:34Þ

with

Iðaij 6¼ 0Þ ¼ 0 if aij ¼ 0
1 otherwise

�
: ð21:35Þ

In this section, we consider sparse regression with bk k0¼
Pp

j¼1 Iðbj 6¼ 0Þ used for
Pen(b) in (21.4), i.e., minimizing

fL0ðb; cÞ ¼ Jy� JXbk k2 þ nw bk k0: ð21:36Þ

We refer to this minimization as L0 sparse regression. Its algorithm can be derived
by substituting I(bj 6¼ 0) for |bj| in the equations of Sect. 21.3.

The L0-norm version of (21.10) is derived by substituting I(bj 6¼ 0) for |bj|:

fL0ðbÞ ¼ rðjÞ
�� ��2 þ x0jJxj

� 	
hj bj
� �þ nw

X
k 6¼j

I bk 6¼ 0ð Þ: ð21:37Þ
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Here, only hj(bj) is a function of bj, which is expressed as

hj bj
� � ¼ b2j � 2

r0ðjÞJxj
x0jJxj

bj þ nw
x0jJxj

I bj 6¼ 0
� �

¼ b2j � 2
r0ðjÞJxj
nvjj

bj þ w
vjj

I bj 6¼ 0
� � ¼ b2j � 2rj b½j�

� �
bj þ sjðwÞI bj 6¼ 0

� �
;

ð21:38Þ

with vjj = n−1xj′Jxj the variance of the jth variable, rj(b[j]) defined as (21.12), and

sjðwÞ ¼ w
vjj

� 0: ð21:39Þ

The coefficient bj minimizing (21.38) is the optimal one that minimizes the loss
function (21.36) with the other coefficients bk (k 6¼ j) fixed. The minimizer of
(21.38) is given by

bj ¼ 0 if rjðb½j�Þ
�� ��� ffiffiffiffiffiffiffiffiffiffi

sjðwÞ
p

rjðb½j�Þ otherwise

�
; ð21:40Þ

as explained in Note 21.5 presented below. We can obtain the optimal b by iterating
the update of bj through (21.40) over j = 1, …, p. Thus, the algorithm for the L0
sparse regression can be summarized as follows:

Step 1. Initialize b
Step 2. For each of j = 1, …, p, perform the following: Obtain rj(b[j]) using the

current bk values in (21.12) to update bj with (21.40).
Step 3. Finish if convergence is reached; otherwise, go back to Step 2.

Here, we should note that the current rj(b[j]) value must be obtained before the
update of bj in Step 2, since rj(b[j]) in (21.14) is a function of the coefficients b1, …,
bp except bj. The initialization in Step 1 is made by setting b to the standard
regression for the computations in this chapter.

Note 21.5. Minimizing a Quadratic Function plus L0 Norm
For the sake of simplicity, we omit (b[j]), (w), and the subscript j from the
symbols in (21.38). Thus, (21.38) is simplified as h(b) = b2−2rb + sI(b 6¼ 0).
It can be rewritten as

hðbÞ ¼ 0 if b ¼ 0
ðb� rÞ2 þ s� r2 otherwise

�
: ð21:41Þ

Let us consider the cases of |r| > s1/2, i.e., s − r2 < 0. Then, (21.41) shows
that the lower limit of h(b) is s − r2, which is attained for b = r. For the other
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cases with |r| � s1/2, i.e., s − r2 � 0, (21.41) implies that the lower limit of
h(b) is 0. It can be attained for b = 0. These facts lead to (21.40).

A suitable penalty weight w can be selected as described in Sect. 21.4, using BIC
defined as (21.32) with (21.33). Thus, the solution of the L0 sparse regression in
Table 21.1C has been obtained using (21.32) with (21.33). That is, we run the
above algorithm to obtain b for each of w = 0.01, 0.02, 0.03, …, 9.96, 9.98, 10.00.
This results in the b for w = 0.56 giving the least BIC. The corresponding solution
is presented in Table 21.1(C).

The absolute values of the nonzero coefficients in lasso cannot be greater than
those in the L0 sparse regression. This fact can be proved as follows: The lasso
formula (21.14) shows the absolute value of nonzero bj to be |bj| = |rj(b[j])| − dj(w),
while the L0 counterpart (21.40) shows |bj| = |rj(b[j])|. Since dj(w) � 0,
|rj(b[j])| − dj(w) in lasso cannot be greater than |rj(b[j])| in the L0 sparse regression.
This fact can be illustrated in Table 21.1B, C: The absolute values of the nonzero
solutions in lasso are smaller than the L0 counterparts. The property of parameters
being estimated so that their absolute values are smaller is referred to as shrinkage
of parameter estimates. For this reason, “shrinkage” is included in the name least
absolute selection and shrinkage operator, which lasso abbreviates as described in
Sect. 21.2.

21.6 Standard Regression in Ordinary
and High-Dimensional Cases

So far, we treated the cases in which regression analysis is performed for data sets
with more individuals than variables, which we call ordinary cases. In this section,
we consider the cases with more variables than individuals, which can be called
high-dimensional cases. In this section, we explain how standard regression pro-
duces unusable results in high-dimensional cases, in order to prepare for the next
section where sparse regression is shown to be useful in such cases. For the
explanation, we compare properties of the standard regression solution between the
ordinary cases of n > p + 1 (more individuals) and the high-dimensional cases of
n < p (more variables). The goal of the section is to reach the following
conclusions:

[Ordinary] If n > p + 1, then the value of the loss function (21.3) is usually
greater than zero. If n is sufficiently greater than p + 1, the solution of
b is useful, as seen so far.

[High-Dim] If n < p, then the resulting (21.3) value is zero, i.e., a perfect fit
Jy = JXb is attained, but the solution of b is useless, as it is not unique
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To arrive at this goal, a key point is whether rank(JX) is equivalent to rank([JX,
Jy]) or not, with [JX, Jy] an n � (p + 1) block matrix.

We start with the fact that

rankðJXÞ�minðn� 1; pÞ and rankð½JX; Jy�Þ �minðn� 1; pþ 1Þ: ð21:42Þ

Although (3.32) leads to rank(JX) � min(n, p), this n is replaced by n − 1 in
(21.42) since 1n′JX = 0p′: The n rows of JX are not linearly independent, thus rank
(JX) is less than n. The inequalities in (21.42) imply

rankðJXÞ� p and rankð½JX; Jy�Þ � pþ 1 for n[ pþ 1; ð21:43Þ

rankðJXÞ� n� 1 and rankð½JX; Jy�Þ� n� 1 for n\p: ð21:44Þ

Now, we suppose that rank(JX) and rank([JX, Jy]) attain their upper limits. Then,
(21.43) leads to that

if n[ pþ 1; rankðJXÞ ¼ p and rankð½JX; Jy�Þ ¼ pþ 1

thus, rankðJXÞ 6¼ rankð½JX; Jy�Þ; ð21:45Þ

while (21.44) implies that

if n\p; rankðJXÞ ¼ rankð½JX; Jy�Þ ¼ n� 1: ð21:46Þ

How (21.46) leads to the above conclusion [High-Dim] is explained next:

Note 21.6. High-Dimensional Regression
This title refers to the regression in the cases of n < p as in (21.46). This
implies that we can substitute JX into X and Jy into y in (17.9) and (17.11):
For given JX and Jy, the system of linear equations,

JXb ¼ Jy; ð21:47Þ

has a solution of b and thus the value of loss function (21.3) becomes zero.
From (17.12), the solution of b for (21.47) is given by

b ¼ ðJXÞþ Jyþ Ip � ðJXÞþ JX
 �
q ð21:48Þ

with q an arbitrary p �1 vector.
The resulting (21.3) value being 0 implies a perfect fit, but (21.48) shows

that the solution of b is not unique, since q is arbitrary: Infinitely many
solutions exist. Thus, high-dimensional regression is useless.
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In the ordinary cases with (21.45), (21.47) does not hold: In general, the value of
(21.3) is not zero. However, it is useful, as found in Chap. 4.

An illustration of how high-dimensional regression is useless is shown below,
using the high-dimensional JX (5 � 6) and Jy in Table 21.2. The solution (21.48)
obtained for q = 06 is

b ¼ ½0:010; 0:198;�0:075;�0:022; 0:025; 0:196�0; ð21:49Þ

while (21.48) for q ¼ ½2; 2;�2; 2; 3; 2�0 is

b ¼ ½1:648;�0:937;�2:276; 1:414; 1:480; 0:391�0: ð21:50Þ

These two solutions are very different, but both solutions for b attain the perfect fit
f ðbÞ ¼ Jy� JXbk k2¼ 0 with JXb ¼ Jy.

Indeed, the vector Jy in Table 21.2 has been artificially generated using the
formula y = JXb + e. Here, b was set to

btrue ¼ ½�2; 1; 0; 0; 0; 0�0; ð21:51Þ

JX was the same as in Table 21.2, and e is a centered error vector with the absolute
values of its elements somewhat smaller than those of JX. Here, it is important to
note that e is centered: e = Je. Thus, y generated by the above formula
y = JXb + e satisfies y = Jy: The formula may be written as Jy = JXb + e. Thus,
the b minimizing f ðbÞ ¼ ek k2¼ Jy� JXbk k2¼ 0 can be expected to be close to
(21.51). In this sense, the subscript “true” has been attached to b in (21.51): If a
procedure provides a solution b close to btrue, the solution can be considered right.
Unfortunately, both (21.49) and (21.50) are far from btrue (21.51), which demon-
strates that high-dimensional regression is unusable.

It should be noted that the third to final elements in (21.51) are zeros, which
implies Jy = JX[2]b[2] + e, with X[2] the 5 � 2 matrix containing the first two
columns of X, and b[2] = [−2,1]′ containing the first two element of (21.51). For the
final column and the first two ones in Table 21.2 which are Jy and JX[2], respec-
tively, we performed regression analysis. This can be referred to as standard
regression in an ordinary case, since n = 5 > p = 2. The resulting coefficient vector
was b = [−0.167, 0.104]′. This is fairly similar to b[2] = [−2,1]′. The result can be
restated to claim that a useful solution was obtained, by excluding the last four

Table 21.2 Example of high-dimensional data with n = 5 < p = 6

JX Jy

1.060 0.071 −1.609 −1.923 −1.482 −1.439 −0.131

−1.385 1.763 −0.539 0.652 1.514 −0.293 0.341

−0.137 0.042 0.876 0.826 0.543 1.150 0.162

−0.726 −0.686 0.116 0.442 −0.128 1.113 0.053

1.188 −1.190 1.157 0.003 −0.447 −0.531 −0.425
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columns from JX; in other words, selecting the first two variables among the six
columns of JX. Performing such variable selection computationally is considered
in the next section.

21.7 High-Dimensional Variable Selection by Sparse
Regression

The last section demonstrated the following fact: In the high-dimensional cases of
n < p, standard regression solutions are unusable, but variable selection is useful
for selecting q < n variables among p variables. Sparse regression can be used for
variable selection: It is expected that the coefficients for the q useful variables are
estimated as nonzero, while the remaining coefficients are estimated as zeros, i.e.,
corresponding variables are excluded. We illustrate this in a simulation study
example. Indeed, the illustration with Table 21.2 in the last section also falls under
the category of simulation studies. A generalized setting for such studies is intro-
duced in the following.

Note 21.7. Simulation Studies
What the term simulation stands for differs across disciplines. Here, we deal
with simulation studies used in statistics. These studies are often made for
assessing the performance of analysis procedures, in particular, for the pur-
pose of evaluating “how exactly the parameter values underlying data can be
recovered by the procedures”. What this phrase put in quotation marks means
is explained in the next paragraphs.

Let us suppose that a procedure to be assessed is modeled as

y ¼ gðh;XÞþ e ð21:52Þ

for an n � 1 data vector y, Here, e is an n � 1 error vector, and η(h, X) is an
n � 1 vector which is a function of an unknown parameter vector h to be
obtained and the given matrix X (n � p) containing data not included in y.

The simulation study for (21.52) proceeds via the following steps:

[1] The data vector y is artificially generated with model (21.52). Here, h
is set to a given vector htrue, whose elements, i.e., parameter values, are
specified artificially, while the elements in e are generated randomly,
that is, set to random numbers generated by machine, with the numbers
following a particular probability distribution. The elements of X in
(21.52) are specified artificially or generated randomly.

[2] The analysis procedure to be assessed is carried out for the above y and
X, in order to obtain the solution of h. Let the resulting h be denoted by
ĥ.
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[3] It is assessed whether ĥ and htrue are similar or not. If they are similar,
for example, htrue = [2.0, −3.0] and ĥ = [2.1, −3.2], the parameters are
said to be recovered well and the procedure is considered to be
promising.

The elements of htrue are called the true parameter values, as the aim of the
above study is the assessment of whether the solution approximates htrue or
not.

Simulation studies can also be found, in which the elements of htrue are
generated randomly. The studies can be useful also for assessing procedures
modeled without X, i.e., the ones modeled as y = η(h) + e rather than
(21.52).

We illustrate a simulation study in which (21.52) is the regression model (21.1)
with the intercept c set to 0: Data are artificially generated according to
y = Xb + e as in the next paragraph.

We consider the high-dimensional case with n = 100 < p = 300. The coefficient
vector b set to the true btrue, whose elements were filled with zeros except for three
elements, being 2.0, −3.0, and 1.5: Among the 300 true coefficients, only these
three are nonzero. The elements of e = [e1, …, e100]′ were generated randomly so
that they follow a normal distribution whose mean and variance are zero and re

2,
while the rows of X are generated randomly so that they follow N300(0300, rx

2I300).
Here, the values of re

2 and rx
2 were accommodated so that ||e||2/||y||2 ≅ 0.1. This

proportion implies that the 10 percent variation present in data vector y can cor-
respond to errors, roughly speaking; a full explanation is too involved to detail here.

The lasso and L0 sparse regression procedures were carried out for the data in
y and X generated as above. The values of the tuning parameter w were set as
w = 0.01, 0.02, …, 0.98, 1.00 in lasso and w = 0.1, 0.2, …, 9.8, 10.0 in the L0
sparse regression. As a result, the least BIC was attained for w = 0.77 in lasso and
w = 3.0 in L0. The results for those least BIC are presented in Table 21.3 with the
values of the nonzero elements in btrue. In the table, MIS stands for the number of
coefficients whose true values are zeros, but estimates are nonzero: In lasso, two
among the 297 (=300 − 3) zero elements in btrue were estimated as the nonzero

Table 21.3 Lasso and L0
sparse regression estimates for
the true values of nonzero
coefficients, with MIS and
BIC values

Procedure lasso L0
True 2.0 1.53 1.94

−3.0 −2.53 −2.93

1.5 1.14 1.49

MIS 2 0

BIC 99.1 69.2
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values 0.03 and 0.05. However, both procedures can be said to provide proper
solutions, in that the estimates of nonzero coefficients in the L0 sparse regression are
close to the true values, and the lasso estimates of nonzero coefficients are fairly
similar to the true ones, though also found to shrink. The BIC result shows that the
L0 solution is better.

21.8 Bibliographical Notes

Lasso has been treated in a number of books, among which the more recent Hastie
et al. (2015) is recommended. Lasso and related methods have been also treated in
Hastie, Tibshirani, and Friedman (2009). The L0 sparse regression is treated in
Bühlmann and van de Geer (2011). There, high-dimensional regression is detailed
in an advanced manner.

Beside the L0 and L1 norms, some other penalty functions, which take much
more complicated forms than L0 and L1 norms, have been proposed for sparse
regression analysis. Fan and Li’s (2010) SCAD and Zhang’s (2010) MC+ are
among those functions.

Exercises

21:1. Summarize the cases when sparse regression procedures are to be used.
21:2. In a procedure called ridge regression (Hoerl & Kennard, 1970), the loss

function to be minimized is defined as (21.4) with PenðbÞ ¼ bk k2¼Pp
j¼1 b

2
j .

Describe the differences between the ridge regression and lasso.
21:3. The number of parameters (η) in (21.32) is set to (21.33) in sparse regression

procedures and η = p + 2 in standard regression. Show that the number of
parameters may be defined as η = Card(b̂) for sparse regression procedures
and η = p for standard regression.

21:4. Functions which satisfy (A.6.7) in Appendix 6 are said to be convex. The
lasso loss function (21.7) is known to be convex (i.e., Hastie et al., 2015).
The proof of this is not easy. In place of it, show that (21.11) is convex.

21:5. In a procedure called adaptive lasso (Zou, 2006), the loss function (21.4)
with PenðbÞ ¼Pp

j¼1 aj bj
�� �� is minimized over b = [b1, …, bp], for given

weights a1, …, ap. For example, aj is set to b̂ðstdÞj

��� ����1
, with b̂ðstdÞj the solution

of the coefficient for the jth explanatory variable in the standard regression.

Discuss the rationality of using aj ¼ b̂ðstdÞj

��� ����1
.

21:6. Show that when the number of explanatory variables is small enough, for
example, p = 4, variable selection can be attained by comparing the BIC
values among the solutions for the standard regression analyses with all
possible subsets of the explanatory variables.
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21:7. As described in Exercise 15.7, P(Parameters)P(Data|Parameters) is maxi-
mized over parameters in the Bayesian method for estimating parameters.
Discuss how sparse regression analysis, i.e., minimizing (21.4) over b, can
be reformulated as a Bayesian method, in which P(b, r2)P(y|b, r2, X) is
maximized for the centered block data matrix [X, y] satisfying [X, y] =
J[X, y], where P(y|b, r2, X) is the probability density of y * Nn(Xb, r

2In)
and P(b, r2) = a � exp{−(2r2)−1nwPen(b)} with a a suitable constant.

21:8. Let us consider performing the simulation study introduced in Note 21.7, in
order to evaluate a multidimensional scaling procedure (Chap. 16), in which
(16.5) is minimized over A = [a1, …, an]′. In this study, (21.52) is replaced
by qij = ||ai − aj||

2 + eij (i = 1, …, n − 1, j = i + 1, …, n) with eij an error.
Show how [1], [2], and [3] in Note 21.7 are rewritten for the study.
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Chapter 22
Sparse Factor Analysis

In the last chapter, modified regression analysis procedures were presented, in
which a coefficient vector is estimated so that it is sparse, i.e., includes a number of
zero elements. Such sparse estimation can be incorporated into other multivariate
analysis procedures, so as to provide sparse solutions. They can be easily inter-
preted, as we may only focus on their nonzero elements. As such, a number of
sparse multivariate procedures have been developed, following the sparse esti-
mation techniques developed in regression. The procedures include sparse factor
analysis (FA) for providing a sparse factor loading matrix. In this chapter, we
introduce the two types of sparse FA procedures. In one of the two, a penalty
function is used, while the function is not used in the other type. This chapter starts
by describing a drawback of confirmatory FA (Chap. 10) which can be handled by
sparse FA procedures.

22.1 From Confirmatory FA to Sparse FA

Let us recall the factor analysis (FA) model in Chap. 10. We present the model
(10.3) again here: A p � 1 random variable vector x = [x1, …, xp], whose expected
vector is 0p, is modeled as

x ¼ Af þ e; ð22:1Þ

where A is the p variables � m-factors loading matrix, f is an m � 1 common
factor vector, and e is a p � 1 unique factor vector. The vectors f and e are assumed
to follow multivariate (MVN) distributions as seen in (10.4) and (10.6), which leads
to the MVN distribution (10.9) for x with its covariance matrix (10.10). Then, for
sample covariance matrix V ¼ n�1X0X with X the n individuals � p variables
centered data matrix whose ith row is the transpose of (22.1) observed for indi-
vidual i, the log likelihood is defined as (10.11), i.e.,
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l�ðA;W;UÞ ¼ n
2
log AUA0 þWð Þ�1V
��� ���� n

2
tr AUA0 þWð Þ�1V: ð22:2Þ

Here, U (m � m) is the factor correlation vector (10.5) and W (p � p) is the
diagonal matrix (10.7) including unique variances.

In confirmatory FA (CFA) (Chap. 10), (22.2) is maximized over A, U, and W
under the assumed relationship between variables and factors. An example of this
assumption is given by

x A f~ e
8 1 8 2 2 1 8 1

x1 a11 0 Factor_1 e1
x2 a21 a22 Factor_2 e2

x3 a31 0 e3
x4 = 0 a42 + e4 ,
x5  0 a52 e5
x6 a61 0 e6
x7 a71 a72 e7
x8  0 a82 e8

ð22:3Þ

for a data set of eight variables. This is illustrated in Fig. 22.1: Factor 1 is linked to
variables x1, x2, x3, x6, and x7, while Factor 2 is linked to x2, x4, x5, x7, and x8. The
assumption can also be restated as a constraint for what loadings in A are to be zero:
In (22.3), A = (ajk) is constrained as

a12 ¼ a32 ¼ a41 ¼ a51 ¼ a62 ¼ a81 ¼ 0: ð22:4Þ

Such zero constraints, in other words, what pairs of variables and factors should be
linked, must be specified by users.

In CFA, the users’ constraints are subjective and might be inadequate. This
problem can be avoided in sparse factor analysis (SFA): Loadings which should be
zero (in other words, what pairs of variables and factors should be linked) are
estimated computationally (i.e., automatically) and objectively. The procedure
performed by SFA can be stated in more precisely to:

1 1

x8x4x3x2x1 x7x6x5

e1 e2 e3 e7e4 e5 e6 e8

Factor_1 Factor_2

a11
a21

a31

a22

a42
a52

a61

a71

a72
a82

Fig. 22.1 Example of CFA
models for p = 8 and m = 2
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Optimally and jointly estimate
½A�what loadings inA are to be zero and
½B� the values of nonzero parameters

for a certain number of CardðAÞ:
ð22:5Þ

Here, Card(A) (the cardinality of A) is the number of nonzero elements in A; for
example, Card(A) = 10 in (22.3) with the constraint (22.4). Besides this, a number
of other constraints exist which satisfy Card(A) = 10. In SFA, the optimal one can
be found among these, together with the optimal nonzero parameter values.

In this chapter, two approaches to SFA are introduced. One is using a penalty
function whose idea was introduced in the last chapter. This penalized approach is
described in Sects. 22.2–22.5. The other approach is introduced in Sect. 22.6–22.8,
in which a penalty function is not used.

22.2 Formulation of Penalized Sparse LVFA

We introduce an SFA procedure in which the log likelihood (22.2) is combined
with a penalty function which penalizes nonzero valued loadings. It can be called a
penalized sparse latent variable FA (PS-LVFA), as (22.2) is underlain by the latent
variable formulation of FA, as discussed in Sect. 18.2. Out of the procedures that
have been proposed so far, we introduce one by Hirose and Yamamoto (2014) as a
typical PS-LVFA procedure, with only a minor modification here.

In sparse regression treated in the last chapter, the loss function of standard
regression, for which a penalty function is summed, is to be minimized. On the
other hand, the log likelihood (22.2) is to be maximized in FA, and a penalty
function is instead subtracted from (22.2) in PS-LVFA. That is, the function to be
maximized is defined as the log likelihood (22.2) minus penalty function
Pen(A) weighted by nw:

fPENðA;W;UÞ ¼ l�ðA;W;UÞ � nwPenðAÞ: ð22:6Þ

Here, w (� 0) serves as a penalty weight, and this is multiplied by n merely for the
sake of the convenience during the subsequent derivations of equations. This is
maximized over A,W, andU, subject toW being diagonal andU being a correlation
matrix.

Hirose and Yamamoto (2014) used the function called MC+ (Zhang, 2010) as
the penalty function (though they also have considered the L1-norm penalty
introduced in the last chapter). It is rather convenient to introduce MC+ in the form
multiplied by w; i.e., w � MC+ defined as
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wMC ajk;w; u
� � ¼ w ajk

�� ��� a2jk
2wu

� �
if ajk
�� ��\wu

w2u
2 otherwise

8<
: : ð22:7Þ

Here, u and w are tuning parameters to be specified. The function (22.7) takes a
complicated form in order to maintain statistically desirable properties (Zhang,
2010), the details of which are beyond the scope of this book. The sum of (22.7)
over j and k multiplied by n gives nwPen Að Þ ¼ n

Pp
j¼1

Pm
k¼1 wMCðajk;w; uÞ.

Using this and (22.2) in (22.6), we have

fPENðA;W;UÞ ¼ n
2
log AUA0 þWð Þ�1V
��� ���� n

2
tr AUA0 þWð Þ�1V

� n
Xp
j¼1

Xm
k¼1

wMCðajk;w; uÞ:
ð22:8Þ

The function (22.8) is maximized over A, W, and U for a given [w, u]. Here, we
should note that w and u specify the penalty function n

Pp
j¼1

Pm
k¼1 wMCðajk;w; uÞ,

which controls Card(A) in (22.5). However, the correspondence of w and u values
to Card(A) is unknown before maximizing (22.8): Card(A) is found afterward in the
resulting solution. Thus, it may be more correct to rewrite the final phrase in (22.5)
as in

Optimally and jointly estimate
½A�what loadings inA are to be zero and
½B� the values of nonzero parameters,

for a given ½w; c� controlling CardðAÞ
ð22:9Þ

for PS-LVFA.

22.3 Algorithm for Penalized Sparse LVFA

As explained in Appendix A.9.9, the EM algorithm for penalized FA can be used to
maximize (22.8). That is, we may consider maximizing the function (A.9.43) with
g(H) replaced by n

Pp
j¼1

Pm
k¼1 wMCðajk;w; uÞ and constant c deleted:

/ðA;W;UÞ ¼ � n
2
log Wj j � n

2
tr V� 2BA0 þAQA0ð ÞW�1

� n
2

log Uj j þ trU�1Q
� �� n

Xp
j¼1

Xm
k¼1

wMCðajk;w; uÞ:
ð22:10Þ

364 22 Sparse Factor Analysis



Here, B and Q are defined as (A.9.18) and (A.9.19), i.e.,

B ¼ VHðHÞ and Q ¼ WðHÞþHðHÞ0VHðHÞ; ð22:11Þ

with HðHÞðp� mÞ andWðHÞðm� mÞ defined as (A.9.20) and (A.9.21) using
(A.9.12), i.e., H(H) and W(H) the matrix functions of set H = {A, W, U}
expressed as

HðHÞ ¼ AUA0 þWð Þ�1AU andWðHÞ ¼ U1=2 Im þU1=2A0W�1AU1=2
� ��1

U1=2:

ð22:12Þ

In the EM algorithm, E- and M-steps are iterated until convergence is reached, as
explained in Appendices A.8.5 and A.9. In the E-step, the current H = {A, W, U}
values are substituted in (22.11) for providing (22.10). In the M-step, A,W, and U
are updated so as to increase the value of (22.10). Thus, the algorithm for PS-LVFA
can be summarized as follows:

Step 1. Initialize A,W, and U
Step 2. E-step: obtain (22.11).
Step 3. M-step: update A,W, and U so as to increase (22.10).
Step 4. Finish if convergence is reached; otherwise, go back to Step 2.

Step 3 is detailed in the next section. Here, we describe the details for Steps 1
and 4. In Step 1, U is set to Im. Principal component analysis followed by the
varimax rotation (Chaps 5 and 13) is used for initializing A: This is set to the matrix
resulting in the varimax rotation for LmD

1=2
m . Here, Lm (p � m) contains the first

m columns of L, and Dm is the first diagonal m � m block of D, with the matrices
L and D obtained by the eigenvalue decomposition in Note 6.1. The initial values of
the diagonal elements inW are set to those of V� LmDmL0

m. Convergence in Step 4
is defined as the difference of the value of (22.8) � 2/n from the previous round
being less than 0.18.

22.4 M-Step for Penalized Sparse LVFA

In this section, we describe how A, W, and U are updated so as to increase (22.10)
in the M-step.

First, let us consider the updating of A. We can rewrite (22.10) as
/ðA;W;UÞ ¼ ngðAÞþ const ½A�. Here, const[A] is the constant irrelevant to
A = (ajk), and
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gðAÞ ¼ � 1
2
tr V� 2BA0 þAQA0ð ÞW�1 �

Xp
j¼1

Xm
k¼1

wMCðajk;w; uÞ

¼ �
Xp
j¼1

1
2wj

vjj � 2
Xm
k¼1

ajkbjk þ
Xm
k¼1

Xm
l¼1

qklajkajl

 !
�
Xp
j¼1

Xm
k¼1

wMCðajk;w; uÞ

ð22:13Þ

with V ¼ vjk
� �

;A ¼ aikð Þ;B ¼ bikð Þ;Q ¼ qklð Þ, and wj the jth diagonal element of
W. It should be noted that Q is symmetric with qkl = qlk. In order to rewrite (22.13)
further, we use the following fact:

Note 22.1. Summation of qklajkakl over k and l
The summation of qklajkajl over k and l with qkl = qlk can be rewritten as

Xm
k¼1

Xm
l¼1

qklajkajl ¼
Xm
k¼1

qkka2jk þ
Xm
k¼1

X
l6¼k

qklajkajl

¼ qkka
2
jk þ 2

X
l6¼k

qklajkajl þ c½j;k�

with c½i;k� ¼ Rl 6¼kqlla2jl þRl6¼kRt 6¼kqltajlajt not depending on ajk. This fact can
be verified by the following example: for m = 3,

X3
k¼1

X3
l¼1

qklajkajl ¼ q11a
2
j1 þ q12aj1aj2 þ q13aj1aj3

� �

þ q21aj2aj1 þ q22a
2
j2 þ q23aj2aj3

� �
þ q31aj3aj1 þ q32aj3aj2 þ q33a2j3
� �

¼ q22a
2
j2 þ q12aj1aj2 þ q21aj2aj1 þ q23aj2aj3 þ q32aj3aj2

� �þ c½j;2�

with c½j;2� ¼ q11a2j1 þ q33a2j3 þ q13aj1aj3 þ q31aj3aj1 not depending on aj2. We
can use qkl = qlk to rewrite the above equalities as

X3
k¼1

X3
l¼1

qklajkajl ¼ q22a
2
j2 þ 2 q12aj1aj2 þ q23aj2aj3

� �þ c½j;2�
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Using the fact in this note, (22.13) can be rewritten as a function of an element ajk
in A:

g aikð Þ ¼ � qkk
wj

h ajk
� �þ c½j;k�: ð22:14Þ

Here, c[j,k] does not depend on ajk, and

h aikð Þ ¼ 1
2qkk

�2ajkbjk þ qkka
2
jk þ 2

X
l 6¼k

qklajkajl

 !
þ wj

qkk
wMCðajk;w; uÞ

¼ 1
2

a2jk �
2
qkk

ajkbjk � ajk
X
l 6¼k

qklajl

 !( )
þ wj

qkk
wMCðajk;w; uÞ

¼ 1
2

ajk �
1
qkk

bjk �
X
l 6¼k

qklajl

 !( )2

� c� þ wj

qkk
wMCðajk;w; uÞ;

¼ 1
2

ajk � rjkðaj½k�Þ
� �2� c� þ wj

qkk
wMCðajk;w; uÞ

ð22:15Þ

with c* irrelevant to ajk and rjk aj½k�
� � ¼ bjk � Rl 6¼kqklajl

� �
=qkk being a function of

the (m−1) � 1 vector aj[k] containing aj1,…, ajm except ajk. We suppose wj > 0 and
the positive-definiteness of Q implying qkk ¼ w0

kQwk [ 0 with wk (m � 1) con-
taining zeros except for the kth element being one (Note 8.2). Then, we can obtain
the loading matrix A that increases (22.13) by performing the minimization of
(22.15) over ajk for j = 1, …, p and k = 1, …, m. Using w� ¼ wwj=qkk and
u� ¼ qkku=wj, the minimizer of (22.15) can be given by

ajk ¼
sign½rjkðaj½k�Þ�ð rjkðaj½k�Þj j�w�Þþ

1�1=u� if rjkðaj½k�Þ
�� ���w�u�

rjkðaj½k�Þ otherwise

(
ð22:16Þ

if u*� 1; otherwise,

ajk being the minimizer of (22.15) among ajk ¼ 0; ajk ¼ rjk aj½k�
� �

; and ajk
¼ sign rjkðaj½k�Þ

	 

w�u�:

ð22:17Þ
Here, sign[y] and (y)+ is defined for a real value y as follows: sign[y] = 1 and
(y)+ = y if y > 0, sign[y] = −1 and (y)+ = 0 if y < 0, and sign[y] = (y)+ = 0 if y = 0.
In this book, it is too involved to describe how (22.16) and (22.17) can be derived
from (22.15). The derivation of (22.16) is explained in Zhang (2010), and that of
(22.17) is found in Hirose, Ogura, and Shomodaira (2015).
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Next, we consider updating the diagonal elements of W so as to maximize
(22.10) for given A and U. As explained in Appendix A.9.5, the update formula of
those elements is given by (A.9.24), i.e.,

wj ¼ vij � 2 b0jaj þ a0jQaj ðj ¼ 1; . . .; pÞ ð22:18Þ

Finally, let us consider updating U so as to increase (22.10) for given A and W.
This increment is attained by decreasing

gðUÞ ¼ log Uj j þ trU�1Q; ð22:19Þ

since its multiplication by −n/2 is only relevant to U on the right side of (22.10).
For decreasing (22.19), we use a procedure different from Hirose and Yamamoto
(2014): U is reparameterized using a m � m matrix R as

U ¼ diag R0Rð Þ�1=2R0R diag R0Rð Þ�1=2 ð22:20Þ

so that U is a correlation matrix, i.e., a symmetric nonnegative definite matrix
whose diagonal elements are ones. For updating R = (rkl), we use a gradient
algorithm illustrated in Appendix A.6.3: This is iterated to update R to Rnew as

Rnew ¼ R� s
@gðUÞ
@R

: ð22:21Þ

Here, ∂η(U)/∂R is the m � m matrix whose (k, l) element is dgðUÞ=drkl, and s is a
positive value that guarantees gðUÞ� g Unewð Þ, with Unew the correlation matrix
obtained by substituting (22.21) into R in (22.20). We obtain dgðUÞ=drkl numer-
ically, i.e., through numerical differentiation, as

dgðUÞ
drjk

¼ 1
2D

U rkl :¼ rkl þDjð Þ � g U rkl :¼ rkl � Djð Þ½ �: ð22:22Þ

Here, D is a small positive value, and g Ujrkl :¼ r�kl
� �

denotes the (22.19) value
following from the substitution of r�kl into rkl with the other elements of R kept
fixed. We use D = 0.01 for the computations in this chapter. Thus, U is updated
through the following steps:

[1] Set iR = 0.
[2] Set s = 1 and is = 0.
[3] Obtain (22.21) to evaluate gðUÞ and gðUnewÞ.
[4] Set is :¼ is þ 1. If is = 20, go to [6]. If is < 20 and gðUÞ� gðUnewÞ, go to [5].

Otherwise, set s: = s/2 and go back to [3].
[5] Set iR :¼ iR þ 1 and set R ¼ Rnew to provide (22.20).
[6] Finish, if is = 20 or iR = 20 or gðUÞ � g Unewð Þ� 0:16; otherwise,

go back to [2].
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In conclusion, the M-step is summarized as follows: For all j and k, ajk is updated
through (22.16) if u*� 1 and updated through (22.17) otherwise, after aj[k] is
obtained. Next, wj, j = 1, …, p, are updated through (22.18). Finally, U is updated
through the above [1]–[6].

22.5 Using Penalized Sparse LVFA

The PS-LVFA algorithm in the last sections provides the optimal {A,W, U} for a
given [w, u]: The resulting {A,W, U} depends on the [w, u] value. In order to select
a suitable [w, u], Yamamoto and Hirose (2014) proposed to compare the values of
BIC (8.25) for the solutions following certain [w, u]. BIC for PS-LVFA can be
defined as

BIC ¼ �2l�ðA;W;UÞþ gðw; uÞ log n; ð22:23Þ

Here, gðw; uÞ ¼ CardðA;w; uÞþ pþmðm� 1Þ=2 is the number of the parameters
whose values are estimated, with Card(A; w, u) the cardinality of the resulting
A which is a function of [w, u], p the number of unique variances, and m(m − 1)/2
that of factor correlations. The rational for this BIC-based selection of {w, u} is
explained in Zou, Hastie, and Tibshirani (2007). We also use this procedure.

For illustration, we performed PS-LVFA for the correlation matrix processed by
Yanai and Ichikawa (Table 19.2), setting m = 3 following their approach. Here, the
50 � 50 combinations of w and u values were considered, with w = 1/30, 2/30, …,
50/30, while u = 1, 1 + 1/25, 1 + 2/25, …, 1 + 49/25. The solution for w = 0.167
and u = 1.4 gave the least BIC and is presented in Table 22.1 with the blank cells
indicating estimates of zero. By noting the nonzero loadings in the table, we can
interpret the three factors reasonably, as Yanai and Ichikawa (2007, p. 291) did for
their solution resulting in the exploratory FA followed by rotation. The first, sec-
ond, and third common factors (i.e., columns) in K can be interpreted as standing
for emotional instability, extraversion-general activity, and consciousness-agree-
ableness, respectively. The factor correlations in Table 22.1 show that conscious-
ness-agreeableness is slightly positively correlated to the other two factors though
these two have a slightly negative correlation.

We also illustrate PS-LVFA using the correlation matrix in Table 22.2.
Performing an FA procedure for this matrix can be considered an application of
Thurstone’s (1947) box problem, as explained next:

Note 22.2. Thurstone’s Box Problem
In this problem, Thurstone (1947) tried to generate a data set whose variable
j (= 1, …, 20) is defined as a function of the scores in common factor vector
f ¼ ½x; y; z�0. Let the function be expressed as vj(x, y, z). This is defined as in
the “variable” column of Table 22.2: For example, v4(x, y, z) = xy for the
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fourth variable. A data set generated with vj(x, y, z) is known as Thurstone’s
box data, as he used the heights, widths, and lengths of boxes for x, y, and z.

Thurstone considered the ideal solution for the box data as the one in
which variables load the factor(s) used for defining the variables: For
example, the fourth variable should ideally load x and y (as in Table 22.3).
Thus, an FA procedure providing such a solution is regarded as promising.
For this reason, performing an FA procedure for the box data has been called
Thurstone’s box problem. To date, this problem has often been used as a
cornerstone for testing new FA procedures.

The correlations in Table 22.2 were obtained from the 400 � 20 matrix of
box data, which Adachi and Trendafilov (2015) synthesized as follows: The
jth variable is given by vj(x, y, z) + ej. Here, x, y, and z are generated using a
random number which follows the uniform distribution for the interval [1, 10]
(with its probability density being equal over the real values within the
interval), and [e1, …, e20] follows N20(020, 0.1I20). See Adachi and
Trendafilov (2015) for details.

In this box problem, thew and u valueswere selected as in the last example. As a result,
w = 0.4 and u = 1.04 led to the solution with the least BIC, which is shown in
Table 22.3. Here, we can see that the solution is ideal as explained in the above note,
which demonstrates that Hirose and Yamamoto’s (2014) PS-LVFA is a promising
procedure.

Table 22.1 PS-LVFA
solution for the correlations in
Table 19.2

Variable K W

Extraversion −0.41 0.54 0.60

Activity 0.30 −0.33 0.64 0.34

Empathy 0.52 0.74

Novelty 0.61 0.63

Durability 0.69 0.52

Regularity 0.79 0.37

Self-revelation 0.64 0.60

Aggressiveness 0.35 0.46 0.62

Lack of
cooperativeness

0.47 0.78

Inferiority feeling 0.67 −0.35 0.49

Nervousness 0.30 0.70 0.49

Depression 0.84 0.30

Factor U

1 1.00

2 −0.15 1.00

3 0.20 0.15 1.00
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22.6 Formulation of Cardinality Constrained MDFA

In this section, we introduce an SFA procedure which features the following
properties: [1] it is formulated with the matrix decomposition approach in Chap. 18,
[2] a penalty function is not used, and [3] Card(A) is specified in advance. From the
properties [1] and [3], the procedure can be referred to as cardinality constrained
MDFA (CC-MDFA).

The property [3] implies that the cardinality of A is constrained in CC-MDFA a
priori as

CardðAÞ ¼ c ð22:24Þ

with c a specified integer. The CC-MDFA loss function is the MDFA one (18.5),
i.e.,

Table 22.3 PS-LVFA
solution for the correlations in
Table 22.2

Variable K W

x2 0.95 0.10

y2 0.95 0.09

z2 0.94 0.12

xy 0.67 0.63 0.18

xz 0.64 0.64 0.20

yz 0.64 0.62 0.17

(x2 + y2)1/2 0.70 0.67 0.11

(x2 + z2)1/2 0.68 0.65 0.13

(y2 + z2)1/2 0.64 0.67 0.12

2x + 2y 0.69 0.69 0.08

2x + 2z 0.68 0.69 0.08

2y + 2z 0.65 0.68 0.10

log x 0.89 0.21

log y 0.87 0.24

log z 0.89 0.22

xyz 0.47 0.49 0.54 0.25

(x2 +y2 + z2)1/2 0.58 0.53 0.54 0.11

ex 0.72 0.48

ey 0.70 0.52

ez 0.71 0.49

Factor U

1 1.00 −0.05 −0.01

2 −0.05 1.00 0.03

3 −0.01 0.03 1.00
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f F;U;A;W1=2
� �

¼ f ðZ;BÞ ¼ X� FAþUW1=2
� ���� ���2

¼ X� F;U½ � A;W1=2
h i0��� ���2¼ X� ZB0k k2:

ð22:25Þ

Here, Z = [F, U] and B ¼ A;W1=2
h i

are n � (m + p) and p � (m + p) block

matrices, with F and U containing common and unique factor scores, respectively.
The factor score matrix Z = [F, U] is constrained according to (18.6) and (18.7),
i.e.,

10nZ ¼ 0mþ p; ð22:26Þ

1
n
Z0Z ¼ Imþ p: ð22:27Þ

In CC-MDFA, (22.25) is minimized over Z and B subject to (22.24), (22.26), and
(22.27).
The cardinality constraint (22.24) allows the final phrase in (22.5) to be rewritten
as in

Optimally and jointly estimate
½A�what loadings inA are to be zero and
½B�the values of nonzero parameters,

for a pre-specified CardðAÞ:
ð22:28Þ

A key point in CC-MDFA is that the loss function (22.25) can decomposed using
SXZ ¼ n�1X0Z as (18.24) i.e.,

f SXZ;Bð Þ ¼ X� ZS0XZ
�� ��2 þ n SXZ � Bk k2; ð22:29Þ

where the right term SXZ � Bk k2 can be rewritten as (18.25), i.e.,

SXZ � Bk k2¼ SXF � Ak k2 þ diag SXUð Þ �W2
�� ��2 þ SXU � diag SXUð Þk k2:

ð22:30Þ

This implies that (22.25) can be decomposed so that the part dependent on A is just
a simple function

gðAÞ ¼ SXF � Ak k2: ð22:31Þ

This property allows the CC-MDFA algorithm to be formed with a minor modi-
fication of the MDFA one (Chap. 18), as written in the next section.

22.6 Formulation of Cardinality Constrained MDFA 373



The decomposition in (22.29) follows from the constraint (22.27): The key point
in CC-MDFA, i.e., (22.29), no longer holds, without the constraint (22.27) which
implies the common factors being mutually uncorrelated with n�1F0F ¼ Im as
found in (18.4). Hence, the common factors must be mutually uncorrelated, i.e.,
factor correlations cannot be estimated in CC-MDFA. This is a limitation of
CC-MDFA, which contrasts to PS-LVFA in which factor correlations can be
estimated.

22.7 Algorithm for Cardinality Constrained MDFA

In CC-MDFA, only a single constraint (22.24) for A is added to the MDFA con-
straints (22.26) and (22.27). Thus, the procedures for estimating parameters
excluding A is the same as listed in Note 18.1 (Chap. 18).

In the loss function (22.25) or (22.29) with (22.30), only (22.31) depends on the
loading matrix A. Thus, for finding the optimal update formula for A, we may
consider minimizing (22.31) over A subject to (22.24) with the other parameters
fixed. This formula can be derived from the fact that (22.31) can be rewritten using
A = (ajk) and SXF = (sjk) so that

gðAÞ ¼
X

ðj;kÞ2@0

s2jk þ
X

ðj;kÞ2@#

ðajk � sjkÞ2 �
X

ðj;kÞ2@0

s2jk: ð22:32Þ

Here, @# denotes the set of the c pairs of (j, k) for the loadings ajk to be nonzero, @0

is the set of the pm�c pairs of (j, k) for the ajk to be zero,
P

ðj;kÞ2@0
s2jk stands for the

summation of s2jk over the (j, k) contained in @0, and we have usedP
ðj;kÞ2@0

ðajk � sjkÞ2 ¼
P

ðj;kÞ2@0
ð0� sjkÞ2 ¼

P
ðj;kÞ2@0

s2jk. The inequality in

(22.32) shows that g(A) attains its lower limit
P

ðj;kÞ2@0
s2jk, when the loading

ajk with (j, k) 2 @# is set equal to sjk so that
P

ðj;kÞ2@#
ðajk � sjkÞ2 ¼P

ðj;kÞ2@#
ðsjk � sjkÞ2 ¼ 0. Furthermore, the limit

P
ðj;kÞ2@0

s2jk is minimal, when @0

contains (j, k) for the pm − c smallest sjk
2 among all elements of SXF � SXF ¼ ðs2jkÞ

or equivalently, when @# contains (j, k) for the c largest sjk
2 . The update formula of

A = (ajk) is thus given by

ajk ¼ 0 if s2jk\s2½c�
sjk otherwise

�
ð22:33Þ

with S2½c� the cth largest value among all elements of SXF � SXF.
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We can find (22.33) to imply that a2jk ¼ ajksjk ¼ 0 if s2jk\s2½c� and a2jk ¼ ajksjk ¼
s2jk otherwise, that is, a2jk ¼ ajksjk for every (j, k): A� A ¼ A� SXF. This fact
shows that (18.26) holds true also in the CC-MDFA solution, and the use of (18.26)
in (18.18) leads to the standardized loss function value in CC-MDFA being given
by (18.17), as this is derived in Sect. 18.6. Hence, the CC-MDFA algorithm can be
stated by Note 18.1, with the replacement of Step 4 by “Update A ¼ ajk

� �
and W as

(22.33) and W1/2 = diag(SXU), respectively”. In the algorithm, A and W are ini-
tialized as described in Sect. 22.3, and the convergence is defined as the difference
of the (18.17) value from the previous round being less than 0.18.

22.8 Using Cardinality Constrained MDFA

The CC-MDFA algorithm in the last subsection provides the optimal A and W for a
given c in (22.24). Thus, CC-MDFA is convenient for users who wish to pre-
specify the cardinality of loadings, for example, who wish to obtain a solution with
half of the loadings being zero. Such pre-specification of the cardinality cannot be
made in PS-LVFA.

Selecting a suitable c is also possible in Adachi and Trendafilov’s (2015) pro-
cedure based on the following observation. The authors found that the CC-MDFA
solutions are broadly equivalent to the solutions of the likelihood-based CFA, in
which the log likelihood (22.2) is maximized subject to U = Im with the locations
of the zero loadings in A constrained to those in the CC-MDFA solutions. This
suggests that BIC (8.25) used for CFA can also be utilized in CC-MDFA. The BIC
value is obtained with

BIC ¼ �2l� A;W; Imð Þþ gðcÞ log n: ð22:34Þ

Table 22.4 CC-MDFA
solution for the correlations in
Table 19.2

Variable K W

Extraversion 0.24 −0.35 0.47 0.59

Activity 0.45 −0.28 0.63 0.32

Empathy 0.54 0.67

Novelty 0.64 0.58

Durability 0.67 0.54

Regularity 0.79 0.37

Self-revelation 0.62 0.59

Aggressiveness 0.41 0.51 0.54

Lack of cooperativeness 0.47 0.74

Inferiority feeling 0.62 −0.31 0.49

Nervousness 0.25 0.66 0.49

Depression 0.84 0.29
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Here, gðcÞ ¼ cþ p is the number of the parameters (the nonzero loadings in A and
the diagonal elements of W) whose values are estimated, and l� A;W; Imð Þ is the
(22.2) value in which the CC-MDFA solution is substituted with U ¼ Im. Thus, we
can select the solution with the best c within possible c values. They are reasonably
considered as

c ¼ p; . . .; pm� mðm� 1Þ=2: ð22:35Þ

Here, the lower limit has been set to p, since this prevents A from having an empty
column if c were smaller than the limit. On the other hand, the upper limit has been
set to the number of loadings minus m(m − 1)/2, since m(m − 1)/2 loadings can be
set to zeros, without loss of generality, as discussed in Sect. 12.9.

We performed CC-MDFA for each of the correlation matrices in Tables 19.2
and 22.2, where the solution with the best c was chosen using the above method.
The resulting solutions are presented in Tables 22.4 and 22.5. They are found to be
very similar to the corresponding PS-LVFA solutions: The loadings in Table 22.4

Table 22.5 CC-MDFA
solution for the correlations in
Table 22.2

Variable K W

x2 0.95 0.08

y2 0.96 0.08

z2 0.94 0.09

xy 0.67 0.61 0.17

xz 0.64 0.64 0.17

yz 0.66 0.63 0.15

(x2 + y2)1/2 0.69 0.64 0.10

(x2 + z2)1/2 0.68 0.64 0.12

(y2 + z2)1/2 0.66 0.67 0.11

2x + 2y 0.68 0.67 0.08

2x + 2z 0.67 0.68 0.08

2y + 2z 0.66 0.68 0.09

log x 0.89 0.19

log y 0.87 0.23

log z 0.88 0.21

xyz 0.47 0.49 0.54 0.22

(x2 +y2 + z2)1/2 0.57 0.52 0.54 0.10

ex 0.71 0.48

ey 0.68 0.52

ez 0.71 0.49
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can be interpreted in the same manner as those in Table 22.1, and Table 22.5
demonstrates that CC-MDFA can solve Thurstone’s box problem as well as
PS-LVFA.

An advantage of CC-MDFA over PS-LVFA is that the solution with the best
BIC can be more easily selected as the number of solutions to be compared is
smaller according to (22.35): c is an integer within a restricted range. In contrast,
the solutions in PS-LVFA vary across the two tuning parameters w and u, which
take continuous real values. Thus, it is impossible to consider the solutions with all
possible w and u. Additional work is required to choose candidate values for w and
u, for example, w = 1/30, 2/30, …, 50/30, and u = 1, 1 + 1/25, 1 + 2/25, …,
1 + 49/25, as in Sect. 22.5. However, factor correlations can be estimated in
PS-LVFA, which cannot be done in CC-MDFA.

22.9 Sparse FA Versus Factor Rotation in Exploratory FA

As described in Chaps. 12, 13, and 18, the exploratory FA (EFA) solution has
rotational indeterminacy: If A is the optimal loading matrix which optimizes the
EFA objective function, AT ¼ AT is also optimal in that the function value remains
the same even if A is replaced by AT. Here, T is an m � m rotation matrix
satisfying either (13.3) or (13.9). Thus, a rotation procedure follows EFA in which
the matrix T is obtained so that the resulting AT = AT has a desirable property.
This is typically simple structure, as explained in Chap. 13. How this simple
structure is related to the sparseness is shown by [1] and Table 13.2 in Sect. 13.3:
[1] shows that the sparseness is a feature of simple structure and Table 13.2(A)
illustrates that ideally simple loadings are sparse.

Table 22.6 presents an example of AT, which was obtained by varimax rotation
following EFA for the data set in Table 19.2. In Table 22.6, the loadings of the
large absolute values are boldfaced. By noting these values, we can make the same
interpretation we did for the sparse FA (SFA) solutions, demonstrating that rotation
following EFA is comparable to SFA. In the next three paragraphs, we discuss some
types of differences between the two procedures.

In general, the loadings resulting from the rotation cannot be exactly zero or
ideally simple as in Table 13.2(A), which differs from the loadings resulting in
SFA. Thus, the loadings whose absolute values are greater than 0.45 have been
boldfaced in Table 22.6, for the sake of easily capturing the loadings to be noted.
However, the threshold 0.45 is a subjectively selected benchmark: An objectively
defined threshold does not exist which distinguishes which loadings should be
noted. Furthermore, only noting the loadings whose magnitudes exceed the
threshold implies that the other loadings should be regarded as zeros. Let us
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imagine that the loading matrix in Table 22.6 whose loadings are not boldfaced is
replaced by zeros. Obviously, such a matrix is not the optimally estimated solution.
In contrast, which elements are to be zero are estimated optimally in SFA (e.g.,
Trendafilov & Adachi, 2015).

Another difference of rotation from SFA is that the former does not involve the
original data: As described in Chap. 13, the function Simp(AT) or Comp(AT) is
optimized without a data set. This allows us to consider whether the loading matrix
AT = AT resulting in the rotation might embody some simple structure not
underlying the original data. However, AT = AT for any rotation matrix T is an
EFA solution optimally fitted to data, as described in Chaps. 12 and 18. That is, the
rotation, in which Simp(AT) is maximized or Comp(AT) is minimized, can be
regarded as choosing the simplest AT = AT among elements in a set of the EFA
solutions {AT = AT: T = any rotation matrix}.

Though the properties for the rotation following EFA that have been so far
described might be considered slightly disadvantageous, some advantages also
exist. One follows from the fact that SFA is a constrained version of EFA with a
penalty function such as (22.7) or constraint (22.24). This implies that the EFA
solutions fit better than the SFA ones to a given data set. Thus, the loading matrix
AT resulting from the rotation is a better fit to the data set than its SFA counterpart.
Another disadvantage of SFA is that [w, u] in (22.7) or c in (22.24) needs to be
chosen among candidates. Such a cumbersome procedure is not required in rotation
though instead a procedure must be chosen among a variety of the rotation pro-
cedures (Browne, 2001).

Table 22.6 LVFA solution
followed by varimax rotation
in Table 19.4, with the load-
ings boldfaced for absolute
values � 0.45

Variable AT W

Extraversion 0.24 −0.33 0.47 0.61

Activity 0.42 −0.25 0.65 0.34

Empathy 0.60 −0.02 0.02 0.64

Novelty 0.04 −0.05 0.62 0.62

Durability 0.66 −0.08 0.05 0.55

Regularity 0.71 0.05 0.17 0.47

Self-revelation 0.03 0.16 0.63 0.58

Aggressiveness −0.13 0.37 0.55 0.54

Lack of
cooperativeness

−0.23 0.45 0.17 0.72

Inferiority feeling −0.18 0.62 −0.30 0.49

Nervousness 0.26 0.72 0.02 0.41

Depression −0.10 0.83 0.02 0.30
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22.10 Bibliographical Notes

Besides Hirose and Yamamoto (2014) referenced in this chapter, Hirose and
Yamamoto (2015), Trendafilov, Fontanella, and Adachi (2017), and Jin, Moustaki,
and Yang-Wallentin (2018) have proposed the procedures included in PS-LVFA. To
the best of our knowledge, only Adachi and Trendafilov (2015) have proposed a
procedure which can be considered as CC-MDFA. Its restrictive version called
sparsest FA has been presented by Adach and Trendafilov (2018b), in which each
row of a loading matrix is constrained to zeros except for a single element, i.e., each
variable is allowed to load a single factor, which implies that the resulting loading
matrix can be said to be the sparsest. The same constraint is imposed in Vichi’s
(2017) disjoint FA.

Here, we must mention that the developments in sparse FA followed on from
sparse principal component analysis (SPCA) for obtaining the sparse weight matrix
(Jolliffe et al. 2003; Shen & Huang, 2008; Zou et al. 2006). Sparse PCA procedures
are summarized well in Hastie et al. (2015) and Trendafilov (2014). Adachi and
Trendafilov (2016) have proposed a sparse PCA version of CC-MDFA for
obtaining the sparse component loading matrix, and its sparse three-way PCA
version has been presented by Ikemoto and Adachi (2016).

Exercises

22:1 Summarize in what ways sparse FA is superior to confirmatory FA.
22:2 Summarize the similarities/differences between sparse FA and EFA fol-

lowed by rotation.
22:3 Let us consider PS-LVFA in which the L1-norm of A (Note 21.1) is used for

Pen(A) in (22.6), i.e., maximizing

fL1ðA;W;UÞ ¼ n
2
log AUA0 þWð Þ�1V
��� ���� n

2
tr AUA0 þWð Þ�1V� nw Ak k1:

ð22:36Þ

over A,W, andU. Discuss how this maximization can be attained by the EM
algorithm, i.e., the alternating iteration of obtaining B and Q in the function

/L1ðA;W;UÞ ¼ � n
2
log Wj j � n

2
tr V� 2BA0 þAQA0ð ÞW�1

� n
2

log Uj j þ trU�1Q
� �� nw Ak k1:

ð22:37Þ

and maximizing it over A,W, and U. Here, B and Q are defined as (22.11)
with (22.12).

22:4 Discuss how the maximization of (22.37) can be attained by the procedures
in Sect. 22.4 with only the update formula of A being modified.

22:5 Show that (22.37) can be rewritten as /L1(A,W,U) = ngL1(A) + constL1[A].
Here, constL1[A] is a constant independent of A, and
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gL1ðAÞ ¼ � 1
2
tr V� 2BA0 þAQA0ð ÞW�1 �

Xp
j¼1

Xm
k¼1

w ajk
�� ��

¼ �
Xp
j¼1

1
2wj

vjj � 2
Xm
k¼1

ajkbjk þ
Xm
k¼1

Xm
l¼1

qklajkajl

 !
�
Xp
j¼1

Xm
k¼1

w ajk
�� ��

ð22:38Þ

with V ¼ vjk
� �

;A ¼ ajk
� �

;B ¼ bjk
� �

;Q ¼ qklð Þ, and wj the jth diagonal
element of W.

22:6 Show that (22.38) can be rewritten as a function of an element ajk in
A : gL1 ajk

� � ¼ � qkk=wj

� �
hL1 ajk
� �þ constL1½j;k�. Here, constL1[j,k] is inde-

pendent of ajk, and

hL1 ajk
� � ¼ 1

2
a2jk �

2
qkk

ajkbjk � ajk
X
l6¼k

qklajl

 !( )
þ wj

qkk
w ajk
�� ��

¼ 1
2

a2jk � 2rjkðaj½k�Þajk þ 2djkðwÞ ajk
�� ��n o

:

ð22:39Þ

with aj[k] the (m − 1) � 1 vector aj[k] containing aj1, …, ajm except ajk,
rjk aj½k�
� � ¼ bjk � Rl 6¼kqklajl

� �
=qkk (a function of aj[k]), and

djkðwÞ ¼ wjw=qkk .
22:7 Show that minimizing (22.39) over ajk can be attained for

ajk ¼ 0 if � djkðwÞ� rjkðaj½k�Þ � djkðwÞ
sign½rjkðaj½k�Þ� rjkðaj½k�Þ

�� ��� djkðwÞ
� �

otherwise

�
:

ð22:40Þ

Hints are found in (21.11)–(21.14).
22:8 Determine the algorithm for maximizing (22.36) over A,W, and U, by

considering answers for Exercises 22.3–22.7.
22:9 The definition of local minima is described in Exercise 7.6 (Chap. 7).

CC-MDFA is known to be sensitive to local minima, as is k-means clus-
tering (Chap. 7) for the same reason. This reason can be found in the
similarity between the update formulas (7.19) and (22.33). Consider and
discuss how these formulas are similar.

22:10 Discuss that the possibility of a CC-MDFA solution being a local minimizer
can be reduced with the multi-run procedure described in Exercise 7.6
(Chap. 7).

22:11 Adach and Trendafilov (2018b) proposed the constrained FA procedure, in
which each row of the loading matrix A is constrained to zeros except a
single element. Discuss how this procedure is useful for clustering
variables.
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22:12 In Adachi and Trendafilov’s (2016) procedure called unpenalized sparse

loading principal component analysis (USLPCA), X� PC0k k2 is mini-
mized over P (n � m) and C (p � m) subject to n�1P0P ¼ Im and
Card(C) = l (pre-specified integer), with m < rank(X). Show that the
function can be decomposed as

X� PC0k k2¼ X� PS0XP
�� ��2 þ n SXP � Ck k2 ð22:41Þ

with SXP ¼ n�1X0P.
22:13 Let us consider the minimization of (22.41) over C = (cjk) subject to

Card(C) = l with P kept fixed. Explain that the minimization can be attained
for

cjk ¼
0 if sXPjk \s2½l�
sXPjk otherwise

(
; ð22:42Þ

where sXPjk is the (j, k) element of SXP and S½l�2 is the lth largest value among

all elements of SXP � SXP ¼ s2jk
� �

.

22:14 Show that (22.41) can be rewritten as ntr V� 2n�1C0X0PþCC0ð Þ and
minimized over P for

P ¼ ffiffiffi
n

p
CN0 ¼ XCND�1N0 ð22:43Þ

subject to n�1P0P ¼ Im for a given C. Here, V ¼ n�1X0X, and the matrices
C, D, and N are obtained through the singular value decomposition
(SVD) of n−1/2XC, which is defined as n�1=2XC ¼ CDN0, with C0C ¼
N0N ¼ Im and D being a diagonal matrix whose diagonal elements are all
positive.

22:15 Show that the loss function X� PC0k k2, in which the matrix C = (cjk)

updated as (22.42) is substituted, can be rewritten as X� PC0k k2¼
ðntrVÞ � s with

s ¼ 1� trCC0

trV
: ð22:44Þ

22:16 Show that an algorithm of USLPCA in Exercise 22.12 for obtaining the
solution of C can be formed, using (22.42)–(22.44), as follows:

Step 1. Initialize C.
Step 2. Perform the eigenvalue decomposition of C′VC defined as

C0VC ¼ ND2N0.
Step 3. Set SXP ¼ VCND�1N0.
Step 4. Update C = (cjk) as (22.42).
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Step 5. Finish if the decrease in (22.44) from the previous round is small
enough to be ignored; otherwise, go back to Step 2.

A hint is found in the fact that the substitution of (22.43) in SXP ¼ n�1X0P
allows it to be rewritten as SXP ¼ VCND�1N0.

22:17 Ikemoto and Adachi (2016) have proposed a sparse version of the Tucker2
in Exercise 20.12. This is formulated as minimizing (20.62) over A, B, and
H subject to, A0A ¼ IP;B0B ¼ IQ, and Card(H) = c (pre-specified integer).
Show that (20.62) can be decomposed as

f ¼ X� AH IK 	 B0ð Þk k2¼ X� AY IK 	 B0ð Þk k2 þ Y�Hk k2; ð22:45Þ

with Y ¼ A0X IK 	 Bð Þ.
22:18 Explain that for given A and B, (22.45) is minimized over H = (hpq) subject

to Card(H) = c, when hpq = 0 if y2pq\y2½c�; otherwise hpq = ypq. Here,

Y = (ypq) and y2½c� is the cth largest value among all elements of

Y� Y ¼ y2pq
� �

.

22:19 Discuss how the update formula of hpq in Exercise 22.20 is similar to the
Formula (20.50) in the three-way simplimax rotation (Kiers, 1998a).
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Appendices

The fundamentals of matrix algebra and computations for multivariate data anal-
ysis, which had not been treated in the main chapters of this book, are described in
Appendices A.1–A.4. That is followed by supplements for Chaps. 8 and 15 in
Appendix A.5. Iterative algorithms are summarized, and a gradient method for them
is illustrated in Appendix A.6. The scale invariance of covariance structure analysis
(Chaps. 9–12) is treated in Appendix A.7. That is followed by Appendix A.8 in
which probability densities and expected values are detailed together with the
principle of EM algorithm. This appendix serves as a preparation for Appendix A.9.
Here, the EM algorithm for factor analysis is detailed which is used for the pro-
cedures treated in Chaps. 10, 12, and 22.

A.1 Geometric Understanding of Matrices and Vectors

In this appendix, fundamental properties of the vectors and matrices are described,
which are considered as geometric concepts.

A.1.1 Angles Between Vectors

Vectors can be depicted as lines (with arrows) as in Fig. A.1. There, we find the
triangle formed by a, b, and a − b with h the angle between a and b. For this
triangle, the cosine theorem

a� bk k2 ¼ ak k2 þ bk k2 � 2 ak k bk k cos h ðA:1:1Þ
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holds, which readers should have learned in high school. Its left-hand side can be
expanded as jjajj2 þ jjbjj2 � 2a0b, which implies

a0b ¼ ak k bk k cos h : ðA:1:2Þ

the inner product of two vectors is the multiplication of their lengths and the cosine
of their angle. Equation (A.1.2) is rewritten as

cos h ¼ a0b
ak k bk k : ðA:1:3Þ

The cosine of the angle between two vectors equals the division of their inner
product by their lengths.

Let the angle between vectors s and t be 90°, with their lengths not being zero.
Then, s and t satisfy

s0t ¼ 0; ðA:1:4Þ

because of (A.1.2) and cos 90° = 0. The two vectors in (A.1.4) are said to be
mutually orthogonal.

A.1.2 Orthonormal Matrix

The p � m matrix W ¼ w1; . . .;wm½ � satisfying

W0W ¼ Im ðA:1:5Þ

is said to be column-orthonormal, as (A.1.5) implies that the column vectors are
mutually orthogonal with w0

jwk ¼ 0 for j 6¼ k and of unit-length wj

�� �� ¼ 1 The term

Fig A.1 Geometric illustra-
tion of vectors a and b with
0 = [0, …, 0]′
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“orthonormal” is a composite of “orthogonal” and “normal”, with the latter
adjective standing for wj

�� �� ¼ 1.
Let a matrix T be a column-orthonormal and square of p � p. It implies T being

nonsingular and T′ = T−1 (the inverse matrix of T):

T0T ¼ TT0 ¼ Ip: ðA:1:6Þ

Such a T is simply said to be orthonormal. For p � 1 vectors a and b,

Tak k2¼ a0T0Ta ¼ a0a ¼ ak k2; ðA:1:7Þ

Ta� Tbk k2¼ ða� bÞ0T0Tða� bÞ ¼ ða� bÞ0ða� bÞ ¼ a� bk k2: ðA:1:8Þ

the pre-multiplication of vectors by an orthonormal matrix T does not change the
length of the vectors or the distance between the vectors. This implies that the
pre-multiplication simply rotates the vectors, as illustrated in Fig. A.2.

A.1.3 Vector Space

Let H ¼ h1; . . .; hp
� �

be an n � p matrix with n > p and b ¼ b1; . . .; bp
� �0 a p � 1

vector. The purpose of this section is to show what the linear combination of the
column vectors in H, i.e.,

h� ¼ b1h1 þ � � � þ bphp ¼ Hb; ðA:1:9Þ

geometrically represents. Here, H ¼ h1; . . .; hp
� �

is fixed, while each element of

b ¼ b1; . . .; bp
� �0

can take any real value: −∞ < bj < ∞ for j = 1, …, p.

Fig A.2 Rotation of vectors
by an orthonormal matrix
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h1

h2

0.6h1

–1.3h2

h*

h1

h2

1.2h1

0.7h2

h*

h1

h2=ch1

h*

h*

h* h*

(a) Linear combinations of 
h1 and h2 

(b) Two-dimensional space
for [h1, h2] with its rank 2

(c) Uni-dimensional space
for [h1, h2] with its rank 1

Fig. A.3 Spaces spanned by h1 and h2

We start with the cases with p = 2, where (A.1.9) is simplified as

h� ¼ b1h1 þ b2h2: ðA:1:10Þ

In Fig. A.3a, the two vectors obtained with (A.1.10) are illustrated when [b1, b2] =
[0.6, −1.3] and when [b1, b2] = [1.2, 0.7]. Since vectors h1, h2, and h* are n � 1,
they extend in an n-dimensional space; this is depicted as an ellipse in Fig. A.3.
However, h* cannot extend in arbitrary directions; they are restricted. As illustrated
in Fig. A.3b, h* can only extend on the grayed plane, i.e., on a two-dimensional
space, on which h1 and h2 extend. This plane is formed by (A.1.10) with −∞ < b1 <
∞ and −∞ < b2 < ∞. Here, it should be noted that the ranges of b1 and b2 are −∞
< b1 <∞ and −∞ < b2 < ∞, which implies the plane extends infinitely, though that
cannot be depicted in the figure due to the limitations of the page. The plane in
Fig. A.3b is called a two-dimensional space spanned by h1 and h2. Obviously, this
space is included in the n-dimensional one for n > p = 2. Thus, the grayed plane is
illustrated inside the ellipse in Fig. A.3b. The notions in this paragraph can be
captured intuitively as follows:

Note A.1.1. Intuitive Understanding of Vector Spaces
Let us view the vectors h1 and h2 in Fig. 1.3b as pencils before our eyes,

with n = 3. Then, we can verify that a sheet (or a thin notebook) can be
located as the grayed plane in Fig. 1.3b; i.e., so that two pencils, h1 and h2,
extend on the sheet.

Further, let h* be another pencil extending in the direction satisfying
(A.1.10). Then, we can verify that pencil h* necessarily extends in the
direction of the sheet; i.e., it cannot extend in a direction different from the
sheet, regardless of the values b1 and b2 take. Here, the world in which we,
h1, h2, h

*, and the sheet exist is a three-dimensional space, but the sheet in
whose direction h1, h2, and h* extend is restricted to the two-dimensional
space included in the three-dimensional one.
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Though we have supposed so far that h1 and h2 are linearly independent with
rank h1; h2½ �ð Þ ¼ 2 in Fig. A.3a, b, the case with h2 = ch1 (linearly dependent) and
rank h1; h2½ �ð Þ ¼ 1 is illustrated in Fig. A.3c; linear dependence and the rank of a
matrix were introduced in Sects. 3.9 and 3.10. Then, the space spanned by h1 and
h2 is one-dimensional; the space is a line when rank h1; h2½ �ð Þ ¼ 1. It can also be
ascertained that h2 = ch1 allows (A.1.10) to be rewritten as h� ¼ b1h1 þ b2ch1 ¼
b1 þ b2cð Þh1 for h2 = ch1.
Now, let us consider the cases of p = 3, where (A.1.9) is expressed as

h� ¼ b1h1 þ b2h2 þ b3h3: ðA:1:11Þ

This gives the same story as in the previous paragraphs. The three-dimensional
space spanned by h1, h2, and h3, which are linearly independent, is depicted as the
grayed object in Fig. A.4a. Though that space (grayed object) is depicted as a
“plane” in the figure, it is of three dimensions.

In Fig. A.3b, the case is illustrated in which h1, h2, and h3 are linearly
dependent, with h2 ¼ c1h1 þ c2h3 , but h1 and h3 are linearly independent, and
rank h1; h2; h3½ �ð Þ ¼ 2. In this case, the space spanned by h1, h2, and h3 is
two-dimensional, since (A.1.11) can be rewritten as h� ¼ b1h1 þ b2
c1h1 þ c2h3ð Þþ b3h3 = b1 þ b2c1ð Þh1 þ b2c2 þ b3ð Þh3, which implies that the space
spanned by h1, h2, and h3 is equivalent to the two-dimensional space spanned by h1
and h3.

The space spanned by h1; . . .; hp can be defined for p > 3 in the same manner as
for p = 2, 3. This is illustrated in Fig. A.3c. That space is called the column space of
H ¼ h1; . . .; hp

� �
and is formally expressed as

NðHÞ ¼ h�:h� ¼ Hb ¼ b1h1 þ � � � þ bphp;�1\bj\1; j ¼ 1; . . .; p
� �

:

ðA:1:12Þ

The dimensionality of the space is equal to r = rank(H). As n > p, this space is
included in the n-dimensional space depicted as the ellipse in Fig. A.3c. Thus, the

h1 h2

h3

h1

h3

h2

h1 h2

hp

hp–1

(a) Three-dimensional space
for [h1, h2, h3] with its rank 3

(b) Two-dimensional space
for [h1, h2, h3] with its rank 2

(c) r-dimensional space for 
[h1, ... , hp] with its rank r p

Fig. A.4 Spaces spanned by h1, …, hp for p = 3 and for p > 3
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r-dimensional space spanned by h1; . . .; hp, i.e., the column space of H, is a sub-
space of n-dimensional space, since a space included in another space is called a
subspace of the latter.

A.1.4 Projection Onto a Subspace

Let us consider a two-dimensional subspace (i.e., plane), which is included in a p-
dimensional space and spanned by the p � 1 vectors w1 and w2. Here, they are of
unit length and mutually orthogonal with w1k k ¼ w2k k ¼ 1 and w0

1w2 ¼ 0. Those
equations are summarized into

w0
1

w0
2

� �
w1;w2½ � ¼ W0W ¼ Im: ðA:1:13Þ

with m = 2 and W ¼ w1;w2½ � (p � 2). This implies that w1 and w2 define the
orthogonal axes on the subspace, as illustrated in Fig. A.5. Using f = [f1, f2]′, whose
elements can take arbitrary real values, any point on the subspace is expressed as

g ¼ Wf ¼ f1w1 þ f2w2: ðA:1:14Þ

Now, we consider what values the elements of f = [f1, f2]′ should take, subject to
the condition that g (p � 1) is the projection of ~xi (p � 1) onto the subspace (plane)
spanned by w1 and w2. This condition is restated as the difference vector ~xi � g
being orthogonal to the subspace, which is equivalent to ~xi � g being orthogonal to

w2

w1 

g = Wf 0
f1w1 

f2w2 

ix~
Fig A.5 Projection of a data
vector on a plane
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w1 and w2 with ð~xi � gÞ0w1 ¼ 0 and ð~xi � gÞ0w2 ¼ 0. These two equations are
summarized into

ð~xi � gÞ0W ¼ 002: ðA:1:15Þ

Substituting (A.1.14) in (A.1.15), we have ð~xi �WfÞ0W ¼ 002, which is rewritten as
~x0iW ¼ f 0W0W. In this equation, we can use (A.1.13) to get

f 0 ¼ ~x0iW or f ¼ W0~xi: ðA:1:16Þ

The above discussions can be generalized to the cases with m � 2. That is,
(A.1.16) expresses the coordinates of the projection of ~xi onto the subspace
spanned by the columns of W ¼ w1; . . .;wm½ � under the condition W′W = Im in
(A.1.13).

A.2 Decomposition of Sums of Squares

As shown in (1.31), the squared norm Aj jj j2¼ trA0A expresses the sum of the
squared elements in A. Thus, Aj jj j2 is also called a sum of squares. It can often be
rewritten as the sum of other sums of squares as Ak k2¼ Bk k2 þ Ck k2. Such an
equality is generally called the decomposition of the sum of squares. The decom-
position is utilized in the least squares method in which the parameter values are
found that minimize a sum of squares.

A.2.1 Decomposition Using Averages

Let us consider the sum of squares

f ðcÞ ¼ h� c1nk k2; ðA:2:1Þ

with h an n � 1 vector and c a scalar. We can find that (A.2.1) is minimized when
c equals the average of the elements in h:

ĉ ¼ 1
n
10nh: ðA:2:2Þ
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This result follows from the fact that (A.2.1) is decomposed as

h� c1nk k2¼ h� 1
n
1n10nh

����
����
2

þ 1
n
1n10nh� c1n

����
����
2

: ðA:2:3Þ

only the term g cð Þ ¼ n�11n10nh� c1n
�� ��2 is relevant to c in the right-hand side of

(A.2.3), and (A.2.2) allows g(c) to attain its lower limit as gðĉÞ ¼
n�11n10nh� 1n � ĉ
�� ��2 = n�11n10nh� n�11n10nh

�� ��2¼ 0. The decomposition (A.2.3)
is derived as follows: (A.2.1) can be rewritten as

h� c1nk k2 ¼ h� ĉ1n þ ĉ1n � c1nk k2

¼ h� ĉ1nk k2 þ ĉ1n � c1nk k2 þ 2v;
ðA:2:4Þ

with v ¼ h� ĉ1nð Þ0 ĉ1n � c1nð Þ ¼ ĉh01n − ch01n � ĉ2nþ ĉcn ¼ ĉðnĉÞ − cðnĉÞ �
ĉ2nþ ĉcn ¼ 0 following from (A.2.2), or equivalently, 10nh ¼ nĉ.

Next, let us consider the sum of the sums of squares

h Fð Þ ¼
XJ
j¼1

F� Zj

�� ��2; ðA:2:5Þ

with F and Zj n � m matrices. We can find that (A.2.5) is minimized when F equals

F̂ ¼ Z ¼ 1
J

XJ
j¼1

Zj; ðA:2:6Þ

using the fact that (A.2.5) is decomposed as

XJ
j¼1

F� Zj

�� ��2 ¼ J F� Z
�� ��þ XJ

j¼1

Z� Zj

�� ��2: ðA:2:7Þ

In the right-hand side, only the term J F� Z
�� ��2 is relevant to F and that term

attains zero when F equals (A.2.6). Decomposition (A.2.7) is derived as follows:
(A.2.5) can be rewritten as

XJ
j¼1

F� Zj

�� ��2 ¼XJ
j¼1

F� ZþZ� Zj

�� ��2 ¼ J F� Z
�� ��þ XJ

j¼1

Z� Zj

�� ��2 þ 2trS;

ðA:2:8Þ
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with

S ¼
XJ
j¼1

ðF� ZÞ0ðZ� ZjÞ

¼
XJ
j¼1

F0Z�
XJ
j¼1

F0Zj�
XJ
j¼1

Z
0
Zþ

XJ
j¼1

Z
0
Zj

¼ JF0Z� F0XJ
j¼1

Zj�JZ
0
ZþZ

0XJ
j¼1

Zj

¼ JF0Z� JF0Z� JZ
0
Zþ JZ

0
Z ¼ m Om;

ðA:2:9Þ

where we have used the fact that (A.2.6) implies
PJ

j¼1 Zj ¼ JZ.

A.2.2 Decomposition Using a Projection Matrix

The n � n matrix

PX ¼ X X0Xð Þ�1X0 ðA:2:10Þ

is called a projection matrix for X (n � p). Though the use of (A.2.10) allows us to
generalize the discussions in A.1.4 (e.g., Banerjee and Roy, 2014; Yanai, Takeuchi,
& Takane, 2011), that is beyond the scope of this book. Here, we focus only on the
decomposition of sums of squares using (A.2.10).

Let us consider the sum of squares

f ðBÞ ¼ Y� XBk k2; ðA:2:11Þ

with Y and B being n � q and p � q matrices, respectively, and X′X nonsingular.
We find that (A.2.11) is minimized when

XB ¼ PXY; ie;B ¼ X0Xð Þ�1X0Y; ðA:2:12Þ

using the fact that (A.2.11) is decomposed as

Y� XBk k2¼ Y� PXYk k2 þ PXY� XBk k2: ðA:2:13Þ

On the right-hand side, only the term PXY� XBk k2 is relevant to B and that term
attains zero for (A.2.12). Decomposition (A.2.13) is derived as follows: (A.2.11)
can be rewritten as
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Y� XBk k2 ¼ Y� PXYþPXY� XBk k2

¼ Y� PXYk k2 þ PXY� XBk k2 þ 2trC;
ðA:2:14Þ

with

C ¼ Y� PXYð Þ0 PXY� XBð Þ
¼ Y0PXY� Y0XB� Y0P2

XYþY0P0
XXB ¼q Oq;

ðA:2:15Þ

where we have used P0
X ¼ PX, P2

X ¼ PX, and PXX = X.
Solution (4.12) in Chap. 4 is obtained by setting q = 1 and substituting JX and

y for X and Y in (A.2.12):

b̂ ¼ X0J0JXð Þ�1X0Jy ¼ X0JXð Þ�1X0Jy; ðA:2:16Þ

where B in (A.2.12) is replaced by b̂ (p � 1).
We should note that n�11n10n in (A.2.3) is also a projection matrix, since sub-

stituting 1n for X in (A.2.10) leads to P1n ¼ 1nð10n1nÞ�110n ¼ n�11n10n.

A.3 Singular Value Decomposition

The author believes that singular value decomposition (SVD) is the most important
tool in matrix algebra, as SVD can be defined for any matrix, a number of facts can
be easily derived from SVD, and it plays important roles in matrix computations as
found in Appendix A.4.

A.3.1 SVD: Extended Version

Please, learn this theorem (SVD) by heart as absolute truth!

Theorem A.3.1. SVD (extended version)
Any n � p matrix X with n � p can be decomposed as

X ¼ ~K~K~L
0
: ðA:3:1Þ

Here, ~K (n � p) is an n � p column-orthonormal matrix and ~L (p � p) is a
p � p orthonormal matrix:
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~K
0 ~K ¼ ~L

0~L ¼ ~L~L
0 ¼ Ip: ðA:3:2Þ

~K is a p � p diagonal matrix

~K ¼

k1
. .
.

kr
0

. .
.

0

2
66666664

3
77777775

ðA:3:3Þ

with its diagonal elements arranged in decreasing order

k1 � � � � � kr [ 0; ðA:3:4Þ

the number of the positive diagonal elements being the rank of X:

r ¼ rank Xð Þ; ðA:3:5Þ

and the blank cells standing for zero elements.

Theorem A.3.1 concerns the SVD of a matrix with the number of rows greater than
or equal to that of columns. The SVD of a matrix with more columns than rows can
be defined simply by transposing both sides of (A.3.1): Any matrix X′ (p � n) with
p � n can be decomposed as

X0 ¼ ~L~K~K
0
; ðA:3:6Þ

with (A.3.2)–(A.3.5).
Theorem A.3.1 shows that we can easily find rank(X) by counting the number of

nonzero diagonal elements in ~K, if the SVD of X is given. Further, SVD leads to
the following fact: for an n � p matrix X,

rankðXÞ ¼ rank X0ð Þ ¼ rank XX0ð Þ ¼ rank X0Xð Þ: ðA:3:7Þ

Here, the first equality directly follows from (A.3.6), and the rank(X) = rank(XX′) =

rank(X′X) follows from the fact that Theorem A.3.1 implies X0X ¼ ~L~K~K
0 ~K~K~L

0 ¼
~L~K

2~L
0
and XX0 ¼ ~K~K

2 ~K
0
; the SVD of X′X and that of XX′ are ~L~K

2~L
0
and ~K~K

2 ~K
0
,

respectively.
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A.3.2 SVD: Compact Version

Let us consider the same matrices as in Theorem A.3.1, and let K and L be the
matrices containing the first r columns of ~K and ~L, respectively, with ~K ¼
½K;Kðp�rÞ� and ~L ¼ ½L;Lðp�rÞ� being block matrices (whose introduction is found

in Sect. 14.1). Here, K(p−r) and L(p−r) contain the last p − r columns of ~K and ~L,
respectively. Further, let K be the r � r diagonal matrix whose diagonal elements
are k1; � � � � � kr. Then, the right-hand side of (A.3.1) is rewritten as

~K~K~L
0 ¼ K;Kðp�rÞ

� � K
p�rOp�r

� �
L0

L0
p�r

� �
¼ KKL0: ðA:3:8Þ

Theorem A.3.2. SVD (compact version)
Any n � p matrix X with rank(X) = r can be decomposed as

X ¼ KKL0: ðA:3:9Þ

Here, K (n � r) and L (p � r) are column-orthonormal matrices with

K0K ¼ L0L ¼ Ir ðA:3:10Þ

and K is the r � r diagonal matrix

K ¼
k1

. .
.

kr

2
64

3
75; ðA:3:11Þ

whose diagonal elements are positive and arranged in decreasing order with

k1 � � � � � kr [ 0: ðA:3:12Þ

The diagonal matrix K is unique; i.e., only a single K exists for X. Further,
if k1; [ � � � [ kr, K and L are also unique, except for that the signs (i.e.,
positive and negative) of all elements in the corresponding columns of K and
L can be changed simultaneously. That is, (A.3.9) can be rewritten as X =
KKL′ = (KD±)(D±KD±)(LD±)′. Here, D± is an r � r diagonal matrix, each
of whose diagonal elements is either 1 or −1. Since KD± and LD± can be
substituted into K and L in (A.3.10), respectively, with K = D±KD±, X =
(KD±)(D±KD±)(LD±)′ is also the SVD of X.

Thus, we have the compact version of Theorem A.3.1.
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The lth diagonal element (kl) of K is called the lth largest singular value of X. The
lth columns of K and L are called the left and right singular vectors of
X corresponding to kl, respectively. Obviously, the SVD of X′ is defined as X′ =
LKK′ with (A.3.10), (A.3.11), and (A.3.12).

Theorem A.3.2 shows that the SVD of XX′ and X′X is defined as

XX0 ¼ KK2K0; ðA:3:13Þ

X0X ¼ LK2L0; ðA:3:14Þ

respectively. The SVDs (A.3.13) and (A.3.14) lead to the sum of squares elements
in X equaling the sum of its squared singular values:

Xk k2¼ trX0X ¼ trXX0 ¼ trK2 ¼ k21 þ � � � þ k2r ; ðA:3:15Þ

since trX0X ¼ trLKK0KKL0 ¼ trLKKL0 = trLK2L0 ¼ trK2L0L ¼ trK2. If
rank(X′X) = p, then it is a nonsingular square matrix and its inverse matrix is given
by

X0Xð Þ�1¼ LK�2L0: ðA:3:16Þ

If p = n and X is nonsingular, then

X�1 ¼ LK�1K0: ðA:3:17Þ

A.3.3 Other Expressions of SVD

Let us express the matrices K and L in Theorem A.3.2 as K ¼ k1; . . .; km;½
kmþ 1; . . .; kr� ¼ Km;K½m�

� �
and L ¼ l1; . . .; lm; lmþ 1; . . .; lr½ � ¼ Lm;L½m�

� �
. Here,

Km ¼ k1; . . .; km½ � and Lm ¼ l1; . . .; lm½ � ðA:3:18Þ

contain the first m columns of K and L, respectively, while

K½m� ¼ kmþ 1; . . .; kr½ � and L½m� ¼ lmþ 1; . . .; lr½ � ðA:3:19Þ

contain the r − m remaining columns of K and L, respectively. Then, (A.3.10) is
rewritten as

k0uku ¼ l0ulu ¼ 1 and k0ukv ¼ l0ulv ¼ 0 for u 6¼ v; ðA:3:20Þ
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with u = 1, …, r and v = 1, …, r. Further, SVD (A.3.9) can be rewritten as
X ¼ k1k1l01 þ � � � þ kmkml0m þ kmþ 1kmþ 1l0mþ 1 þ � � � þ krkrl0r, which is expressed
in matrix form as

X ¼ KKL0 ¼ KmKmL0
m þK½m��K½m�L0

½m�; ðA:3:21Þ

with

Km ¼
k1

. .
.

km

2
64

3
75 andK½m� ¼

kmþ 1

. .
.

kr

2
64

3
75; i.e:;K ¼ Km

K½m�

� �
:

ðA:3:22Þ

By noting (A.3.20), we find

K0Km ¼ L0Lm ¼

1
. .
.

1
0 � � � 0

..

.

0 � � � 0

2
66666664

3
77777775
¼ Im

r�mOm

� �
: ðA:3:23Þ

K′Km = L′Lm equals the r � m matrix whose first m rows are those of Im and the
remaining rows are filled with zeros. Post-multiplying both sides of (A.3.9) by Lm

and using (A.3.23) leads to

XLm ¼ KKL0Lm ¼ Km;K½m�
� � Km

K½m�

� �
Im

r�mOm

� �
¼ Km;K½m�
� � Km

r�mOm

� �
¼ KmKm;

that is,

KmKm ¼ XLm: ðA:3:24Þ

Further, post-multiplying both sides by L0
m gives

KmKmL0
m ¼ XLmL0

m: ðA:3:25Þ

We can also use (A.3.23) to rewrite SVD (A.3.9) as

LmKm ¼ X0Km; ðA:3:26Þ
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which follows from

X0Km ¼ LKK0Km ¼ Lm;L½m�
� � Km

K½m�

� �
Im

r�mOm

� �
¼ Lm;L½m�
� � Km

r�mOm

� �
¼ LmKm:

A.3.4 SVD and Eigenvalue Decomposition for Sysmmetric
Matrices

Let us define C = X′X with X treated in Theorem A.3.2. As shown in A.3.14, the
SVD of C is given by C ¼ LK2L0. This is also the eigenvalue decomposition
(EVD) of C as found in Note 6.1 and the next theorem:

Theorem A.3.3. EVD of Nonnegative-Definite Matrices
A symmetric matrix C (p � p) being nonnegative-definite is equivalent to

the property of C that it can be rewritten as C = X′X, as described in Note 8.2
(i.e., we find this fact, if the matrices S and B in Note 8.2 are rewritten as
C and X′).

Let the SVD of X (n � p) be defined as in Theorem A.3.2 with
rank(X) = r. Then, the SVD of C = X′X is expressed as

C ¼ LK2L0; ðA:3:27Þ

as already shown in (A.3.14). We can also refer to (A.3.27) as the EVD or
spectral decomposition of C as described in Note 6.1. Here, k2k (the kth
diagonal elements of K2) is called the kth largest eigenvalues of C, and the kth
column of L is called the eigenvector of C corresponding to k2k .

As shown above, the SVD and EVD are equivalent for a nonnegative definite
symmetric matrix which is the product of a matrix and its transpose. However, it
does not hold true for a symmetric matrix which is not nonnegative-definite, as
shown next.

Let S be an arbitrary n � n symmetric matrix with rank(S) = r � n. The EVD of
S can be expressed as

S ¼ EHE0: ðA:3:28Þ
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Here, E′E = Ir, and H is the r � r diagonal matrix with its kth diagonal element hk
satisfying hkj j � hkþ 1j j. In general, hk, an eigenvalue of S, can be negative, which
implies that (A.3.28) is not the SVD of S. Its SVD can be expressed as

S ¼ EDDHE0: ðA:3:29Þ

Here, D is the r � r diagonal matrix whose kth diagonal element is 1 if hk > 0, but
−1 otherwise. We can find that DH is the diagonal matrix with positive diagonal
elements, i.e., the singular values of S, and the corresponding singular vectors are
contained in ED and E, with (ED)′ED = DE′ED = D2 = Ir.

A.4 Matrix Computations Using SVD

The purpose of this appendix is to present solutions for the problems of maximizing
some traces of matrix products and reduced rank approximations. Their foundation
is given by the Theorem in Appendix A.4.1.

A.4.1 ten Berge’s Theorem with Suborthonormal Matrices

Definition A.4.1. Suborthonormal Matrix
A matrix is suborthonormal if it can be completed to be an orthonormal

matrix by appending rows, columns, or both, or if it is orthonormal (ten
Berge, 1993, pp. 27–28).

An example of a suborthonormal matrix is A ¼ 0:8 0:0
0:0 0:1

� �
(ten Berge, 1993,

p. 28), since we can append the row [0.6, 0.0] and the column
0:6
0:0
�0:8

2
4

3
5 to A so that

it can be completed to be orthonormal ~A ¼
0:8 0:0 0:6
0:0 0:1 0:0
0:6 0:0 �0:8

2
4

3
5 with

~A
0 ~A ¼ ~A~A

0 ¼ I3.

A p� mcolumn�orthonormalmatrixB

and B0are suborthonormalwith p[m;
ðA:4:1Þ
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since the p� pmatrices [B,C] and
B0

C0

� �
are orthonormal, withC a p� (p−m)matrix

satisfying B′C = mOp−m and C′C = Ip−m. A suborthonormal matrix has the following
property:

the product of suborthonormal matrices ¼ a suborthonormal matrix ðA:4:2Þ

(ten Berge, 1983, 1993).
The following theorem concerning suborthonormal matrices gives the founda-

tion for the facts shown in Appendices A.4.2–A.4.5:

Theorem A.4.1. ten Berge's (1993) Theorem

If S is a p � p suborthonormal matrix with rank(S) = m � p and D ¼

d1
. .
.

dp

2
64

3
75 is a p � p diagonal matrix with d1 � ��� � dp � 0, then

f ðSÞ ¼ trSD� trDm ¼ d1 þ � � � þ dm � trD; ðA:4:3Þ

with Dm ¼
d1

. .
.

dm

2
64

3
75 the m � m diagonal matrix whose diagonal

elements are the first m ones of D.

This theorem has been proved by ten Berge (1983, Theorem 2) in a more gener-
alized setting. As d1 + ��� + dm � trD obviously holds, this has been added to ten
Berge’s (1993, p. 28) inequality in (A.4.3).

A.4.2 Maximization of Trace Functions

In this section, we consider the maximization problems for three forms of trace
functions. Here, the sentence “maximize f(B) over B s.t. g(B) = c” means “obtain
the matrix B that maximizes f(B) subject to the constraint g(B) = c” with “s.t.” the
abbreviation for “subject to”.
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Theorem A.4.2
For an n � p matrix Y with rank(Y) = p, we consider the problem:

Maximize f ðCÞ ¼ trY0C over Cðn� pÞ s:t:C0C ¼ Ip: ðA:4:4Þ

This is attained for

C ¼ UV0: ðA:4:5Þ

Here, U (n � p) and V (p � p) are given by the SVD of Y defined as
Y = UDV′ with U′U = V′V = Ip and D a p � p diagonal matrix whose
diagonal elements are all positive.

Proof By substituting Y = UDV′ in f(C) = trY′C, this is rewritten as f(C) =
trVDU′C = trU′CVD. The column-orthonormality of U, V, and C implies that U′
CV is suborthonormal, because of (A.4.1) and (A.4.2). Further, r = rank(U′CV) �
p, while D is a p � p diagonal matrix with all diagonal elements positive. Those
facts and Theorem A.4.1 lead to f(C) = trU′CVD � trD. Here, the upper bound
trD is attained for (A.4.5) as f(UV′) = trVDU′UV′ = trD, with (A.4.7) satisfying the
constraints in (A.4.6) as C′C = VU′UV′ = VV′ = Ip, because U′U = V′V = Ip and
V being p � p implies VV′ = Ip. ⎕

Theorem A.4.3
For the n � p matrix X in Theorem A.3.2, we consider the following

problem:

Maximize f ðA;BÞ ¼ trA0XB over Aðn� mÞ and Bðp� mÞ
s.t:A0A ¼ B0B ¼ Im with m� r ¼ rankðXÞ: ðA:4:6Þ

This is attained for

A ¼ KmT and B ¼ LmT ðA:4:7Þ

with Km and Lm defined as in (A.3.18) and T an m � m orthonormal matrix.

Proof By substituting (A.3.9) (the SVD of X) in f(A,B) = trA′XB, this is rewritten
as f(A,B) = trA′KKL′B = trL′BA′KK. As found in (A.3.10) and (A.4.6), K, L, A,
and B are column-orthonormal, and L′BA′K is suborthonormal because of (A.4.1)
and (A.4.2). Further, rank(L′BA′K) � m � r, while K is an r � r diagonal matrix
with all diagonal elements positive. Those facts and Theorem A.4.1 lead to
f(A, B) = trL′BA′KK � trKm with Km defined as (A.3.22). Here, the upper bound
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trKm is attained for (A.4.7) as f(KmT, LmT) = trT′Km′(KKL′)LmT = trL′LmTT′Km′
KK= trKm′KKL′Lm = trKm, with (A.4.7) satisfying the constraints in (A.4.6) as T′
Km′KmT = T′Lm′LmT = Im because of (A.1.6) and (A.3.10). ⎕

Solution (A.4.7) shows that it is not unique; we can choose an arbitrary
m � m orthonormal matrix as T. Thus, we can choose T in the rotation methods
described in Chap. 13, after obtaining (A.4.7) with T = Im. Solutions that can be
rotated as (A.4.7) are said to have rotational indeterminacy. This can be avoided by
adding the following constraint to (A.4.6):A′XB is a diagonal matrix whose diagonal
elements are arranged in descending order. Then, the solution is restricted to A =Km

and B = Lm, which leads to A′XB = Km.

Theorem A.4.4
For the n � p matrix X in Theorem A.3.2, we consider the following

problem:

Maximize f ðWÞ ¼ trW0X0XW over Wðp� mÞ
s.t.W0W ¼ Im with m� r ¼ rankðXÞ: ðA:4:8Þ

This is attained for

W ¼ LmT; ðA:4:9Þ

with Lm defined as in (A.3.18) and T an m � m orthonormal matrix. The
matrix Lm can also be defined through the EVD of X′X as described in
Theorem A.3.3.

Proof By substituting (A.3.9) in f(W), it is rewritten as f ðWÞ ¼
trW0LK2L0W ¼ trL0WW0LK2. As found in (A.3.9) and (A.4.8), L and W are
column-orthonormal, and L′WW′L is suborthonormal because of (A.4.1) and
(A.4.2). Further, rank(L′WW′L) � m � r, while K2 is an r � r diagonal matrix
with all diagonal elements positive. This fact and Theorem A.4.1 lead to
f ðWÞ ¼ trW0X0XW� trK2

m, with Km defined as (A.3.22). Here, the upper bound is
attained for (A.4.9) as f LmTð Þ ¼ trL0LmTT0L0

mLK
2 ¼ trK2

m, with (A.4.9) satisfy-
ing the constraint in (A.4.8) as T′Lm′LmT = Im. ⎕

Solution (A.4.9) also has rotational indeterminacy, which can be avoided by
adding the constraint (6.4) (in Chap. 6) to (A.4.8).
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A.4.3 Reduced Rank Approximation

In Chap. 5, principal component analysis (PCA) is introduced as a problem of
obtaining the matrix product FA′ that well approximates a data matrix X, subject to
the number of the columns of F and that of A being smaller than the rank of
X. Such a problem can be restated as approximating X by another matrix of lower
rank and is called reduced rank approximation. The theorem for the approximation
is presented next:

Theorem A.4.5. Reduced Rank Approximation
For the n � p matrix X in Theorem A.3.2, we consider the following

problem:

Minimize f ðMÞ ¼ X�Mk k2 over M s:t: rank(MÞ�m� rankðXÞ:
ðA:4:10Þ

This is attained for

M ¼ KmKmL0
m: ðA:4:11Þ

Here, it should be noted that the constraint in (A.4.10) is rank(M) equaling or
being less than m, but solution (A.4.11) is restricted to rank(M) = m.

Proof Using the extended version of SVD (Theorem A.3.1) for M, it is expressed
as M = PXQ′, with P′P = Q′Q = Im and X an m � m diagonal matrix whose
elements are nonnegative. Then, f(M) is rewritten as

f PXQ0ð Þ ¼ X� PXQ0k k2

¼ X� XQQ0 þXQQ0 � PXQ0k k2

¼ X� XQQ0k k2 þ XQQ0 � PXQ0k k2 þ 2c:

ðA:4:12Þ

Here, we can use Q′Q = Im to get

c ¼ tr X� XQQ0ð Þ0 XQQ0 � PXQ0ð Þ
¼ trX0XQQ0 � trX0PXQ0 � trQQ0X0XQQ0 þ trQQ0X0PXQ

¼ trQ0X0XQ� trX0PXQ0 � trQ0X0XQþ trX0PXQ0 ¼ 0

ðA:4:13Þ
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and

X� XQQ0k k2¼ Xk k2�2trX0XQQ0 þ trQQ0X0XQQ0 ¼ Xk k2�trQ0X0XQ:

ðA:4:14Þ

Using (A.4.13) and (A.4.14) in (A.4.12), this is further rewritten as

f PXQ0ð Þ ¼ Xk k2�trQ0X0XQþ XQQ0 � PXQ0k k2: ðA:4:15Þ

This function can be minimized, if P, X, and Q are found that simultaneously

maximize trQ′X′XQ and minimize XQQ0 � PXQ0k k2. Such P, X, and Q are given
by

P ¼ Km; X ¼ Km; and Q ¼ Lm; ðA:4:16Þ

which is shown as follows: (A.4.16) allows XQQ0 � PXQ0k k2 to attain its lower

limit, zero, as XLmL0
m �KmKmL0

m

�� ��2¼ 0 because of (A.3.25), while Q = Lm in
(A.4.16) maximizes trQ′X′XQ subject to Q′Q = Im because of Theorem A.4.4. The
substitution of (A.4.16) in M = PXQ′ leads to (A.4.11). ⎕

Matrix M in Theorem A.4.5 can be replaced by

M ¼ FA0; ðA:4:17Þ

with F and A being n � m and p � m matrices, respectively. This replacement gives
the formulation of principal component analysis in Chap. 5.

Theorem A.4.5 is referred to as Eckart and Young’s (1936) theorem in some of
the literature. The theorem has been proved in another manner by Takane (2014).

A.4.4 Modified Reduced Rank Approximation

In this section, we treat the reduced rank approximation problems for generalized
canonical correlation analysis (GCCA) and multiple correspondence analysis
(MCA). In this and the following sections, we use

rankðPQRÞ ¼ rankðQÞ if P and R are nonsingular ðA:4:18Þ

(e.g., Lütkepohl, 1996).

Appendices 403



Theorem A.4.6. GCCA Problems
For a given n � p block matrix X = [X1, …, XJ] with its jth block Xj (n �

pj), we consider the following problem:

Minimize gðF;CÞ ¼
XJ
j¼1

F� XjCj

�� ��2over F and C

s.t:
1
n
F0F ¼ Im with m� r ¼ rankðXÞ:

ðA:4:19Þ

Here,C ¼
C1

..

.

CJ

2
64

3
75 is the p�m block matrix with its jth block,Cj, being pj�m.

Problem (A.4.19) is equivalent to

Minimize f ðF;CÞ ¼ XD�1=2
X � 1

n
FC0D1=2

X

����
����
2

over F and C

s.t:
1
n
F0F ¼ Im; with m� r ¼ rankðXÞ:

ðA:4:20Þ

Here, DX ¼
X0

1X1

. .
.

X0
JXJ

2
64

3
75 is the p � p nonsingular block diagonal

matrix.

Those problems are solved through the SVD of XD�1=2
X , defined as

XD�1=2
X ¼ NUM0; ðA:4:21Þ

with N′N = M′M = Ir and U a diagonal matrix whose diagonal elements are
arranged in descending order. The minimization in (A.4.19) and (A.4.20) is
attained for

F ¼ ffiffiffi
n

p
NmT and C ¼ ffiffiffi

n
p

D�1=2
X MmUmT; ðA:4:22Þ

where Mm and Nm contain the first m columns of M and N, respectively, Um

is the first m � m diagonal block of U, and T is an m � m orthonormal
matrix.
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Proof The loss function in (A.4.19) can be expanded as

gðF;CÞ ¼ JtrF0F� 2trF0XJ
j¼1

X;Cj þ tr
XJ
j¼1

C0
jX

0
jX;Cj

¼ nmJ � 2trF0XCþ trC0DxC;

ðA:4:23Þ

and the function in (A.4.20) multiplied by n is expanded as

n� f ðF;CÞ ¼ ntrXD�1
X X0 � 2trD�1=2

X X0FC0D1=2
X þ 1

n
trD1=2

X CF0FC0D1=2
X

¼ ntrXD�1
X X0 � 2trX0FC0 þ trC0DXC;

ðA:4:24Þ

where the constraint n�1F0F ¼ Im has been used. Since the parts relevant to F and
C in (A.4.23) are the same as those in (A.4.24), the problems (A.4.19) and (A.4.20)
with the same constraints are equivalent.

Because of (A.4.18), r ¼ rank Xð Þ ¼ rankðXD�1=2
X Þ, while rankðn�1FC0D1=2

X Þ�
m � r. Thus, problem (A.4.20) is the reduced rank approximation of XD�1=2

X by

n�1F0C0D1=2
X as the approximation ofX byM in Theorem A.4.5; the minimization in

(A.4.20) is attained for

1
n
FC0D1=2

X ¼ NmUmM0
m: ðA:4:25Þ

Matrices F and C in (A.4.22) satisfy (A.4.25) and the constraints in (A.4.19) and
(A.4.20). ⎕

The constraint of F being centered is added to the above problems in those that
follow:

Theorem A.4.7. MCA Problems
Let us suppose that an n � K block matrix G = [G1, …, GJ] is given, with

its jth block Gj (n � Kj) defined as (14.33) with (14.34). For G, we consider
the following problem:

Minimize gðF;CÞ ¼
XJ
j¼1

F�GjCj

�� ��2 over F and C

s.t:
1
n
F0F ¼ Im; JF ¼ F; and m� r ¼ rankðJGÞ:

ðA:4:26Þ
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Here, J is defined as (2.10) and C ¼
C1

..

.

CJ

2
64

3
75 is the K � m block matrix with

its jth block, Cj (Kj � m).
Problem (A.4.26) is equivalent to

Minimize f ðF;CÞ ¼ JGDG
�1=2 � 1

n
FC0D1=2

G

����
����
2

over F and C

s.t:
1
n
F0F ¼ Im; JF ¼ F; and m� r ¼ rankðJGÞ:

ðA:4:27Þ

Here, DG ¼
G0

1G1

. .
.

G0
JGJ

2
64

3
75 is the K � K nonsingular block diag-

onal matrix, which is a simply diagonal matrix as explained Sect. 14.5.

Those problems are solved through the SVD of JGD�1=2
G , defined as

JGD�1=2
G ¼ SHP0; ðA:4:28Þ

with S′S = P′P = Ir and H a diagonal matrix whose diagonal elements are
arranged in descending order. The minimization in (A.4.26) and (A.4.27) is
attained for

F ¼ ffiffiffi
n

p
SmT and C ¼ ffiffiffi

n
p

D�1=2
G PmHmT; ðA:4:29Þ

where Sm and Pm contain the first m columns of S and P, respectively, Hm is
the first m � m diagonal block of H, and T is an m � m orthonormal matrix.

Proof The loss function in (A.4.26) can be expanded as

gðF;CÞ ¼ JtrF0F� 2trF0XJ
j¼1

GjCj þ tr
XJ
j¼1

C0
jG

0
jGjCj

¼ nmJ � 2trF0JGCþ trC0DGC;

ðA:4:30Þ

where we have used the constraints n�1F0F ¼ Im and JF = F. On the other hand,
(A.4.27) multiplied by n is expanded as
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n� f ðF;CÞ ¼ ntrJGD�1
G GJ0 � 2trD�1=2

G G0JFC0D1=2
G

þ 1
n
trD1=2

G CF0FC0D1=2
G D1=2

G

¼ ntrJGD�1
G GJ0 � 2trG0JFC0 þ trC0DGC;

ðA:4:31Þ

where the constraint n�1F0F ¼ Im has been used. Since the parts relevant to F and
C in (A.4.30) are the same as those in (A.4.31), problems (A.4.26) and (A.4.27)
with the same constraints are equivalent.

Because of (A.4.18), r ¼ rank JGð Þ ¼ rank JGD�1=2
G


 �
, while rankðn�1F0C0D1=2

G Þ
�m� r. Thus, problem (A.4.27) is the reduced rank approximation of JGD�1=2

G by

n�1FC0D1=2
G as the approximation of X byM in Theorem A.4.5; the minimization in

(A.4.27) is attained for

1
n
FC0D1=2

G ¼ SmHmP0
m: ðA:4:32Þ

The F and C in (A.4.29) satisfy (A.4.32) and the constraints in (A.4.26) and
(A.4.27), where JF = F follows from the fact that F ¼ ffiffiffi

n
p

SmT, in (A.4.29), can be

rewritten as F ¼ ffiffiffi
n

p
SHP0PmH

�1
m T =

ffiffiffi
n

p
JGD�1=2

G PmH
�1
m T with (2.12). ⎕

The GCCA and MCA solutions (A.4.22) and (A.4.29) show that they have
rotational indeterminacy. This can be avoided, if the constraint

C0DGC being a diagonal matrix whose

diagonal elements are arranged in descending order
ðA:4:33Þ

is added to (A.4.26) and (A.4.27) for the MCA solution. Since (A.4.29) leads to
C0DGC ¼ T0H2

mT, (A.4.33) requires T = Im. The indeterminacy of the GCCA
solution can also be avoided, by adding the constraint (A.4.33) with DG replaced by
DX to (A.4.19) and (A.4.20), so that the GCCA solution is unique. Then, T in
(A.4.22) is fixed to Im.

A.4.5 Modified Versions of Maximizing Trace Functions

In A.4.2, the parameter matrix C was constrained as C′C being the identity matrix.
In this section, C is constrained rather as C′VC being the identity matrix with V a
given positive definite matrix (Note 8.2), and the symmetric square roots V1/2 and
V−1/2 are used that satisfy V1/2V1/2 = V and V−1/2V−1/2 = V−1, respectively. How to
obtain V1/2 and V−1/2 from V is described in the following section.
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Theorem A.4.8.
Let us define matrices as V11 (p1 � p1), V22 (p2 � p2), and V12 (p1 � p2),

with V11 and V22 symmetric and positive definite. We consider the following
problem:

Maximize trC0
1V12C2 over C1 p1 � mð Þ and C2 p2 � mð Þ

s:t:C0
1V11C1 ¼ C0

2V22C2 ¼ Im with m� r ¼ rank V12ð Þ: ðA:4:34Þ

It is solved through the SVD of V11
−1/2V12V22

−1/2 defined as

V�1=2
11 V12V

�1=2
22 ¼ HXR0; ðA:4:35Þ

with H′H = R′R = Ir and X the diagonal matrix whose diagonal elements are
arranged in descending order. The maximization in (A.4.34) is attained for

C1 ¼ V�1=2
11 HmT and C2 ¼ V�1=2

22 RmT; ðA:4:36Þ

where Hm and Rm contain the first m columns of H and those of R,
respectively, and T is an m � m orthonormal matrix.

Proof By defining A, B, and Y as

A ¼ V1=2
11 C1; B ¼ V1=2

22 C2; ðA:4:37Þ

Y ¼ V�1=2
11 V12V

�1=2
22 ; ðA:4:38Þ

(A.4.34) can be transformed into the equivalent problem:

Maximize trA0YB over Aðp1 � mÞ and Bðp2 � mÞ
s.t.A0A ¼ B0B ¼ Im with m� r ¼ rank Yð Þ; ðA:4:39Þ

where we have used r = rank(V12) = rank(Y), following from (A.4.18). Since
problem (A.4.39) is equivalent to (A.4.6) in Theorem A.4.3, the solution for
(A.4.39) is given by

A ¼ HmT and B ¼ RmT; ðA:4:40Þ

when the SVD of (A.4.38) is defined as (A.4.35). Using (A.4.37) in (A.4.40), we
have (A.4.36). ⎕
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A related theorem is given next:

Theorem A.4.9.
Let V be a p � p symmetric positive definite matrix and M be a p �

p symmetric and nonnegative definite matrix with its rank r. We consider the
following problem:

Maximize trB0MB over Bðp� mÞs.t:B0VB ¼ Imwith m� r ¼ rank Mð Þ:
ðA:4:41Þ

This is solved through the EVD of V−1/2MV−1/2 defined as

V�1=2MV�1=2 ¼ QH2Q0; ðA:4:42Þ

with Q′Q = Ir and H the diagonal matrix whose diagonal elements are
arranged in descending order. The maximization in (A.4.41) is attained for

B ¼ V�1=2QmT; ðA:4:43Þ

where Qm contains the first m columns of Q, and T is an m � m orthonormal
matrix.

Proof By defining W and Y as

W ¼ V1=2B; ðA:4:44Þ

Y ¼ V�1=2MV�1=2; ðA:4:45Þ

(A.4.41) can be transformed into the equivalent problem:

Maximize trW0YW over W ðp� mÞ s.t:W0W ¼ Im with m� r ¼ rank Yð Þ;
ðA:4:46Þ

where we have used r = rank(M) = rank(Y), following from (A.4.18). Since
(A.4.46) is equivalent to (A.4.8) in Theorem A.4.4, the solution for (A.4.46) is
given by

W ¼ QmT; ðA:4:47Þ

when the EVD of (A.4.45) is defined as (A.4.42). Using (A.4.44) in (A.4.47), we
have (A.4.43). ⎕

The solution of (A.4.36) is found to have rotational indeterminacy. Also, it is
possessed by (A.4.43). This indeterminacy is avoided by adding the following
constraint to (A.4.41): B′MB is a diagonal matrix whose diagonal elements are
arranged in descending order. Then, the solution is restricted to B ¼ V�1=2Qm. This
solution has been used for the canonical discriminant analysis in Chap. 15.
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A.4.6 Obtaining Symmetric Square Roots of Matrices

Let V = UU′ be a p � p positive definite symmetric matrix. As in (A.3.13), the SVD
of V = UU′ can be defined as V = CD2C′ with C′C = CC′ = Ip and D2 a p �
p diagonal matrix. The p diagonal elements of D2 are all positive with rank(V) = p,
since any positive definite matrix is nonsingular as written in Note 8.2.

The symmetric square root of V is given by

V1=2 ¼ CDC0; ðA:4:48Þ
with each diagonal element of D being the square root of the corresponding one of
D2. We can easily verify that V1=2V1=2 ¼ CDC0CDC0 ¼ CDDC0 ¼ CD2C0 ¼ V.

The inverse matrix of V is expressed as V−1 = CD−2C′. Its symmetric square root
is given by

V�1=2 ¼ CD�1C0; ðA:4:49Þ

with each diagonal element of D−1 being the reciprocal of the square root of the
corresponding element in D2. We can easily verify that V�1=2V�1=2 ¼
CD�1C0CD�1C0 ¼ CD�1D�1 ¼ CD�2C0 ¼ V�1 .

Next, we consider the symmetric square root of the block diagonal matrix

D ¼
V1

. .
.

VJ

2
64

3
75 ¼

U0
1U1

. .
.

U0
JUJ

2
64

3
75, which is symmetric and positive

definite. These properties imply that the diagonal blocks Vj = Uj′Uj (pj � pj) (j = 1,
…, J) are also symmetric and positive definite. Thus, the SVD of Vj can be defined
as Vj ¼ CjD

2
j C

0
j, with Cj′Cj = CjCj′ = Ipj and D

2
j the pj � pj diagonal matrix whose pj

diagonal elements are positive.
The symmetric square root of D is given by

D1=2 ¼
V1=2

1

. .
.

V1=2
J

2
64

3
75 ¼

C1D1C
0
1

. .
.

CJDJC
0
J

2
64

3
75 ðA:4:50Þ

and the root of D−1 is given by

D1=2 ¼
V�1=2

1

. .
.

V�1=2
J

2
64

3
75 ¼

C1D
�1
1 C0

1

. .
.

CJD
�1
J C0

J

2
64

3
75: ðA:4:51Þ
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We can verify D1=2D1=2 ¼ D and D�1=2D�1=2 ¼ D�1 from the fact that
CjDjC

0
jCjDjC

0
j ¼ CjD

2
j C

0
j ¼ Vj and CjD

�1
j C0

jCjD
�1
j C0

j ¼ CjD
�2
j C0

j ¼ V�1
j .

Since DG ¼
G0

1G1

. .
.

G0
JGJ

2
64

3
75 in Theorem A.4.7 is diagonal, its square

root D1=2
G is simply the diagonal matrix whose diagonal elements are the square

roots of the corresponding ones in DG. On the other hand, the root of D�1
G is given

by D�1=2
G , whose diagonal elements are the reciprocals of the square roots of the

corresponding elements in DG.
For the p � p symmetric positive definite matrix V = UU′ which appeared first in

this section, U is called the square root of V. It is given by U = CD, using
V ¼ CD2C0. The root U can also be used for solving the problems in the previous
appendices. However, we must be careful about whether U or U′ is used in solu-
tions, as U = CD is not symmetric, which differs from the symmetric matrices in
(A.4.48–A.4.51). Therefore, we chose to use the symmetric roots in this book.

A.5 Normal Maximum Likelihood Estimates

We derive the maximum likelihoods of mean vectors and covariance matrices for
the multivariate normal distributions, which are used in Chaps. 8 and 15.

A.5.1 Estimates of Means and Covariances

Log likelihood (8.20) is presented again here:

lðl;RÞ ¼ � n
2
log Rj j � 1

2

Xn
l¼1

xi � lð Þ0R�1 xi � lð Þ; ðA:5:1Þ

In this appendix, it is shown that the maximum likelihood estimates (MLE) of l and
R maximizing (A.5.1) are given by (8.21) and (8.22), i.e.,

l̂ ¼ x ¼ 1
n

Xn
i¼1

xi; ðA:5:2Þ

R̂ ¼ V ¼ 1
n

Xn
i¼1

ðxi � xÞðxi � xÞ0; ðA:5:3Þ

respectively, on the supposition of R being positive definite.
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For proving that (A.5.2) is the MLE of l, we can use an extension of the
decomposition of the sum of squares treated in Appendix A.2.1, as follows: In the
right-hand side of (A.5.1), only the second term is relevant to l; thus, its maximum
likelihood estimate is the l minimizing that term multiplied by −2:

Xn
i¼1

ðxi � lÞ0R�1ðxi � lÞ ¼
Xn
i¼1

ðxi � xþ x� lÞ0R�1ðxi � xþ x� lÞ

¼
Xn
i¼1

ðxi � xÞ0R�1ðxi � xÞþ nðx� lÞ0R�1ðx� lÞþ 2c:

ðA:5:4Þ
Here, c is found to be zero as

c ¼
Xn
i¼1

ðxi � xÞ0R�1ðx� lÞ

¼
Xn
i¼1

x0iR�1x�
Xn
i¼1

x0iR�1l�
Xn
i¼1

x0R�1xþ
Xn
i¼1

x0R�1l

¼ nx0R�1x� nx0R�1l� nx0R�1xþ nx0R�1l ¼ 0:

ðA:5:5Þ

This implies that the term relevant to l in (A.5.4) is only nðx� lÞ0R�1ðx� lÞ,
which attains the lower limit, zero, for (A.5.2); it gives the MLE for l.

Substituting (A.5.2) in (A.5.1), it is rewritten as

lðRÞ ¼ � n
2
log Rj j � 1

2

Xn
i¼1

xi � xð Þ0R�1 xi � xð Þ

¼ � n
2
log Rj j � n

2
trR�1 1

n

Xn
i¼1

xi � xð Þ xi � xð Þ0
( )

¼ � n
2
log Rj j � n

2
trR�1V ¼ � n

2
log Rj j þ trR�1V
� 

:

ðA:5:6Þ

This shows that our remaining task is to minimize log jRj þ trR�1V ¼ trR�1V�
log R�1
�� �� over R, which is equivalent to minimizing

gðRÞ ¼ trR�1V� log R�1
�� ��� log jVj ¼ trR�1V� log R�1V

�� ��
¼ trV1=2R�1V1=2 � log V1=2R�1V1=2

�� ��: ðA:5:7Þ

where we have used (8.11).
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From Note 8.2, we can express R−1 as R−1 = UU′. Let the SVD of U0V1=2 be
defined as U0V1=2 ¼ NXC0, which implies

V1=2R�1V1=2 ¼ CX2C0 ðA:5:8Þ

with CC′ = C′C = Ip and X
2 a diagonal matrix whose jth diagonal element is xj > 0.

Using (A.5.8) in (A.5.7), this can be rewritten as

gðRÞ ¼ trX2 � log X2
�� ��� Cj j � C0j j� 

¼ trX2 � log X2
�� �� ¼Xp

j¼1

xj �
Xp
j¼1

logxj ¼
Xp
j¼1

h xj
� 

;
ðA:5:70Þ

with h(xj) =xj – log xj. Here, we have used the fact that C0 ¼ C�1 and (8.12) leads
to jCj � jC0j ¼ 1. It is known that the differentiation of h(xj) with respect to xj is
given by h0ðxjÞ ¼ dhðxjÞ=dxj ¼ 1� 1=xj, which is found to satisfy

h0 xj
� 

\0 for 0\xj\1;

h0 xj
�  ¼ 0 for xj ¼ 1;

h0 xj
� 

[ 0 for xj [ 1:

ðA:5:9Þ

This shows that (A.5.7′) is minimized for xj ¼ 1ðj ¼ 1; . . .; pÞ, i.e., X2 ¼ Ip. Using
this, (A.5.8) is rewritten as

V1=2R�1V1=2 ¼ CC0 ¼ Ip; ðA:5:10Þ

which leads to (A.5.3).

A.5.2 Multiple Groups with Homogeneous Covariances

Let us consider an n � p block data matrix X =

X1

..

.

XK

2
64

3
75, whose kth block is an nk �

p matrix Xk (k = 1, …, K) with its ith row being xki′. We suppose xki * Np(lk, R),
i.e., that the probability density of xki observed is given by

Pðxki lk;RÞj ¼ 1

ð2pÞp=2 Rj j1=2
exp � 1

2
ðxki � lkÞ0R�1ðxki � lkÞ

� �
: ðA:5:11Þ
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Here, it should be noted that lk has subscript k, but R does not, which implies that
the mean vectors of the distributions differ across K blocks, while their covariance
matrices are homogeneous across them.

We further suppose the rows of X to be mutually independently observed. Then,
the likelihood for X is expressed as the product of (A.5.11) over k = 1, …, K, and
i = 1, …, nk:

PðX l1; . . .; lK ;RÞj ¼
YK
k¼1

Ynk
i¼1

1

ð2pÞp=2 Rj j1=2
(

exp � 1
2
ðxki � lkÞ0R�1ðxki � lkÞ

� ��

¼ 1

ð2pÞnp=2 Rj jn=2
exp � 1

2

XK
k¼1

Xnk
i¼1

ðxki � lkÞ0R�1ðxki � lkÞ
( )

:

ðA:5:12Þ

This leads to the log likelihood

lðl1; . . .;lK ;RÞ ¼ � n
2
log Rj j � 1

2

XK
k¼1

Xnk
i¼1

ðxki � lkÞ0R�1ðxki � lkÞ; ðA:5:13Þ

where the terms irrelevant to l1, …, lK, and R have been omitted. Log likelihood
(A.5.13) is maximized for

l̂k ¼ xk ¼ 1
nk

Xnk
i¼1

xki; ðA:5:14Þ

R̂ ¼ W ¼ 1
n

XK
k¼1

Xnk
i¼1

ðxki � xkÞðxki � xkÞ0; ðA:5:15Þ

which is proved in the following paragraphs.
Let us rewrite (A.5.13) as � 2=nð Þ log Rj j � 2

PK
k¼1 mðlkÞ with

mðlkÞ ¼
Xnk
i¼1

ðxki � lkÞ0R�1ðxki � lkÞ

¼
Xnk
i¼1

ðxki � xkÞ0R�1ðxki � xkÞþ nðxk � lkÞ0R�1ðxk � lkÞ:
ðA:5:16Þ

Only this function is relevant to lk in (A.5.13), and the right side of (A.5.16) can be
derived as (A.5.4) and (A.5.5) are derived. This fact shows that (A.5.14) is MLE
for lk.
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Substituting (A.5.14) into lk in (A.5.13), we can rewrite it as

log lðRÞ ¼ � n
2
log jRj � 1

2

XK
k¼1

Xm
l¼1

xh � xkð Þ0R�1 xkl � xkð Þ

¼ � n
2
log jRj � n

2
trR�1W ¼ � n

2
log jRj þ trR�1W
� 

;

ðA:5:17Þ

which is equivalent to (A.5.6) if W is replaced by V. Thus, MLE of R is given by
(A.5.15), i.e., (A.5.3) with V replaced by W.

A.6 Iterative Algorithms

In this appendix, iterative algorithms used in statistical data analysis are first out-
lined, followed by an illustration of a gradient algorithm. Though the descriptions in
this book are very elementary, more advanced and exhaustive descriptions of a
variety of iterative algorithms used in statistical computing are found in Lange
(2010). Further, matrix-intensive descriptions of the algorithms are found in
Hansen, Pereyra, and Scherer (2013) and Absil, Mahony, and Sepulchre (2008).

A.6.1 General Methodology

Let us use /(h) for a function of parameter vector h = [h1, …, hq]′ to be minimized
and ĥ for the solution, i.e., the vector h minimizing /(h). For log likelihood l(h), we
can set /(h) = −l(h) so that the maximum likelihood method for maximizing l(h) is
equivalent to minimizing /(h). The following stories hold for any optimization
including least squares and maximum likelihood methods.

If the solution ĥ is not explicitly given, we must find ĥ by using an iterative
algorithm in which the update of h is iterated. By expressing the vector h at the tth
iteration as h[t], any iterative algorithm can be described with the following steps:

Note A.6.1. General Expression of Iterative Algorithm

Step 1. Set h to an initial value vector h[t] with t = 0.

Step 2. Update h[t] to h[t+1] so that /(h[t+1]) � /(h[t]).

Step 3. Regard h[t+1] as ĥ if convergence is reached; otherwise, increase
t by one and go back to Step 2.
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Here, the convergence in Step 3 can be defined as /(h[t]) − /(h[t+1]), h t½ � � h tþ 1½ �
�� ��,

or the maximum of h t½ �
k � h tþ 1½ �

k over k is small enough to be ignored, with hk
[t] the

kth element of h[t].
There are various types of iterative algorithms. They can be roughly classified

into three groups: parameter partition, auxiliary function, and gradient algorithms.
They differ with respect to the way in which the update in Step 2 in Note A.6.1 is
performed. We can also combine the three groups of algorithms or two of the three
to form a whole algorithm.

In the parameter partition algorithms, the elements of h are partitioned into
subsets as h′ = [h1′, …, hs′, …, hS′] with the sth subset vector hs′ at the tth iteration
expressed as h½t�s . Then, Step 2 in Note A.6.1 is divided into the substeps, in each of
which /(h) is minimized over only hs, with the other parameter sets kept fixed, and
the resulting hs gives h

½tþ 1�
s . In the most simple case, with S = 2 and h = [h1, h2],

Step 2 in Note A.6.1 consists of the following substeps:

Step 2:1 Minimize /(h1,h2) over h1 with h2 fixed at h½t�2 and the resulting h1
(that minimizes /(h1, h

½t�
2 )) gives h

½tþ 1�
1 .

Step 2:2. Minimize /(h1, h2) over h2 with h1 fixed at h½tþ 1�
1 and the resulting h2

(that minimizes /(h½tþ 1�
1 , h2)) gives h

½tþ 1�
2 .

This approach is useful for cases in which it is easy to minimize /(h) over a subset
of parameters with the other parameters being fixed. The parameter partition
algorithms are also referred to as coordinate descending algorithms as described in
Chap. 21. In particular, such algorithms for least squares problems are known as
alternating least squares (ALS) algorithms (e.g., Young, 1981). Their examples
have been shown in Chaps. 7, 18, 20, and 21.

In auxiliary function algorithms, a different function η(h) is used, which satisfies
/(h[t]) = η(h[t]) � η(h[t+1]) � /(h[t+1]) with η(h) being easier to handle than /(h).
Here, the update of h[t] leading to η(h[t]) � η(h[t+1]) implies /(h[t]) � /(h[t+1]).
One of the auxiliary function algorithms is the EM algorithm originally presented
by Dempster, Laird, and Rubin (1977). Its principle is introduced in A.8.5, and the
EM algorithm specially designed for factor analysis is detailed in A.9.
A book-length description of the EM algorithm is found in McLachlan and
Krishnan (2008). The auxiliary function algorithm also includes the majorization
algorithm introduced in Chap. 16. Majorization algorithms useful for some mul-
tivariate analysis procedures can be found in Kiers (2002).

In gradient algorithms, the differential of /(h) with respect to h is used. This
type of algorithm is illustrated in the remaining sections.
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A.6.2 Gradient Algorithm for Single Parameter Cases

For introducing the gradient algorithms, we consider an example of /(h) to be
minimized:

/ðhÞ ¼ 16h4 � 192h3 þ 880h2 � 1824hþ 1444; ðA:6:1Þ

which is a function of a single parameter h = [h]. Figure A.6 shows /(h) values
against h, where (A.6.1) is found to attain its minimum at h = 3, i.e., the solution ĥ =
3. However, we suppose that only formula (A.6.1) is given and ĥ is unknown. Then,
a gradient algorithm can be used, in which the derivative of /(h) with respect to h,

d/ðhÞ
dh

¼ 16� 4h3 � 192� 3h2 þ 880� 2h� 1824

¼ 64h3 � 576h2 þ 1760h� 1824; ðA:6:2Þ

is noted. The value of (A.6.2) with h set to a specific value, h[t], that is,

r/ h½t�Þ
�  ¼ 64h3½t� � 576h2½t� þ 1760h½t� � 1824 ðA:6:3Þ

is called the gradient of /(h) at h = h[t].
For example,

if h½t� ¼ 2; then r/ð2Þblank;¼ 64� 23 � 576� 22 þ 1760� 2� 1824
¼ �96;

ðA:6:4Þ

If h½t� ¼ 3:8; then r/ð3:8Þ ¼ 64� 3:83 � 576� 3:82 þ 1760� 3:8� 1824
¼ 58:4:

ðA:6:5Þ
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Fig. A.6 Function /(h)
against h with arrows
expressing the gradients of
/(h) and a dotted line for
illustrating the convexity of
/(h)
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These values show the directions of the tangential lines represented as the arrows in
Fig. A.6. Let us note that h[t] = 2, giving the negative value (=−96) as (A.6.4), is
less than the solution ĥ (=3), while h[t] = 3.8, leading to the positive value (A.6.5), is
greater than ĥ. These relationships of h[t] to the solution ĥ generally hold for
(A.6.3); ∇/(ht) is negative when h[t] < ĥ; thus, h[t] should be updated to a larger

value so as to approach the solution ĥ, while ∇/(h[t]) is positive for h[t] > ĥ; thus, h[t]
is to be updated to a smaller value to approach ĥ. This implies that h[t] is to be
updated in the direction of −1 � ∇(h[t]), i.e., in the opposite direction of the sign of
∇/(h[t]). This update is formally expressed as

h½tþ 1� ¼ h½t� � sr/ h½t�
� 

; ðA:6:6Þ

with s a suitable positive value. The resulting h[t+1] can be closer to ĥ than h[t], with
/(h[t+1]) � /(h[t]), if s is suitably chosen.

We find that whether update (A.6.6) is successful or not depends on which s is
chosen. One unsuccessful example is if s = 1 is chosen for h[t] = 2. Then, (A.6.4)
and (A.6.6) show h[t+1] = h[t] − s∇/(h[t]) = 2 − (−96) = 98; the updated h[t+1] far
exceeds ĥ and /(h[t+1]) > /(h[t]). However, such cases can be avoided by choosing
s with the following steps:

Step 2.1. Set s to 1.
Step 2.2. Obtain h[t+1] with (A.6.6).
Step 2.3. Finish if /(h[t+1]) � /(h[t]); otherwise, set s := s/2 and go back to

Step 2.2.

Here, “s := s/2” stands for reduce the s value to half; s is reduced as 1, 1/2, 1/22,
1/23, … . When h[t] = 2, returning to Step 2.2 seven times leads to h[t+1] = h[t] −

s∇/(h[t]) = 2 − (1/27) � 98 = 2 − 1/128 � (−96) = 2.75, which is close to ĥ.
The three steps in Sect. A.6.1, with Step 2 in Note A.6.1 replaced by the above

Steps 2.1, 2.2, and 2.3, allow us to find ĥ if /(h) is convex. Here, the adjective
“convex”, roughly speaking, stands for the fact that the curve of /(h) is not a
zigzag. The exact definition, with multiple parameters considered, is as follows:
/(h) is said to be convex,

/ ah1 þð1� aÞh2ð Þ� a/ h1ð Þþ ð1� aÞ/ h2ð Þ; ðA:6:7Þ

for every pair of q � 1 vectors h1 and h2, and every a taking a value within the
range from 0 to 1. This implies that, as a dotted line in Fig. A.6, the line connecting
the two points of /(h) is not lower than /(h).

Although more efficient procedures than the one in the above Step 2.3 have been
developed for choosing s (e.g., Boyed & Vandenberghe, 2004), they are beyond the
scope in this book.
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A.6.3 Gradient Algorithm for Multiple Parameter Cases

For multiple parameter cases with h = [h1, …, hq]′, update formula (A.6.6) is
extended as

h½tþ 1� ¼ h½t� � s$/ h½t�
� 

; ðA:6:8Þ

with ∇/(h[t]) the q � 1 gradient vector, which is the vector ∂/(h)/∂h at h = h[t].
Here, ∂/(h)/∂h denotes the partial derivative of /(h) with respect to h. That is,
∂/(h)/∂h is the q � 1 vector, and its kth element is the derivative of /(h) with
respect to hk (the kth element of h), where /(h) is regarded as a function of only hk
with /(h) = /(hk) and hl (l 6¼ k) treated as a fixed constant. For example, when q = 3
and

/ðhÞ ¼ 3h21 þ 6h22 � 4h1h3 þ 5h2h3 � 7h2 þ 9h3; ðA:6:9Þ

its partial derivative is

@/ðhÞ
@h

¼
d/ðh1Þ=dh1
d/ðh2Þ=dh2
d/ðh3Þ=dh3

2
4

3
5 ¼

6h1 � 4h3
12h2 þ 5h3 � 7
�4h1 þ 5h2 þ 9

2
4

3
5: ðA:6:10Þ

Note its second element. There, (A.6.9) has been regarded as a function of only h2,
i.e., /(h2) = (6)h2

2 + (5h3 − 7)h2 + (3h1
2 − 4h1h3 + 9h3), with the parenthesized terms

being treated as fixed constants.
In multiple parameter cases, the three steps in the last section are simply replaced

by their vector versions:

Step 2:1. Set s to 1.
Step 2:2. Obtain h[t+1] with (A.6.8).
Step 2:3. Finish if /(h[t+1]) � /(h[t]); otherwise, set s := s/2 and go back to

Step 2.2.

The three steps in Note A.6.1, with Step 2 in Note A.6.1 replaced by the above
steps, allow us to find ĥ, if /(h) is convex with (A.6.7). The algorithm with (A.6.8)
is illustrated in Fig. A.7.

Though we have only introduced a procedure using the (first) derivative, more
effective procedures, including one in which first and second derivatives are used,
have been developed, which are beyond the scope of this book. Advanced theories
for gradient and related algorithms are detailed in Absil, Mahony, and Sepulchre
(2008), and Boyed and Vandenberghe (2004). One republication of a classical book
dealing with such theories is Ortega and Rheinboldt (2000).
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A.7 Scale Invariance of Covariance Structure Analysis

The procedures treated in Chaps. 9–12 can be generally referred to as covariance
structure analysis (CSA), as explained in Sect. 9.4 with Note 9.2. These procedures
have the property that the value of the objective function for the unstandardized
solution is equivalent to the value for the corresponding standardized solution. This
property is called scale invariance: CSA is said to be scale invariant. In this
Appendix, the invariance is defined exactly, and we show that path analysis treated
in Chap. 9 and factor analysis in Chaps. 10 and 12 are scale invariant. Furthermore,
it is also shown that their unstandardized solutions can be straightforwardly
transformed into the corresponding standardized ones. The scale invariance of
structural equation modeling (Chap. 11) is too involved to be treated in this book.

A.7.1 Definition of Scale Invariance

Let X be an n-individuals � p-variables data matrix centered as X = JX with
J ¼ In � n�11n10n. As described in Sect. 9.4, CSA for X is formulated as maxi-
mizing (9.15), i.e.,

l�ðRjVÞ ¼ n
2
log R�1V
�� ��� n

2
trR�1V ðA:7:1Þ

over the parameters in the covariance structure (i.e., model-based covariance
matrix) R (p � p) subject to constraints for R. Here, “∣V” has been added to l*(R), in

[t 1][t][t+1] 

s[t 1] ( [t 1]) s[t] ( [t]) 

ˆ

Fig. A.7 Illustration of h[t]
approaching the solution ĥ
with an increase in t, where
the horizontal axis represents
the q-dimensional space for h
= [h1, …, hq]′ and subscript
t is attached to s, as the
s value chosen for t differs
from the one for t − 1
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order to indicate that the log likelihood (A.7.1) is defined for a given inter-variable
sample covariance matrix V = n−1X′X. A set of the resulting parameter estimates is
referred to as the unstandardized solution.

Now, let us consider performing CSA for the transformed data matrix

Z ¼ XD�1 ðA:7:2Þ
with D a p � p diagonal matrix whose diagonal elements d1, …, dp are all positive.
The inter-variable covariance matrix for (A.7.2) is expressed as

R ¼ 1
n
Z0Z ¼ 1

n
D�1X0XD�1 ¼ D�1VD�1: ðA:7:3Þ

Thus, in CSA for Z, the log likelihood is defined by substituting R into V in
(A.7.1):

l�ð~RjRÞ ¼ n
2
log ~R�1R
�� ��� n

2
tr~R�1R; ðA:7:4Þ

This maximization over the parameters in the covariance structure ~R (p � p) under
the constraints for ~R provides the CSA solution for (A.7.2) or (A.7.3). Here, we
have attached the tilde symbol (*) to R, as the matrix ~R maximizing (A.7.4) differs
from the matrix R maximizing (A.7.1).

The following theorem can be used to show that (A.7.1) equals (A.7.4) under
certain conditions:

Theorem A.7.1.
Let @(M) denote a set of allowable values for the elements of a matrix

M. If

@ D�1RD�1
�  ¼ @ðeRÞ ðA:7:5Þ

holds true, then (A.7.1) is equivalent to (A.7.4):

l�ðRjVÞ ¼ l�ðeRjRÞ; ðA:7:6Þ

which can be rewritten as

l�ðRjVÞ ¼ l� D�1RD�1jD�1VD�1� 
: ðA:7:7Þ

Scale invariance is defined by (A.7.7): An analysis procedure whose objective
function satisfies (A.7.7) is said to be scale invariant.
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Proof Using (4.16), (8.11), and V = DRD that follows from (A.7.3), (A.7.1) can be
rewritten as

l�ðRjVÞ ¼ n
2
log R�1DRD
�� ��� n

2
trR�1DRD

¼ n
2
log DR�1D

� 
R

�� ��� n
2
tr DR�1D
� 

R

¼ n
2
log D�1RD�1� �1

R
��� ���� n

2
tr D�1RD�1� �1

R:

ðA:7:8Þ

Comparing this equation with (A.7.4), we find that if (A.7.5) holds true, (A.7.1) or
(A.7.8) is equivalent to (A.7.4) with

~R ¼ D�1RD�1: ðA:7:9Þ

By substituting (A.7.3) and (A.7.9) in (A.7.6), this can be rewritten as (A.7.7). ⎕

The CSA solution for (A.7.2) is called the standardized solution, when (A.7.2)
contains the standard scores of X; that is, the jth diagonal elements of D are the
standard deviation of the jth variable in centered X. Thus, scale invariance (A.7.7)
implies that the likelihood value for the unstandardized solution equals that for the
corresponding standardized one.

If (A.7.5) holds, we have (A.7.9). This and (A.7.3) lead to

tr~R�1R ¼ tr D�1RD�1
� �1

D�1VD�1 ¼ trDR�1DD�1VD�1 ¼ trR�1V

and

1� trðR�1V� IpÞ2
trðR�1VÞ2 ¼ 1� trð~R�1

R� IpÞ2

trð~R�1
RÞ2

: ðA:7:10Þ

This equality implies that the GFI index (9.18) shows the same value between
unstandardized and standardized solutions, if (A.7.5) holds.

The above theorem shows that the procedures in CSA are scale invariant under
the condition (A.7.5). In the next two sections, it is shown that (A.7.5) holds for the
procedures treated in Chaps. 9, 10, and 12.

A.7.2 Scale Invariance of Factor Analysis

To show that (A.7.5) holds true in confirmatory factor analysis (CFA) (Chap. 10),
we start by considering the constraints imposed on the covariance structure R =
(rjk). Among them, the main constraint is (10.10), i.e.,
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R ¼ AUA0 þW: ðA:7:11Þ

Further, A = (ajk), U, and W on the right side are constrained as follows:

ajk ¼ 0 if ðj; kÞ 2 <0; otherwise any real value; ðA:7:12Þ

W is a diagonal matrix; ðA:7:13Þ

and U is a correlation matrix. Here, ℜ0 denotes a set of pairs (j, k) with the
corresponding ajk set to zero. Those constraints specify @ðD�1RD�1Þ and @ð~RÞ in
(A.7.5).

The constraint (A.7.11) leads to

D�1RD�1 ¼ D�1AUA0D�1 þD�1WD�1 ¼ ~A ~U~A0 þ ~W: ðA:7:14Þ

with

~A ¼ D�1A; ~U ¼ U; and ~W ¼ D�1WD�1: ðA:7:15Þ

Here, (A.7.11) and (A.7.14) take an identical form. It implies that (A.7.5) holds true

with ~R ¼ ~A ~U~A
0 þ ~W, if @ðAÞ ¼ @ð~AÞ, @ðUÞ ¼ @ð ~UÞ, and @ðWÞ ¼ @ð ~WÞ. These

three identities are shown in the next paragraph.
We can derive @ðAÞ ¼ @ð~AÞ and @ðWÞ ¼ @ð ~WÞ from the fact that D in (A.7.15)

is diagonal with its diagonal elements dj (j = 1, …, p) all positive. These properties
of D imply that the (j, k) elements of ~A ¼ ð~ajkÞ are expressed as ~ajk ¼ ajk=dj and ~W
is the diagonal matrix whose jth diagonal elements are wj=d

2
j for j = 1, …, p. Thus,

~ajk and ~W can be substituted into ajk in (A.7.12) and W in (A.7.13), respectively.
This implies @ðAÞ ¼ @ð~AÞ and @ðWÞ ¼ @ð ~WÞ. Obviously, @ðUÞ ¼ @ð ~UÞ follows
from (A.7.15). These results lead to (A.7.5) in CFA, and Theorem A.7.1 implies the
scale invariance of CFA. Furthermore, (A.7.15) show that the standardized solution
is transformed from the unstandardized one by (10.12).

Scale invariance of the exploratory FA (EFA) treated in Chap. 12 follows
straightforwardly from the invariance of CFA. As found in (12.8), R and D−1RD−1

in EFA are given by (A.7.11) and (A.7.14), respectively, with U ¼ ~U fixed to Im
and without constraint (A.7.12). Thus, the equality (A.7.5) with ~R ¼ ~A~A

0 þ ~W can
be found from @(A) = @(~A) and @ðWÞ ¼ @ð ~WÞ derived in the last paragraph.
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A.7.3 Scale Invariance of Path Analysis

In path analysis (Chap. 9), R = (rjk) is constrained through (9.12), i.e.,

R ¼ Ip � B
� �1

X Ip � B
� �10 ðA:7:16Þ

Further, B = (bjk) (p � p) and X = (xkl) (p � p) on the right side have the following
constraints:

bjk ¼ 0 if ðj; kÞ 2 <0; otherwise any real value, ðA:7:17Þ

X ¼ ðxklÞ is a covariancematrix among variables for whichxkl ¼ 0 if ðk; lÞ
2 =0; otherwise any real value:

ðA:7:18Þ
Here,ℜ0 and =0 denote the sets of (j, k) and (k, l) with their corresponding elements
equal to zeros, respectively.

The constraint (A.7.16) leads to

D�1RD�1 ¼ D�1 Ip � B
� �1

X Ip � B
� �10D�1

¼ Ip � B
� 

D
� ��1

X D Ip � B
� 0n o�1

¼ ðD� BDÞ�1X D� DB0ð Þ�1

¼ D Ip � D�1BD
� � ��1

X Ip � D�1BD
� 0

D
n o�1

¼ Ip � D�1BD
� �1

D�1XD�1 Ip � D�1BD
� 0�1

¼ ðIp � ~BÞ�1 ~XðIp � ~BÞ�10:

ðA:7:19Þ

with

~B ¼ D�1BD and ~X ¼ D�1XD�1: ðA:7:20Þ

Here, (A.7.16) and (A.7.19) take an identical form. It implies that (A.7.5) holds true
with ~R ¼ ðIp � ~BÞ�1 ~XðIp � ~BÞ�10, if @ðBÞ ¼ @ð~BÞ and @ Xð Þ ¼ @ ~X

� 
. These two

identities are derived in the next paragraph.
We can show @ðBÞ ¼ @ð~BÞ from the fact that the (j, k) element of ~B being

~bjk ¼ bjk dk=dj
� 

from (A.7.20), with dk/dj > 0: ~bjk can be substituted into bjk in

(A.7.17). We can also derive @ðXÞ ¼ @ ~X
� 

from the following two properties: [1]
a matrix being a covariance matrix among variables can be rewritten in the form
n−1Y′JY, with J ¼ In � n�11n1n0 . Thus, we have X = n−1Y′JY, and from (A.7.20)
~X can also be written in the identical form n�1 ~Y

0
J~Y with ~Y ¼ YD�1: Hence ~X is
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also a covariance matrix. [2] (A.7.20) also shows that the (k, l) element of ~X is
~xkl ¼ xkl= dkdlð Þ, with dkdl > 0. Those properties allow us to find that ~X and ~xkl

can be substituted into X and xkl in (A.7.18), respectively.
The results in the last paragraph demonstrate the scale invariance of path

analysis. Furthermore, (A.7.20) shows that the standardized solution is transformed
from the unstandardized one by (9.20).

A.8 Probability Densities and Expected Values with EM
Algorithm

In this appendix, we describe some details of probability densities and introduce
expected values to explain the foundations of the EM algorithm.

A.8.1 Joint, Conditional, and Marginal Probability Densities

Let x (p � 1) and f (m � 1) be the random vectors whose probability density
functions (PDF) are denoted as P(x∣H) and P(f∣H), with H a set of the parameters
specifying those PDF. As illustrated by Fig. 8.3a in Chap. 8, the area below the
PDF expresses a probability. This implies that the integral of any PDF over all
possible values is one:

R
PðxjHÞdx ¼ 1: Integral calculus for probabilities is

detailed in Khuri (2003).
The PDF P(x,f∣H) stands for the PDF of x and f observed jointly, withRR
Pðx; fjHÞdxdf ¼ 1. In particular, P(x, f∣H) is called the joint PDF of x and f, for

distinguishing it from P(x∣H) or P(f∣H) which is a function of a single vector. In
Fig. A.8, P(x,f∣H) is illustrated by a three-dimensional mountain-like object, where
x and f values are represented by the width and depth, respectively. The integral of
the joint PDF P(x,f∣H) over all possible f leads to P(x∣H):

PðxjHÞ ¼
Z

Pðx; fjHÞdf: ðA:8:1Þ

Similarly, P(f∣H) is the integral of P(x,f∣H) with respect to x : PðfjHÞ ¼R
P x; fjHð Þdx. The PDF (A.8.1) is illustrated “behind” the mountain in Fig. A.8.

Here, “behind” can be rephrased as “in a marginal territory”. In this sense, (A.8.1) is
called the marginal PDF of P(x, f∣H) for x.

PDF P(f∣x,H) expresses the PDF of f conditional on x being a particular vector.
Thus, P(f∣x,H) is called the conditional PDF of f, in particular, to distinguish it
from the marginal and joint PDF. The conditional PDF P(f∣x,H) is illustrated on the
right in Fig. A.8 As seen there, we may consider P(f∣x,H) as the cross section of the
mountain in P(x,f∣H) corresponding to a particular x value, indicated by a white
real line in Fig. A.8. Similarly, we can consider the PDF P(x∣f,H), i.e., the PDF of
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x conditional on f. An important fact regarding probabilities is that the joint PDF of
two vectors is given by the product of the conditional PDF of one of the two
vectors and the marginal PDF of the other vector:

Pðx; fjHÞ ¼ Pðfjx;HÞPðxjHÞ ¼ Pðxjf;HÞPðfjHÞ: ðA:8:2Þ

This implies

P f x;Hjð Þ ¼ P x; f Hjð Þ
P x Hjð Þ ¼ P x; f Hjð ÞR

P x; f Hjð Þdf ¼
P x f;Hjð ÞP f Hjð ÞR
P x f;Hjð ÞP f Hjð Þdf ; ðA:8:3Þ

which is Bayes’ theorem (15.15) extended to continuous variables.

A.8.2 Expected Values

An expected value refers to the average of a random variable derived theoretically
using probabilities. For example, let x denote a number shown by a dice. The
average of the numbers shown by the dice rolled many times is expected to be
E x½ � ¼P6

x¼1 xPðxÞ with P(x) (x = 1, …, 6) the probability that the dice is rolled to
show the number x. The above E[x] defines the expected value of x, which is a
discrete random variable. If x is a continuous random variable taking any real value,
the definition of the expected value can be straightforwardly generalized by

Integral

x 

f

x

f

P(x, f ) 

P(f x, )

Cross 
section

P(x )

Fig. A.8 Joint, marginal, and conditional distributions
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replacing the summation by an integral: E½x� ¼ R xPðxÞ dx with P(x) the PDF of
x. The expected value of an m � 1 random vector f = [f1,…, fm]′, which may also be
called an expected vector, is defined as

E½f� ¼
Z

fPðfjHÞdf; ðA:8:4Þ

which is an m � 1 vector with E½f� ¼ E f1½ �; . . .;E fm½ �½ �0.
Let us denote a matrix function of f as M(f) (n � m), where the term matrix

function refers to a function providing a matrix. Since vectors are included in
matrices and a scalar is a 1 � 1 matrix, the properties for a matrix function hold true
even if the function produces a scalar or vector. The expected value of M(f) is
expressed as

E½MðfÞ� ¼
Z

MðfÞPðfjHÞdf; ðA:8:5Þ

which is an n � m matrix with its (i, j) element being the expected value of the
counterpart of M(f). The expected value of M(f) pre-multiplied by a fixed matrix
Y satisfies

E½YMðfÞ� ¼ YE½MðfÞ�; or equivalently, E MðfÞ0Y0� � ¼ E½MðfÞ�0Y0: ðA:8:6Þ

Let N(f) (n � m) be a matrix function other than M(f). These functions satisfy

E½YMðfÞþZNðfÞþC� ¼ YE½MðfÞ�þZE½NðfÞ� þC ðA:8:7Þ

with Y, Z, and C fixed matrices.
Now, let us denote a matrix function of two vectors as H(x, f). Its expected value

over f with x a particular fixed vector is expressed as

E½Hðx; fÞjx� ¼
Z

Hðx; fÞPðfjx;HÞdf: ðA:8:8Þ

Here, x being fixed is indicated by the fact that H(f,x) is followed by |x on the left
side and the PDF on the right side is a conditional PDF P(f∣x, H).

A.8.3 Covariances as Expected Values

Let us consider the covariance defined theoretically using probabilities. The
covariance between two random variables x and y is defined as the expected value
of the product of x − E[x] and y − E[y], that is, E[(x − E[x]) (y − E[y])]. Thus, the
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m � m covariance matrix among the m continuous random variables in f = [f1, …,
fm]′ is defined as

V ½f� ¼ E ðf � E½f�Þðf � E½f�Þ0� � ¼ Z ðf � E½f�Þðf � E½f�Þ0PðfjHÞdf; ðA:8:9Þ

whose (j, k) element is E[(fj − E[fj]) (fk − E[fk])], i.e., the covariance between fj and
fk.

Covariance matrix (A.8.9) can be rewritten as

V ½f� ¼ E ff 0½ � � E½f�E½f�0; ðA:8:10Þ

since (A.8.9) can be rewritten as follows:

V ½f� ¼
Z

ff 0 � fE½f�0 � E½f�f 0 � E½f�E½f�0� 
PðfjHÞdf

¼
Z

ff 0PðfjHÞdf �
Z

fPðfjHÞdfE½f�0

� E½f�
Z

f 0PðfjHÞdf þE½f�E½f�0
Z

PðfjHÞdf
¼ E ff 0½ � � E½f�E½f�0 � E½f�E½f�0 þE½f�E½f�0;

ðA:8:11Þ

where we have used (A.8.4) and
R
PðfjHÞdf ¼ 1.

The p � m covariance matrix between x = [x1, …, xp]′ and f is defined as

E ðx� E½x�Þðf � E½f�Þ0� � ¼ ZZ ðx� E½x�Þðf � E½f�Þ0Pðx; fjHÞdxdf: ðA:8:12Þ

The m � m covariance matrix among the m random variables in f = [f1, …, fm]′,
which is conditional on x being a particular vector, is expressed as

V ½fjx� ¼
Z

ðf � E½fjx�Þðf � E½fjx�Þ0Pðfjx;HÞdf ¼ E ff 0jx½ � � E½fjx�E½fjx�0:
ðA:8:13Þ

Here, the last identity can be derived by (A.8.11) whose E[f], E[ff′], and P(f∣H) are
replaced by E½fjx�;E ff 0jx½ �; andPðfjx;HÞ, respectively.
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A.8.4 Expected Values and Covariances of Multivariate Normal
Variables

Let us suppose that a random vector x follows the multivariate normal (MVN)
distribution whose PDF is given by (8.9) (Chap. 8), i.e.,

Pðx lj ;RÞ ¼ 1

ð2pÞp=2 Rj j1=2
exp � 1

2
ðx� lÞ0R�1ðx� lÞ

� �
: ðA:8:14Þ

Then, the expected vector and covariance matrix for x are known to be

E½x� ¼ l andV ½x� ¼ R ðA:8:15Þ

(e.g., Anderson 2003). For this reason, (A.8.14) is described as a PDF with mean
vector l and covariance matrix R. Here, “mean” is a synonym of “average” and
“expected value”.

A.8.5 EM Algorithm

The equations of (A.8.1)–(A.8.8) still hold true, if the vectors in x and f are replaced
by scalars and matrices: For example, the matrix version of (A.8.1) is
PðXjHÞ ¼ R PðX;FjHÞdF.

Let us consider the maximum likelihood method, in which the log likelihood
logP(X∣H) is maximized over parameter matrix H for a given n � p data matrix X,
as in Chap. 8. For this maximization, the EM algorithm is useful (Dempster, Laird
and Rubin, 1977), when an n � m matrix F is associated with X, and the expec-
tation logP(X, F∣H) for a given X, i.e.,

E½logPðX;FjHÞjX� ¼
Z

logPðX;FjHÞPðFjX;HÞdF; ðA:8:16Þ

is easier to handle than log P(X∣H). The algorithm deals with iteratively obtaining
(A.8.16) for the current H and updating H so that(A.8.16) increases. Why this leads
to the maximization of log P(X∣H) can be explained by the following inequality,
which Danish mathematician Johan Jensen (1859–1925) presented:
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Theorem A.8.1. A Special Case of Jensen’s Inequality

logE½y� �E½log y�: ðA:8:17Þ

The theorem leads to

log E
P X;F Hnewjð Þ
P X;F Hjð Þ Xj

� �
�E log

P X;F Hnewjð Þ
P X;F Hjð Þ Xj

� �
ðA:8:18Þ

with Hnew the updated version of H. As proved in this section below, the left and
right sides of (A.8.18) can be rewritten as

logE
P X;F Hnewjð Þ
P X;F Hjð Þ Xj

� �
¼ logP XjHnewð Þ � logPðXjHÞ; ðA:8:19Þ

E log
P X;F Hnewjð Þ
P X;F Hjð Þ Xj

� �
¼ E logP X;F Hnewjð Þ Xj½ � � E logP X;F Hjð Þ Xj½ �;

ðA:8:20Þ

respectively. Thus, we have

logP XjHnewð Þ � logPðXjHÞ
�E logP X;FjHnewð ÞjX½ � � E½logPðX;FjHÞjX�; ðA:8:21Þ

by substituting (A.8.19) and (A.8.20) in (A.8.18).
In (A.8.21), we can find that logP XjHnewð Þ� logPðXjHÞ is guaranteed, if H is

updated to Hnew so that E logP X;FjHnewð ÞjX½ � �E½logPðX;FjHÞjX�. Thus, log
P(X|H) can reach its maximum, by iterating the following two steps:

E-step : ObtainE½logPðX;FjHÞjX�; ðA:8:22Þ

M-step : UpdateH so as to increaseE½logPðX;FjHÞjX�;
i.e., lead toE logP X;FjHnewð Þ½ � �E½logPðX;FjHÞ�: ðA:8:23Þ

Here, the E- and M-steps are the abbreviations for expectation and maximization
steps, respectively. The name M-step follows from the fact that “maximize” can be
substituted for “increase” in that step and indicates the intent.
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Let us prove (A.8.19) and (A.8.20). The latter directly is derived using (A.8.7):

E log
P X;F Hnewjð Þ
P X;F Hjð Þ Xj

� �
¼ E logP X;F Hnewjð Þ � logP X;F Hjð Þ Xj½ �

¼ E logP X;FjHnewð ÞjX½ � � E½logPðX;FjHÞjX�:

On the other hand, (A.8.19) is derived by starting from its right side. It can be
rewritten as

log
P X Hnewjð Þ
P X Hjð Þ ¼ log

R
P X;F Hnewjð ÞdF

P X Hjð Þ ¼ log
Z

P X;F Hnewjð Þ
P X Hjð Þ

� �
dF; ðA:8:24Þ

since of (A.8.1) and
R
/ðFÞdF=gðXÞ ¼ R f/ðFÞ=gðXÞgdF, with η(X) a function of

X irrelevant to F. The parenthesized fraction in (A.8.24) can be rewritten as

P X;F Hnewjð Þ
P X Hjð Þ ¼ P X;F Hnewjð Þ

P X;F Hjð Þ
P X;F Hjð Þ
P X Hjð Þ ¼ P X;F Hnewjð Þ

P X;F Hjð Þ P F X;Hjð Þ; ðA:8:25Þ

where the last identity is derived using (A.8.3). We can substitute
P(X, F∣Hnew)/P(X, F∣H) and P(F∣X,H) in (A.8.25) into H(x, f) and P(f∣x,H) in the
right side of (A.8.8), respectively, so as to have

Z
P X;F Hnewjð Þ
P X;F Hjð Þ P F X;Hjð ÞdF ¼ E

P X;F Hnewjð Þ
P X;F Hjð Þ Xj

� �
: ðA:8:26Þ

This logarithm, i.e., (A.8.24), leads to the left side of (A.8.19).

A.9 EM Algorithm for Factor Analysis

The EM algorithm, whose foundation is introduced in Appendix A.8.5, can be used
for estimating the factor analysis (FA) solution. Here, FA is categorized into
confirmatory (CFA), exploratory (EFA), and sparse (SFA), which are treated in
Chaps. 10, 12, 18, and 22, though the formulation of EFA in Chap. 18 is not related
to the EM algorithm. The descriptions for the EM algorithm in Sects. A.9.1–A.9.5
are common among EFA, CFA, and SFA. The procedures specific to EFA and CFA
are treated in A.9.6–A.9.8, while those for SFA are introduced in A.9.9.
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A.9.1 Outline

Let X = [x1, …, xn]′ be an n-individual � p-variables centered data matrix to be
analyzed by FA, with V = n−1X′X the inter-variable covariance matrix. The log
likelihood to be maximized in FA can be expressed as (10.11), i.e.,

logPðXjHÞ/ l�ðHÞ ¼ n
2
log AUA0 þWð Þ�1V
��� ���� n

2
tr AUA0 þWð Þ�1V ðA:9:1Þ

withH = {A,W,U} a set of the parameters to be estimated. Here, log P(X|H)/ l(H)
stands for both of its sides being mutually proportional: as found from (8.19) and
(8.20), log P(X|H) for the multivariate normal (MVN) distribution is the sum of log
likelihood and a constant that is not dependent onH. In (A.9.1),A is the p�mmatrix
containing factor loadings, W is the p � p diagonal matrix whose diagonal elements
are unique variances, andU is anm�m factor correlation matrix, which can be fixed
to Im in exploratory FA (EFA) as explained in Chap. 12.

In the EM algorithm, E[log P(X, F|H)|X] is considered in order to maximize
(A.9.1), as explained in A.8.5. In this appendix, F = [f1, …, fn] is the n-individuals
� m-factors matrix of common factor scores, with fi the score vector for individual
i (= 1, …, n). We can view logP(X, F|H) as the log likelihood of H for F supposed
to be a data set observed together with X (though F is not observed in reality). In
this sense, log P(X, F|H) and E[logP(X, F|H)|X] are referred to as the complete
data log likelihood and expected complete data log likelihood, respectively, in some
literature.

The E-step (A.8.22) and M-step (A.8.23) are iterated until convergence is
reached in the EM algorithm, in order to obtain the FA parameters in H. Before
describing those two steps, we must express the complete data log likelihood
logP(X, F|H) and its expected value E[logP(X, F|H)|X] explicitly. In the next two
sections, logP(X,F|H) and E[logP(X, F|H)|X] are treated subsequently.

A.9.2 Complete Data Log Likelihood

Let us explicitly express log P(X, F|H) for the FA model (10.3), with (10.4) and
(10.6). The matrix version of (A.8.2), P(X, F∣H) = P(X∣F, H)P(F∣H), leads to

logPðX;FjHÞ ¼ logPðXjF;HÞþ logPðFjHÞ: ðA:9:2Þ

Supposing the mutual independence among x1, …, xn and that among f1, …, fn lead
to PðXjF;HÞ ¼ Qn

i¼1 Pðxijf i;HÞ and PðFjHÞ ¼ Qn
i¼1 Pðf ijHÞ. Here, the latter

logarithm is found to be

432 Appendices



log PðFjHÞ ¼
Xn
i¼1

logPðf ijHÞ ¼ � nm
2

log 2p� n
2
log Uj j � 1

2

Xn
i¼1

f 0iU
�1f i;

ðA:9:3Þ

since of (10.4) with (8.19), while the former one can be derived using the next
theorem:

Theorem A.9.1. A Property of the Multivariate Normal Distribution
If x is a p � 1 vector of random variables satisfying x = t + u, with u *

Np(l, X), then x follows Np(t + l, X) conditional on t being a particular
vector. This is expressed as

xjt	Npðtþ l;XÞ; ðA:9:4Þ

with the probability density function (PDF) of Np(t + l, X) denoted by P(x|t)
(e.g., Anderson, 2003).

By taking account of (10.3) and (10.6) in this theorem, we can find P(xi|fi, H) to be
the PDF of Np(Afi, W). This fact is expressed as

xijf i 	 Np Af i;Wð Þ: ðA:9:5Þ

Thus, the logarithm of PðXjF;HÞ ¼ Qn
i¼1 Pðxijf i;HÞ is expressed, using (A.9.5) in

(8.19), as

log PðX F;Hj Þ ¼
Xn
i¼1

logPðxi f i;Hj Þ

¼ � np
2
log 2p� n

2
log Wj j � 1

2

Xn
i¼1

ðxi � Af iÞ0W�1ðxi � Af iÞ:

ðA:9:6Þ

Using (A.9.3) and (A.9.6) in (A.9.2) with c = −2−1n(p + m)log 2p and V = n−1X′X,
we have
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logPðX;FjHÞ ¼ � n
2
log Wj j � 1

2

Xn
i¼1

ðxi � Af iÞ0W�1ðxi � Af iÞ � n
2
log Uj j � 1

2

Xn
i¼1

f 0iU
�1f i þ c

¼ � n
2
log Wj j � n

2
1
n

Xn
i¼1

x0iW�1xi � 2
n

Xn
i¼1

f 0iA
0W�1xi þ 1

n

Xn
i¼1

f 0iA
0W�1Af i

 !

� n
2

log Uj j þ 1
n

Xn
i¼1

f 0iU
�1f i

 !
þ c

¼ � n
2
log Wj j � n

2
trVW�1 � 2

n
tr
Xn
i¼1

xif 0iA
0W�1 þ 1

n
trA
Xn
i¼1

f if 0iA
0W�1

 !

� n
2

log Uj j þ 1
n
tr
Xn
i¼1

f if 0iU
�1

 !
þ c

¼ � n
2
log Wj j � n

2
tr V� 2

n

Xn
i¼1

xif 0iA
0 þ 1

n
A
Xn
i¼1

f if 0iA
0

 !
W�1

� n
2

log Uj j þ 1
n
trU�1

Xn
i¼1

f if 0i

 !
þ c:

ðA:9:7Þ

A.9.3 Expected Complete Data Log Likelihood

In this section, we consider the expected value of (A.9.7) for a given X, i.e.,
E[log P(X, F|H)|X]. Using (A.8.7) and (A.8.8), the expected value is expressed as

E½logPðX;FjHÞjX� ¼
Z

logPðX;FjHÞPðFjX;HÞdF

¼ � n
2
log Wj j � n

2
tr V� 2E

1
n

Xn
i¼1

xif 0ijX
" #

A0 þAE
1
n

Xn
i¼1

f if 0ijX
" #

A0
 !

W�1

� n
2

log Uj j þ trU�1E
1
n

Xn
i¼1

f if 0ijX
" # !

þ c

¼ � n
2
log jWj � n

2
tr V� 2BA0 þAQA0ð ÞW�1 � n

2
log jUj þ trU�1Q
� þ c;

ðA:9:8Þ

with

B ¼ E
1
n

Xn
i¼1

xif 0ijX
" #

¼ 1
n

Xn
i¼1

E xif 0ijX
� � ¼ 1

n

Xn
i¼1

xiE f ijX½ �0¼ 1
n

Xn
i¼1

xiE f ijxi½ �0;

ðA:9:9Þ
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Q ¼ E
1
n

Xn
i¼1

f if 0i Xj
" #

¼ 1
n

Xn
i¼1

E f if 0i Xj
� � ¼ 1

n

Xn
i¼1

E f if 0i xij� �
: ðA:9:10Þ

Here, we have used E f ijX½ � ¼ E f ijxi½ � and E f if 0ijX
� � ¼ E f if 0ijxi

� �
which follow

from the mutual independence supposed among x1, …, xn and among f1, …, fn.
Thus, the E-step (A.8.22) for FA is restated as obtaining (A.9.9) and (A.9.10).

The step is followed by theM-step, in which A,W, and U are updated separatory so
as to increase (A.9.8). In the next section, we detail the E-step, followed by the
sections regarding the M-step. Here, it should be cautioned that the E-step and how
to update W in the M-step are common for EFA, CFA, and SFA. On the other hand,
the updating of A and U in the M-step differs among EFA, CFA, and SFA: Their
update in EFA and CFA is described in Sects. A.9.6–A.9.8, while that for SFA is
treated in A.9.9.

A.9.4 E-Step

For obtaining (A.9.9) and (A.9.10), it is required to find how E[fi|xi] and E fif 0ijxi
� �

are explicitly expressed under the FA model (10.3), (10.4), (10.6), and indepen-
dence of (10.4) to (10.6). They can be summarized as

f
x

� �
	Npþm

0m
0p

� �
;

U UA0

AU RH

� �� �
: ðA:9:11Þ

with

RH ¼ AUA0 þW ðA:9:12Þ

as found in (10.10). Here, the covariance matrix between x and f being AU is
derived from the fact that E½ðe� E½e�Þðf � E½f�Þ�0 ¼ E ef 0½ � ¼ p Om and thus
E½ðx� E½x�Þðf � E½f�Þ�0 ¼ E xf 0½ � ¼ E ðAf þ eÞf 0½ �0¼ AE ff 0½ �0¼ AU, since (10.3),
(10.4), (10.9), (A.8.15), and the mutual independence of f and e.

We can derive E[fi|xi] and E fif 0ijxi
� �

in (A.9.9) and (A.9.10) from (A.9.11), using
the next theorem:

Theorem A.9.2. Conditional Multivariate Normal Distribution
Let us suppose that the (q + r) � 1 vector [y′, z′]′, which consists of y (q �

1) and z (r � 1), follows an MVN distribution:
y
z

� �
	Nqþ r

ly
lz

� �
;

Ryy Ryz

R0
yz Rzz

� �� �
with ly, lz, and Ryz being q � 1, r � 1,

and q � r, respectively. Then,
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yjz	Nq ly þRyzR
�1
zz z� lzð Þ;Ryy � RyzR

�1
zz R

0
yz


 �
ðA:9:13Þ

(e.g., Anderson, 2003).

Comparing this theorem with (A.9.11), we can find

f ijxi 	Nm UA0R�1
H xi;U�UA0R�1

H AU
� 

: ðA:9:14Þ

This and (A.8.15) imply

E f ijxi½ � ¼ UA0R�1
H xi; ðA:9:15Þ

V f ijxi½ � ¼ U�UA0R�1
H AU: ðA:9:16Þ

Using these two equations in E ff 0jx½ � ¼ V ½fjx� þE½fjx�E½fjx�0 following from
(A.8.13), we can find

E f if 0ijxi
� � ¼ V f ijxi½ � þE f ijxi½ �E f ijxi½ �0

¼ U�UA0R�1
H AUþUA0R�1

H xix0i R
�1
H AU:

ðA:9:17Þ

By substituting (A.9.15) and (A.9.17) in (A.9.9) and (A.9.10), these two equa-
tions can be rewritten as

B ¼ 1
n

Xn
i¼1

xix0iR
�1
H AU ¼ VHðHÞ; ðA:9:18Þ

Q ¼ U�UA0 R�1
H AUþUA0 R�1

H
1
n

Xn
i¼1

xix0i

 !
R�1
H AU

¼ WðHÞþHðHÞ0VHðHÞ
ðA:9:19Þ

with V = n−1X′X. Here, H(H) (p � m) and W(H) (p � m) are matrix functions of
H = {A, W, U}:

HðHÞ ¼ R�1
H AU; ðA:9:20Þ

WðHÞ ¼ U�UA0R�1
H AU ¼ U1=2 Im þU1=2A0W�1AU1=2


 ��1
U1=2; ðA:9:21Þ
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with U1/2 the symmetric square root of U: U1/2U1/2 = U and U1/2′= U1/2. The last
identity in (A.9.21) has been derived by Adachi (2013, Lemma 1), using the fol-
lowing relation:

Theorem A.9.3. Inverse of a Sum of Matrices (Seber, 2008, p. 309)
Let M and N be nonsingular matrices. Then, we have

M�1 �M�1U YM�1UþN�1� �1
YM�1 ¼ ðMþUNYÞ�1: ðA:9:22Þ

We can use (A.9.12) to rewrite U�UA0R�1
H AU in (A.9.21) as U1/2XU1/2 with

X ¼ Im �U1=2A0R�1
H AU1=2 ¼ Im �U1=2A0 AUA0 þWð Þ�1AU1=2. By setting M =

Im, U = U1/2A′, Y = AU1/2, and N = W in the left side of (A.9.22), its right side is

found to be X ¼ Im þU1=2A0W�1AU1=2
� �1

. This substitution in W(H) =
U1/2XU1/2 leads to (A.9.21). Using (A.9.19) with (A.9.21), Adachi (2013) has
shown that Q is positive-definite, if W and U are positive-definite and V is
nonnegative-definite. See Note 8.2 for the nonnegative- and positive-definiteness.

A.9.5 Updating Unique Variances in M-Step

Let us consider maximizing (A.9.8) over the diagonal W with A = [a1, …, ap]′ and
U kept fixed. We should notice that (A.9.8) can be rewritten as
�ðn=2ÞPp

j¼1 hjðwjÞ+ const[W]. Here, wj is the jth diagonal element of W, const[W] is
independent of W, and

hj wj

�  ¼ logwj þ
1
wj

vjj � 2b0jaj þ a0jQaj

 �

¼ logwj þ
uj
wj

ðA:9:23Þ

with b0j the jth row of (A.9.18), vjj the jth diagonal element of V, and
uj ¼ vij � 2b0jaj þ a0jQaj.

Thus, the maximization can be attained by minimizing (A.9.23) over wj for j = 1,
…, p. The minimizer is given by

wj ¼ uj ¼ vjj � 2b0jaj þ a0jQaj; ðA:9:24Þ

from the following fact: The differentiation of (A.9.23) with respect to wj is known
to be given by h0j wj

�  ¼ dhj wj

� 
=dwj ¼ 1=wj � uj=w

2
j ¼ wj � uj

� 
=w2

j . This shows

that h0j wj

� 
\0 forwj\uj; h0j wj

�  ¼ 0 for (A.9.24), and h0j wj

� 
[ 0 forwj [ uj.
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A.9.6 Updating Factor Covariance in M-Step for CFA

In this section, we consider updating U. This update is skipped in EFA withU fixed
to Im. Thus, only the case for CFA is treated here: We consider how (A.9.8) is
maximized over U with A and W fixed in CFA.

Below (A.9.1), we described that U is a factor correlation matrix, whose
diagonal elements are restricted to ones. However, U = (/jk) may be regarded
simply as a covariance matrix without the restriction, on the supposition of /jj > 0
(j = 1, …, m). This follows from the fact that the log likelihood (A.9.1) can be
rewritten as

lðA;W;UÞ ¼ n
2
log ARURA

0
RþW


 ��1
V

����
����� n

2
tr ARURA

0
RþW


 ��1
V:

ðA:9:25Þ

Here,

AR ¼ AdiagðUÞ1=2 ðA:9:26Þ

UR ¼ diagðUÞ�1=2UdiagðUÞ�1=2 ðA:9:27Þ

with diag(U)−1/2 the m � m diagonal matrix whose jth diagonal element is /�1=2
jj .

Here, we should note that the elements of (A.9.26) are zeros whose counterparts in
A are constrained to be zeros in CFA and (A.9.27) is a correlation matrix whose
diagonal elements are ones. Those points imply that the maximum attainable value
of (A.9.1) does not depend on whether U is treated as a correlation matrix or a
covariance matrix. Thus, we choose treating U as the latter, as a covariance matrix
which does not have the restriction possessed by a correlation one is easier to deal
with.

On the right side of (A.9.8) to be maximized over U, the term relevant to U is
�ðn=2Þ log jUj þ trU�1Q

� 
. This is found to be equivalent to (A.5.6), if U and

Q are replaced by R and V, respectively. Thus, (A.9.8) is maximized for

U ¼ Q ðA:9:28Þ

as (A.5.6) is maximized for (A.5.3). Here, it must be kept in mind that U is treated
as a covariance matrix: A factor correlation matrix and the corresponding loading
matrix are given by (A.9.27) and (A.9.26), respectively. Thus, the matrices U and
A resulting in the EM algorithm must finally be transformed into the factor cor-
relation matrix (A.9.27) and corresponding loading matrix (A.9.26).
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A.9.7 Updating Loadings in M-Step for EFA and CFA

We consider updating the loading matrix A separately in CFA with the constraint on
A and in EFA without the constraint.

First, let us consider maximizing (A.9.8) over A with W fixed and U = Im in
EFA. The function (A.9.8) can be rewritten as −(n/2)f(A) + const[A] with const[A]
independent of A and

f ðAÞ ¼ trAQA0W�1 � 2trBA0W�1

¼ W�1=2AQ1=2 �W�1=2BQ�1=2
��� ���2� W�1=2BQ�1=2

��� ���2: ðA:9:29Þ

Thus, the maximization of (A.9.8) amounts to minimizing (A.9.29). The minimizer
is given by

A ¼ BQ�1; ðA:9:30Þ

since only the term W�1=2AQ1=2 �W�1=2BQ�1=2
��� ���2 is dependent on A on the right

side of (A.9.29) and that term attains the lower limit zero for (A.9.30).
Next, let us consider the case of CFA subject to some elements in A = [a1, …,

ap]′ constrained to zeros. We can use a procedure of updating A row-wise, in which
the maximization of (A.9.8) over aj with the other parameters fixed is performed for
j = 1, …, p. This follows from the fact that (A.9.8) can be rewritten as
�ðn=2ÞPp

j¼1 fjðajÞ=wj þ const j½ � with const[j] independent of aj and

fj aj
�  ¼ a0jQaj � 2b0jaj ¼ a0jH

0
jHjQH0

jHjaj � 2b0jH
0
jHjaj: ðA:9:31Þ

Here, Hj is the mj � m binary matrix satisfying a#j ¼ Hjaj, with mj being the

number of the unconstrained elements in aj, and a#j being the mj � 1 vector

obtained by deleting the constrained elements from aj: For example, if aj ¼
aj1
0
aj3

2
4

3
5

with the first and third loadings unconstrained, then Hj ¼ 1 0 0
0 0 1

� �
, which leads

to the vector a#j ¼ Hjaj ¼ aj1
aj3

� �
containing only unconstrained loadings. The last

identity in (A.9.31) follows from

aj ¼ H0
jHjaj: ðA:9:32Þ
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We can further rewrite (A.9.31) using QH ¼ HjQH0
j ðmj � mjÞ as

fjðAÞ ¼ Q1=2
H Hjaj �Q�1=2

H Hjbj
��� ���2� Q�1=2

H Hjbj
��� ���2: ðA:9:33Þ

Here, the elements of QH and Hjbj are restricted to the ones of Q and bj corre-
sponding to the unconstrained loadings, respectively. We can find that (A.9.33) is
minimized for Hjaj ¼ Q�1

H Hjbj. Then, the vector aj to be obtained is

aj ¼ H0
jQ

�1
H Hjbj; ðA:9:34Þ

since of (A.9.32).

A.9.8 Whole Steps in EFA and CFA

The EM algorithm for EFA with U = Im consists of the following steps:

Step 1. Initialize A and W.

Step 2. Obtain (A.9.18) and (A.9.19), with HðHÞ ¼ AA0 þWð Þ�1A and WðHÞ ¼
Im þA0W�1A
� �1

, i.e., the versions of (A.9.20) and (A.9.21) simplified
using U = Im.

Step 3. Update A and the diagonal elements of W through (A.9.30) and (A.9.24)
respectively.

Step 4. Finish if the increase in the value of (A.9.1) with U = Im from the previous
round can be ignored; otherwise, go back to Step 2.

On the other hands, the EM algorithm for CFA consists of the following steps:

Step 1. Initialize A, U, and W.
Step 2. Obtain (A.9.18) and (A.9.19) using (A.9.20) and (A.9.21)
Step 3. Update U, the diagonal elements of W, and each row of A through

(A.9.28), (A.9.24), and (A.9.34), respectively.
Step 4. Go to Step 5 if the increase in the (A.9.1) value from the previous round

can be ignored; otherwise, go back to Step 2.
Step 5. Finish with the loading and factor correlation matrices set to (A.9.26) and

(A.9.27), respectively.
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A.9.9 Algorithm for Penalized Factor Analysis

Let g(H) be a penalty function ofH penalizing particular values of parameters inH,
with g(H) being independent of the random variables in X and F. A penalized FA
(PFA) can be formulated as maximizing (A.9.1) minus g(H), i.e.,

logPðXjHÞ � gðHÞ / l�ðHÞ � gðHÞ
¼ n

2 log AUA0 þWð Þ�1V
��� ���� n

2 tr AUA0 þWð Þ�1V� gðHÞ; ðA:9:35Þ

over H. PFA includes the penalized sparse latent variable FA (PS-LVFA) treated in
Chap. 22.

To show that the EM algorithm can also be used for PFA, we define

P#ðXjHÞ ¼ PðXjHÞ expf�gðHÞg; ðA:9:36Þ

P#ðX;FjHÞ ¼ PðX;FjHÞ expf�gðHÞg: ðA:9:37Þ

PFA can be regarded as maximizing (A.9.36), since the logarithm of (A.9.36)
equals the left side of (A.9.35), and a penalized version of (A.8.21), i.e.,

logP# XjHnewð Þ � logP#ðXjHÞ
�E logP# X;FjHnewð ÞjX� �� E logP#ðX;FjHÞjX� �

;
ðA:9:38Þ

holds true, as shown in the next paragraph.
Let us substitute (A.9.36), (A.9.37),P# XjHnewð Þ; andP# X;FjHnewð Þ for PðXjHÞ,

PðX;FjHÞ;P XjHnewð Þ; andP X;FjHnewð Þ , and P(X, F|H new) on the left sides of
(A.8.19) and (A.8.20). Then, we have the following equations:

logE
P# X;F Hnewjð Þ
P# X;F Hjð Þ Xj

� �
¼ logE

P X;F Hnewjð Þ expf�gðHnewÞg
P X;F Hjð Þ expf�gðHÞg Xj

� �

¼ log E
P X;F Hnewjð Þ
P X;F Hjð Þ Xj

� �
� expf�gðHnewÞg

expf�gðHÞg
� �

¼ logE
P X;F Hnewjð Þ
P X;F Hjð Þ Xj

� �
þ log

expf�gðHnewÞg
expf�gðHÞg

¼ logP XjHnewð Þ � logPðXjHÞ þ log
exp �g Hnewð Þf g
expf�gðHÞg

¼ logP# XjHnewð Þ � logP#ðXjHÞ;
ðA:9:39Þ
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E log
P# X;F Hnewjð Þ
P# X;F Hjð Þ Xj

� �
¼ E logP# X;F Hnewjð Þ Xj� �� E logP# X;F Hjð Þ Xj� �

:

ðA:9:40Þ

Here, the fourth identity in (A.9.39) is derived using (A.8.19). Theorem A.8.1
shows (A.9.39) � (A.9.40), which implies (A.9.38).

As found from the fact that (A.8.21) leads to the EM algorithm with (A.8.22)
and (A.8.23), the inequality in (A.9.38) implies that the EM algorithm, in which
P(X|H) and P(X, F|H) are replaced by (A.9.36) and (A.9.37), respectively, can be
used for PFA. That is, (A.9.35) can reach its maximum, by iterating the penalized
versions of (A.8.22) and (A.8.23),

E-step: ObtainE logP#ðX;FjHÞjX� �
; ðA:9:41Þ

M-step : UpdateH so as to increaseE logP#ðX;FjHÞjX� �
i:e:; lead toE logP# X;FjHnewð Þ� ��E logP#ðX;FjHÞ� �

:
ðA:9:42Þ

Here,

E logP�ðX;FjHÞjX½ � ¼ E½logPðX;FjHÞjX� � gðHÞ
¼ � n

2
log jWj � n

2
tr V� 2BA0 þAQA0ð ÞW�1

� n
2

log jUj þ trU�1Q
� þ c� gðHÞ :

ðA:9:43Þ

(A.9.8) minus g(H).
The procedures for the E-step (A.9.41) are the same as in Sect. A.9.4. On the

other hand, how H is updated in the M-step (A.9.42) differs in general from
standard FA without penalty function. Care must be taken that U cannot be treated
as a covariance matrix as in Sect. A.9.6, unless (A.9.35) can be rewritten as

l�ðHÞ � gðHÞ ¼ n
2 log ARURA0

R þW
� �1V
��� ���� n

2 tr ARURA0
R þW

� �1V� g HRð Þ:
ðA:9:44Þ

with (A.9.26), (A.9.27), and HR = {AR, UR, W}. PS-LVFA in Chap. 22 is one case
where (A.9.44) does not hold true. Thus, U must be constrained to a correlation
matrix in Chap. 22. However, the PS-LVFA procedure for updating W in (A.9.42)
is the same as in A.9.5.
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