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Abstract

Agriculture depends upon expensive inputs of pesticides and chemical fertilizers
to increase crop yields. This dependence on agrochemicals poses risks to human
and environmental health such as disruption of nutrient cycling and demolition of
beneficial microbial communities for higher crop production. Over the last
decade, soil microbes have been widely exploited to enhance the crop production
and plant and soil health management. The higher crop yields are reported after
inoculation with plant growth-promoting microbes (PGPM). The PGPM signify
as an effective and promising way to improve quality food production without
environmental or human health hazard. This chapter will explore the current
research and trends in microbial exploitation in growth promotion of different
agricultural crops. We further discuss the key mechanisms underlying growth
promotion and technological advances in bioformulation development to increase
shelf life. Recent uses, development, and application of microbial formulation for

managing a sustainable environmental system are also discussed.
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3.1 Introduction

The global human population is expected to increase approx. 9 billion from its
current population of 7.3 billion by 2050 (Rodriguez and Sanders 2015). The
increased population and global climate change have posed a serious threat to crop
production and food security. The widespread use of mineral fertilizers and
agrochemicals (like fungicides, insecticides, herbicides, etc.) in crop production
for higher crop yields remains a common practice. The growing food and fiber
demand has led to the expansion of conventional agricultural practices, which is
neither economic nor environment friendly (Trivedi et al. 2017). These trends pose a
series of unprecedented challenge to worldwide food and agriculture production
leading to sustainably intensify food and agricultural crop production and find
solutions to combat phytopathogens and abiotic stress.

The application of plant growth-promoting microbes (PGPM) in agriculture
represents an economically attractive and environment friendly alternative to exten-
sive chemical fertilization. The collective set of rhizospheric microbes is known as
rhizosphere microbiome or rhizo-microbiome (Bulgarelli et al. 2013). A continued
exploration and manipulation of rhizo-microbiome and their interactions with
plant is a prerequisite for development of efficient microbial formulations
(bioformulation). The application of bioformulations can enhance crop growth,
vigor, and nutrient use efficiency and provide protection from phytopathogens and
biotic and abiotic stress tolerance (Ahmad et al. 2018).

The widespread commercial use of PGPM requires a good screening and mass
multiplication procedures that can promote quality, quantity, and product formula-
tion with enhanced shelf life and bioactivity (Gopalakrishnan et al. 2016). In
addition, new sustainable approaches will ensure competitive crop yields, crop
protection, and soil health improvement. In this chapter, we discuss about soil
microbes, role of PGPM in plant health management, and selection criteria of
bioformulations.

3.2 Soil Microbes

Soil comprises a living and dynamic ecosystem containing approximately 90—
100 million bacteria along with around 0.2 million fungi (per gram soil). Most of
the beneficial PGPM inhabit around the plant roots. The rhizo-microbiome depends
on the plant root exudates like organic acids, amino acids, sugars, etc. that provide
carbon as a food source (Glick 2018). The plant roots exude chemicals including
signaling molecules and metabolites accessible to microbes. The plant-microbe
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interaction is considered beneficial, neutral, or detrimental for the plant growth. This
interaction depends on the plant and specific microbes inhabiting the rhizosphere.

Soil microbial community consists of mixed populations that include bacteria,
actinomycetes, fungi, algae, protozoa, and viruses. Nearly all soils contain a mixture
of microbial populations. Among them, bacterial community is generally much
higher than other groups. All microbial groups are important in bringing about
numerous transformations and making up the soil environment. The microbial
communities also contribute to various soil ecosystem functions including global
biogeochemical cycling (C, N, P, Fe, etc.), organic matter cycling, soil aggregation,
etc. Soil organisms influence the soil structure and aggregate formation, which are
hotspots of microbial activity and diversity. Soil structure is thus both the cause and
the product of soil biodiversity (Havlicek and Mitchell 2014).

The soil organic matter (SOM) decomposition is carried out by the activity of
hydrolytic enzymes secreted by bacteria and fungi (primary decomposers). These
primary decomposers determine both the magnitude of carbon (C) stored in soils and
the rate at which nutrients become available to plants (Shelake et al. 2019). The high
soil organic carbon (SOC) content improves the soil biological (microbial biomass),
chemical, and physical properties, such as enhanced biological activity, improved
soil structure, higher water-holding capacity, soil fertility, and sorption of organic
and inorganic pollutants (Bhogal et al. 2018; Shelake et al. 2019). The growth and
development of crops/plants is mainly affected by the soil microbial diversity,
mineral nutrients, and physical properties of the soil.

3.3  Plant Growth-Promoting Microbes in Sustainable
Agriculture

In recent times, agriculture faces numerous challenges like limited nutrient
resources, extensive losses by phytopathogens, environmental deterioration through
depletion of resources (air, water, and soil), and food security (Kroll et al. 2017).
Sustainable agriculture involves a wide range of approaches to meet the growing
food demand and fiber requirements without harming the environment (Barea 2015).
This integrates three key objectives: healthy environment, economic profitability,
and socioeconomic equity. The agricultural crop productivity is sturdily influenced
by the activities of soil microbial communities. The microbial communities vary
with soil type, soil pH and EC (electrical conductivity), availability of nutrients, and
vegetation type (Wang et al. 2018). The exploitation of these beneficial microbial
communities is of vital importance to agriculture for sustainable crop production and
food safety. Soil microbes derive their energy and nutrients from decomposing
organic substrate in the soil. They are involved in SOM transformation and nutrient
immobilization and various soil processes ultimately improving soil fertility and
productivity (Sharma et al. 2017a, b).

The PGPM are defined as the root-/rhizosphere-inhabiting microbes capable of
colonizing root surface and can promote plant growth. The PGPM are divided into
two distinctive groups: plant growth-promoting rhizobacteria (PGPR) and plant
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Fig. 3.1 Mechanisms used by PGPM for enhancing plant growth

growth-promoting fungi (PGPF) (Mishra et al. 2017). The term PGPR was coined by
Kloepper and Schroth (1978) to beneficial soil bacteria inhabiting rhizosphere and
able to colonize and promote plant growth. They are involved directly or indirectly
in the growth and development of plant (Fig. 3.1). The mode of action by PGPR
includes the nitrogen fixation, nutrient solubilization/mobilization, siderophore pro-
duction, phytohormone production, and ACC-deaminase activity. Indirect effects
include biological control through antibiotic production, cell-wall degrading enzyme
activity, and induced systemic resistance (ISR) (Verma et al. 2016; Ahmad et al.
2018). The PGPF are nonpathogenic soilborne saprophytic filamentous fungi that
facilitate plant growth. Several reported PGPF belong to fungal genera Trichoderma,
Aspergillus, Piriformospora, Fusarium, Penicillium, Phoma, and arbuscular mycor-
rhizal (AM) fungi (Hossain et al. 2017). The PGPF colonize plant roots, stimulate
growth, and suppress phytopathogens. They produce plant hormones, hydrolytic
enzymes, antifungal metabolites, nutrient solubilization, organic matter degradation,
and ISR in plants (Mishra et al. 2017).

The microbial use and application in crop production and soil health management
is important for achieving sustainable agriculture. The use of PGPM largely excludes
the use of chemically synthesized fertilizers, pesticides, and growth regulators and
can increase crop productivity with environmental restoration. Understanding the
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rhizosphere structure and function will allow to harness plant-microbial interactions
and improved crop productivity (Ahkami et al. 2017).

34 Plant-Soil-Microbe Interactions in the Rhizosphere

The term “rhizosphere” was coined by Lorenz Hiltner (1904), to describe the area
around plant roots, inhabited and influenced by diverse microbial species and plant
root exudates. This influence results from the release of organic compounds, also
referred as rhizodeposition. The rhizodeposits include root exudates (sugars, amino
acids, organic acids, etc.), insoluble materials (sloughed cells and root mucilage),
dead fine roots, lysates, and gases, such as CO, (by root and microbial respiration)
and ethylene (Cheng and Gershenson 2007). As a result, the rhizosphere soils are
regarded as mesotrophic, favoring the microbial growth (bacteria, fungi, archaea,
and viruses), and the bare soils are described to have oligotrophic environments
(Dessaux et al. 2016). This chemically unique and complex environment supports
the growth of remarkably diverse and unique microbial populations.

The rhizo-microbiome composition is complex and dynamic, controlled by
several biotic and abiotic factors. The abiotic factors include the physicochemical
properties of soil and environmental parameters, whereas biotic factors include the
chemicals secreted by bacteria and plant together with their biological activities
(Haldar and Sengupta 2015). The root exudate chemistry dictates the rhizosphere
microbial communities (Ahmad et al. 2018). The rhizo-microbiome mediates
interactions via the production and secretion of signaling molecules by both plants
and microbes.

The signaling in the rhizosphere can be divided into three groups:

Microbe-microbe (via quorum-sensing molecules like N-acyl homoserine lactones
(AHLs), diketopiperazines (DKPs), and diffusible signal factor (DSF).

The second group includes plants to microbe (via plant-secreted molecules, e.g., root
exudates).

The third group contains microbes to plants (via microbially produced compounds
like lipopolysaccharides, peptidoglycans, flagellin, and chitin).

This signaling between plants and rhizosphere microbes resulted in shaping the
rhizo-microbiome, inducing systemic resistance (by priming) sustaining plant
health, growth, nutrition, and stress tolerance (Venturi and Keel 2016).

3.5 PGPM Affect Root Growth and Development

Soil microbial communities are recognized to play crucial roles in agricultural and
natural ecosystems. Their activities have a positive impact on chemical, biological,
and physical soil properties (Levy et al. 2018). The rhizo-microbiome also depends
upon the soil type and the composition of root exudates (like organic acids, sugars,
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amino acids, enzymes, fatty acids, phenolics, coumarins, anthocyanins, and
flavonoids) secreted by the host plant (Chaparro et al. 2013; Badri and Vivanco
2009). The ability of rhizobacteria to colonize rhizosphere depends on their chemo-
tactic response toward root exudates. This chemical communication among plants
and rhizo-microbes results in altered microbial community structure, plant health,
and growth. For example, plant roots exude rosmarinic acid which stimulates
quorum-sensing response, influencing bacterial population in the rhizosphere
(Corral-Lugo et al. 2016). Additionally, salicylic acid influences the colonization
of specific bacterial families within the roots, thereby altering the microbial commu-
nity structure (Lebeis et al. 2015). The beneficial rhizosphere microbes include
PGPR, PGPF, and protozoa that have been reported for their positive effects on
plant growth and development (Mendes et al. 2013, Weidner et al. 2017). The PGPR
affect root system architecture (temporal and spatial distribution of roots in soil) by
altering the cell division and differentiation (in primary root), thereby affecting root
hair formation and lateral root development (Verbon and Liberman 2016).

Several PGPR species have been identified to increase lateral root formation and
shoot growth and inhibit primary root growth (by decreasing the cell elongation) of
plants. Some PGPR species are shown to induce cell division and differentiation at
both the root apical meristem and lateral root emergence sites. The cell division is
positively or negatively affected depending upon the type of species within the
meristem. For example, Pseudomonas simiae WCS417 increases cell division,
whereas Bacillus megaterium decreases cell division and growth conditions. The
differentiation is induced close to the root tip in PGPR-inoculated plants, due to
which root hairs emerge close to the root tip. As a result, root hair density and length
increases upon colonization. Thus, rhizo-microbiome affects root growth and devel-
opment by manipulating the host endogenous mechanisms by regulating
postembryonic root development (Verbon and Liberman 2016).

3.6 Microbes in Crop Production

The plant health depends upon the interactions between living organisms and their
environment. Both plants and microbes, the components of rhizosphere can be
engineered, and the soil can also be amended to promote growth and development
(Dessaux et al. 2016). Genetic engineering of crop plants has resulted in pathogen
resistance, high metal concentration resistance, etc. In contrast, there are few reports
of PGPR engineering to render it more effective, for example, a chitinase gene
(isolated from Bacillus subtilis) was inserted into Burkholderia vietnamiensis, a
PGPR, to suppress Fusarium wilt (cotton), sheath blight (wheat), and gray mold
(tomato) (Zhang et al. 2012). A recent method involves engineering of set of
microbial population rather than single strain. Alternate way consists of ecological
engineering (plant-microbe interaction). In general, plants and their associated
microbes are considered as a holobiont or superorganism rather than as “individual”
(Dessaux et al. 2016). The microbes play a crucial role in plant adaptation to
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changing environments. The holobiont paradigm in plant world is transforming our
understanding (Vandenkoornhuyse et al. 2015).

Plant and microbial engineering by modern techniques such as transgenic produc-
tion involves several environmental and ethical issues. Emerging trend is the appli-
cation of microbial formulations as an excellent alternative to agrochemicals. These
microbial inoculants can substantially lessen the use of inorganic fertilizers and
pesticides in agricultural crops, thereby enhancing the nutrient uptake and stimulating
growth and protection against phytopathogens (Ahmad et al. 2018). The PGPM
play a vital role in agricultural systems (Table 3.1). They increase the uptake of
primary nutrients (biofertilizers), produce phytohormones (phytostimulators), and
suppress diseases or phytopathogens (biopesticide) enhancing plant growth and
development (Trabelsi and Mhamdi 2013). Different microbial inoculants are already
commercialized and used for several crops (Table 3.2).

3.7 Microbial Formulations and Application

Many pot and field studies have shown that plants inoculated with PGPM stimulate
growth and yield. The microbial formulations are defined as the preparations of
single or consortia strains of known microbes in a user-friendly and organic or
inorganic carrier material. The specific number of cells (differs among species, e.g.,
10°-107 cells/plant of Azospirillum brasilense) is needed to reach the threshold to
obtain the anticipated response in plants (Bashan et al. 2014). Various kinds of
bioformulations being used in agriculture include nitrogen fixers, potassium (K) and
phosphorus (P) solubilizers and mobilizers, growth-promoting AM fungi and
cyanobacteria, and other useful microbes (Table 3.3). The bioformulation thus
includes the desired microbe, suitable carrier material, sticking agents, and
osmoprotectant (Sahu and Brahmaprakash 2016). The development of PGPM-
based formulations with multifarious PGP and biocontrol activity with improved
shelf life could pave the way for its commercialization. They provide a suitable
microenvironment, physical protection, and structure to the introduced microbes.
The development of techniques for mass multiplication of pure inoculants would
offer a potential solution for allowing extensive use of biofertilizers. The main
advantage of PGPM-based formulations is the choice of desired microbial formula-
tion, the carrier material selection, and delivery methods (Zayed 2016).

3.7.1 Selection of Appropriate Microbes

The development of successful PGPM formulation is a multistep process, which
starts with the isolation of beneficial microbes from plants, in vitro screening,
characterization of PGP, and antagonistic activities, followed by its testing in
greenhouse and field. The development process varies depending on the microbial
group (bacteria, fungi, yeast, viruses, and nematodes) used for bioformulation. For
example, bacteria and yeast are produced by liquid fermentation, whereas fungi are
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Table 3.1 Different microbes being reported as biocontrol agents, biofertilizers, and

phytostimulators

Genus ‘ Species

Bacteria

Acinetobacter sp. A. lwoffii, A. baumannii, A. calcoaceticus

Aneurinibacillus sp. A. aneurinilyticus, A. terranovensis, A. migulanus, A. danicus

Arthrobacter sp. A. protophormiae, A. pokkalii, A. agilis

Azospirillum sp. A. brasilense, A. lipoferum, A. amazonense

Azotobacter sp. A. salinestris, A. chroococcum, A. beijerinckii, A. paspali,
A. armeniacus, A. nigricans, A. salinestri

Bacillus sp. B. subtilis, B. amyloliquefaciens, B. pumilus, B. mojavensis,
B. velezensis, B. thuringiensis, B. licheniformis, B. cereus,
B. safensis, B. methylotrophicus, B. megaterium, B

B.

weihenstephanensis, B. edaphicus, B. pantothenticus,

subtilisformis, B. circulans, B. altitudinis, B. simplex, B. firmus,
pasteurii, B. mycoides, B. sphaericus, B. brevis, B. coagulans,
mucilaginosus

Brevibacterium sp.

halotolerans, B. iodinum, B. linens, B. frigoritolerans

Burkholderia sp.

pyrrocinia, B. cepacia, B. ambifaria, B. phytofirmans,
phymatum

Cellulosimicrobium sp.

funkei, C. cellulans, C. terreum

Chryseobacterium sp.

indologenes, C. hispalense, C. cucumeris, C. elymi

Enterobacter sp.

aerogenes, E. cloacae, E. radicincitans, E. sakazakii,
agglomerans

Klebsiella sp.

pneumonia, K. oxytoca

Lysobacter sp.

antibioticus, L. enzymogenes

Novosphingobium sp.

oryzae, N. pentaromativorans

Ochrobactrum sp.

anthropi, O. cytisi, O. intermedium

Paenibacillus sp.

polymyxa, P. mucilaginosus, P. illinoisensis, P. brasilensis,
oenotherae, P. hemerocallicola, P. graminis, P. odorifer,
expansum, P. azotofixans, P. macerans, P. peoriae

Pantoea sp.

agglomerans, P. dispersa, P. ananatis

Paraburkholderia sp.

phytofirmans, P. kururiensis, P. fungorum, P. tropica

Pseudomonas sp.

putida, P. fluorescens, P. aeruginosa, P. stutzeri, P. protegens,
chlororaphis, P. brassicacearum, P. nitroreducens, P. geniculate,
Jesenii, P. migulae, P. tolaasii, P. picketti, P. savastanoi,
cepacia, P. corrugate, P. striata, P. marginalis, P. oryzihabitans,
gessardii, P. synxantha

Sinorhizobium sp.

meliloti, S. fredii, S. kostiense

Serratia sp.

NPT T T TITYTOXINARMMNAONQR® T R

marcescens, S. proteamaculans, S. nematodiphila, S. liquefaciens,

S. plymuthica

Sphingomonas sp. S. paucimobilis

Stenotrophomonas sp. S. maltophilia, S. acidaminiphila

Rhizobium sp. R. pusense, R. leguminosarum, R. tropici, R. etli, R. phaseoli,
R. trifolii, R. japonicum, R. lupine, R. meliloti

(continued)
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Table 3.1 (continued)

Genus
Fungus
Acremonium sp.

Arbuscular mycorrhizal

(AM) fungi

Beauveria sp.
Aspergillus sp.

Chaetomium sp.
Clonostachys sp.
Isaria sp.
Metarhizium sp.
Purpureocillium sp.
Penicillium sp.

Syncephalastrum sp.

Talaromyces sp.
Trichoderma sp.

Species

A. strictum, A. zeae

Rhizophagus intraradices, Funneliformis mosseae, Glomus
intraradices, Glomus mosseae, Gigaspora sp., Acaulospora sp.,
Scutellospora sp., Sclerocystis sp.

B. bassiana, B. brongniartii, B. araneola

A. terreus, A. niger, A. aculeatus, A. oryzae, A. nidulans,
A. fumigatus, A. flavus, A. versicolor, A. awamori

C. globosum

C. rosea, C. solani, C. rhizophaga

L. fumosorosea, 1. javanica, 1. poprawskii, I. farinosa

M. brunneum, M. robertsii, M. anisopliae

P. lilacinum

P. simplicissimum, P. bilaii, P. vermiculatum, P. expansum,
P. citrinum

S. racemosum

T. flavus, T. wortmannii, T. pinophilus

T. viride, T. asperellum, T. harzianum, T. atroviride, T. polysporum,
T. koningiopsis, T. gamsii, T. virens, T. longibrachiatum, T.
hamatum, T. reesei, T. citrinoviride, T. brevicompactum, T. koningii,
T. arundinaceum, T. ovalisporum

produced by solid-state fermentation technology. The viruses and nematodes
(possessing PGP traits) are scaled up by means of their alternate host or tissue
culture method (Gopalakrishnan et al. 2016). It is important to select multiple
compatible consortia forming beneficial associations with rhizo-microbiome, thus
having a better chance to survive and provide multiple benefits to the host plant/crop,
as compared to the single-strain bioformulations (Singh and Trivedi 2017,
Wallenstein 2017). The PGPM formulation should possess:

00 O\ AW

. High rhizosphere competency

. Ability to enhance the plant growth

. Highly competitive saprophytic ability and be more efficient

. The ease of mass production or multiplication

. The broad spectrum of action

. Reliable control

. Environmentally friendly and compatibility with other rhizobacteria

. The ability to tolerate heat, desiccation, oxidizing agents, and UV radiations

(Nakkeeran et al. 2005)
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3.7.2 Selection of Carrier Materials

In bioformulation development, carrier comprises the major portion of the inoculant
(by volume or weight). It is used to deliver the PGPM (or active ingredient) in
suitable physiological condition. The carriers include the following categories
(Bashan et al. 2014): soils (coal, clays, peat, and inorganic soil), plant waste
materials (composts, farmyard manure [FYM], wheat bran, press mud, spent mush-
room compost, plant debris, etc.), inert carrier materials (ground rock phosphate,
talc, vermiculite, perlite, etc.), lyophilized microbial cultures and oil-dried bacteria
(these can be used as such or can be incorporated into a solid carrier), and liguid
inoculants (like emulsions, oils, and broth). The carrier helps in protection and
stabilization of cells during storage and transportation to the target site. These can
be organic, inorganic, or synthesized from specific molecules. The desirable
characteristics of an ideal carrier with organism (bioformulation) include (Bashan
et al. 2014; Sahu and Brahmaprakash 2016):

. Increased shelf life and stability (5-30 °C).

. Deliver appropriate number of viable cells.

. Cheaply and nearly sterilized to deliver the appropriate microbe.

. It should be chemically and physically uniform.

. It should be suitable for numerous microbes and must have high water-holding
capacity.

. It should be eco-friendly, i.e., nonpolluting, biodegradable, and nontoxic.

. It should not be phytotoxic to the crop plants.

. It should be well dissolved and release active component in water.
9. It should be able to tolerate adverse environmental conditions.

10. It should be able to work in diverse field conditions and soil types.

11. It should be cost-effective and compatible with agrochemicals.

12. It should be easily manufactured, and carrier material must be cheap and easily

available.

13. It should be able to improve soil properties and resist pH changes during storage.

14. Its release in entrapped formulation should not be too fast or too slow.

15. It should complete the BIS norms for biofertilizers.

DN AW N -

[c BN R

3.7.3 Application/Delivery Methods

The bioformulations come in various dispersal forms such as dry products (dusts,
granules, and wettable powders), liquid products (oil, water, and emulsions), and
slurry and microencapsulation (in polymeric matrix). The use of different
bioformulations depends on the need of the type of crop, choice of farmers, market
availability, and cost (Bashan et al. 2014). They can be readily delivered through
soil, seed, rhizomes, setts, and foliage or through the combination of these methods
(Nakkeeran et al. 2005). The seed inoculation/treatment uses the cell suspensions of
specific microbe or the bacteria incorporated in dry products that can grow in
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association with plant roots. For example, the seed treatment with Pseudomonas
fluorescens at the rate of 100 ml/kg of carrot (Daucus carota subsp. sativus) seeds
led to increase in yield and suppress root-knot nematode (Seenivasan 2018). The soil
inoculation with solid or liquid bioformulations is more convenient because of the
less time required for application. In this regard, direct soil delivery of PGPM will
elevate the population dynamics of augmented microbes in plant rhizosphere.

3.8 Conclusion

The conventional agriculture depends on the use of agrochemicals which is mainly
exploited to increase the crop yield. It has a profound negative effect on the
environment leading to pollution and degradation of natural habitats. The use of
PGPM is a promising approach for sustainable and eco-friendly agriculture. The
field application of bioformulation to crop plants is much less effective, mainly due
to the varying climatic conditions and the type of carrier material. Therefore, the
bioformulation efficacy needs to be enhanced through the usage of compatible
mixture of PGPM rather than using a single agent. The development of
bioformulation with more than one PGPM will ensure at least one of the mechanisms
to function under field conditions. The bioformulation containing multiple strains
will have the enhanced efficacy, reliability, and broad spectrum of action and can
operate under variable environmental conditions. They are also involved in the
remediation of pollutants and heavy metals from the soil and have a great potential
to improve plant and soil health (Shelake et al. 2018).

The worldwide market for bioformulation has many products that have been
commercialized for use in different crops. The development of new microbial
bioformulations is a complex process. It requires competence and strong collabora-
tion of experts in various fields. The product must be produced on a large scale,
preserved, and formulated to ensure the biocompatibility. The production processes
are patented before commercial use of the product. However, despite a huge number
of patents, there are only a few products which have been registered for agricultural
application (Timmusk et al. 2017). The future challenge is to produce more eco-
nomic and improved mixed bioformulations at industrial scale with longer shelf life,
increased effectiveness, and higher microbial count in varying field conditions.
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