Chapter 8)
Imitation Learning Shethie

Zihan Ding

Abstract To alleviate the low sample efficiency problem in deep reinforcement
learning, imitation learning, or called apprenticeship learning, is one of the potential
approaches, which leverages the expert demonstrations in sequential decision-
making process. In order to provide the readers a comprehensive understanding
about how to effectively extract information from the demonstration data, we
introduce the most important categories in imitation learning, including behavioral
cloning, inverse reinforcement learning, imitation learning from observations,
probabilistic methods, and other methods. Imitation learning can either be regarded
as an initialization or a guidance for training the agent in the scope of reinforce-
ment learning. Combination of imitation learning and reinforcement learning is a
promising direction for efficient learning and faster policy optimization in practice.

Keywords Imitation learning - Apprenticeship learning - Demonstration -
Reinforcement learning - Behavioral cloning - Inverse reinforcement learning -
Generative adversarial networks - Sample efficiency

8.1 Introduction

As we know, reinforcement learning (RL), especially model-free reinforcement
learning, suffers from low sample efficiency as discussed in the chapter of present
challenges in reinforcement learning (Chap. 7). Hundreds of thousands of examples
are usually needed to solve an uncomplicated task with human-level performance.
However, humans can learn to solve the tasks with significantly shorter periods of
time and a much smaller number of samples. Apart from improving the efficiency
of reinforcement learning algorithms themselves through more elaborate algorithm
design with mathematical guarantees, we can actually let the agent leverage

Z. Ding (<)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

© Springer Nature Singapore Pte Ltd. 2020 273
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_8&domain=pdf
mailto:zhding@mail.ustc.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_8

274 Z. Ding

additional information resource, like expert demonstrations. The expert demonstra-
tions contain biased choices for the policy with prior knowledge, which can be
distilled and transferred into agent policies in reinforcement learning, through a
proper learning process. The task of learning from an expert is called imitation
learning (IL) (also known as apprenticeship learning). Humans and animals are
born to learn from mimicking other individuals of the same kind, which inspires the
method of imitation learning for an intelligent agent to learn from demonstrations
by others. On the other hand, supervised learning is much more efficient in the
aspect of data usage compared with reinforcement learning, due to the benefits of
labeled data. Therefore, the method of supervised learning can be incorporated into
the agent’s learning process to improve its efficiency if demonstrations are provided
in a labeled format.

In this chapter, we introduce different approaches for learning a policy with
demonstrations. The overview of algorithms and methods in imitation learning
categories is shown in Fig.8.1. We will introduce detailed methods of imitation
learning in the following sections, summarized in several main categories including
(1) behavioral cloning (BC), (2) inverse reinforcement learning (IRL), (3) imitation
learning from observations (IfO, or ILFO in some other literature (Sun et al.
2019)), (4) probabilistic methods, and (5) other approaches. BC is the most simple
and straightforward way of using the demonstration data in a supervised learning
manner, which is widely applied due to its simplicity and is usually regarded as a
cornerstone to build more advanced methods on. IRL is useful in applications where
it may be difficult to write down an explicit reward function specifying exactly
how different desiderata should be traded off. For example, how much attention
should be paid on taking care of different reflectors for automatic driving vehicles
based on visual observations is hard to specify through reward engineering. IRL
is an approach to recover the unknown reward function from the demonstration
data and uses it for further reinforcement learning process. The IfO actually solves
the drawback of imitation learning that it usually requires actions as labels for the
state inputs, which often happens in human imitation learning process. The methods
from a probabilistic inference view include using Gaussian mixture regression or
Gaussian process regression to represent the demonstration data and therefore guide
the action policy, which is a more efficient alternative for deep neural network
methods in some cases. There are also other approaches like directly feeding
demonstrations into a replay buffer for off-policy reinforcement learning, etc. After
introducing basic categories of different imitation learning methods, we will discuss
the relationship of imitation learning and reinforcement learning, like applying
imitation learning as an initialization of reinforcement learning in order to improve
the learning efficiency of reinforcement learning. Finally, we introduce some other
specific methods in imitation learning with reinforcement learning, which are either
combinations of previous conceptions or outliers of the summarized categories as
Fig.8.1.

The concept of imitation learning can be defined with the apprenticeship learning
formalism (Abbeel and Ng 2004): the learner finds a policy m that performs no
worse than expert mg with respect to an unknown reward function r(s, a). We

275

8 Imitation Learning

suyIIo3[e SuILIed] Uuone) Wl Jo MAIAIAQ '8 S

2@ "(Iv9) bulwea] 233 ‘(NDL) syJomIaN 232 (0d71) uoneAIasqo 2312 '(0D8) uoneAssqo

29 '¥I00Va 232 ‘T AdOJUT WNWIXEK UONHEYW] [BLUESISAPY SANRIBUBD BANSEU0I-aI] wouy 53101104 Juale Bupieliw) woyy Buluo|y e1oneyag

A

A

Tuocumz |BLBSIBADY SAJRIBUID _ H BupsauBug-piemay H Tw_uc_z SJIWeUAQ pIBMIOS _ _ |3p0o SJIWeUAQ as1aAu| H

(o8)
Buluo|d |eioiney3g

(141} (o

BUILIRST JUSLUBIIOIUISY 3SIAAU| $5890Ud UEISSNED) UOIBAIBSAQO WOJJ LOIEIILL] FeUDHE I UUHE D SUGELEC]

(nll]
Buiuiea uonejiw|

276 Z. Ding

define the occupancy measure p, € D : § x A — R of a policy 7 € Il
as: pr(s,a) = m(als) Y ;0o v'p(S: = s|m) (Puterman 2014), which is a joint
distribution of state and action estimated with current policy. Owing to the one-to-
one correspondence between I1 and D, an imitation learning problem is equivalent
to a matching problem between p (s, a) and py,(s,a). A general objective of
imitation learning is to learn a policy:

ﬁ = arg min Y (px — prp) — AH (1) (8.1)

where ¥* is a distance measurement between p, and o, and H (;r) is a normaliza-
tion term with trade-off factor A. For instance, the normalization term can be defined
as the y-discounted causal entropy of policy 7: H(w) £ E,[—logm(s,a)]. The
overall goal of imitation learning is to increase the similarity of the distribution of
{(s, a)} samples from current policy and the distribution of those in demonstration
dataset, with respect to the some constraints on policy parameters.

8.2 Behavioral Cloning: Supervised Learning Approach

The imitation learning with demonstrations can be naturally regarded as a super-
vised learning task, if the demonstration data is provided with labels (e.g., a
good action for the state can be regarded as a label). In reinforcement learning
circumstances, the labeled demonstration data D usually contains the pairs of state
and actionas: D = {(s;, q;)|i =1, ..., N}, where N is the size of the demonstration
dataset and index i indicates the s; and a; are at the same time step. The state-action
pairs can be shuffled for training under the MDP assumption, i.e. the optimal action
only depends on the current state. Considering an initial policy 7y parameterized by
6 with input state s and output deterministic action gy (s) in reinforcement learning
settings, we have demonstrations dataset D = {(s;,a;)|i = 1,..., N} generated
from experts, which could be used to train the policy, with an objective as follows:

min) Jlai — e (si)ll3 (8.2)

(si,a;)~D

The cases with stochastic policies 7y (als) in some specific formats, e.g. Gaussian
policy, etc., can be handled as well using the reparameterization trick:

min > lla; — dil|3 (8.3)

6
ai~mw(-lsi),(si,ai)~D

This supervised learning approach to directly imitate the expert demonstration is
called the behavioral cloning (BC) in the literature.

8 Imitation Learning 277
8.2.1 Challenges of BC

e Covariate Shift: Although imitation learning can provide a relatively good
performance for the cases similar to samples in the demonstration dataset (used
for policy training), it could still suffer from bad generalization for samples it
never meets during training, as the demonstration dataset only contains finite
samples. For example, the new samples during testing can be around another
cluster in distribution rather than the same one for training if it is a multimodal
distribution, like applying the classifier for cats on distinguishing dogs in
practice. As the BC approach boils down the decision-making problem to a
supervised learning problem, this well-known problem of covariate shift (Ross
and Bagnell 2010) in machine learning can potentially make the learned policy
brittle, which is challenging in BC methods. Figure 8.2 further elaborates the
covariate shift in BC.

e Compounding Errors: BC suffers greatly from the compounding error, a
situation where minor errors are compounded over time and finally induce a
dramatically different state distribution (Ross et al. 2011). The MDP property of
reinforcement learning tasks is the key factor leading to the compounding error,
i.e. the amplification effect of consecutive errors. The main reason of the error
for each time step can actually be caused by the covariance shift described above,
in BC methods. Figure 8.3 shows the compounding errors.

8.2.2 Dataset Aggregation

Dataset Aggregation (DAgger) (Ross et al. 2011) is a more advanced no-
regret iterative algorithm for imitation learning from demonstrations following the
approach of BC. It proactively chooses demonstration samples that the policy has
larger chances to meet afterwards, according to the previous training iterations,

Testing Samples

Training Samples

Learned Function AR AN X
- — ————---hA—\—-

o

Ground Truth

Fig. 8.2 The covariate shift: the learned function (black dashed line) fits well on the training
samples (orange “cross”), but has large prediction bias on the testing samples (blue dot). The red
line is the ground truth

278 Z. Ding

Fig. 8.3 The compounding Errors at Subsequent (T-t) Time Steps
errors increase along the
trajectory chosen by current
policy in a task with
sequential decisions

Optimal Trajectory

which makes DAgger more effective and efficient for online imitation learning
in sequential prediction problem like reinforcement learning. The demonstration
dataset D is continuously aggregated with new dataset D; for time step i containing
expert actions and corresponding states visited by current policy during the whole
imitation learning process. So, DAgger also has a drawback that it needs to
iteratively interact with the expert, which is usually demanding in real-world
applications. The algorithm of DAgger is shown in Algorithm 1, where 7* is the
expert policy and §; is the parameter for soft-updating the policy at iteration i.

Algorithm 1 DAgger

1: Initialize D <« ¢.

2: Initialize the policy 7] to any policy in policy set IT.

3: fori=1,2,...,Ndo

4 m o~ Bt + (1= B

5: Sample several T-step trajectories using ;.

6 Get dataset D; = {(s, 7*(s))} of visited states by m; and actions given by the expert.
7 Aggregate datasets: D < D U D;. Train current policy ;1 on D.

8: end for

9: Return policy Tn+1.

8.2.3 Variational Dropout

A method for alleviating the generalization problem in imitation learning is pre-
training with variational dropout (Blau et al. 2018), instead of fully cloning
the behavior of expert demonstrations in BC methods. The weights pre-trained
with the demonstration dataset are parameterized as Gaussian distributions with
Gaussian dropout of a certain variance threshold value for initializing reinforcement
learning policies. Variational dropout approach for imitation learning (Molchanov
et al. 2017) can be taken as a more advanced method for generalization than noise
injection in the weights of pre-trained neural networks, it reduces the sensitivity

8 Imitation Learning 279

of choosing the magnitude of noise, which is a useful technique when applying
imitation learning for initializing reinforcement learning.

8.2.4 Other Methods in BC

Some other concepts are involved in behavioral cloning as well. For example,
some methods provide ways to generalize demonstrations to more general scenarios
in a task using framework like dynamic movement primitives (DMPs) (Pastor
et al. 2009), which apply a set of differential equations to represent any recorded
movement. The differential equations in DMP usually contain adjustable weights,
as well as non-linear functions to allow the generation of arbitrarily complex
movements. Therefore DMP is more of an analytical-form solution compared with
the “black-box” deep learning methods in behavioral cloning. Moreover, there exists
a method in one-shot imitation learning (Duan et al. 2017) using soft attention on
demonstrations to generalize model to unseen scenarios in training data. It is a meta-
learning scheme to map one demonstration of one task to an effective policy for a
variety of tasks. There are some other methods, which will not be discussed here.

8.3 Inverse Reinforcement Learning Approach

Another major category of imitation learning approaches is composed of techniques
based on inverse reinforcement learning (IRL) (Ng et al. 2000; Russell 1998).
The IRL problem is defined to be the problem of extracting a reward function
given observed, optimal behavior, represented as expert policy mwg. Instead of
directly learning a mapping from states to actions using the demonstration data,
IRL-based methods iteratively alternate between using the demonstration to infer
a hidden reward/cost function and using reinforcement learning with the inferred
reward function to learn an imitating policy. IRL chooses the reward function R
to make the policy optimal and moreover to favor solutions that make any single-
step deviation from wg as costly as possible. For all reward functions R satisfying
|R(s)] < Rmax, Vs, IRL method chooses the R* following:

R* — e _ e .
argmgXZ(Q (s.ag) = max 07(s, a)) (8.4)
seS
where ap = mg(s) or agp ~ m(-|s) is the expert (optimal) action. IRL-

based techniques have been used for a variety of tasks such as maneuvering a
helicopter (Abbeel and Ng 2004) and object manipulation (Finn et al. 2016b). IRL
(Ng et al. 2000; Russell 1998) tries to extract a reward function from observed
optimal behavior, like the expert demonstrations, but the reward function may not be
unique (discussed later). A typical method in IRL is to use maximum causal entropy

280 Z. Ding

regularization, which is maximum entropy (MaxEnt) IRL (Ziebart et al. 2010). The
MaxEnt IRL can be represented as the following two stages:

IRL(7p) = argmax B, [R(s, a)] ~ RL(R) (8.5)

RL(R) = max H(7 (:|s)) + Ex[R(s, a)] (8.6)

which forms the RL o IRL(7wg) policy learning framework. The first formula
IRL(g) learns a reward function to maximize the difference of reward values
between the expert policy and the reinforcement learning policy, and it can be
replaced by Eq. (8.4) as the Q value is an estimation of rewards. The second formula
RL(R) is the entropy-regularized (forward) reinforcement learning with the learned
reward function R from the first formula. The entropy H (7 (-|s)) here is the entropy
of the policy distribution given a specific state.

Shannon’s information entropy of distribution P over random variable X mea-
sures the uncertainty of that probability distribution.

Definition 8.1 The entropy of a discrete random variable, X, distributed according
to pis

Hy(X) =Epx)l—log p(X)] = = Y p(X)log p(X) (8.7)
XeX

For the case of stochastic policies in reinforcement learning, the random variables
are usually aligned in a vector with the same dimension as the action space. The
commonly used distributions are diagonal Gaussian distributions and categorical
distributions, the derivation of their entropy is trivial (referred to the chapters for
algorithms implementation).

It is also common to see the cost function c(s,a) = —R(s,a), which is
minimized in the reinforcement learning process as follows:

RL(c) = argmin —H () + Ex[c(s,)] (8.8)

where H () = E;[—logm(als)] is called entropy of policy 7. The cost function
c(s, a) is usually a measurement of the similarity between distributions from current
policy 7 and the demonstrations dataset. The entropy term H (;r) can be regarded
as a normalization term for the uniqueness of optimality.

By substituting the above formula into the IRL formula Eq.(8.5), we can
represent the objective of IRL in a max—min form, which tries to learn a cost
function c(s, a) of state s and action a with the objective of maximizing the entropy-
regularized reward, as well as learning the policy 7.

max (n}rin —Er [~ log 7 (als)] + Ex[c(s, a)]) — Eax[e(s, a)] (8.9)

8 Imitation Learning 281

where the mg denotes the expert policy for generating expert demonstrations and
7 is the policy trained in reinforcement learning process. The learned cost function
will assign high entropy to expert policy and low entropy to other policies.

8.3.1 Challenges of IRL

* Non-uniqueness of Reward (or Reward Ambiguity): The function search in
IRL is ill-posed as the demonstrated behavior could be induced by multiple
reward/cost functions. It originates from the concept of reward shaping (Ng
et al. 1999), which describes a class of reward transformations that preserve the
optimal policy. The main result is that under the following reward transformation:

Fs,a,s)=r(s,a,s)+yp(s’) —o(s) (8.10)

the optimal policy remains unchanged for any function ¢ : S — R. The reward
function learned with IRL methods from demonstration data only cannot disam-
biguate between reward functions within the class of above transformations.

Constraints are thereby imposed on the rewards or the policy to ensure the
optimality uniqueness of the demonstrated behavior. For example, the reward
function is usually defined to be a linear (Ng et al. 2000; Abbeel and Ng 2004) or
convex (Syed et al. 2008) combination of the state features. The learned policy is
also assumed to have the maximum entropy (Ziebart et al. 2008) or the maximum
causal entropy (Ziebart et al. 2010). These explicit constraints potentially limit
the generability of the proposed methods (Ho and Ermon 2016).

* Intensive Computational Cost: The IRL could learn a better policy from
demonstrations and interactions in the general reinforcement learning process.
However, using reinforcement learning to optimize the policy given the inferred
reward function requires the agent to interact with its environment, which can
be costly from the perspectives of time and safety. Moreover, the IRL step
typically requires the agent to solve an MDP in the inner loop of iterative reward
optimization (Abbeel and Ng 2004; Ziebart et al. 2008), which can be extremely
costly from a computational perspective. However, recently, a number of methods
have been developed, which relieve this requirement (Finn et al. 2016b; Ho and
Ermon 2016). One of these approaches is called generative adversarial imitation
from observation (GAIL) (Ho and Ermon 2016), which will be described in
Sect. 8.3.2.

8.3.2 Generative Adversarial Approach

The generative adversarial imitation learning (GAIL) (Ho and Ermon 2016) borrows
the idea of generative adversarial training in generative adversarial networks

282 Z. Ding

(GANSs) (Goodfellow et al. 2014). The associated algorithm can be thought of as
trying to induce an imitator state-action occupancy measure that is similar to that
of the demonstrator. It applies a discriminator in GAN for providing the estimation
of an action-value function based on demonstrations. In a general process of action-
value based reinforcement learning with algorithms like TRPO, PPO, etc., the action
value is provided from the demonstrations with a generative approach as:

0(s, a) = Ex;[log(De,,, (s, a))] (8.11)

where 7; are samples from explorations for iteration i and D, (s, a) is the output
value from the discriminator with parameters w;+1. The w;+1 indicates the Q-value
is estimated with one-step updated discriminator weights, therefore with iteration
i + 1. The loss function of the discriminator is defined in a general way:

Loss = E7-[V,, 10g(De (s,)] + ET.[V,, log(1 — Dy (s, a))] (8.12)

where the 7;, Tg are samples from explorations and expert demonstrations, respec-
tively. @ are parameters of the discriminator. Figure 8.4 shows the architecture of
GAIL.

With the method of GAIL, the policy can be learned with samples generalized
from demonstrations with lower computational cost, compared with methods via
IRL. It does not need to interact with the expert during training, which happens in
method like DAgger and is sometimes not accessible in practice.

This approach can be further generated to multimodal policy for learning across
tasks. Multimodal imitation learning with GAN (Hausman et al. 2017) applies
a more advanced objective function (additional latent indices for different tasks)

1
1

Expert Rollouts
(States, Actions,
Rewards)

1
1

Expert and Novice
Observations
(States)

1
1

Novice Rollouts
(States, Actions,
Rewards)

States, Actions

Rewards

Policy

e Discriminator
Optimization

Fig. 8.4 The architecture of GAIL, adapted from Ho and Ermon (2016)

8 Imitation Learning 283

in a generative adversarial form, to automatically segment the demonstrations for
different tasks and learn a multimodal policy in an imitation manner.

According to Goodfellow et al. (2014) (details of GANs are introduced in
Chap. 1), with infinite data and infinite computation, at optimality, the distribution of
generated state-action pairs should exactly match the distribution of demonstrated
state-action pairs under the GAIL objective. The downside to this approach,
however, is that we bypass the intermediate step of recovering rewards. Specifically,
note that we cannot extract reward functions from the discriminator, as D, (s, a)
will converge to 0.5 for all (s, a) pairs.

8.3.3 Generative Adversarial Network Guided Cost Learning
(GAN-GCL)

As mentioned above, the GAIL method cannot recover the reward function from
the demonstration data. A similar work named generative adversarial network
guided cost learning (GAN-GCL) optimizes the guided cost learning (GCL) method
based on GAN’s structure, to extract an optimal reward function from the optimal
discriminator trained with the demonstration data. We will describe this method in
details.

The GAN-GCL method (specifically the GCL) is based on the maximum causal
entropy IRL described above, which considers an entropy-regularized Markov
decision process (MDP). The goal in entropy-regularized MDP for reinforcement
learning is to maximize the expected entropy-regularized discounted reward:

T
Tt = argmax e~ [Z YIS, A + H(ﬂ(-l&)))} (8.13)
t=0

which is a more specific term used for learning the policy in practice originated
from Eq. (8.5). It can be shown that the optimal policy 7*(als) gives trajectory
distribution satisfying 7*(a|s) o exp(Q;‘Oft(s, a)) (Ziebart et al. 2010), where

j'(()ft(Sta A =1 (S, A) + Erng [Zt]::t Vt,_t(”(st’, ap) + H(w(-|sy)))] denotes
the soft Q-function (also used in soft actor-critic algorithm).
The IRL problem can be interpreted as solving the maximum likelihood problem:

max Er~, [log py (7)] (8.14)

where mg is the expert policy for providing demonstrations, and py(t)
p(So)]_LT:O p(Si+115;, A,)thre(S”A’) parameterizes the reward function ry(s, a)
but with the dynamics (or transition) and initial state distribution of the MDP.
po (1) is the trajectory-centric distribution of the demonstration data derived from
state-centric wg, pg(t) ~ mg. With deterministic transition p(S;+1|S;, A;) = 1,

284 Z. Ding

this simplifies to an energy-based model pg(7) eXiz0 7' 10(S1,A) (Ziebart et al.
2008). The parameterized reward function can be learned through optimizing
parameters 6 w.r.t the above objective. Similar to processes before, we can
introduce the cost function here as the negative discounted cumulative rewards
cp = _ZtT:O y'rg(S;, A;), parameterized by 6. Then the MaxEnt IRL can
be viewed as modeling the demonstrations using a Boltzmann distribution in a
trajectory-centric formulation, where the energy is given by the cost function cg:

1
po(t) =, exp(=co(1)) (8.15)

where 7 is the state-action trajectory and cy (1) = Zt co(St, Ay), and the partition
function Z is the integral of exp(—cg(t)) over all trajectories consistent with the
environment dynamics, for normalizing the probability. Estimating the partition
function Z is difficult for large-scale or continuous domains, as precise estimation
with dynamic programming for Z can only work in small and discrete domains.
Otherwise we need to use approximated estimation methods, like the sampling-
based GCL method.

GCL uses importance sampling for estimating Z with a new distribution g(7)
(the original demonstration distribution is p(t)) in MaxEnt IRL formulation:

0* = argmein Er~p[—log pe(7)] (8.16)
= argmein E:~pleg(r)] +log Z (8.17)
= argminEc~, (¢ (1)] + log (Em, [eXp(q_(if)(’))D (8.18)

where the 7’ is sampled from distribution ¢ and ¢(t’) gives its probability.
Therefore ¢ can be optimized through minimizing the KL-divergence between g (t”)
and é exp(—cg(t’)) for updating the g(t’) during learning 6 or equivalently as
following:

g* =minE;g[co(r)] 4+ Ec~yllogg(r)] (8.19)

Finn et al. (2016a) proposed to use GAN’s manner for the above optimization
problem, which optimizes the GCL with GAN structure and is similar to the GAIL
method but with different specific formulations.

Note that in GAN the discriminator also tries to approximate one distribution
with the other as:

Dy = PO (8.20)

p(t) +4q(7)

8 Imitation Learning 285

We can apply it here in the GCL of MaxEnt IRL formulation,

L exp(—cy (1))

Dyg(7) =
T L exp(—co () + q (1)

8.21)

which leads to the method GAN-GCL. The policy r is trained to maximize Rg(7) =
log(1 — Dy (t)) — log Dg(7), and the reward function is therefore learned through
optimizing the discriminator. The policy is learned through updating the sampling
distribution g () used to estimate the partition function. If the optimality is reached,
the optimal cost function ¢ = — R} (1) = — Ztho y'ry(S;, A;) can be learned for
evaluating the optimal reward function, and the optimal policy can be derived with
m* = g*. GAN-GCL provides an alternative approach for optimizing the MaxEnt
IRL problem instead of directly maximizing the likelihood.

8.3.4 Adversarial Inverse Reinforcement Learning (AIRL)

As the above GAN-GCL is trajectory-centric, which means the full trajectories are
estimated, it has high variance in estimation compared with estimating the single
state-action pair. The adversarial inverse reinforcement learning (AIRL) (Fu et al.
2017) proposes to directly estimate the single state and action:

Do(s.a) = exp(fo (s, a)) (8.22)

exp(fo(s, a)) + m(als)

where the 7 (als) is the sampling distribution to be updated and the fy(s, a) is the
learned function. The partition function is ignored in the above formula and the
normalization of probability values can be guaranteed with SoftMax operator or
sigmoid output activation in practice. It is proven that at optimality, f*(s,a) =
logm*(als) = A*(s,a), which gives the advantage function of optimal policy.
However, the advantage function is a heavily entangled reward function with a
baseline value subtracted. Fu et al. (2017) argue that the reward function cannot
be robustly recovered for the changes in environment dynamics. Therefore, they
also propose to learn the disentangled reward with AIRL through decoupling the
reward function from the advantage function:

exp(fa,p (s, a,s’))

(8.23)
exp(fo,4 (s, a,s’)) + m(als)

Dy (s, a,s) =

where fy 4 is restricted to a reward approximator gg and a shaping term £ as:

fo.p(s,a,s") = go(s,a) + yhe(s) — he(s) (8.24)

where the extra approximation of h is required.

286 Z. Ding
8.4 Imitation Learning from Observation (IfO)

First, imitation learning from observation (IfO) is imitation learning without fully
observable actions. One typical example of IfO is learning from the videos, in
which the ground-truth actions of objects are not available from the frames only,
but humans can still learn from videos like mimicking the actions. Therefore the
examples of learning from videos are common to see in the literature of IfO.
IfO regards imitation learning from a different perspective, compared with other
methods introduced above. Therefore, there are inevitable overlappings of some
specific methods introduced in this section with some methods introduced above,
but in the IfO category. When you read this section, you should keep in mind that
the IfO methods are in most cases orthogonal to other categories of methods as it
looks at the imitation learning in a different perspective and focuses on the problem
of unobservable actions.

The aforementioned algorithms, however, can hardly handle the demonstrations
with partial or unobservable actions. One idea to learning from these demonstrations
is to first recover actions from states and then adopt standard imitation learning
algorithms to learn a policy from the recovered state-action pairs. For example,
Torabi et al. recover actions from states by learning a dynamic model of state
transitions, and then use a BC algorithm to find the optimal policy (Torabi et al.
2018a). However, the performance of this method is highly dependent on the learned
dynamic model and may fail when the states transit with noise. Instead, Merel et
al. proposed to learn from only state (or state feature) trajectories. They extended
the GAIL framework to learn a control policy from only states of motion capture
demonstrations (Merel et al. 2017) and showed that partial state features without
demonstrator actions suffice for adversarial imitation. Similarly, Eysenbach et al.
pointed out that the policy should control which states the agent visits, and thus
use the states to train a policy by maximizing mutual information between the
policy and the state trajectories (Eysenbach et al. 2018). Other studies have also
tried to learn from raw observations instead of states. For instance, Stadie et al.
extracted features from observations by the domain adaptation method to ensure
that experts and novices are in the same feature space (Stadie et al. 2017). However,
only using demonstrated states or state features may require a huge number of
environmental interactions during the training since any possible information from
actions is ignored.

In order to provide more clear structure about advanced methods in IfO, we
organize the methods of IfO in the literature into two general groups: (1) model-
based algorithms, and (2) model-free algorithms, which also follow one of the
main taxonomies in reinforcement learning (as shown in Chap. 3). Next, we discuss
the features of each group and present relevant algorithms from the literature as
examples.

8 Imitation Learning 287
8.4.1 Model-Based

Similar to model-based reinforcement learning (as in Chap.9), if the model of
the environment can be learned precisely with low consumption, it can benefit
the learning process through efficient planning. As imitation learning is about
mimicking a sequential of actions instead of a single one in the interactive process
with the environment, it inevitably involves the dynamics of the environment,
which can be learned with model-based approaches. According to different types of
dynamics models, the model-based IfO methods can be categorized as: (1) inverse
dynamics models or (2) forward dynamics models.

Inverse Dynamics Models An inverse dynamics model is a mapping from state
transitions {(S;, S;+1)} to actions {A;} (Hanna and Stone 2017). One work by
Nair et al. (2017) in this category learns to predict a sequence of actions for rope
manipulation with the sequences of images of a human manipulating a rope from
initial condition to a goal condition, which requires to learn a pixel-level inverse
dynamics model as follows:

Ay = Mo(I;, I141) (8.25)

where the A; is the predicted action by the inverse dynamics model M with the
input pair of images I, I;+1, and the model is parameterized by 6. A convolutional
neural network is used for learning the inverse dynamics model. The robot collects
rope manipulation samples with an exploration policy automatically. The collected
samples are used for learning the inverse dynamics model, after which the robot
conducts planning with the learned model and desired states from the human
demonstration. The learned inverse dynamics model M; can actually serve as the
policy for choosing actions similar to the demonstration with respect to the desired
frame /¢:

Ay = M1, If

‘) (8.26)

Another work called reinforced inverse dynamics modeling (RIDM) (Pavse et al.
2019) applies a reinforced post-training for fine-tuning the learned inverse dynamics
model after training on samples collected with a pre-defined exploration policy. The
pre-trained inverse dynamics model, as said above, is regarded as the policy for the
agent in a reinforcement learning setting and a sparse reward function R can be
applied for reinforcement learning fine-tuning process:

= argmax Z (S,, Mpe(Se, 8¢ +l)) (8.27)

where Mep "¢ is the pre-trained model and fine-tuned here in a reinforcement learning
manner.

288 Z. Ding

The covariance matrix adaptation evolution strategy (CMA-ES) or Bayesian
optimization (BO) methods can be applied for optimizing the model for a low-
dimensional cases. However, the author assumes that each observation transition
is reachable through the application of a single action. Targeting at removing this
unnecessary assumption, Pathak et al. (2018) allow the agent to execute multiple
actions until it gets close enough to the next demonstrated frame.

The algorithms introduced above try to recover the policy with the inverse
dynamics model for each single demonstration state. The behavioral cloning from
observation (BCO) algorithm proposed by Torabi et al. (2018a), on the other hand,
tries to recover the demonstration dataset with full observation-action pairs using
the learned inverse dynamics model, and then learn the policy with the augmented
demonstration dataset in a regular imitation learning manner, as shown in Fig. 8.5.

Guo et al. (2019) propose to apply a tensor-based model to infer the unobserved
actions of the expert state sequences (the IfO problem), which is shown in Fig. 8.6.
The policy of the agent is then optimized via a hybrid objective combining
reinforcement learning and imitation learning as:

9*:aIgmeinLRL(rr(a|s;0))—E(S;,’S;,H)Np[logng(M(Sf, La)Is)] 828

where the Lry is a regular reinforcement learning loss term with policy =
parameterized by 6. D is the demonstration dataset, and the second term is the
behavioral cloning loss for maximizing the likelihood of predicting “expert” actions
given the expert states s¢ and inverse dynamics model M. Guo’s method is, in a
way, a combination of RIDM and BCO methods. Instead of using a parameterized
inverse dynamics model like in other methods above, the inverse dynamics model
M here is a low-rank tensor model with advantages over deep neural networks. The
reward signals are required for providing the reinforcement learning loss, which is
similar to RIDM.

Behavioral Cloning from Observation (BCO)

0 . a
Ty | Run policy {5, 5850} I Append to
{A} T A

T T

State-only
demonstrations
3

Fig. 8.5 The learning framework of Behavioral Cloning from Observation (BCO), adapted from
Torabi et al. (2018a)

Imitation Learning

N N
RanGhT Batch experience Expert State
i tuples (Sy, Ay, Sp1) Sequences D

| |

- .

Execute Update the action Sample state pairs

policy w(S¢) inference model M (5,8 from D

| —

Update the agent
policy based on the

hybrid loss

Policy Learning

Infer expert actions from
3 SR :
model M : a = M(s, §'); obtain
expert state action pair (5,a)

Expert Action

Inference

Fig. 8.6 The learning framework of hybrid reinforcement learning with expert state sequences
framework, adapted from Guo et al. (2019)

Forward Dynamics Models A forward dynamics model is a mapping from state-
action pairs, {(S;, A;)}, to the next states, {S;+1}. One typical method leveraging the
forward dynamics model in IfO is called imitating latent policies from observation
(ILPO) (Edwards et al. 2018). ILPO applies two networks in its learning process: the
latent policy network and the action remapping network. The latent policy network
includes an action inference module which maps the state S; to a latent action z, and
a forward dynamics module which predicts the next state S, given current state S;
and the latent action z. The update rules of these two modules are as follows:

o = argminE,)ND[lle(S,", 2 — Sf+1||§] (8.29)

t+1

for the latent dynamics model G, and
6* = argmax E (11" 70 (2187) G (S5 2) = SEali3] (8.30)
(555,)L 2L IS GolS7.2) = STl

for the latent policy 7o (-|z), where D is the expert demonstration dataset.

However, since the latent action produced in the latent policy network may
not necessarily be the true action in real dynamics of the environment, the action
remapping network is applied for associating the latent actions to the true actions.
The usage of latent actions requires no interactions with the environment during
learning the latent model and latent policy, while the remapping action network
only needs limited number of interactions with the environment, which makes the
algorithm efficient in the learning process.

290 Z. Ding
8.4.2 Model-Free

Apart from model-based IfO methods with the learned dynamics models, there are
also model-free IfO methods, which is another main category for learning without
the models. The models can be hard to learn well for highly complicated dynamics,
as in regular reinforcement learning settings. There are two main approaches for
model-free IfO: (1) generative adversarial methods and (2) reward-engineering
methods. The generative approach is similar as in regular IL, but with the states
as demonstrations only.

Generative Adversarial Methods A general framework in the generative adver-
sarial IfO is modified from previously introduced GAIL method in IRL for regular
IL. Instead of feeding the state-action pairs into the discriminator, only the states are
compared with the discriminator from either explored samples of current policy or
the expert demonstration, which gives the loss:

Loss = Ep[Ve, 10g(De(5))] + Epe[Ve, log(1 — Dy (s))] (8.31)

where D is the explored sample set with current policy and D¢ is the demonstration
dataset. Different specific algorithms will have different specific forms and modifi-
cations based on that.

For example, Merel et al. (2017) developed a variant of GAIL with only partially
observed state features and without access to actions to provide human-like motions
for humanoids via the GAN’s structure. Similar as RIDM method and hybrid
reinforcement learning method in model-based IfO, it also applies the reinforcement
learning module together with an imitation learning module, but with a hierarchical
structure. The reinforcement learning module is a high-level controller built on
the low-level controller with the BC method for capturing the motion features of
humanoid. Trajectories of states and actions are collected during the interaction
process of a stochastic policy 7 and the environment, which corresponds to the
generator in GAN framework. The state-action pairs are transformed into features,
z, in which the actions may be excluded. The demonstration data are assumed to
be in the same feature space according to the original paper. Either demonstration
data or generated data are evaluated by the discriminator to yield a probability of the
data being demonstration data. The output value of the discriminator is then used
as a reward to update the imitation policy using reinforcement learning, similar to
Eq. (8.12) in GAIL. An additional context variable is also applied for learning multi-
behavior policies. The loss of the discriminator can be written as:

Loss =]EZ"/S,S"'D[VCU log(Dw(Zv o)+ EZENS",SEND" [Vw 10g(1 - Dw(ZEv Ce))]
(8.32)

where z,z° are encoded features of s, s¢ sampled from reinforcement learning
explorations D and expert demonstrations D¢, respectively, and ¢, ¢¢ are the context
variables indicating different behaviors.

8 Imitation Learning 291

1
1

Expert Rollouts
(States, Actions,
— Rewards)

1
1

Expert and Novice
Observations
(States)

1
1

Novice Rollouts

(States, Actions,

= Rewards
-—-—hh,il‘:” s)

States, Actions

v

T —
Policy r
S . [} . T
|| Optimization 0 | 0 Discriminator 0
Policy T Rewards
e N ——————
over -
Options :
Policy
ﬂ:ﬂ L Optimi ,E T}:JU % .
ptimization n |e Discriminator n
T, Rewards

Fig. 8.7 The architecture of OptionGAN, adapted from Henderson et al. (2018)

The OptionGAN (Henderson et al. 2018) proposed by Henderson et. al. applies
the option framework in hierarchical reinforcement learning (details in Chap. 10)
to recover the joint reward-policy options with generative adversarial architecture
using only observed states, as shown in Fig. 8.7. With the decomposition of policies,
it is able to not only learn well on simple tasks, but also learn a general policy over
options for complicated continuous control tasks.

One potential problem of IfO with above methods is that, even if the learned
optimal policy is able to generate a state distribution that is very similar to the expert
policy, it still does not mean that the actions are exactly the same for both imitation
policy and the expert policy for all states. A simple example by Torabi et al. (2019d)
would be, in a ring-like environment, two agents that move with the same speed but
different directions (i.e., one clockwise and another one counter-clockwise) would
result in each exhibiting the same state distribution even though their behaviors are
opposite to one another (i.e., different action distributions given the states).

One way of solving above mismatch problem in action distributions is to feed
a sequence of states instead of a single one to the discriminator, like proposed by
Torabi et al. (2019b) and Torabi et al. (2018b), a similar algorithm but only with the
difference that the discriminator considers state transitions, {(.S;, Sy+1)}, as the input
instead of single states. This changes the loss function of the discriminator to be

Ep[Ve log(Dw (S, Si+1)] + Epe[Vy, log(1 — Dy, (S, Si41))] (8.33)

292 Z. Ding

Proprioceptive]

features (5,) + Env }

(e.g. joint angles) =
LS

Fig. 8.8 Imitation learning from observations only, using the proprioceptive state. Figure is
adapted from Torabi et al. (2019¢)

where the state sequence can also be chosen to be longer than two in practice.

Another work by Torabi et al. (2019c) leverages the proprioceptive features
as the state input for the policy instead of the observed images, to model the
humans or animals proprioception-based control in reinforcement learning agents.
Because of the low dimensions of the proprioceptive features, the policy can be
represented by a simple multi-layer perceptron (MLP) instead of a convolutional
neural network (CNN), while the discriminator still takes a sequence of observed
images as inputs from both the explored samples and the expert demonstration, as
shown in Fig. 8.8. The low-dimensional proprioceptive features make the learning
process more efficient as well.

As mentioned in Chap. 7, the low sample efficiency is one of the key problems
in present reinforcement learning algorithms, which also holds for the imitation
learning and IfO areas. As the generative adversarial approaches are within the IRL
domain, those methods introduced above can suffer from intensive computational
cost as mentioned in Sect. 8.3. These adversarial imitation algorithms often require
large numbers of demonstration examples and learning iterations to learn a policy
imitating a demonstrator’s behavior successfully. To further improve the sample
efficiency of above methods, Torabi et al. (2019a) proposed to apply the linear
quadratic regulators (LQR) (Tassa et al. 2012) as a trajectory-centric reinforcement
learning method during the policy learning process, which has potential to make it
possible to apply the algorithm for real-robot imitation learning.

The above works are mostly based on the basic assumptions that the demon-
stration data space and the imitators’ learning space are consistent. However,
when there is a mismatch between the two spaces, for example, the changes of
viewpoint by placing the camera in different positions in the three-dimensional
space for providing observation, the general imitation learning methods will have a
degradation in performance. The difference of the spaces of demonstration and the
imitator can be either in action space or the state space. For the difference in action
spaces, Zotna et al. (2018) proposed to use pairs of states with random time gaps
instead of consecutive states as the input of the discriminator, which can be regarded
as dataset augmentation with noise for more robust and general performances. In
their own experiments, it is indeed shown to improve the performances of imitator’s
policy with different action spaces from the demonstration. While for the difference
of the state space, like the viewpoint changing mentioned above, Stadie et al.
(2017) have proposed to apply a classifier to distinguish among samples of different
viewpoints, with the output values of some initial layers in the discriminator as

8 Imitation Learning 293

inputs. The proposed method leverages the idea of domain confusion to learn the
domain agnostic features, where the domain indicates different viewpoints in this
case. The confusion is maximized in the first layers of the discriminator (as a feature
extractor) but minimized for the classifier, which also leverages the adversarial
training framework. After training, the learned features of the extractor (first several
layers of the discriminator) are invariant to the viewpoint.

There are also some other works in this field. Sun et al. (2019) proposed the first
provably efficient algorithm in IfO, called Forward Adversarial Imitation Learning
(FAIL), which can learn a near-optimal policy with the number of samples in a
polynomial relationship with all relevant parameters but independent of the number
of unique observations. The minimax game in FAIL learns a policy that matches
the state distribution of the next state given the policies of the previous time steps.
Recently, a method called Action-Guided Adversarial Imitation Learning (AGAIL)
proposed by Sun and Ma (2019) tries to leverage the states and incomplete actions in
demonstrations, which is a combination of IfO and traditional IL. The discriminator
is used for discriminating single states, similar to the approach of Merel et al. (2017)
described before. Additionally, a guided Q-network is employed to learn the true
posterior of p(a®la ~ m(s¢)) in a supervised learning manner, where (s, a®) denote
samples of expert demonstration.

Reward-Engineering Methods The generative adversarial approach naturally
provides the reward signals, from which the imitation policy can learn in a reinforce-
ment learning manner. Apart from the generative adversarial approach, there are also
methods with reward engineering for solving model-free IfO. Actually, the method
RIDM in model-based IfO is a method with reward engineering mentioned in the
previous section. The reward engineering indicates the need of manually designed
reward functions for learning an imitation policy in a reinforcement learning manner
with expert demonstrations. Reward engineering transfers the supervised learning
approach of imitation learning into a reinforcement learning problem through
formalizing the reward function for the reinforcement learning agent. What needs
to be noticed is that the manually designed reward function does not have to be the
true reward function leading to the expert policy, but more of an estimation from
the demonstration dataset or prior knowledge about the tasks. For example, Kimura
et al. (2018) proposed to use the Euclidean distance of the predicted next state by the
predictor and the true next state by the demonstrator as the reward function. Then
the reward function is used for learning an imitation policy in general reinforcement
learning settings.

Another reward-engineering approach is called time-contrastive networks
(TCNs) proposed by Sermanet et al. (2018) (Fig.8.9). To handle the multi-
viewpoint problem as mentioned before, which is important for learning from
human behaviors, the TCN method learns a viewpoint invariant representation
capturing the relationships among objects with the TCN network using several
(two in the original paper) synchronous camera views from different perspectives.
The adversarial training is therefore applied in the embedded representation space
instead of the original state space in other IfO methods. The representation is

294 Z. Ding

metric loss
attraction repulsion
-7 e - A

anchor | positive negative

self-supervised imitation

| TCN embedding — e e = = == = =
Views I I |
(and modalities) / deep network \

View
1 -

View
2 -

. :

Time

It I'hegative

Fig. 8.9 The learning framework of time-contrastive network (TCN) with a triplet loss for
observation embedding in self-supervised imitation learning from observations only. Figure is from
Sermanet et al. (2018)

trained with a triplet loss with the TCN embedding network. The triplet loss is set to
disperse the temporal neighbors of consecutive frames in the video demonstration
with similar visual features but different actual dynamic states and also to attract
those simultaneous frames from different viewpoints but with the same dynamic
state in the embedding space. Therefore, the imitation policy can learn with
unlabeled video of human demonstrations in a self-supervised learning manner.
Similar as in Kimura’s work, the reward function is defined to be the Euclidean
distance between the state of demonstration and the state of the agent at each time
step, but in the embedding space instead of the state space. The TCN is designed to
work for single frame state embedding. Dwibedi et al. (2018) extended the work of
TCN to multiple frames embedding for better representing the patterns in trajectory.
Aytar et al. (2018) also took a similar approach, learning an embedding function for
the YouTube video frames based on the demonstration, to solve the hard-exploration
tasks like Montezuma’s Revenge and Pitfall mentioned in the exploration challenge
of Chap. 7. It can handle the small variance in domain like video artifacts and color
changes. The measurement of closeness between the imitator’s embedded states
and some demonstrator’s embedded states is also used as the reward function.

8 Imitation Learning 295

As mentioned in the previous section of the adversarial generative approach,
a classifier can be employed to distinguish among observations from different
viewpoints. A classifier can also be used to predict the order of frames in the demon-
stration as proposed by Goo and Niekum (2019), via a shuffle-and-learn (Misra et al.
2016) training manner. A reward function can be defined with respect to the learned
classifier for training the imitator policy. Also in previous sections of the adversarial
generative approach, the mismatch between the state spaces, like being caused by
the viewpoints, can be handled with an invariant feature representation. However,
instead of using the output values of the discriminator with demonstration states
and the imitator’s state as inputs, it can also train an imitation policy with a reward
function defined to be the Euclidean distance between the two kinds of states in the
representation space, as proposed by Gupta et al. (2017) and Liu et al. (2018).

8.4.3 Challenges of IfO

With the above mentioned methods developed in IfO, the agent can learn the policy
from the observed states only, but still suffers from several problems as mentioned
in the survey by Torabi et al. (2019d), which are listed as the challenges below:

* Embodiment Mismatch: The embodiment mismatch generally describes the
differences of appearances (for visual-based control), dynamics, and other
features between the imitator’s domain and the demonstrator’s domain. A typical
example would be letting a robotic arm mimic the motion of a human’s arm.
Due to the significant differences in the controlling dynamics and perspectives of
looking at the agents, the imitation learning process can be potentially very hard
to conduct. Even determining if the robot is in the same state as the human’s arm
can be difficult. One way to solve this is to learn the hidden correspondences or
latent representations that are invariant for the differences of the two domains,
and conducting the imitation learning based on the correspondences or in that
learned representation space. One IfO method developed to address this problem
learns a correspondence between the embodiments using autoencoders in a
supervised fashion (Gupta et al. 2017). The autoencoder is trained in such a way
that the encoded representations are invariant with respect to the embodiment
features. Another method learns the correspondence in an unsupervised fashion
with a small amount of human supervision (Sermanet et al. 2018).

* Viewpoint Difference: As mentioned in several methods described above, like
the TCN and some methods in model-based IfO, the difference of viewpoints can
degrade the performance of the imitation policy significantly, for visual-based
control with demonstration data provided by images or videos from a camera.
Generally an encoding model for representing the states in a viewpoint invariant
space is required as in Sieb et al. (2019), or a classifier for predicting the specific
viewpoint for one frame as in Stadie et al. (2017). Another IfO approach that
attempts to address this issue learns a context translation model to translate an

296 Z. Ding

observation by predicting it in the target context (Liu et al. 2018). The translation
is learned using data that consists of images of the target context and the source
context, and the task is to translate the frame from the source context to that of the
target. It would require the similar samples of the target context to be collected
as in the source context.

8.5 Probabilistic Methods

Apart from the parameterized methods with deep neural networks (DNN), a
variety of probabilistic inference methods are applied for imitation learning as
well, especially in the robot motion domains, which include Gaussian mixture
regression (GMR) (Calinon 2016), dynamical movement primitives (DMPs) (Pastor
et al. 2009), probabilistic movement primitives (ProMPs) (Paraschos et al. 2013),
kernelized movement primitives (KMP) (Huang et al. 2019), Gaussian process
regression (GPR) (Schneider and Ertel 2010), and GMR-based GP process (Jaquier
et al. 2019). As this book aims at introducing deep reinforcement learning with
parameterization methods using DNN, we will only briefly discuss about prob-
abilistic methods because the combination of probabilistic methods with DRL is
non-trivial, unlike other previous approaches introduced in this chapter.

However, even if it is hard to apply the probabilistic methods on DRL tasks
like using the supervised imitation learning as an initialization for reinforcement
learning introduced in next section, probabilistic methods are still attractive to be
investigated for imitation learning with several advantageous properties. Unlike
the deterministic prediction results given by DNN, the covariance matrices of
the prediction distributions computed by GMR, ProMPs, and KMP encode the
variability of the predicted trajectory. This can be useful when applying the
learned model on predicting or decision-making tasks where the belief of the
prediction is also important, like ensuring the safety during robotic manipulation or
vehicle driving cases. Apart from that, probabilistic methods usually have analytic
solutions with the support of probabilistic theory, which is different from the “black-
box” optimization process of DNN-based methods. This also makes probabilistic
methods able to be solved within a short time when the amount of data is small.
Probabilistic methods like GMR-based GP process have the quick adaptability for
the unseen input datapoints, which will be discussed in the following sections. For
probabilistic methods in IL, the dataset is considered to be provided in a labeled
format with pairs of input and output, which is usually the set of state-action pairs
{(si,a;i)|i =0,..., N} for common reinforcement learning cases or time-state pairs
{(¢, S|t =0, ..., N} (Jaquier et al. 2019) for the time-aligned demonstrations.

GMR-based GP regression is a combination of Gaussian mixture regression and
Gaussian process regression. GMR exploits the Gaussian conditioning theorem to
estimate the distribution of output data given input data. A Gaussian Mixture Model
(GMM) is used to fit on the joint distribution of input and output datapoints with an
Expectation Maximization (EM) algorithm. The conditional means and covariances

8 Imitation Learning 297

10 104
S0 Qo
-10 -10{
=10 0 10

)41

Fig. 8.10 GMR-based GP process for imitation learning. The left image shows the prior mean
of the process and the sample trajectories in blue and purples lines, respectively. The right image
shows the prior mean (same as the left one), sampled, and predicted trajectories in blue, pink, and
red lines, respectively. The three black dots in the right image are observations. Figure is adapted
from Jaquier et al. (2019)

given observed input can be solved in closed form, and the output can therefore
be predicted via a linear combination of conditional expectations with the test
input datapoints. GP aims at learning a deterministic input—output relationship,
just like DNN’s approach, based on a Gaussian prior over potential objective
functions. The GMR-based GP is combined as a GP with its prior mean equal to
the conditional mean of the GMR model, and with its kernel in the form of a sum of
all separable kernels associated with the components of the corresponding GMM.
This combination takes the advantage of the ability of GPs to encode various prior
beliefs through the mean and kernel functions and allows the variability information
retrieved by GMR to be encapsulated in the uncertainty estimated by the GP. When
given new and unseen input observation points, the GMR-based GP method is able
to quickly adapt to them and predict reasonable outputs as shown in Fig. 8.10. For
a two-dimensional trajectories estimation process, the left image in Fig. 8.10 shows
the given samples in purple lines, and the prior mean in blue line. The right image
is the GMR-based GP process with 3 new observation points in black, and with the
pink lines showing the sampled trajectories and red line as prediction. This method
is testified to have a great performance on leveraging demonstrations but quickly
adapting to new datapoints, which can be applied on manipulating the robot to avoid
obstacles with demonstrations.

8.6 IL as Initialization for RL

The basic setup for applying imitation learning is to learn a policy without any rein-
forcement signals but only the demonstrations data, which means the learned policy
through imitation learning is the final policy from the demonstrations. However, in
practice, the policy learned from imitation learning is usually not general enough,

298 Z. Ding

especially for unseen cases. Therefore, we can leverage the imitation learning
in the reinforcement learning process, which improves the learning efficiency of
reinforcement learning. For example, a pre-trained policy using demonstration data
can be used to initialize the policy in reinforcement learning. More about these
approaches will be discussed later. Therefore, we do not require the policy from
imitation learning to be optimal, but good enough with a relatively simple imitation
learning process, like applying a supervised learning approach. So, we only choose
some of the simple and straightforward methods described below as an initialization
method for subsequent reinforcement learning processes. Those fancier techniques
in imitation learning will provide a better initialization policy with no doubts, but
may have drawbacks as longer pre-training time and so on.

Generally, the policy learned from imitating the demonstrations in a supervised
manner, including the BC, DAgger, Variational Dropout, and so on, can be
regarded as a good initialization for reinforcement learning policy, using methods
like policy replacement or residual policy learning described in the following
sections. We will experimentally show the improvement in reinforcement learning
with the initialization policy trained using above mentioned supervised learning
methods in the following sections.

In addition to the policy replacement approach for initialization of reinforcement
learning, residual policy learning (Silver et al. 2018; Johannink et al. 2019)
is another approach to realize initialization. It is based on good but imperfect
controllers for robot manipulation tasks, and to learn a residual policy on top of that
initial controller. For robot manipulation in real world, the initial controller could
be a pre-trained policy in simulation; and for robot manipulation in simulation,
the initial controller could be from the pre-trained supervised learning with expert
trajectories as in Sect. 8.3.2.

The action in residual policy learning follows the combinatorial policy, which is
the sum of the initial policy m;,; and the residual policy 7;:

a = Tini () + Tres () (8.34)

In this way, the residual policy learning is able to preserve the initialized policy
performance to the best advantage.

Example: DDPG with Residual Policy Learning

We apply the DDPG algorithm for leveraging the demonstrations with residual
policy learning. According to the residual policy learning, the actor’s policy in
DDPG consists of two parts: one is the pre-trained initialization policy, which
will be fixed after initialization, and another one is the residual policy to be
trained during the learning process. The initialization policy is pre-trained with the
demonstration samples generated from inverse kinematics, which is the same as the
policy replacement method. The pre-trained initialization policy only works for the

8 Imitation Learning 299

actor part in DDPG. The process of applying residual policy learning in DDPG is as
follows:

(1) Initialize all neural networks in DDPG with residual learning, including a
general initialization of the critic, target critic, and an initialization with zero-
valued final layers for the residual policy and the target residual policy, and
an initialization with imitation learning for the policy and the corresponding
target, totally six networks. Fix the initialized policy and its target, and start the
training process.

(2) Let the agent interact with the environment, and the action value is the sum
of the action values from the initialization policy and the residual policy: a =
Qini + Gres; store samples in the form of (s, ayes, ', r, done).

(3) Draw samples (s, dyes, s', r, done) from the memory buffer, we have

Orarget(s, ares) =1 +)’QT (Sa 7[;?;8 (S)) (8.35)
where Q7 7Tr7;s denote the target critic and the target residual policy, respec-
tively. The critic loss is MSE(Q;arger (s, ares), Q(s, ares)). The objective for
the actor is to maximize the action-value function of state s and action a,.s as
follows:

meax O(s, ares) = mé'flx O(s, Tres (516)) (8.36)

which can be optimized via deterministic policy gradient.
(4) Repeat above steps (2) and (3) until the policy is converged or near optimal.

Compared with general DDPG algorithm, the difference of applying residual
policy learning is just to learn action-value function and the policy with respect to
the residual policy actions instead of the overall actions for the agent.

8.7 Other Approaches of Leveraging Demonstrations in RL

8.7.1 Feeding Demonstrations into Replay Buffer

Instead of pre-training a policy to initialize the reinforcement learning policy, deep
Q-learning from demonstrations (DQfD) (Hester et al. 2018) leverages demon-
strations through directly feeding those expert trajectories into memory buffer of
off-policy reinforcement learning. It applies DQN for only discrete action space
applications. DQfD uses a replay buffer initialized with all expert demonstrations
and then keeps storing new samples in it. It applies the prioritized experience replay
to sample the training batch from the replay buffer, and DQfD trains the policy
using a combination of a supervised hinge loss for imitating the demonstrations and
a general TD loss.

300 Z. Ding

The approach of deep deterministic policy gradient from demonstrations
(DDPGTfD) (Vecerik et al. 2017) is a method similar with the DQfD method as
described above, but applies DDPG for continuous action space applications.
DDPGfD leverages demonstrations through directly feeding those expert
trajectories into memory of off-policy reinforcement learning (e.g., DDPG), to train
the policy with both demonstrations and explorations. The prioritized experience
replay (Schaul et al. 2015) is used as a natural balance of the two sources of training
data. DDPGfD can work on solvable simple tasks for reinforcement learning, while
learning from sparse rewards on harder task requires more active exploration during
training.

Nair et al. (2018) proposed a method based on DQfD and DDPGfD to have better
learning efficiency for hard tasks where further exploration based on demonstrations
matters. The policy loss is a combination of policy gradient loss and the behavioral
cloning loss, which gives the gradients as follows:

MVed — A VoLpc (8.37)

where the J is the general reinforcement learning objective (maximized) and L g¢
(minimized) is the behavior cloning loss as defined at the beginning of this chapter.

Moreover, the Q-filter technique is applied in this method, which requires the
behavioral cloning loss to be only applied to states where the learned critic Q(s, a)
determines that the demonstrator action is better than the actor action:

Np
Lpc = Y 11m(silfx) — ail *Logs.an>06sr(s0) (8.38)

i=1

where the Np is number of samples in demonstration dataset and (s;, a;) are
sampled from the demonstration dataset. This ensures the policy to explore better
actions other than being restricted by the demonstration data.

Using the same approach, QT-Opt (Kalashnikov et al. 2018) and Quantile QT-
Opt (Bodnar et al. 2019) algorithms also apply a combination of on-policy buffer
and an off-policy demonstration buffer to conduct off-line learning with actor-free
CE method with DQN, which achieves the state-of-the-art performances in real-
world robot learning tasks based on images.

8.7.2 Normalized Actor-Critic

Normalized actor-critic (NAC) (Gao et al. 2018) is another method for efficient
reinforcement learning with demonstrations, and it pretrains a policy as initialization
for a refinement reinforcement learning process. The key difference of NAC
from other methods is that it uses exactly the same objective for the processes
of pre-training an initialization policy with demonstrations and the refinement

8 Imitation Learning 301

reinforcement learning process (not like a combination of supervised loss and
reinforcement learning loss in DQfD, or two separate training processes with
different loss in policy replacement and behavioral cloning methods), which makes
NAC robust to suboptimal demonstrations data.

The NAC method is similar to methods of DDPGfD or DQfD, but trains the
policy sequentially from demonstrations and samples from interactions instead of
using samples from both sources at the same time.

8.7.3 Reward Shaping with Demonstrations

Reward shaping with demonstrations (Brys et al. 2015) is a method focusing on
the initialization of value function instead of the action policy for reinforcement
learning. It provides the agent an intermediate reward for enriching the sparse
reward signals:

Rp(s,a,s') = R(s,a,s') + FP(s,a,s") (8.39)

where the shaping reward F” from demonstrations D is defined with potential
function ¢ in the following form to guarantee the convergence:

FP(s,a,s',a)y = yoP(s', a’) — ¢pP(s,a) (8.40)

and ¢P is defined as:

T
¢D(s, a) = max eié (Sisd) D (Sisd) (8.41)

(s?,a)

which is to maximize the value of the potential for the state s that is most similar as
the demonstration state s¢. The optimized potential function is used to initialize the
action-value function Q in reinforcement learning:

Qo(s,a) = ¢ (s, a) (8.42)

The intuition of the reward shaping method is to bias the exploration in favor
of those state-action pairs in demonstrations or close to those in demonstrations
for accelerating the training process of reinforcement learning. Reward shaping
provides a good approach of initialization for the value-evaluation function in
reinforcement learning process.

Other methods like unsupervised perceptual rewards (Sermanet et al. 2016) also
learn a dense and smooth reward functions with the demonstrations, using features
in a pre-trained deep model.

302 Z. Ding
8.8 Summary

Due to the low learning efficiency challenge of reinforcement learning as mentioned
in Chap.7, in this chapter, we introduce imitation learning (IL) as one potential
solution leveraging the expert demonstration. The overall chapter is summarized
into several main categories. The behavior cloning methods introduced in Sect. 8.2
are the most straightforward way of imitation learning in a supervised learning
manner, which can be further combined with reinforcement learning like as an
initialization introduced in Sect.8.6. A more advanced way of combining the
imitation learning with reinforcement learning is through IRL by recovering a
reward function explicitly or implicitly from demonstration, as in Sect. 8.3. Methods
like MaxEnt can explicitly learn the reward function but with heavy computation
cost. Other methods in the generative adversarial approach like GAIL, GAN-GCL,
AIRL learn in a more efficient way. Another problem is if the actions are missing in
the demonstration dataset, like learning from the videos only, how to work properly
with imitation learning? This falls into the category of IfO as in Sect. 8.4. Since the
IfO problem is from another perspective, those methods mentioned before like BC,
IRL can also be applied in IfO with proper modifications. The methods in IfO are
generally summarized in model-based and model-free categories. The model-based
method learns the dynamics model from samples, and it can actually recover the
observation-only demonstration dataset with actions through leveraging the action-
state relationship in the model, explicitly or implicitly. Then, the regular imitation
learning methods can be applied if the actions are recovered explicitly. Methods
like RIDM, BCO, ILPO, etc., fall into this model-based IfO category. For the
model-free methods in IfO, either the reward engineering or generative adversarial
approach can be applied for providing the reward function to enable reinforcement
learning. Methods like OptionGAN, FAIL, AGAIL, and so on are in the category of
generative adversarial IfO, while TCN and some other methods are in the category
of reward engineering IfO. The two categories here in IfO actually also apply for
general IL, like GAIL as a generative adversarial method and recently proposed
contrastive forward dynamics (CFD) (Jeong et al. 2019) as a reward-engineering
method for learning from demonstration with both observations and actions in
IL. Then the probabilistic methods including GMR, GPR, and DMR-based GP
are introduced as an alternative for general IL, with high-efficiency learning for
relatively low-dimensional cases, as in Sect. 8.5. Finally some other approaches like
DDPGT{D and DQfD for feeding demonstration data into replay buffer in off-policy
reinforcement learning and so on are introduced in Sect. 8.7. The research area of
imitation learning is still very active as an efficient approach for solving learning
problems, with an organic combination with reinforcement learning.

8 Imitation Learning 303

References

Abbeel P, Ng AY (2004) Apprenticeship learning via inverse reinforcement learning. In: Proceed-
ings of the twenty-first international conference on machine learning. ACM, New York, p 1
Aytar Y, Pfaff T, Budden D, Paine T, Wang Z, de Freitas N (2018) Playing hard exploration games
by watching YouTube. In: Advances in neural information processing systems, pp 2930-2941

Blau T, Ott L, Ramos F (2018) Improving reinforcement learning pre-training with variational
dropout. In: 2018 IEEE/RS]J international conference on intelligent robots and systems (IROS).
IEEE, Piscataway, pp 4115-4122

Bodnar C, Li A, Hausman K, Pastor P, Kalakrishnan M (2019) Quantile QT-Opt for risk-aware
vision-based robotic grasping. Preprint. arXiv:191002787

Brys T, Harutyunyan A, Suay HB, Chernova S, Taylor ME, Nowé A (2015) Reinforcement
learning from demonstration through shaping. In: Twenty-fourth international joint conference
on artificial intelligence

Calinon S (2016) A tutorial on task-parameterized movement learning and retrieval. Intel Serv
Robot 9(1):1-29

Duan Y, Andrychowicz M, Stadie B, Ho OJ, Schneider J, Sutskever I, Abbeel P, Zaremba W (2017)
One-shot imitation learning. In: Advances in neural information processing systems, pp 1087—
1098

Dwibedi D, Tompson J, Lynch C, Sermanet P (2018) Learning actionable representations from
visual observations. In: 2018 IEEE/RSJ international conference on intelligent robots and
systems (IROS). IEEE, Piscataway, pp 1577-1584

Edwards AD, Sahni H, Schroecker Y, Isbell CL (2018) Imitating latent policies from observation.
Preprint. arXiv:180507914

Eysenbach B, Gupta A, Ibarz J, Levine S (2018) Diversity is all you need: learning skills without
a reward function. Preprint. arXiv:180206070

Finn C, Christiano P, Abbeel P, Levine S (2016a) A connection between generative adversarial net-
works, inverse reinforcement learning, and energy-based models. Preprint. arXiv:161103852

Finn C, Levine S, Abbeel P (2016b) Guided cost learning: deep inverse optimal control via policy
optimization. In: International conference on machine learning, pp 49-58

Fu J, Luo K, Levine S (2017) Learning robust rewards with adversarial inverse reinforcement
learning. Preprint. arXiv:171011248

Gao Y, Lin J, Yu F, Levine S, Darrell T, et al (2018) Reinforcement learning from imperfect
demonstrations. Preprint. arXiv:180205313

Goo W, Niekum S (2019) One-shot learning of multi-step tasks from observation via activity
localization in auxiliary video. In: 2019 international conference on robotics and automation
(ICRA). IEEE, Piscataway, pp 7755-7761

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014) Generative adversarial nets. In: Proceedings of the neural information processing
systems (Advances in neural information processing systems) conference

Guo X, Chang S, Yu M, Tesauro G, Campbell M (2019) Hybrid reinforcement learning with expert
state sequences. Preprint. arXiv:190304110

Gupta A, Devin C, Liu Y, Abbeel P, Levine S (2017) Learning invariant feature spaces to transfer
skills with reinforcement learning. Preprint. arXiv:170302949

Hanna JP, Stone P (2017) Grounded action transformation for robot learning in simulation. In:
Thirty-first AAAI conference on artificial intelligence

Hausman K, Chebotar Y, Schaal S, Sukhatme G, Lim JJ (2017) Multi-modal imitation learning
from unstructured demonstrations using generative adversarial nets. In: Advances in neural
information processing systems, pp 1235-1245

Henderson P, Chang WD, Bacon PL, Meger D, Pineau J, Precup D (2018) OptionGAN: learning
joint reward-policy options using generative adversarial inverse reinforcement learning. In:
Thirty-second AAAI conference on artificial intelligence

304 Z. Ding

Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B, Horgan D, Quan J, Sendonaris
A, Osband I, et al (2018) Deep Q-learning from demonstrations. In: Thirty-second AAAI
conference on artificial intelligence

Ho J, Ermon S (2016) Generative adversarial imitation learning. In: Advances in neural information
processing systems, pp 4565-4573

Huang Y, Rozo L, Silvério J, Caldwell DG (2019) Kernelized movement primitives. Inter J Robot
Res 38(7):833-852

Jaquier N, Ginsbourger D, Calinon S (2019) Learning from demonstration with model-based
Gaussian process. Preprint. arXiv:191005005

Jeong R, Aytar Y, Khosid D, Zhou Y, Kay J, Lampe T, Bousmalis K, Nori F (2019) Self-supervised
sim-to-real adaptation for visual robotic manipulation. Preprint. arXiv:191009470

Johannink T, Bahl S, Nair A, Luo J, Kumar A, Loskyll M, Ojea JA, Solowjow E, Levine S (2019)
Residual reinforcement learning for robot control. In: 2019 international conference on robotics
and automation (ICRA). IEEE, Piscataway, pp 6023-6029

Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, Quillen D, Holly E, Kalakrishnan
M, Vanhoucke V, et al (2018) QT-Opt: scalable deep reinforcement learning for vision-based
robotic manipulation. Preprint. arXiv:180610293

Kimura D, Chaudhury S, Tachibana R, Dasgupta S (2018) Internal model from observations for
reward shaping. Preprint. arXiv:180601267

Liu Y, Gupta A, Abbeel P, Levine S (2018) Imitation from observation: learning to imitate
behaviors from raw video via context translation. In: 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, Piscataway, pp 1118-1125

Merel J, Tassa Y, Srinivasan S, Lemmon J, Wang Z, Wayne G, Heess N (2017) Learning human
behaviors from motion capture by adversarial imitation. Preprint. arXiv:170702201

Misra I, Zitnick CL, Hebert M (2016) Shuffle and learn: unsupervised learning using temporal
order verification. In: European conference on computer vision. Springer, Berlin, pp 527-544

Molchanov D, Ashukha A, Vetrov D (2017) Variational dropout sparsifies deep neural networks.
In: Proceedings of the 34th international conference on machine learning, vol 70, JMLR.org,
pp 2498-2507

Nair A, Chen D, Agrawal P, Isola P, Abbeel P, Malik J, Levine S (2017) Combining self-supervised
learning and imitation for vision-based rope manipulation. In: 2017 IEEE international
conference on robotics and automation (ICRA). IEEE, Piscataway, pp 2146-2153

Nair A, McGrew B, Andrychowicz M, Zaremba W, Abbeel P (2018) Overcoming exploration
in reinforcement learning with demonstrations. In: 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, Piscataway, pp 6292-6299

Ng AY, Harada D, Russell S (1999) Policy invariance under reward transformations: theory and
application to reward shaping. In: Proceedings of the international conference on machine
learning (ICML), vol 99, pp 278-287

Ng AY, Russell SJ, et al (2000) Algorithms for inverse reinforcement learning. In: Proceedings of
the international conference on machine learning ICML), vol 1, p 2

Paraschos A, Daniel C, Peters JR, Neumann G (2013) Probabilistic movement primitives. In:
Advances in neural information processing systems, pp 2616-2624

Pastor P, Hoffmann H, Asfour T, Schaal S (2009) Learning and generalization of motor skills
by learning from demonstration. In: 2009 IEEE international conference on robotics and
automation. IEEE, Piscataway, pp 763-768

Pathak D, Mahmoudieh P, Luo G, Agrawal P, Chen D, Shentu Y, Shelhamer E, Malik J, Efros
AA, Darrell T (2018) Zero-shot visual imitation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp 2050-2053

Pavse BS, Torabi F, Hanna JP, Warnell G, Stone P (2019) RIDM: reinforced inverse dynamics
modeling for learning from a single observed demonstration. Preprint. arXiv:190607372

Puterman ML (2014) Markov decision processes: discrete stochastic dynamic programming.
Wiley, Hoboken

Ross S, Bagnell D (2010) Efficient reductions for imitation learning. In: Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp 661-668

8 Imitation Learning 305

Ross S, Gordon G, Bagnell D (2011) A reduction of imitation learning and structured prediction to
no-regret online learning. In: Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pp 627-635

Russell SJ (1998) Learning agents for uncertain environments. In: The 11th annual conference on
computational learning theory, vol 98, pp 101-103

Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay. In: International
conference on learning representations

Schneider M, Ertel W (2010) Robot learning by demonstration with local Gaussian process
regression. In: 2010 IEEE/RSJ international conference on intelligent robots and systems.
IEEE, Piscataway, pp 255-260

Sermanet P, Xu K, Levine S (2016) Unsupervised perceptual rewards for imitation learning.
Preprint. arXiv:161206699

Sermanet P, Lynch C, Chebotar Y, Hsu J, Jang E, Schaal S, Levine S, Brain G (2018)
Time-contrastive networks: self-supervised learning from video. In: 2018 IEEE international
conference on robotics and automation (ICRA). IEEE, Piscataway, pp 1134-1141

Sieb M, Xian Z, Huang A, Kroemer O, Fragkiadaki K (2019) Graph-structured visual imitation.
Preprint. arXiv:190705518

Silver T, Allen K, Tenenbaum J, Kaelbling L (2018) Residual policy learning. Preprint.
arXiv:181206298

Stadie BC, Abbeel P, Sutskever I (2017) Third-person imitation learning. Preprint.
arXiv:170301703

Sun M, Ma X (2019) Adversarial imitation learning from incomplete demonstrations. Preprint.
arXiv:190512310

Sun W, Vemula A, Boots B, Bagnell JA (2019) Provably efficient imitation learning from
observation alone. Preprint. arXiv:190510948

Syed U, Bowling M, Schapire RE (2008) Apprenticeship learning using linear programming. In:
Proceedings of the 25th international conference on machine learning. ACM, New York, pp
1032-1039

Tassa Y, Erez T, Todorov E (2012) Synthesis and stabilization of complex behaviors through online
trajectory optimization. In: 2012 IEEE/RSJ international conference on intelligent robots and
systems. IEEE, Piscataway, pp 4906-4913

Torabi F, Warnell G, Stone P (2018a) Behavioral cloning from observation. Preprint.
arXiv:180501954

Torabi F, Warnell G, Stone P (2018b) Generative adversarial imitation from observation. Preprint.
arXiv:180706158

Torabi F, Geiger S, Warnell G, Stone P (2019a) Sample-efficient adversarial imitation learning
from observation. Preprint. arXiv:190607374

Torabi F, Warnell G, Stone P (2019b) Adversarial imitation learning from state-only demon-
strations. In: Proceedings of the 18th international conference on autonomous agents and
multiagent systems, international foundation for autonomous agents and multiagent systems,
pp 2229-2231

Torabi F, Warnell G, Stone P (2019¢) Imitation learning from video by leveraging proprioception.
Preprint. arXiv:190509335

Torabi F, Warnell G, Stone P (2019d) Recent advances in imitation learning from observation.
Preprint. arXiv:190513566

Vecerik M, Hester T, Scholz J, Wang F, Pietquin O, Piot B, Heess N, Rothorl T, Lampe T,
Riedmiller M (2017) Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. Preprint. arXiv:170708817

Ziebart BD, Maas AL, Bagnell JA, Dey AK (2008) Maximum entropy inverse reinforcement
learning. In: Proceedings of the AAAI conference on artificial intelligence, Chicago, vol 8,
pp 1433-1438

306 Z. Ding

Ziebart BD, Bagnell JA, Dey AK (2010) Modeling interaction via the principle of maximum causal
entropy. In: Proceedings of the 27th international conference on international conference on
machine learning

Zota K, Rostamzadeh N, Bengio Y, Ahn S, Pinheiro PO (2018) Reinforced imitation learning
from observations

	8 Imitation Learning
	8.1 Introduction
	8.2 Behavioral Cloning: Supervised Learning Approach
	8.2.1 Challenges of BC
	8.2.2 Dataset Aggregation
	8.2.3 Variational Dropout
	8.2.4 Other Methods in BC

	8.3 Inverse Reinforcement Learning Approach
	8.3.1 Challenges of IRL
	8.3.2 Generative Adversarial Approach
	8.3.3 Generative Adversarial Network Guided Cost Learning (GAN-GCL)
	8.3.4 Adversarial Inverse Reinforcement Learning (AIRL)

	8.4 Imitation Learning from Observation (IfO)
	8.4.1 Model-Based
	8.4.2 Model-Free
	8.4.3 Challenges of IfO

	8.5 Probabilistic Methods
	8.6 IL as Initialization for RL
	8.7 Other Approaches of Leveraging Demonstrations in RL
	8.7.1 Feeding Demonstrations into Replay Buffer
	8.7.2 Normalized Actor-Critic
	8.7.3 Reward Shaping with Demonstrations

	8.8 Summary
	References

