Chapter 6)
Combine Deep Q-Networks Shethie
with Actor-Critic

Hongming Zhang, Tianyang Yu, and Ruitong Huang

Abstract The deep Q-network algorithm is one of the most well-known deep
reinforcement learning algorithms, which combines reinforcement learning with
deep neural networks to approximate the optimal action-value functions. It receives
only the pixels as inputs and achieves human-level performance on Atari games.
Actor-critic methods transform the Monte Carlo update of the REINFORCE
algorithm into the temporal-difference update for learning the policy parameters.
Recently, some algorithms that combine deep Q-networks with actor-critic methods
such as the deep deterministic policy gradient algorithm are very popular. These
algorithms take advantages of both methods and perform well in most environments
especially with continuous action spaces. In this chapter, we give a brief introduction
of the advantages and disadvantages of each kind of method, then introduce some
classical algorithms that combine deep Q-networks and actor-critic like the deep
deterministic policy gradient algorithm, the twin delayed deep deterministic policy
gradient algorithm, and the soft actor-critic algorithm.

Keywords Deep Q-network - Actor-critic - Deep deterministic policy gradient -
Twin delayed deep deterministic policy gradient - Soft actor-critic

6.1 Introduction

The deep Q-network (DQN) (Mnih et al. 2015) algorithm is a classical off-policy
method. It combines the Q-learning algorithm with a deep neural network to realize
end-to-end learning from visual inputs to decision outputs. This algorithm has

H. Zhang (P<)
Peking University, Beijing, China
e-mail: zhanghongming @pku.edu.cn

T. Yu
Nanchang University, Nanchang, China

R. Huang
Borealis Al, Toronto, ON, Canada

© Springer Nature Singapore Pte Ltd. 2020 213
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_6&domain=pdf
mailto:zhanghongming@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_6

214 H. Zhang et al.

Table 6.1 Characteristics of DQN and actor-critic

Algorithm On-policy/off-policy Sample efficiency Action space

DQN Oft-policy High Discrete

Actor-critic On-policy Low Continuous
DQN-+Actor-critic Oft-policy High Discrete and continuous

achieved human-level performance on Atari games using raw pixel inputs. However,
while the inputs can be unprocessed and high-dimensional observation spaces, DQN
can only handle discrete and low-dimensional action spaces. For continuous and
high-dimensional action spaces, DQN fails to calculate the Q value of each action.

The actor-critic (AC) (Sutton and Barto 2018) method is an extension of the
REINFORCE (Sutton and Barto 2018) algorithm. By incorporating a critic, this
method transforms policy gradient’s Monte Carlo update into a temporal-difference
update. Through this multi-step method, the degree of bootstrapping can be flexibly
selected, so the update of policy does not need to wait until the end of the game.
Though some bias will be introduced in temporal-difference update, it can reduce
variances and accelerate the learning. However, the original actor-critic method is
still an on-policy algorithm, and the sample efficiency of on-policy methods is much
lower than off-policy methods.

Combining DQN with actor-critic can take advantages of both algorithms.
Because of DQN, actor-critic methods are transformed into off-policy methods.
Networks can be trained with samples from a replay buffer that improves sample
efficiency. Sampling from a replay buffer can also minimize correlations between
samples, which can learn value functions in a stable and robust way. Also, due to the
actor-critic method, we can easily handle problems with continuous action spaces
by using a network to learn a policy r (Table 6.1).

Next, we introduce some classical algorithms: the deep deterministic policy
gradient (DDPG) algorithm (Lillicrap et al. 2015), and its improvements: the twin
delayed deep deterministic policy gradient (TD3) algorithm (Fujimoto et al. 2018)
and the soft actor-critic (SAC) algorithm (Haarnoja et al. 2018a).

6.2 Deep Deterministic Policy Gradient (DDPG)

The deep deterministic policy gradient (DDPG) algorithm can be regarded as a
combination of the deterministic policy gradient (DPG) algorithm (Silver et al.
2014) and deep neural networks; The DDPG algorithm can also be viewed as an
extension of the DQN algorithm in continuous action space. It wants to tackle
the problem with continuous action spaces that DQN cannot be straightforwardly
applied to. DDPG establishes a Q function (critic) and a policy function (actor)
simultaneously. The Q function (critic) is the same with DQN, temporal-difference

6 Combine Deep Q-Networks with Actor-Critic 215

methods (TD methods) are used to update it. The policy gradient algorithm is used
to update the policy function (actor) through the value from Q function (critic).

In DDPG, the actor is a deterministic policy function, denoted as (s), and the
parameter is denoted as 0™ . The action of each step is calculated directly by A; =
(S:16]), which does not need to sample from a stochastic policy.

A critical problem here is how to balance exploration and exploitation with this
deterministic policy. In DDPG, noises sampled from a noise process N are added to
actions when training. The actionis A; = 7 (S;|67)+ N;. N can be chosen according
to the specific task; the original paper uses an Ornstein—Uhlenbeck process (O-U
process) (Uhlenbeck and Ornstein 1930).

The O-U process satisfies the following stochastic differential equation:

dX, = 0(7 — X,)dt + odW,, 6.1)

where X; is a random variable, 6 > 0,x,0 > 0 are parameters. W; is a Wiener
process or named Brownian Motion (It and McKean 1965), which has the following
properties:

* W; is a process with independent increments, which means for times 7p < 77 <
... < T, random variables Wr,, Wy, — Wy, ..., Wr, — Wr,_, are independent.

» Forany time t and At, W(t + A;) — W(t) ~ N(0, o, Ar).

e W; is a continuous function about ¢.

We know the Markov Decision Process (MDP) is based on Markov Chains; MDP
satisfies the property p(X;+1|Xs, ..., X1) = p(X;+1/X;), where X; is a random
variable at time step . This means the random variable X; is conditioned on the
last time step’s random variable X;_1, which is time-correlated. The O-U noise is
also time-correlated, which conforms to the property of Markov Decision Process
(MDP). However, more recent results suggest that time-uncorrelated, mean-zero
Gaussian noise also works well.

Back to the algorithm, the action-value function Q(s, a|0?) is learned using the
Bellman equation as in DQN.

In the state S;, the next state S;4; and the return R; are obtained by executing
action A; = m(S;|6]) through the policy . We have

07 (S, A1) = Elr (S, A)) + v O (Se1, w(Si41))]- (6.2)
Then we can compute the Q value:
Yi = Ri + v Q" (St+1, w(Si41))- (6.3)

Using gradient descent to minimize the loss function:

1 2
L= (v - o1, 41169 (6.4)

i

216 H. Zhang et al.

The policy function 7 is updated by applying the chain rule to the expected
return from the start distribution J. Here, J = Eg, s.~E A;~z[R1] (E denotes the

environment) and R; = ZT_ yEDr(S;, A;). We have

1=t

Vor J A, [Vor © (5. a102) ls=s,.amrsom) |

(6.5)
=B, s [Va0 (5.109) ls=5,azn(s) Vo, ™ (516™) Is=s, |
Learning in mini-batches:
1
Vord & Z v,0 (s, a|9Q) ls—sp.amse(sy Ve (s107) s.- (6.6)
1

In addition, DDPG adopts a similar way of the target network like DQN, but it
updates network parameters by exponential smoothing rather than directly copying
the parameters:

02 « po2+(1-p)o?, 6.7)
07 <« pb™ + (1 — p)o™ . (6.8)

Since the hyperparameter p < 1 here, the target network changes very slowly
and smoothly, which improves the stability of learning.
The whole pseudocode shows in Algorithm 1.

6.3 Twin Delayed Deep Deterministic Policy Gradient (TD3)

The twin delayed deep deterministic policy gradient (TD3) algorithm is an improve-
ment of DDPG, where three critical techniques are used:

1. Clipped double Q-learning for actor-critic: learn two Q-value functions, which
is similar to double Q-learning.

2. Target networks and delayed policy updates: update the policy (and the target
network) less frequently than the Q-value function.

3. Target policy smoothing regularization: Add noise to the target action to smooth
the Q-value function and avoid overfitting.

For the first technique, we know that in DQN, there is an overestimation problem
due to the existence of the max operation, this problem also exists in DDPG, because
Q(s, a) is updated in the same way as DQN

O(s,a) < R{ + ymax Q (s', a). (6.9)

6 Combine Deep Q-Networks with Actor-Critic 217

Algorithm 1 DDPG

Hyperparameters: soft update factor p, reward discount factor y
Input empty replay buffer D, initialize parameters 0 of critic network Q(s,a|02) and
parameters 07 of actor network 7 (s|607), target network Q' and 7’
Initialize target network Q’ and 7’ with weights 02 < 02,7 « 67
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state S
fort=1,T do
Selection action A; = 7(S,|67) + N}
Execute action A; and observe reward R;, and observe new state S;|
Store transion (S;, As, R;, Dy, S;+1) in D
Set ¥; = Ri +y(1 = D) Q' (S+1, 7' (51167102
Update critic by minimizing the loss:

1
=y i = 065, Ae®)?
1
Update the actor policy using the sampled policy gradient:
1
Vord & 3 Va5, al09)s=s; a=n(sy Vor (51671,
1

Update the target networks:
09 « p2 + (1 —p)p?
67"« p6™ + (1 — p)o™
end for
end for

This is not a problem in the tabular case, because the Q-values are stored
precisely. However, when we use a network as a function approximator in a more
complex case, the estimation of Q-value will be noisy. That is to say:

QEPProX (¢l 4y = Qlarget () + Y (6.10)

where Y“, is a noise with zero mean. But with the max operator, the noise induces a
dlfference between Q9PP"9% and Q'978¢! Denote the difference as Zg, we have

Z, ditRa +y max Qappr()x (S a) <R(: +y max erget(s/, 4 > ,
a
6.11)
=y (mfiX Qapprux (S/, &) _ mfiX Qtarget(s/, a)> .
P a

Considering the noise Y f‘,, some of the O-values might be too small, while others
might be too large. The max operator always picks the largest value for each state,

218 H. Zhang et al.

which will make it sensitive to overestimate the correct Q-values for some actions.

In this case, this noise will lead to E[Z,] > 0 and cause the overestimation problem.
The TD3 algorithm incorporates the idea of double Q-learning in DDPG; it

establishes two Q-value networks to compute the value of the next state:

Qg (s, a) = Qg1 (s, 74, () , 6.12)
Qg (s, a) = Qgy (s, 7, (1) - (6.13)
Use the minimum of the two values (clipped) to compute the Bellman equation:

Yi=r+y min Qy (', 77, (s)) . (6.14)
i=1, i

With clipped double Q-learning, the value target will not introduce additional
overestimation over using the standard Q-learning target. While this update rule
may induce an underestimation bias, this is preferable to an overestimation bias.
Because unlike overestimated actions, the value of underestimated actions will not
be explicitly propagated through the policy update (Fujimoto et al. 2018).

For the second technique, we know that the target network is a good tool to
achieve stability in deep reinforcement learning. As deep function approximators
require multiple gradient updates to converge, target networks provide a stable
objective in the learning procedure and allow better coverage of the training data.
So, if target networks can be used to reduce the error over multiple updates, and
policy updates on high-error states cause divergent behavior, then the policy network
should be updated at a lower frequency than the value network, to first minimize
error before introducing a policy update. In this way, the TD3 algorithm reduces
the update frequency of the policy function. It only updates the policy and target
networks after a fixed number of updates d to the critic. The less frequent policy
updates can make the update of Q-value function has a smaller variance, and thus a
higher quality policy can be obtained.

For the third technique, a concern with deterministic policies is that they can
overfit to narrow peaks in the value estimate. In TD3 paper, the author enforces the
notion that similar actions should have similar value, so fitting the value of a small
area around the target action makes sense:

y=r+Ec[Qp (s, mp(s) +€)]. (6.15)
By adding a truncated normal distribution noise to each action as a regularization,

the computation of Q-values can be smoothed to avoid overfitting.
This makes a modified target update:

y=r+yQy (s’, Ty s+ e) ,€ ~clip(N(0,0), —c, c). (6.16)

The whole pseudocode shows in Algorithm 2.

6 Combine Deep Q-Networks with Actor-Critic 219

Algorithm 2 TD3

1: Hyperparameters: soft update factor p, reward discount factor y, clip factor ¢
2: Input: empty replay buffer D, initial parameters 6y, 6, of critic networks Qg,, Qg,, initial
parameters ¢ of actor network g
. Initialize target networks él <~ 01, éz <~ 0, (f) <~ ¢
for t =1to T dodo
Select action with exploration noise A, ~ 7y (S;) +¢€,€ ~ N (0, 0)
Observe reward R, and new state Sy
Store transition tuple (S;, A;, R;, Dy, S;+1) in D
Sample mini-batch of N transitions (S;, A, Rs, Dy, S¢+1) from D
iy < Ty (Si+1) +€,€ ~clip(IN(0,6, —c, ¢))
10: y < R, +y(= Dy)minj=1 2 Qg (Si+1, dr+1)
11: Update critics 6; <— arg miny, N1 > (v — Qq, (S, Ap))?
12: if r mod d then

RN AW

13: Update ¢ by the deterministic policy gradient:

14: Vo J (@) = N1 VaQo, (Si. A, =y (5 Vo (Sp)
15: Update target networks:

16 b < p0i+(—p)f

17: ¢ <—pp+(1—p)g

18: end if

19: end for

6.4 Soft Actor-Critic (SAC)

The soft actor-critic (SAC) algorithm follows the idea of maximum entropy
reinforcement learning, where instead of maximizing the discounted cumulative
reward, the optimal policy aims to maximize its entropy regularized reward, thus
encouraging the exploration of the policy.

H}Tng [Z v (S, Ar) +aH(ﬂe(-|Sz)))}, (6.17)
1

where « is the regularization coefficient. Maximum entropy reinforcement learning
has been well explored in the literature (Ziebart et al. 2008; Levine and Koltun 2013;
Fox et al. 2016; Nachum et al. 2017; Haarnoja et al. 2017). Here we only introduce
the idea of soft policy iteration which serves as the fundamental of the SAC method.

6.4.1 Soft Policy Iteration

Soft policy iteration is a general algorithm for learning the optimal maximum
entropy policies with provable guarantees. Similar to policy iteration, soft policy
iteration also has two steps: soft policy evaluation and soft policy improvement.

220 H. Zhang et al.

Let
Vi(s) =E [Z v (S, A + aH(ﬂOI&)))} ; (6.18)
t

where Sy = s. Further let
O(s,a) =r(s,a) + yE[V(s)], (6.19)
where s' ~ Pr (:|s, a) is the next state. It is straightforward to verify that
V7(s) = Egn [Q(s, a) — o log(als)] . (6.20)
In the soft policy evaluation step, define the Bellman backup operator 7 by
T Q(s,a) =r(s,a) + yE[V(s"]. (6.21)

Similar to policy evaluation, one can prove that for any map Q° : S x A — R,
QX will converge to the soft Q-value of 7, where QF = 77 Q%1

In the policy improvement step, we solve the entropy regularized reward
maximization problem with the current Q values.

w(-s) = argmﬁanNn [Q(Gs,a) +aH(r)]. (6.22)

Solving the above optimization problem (Fox et al. 2016; Nachum et al. 2017),
one can get that

exp (106,)

7(s) , (6.23)

m(-|s) =

where Z(s) is the normalizing factor, i.e. Z(s) =), exp (é QO s, a)). Given that
the optimal = may not be representable in the policy model, we instead update the

policy by

exp (1 06s.)

76 (6.24)

m(ls) = argmin Dy, | 7 (|s)ll

Not surprising, one can also prove the policy monotonically improvement
property for the above soft policy improvement step, even with the projection to
IT using KL-divergence. The next theorem shows that soft policy iteration, similar
to policy iteration, converges to the optimal solution.

6 Combine Deep Q-Networks with Actor-Critic 221

Theorem 6.1 Let g € I1 be any initialized policy. Assume that by performing
soft policy iteration steps, wy converges to w*. Then Q"*(s, a) > Q7 (s, a) for any
(s,a) € S x Aand any w € Tl.

We omit all the proofs of this section of this book. Interested readers can refer
to (Haarnoja et al. 2018b) for more details.

6.4.2 SAC

SAC extends soft policy iteration to the setting with function approximation which
is more practical. Instead of estimating the true Q value of the policy 7 for policy
improvement, SAC performs an alternative optimization on both the value function
and the policy.

Consider a parametrized Q function Qg4 (s, a) and policy mg. Here we consider
the continuous action setting, where the output of my is a Gaussian mean and
covariance. Similarly, the Q function can be learned by minimizing the soft Bellman
residual,

2
Jo@) =E [(Q(St, A = r(Si, A) = VEs [Va(Sis]) } S 629)

where V(Z;(S) = Eg, [Qq; (s,a) —alogmy (als)], and Qd; is a target Q network,

whose parameter ¢ is obtained as an exponentially moving average of ¢. Moreover,
the policy mp can be learned by minimizing the expected KL-divergence.

Jx(0) = Eynp| Ear, [log ma(als) — Qo (s, @)] |- (6.26)

In practice, SAC uses two Q-networks (as well as two target Q-networks) to
mitigate the biased Q value problem, i.e. Qy(s,a) = min (Q¢1 (s,a), Qp, (s, a)).
Note that J (6) has the expectation taken on mg. To optimize J; (9), one option is
to use the idea of likelihood ratio gradient estimator (Williams 1992). However, in
the continuous action setting, one can instead use the reparametrization trick for the
policy network, which usually results in a lower variance estimator. To do that, we
reparametrize my as an action network taking both state s and a standard Gaussian
noise € as its input.

a= fp(s,€). (6.27)
Plugging into J (6),

Iz (0) = Egop e~ p [log o (fo (s, €)1s) — Oy (s, fo(s, €))], (6.28)

222 H. Zhang et al.

where N is the standard Gaussian distribution, and 7y is now defined implicitly in
terms of fy.

Finally, SAC also provides a way in automatically update the regularization
coefficient &, by minimizing the following loss:

J (@) = Egr, [—alogmy(als) — ax], (6.29)

where « is a hyperparameter interpreted as the target entropy. Such updating
schemes for « are also called automating entropy adjustments. The intuition
behind J(«) is the dual form of the original policy optimization problem with the
constraint that the average entropy at each time step should be at least «. For more
rigorous statement around automating entropy adjustment, please refer to the SAC
paper (Haarnoja et al. 2018b). We summarize the SAC algorithm in Algorithm 3.

Algorithm 3 Soft actor-critic (SAC)

Hyperparameters: target entropy «, step sizes Ag, Ay, Ay, €xponentially moving average
coefficient 7
Input: initial policy parameters 6, initial Q value function parameters ¢; and ¢,
D=0; ¢ =¢;,fori =1,2
fork=0,1,2,... do
forr=0,1,2,... do
Sample A; from 7y (-|S;), collect (R;, S;+1)
D=DU{S, A, R;, St+l}
end for
Perform multiple step of gradients:
¢ =i —roVJg(g;) fori =1,2
0 =0 —xVoJ(0)
a=o—ryVJ(¥)
i =(1 =) + 1 fori =1,2
end for
Output 6, ¢1, ¢

6.5 Examples

This section will share examples of DDPG, TD3, and SAC. They are all actor-
critic methods and use a Q-network as a critic. Examples are based on the OpenAl
Gym Environment. Since these algorithms are based on continuous action space,
“Pendulum-v0” environment is used.

6 Combine Deep Q-Networks with Actor-Critic 223
6.5.1 Related Gym Environment

As mentioned above, Pendulum-vO0 is a classical inverted pendulum environment
with three-dimensional observation space and one-continuous action space. At each
step, the environment returns a reward affected by the current rotation angle, speed,
and acceleration. The goal of this task is to turn the pendulum upside down to gain
the maximum score.

6.5.2 DDPG: Pendulum-v0

DDPG uses off-policy data and TD methods. The structure of DDPG class can be
shown as follows:

class DDPG (object) :
def _ init_ (self, action_dim, state dim, action range) :

def'éQa_update(self):
defiéét_action(self, s, greedy=False):
def'iéarn(self):
def'ééore_transition(self, s, a, r, s_):

def save (self):

def load(self):

There are four networks created in the initialization function. They are the actor,
critic, actor target, and critic target. The parameters of the target network will be
replaced with the corresponding network parameters.

class DDPG (object) :
def init (self, action _dim, state_dim, action range) :

self.memory = np.zeros((MEMORY CAPACITY, state dim x 2 +
action dim + 1), dtype=np.float32)

self.pointer = 0

self.action dim, self.state dim, self.action range =
action dim, state dim, action range

self.var = VAR

W_init = tf.random normal initializer (mean=0, stddev=0.3)
b init = tf.constant initializer (0.1)

224 H. Zhang et al.

def get_actor (input_state_shape, name='"'):

input layer = tl.layers.Input (input state shape,
name='A input’)

layer = tl.layers.Dense(n_units=64, act=tf.nn.relu,
W init=W init, b init=b_ init,
name='A 11’) (input_layer)

layer = tl.layers.Dense(n_units=64, act=tf.nn.relu,
W init=W init, b _init=b_init, name='A 12’) (layer)

layer = tl.layers.Dense(n_units=action dim,
act=tf.nn.tanh, W _init=W init, b_init=b init,

name='A a’) (layer)
layer = tl.layers.Lambda (lambda x: action range =x
x) (layer)

return tl.models.Model (inputs=input layer,
outputs=layer, name=’Actor’ + name)

def get critic(input_ state shape, input action shape,

name='") :

state input = tl.layers.Input (input state_ shape,
name='C s input’)

action input = tl.layers.Input (input_action_shape,
name='C a input’)

layer = tl.layers.Concat (1) ([state input, action_ input])

layer = tl.layers.Dense(n_units=64, act=tf.nn.relu,

W init=W init, b _init=b_init, name='C 11’) (layer)
layer = tl.layers.Dense(n_units=64, act=tf.nn.relu,

W init=W init, b _init=b_init, name='C 12’) (layer)
layer = tl.layers.Dense(n_units=1, W_init=W init,

b init=b init, name='C out’) (layer)
return tl.models.Model (inputs=[state input,

action input], outputs=layer, name='Critic’ + name)

self.actor = get_actor ([None, state dim])

self.critic = get critic([None, state_dim], [None,
action dim])

self.actor.train ()

self.critic.train()

def copy para (from model, to_model) :
for i, j in zip(from model.trainable weights,
to _model.trainable weights) :
j.assign (i)

self.actor target = get actor ([None, state dim],
name=’'_target’)

copy para (self.actor, self.actor target)

self.actor_target.eval ()

self.critic_target = get critic([None, state dim], [None,
action dim], name=’' target’)

copy para (self.critic, self.critic_target)

self.critic_target.eval ()

6 Combine Deep Q-Networks with Actor-Critic 225

self.ema = tf.train.ExponentialMovingAverage (decay=1 -
TAU) # soft replacement

self.actor opt = tf.optimizers.Adam (LR _A)
self.critic opt = tf.optimizers.Adam (LR _C)

During the training process, the parameters of the target network will be updated
by a moving average.

def ema_update (self) :
paras = self.actor.trainable weights +
self.critic.trainable weights
self.ema.apply (paras)
for 1, j in zip(self.actor target.trainable weights +
self.critic_target.trainable weights, paras):
i.assign(self.ema.average (j))

As the policy network is a deterministic policy network, we need to add some
randomness if we do not choose actions by greedy methods. We used a normal
distribution here and the value of variance decreases in the process of the update
iteration. The randomness can also be changed to other methods, such as an O-U
noise.

def get action(self, state, greedy=False):
a = self.actor(np.array([s], dtype=np.float32)) [0]
if greedy:
return a

add randomness to action selection for exploration
return np.clip (np.random.normal (a, self.var),
-self.action range,
self.action_ range)

In the 1earn () function, we sample the off-policy data from the replay buffer
and use the Bellman equation to learn the Q-function. After that, the policy can be
learned by maximizing the Q-value. Finally, target networks will be updated with
Polyak averaging (Polyak 1964) by using formula 6 Q" 024+ (1—p)o2, 07 «
po™ + (1= p)b™..

def learn(self):
self.var x= .9995
indices = np.random.choice (MEMORY CAPACITY,
size=BATCH_SIZE)

bt = self.memory[indices, :]

bs = bt[:, :self.s_dim]

ba = bt[:, self.s dim:self.s dim + self.a dim]
br = bt[:, -self.s dim - 1:-self.s dim]

bs = bt[:, -self.s dim:]

with tf.GradientTape () as tape:
a_ = self.actor target (bs_)

226 H. Zhang et al.

g_ = self.critic target ([bs_, a 1)
y = br + GAMMA x g _
g = self.critic([bs, bal)
td error = tf.losses.mean squared error (y, q)
c_grads = tape.gradient (td error,
self.critic.trainable weights)
self.critic _opt.apply gradients (zip (c_grads,
self.critic.trainable weights))

with tf.GradientTape () as tape:
a = self.actor (bs)
q = self.critic([bs, al)
a_loss = -tf.reduce mean(q) # maximize the g
a_grads = tape.gradient (a_loss,
self.actor.trainable weights)
self.actor opt.apply gradients (zip(a_grads,
self.actor.trainable weights))
self.ema_update ()

The store transition () function uses a replay buffer to store the transi-
tion of each step.

def store transition (self, s, a, r, s):

s = s.astype(np.float32)

s_ = s_.astype(np.float32)

transition = np.hstack((s, a, [r], s_))

index = self.pointer % MEMORY CAPACITY # replace the old
memory with new memory

self .memory [index, :] = transition

self.pointer += 1

The main function is straightforward, the agent interacts with the environment at
each step, stores data into the replay buffer, and uses sampled batch data from the
replay buffer to update the networks.

env = gym.make (ENV_ID) .unwrapped

reproducible

env.seed (RANDOM_SEED)
np.random. seed (RANDOM_SEED)
tf.random.set seed (RANDOM_ SEED)

state dim = env.observation space.shape [0]

action dim = env.action space.shape [0]

action range = env.action space.high # scale action,
[-action range, action range]

agent = DDPG(action_dim, state dim, action range)
t0 = time.time ()

if args.train: # train
all episode reward = []

6 Combine Deep Q-Networks with Actor-Critic 227

for episode in range (
state = env.reset (
episode reward = 0
for step in range (MAX STEPS) :
if RENDER:
env.render ()
Add exploration noise
action = agent.get action(state)
state , reward, done, info = env.step(action)
agent .store transition (state, action, reward, state)
if agent.pointer > MEMORY CAPACITY :
agent .learn ()
state = state
episode reward += reward
if done:
break

TRAIN_EPISODES) :
)

if episode == 0:
all episode reward.append (episode reward)
else:
all episode reward.append(all episode reward[-1] =*
0.9 + episode reward % 0.1)
print (
'Training | Episode: {}/{} | Episode Reward: {:.4f}
| Running Time: {:.4f}’.format (
episode+l, TRAIN EPISODES, episode reward,
time.time () - tO

agent .save ()

plt.plot (all episode reward)

if not os.path.exists(’image’):
os.makedirs (' image’)

plt.savefig(os.path.join(’image’, ’ddpg.png’))

The agent can be tested after training.

if args.test:
test
agent .load ()
for episode in range (
state = env.reset (
episode reward = 0
for step in range (MAX STEPS) :
env.render ()
state, reward, done, info =
env.step (agent .get_action (state, greedy=True))
episode reward += reward
if done:
break
print (

TEST EPISODES) :
)

228 H. Zhang et al.

"Testing | Episode: {}/{} | Episode Reward: {:.4f} |
Running Time: {:.4f}’.format (
episode + 1, TEST EPISODES, episode reward,
time.time() - to0))

6.5.3 TD3: Pendulum-v0

TD3 code uses these classes: ReplayBuffer class, QNetwork class,
PolicyNetwork class, and TD3 class.

ReplayBuffer class is used to build a replay buffer, so it should have the
function of push () and sample ().

class ReplayBuffer:
def init (self, capacity):

def push(self, state, action, reward, next state, done):
def sample (self, batch size):

def len_ (self):

The push () function appends data to the buffer and move the pointer.

def push(self, state, action, reward, next state, done):
if len(self.buffer) < self.capacity:
self.buffer.append (None)

self .buffer[self.position] = (state, action, reward,
next state, done)
self.position = int ((self.position + 1) % self.capacity) #

as a ring buffer

The sample () function simply samples data from the buffer and returns.

def sample (self, batch size):
batch = random.sample (self.buffer, batch size)
state, action, reward, next state, done = map (np.stack,
zip (xbatch)) # stack for each element
return state, action, reward, next state, done

By refactoring the len () function, the buffer size will be returned when
called by the 1en () function.

def len (self):

return len(self.buffer)

6 Combine Deep Q-Networks with Actor-Critic 229

The QNetwork class is used to build the Q-network for critic. It is another
coding way for building networks.

class QNetwork (Model) :

def _ init (self, num inputs, num actions, hidden dim,
init w=3e-3):

super (QNetwork, self). init ()

input dim = num inputs + num_actions

w_init = tf.random uniform initializer (-init w, init w)

self.linearl = Dense (n_units=hidden dim, act=tf.nn.relu,
W _init=w_init, in channels=input dim, name='gl’)

self.linear2 = Dense(n_units=hidden dim, act=tf.nn.relu,
W_init=w_init, in channels=hidden dim, name='qg2’)

self.linear3 = Dense(n units=1, W _init=w_init,

in channels=hidden dim, name='g3’)

def forward (self, input):
x = self.linearl (input)
x = self.linear2 (x)
x = self.linear3 (x)
return x

The PolicyNetwork class is used to build the policy network for the
actor. While building the network, it also adds evaluate (), get _action(),
sample action () functions.

class PolicyNetwork (Model) :
def _ init (self, num inputs, num actions, hidden dim,
action range=1., init w=3e-3):
def forward (self, state):

def evaluate (self, state, eval noise scale):

def get action(self, state, explore noise scale,
greedy=False) :

def sample_action (self) :

The following part of the code shows how to build the network:

class PolicyNetwork (Model) :

def _ init (self, num inputs, num actions, hidden dim,
action range=1., init w=3e-3):
super (PolicyNetwork, self). init ()
w_init = tf.random uniform initializer (-init w, init w)
self.linearl = Dense (n _units=hidden dim, act=tf.nn.relu,
W_init=w_init, in channels=num inputs, name='policyl’)
self.linear2 = Dense (n_units=hidden dim, act=tf.nn.relu,

W_init=w_init, in channels=hidden dim, name='policy2’)

230

H. Zhang et al.

self.linear3 = Dense (n_units=hidden dim, act=tf.nn.relu,
W_init=w_init, in channels=hidden dim, name='policy3’)
self.output linear = Dense(n_units=num actions,
W init=w_init,
b init=tf.random uniform initializer (-init w, init w),
in channels=hidden dim, name=’'policy output’)
self.action range = action_range
self.num actions = num actions

def forward (self, state):

x = self.linearl (state)

x = self.linear2 (x)

x = self.linear3 (x)

output = tf.nn.tanh(self.output linear (x)) # unit range
output [-1, 1]

return output

The evaluate () function generates actions with the states for calculating
gradients. It uses the trick of target policy smoothing for generating noisy actions.

def evaluate (self, state, eval noise_scale):

state = state.astype(np.float32)
action = self.forward(state)

action = self.action range x action
add noise

normal = Normal (0, 1)

eval noise clip = 2 * eval noise scale
noise = normal.sample (action.shape) * eval noise scale
noise = tf.clip by value (noise, -eval noise clip,

eval noise clip)
action = action + noise
return action

The get _action () function generates actions with the states to interact with
the environment.

def get action(self, state, explore noise scale,

greedy=False) :
action = self.forward([state])
action = self.action range * action.numpy () [0]
if greedy:
return action
add noise
normal = Normal (0, 1)
noise = normal.sample (action.shape) * explore noise scale
action += noise
return action.numpy ()

6 Combine Deep Q-Networks with Actor-Critic 231

The

sample action() function is used to generate random actions at the

beginning of training.

def

sample action (self,):
a = tf.random.uniform([self.num actions], -1, 1)
return self.action range * a.numpy ()

The TD3 class is the core content of the TD3 algorithm.
class TD3 () :
def init (self, state dim, action _dim, replay buffer,
hidden dim, action_ range,
policy target update interval=1, g lr=3e-4,
policy lr=3e-4): # create replay buffer and networks
def target ini (self, net, target net): # hard-copy update for
initializing target networks
def target soft update (self, net, target net, soft tau):
#soft update the target net with Polyak averaging
def update (self, batch size, eval_noise_scale,
reward scale=10., gamma=0.9, soft tau=le-2): # update all
networks in TD3
def save(self): # save trained weights
def load(self): # load trained weights
The initialization function creates twin g-networks, policy-networks, and their
target networks. Six networks are established in total.
class TD3 () :
def _ init (self, state dim, action dim, replay buffer,

hidden dim, action_ range,

policy target update interval=1, g lr=3e-4,
policy lr=3e-4):

self .replay buffer = replay buffer

initialize all networks

self.q netl = QNetwork (state dim, action dim, hidden dim)
self.qg net2 = QNetwork (state dim, action dim, hidden dim)
self.target g netl = QNetwork (state dim, action dim,

hidden dim)

self.target g net2 = QNetwork (state dim, action dim,
hidden dim)

self.policy net = PolicyNetwork (state dim, action dim,

hidden dim, action_ range)

self.target policy net = PolicyNetwork (state dim,
action dim, hidden dim, action_ range)

print ('Q Network (1,2): ', self.g netl)

232

H. Zhang et al.

print (' Policy Network: ', self.policy net)

initialize weights of target networks

self.target g netl = self.target ini (self.qg netl,
self.target g netl)

self.target g net2 = self.target ini (self.q net2,
self.target g net2)

self.target policy net = self.target ini (self.policy net,
self.target policy net)

set train mode

self.qg netl.train()

self.q net2.train ()
self.target g netl.train()
self.target g net2.train()
self.policy net.train()
self.target policy net.train()

self.update cnt = 0
self.policy target update interval =
policy target update interval

self.q optimizerl = tf.optimizers.Adam(g_lr)
self.q optimizer2 = tf.optimizers.Adam(g_lr)
self.policy optimizer = tf.optimizers.Adam(policy 1r)

The target ini () function and target soft update () function are
used to update the parameters of target networks. The difference is that the former
one is a hard copy replacement and the latter one updates the parameters by Polyak
averaging.

def target ini (self, net, target net):=

for target param, param in
zip (target net.trainable weights,
net.trainable weights) :
target param.assign (param)

return target net

def target soft update (self, net, target net, soft tau):=

for target param, param in
zip (target net.trainable weights,
net.trainable weights) :

target param.assign(target param % (1.0 - soft tau) +
param x soft tau) # copy weight value into target
parameters

return target net

Next is the most critical part: the update () function. This part fully reflects
the three tricks of the TD3 algorithm.

6 Combine Deep Q-Networks with Actor-Critic 233

At the beginning of the function, we first sample data from the replay buffer.

def update (self, batch size, eval noise scale,
reward scale=10., gamma=0.9, soft_tau=le-2):
77 update all networks in TD3 ' '’
self.update _cnt += 1

sample batch data

state, action, reward, next state, done =
self.replay buffer.sample (batch size)

reward = reward[:, np.newaxis] # expand dim

done = done[:, np.newaxis]

Next, we use a target policy smoothing trick by adding noise to the target action.
This makes it harder for the policy to exploit Q-value function errors by smoothing
out Q values along changes in action.

Trick Three: Target Policy Smoothing. Add noise to the
target action
new_next action = self.target policy net.evaluate (
next state, eval noise scale=eval noise_ scale
) # clipped normal noise

normalize with batch mean and std
reward = reward scale % (reward - np.mean (reward, axis=0))
/ np.std(reward, axis=0)

The next trick is clipped double-Q learning. It learns two Q-value functions and
uses the smaller Q-value to form the targets in the Bellman error loss function. In
this way, the overestimation of the Q-value can be mitigated.

Training Q Function
target g input = tf.concat ([next state, new next action],
1) # the dim 0 is number of samples

Trick One: Clipped Double-Q Learning. Use the smaller
Q-value.

target g min =
tf.minimum(self.target g netl (target g input),
self.target g net2 (target_g input))

target g value = reward + (1 - done) * gamma =*
target g min # if done==1, only reward
g _input = tf.concat ([state, action], 1) # input of g net

with tf.GradientTape () as gl_tape:
predicted g valuel = self.qg netl(g_input)
g_value lossl =
tf.reduce mean (tf.square (predicted g valuel -
target g value))
gl grad = gl_tape.gradient (g value lossl,
self.q netl.trainable weights)

234 H. Zhang et al.

self.q optimizerl.apply gradients (zip (gl _grad,
self.qg netl.trainable weights))

with tf.GradientTape () as g2_ tape:
predicted g value2 = self.q net2(g_input)
g_value loss2 =
tf.reduce mean (tf.square (predicted g value2 -
target g value))
g2 _grad = g2 tape.gradient (g value loss2,
self.qg net2.trainable weights)
self.q optimizer2.apply gradients (zip (g2 grad,
self.qg net2.trainable weights))

The last trick is the “delayed” policy updates trick. The policy and its target net-
works are updated less frequently than the Q-value function. The paper recommends
one policy update for every two Q-value function updates.

Training Policy Function
Trick Two: ‘‘Delayed’’I Policy Updates. Update the

policy less frequently
if self.update cnt % self.policy target update interval ==

0:

with tf.GradientTape () as p tape:

new_action = self.policy net.evaluate (
state, eval noise scale=0.0

) # no noise, deterministic policy gradients

new g input = tf.concat ([state, new_action], 1)

'’ implementation 1 "'’

predicted new g value =
tf.minimum(self.q netl (new g input),self.q net2
(new_g_input))

77 implementation 2 ‘'’

predicted new g value = self.qg netl(new g input)

policy loss = -tf.reduce_mean (predicted new_g value)

p_grad = p tape.gradient (policy loss,
self.policy net.trainable weights)
self.policy optimizer.apply gradients (zip(p_grad,
self.policy net.trainable weights))

Soft update the target nets
self.target g netl =
self.target_soft_update (self.qg netl,
self.target g netl, soft tau)
self.target_g net2 =
self.target soft update (self.qg net2,
self.target g net2, soft tau)
self.target policy net =
self.target soft update (self.policy net,
self.target policy net, soft tau)

6 Combine Deep Q-Networks with Actor-Critic 235

The following code is part of the training code. We first create the environment
and the agent.

initialization of env

env = gym.make (ENV_ID) .unwrapped

state dim = env.observation space.shape [0]

action dim = env.action space.shape [0]

action range = env.action space.high # scale action,
[-action range, action range]

reproducible

env.seed (RANDOM_SEED)
random. seed (RANDOM SEED)

np . random. seed (RANDOM_SEED)
tf.random.set seed (RANDOM SEED)

initialization of buffer
replay buffer = ReplayBuffer (REPLAY BUFFER_ SIZE)
initialization of trainer
agent = TD3 (state dim, action dim, action range, HIDDEN DIM,
replay buffer,
POLICY TARGET UPDATE INTERVAL, Q LR, POLICY LR)
t0 = time.time ()

Before starting each episode, it is necessary to do some initialization. In this
code, the training time is limited by the total number of steps instead of the max
episode iterations. And because the network is built in different ways, you need an
extra call of the function before using it.

training loop
if args.train:
frame idx = 0
all episode reward = []
need an extra call here to make inside functions be able
to use model.forward
state = env.reset () .astype(np.float32)
agent .policy net ([state])
agent .target policy net ([state])

At the very beginning, a random sample was used by the agent to provide enough
data for the update. After that the agent was left to interact with the environment and
update at every step as usual.

for episode in range (TRAIN EPISODES) :
)

(
state = env.reset () .astype (np.float32)
episode reward = 0
for step in range (MAX STEPS) :
if RENDER:

env.render ()
if frame idx > EXPLORE_STEPS:
action = agent.policy net.get action (state,
EXPLORE _NOISE SCALE)

236 H. Zhang et al.

else:
action = agent.policy net.sample action ()

next state, reward, done, _ = env.step(action)
next state = next state.astype (np.float32)
done = 1 if done is True else 0

replay buffer.push(state, action, reward,
next state, done)

state = next state

episode reward += reward

frame idx += 1

if len(replay buffer) > BATCH SIZE:
for i in range (UPDATE_ITR) :
agent .update (BATCH_SIZE, EVAL NOISE SCALE,
REWARD SCALE)
if done:
break

Finally, we provide the necessary functions to visualize the training process and
save the agent.

if episode ==
all episode reward.append (episode reward)
else:
all episode reward.append(all episode reward[-1] =*
0.9 + episode reward * 0.1)
print (
"Training | Episode: {}/{} | Episode Reward: {:.4f}
| Running Time: {:.4f}’.format (
episode+1l, TRAIN EPISODES, episode reward,
time.time() - tO

)
agent .save ()
plt.plot (all_episode reward)
if not os.path.exists(’image’):
os.makedirs ('image’)
plt.savefig(os.path.join(’image’, ’td3.png’))

6.5.4 SAC: Pendulum-v0

SAC is an entropy method. The target g value uses the minimum of the
two Q network and log probability of policy m(a|s). The example code used
ReplayBuffer class, SoftQNetwork class, PolicyNetwork class, and
SAC class.

6 Combine Deep Q-Networks with Actor-Critic 237

The ReplayBuffer class and the Sof tQNetwork class are almost the same
as ReplayBuf fer class and QNetwork class in TD3 code, so we can skip them
and see the code after.

class ReplayBuffer: # a ring buffer for storing transitions and
sampling for training
def init (self, capacity):
def push(self, state, action, reward, next state, done):

def sample (self, batch size):

def len_ (self):

class SoftQNetwork (Model) : # the network for evaluate values of
state-action pairs: Q(s,a)
def _ init (self, num inputs, num actions, hidden dim,

init w=3e-3):

def forward (self, input):

The PolicyNetwork class is also similar. The difference is that SAC uses a
stochastic policy network instead of a deterministic policy network, which causes
some differences.

class PolicyNetwork (Model) :
def _ init (self, num inputs, num actions, hidden dim,
action range=1., init w=3e-3, log std min=-20,
log_std max=2):
def forward (self, state):
def evaluate (self, state, epsilon=le-6):

def get action(self, state, greedy=False):

def sample_action (self) :

The stochastic network outputs mean values and log standard deviations to depict
an action distribution. Therefore, the network has two outputs.

class PolicyNetwork (Model) :

def _ init (self, num inputs, num actions, hidden dim,
action range=1., init w=3e-3, log std min=-20,
log_std max=2):

super (PolicyNetwork, self). init ()

self.log std min = log std min
self.log std max = log std max
w_init = tf.keras.initializers.glorot normal (seed=None)

238 H. Zhang et al.

self.linearl = Dense (n_units=hidden dim, act=tf.nn.relu,
W_init=w_init, in channels=num inputs, name=’'policyl’)
self.linear2 = Dense (n_units=hidden dim, act=tf.nn.relu,
W_init=w_init, in channels=hidden dim, name=’'policy2’)
self.linear3 = Dense (n_units=hidden dim, act=tf.nn.relu,
W_init=w_init, in channels=hidden dim, name='policy3’)
self.mean linear = Dense (n_units=num actions,
W _init=w_init,
b init=tf.random uniform initializer (-init w, init w),
in channels=hidden dim, name=’'policy mean’)
self.log _std linear = Dense (n_units=num actions,
W_init=w_init,
b init=tf.random uniform initializer (-init w, init w),
in channels=hidden dim, name='policy logstd’)
self.action range = action_range
self.num actions = num actions

A clip method on log standard deviations is used in the forward () function to
prevent the standard deviation value from becoming too large.

def forward (self, state):
x = self.linearl (state)
x = self.linear2 (x)
x = self.linear3 (x)
mean = self.mean linear (x)
log std = self.log std linear (x)
log std = tf.clip by value (log std, self.log std min,
self.log std max)
return mean, log std

The evaluate () function uses a reparameterization trick to sample actions
from the action distribution so that the gradient here can be propagated back. It
also calculates the log probability of the sampled actions on the original action
distribution.

def evaluate (self, state, epsilon=1le-6):

state = state.astype(np.float32)

mean, log std = self.forward(state)

std = tf.math.exp(log std) # no clip in evaluation, clip
affects gradients flow

normal = Normal (0, 1)

z = normal.sample (mean.shape)

action 0 = tf.math.tanh(mean + std % z) # TanhNormal
distribution as actions; reparameterization trick

action = self.action range % action 0

according to original paper, with an extra last term for
normalizing different action range

log prob = Normal (mean, std).log prob (mean + std * z) -
tf.math.log(l. - action 0 »x 2 + epsilon) -
np.log(self.action range)

both dims of normal.log prob and -log(l-axx2) are
(N,dim_of action) ;

the Normal.log prob outputs the same dim of input
features instead of 1 dim probability,

6 Combine Deep Q-Networks with Actor-Critic 239

needs sum up across the dim of actions to get 1 dim
probability; or else use Multivariate Normal.

log prob = tf.reduce sum(log prob, axis=1) [:, np.newaxis]
expand dim as reduce sum causes 1 dim reduced

return action, log prob, z, mean, log std

The

get_action () function is a simplified version of the previous function.

It only samples actions from the action distributions.

def get action(self, state, greedy=False) :

mean, log std = self.forward([statel])
std = tf.math.exp(log std)
normal = Normal (0, 1)
z = normal.sample (mean.shape)
action = self.action_range * tf.math.tanh(
mean + std x z
) # TanhNormal distribution as actions; reparameterization
trick

action = self.action range x tf.math.tanh(mean) if greedy
else action
return action.numpy () [0]

The

sample action () function is much more simple. It is only used at the

very beginning of training to sample data for the first update.

def sample action (self,):

a = tf.random.uniform([self.num actions], -1, 1)
return self.action range x a.numpy ()

The structure of the SAC we will talk about next is as follows:

class
def

def

def

def

def

def

SAC() :

__init (self, state_dim, action dim, replay buffer,
hidden dim, action_ range, soft g lr=3e-4, policy lr=3e-4,
alpha 1lr=3e-4): # create networks and variables

target ini (self, net, target net): # hard-copy update for
initializing target networks

target soft update (self, net, target net, soft tau): #
soft update the target net with Polyak averaging

update (self, batch size, reward scale=10.,
auto_entropy=True, target_ entropy=-2, gamma=0.99,
soft tau=le-2): # update all networks in SAC

save (self) : # save trained weights

load (self): # load trained weights

240 H. Zhang et al.

There are 5 networks in SAC algorithm. They are two soft Q-networks and their
target networks, and a stochastic policy network. An alpha variable is also needed
as a trade-off coefficient for the entropy regularization.

class SAC() :
def _ init (self, state dim, action dim, replay buffer,
hidden dim, action_ range, soft g lr=3e-4, policy lr=3e-4,
alpha lr=3e-4):
self.replay buffer = replay buffer

initialize all networks

self.soft g netl = SoftQNetwork (state dim, action dim,
hidden dim)

self.soft g net2 = SoftQNetwork (state dim, action dim,
hidden dim)

self.target soft g netl = SoftQNetwork (state dim,
action dim, hidden dim)

self.target soft g net2 = SoftQNetwork (state dim,
action dim, hidden dim)

self.policy net = PolicyNetwork (state_dim, action dim,
hidden dim, action range)

self.log alpha = tf.Variable (0, dtype=np.float32,
name=’'1log alpha’)

self.alpha = tf.math.exp(self.log alpha)

print (' Soft Q Network (1,2): ', self.soft g netl)

print (' Policy Network: ', self.policy net)

set mode

self.soft g netl.train()

self.soft g net2.train()

self.target_soft_g netl.eval()

self.target_soft g net2.eval()

self.policy net.train()

initialize weights of target networks

self.target_soft g netl =
self.target_ini (self.soft_g netl,
self.target_soft g netl)

self.target_soft_g net2 =
self.target ini (self.soft g net2,
self.target_soft_g net2)

self.soft g optimizerl = tf.optimizers.Adam(soft g 1lr)
self.soft g optimizer2 = tf.optimizers.Adam(soft g 1r)
self.policy optimizer = tf.optimizers.Adam(policy 1r)
self.alpha optimizer = tf.optimizers.Adam(alpha 1lr)

Let us introduce the update () function next. The other functions are the
same as the previous code, so we can skip them. As usual, at the beginning of the
update () function, we sample data from the replay buffer first. A normalization
on reward values can improve the training effect.

6 Combine Deep Q-Networks with Actor-Critic 241

def update (self, batch size, reward scale=10.,

auto_entropy=True, target_ entropy=-2, gamma=0.99,

soft tau=le-2):

state, action, reward, next state, done =
self.replay buffer.sample (batch size)

reward = reward[:, np.newaxis] # expand dim

done = donel[:, np.newaxis]

reward = reward scale % (reward - np.mean (reward, axis=0))
/|

np.std(reward, axis=0) + le-6

) # normalize with batch mean and std; plus a small number

to prevent numerical problem

After that, we will calculate the target Q-value based on the next state. SAC
used the minimum of the two target networks which is the same as TD3. But they
differ in that SAC adds entropy regularization when calculating target g value. The
log prob part here is the entropy which is a measure of randomness in the policy.

Training Q Function

new_next action, next log prob, , , =
self.policy net.evaluate (next state)

target g input = tf.concat ([next state, new next action],
1) # the dim 0 is number of samples

target g min = tf.minimum/(
self.target soft g netl (target g input),

self.target soft g net2 (target g input)

) - self.alpha * next log prob

target g value = reward + (1 - done) * gamma =*
target g min # if done==1, only reward

After calculating the target Q-value, training the Q function is simple.

g _input = tf.concat ([state, action], 1) # the dim 0 is
number of samples
with tf.GradientTape () as gl_tape:
predicted g valuel = self.soft g netl (g input)
g_value lossl =
tf.reduce mean (tf.losses.mean squared error
(predicted g valuel, target g value))
gl grad = gl_tape.gradient (g value lossl,
self.soft g netl.trainable weights)
self.soft g optimizerl.apply gradients (zip(gl_grad,
self.soft g netl.trainable weights))
with tf.GradientTape () as g2_ tape:
predicted g value2 = self.soft g net2 (g input)
g_value loss2 =
tf.reduce mean (tf.losses.mean squared_error
(predicted g value2, target g value))

242 H. Zhang et al.

g2 _grad = g2 tape.gradient (g value loss2,
self.soft g net2.trainable weights)

self.soft g optimizer2.apply gradients (zip (g2 grad,
self.soft g net2.trainable weights))

The policy loss is the expected future return plus expected future entropy. By
maximizing the loss function, the policy will be trained to maximize a trade-off
between expected return and entropy.

Training Policy Function
with tf.GradientTape () as p tape:
new_action, log prob, z, mean, log std =
self.policy net.evaluate (state)
new g input = tf.concat ([state, new_action], 1) # the
dim 0 is number of samples
77 implementation 1 '’
predicted new g value =
tf.minimum(self.soft g netl (new g input),
self.soft g net2(new_g_ input))

'’ implementation 2 '’
predicted new g value = self.soft g netl (new_g_input)
policy loss = tf.reduce mean(self.alpha x* log prob -

predicted new g value)
p_grad = p tape.gradient (policy loss,
self.policy net.trainable weights)
self.policy optimizer.apply gradients (zip (p_grad,
self.policy net.trainable weights))

Finally, we update the entropy trade-off coefficient alpha and target networks.

Updating alpha w.r.t entropy
alpha: trade-off between exploration (max entropy) and
exploitation (max Q)
if auto entropy is True:
with tf.GradientTape () as alpha tape:
alpha loss = -tf.reduce mean((self.log _alpha =*
(log prob + target entropy)))
alpha grad = alpha tape.gradient (alpha loss,
[self.log_alphal)
self.alpha optimizer.apply gradients (zip (alpha grad,
[self.log alphal))
self.alpha = tf.math.exp(self.log alpha)
else: # fixed alpha
self.alpha = 1.
alpha loss = 0

Soft update the target value nets

self.target _soft g netl =
self.target_soft_update (self.soft_g netl,
self.target _soft g netl, soft tau)

6 Combine Deep Q-Networks with Actor-Critic 243

self.target _soft g net2 =
self.target soft update (self.soft g net2,
self.target _soft g net2, soft tau)

The main loop process of training is the same as TD3. First, build the environ-
ment and the agent.

initialization of env

env = gym.make (ENV_ID) .unwrapped

state dim = env.observation space.shape[0]

action dim = env.action space.shape [0]

action range = env.action space.high # scale action,
[-action range, action rangel

reproducible

env.seed (RANDOM_SEED)
random. seed (RANDOM SEED)

np . random. seed (RANDOM_SEED)
tf.random.set seed (RANDOM SEED)

initialization of buffer

replay buffer = ReplayBuffer (REPLAY BUFFER SIZE)

initialization of trainer

agent = SAC(state dim, action dim, action range, HIDDEN DIM,
replay buffer, SOFT Q LR, POLICY LR, ALPHA LR)

t0 = time.time ()

Then, use the agent to interact with the environment and store sampled data for
updates. Before the first update, a random action sample is used.

training loop
if args.train:
frame idx = 0
all episode reward = []

need an extra call here to make inside functions be able
to use model.forward

state = env.reset () .astype(np.float32)

agent .policy net ([state])

for episode in range (TRAIN_ EPISODES) :

(
state = env.reset () .astype (np.float32)
episode reward = 0
for step in range (MAX STEPS) :
if RENDER:

env.render ()
if frame idx > EXPLORE_STEPS:
action = agent.policy net.get action (state)

else:
action = agent.policy net.sample action ()
next state, reward, done, _ = env.step(action)

next state = next state.astype (np.float32)

244 H. Zhang et al.

done = 1 if done is True else 0

replay buffer.push(state, action, reward,
next state, done)

state = next state

episode reward += reward

frame idx += 1

When enough data are collected, we can start to update at each step.

if len(replay buffer) > BATCH SIZE:
for i in range (UPDATE_ITR) :
agent .update (
BATCH_SIZE, reward_scale=REWARD SCALE,
auto_entropy=AUTO_ENTROPY,
target entropy=-1. % action dim
)
if done:
break

Through the above steps, the agent can become more and more powerful through
updates. The next step is to better represent the training process.

if episode ==
all episode reward.append (episode reward)
else:
all episode reward.append(all episode reward[-1] =*
0.9 + episode reward * 0.1)
print (
"Training | Episode: {}/{} | Episode Reward: {:.4f}
| Running Time: {:.4f}’.format (
episode+l, TRAIN EPISODES, episode reward,
time.time() - tO

Finally, save the agent and plot the figure.

agent .save ()
plt.plot (all_episode reward)
if not os.path.exists(’image’):
os.makedirs (image’)
plt.savefig(os.path.join(’image’, ’sac.png’))

References

Fox R, Pakman A, Tishby N (2016) Taming the noise in reinforcement learning via soft updates.
In: Proceedings of the thirty-second conference on uncertainty in artificial intelligence. AUAI
Press, Corvallis, pp 202-211

6 Combine Deep Q-Networks with Actor-Critic 245

Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic
methods. arXiv:180209477

Haarnoja T, Tang H, Abbeel P, Levine S (2017) Reinforcement learning with deep energy-based
policies. In: Proceedings of the 34th international conference on machine learning, vol 70, pp
1352-1361. JMLR.org

Haarnoja T, Zhou A, Abbeel P, Levine S (2018a) Soft actor-critic: off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv:180101290

Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J, Kumar V, Zhu H, Gupta A, Abbeel P,
et al (2018b) Soft actor-critic algorithms and applications. arXiv:181205905

It K, McKean H (1965) Diffusion processes and their sample paths. Die Grundlehren der math
Wissenschaften, vol 125. Springer, Berlin

Levine S, Koltun V (2013) Guided policy search. In: International conference on machine learning,
pp 1-9

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous
control with deep reinforcement learning. arXiv:150902971

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529-533

Nachum O, Norouzi M, Xu K, Schuurmans D (2017) Bridging the gap between value and policy
based reinforcement learning. In: Advances in neural information processing systems, pp 2775—
2785

Polyak BT (1964) Some methods of speeding up the convergence of iteration methods. USSR
Comput Math Math Phys 4(5):1-17

Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy
gradient algorithms. In: Proceedings of the 31st international conference on machine learning

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge

Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys. Rev. 36(5):823

Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach Learn 8(3—4):229-256

Ziebart BD, Maas AL, Bagnell JA, Dey AK (2008) Maximum entropy inverse reinforcement
learning. In: Proceedings of the AAAI conference on artificial intelligence, Chicago, vol 8,
pp 1433-1438

JMLR. org

	6 Combine Deep Q-Networks with Actor-Critic
	6.1 Introduction
	6.2 Deep Deterministic Policy Gradient (DDPG)
	6.3 Twin Delayed Deep Deterministic Policy Gradient (TD3)
	6.4 Soft Actor-Critic (SAC)
	6.4.1 Soft Policy Iteration
	6.4.2 SAC

	6.5 Examples
	6.5.1 Related Gym Environment
	6.5.2 DDPG: Pendulum-v0
	6.5.3 TD3: Pendulum-v0
	6.5.4 SAC: Pendulum-v0

	References

