
Microbial Ecosystem and Anthropogenic
Impacts 1
Lalita Vithal Baragi, Dhiraj Dhondiram Narale,
Sangeeta Mahableshwar Naik, and K. M. Rajaneesh

Abstract

Oceans are the most vulnerable sites for anthropogenic waste from domestic as
well as industrial origin. Usually, marine ecosystems are exposed to most anthro-
pogenic stressors ranging from sewage disposal to nuclear waste contaminants.
Most recent threats to marine ecosystems are ocean warming and ocean acidifi-
cation (related to anthropogenic emission of CO2), oil (tarball), and (micro)
plastic contamination, which is proved to have a devastating impact on the marine
ecosystem. Microbes are abundantly present in marine ecosystems playing essen-
tial roles in ecosystem productivity and biogeochemistry. Generally, microbial
communities are the initial responders of these stressors. Altered microbial
communities in response to these stressors can, in turn, have adverse impact on
the marine ecosystem and later on humans. In this review, we highlight the effect
of oil pollution, microplastics, and increased CO2 on the marine microbial
ecosystem. The information on the impacts of such stressors on microbial
communities will be valuable to formulate appropriate remediation approaches
for future use.
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1.1 Introduction

It is well known that two-thirds of planet Earth is covered by marine waters (Charette
and Smith 2010). These waters have a significant role in the global biogeochemical
cycles, which sustains the life in the ocean (Schlesinger 1997; Sarmiento and Gruber
2006). Even though the standing crop of marine ecosystems represents 1% of the
terrestrial biomass, it contributes to approximately half of the biomass produced on
Earth (Gruber et al. 2009; Hader et al. 2011). Among the marine ecosystems,
one-half of global primary production occurs in the oceans (Falkowski et al. 1998;
Field et al. 1998). Oceans also control the climate and weather pattern. Therefore, the
ocean has a significant effect on the biosphere and much of life on Earth.

In recent years, exploitation of the ocean by human-derived activities such as
fishing, tourism, oil exploration, maritime transport, and industrial activities has a
substantial impact on the marine ecosystem (Nogales et al. 2011; Halpern et al. 2007,
2008). These activities affect different trophic levels of marine food web, which
comprises microorganisms to animal predators. According to a recent study, the vast
region of the world ocean is forecasted to have medium to high impact from these
stressors (Halpern et al. 2008). Most recent stressors to these ecosystems are ocean
warming and ocean acidification and oil (tarball) and microplastic contamination,
which are proved to have a devastating impact on the marine ecosystem, mainly
biology of the ecosystem.

Ocean warming and ocean acidification are the result of increasing concentration
of atmospheric CO2 (Caldeira and Wickett 2003; Orr et al. 2005) and are now being
recognized as a major responsible factor for change in the biological system of the
oceans (Lovejoy and Hannah 2005). Presently, the concentration of atmospheric
CO2 has reached 400 ppm from 280 ppm from preindustrial revolution (NOAA/
ESRL; Stocker et al. 2013) with ~0.5% year�1 rising rate (Forster et al. 2007).
Approximately one-third of the anthropogenic CO2 generated is absorbed by the
oceans and will help moderate future climate change (Sabine et al. 2004). This
resulted in a decrease in pH by 0.1 unit (referred to as ocean acidification) and rise in
temperature by 0.85 �C (referred to as ocean warming) (Raven et al. 2005). By the
end of this century, the concentration of atmospheric CO2 is predicted to reach
800–1000 μatm by the “business as usual” CO2 emission scenario climate models,
which will further decrease the pH (0.3–0.4 units) and increase the temperature
(1–4 �C) (Stocker et al. 2013; Caldeira and Wickett 2003). Elevated CO2 concentra-
tion will result in an increase in H+ concentration (100–150%), which will negatively
affect the marine organisms, especially calcifying organisms (Haugan and Drange
1996; Brewer 1997).
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Oil pollution is another threat to the marine environment presently. Oil spills
mainly arise from either accidents or oily discharges from ships (Solberg 2012).
Operational discharges from tankers cause the majority of the oil pollution cases.
The effect of the spills on the marine ecosystem depends on several factors such as
the quantity and quality of spilled oil, the sensitivity of the organisms exposed to the
oil, location, depth, season, and meteorological and oceanic conditions (Fukuyama
et al. 1998). These oil spills mainly have negative consequences on the ecology of
the marine ecosystem (Fukuyama et al. 1998).

To some extent, oceans are also used as dumping sites for debris from human
activities. Marine debris comprised of manufactured solid material, of which
60–80% consists of plastic (Gregory and Ryan 1997). According to a study, an
estimated 1.3 plastic items can be found for every m2 of shoreline worldwide, which
is believed to be a significant threat to the marine ecosystem (Bravo et al. 2009).
More than 267 species worldwide are impacted by this debris either by ingestion or
entanglement (Gall and Thompson 2015). Plastics having size range between
333 μm and 5 mm are called microplastics. Smaller particles (<1 μm) also exist in
marine waters but are less often detected (Arthur et al. 2009). The most commonly
found micro-debris particles include polyethylene, polypropylene, and polystyrene
(Andrady 2011). These are ubiquitous in marine environments. However, the harm-
ful effects of microplastic on the marine food web are less known (Derraik 2002).
Possible threats to the marine food web may include physical harm from ingestion,
leaching of toxic additives, and desorption of persistent, bioaccumulative, and toxic
chemicals (Nobre et al. 2015). Current literature revealed that some planktons and
many classes of invertebrates and vertebrates are known to ingest and accumulate
microplastics, as the size of microplastic falls in the same size range as their natural
food (Wright et al. 2013).

Ocean warming, ocean acidification, oil (tarball) pollution and microplastic
contamination have instant and long-lasting effects on marine organisms, from
basic to complex life forms and from the cellular to the community levels. Keeping
in mind the extent and the tenacity of the impact from these threats, workable and
effective methods for remediation are essential. This chapter delivers a synopsis of
the cause of the three key recent threats to marine environments, ecological pro-
cesses, and transformation in the marine food web. Prospects for possible solutions
are also discussed.

1.2 Anthropogenic Impact on Marine Organisms

1.2.1 Rising Atmospheric Carbon Dioxide: Ocean Acidification
and Warming

Since the industrial revolution, due to rapid industrialization, the carbon dioxide
concentration (pCO2) has increased from 280 ppm to the present level of 400 ppm
(NOAA/ESRL; Stocker et al. 2013). This has resulted in 0.1 unit reduction in pH
(referred to as ocean acidification) and 0.85 �C rise in seawater temperature (referred
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to as ocean warming) (Raven et al. 2005). By the end of this century, the concentra-
tion of atmospheric CO2 is predicted to reach 800–1000 μatm by the “business as
usual” CO2 emission scenario climate models, which will further decrease the pH
(0.3–0.4 units) and increase the temperature (1–4 �C) (Stocker et al. 2013; Caldeira
and Wickett 2003). Significant warming and acidification incidents have occurred in
the earth’s history, resulting in considerable changes in marine communities
(Pelejero et al. 2010; Hönisch et al. 2012) and numerous mass extinctions (Pelejero
et al. 2010; Clarkson et al. 2015). Though these acidification and warming incidents
are not the same as present as their pace was much slower compared to the present
(Pelejero et al. 2010). Thus, based on past histories, we cannot forecast the impacts
of acidification and warming on marine organisms, and hence in recent years, there is
increasing research in this area.

In marine organisms, ocean acidification affects their metabolism, acid-base
balance, and calcification (Chan et al. 2012; Pörtner et al. 2004; Pörtner 2008;
Ries et al. 2009; Nilsson et al. 2012; Andersson and Gledhill 2013; Lane et al.
2013; Mostofa 2016). The marine organisms show species-specific (Hendriks et al.
2010; Kroeker et al. 2010, 2013; Harvey et al. 2013) and habitat-specific response
(Andersson et al. 2008; Clark et al. 2009) to ocean acidification. Bacterial commu-
nity structure and diversity is also known to change in acidified conditions (Allgaier
et al. 2008; Kerfahi et al. 2014; Witt et al. 2011; Lidbury et al. 2012). Phytoplankton
may either benefit from rising pCO2 or be affected by the related reduction in pH
depending on species (Gao and Campbell 2014; Torstensson et al. 2015). In phyto-
plankton, acidification influences their growth, energy allocation, photosynthesis,
calcification, carbon acquisition, cellular fluxes, particulate carbon production, ele-
mental composition, and biochemical composition (Rost et al. 2006; Rickaby et al.
2010; Sett et al. 2014; Bautista-Chamizo et al. 2016; Jin and Gao 2016; Kottmeier
et al. 2016). Phytoplankton shows species-specific response to acidification such as
positive, neutral, and negative (Gao et al. 2012; Johnson et al. 2013; Baragi and Anil
2016; Jin and Gao 2016). Such variation in response might be due to variation in
carbon-concentrating mechanism (CCM), which uses high metabolic energy to
transport and convert HCO3

� into CO2 around RuBisCO in the cell under CO2-
limited condition (Raven et al. 2008; Reinfelder 2011). Under the acidified condi-
tion, the elevated CO2 downregulates CCM, thus reducing the energy demand of the
cell (Burkhardt et al. 2001; Beardall and Raven 2004; Spijkerman 2008; Holtz et al.
2015; Wu et al. 2015).

A meta-analysis reported the effect of moderate acidified condition (936 μatm) on
all animal taxa (corals, echinoderms, mollusks, crustaceans, fishes) with more
significant impact on those having weak acid-base regulation abilities and calcified
structures (corals, echinoderms, and mollusks); however, crustaceans are relatively
unaffected (Wittmann and Pörtner 2013). Compared to non-calcifying organisms,
calcifying organisms are highly susceptible to acidification (Hendriks et al. 2010;
Kroeker et al. 2010; Byrne and Przeslawski 2013); however, few calcifying
organisms are robust to acidification either due to their adaptive capacity to naturally
acidic habitats (Talmage and Gobler 2011) or due to the higher buffering ability of
local waters (Range et al. 2012). Recently, it has been observed that ocean
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acidification affects some non-calcifying organisms (Wage et al. 2016; Borges et al.
2018). Invertebrates are capable of tolerating acidification by investing more energy
in compensatory mechanisms like maintenance of acid-base homeostasis rather than
basic mechanisms like growth and reproduction (Pörtner 2008; Melzner et al. 2009;
Kroeker et al. 2013; Xu et al. 2016).

On the other hand, warming significantly affects growth and metabolism of
marine organisms (Eppley 1972; Brown et al. 2004), consequently changing their
abundance and distribution (Thomas et al. 2004; Harley et al. 2006). Organisms
show species-specific response to temperature and rely on the organism’s thermal
tolerance window and its capability to adapt to varying temperature. Beyond these
limits, the rising temperature can impose physiological stress and a decline in
biochemical and metabolic processes such as development and growth in the
organisms (Pörtner and Farrell 2008; Poloczanska et al. 2014). Under warming
situations, organisms might display poleward migrations as organisms generally
adapt to warming by shifting to regions with optimal temperature (Nguyen et al.
2012; Kamya et al. 2014; Poloczanska et al. 2014). Moreover, warming is also
predicted to have severe negative impacts on tropical species than temperate as the
former species have already comparatively small thermal windows and are usually
living near their maximum thermal limit (Stillman and Paganini 2015). Phytoplank-
ton shows enhanced photosynthesis, growth, calcification, and reduction in size in
response to warming (De Bodt et al. 2010; Müller et al. 2014; Sett et al. 2014). In
natural plankton community, warming increased phytoplankton abundance
(Lewandowska et al. 2014) and changed the distribution of phytoplankton groups
(Thomas et al. 2012). Warming is the significant reason for the speedy reduction
(~1% yearly) of phytoplankton biomass globally (Boyce et al. 2010), with diatoms
being the significantly affected group (Toseland et al. 2013). Further, warming is
forecasted to cause a reduction in tropical phytoplankton diversity and a poleward
shift in the species’ thermal niches (Thomas et al. 2012).

In the future climatic scenario, both acidification and warming are known to
co-occur. Some studies reported positive synergistic effect of these stressors on some
species of phytoplankton wherein it caused an increase in growth and repair rate of
UV-damaged PSII machinery of microalgae (Connell and Russell 2010; Fiorini et al.
2011; Li et al. 2012). However, other studies reported the insignificant synergistic
effect of these stressors on cyanobacteria (Fu et al. 2007; Hutchins et al. 2007) and
coccolithophores (De Bodt et al. 2010). Some microalgal species showed
temperature-dependent response to acidification, wherein the optimum temperature
for the growth, carbon fixation, and calcification increased under elevated pCO2 in
contrast to ambient pCO2 concentration (Sett et al. 2014). Our understanding of the
effect of acidification and warming is limited only to single species of microalgae.
However, few studies have been carried out to know the response of the natural
microalgal community to these stressors (Kim et al. 2006; Calbet et al. 2014;
Sommer et al. 2015). Moreover, very limited snapshots are available for prolonged
adaptation of microalgae to acidification (Lohbeck et al. 2012; Jin et al. 2013;
Low-Décarie et al. 2013; Jin and Gao 2016). Marine invertebrates show species-
specific response to the synergistic effect of acidification and warming. Acidification
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is known to shorten the thermal window of some species, thus making them highly
susceptible to warming (Schalkhausser et al. 2013). However, in other species, there
was no such effect observed (Zittier et al. 2015).

In invertebrates, compared to adults, the larval and initial life phases of
invertebrates are severely susceptible to acidification and warming (Dupont et al.
2010a; Kroeker et al. 2013). Thus, it is crucial to emphasize on the effects of altering
environmental conditions on larval phases as they signify a bottleneck for
populations that try to tolerate the altering environmental conditions (Havenhand
et al. 2008; Dupont et al. 2010b). Any influence on larval development and growth
will show a high impact on population. The larval sensitivity to these stressors
differs with individuals and taxa because of the variation in the maternal nutritional
and energetic investment and history (Byrne et al. 2009; Przeslawski and Webb
2009; Donelson et al. 2012). Some studies have observed significant “carryover”
effects from one life stage to another (transgenerational effect) (Kurihara 2008;
Putnam and Gates 2015; Manno et al. 2016; Borges et al. 2018). For example,
Parker et al. (2015) reported that larvae and juveniles of barnacle were able to
survive better under acidified conditions due to positive carryover effects from an
adult. Thus, it is essential to investigate the impact of these stressors on different life
stages through parental and transgenerational effects.

Acidification and warming may indirectly drive ecological change through biotic
interactions, which are the crucial “pressure point” (Gaylord et al. 2015). Studies
also discovered that most remarkable impacts of acidification and warming would
arise through changed species interactions (Rossoll et al. 2012; De Kluijver et al.
2013; Poore et al. 2013; Kroeker et al. 2014). Recently, it is observed that food
supply alleviates the negative effects of these stressors on marine invertebrates
(Melzner et al. 2011; Thomsen et al. 2013; Asnaghi et al. 2014; Pansch et al.
2014; Uthicke et al. 2015, 2016; Ramajo et al. 2016).

1.2.2 Oil (Petroleum/Tarball) Pollution

Petroleum is one of the common contaminants in the aquatic environment. As a
consequence of rising global demand for energy, there is increased crude oil
exploration and transportation in the marine environment, thus making them vulner-
able to crude oil pollution (National Research Council 2003). Oil spill as a result of
accidents or discharge of ballast waters is a common occurrence nowadays. On the
contrary to the common belief, even the small oil spills and their repetitive nature can
have an immediate adverse biological impact on marine biota, thereby affecting the
marine ecosystem functioning (Brussaard et al. 2016). In addition to the tanker-
derived oil pollution, land-derived inputs due to urbanization and industrialization
coupled with domestic petroleum production also contribute to coastal oil pollution
(Zakaria et al. 2000). The compounds such as isoprenoid alkanes, steranes, hopanes,
and polycyclic aromatic hydrocarbons (PAH) have been proposed as the molecular
compounds or biomarker to identify the sources of oil pollution (Zakaria et al. 2000).
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Of all the marine life forms, planktonic organisms are prone to oil spill contami-
nation. Planktons are on the mercy of currents and hence cannot avoid the crude oil
areas, compelling them into the polluted waters and causing unplanned encounters
with the polluted regions. The crude oil effect on marine species has gathered
attention from ages; however, mostly higher organisms have been in the limelight
compared to the marine microbes. Phytoplankton plays a vital role in biogeochem-
istry of the marine ecosystem, and hence any alterations in the ecosystem can have a
profound effect on the food web dynamics. PAHs, a significant fraction of crude oil,
are primarily responsible for crude oil toxicity in phytoplankton (Ozhan and Bargu
2014). They even accumulate in the sediment, posing a severe threat to the benthic
community (e.g., Ozhan and Bargu 2014). Oil pollution can result in acute and
chronic effects of phytoplankton productivity and community composition which
can alter the whole planktonic ecosystem. Therefore, any alterations due to
contaminants can result in ecosystem alterations (Othman et al. 2018), while some
work has suggested a positive impact of crude oil on water chemistry which has
enhanced the phytoplankton biomass. Most studies have shown that it has negatively
altered the growth of phytoplankton. This impact is also determined by the concen-
tration of crude oil exposed to the phytoplankton (Huang et al. 2011). Several factors
influence the harmfulness of crude oil to phytoplankton, and it is not clear. Echeveste
et al. (2011) found that the phytoplankton cellular size was key factor in determining
the susceptibility to PAHs, with the pico-sized group showing the synergistic
relationship between PAHs and UV radiation. Temperature is also another critical
factor influencing the toxicity of crude oil in phytoplankton as demonstrated by
Huang et al. (2011). They showed that Skeletonema costatum was highly tolerant to
water-accommodated fraction (WAF) during winter but in summer even low con-
centration of WAF restricted their growth. They attributed this to the increased
metabolic rate due to increased temperature resulting in more excellent absorption
on toxicants.

Zooplankton is also the key player in marine food web dynamics, biogeochemical
processes, and fish population dynamics (Banse 1995; Castonguay et al. 2008;
Alcaraz et al. 2010). The impact of crude oil on zooplankton depends on several
factors such as type of species, life stages, size, oil concentration, chemical disper-
sant, exposure time, temperature, salinity, UV radiation, etc. (Almeda et al.
2013a, b). The impact of oil on the zooplankton can also be reduced or counteracted
by the presence of another organism which is important in the fate or degradation of
crude oil in the marine environment (Almeda et al. 2013b). The effect of
hydrocarbons on marine includes changes in feeding behavior, growth, and repro-
duction (Almeda et al. 2013a, b).

1.2.3 Plastic Pollution

In the ocean, plastic debris is ubiquitous and abundantly reported in natural habits.
Plastic waste in the oceans was firstly reported in the 1970s (Carpenter et al. 1972;
Carpenter and Smith 1972; Colton and Knapp 1974); afterward, they had got little
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public attention. Over a period, the ocean contains over 150 million metric tons of
plastic (MacArthur et al. 2016). About 8 million metric tons of plastics waste enters
marine environment, annually (Jambeck et al. 2015; Science Daily, 12 February
2015). By 2050, there will be excess plastic (based on weight) in the oceans
compared to fish (MacArthur et al. 2016). Depending upon polymers used, plastic
material can persevere up to several years (2–450 years) (Kibria 2018). Thus, plastic
pollution is persistent in the oceans and has adverse ecological effects. Accumulation
of marine plastic litter over a period has openly threatened marine biota.

In nature, plastic litter gets fragmented by UV radiation, hydrolysis, oxidation
physical abrasion, and/or biodegradation into micro- or nanoscopic particles. Based
on the size, they are referred to as nano- (<1 μm) and microplastics (1–5 mm)
(Germanov et al. 2018). However, in most scientific articles, particles smaller than
5 mm are referred to as microplastics (Arthur et al. 2009; Andrady 2011; Hidalgo-
Ruz et al. 2012). Depending on the source of origin, these fragmented plastics are
called as secondary microplastics (Andrady 2011; Mrowiec 2017; Germanov et al.
2018). The primary microplastics arise from makeup products, dyes, fabrics, and
waste from plastic industry (Mrowiec 2017; Germanov et al. 2018). A particular
concern over microplastic debris over large size plastic litter is that they remained
under-investigated due to their non-visibility to the naked eye. Incidences on the
entanglement or ingestion of plastic material by marine species are extensively
documented worldwide (Laist 1997; Clapham et al. 1999; Mascarenhas et al.
2004). Overall, the accumulation of large plastics remains stable or disappears,
whereas that of microplastic rises (Eriksen et al. 2014). Scientific investigations
reported the devastating effect of microplastics at higher trophic organisms. How-
ever, the possible impact of microplastics is under-evaluated on marine
microorganisms, which are the foundation of marine food web. Considering this
fact, the present section is restricted toward only the influencing mechanisms of
microplastics on diverse marine microorganisms.

Plastics are incredibly resistant to biodegradation because of their high molecular
weight and hydrophobicity. However, some microbial species have the ability to
biodegrade the plastic material (Sivan et al. 2006; Shah et al. 2008; Mor and Sivan
2008; Harshvardhan and Jha 2013). The biodegradation process is generally initiated
by surface assimilation of organic molecules on the microplastic, which further
supports bacterial colonization (biofilm formation) (Gilan et al. 2004; Mor and
Sivan 2008; Balasubramanian et al. 2010). Scanty information is available on the
exact mechanisms involved in the biodegradation. Possibly biodegradation could be
due to the interplay of various oxidative mechanisms caused by the microorganisms
alone or in combination with the atmospheric oxygen, and the mechanisms would be
complicated (Glass and Swift 1989). However, studies have proved that biodegra-
dation process may reduce the weight of plastic molecules (Harshvardhan and Jha
2013) and surface hydrophobicity (Gilan et al. 2004).

The microplastic-associated microbial community is remarkably different from
those present in the adjacent water (Ogonowski et al. 2018; Parrish and Fahrenfeld
2019). In water, the microbial population and metabolic processes depend on the
quality of dissolved organic matter (Ruiz-González et al. 2015; Pernthaler 2017).
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The microplastic-derived dissolved organic carbon attracts suitable microbial popu-
lation, which could differ from the natural one. This difference in the utilization of
carbon substances could partially explain the profile difference between the
microplastic microbes and microbes present in adjacent water (Arias-Andres et al.
2018). Microplastics are known to release carbon thus, can affect the other free-
living bacterial population by adding to dissolved organic carbon pool (Arias-
Andres et al. 2018) and particulate organic matter bioavailability (Zhang et al.
2016). Considering the additional volume of anthropogenic dissolved organic car-
bon escaping from the tons of plastic per year (up to 23,600 metric tons from 4.8 to
12.7 million tons of plastics in 2010) entering marine environment (Romera-Castillo
et al. 2018) could influence the natural carbon cycle in the ocean.

The genetic diversity within the microplastic biofilms increases gene transfer,
which can affect the metabolic diversity of different microorganisms (Fazey and
Ryan 2016; Rummel et al. 2017; Arias-Andres et al. 2018). This could further
modulate various biochemical functions (Flemming et al. 2016) and bioadsorption
capabilities of different toxic chemical and metal molecules on microorganisms. It is,
therefore, the microbial biofilm formation on the consistently accumulating
microplastics in the environment that can not only influence the fate of microplastic
itself (Rummel et al. 2017) but also their impacts on the working of whole
microbiomes (Arias-Andres et al. 2018). Ecologically also, plastic debris has an
essential role in the spread of invasive, harmful microorganisms and algae species
(Maso et al. 2003; Bryant et al. 2016; NOAAMarine Debris Program 2017) and thus
changes in microbial biogeography. Biofilms established on microplastic attract
other fouling organisms (biofouling), which do enhance microplastic sinking (Kaiser
et al. 2017). The developed biofilm increases the sinking velocity of negatively
buoyant microplastics, whereas macrofouling causes positively buoyant
microplastics to sink (Kaiser et al. 2017). Further sinking in marine aggregates
could further impact other planktonic and benthic feeding organisms (Long
et al. 2015).

Plastic can concentrate contaminants such as persistent organic pollutants and
heavy metals and increase their concentration up to 106 order (Mato et al. 2001).
Moreover, plastic can act as vectors of contaminants which are already present in the
waters, thus increasing their harmfulness to marine species (Bejgarn et al. 2015).
Enormous literature is available on the effect of nanoparticles together with
contaminants on higher-trophic-level organisms. However, the datasets on the
toxicological effect of nano- or microplastic particles on common marine microbes
(bacterial, phytoplankton) are limited. These studies are mostly based on synthetic
microplastic particles under laboratory conditions. Hydrophobic contaminants such
as persistent organic pollutants (POPs) get readily accumulated on the surface of
plastics (Avio et al. 2017; Bhattacharya et al. 2010). The degraded or aged
microplastics have uneven outer layers, which further promote POP adsorption
(Cole et al. 2011). However, contradictorily, recent laboratory studies revealed
microplastic surfaces modulate the toxicity of pollutants and made them less avail-
able to the microorganisms (Garrido et al. 2019; Yi et al. 2019). A recent study
observed that polyethylene microplastics alone do not have any inhibitory effect on
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Isochrysis galbana, whereas the negative effect was observed upon exposure to
chlorpyrifos (CPF) in lethal concentration (2–3 mg L�1) (Garrido et al. 2019).
However, upon following incubation, chlorpyrifos gets adsorbed on the microplastic
surface and not much available for microalgae. Similarly, Yi et al. (2019) observed
adsorption of triphenyltin chloride (TPTCl) on polystyrene surface control bioavail-
ability and toxicity of TPTCl to green algae.

Under laboratory conditions, microplastic toxicity exhibits conflicting results
mainly due to confounding factors of microplastic size and dosages (Long et al.
2017). In Chlorella pyrenoidosa, upon exposure to polystyrene microplastics, dose-
dependent adverse effect was observed at initial growth phases. Initially, in
C. pyrenoidosa, reduced photosynthetic activity, indistinct pyrenoids, and impaired
cell membranes were detected. Later, cellular wall thickening together with homo-
and hetero-aggregation triggers cell growth and algal photosynthesis (Mao et al.
2018). Likewise, a study by Sjollema et al. (2016) observed no effect of polystyrene
microplastics on photosynthetic activity but had effect on the growth rate of marine
flagellate Dunaliella tertiolecta, only at high exposure level (250 mg L�1) with
smaller particle size (0.05 mm). However, in marine diatom Phaeodactylum
tricornutum, the polystyrene nanoparticles (50 and 100 nm) possibly have effects
at different physiological and cellular levels (Sendra et al. 2019). At higher
concentrations (50 mg L�1), smallest (50 nm) nanoparticles significantly damage
the photosynthetic apparatus; damage DNA, depolarization of mitochondria, and
cell membrane; and later inhibit chlorophyll content and population growth. An
adverse effect of micro-PVC (~1 mm) was observed on the growth and chlorophyll
fluorescence of Skeletonema costatum at high level (50 mg L�1); this might have
resulted from the obstruction of alveoli and impairment of cell surface (Zhang et al.
2017). Compared to microplastics, nanoplastics might more actively interact with
microalgal membrane by covering or obstructing the pores or gas exchange
(Bhattacharya et al. 2010). The physiological adaptive strategies of test species
also greatly influence the effect of microplastics. Seoane et al. (2019) observed
that the marine diatom Chaetoceros neogracil modulates the oil body level to
overcome the stress produced upon polystyrene microbead exposure.

In conclusion, the marine microbial population could have a diverse impact on
increasing anthropogenic plastic pollution. Overall, the “plastisphere” could control
the microgeography and microbial diversity in the oceans.

1.3 Concluding Remarks

Human activities have caused marine ecosystems and, in turn, microbial
communities to suffer a lot. Anthropogenic stressors like ocean warming and
ocean acidification (related to anthropogenic emission of CO2), oil (tarball) pollution,
and (micro) plastic contamination have been proved to have a devastating impact on
the marine ecosystem, which can have severe consequences on socioeconomic
levels. Available pieces of literature have revealed significant alterations in marine
species community dynamics. Based on the available literature, we are yet not
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confident enough to predict the functioning of the marine ecosystem in the future,
mainly if the stressor is either still present or increases. Therefore, to know the effect
of these stressors, we need to focus on multidisciplinary approaches/holistic
frameworks linking modeling, observations, and experiments including new
technologies. Further, there is a need to promote awareness within stakeholders
and governments. Thus, with this approach, we may able to take necessary steps to
slow or minimize the impacts of these stressors on the marine microbial ecosystem
and in turn on human populations.
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