
Chapter 4
Deep Q-Networks

Yanhua Huang

Abstract This chapter aims to introduce one of the most important deep rein-
forcement learning algorithms, called deep Q-networks. We will start with the
Q-learning algorithm via temporal difference learning, and introduce the deep Q-
networks algorithm and its variants. We will end this chapter with code examples
and experimental comparison of deep Q-networks and its variants in practice.

Keywords Temporal difference learning · DQN · Double DQN · Dueling
DQN · Prioritized experience replay · Distributional reinforcement learning

4.1 Introduction

One of the most significant breakthroughs in reinforcement learning was the
development of an off-policy temporal difference (TD) control algorithm, known
as Q-learning, which is introduced in Chap. 2. Q-Learning has been proven to
converge towards the optimal solution in a tabular case or using linear function
approximation. However, it is known that Q-learning is unstable or even to diverge
when using a non-linear function approximator such as a neural network to represent
the Q-value function (Tsitsiklis and Van Roy 1996). With the advances in training
deep neural networks, deep Q-networks (DQN) (Mnih et al. 2015) addressed this
issue and ignited the research of deep reinforcement learning. In this chapter, we
first review the background of Q-learning. Then we introduce DQN and its variants
with detailed theories and explanations. Finally, in Sect. 4.10, we demonstrate
their implementation details and empirical performance on the Atari games with
code examples, for providing the readers a quick hands-on learning process. The
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complete implementation of each algorithm is available in the repository provided
together with the book.1

4.2 Background

Model-free methods provide a general way to tackle MDP-based decision-making
problems, where “model” means an explicit model for the transition probability
distribution and the reward function associated with the MDP. TD learning is a class
of model-free methods. Recall that in Sect. 2.4 we discuss that if a perfect model of
the MDP is available, one can get the optimal plan with dynamic programming by
reusing the optimal solution of sub-problems recursively. TD learning follows such
an idea that we can estimate the value of sub-problems with bootstrapping even
though the estimation is not optimal all the time.

Sub-problems are represented by states in MDP. The value vπ (s) of a state s with
a policy π is defined by the expected return starting from s and acting with π :

vπ (s) = Eπ [Rt + γ vπ (St+1)|St = s], (4.1)

where γ ∈ [0, 1] is the discount rate. TD learning decomposes the estimation above
with bootstrapping. Given a value function V : S → R, the simplest version, TD(0),
is the following one-step bootstrapping:

V (St ) ← V (St ) + α[Rt + γV (St+1) − V (St )], (4.2)

where Rt + γV (St+1) and Rt + γV (St+1) − V (St ) are known as the TD target and
TD error, respectively.

The value of a policy provides a way to estimate the acting performance. To
further know how to select the action in a particular state, we would like to calculate
the quality of the state-action combinations. Q-value allows such estimation:

qπ(s, a) = Eπ [Rt+1 + γ vπ(St+1)|St = s,At = a]. (4.3)

The simplest way to perform a better policy is acting greedily π ′(s, a) =
arg maxa′ qπ(s, a′), where the improvement can be ensured with qπ ′(s, a) =
maxa′ qπ(s, a′) ≥ qπ(s, a). An alternative for considering exploration is to act
greedily most of the time, but with a small probability ε instead to select randomly
from all actions with equal probability regardless of their Q-values. This method is

1Codes are available at: https://github.com/deep-reinforcement-learning-book/Chapter4-DQN.

https://github.com/deep-reinforcement-learning-book/Chapter4-DQN
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called ε-greedy. We can calculate the Q-value of ε-greedy policy π ′ by

qπ(s, π ′(s)) = (1 − ε) max
a∈A

qπ(s, a) + ε

|A|
∑

a∈A
qπ(s, a). (4.4)

Note that the sum of π(s,a)−ε/|A|
1−ε

over a ∈ A is equal to 1. With the truth that the
maximum is not less than the weighted average, we can get

qπ(s, π ′(s)) = (1 − ε) max
a∈A

qπ(s, a)
∑

a∈A

π(s, a) − ε/|A|
1 − ε

+ ε

|A|
∑

a∈A
qπ(s, a)

≥ (1 − ε)
∑

a∈A

π(s, a) − ε/|A|
1 − ε

qπ(s, a)

+ ε

|A|
∑

a∈A
qπ(s, a) = qπ(s, π(s)),

(4.5)

which tells us that the Q-value of acting with the ε-greedy policy π ′ is not less
than the origin policy π , i.e., ε-greedy method ensures policy improvement. We
will discuss policy improvement with Q-value function in the next section.

4.3 Sarsa and Q-Learning

Similar to the update rule for the value function in TD(0), it is straightforward to
update the Q-value function after every transition from a non-terminal state St :

Q(St ,At ) ← Q(St ,At ) + α[Rt + γQ(St+1, At+1) − Q(St ,At )], (4.6)

where both At and At+1 are selected ε-greedily with respect to Q. If St+1 is a
terminal state, then Q(St+1, At+1) is defined as zero. We can continually estimate Q

for the behavior policy π , and change π toward greediness with respect to Q at the
same time. This algorithm is known as Sarsa. Note that π plays two roles in Sarsa—
for experience generation and policy improvement. Basically, the policy used to
generate behavior is called the behavior policy, and the policy that is evaluated and
improved is called the target policy. The algorithm where the behavior policy and
the target policy are the same, such as Sarsa, is known as the on-policy method.

On-policy methods are kinds of trial-and-error processes but only the experiences
generated by the current policy are used for improvement. Off-policy methods
address this issue with introspection, where the experience generated by the
behavior policy is “off” (not following) the target policy. The off-policy technique
allows reusing past experience. Q-learning is an off-policy method. Its simplest
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form, one-step Q-learning, follows the update rule below:

Q(St ,At ) ← Q(St ,At ) + α[Rt + γ max
At+1

Q(St+1, At+1) − Q(St ,At )], (4.7)

where At is sampled by ε-greedy with respect to Q. Note that At+1 is selected
greedily, i.e., contrast to Sarsa, in Q-learning the behavior policy is also ε-greedy but
the target policy is greedy. One-step Q-learning only takes in current transition. An
alternative way to get more accurate Q-values in approximation case is to use multi-
steps rewards, i.e., multi-steps Q-learning. Note that multi-steps Q-learning needs
to consider the mismatches in subsequent rewards to keep the Q-value function
approximating the expected return under the target policy as in Eq. (4.3). We will
discuss multi-steps Q-learning in Sect. 4.9.

4.4 Why Deep Learning: Value Function Approximation

In tabular settings, the action-value functions can be represented by a big two-
dimensional table, i.e., one entry for each discrete state and action. However,
it is inefficient to deal with large-scale space such as raw pixels input, and let
alone continuous control tasks. Fortunately, generalization from different inputs by
function approximation has been widely studied, and we can utilize this technique
in value-based reinforcement learning.

Let us consider the function approximation in Q-learning with some parameter
θ . The approximator can be linear models, decision trees, or neural networks. Then
the update rule in Eq. (4.7) is rewritten as

θt ← arg min
θ

L(Q(St , At ; θ), Rt + γQ(St+1, At+1; θ)), (4.8)

where L represents the loss function, e.g., mean squared error. While one can solve
the optimization problem above by collecting batch samples, which constructs the
fitted Q iteration (Riedmiller 2005) shown as Algorithm 1, where S′

i is the successor
state of Si . An online stochastic variant with gradient is the online Q iteration
algorithm presented in Algorithm 2.

Algorithm 1 Fitted Q iteration
for iteration i = 1, T do

Collect D samples {(Si , Ai, Ri, S
′
i )}Di=1

for t = 1,K do
Set Yi ← Ri + γ maxa Q(S′

i , a; θ)

Set θ ← arg minθ ′ 1
2

∑D
i=1(Q(Si , Ai; θ ′) − Yi)

2

end for
end for
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Algorithm 2 Online Q iteration
for iteration = 1, T do

Select action a and observe (s, a, r, s′)
Set y ← r + γ maxa′ Q(s′, a′; θ)

Set θ ← θ − α(Q(s, a; θ) − y)
dQ(s,a;θ)

dθ
end for

Note that both the fitted Q iteration and online Q iteration are off-policy
algorithms so that the past experience can be reused many times. We will discuss
this topic further in the next section.

Recall that we introduce the convergence of value iteration in Sect. 2.4.2 with
the Bellman optimality backup operator T ∗. We define a new operator B with
function approximation by BV = arg minV ′∈Ω L(V ′, V ), where Ω is the set of all
possible value functions that can be approximated. Note that the arg min in B can
be viewed as a projection from T ∗V to Ω . So the backup operator with function
approximation can be represented by BT ∗. While T ∗ is contracted with ∞-norm
and B is contracted with L2-norm for MSE loss. However, BT ∗ is not contracted
of any kind. So value iteration is unstable and might even diverge when a non-
linear function approximator such as a neural network is used to represent the value
function (Tsitsiklis and Van Roy 1997). We leave the discussion about the stability
of training with deep neural networks in the next section.

4.5 DQN

In the last section, we introduce the method to learn action-value functions
with approximation and its instability of convergence. To achieve the end-to-end
decision-making in complex problems with raw pixel input, DQN combines Q-
learning with deep learning with two key ideas to address the instability issue and
achieves significant progress on Atari games.

The first one is known as replay buffer, which is a biologically inspired
mechanism termed experience replay (McClelland et al. 1995; O’Neill et al.
2010; Lin 1993). At each time step t , DQN stores the experience of the agent
(St , At , Rt , St+1) into replay buffer, and then draws a mini-batch of samples from
this buffer uniformly to apply the Q-learning update. Replay buffer has several
advantages over the fitted Q iteration. First, the experience in each step can be
reused to learn the Q-function, which allows for greater data efficiency. Second, if
there is no replay buffer, as in the fitted Q iteration, mini-batch samples are collected
consecutively, i.e., they are highly correlated, which increases the variance of the
updates. Third, experience replay avoids the situation that the samples used to train
are determined by the previous parameters, which smooths out learning and reduces
oscillations or divergence in the parameters. In practice, only the last N experience
tuples are stored in the replay buffer to save the memory.
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Table 4.1 The effects of replay and separating the target Q-network

Game With replay
and target Q

With replay but
without target Q

With target Q but
without replay

Without replay
and target Q

Breakout 316.8 240.7 10.2 3.2

Enduro 1006.3 831.4 141.9 29.1

River raid 7446.6 4102.8 2867.7 1453.0

Seaquest 2894.4 822.6 1003.0 275.8

Space invaders 1088.9 826.3 373.2 302.0

Data comes from Mnih et al. (2015)

The second idea aims to further improve the stability with neural networks.
Instead of the desired Q-network, a separate network, known as target network,
is used to generate the Q-learning targets. Furthermore, at every C steps, the target
network will be synchronized with the primary Q-network by copying directly (hard
update) or exponentially decaying average (soft update). The target network makes
the generation of the Q-learning target delay with old parameters, which reduces the
divergence and oscillations much more. For example, the update making Q-value
increase on action (St , At ) may increase Q(St+1, a) for all action a because of the
similarity between St and St+1, where the training target constructed by Q-network
will be overestimated.

The effect of two enhancements above on five Atari games is shown in Table 4.1.
Agents were trained for 1e7 frames with the hyperparameters search. Each agent
was evaluated every 250,000 training frames for 135,000 validation frames, and the
highest average episode score is reported.

Since it is challenging to feed histories of arbitrary length as inputs to a
neural network, DQN instead works on the fixed-length representation of histories
produced by a function φ. More precisely, φ concentrates on the current and the
previous three frame, which is useful for tracking temporal information, e.g., object
moving. The full algorithm is presented in Algorithm 3. The raw frames are resized
to 84 × 84 and converted to gray-scale. The function φ stacks the 4 most recent
frames as the input to the neural network. In addition, the architecture of the neural
network consists of three convolutional layers and two fully connected layers with
a single output for each valid action. We will discuss more training details in
Sect. 4.10.2.

4.6 Double DQN

Double DQN is an enhancement of DQN for reducing overestimation (Van Hasselt
et al. 2016). Before taking a closer look, let us first illustrate the overestimation
problem in classic DQN. The Q-learning target Rt + γ maxa Q(St+1, a) contains
a max operator. Q is noisy, which may be caused by environment, non-stationarity,
function approximation or any other reasons. Note that the expectation of maximum
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Algorithm 3 DQN
1: Hyperparameters: replay buffer capacity N , reward discount factor γ , delayed steps C for

target action-value function update, ε-greedy factor ε

2: Input: empty replay buffer D, initial parameters θ of action-value function Q

3: Initialize target action-value function Q̂ with parameter θ̂ ← θ

4: for episode = 0, 1, 2, . . . do
5: Initialize environment and get observation O0
6: Initialize sequence S0 = {O0} and preprocess sequence φ0 = φ(S0)

7: for t = 0, 1, 2, . . . do
8: With probability ε select a random action At , otherwise select At =

arg maxa Q(φ(St ), a; θ)

9: Execute action At and observe Ot+1 and reward Rt

10: If the episode has ended, set Dt = 1. Otherwise, set Dt = 0
11: Set St+1 = {St , At ,Ot+1} and preprocess φt+1 = φ(St+1)

12: Store transition (φt , At , Rt ,Dt , φt+1) in D
13: Sample random minibatch of transitions (φi , Ai, Ri ,Di, φ

′
i ) from D

14: If Di = 0, set Yi = Ri + γ maxa′ Q̂(φ′
i , a

′; θ̂ ). Otherwise, set Yi = Ri

15: Perform a gradient descent step on (Yi − Q(φi,Ai; θ))2 with respect to θ

16: Synchronize the target Q̂ every C steps
17: If the episode has ended, break the loop
18: end for
19: end for

noise is not less than the maximum expectation of noises, i.e., E[max(ε1, . . . , εn)] ≥
(max(E[ε1], . . . ,E[εn])). So the next Q-values are always overestimated. Thrun
and Schwartz (1993) provides further theoretical analysis and experimental results.

Note that the training target in standard DQN can be rewritten by

Rt + γ Q̂(St+1, arg max
a

Q̂(St+1, a; θ̂ ); θ̂ ), (4.9)

where θ̂ is used in both action selection and value evaluation. The central idea of
double DQN is to decorrelate the noises in selection and evaluation by using two
different networks in these two stages. The Q-network in the DQN architecture
provides a natural candidate for the extra network. Recall that it is the evaluation
role of the target network that improves the stability more. As a consequence, the
Q-learning target used in double DQN is

Rt + γ Q̂(St+1, arg max
a

Q(St+1, a; θ); θ̂). (4.10)

Following Wang et al. (2016), we measure improvement in percentage (positive
or negative) in score over the better of human and baseline agent scores:

ScoreAgent − ScoreBaseline

max(ScoreBaseline, ScoreHuman) − ScoreRandom
. (4.11)

The improvement over DQN are available in Fig. 4.1.
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Fig. 4.1 Improvements of double DQN (Van Hasselt et al. 2016) over DQN (Mnih et al. 2015)
in Atari benchmark, using the metric described in Eq. (4.11). All scores come from Wang et al.
(2016) (Table 2)

4.7 Dueling DQN

For some states, different actions are not relevant to the expected value, and we do
not need to learn the effect of each action for such states. For example, imagine
standing on the mountain and watching the sunrise. The pleasant view comforts
you a lot, which provides a high reward. You can stay here, and the Q-values of
different actions do not matter. So decoupling the action-independent value of state
and Q-value may lead to more robust learning.

Dueling DQN proposes a new network architecture to achieve this idea (Wang
et al. 2016). More precisely, the Q-value can be split into state value part and action
advantage part as following:

Qπ(s, a) = V π(s) + Aπ(s, a) (4.12)

and dueling DQN separates the representations of these two parts by

Q(s, a; θ, θv, θa) = V (s; θ, θv)+ (A(s, a; θ, θa)− max
a′ A(s, a′; θ, θa)), (4.13)

where θv and θa are parameters of the two streams of fully connected layers, θ

represent the parameters in convolutional layers. Note that the max operator in
Eq. (4.13) ensures identifiability that the Q-value recovers state value and action
advantage uniquely. Otherwise, the training may ignore the state value term and
make the advantage function converge to Q-value only. Moreover, Wang et al.
(2016) also proposed to replace max with average as the following for better
stability:
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Fig. 4.2 Improvements of dueling DQN (Wang et al. 2016) over DQN (Mnih et al. 2015) in Atari
benchmark, using the metric described in Eq. (4.11). All scores come from Wang et al. (2016)
(Table 2)

Q(s, a; θ, θv, θa) = V (s; θ, θv) + (A(s, a; θ, θa) − 1

|A|
∑

a′
A(s, a′; θ, θa))

(4.14)

by which the advantage function only need to adapt to the direct of mean advantage
instead of pursuing the optimal advantage.

Training of the dueling architectures, as with standard DQN, requires only
more layers. The experiments show that dueling architectures lead to better policy
evaluation in the presence of many similar-valued actions. The improvement over
DQN is available in Fig. 4.2.

4.8 Prioritized Experience Replay

One remaining area of improvement in standard DQN is a better sampling strategy
for experience replay. Prioritized experience replay (PER) is a technique for
prioritizing experience, so as to replay important transitions more frequently (Schaul
et al. 2015). The central idea of PER is to consider the importance of transitions with
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TD error δ, which can be viewed as a surprising measure. Why this can be of help is
that some of the experience might contain more information to learn as compared to
the others. Giving those more information-rich experience a greater chance of being
replayed will help make the whole learning process faster and more efficient.

The most direct idea is using TD error for prioritization directly. However, it
has several issues. First, sweeping over whole memory is inefficient. In addition, it
is sensitive to noises such as approximation error and stochastic rewards. Finally,
greedy makes error shrink slowly, which may cause the beginning transitions with
high error replayed frequently. To overcome these issues, Schaul et al. (2015)
proposed to use the following sampling probability for transition i:

P(i) = pα
i∑

k pα
k

, (4.15)

where pi > 0, known as the priority of transition i, α is an exponent hyper-
parameter with α = 0 corresponding to the uniform case, and k is enumerated
on sampled transitions. There are two variants of pi . The first one is proportional
prioritization pi = |δi | + ε, where δi is the TD error of transition i and ε is a small
positive value for numerical stability. The second one is rank-based prioritization
pi = 1

rank(i)
, where rank(i) is the rank of transition i according to |δi |.

Remind that it is the random sampling from a large replay buffer that helps to
decorrelate the samples. But the purely random sampling is abandoned when adding
priority sampling. Decreasing the training weight for high priority transitions may
make sense. PER uses the importance-sampling weights to correct this bias for
transition i:

wi = (NP(i))−β, (4.16)

where N is the size of replay buffer, P is the probability defined in Eq. (4.15), and
β is a hyper-parameter annealed up to 1 during training because the unbiased nature
of the updates will nearly converge at the end of the training. This weight is usually
folded into the loss function to construct weighted learning.

For efficient implementation, the cumulative density function of sampling
probability is approximated by a piece-wise linear function with k segments. More
precisely, the priorities are stored in a query-efficient data structure called the
segment tree. During run-time, PER first samples a segment, and then sample
uniformly among the transitions within it. The improvement over DQN is available
in Fig. 4.3.
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Fig. 4.3 Improvements of prioritized experience replay (Schaul et al. 2015) with rank-based
prioritization over DQN (Mnih et al. 2015) in Atari benchmark, using the metric described in
Eq. (4.11). All scores come from Wang et al. (2016) (Table 2)

4.9 Other Improvements: Multi-Step Learning, Noisy Nets,
and Distributional Reinforcement Learning

Including double Q-learning, dueling architecture, and PER, Rainbow combines
three more extensions to DQN and achieves significant results on the Atari domain
(Hessel et al. 2018). We discuss them and their expansions in this section. The
first one is multi-step learning. n-step return allows for accurate estimation and
was proven to lead faster learning with suitably tuned n (Sutton and Barto 2018).
However, there may exist a mismatch in the action selection between the target and
behavior policy within the multi-steps during off-policy learning. One can find a
systematic study about correcting this mismatch in Hernandez-Garcia and Sutton
(2019). Rainbow uses the truncated n-step return R

(k)
t from a given state St directly

(Hessel et al. 2018; Castro et al. 2018), where R
(k)
t is defined by

R
(k)
t =

n−1∑

k=0

γ kRt+k. (4.17)

The Q-learning target in multi-step variant of Q-learning is then defined by

R
(k)
t + γ k max

a
Q(St+k, a). (4.18)

The second one is noisy nets (Fortunato et al. 2017). It is an alternative
exploration algorithm for ε-greedy, especially for games requiring huge exploration
such as Montezuma’s Revenge. The noise is added into linear layer y = (Wx + b)
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Fig. 4.4 A distributional
Bellman operator in
continuous case. Given the
return distribution of the next
state under policy π (blue
curve), it is first discounted by
the reward discounter γ (red
curve), and then be shifted by
the reward in current time
step (black curve)
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by an extra noisy stream

y = (Wx + b) + ((Wnoisy 	 εw)x + bnoisy 	 εb), (4.19)

where 	 refers to the element-wise product, both Wnoisy and bnoisy are trainable
parameters whereas εw and εb are random scales annealed down to zero. The
experiment shows that noisy nets yield substantially higher scores for a wide range
of Atari games over several baselines.

The last one is distributional reinforcement learning (Bellemare et al. 2017),
which gives a new perspective on value estimation. Instead of considering the
expectation of returns represented by random variable Zπ , Bellemare et al. (2017)
proposed to estimate the distribution of Zπ with the distributional Bellman operator
T π :

T πZ = R + γPπZ. (4.20)

Figure 4.4 shows a continuous case of T π .
The distributional variant of DQN used in Rainbow, known as categorical

DQN (Bellemare et al. 2017), models the action-value distribution by a discrete
distribution parameterized by a vector z with N elements (also known as atoms)
zi = Vmin + (i − 1)�z, where [Vmin, Vmax] is the action-value range and �z =
Vmax−Vmin

N−1 . In practice, N is usually specified to 51 so sometimes this algorithm
is also called C51. The parametric model θ of C51 outputs the probabilities
pi(s, a) = eθi(s,a)/

∑
j eθj (s,a) on each atom as distribution Zθ . Note that discrete

approximation causes disjoint supports of the Bellman update T πZ and the
parametrization Zθ . C51 addresses this issue by projecting the target distribution
T πZ

θ̂
onto the support Zθ . More precisely, given a transition (St , At , Rt , St+1),

the i-th component of projected target ΦT πZ
θ̂
(St , At ) with double Q-learning is
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calculated by

N∑

j=1

pj

(
St+1, arg max

a
zᵀp(St+1, a; θ); θ̂

)
[1 − |[Rt + γ zj ]Vmax

Vmin
− zi |

�z
]1
0,

(4.21)

where [·]ba bounds its argument in the range [a, b]. TD error cannot measure
the difference between value distributions. As a result, C51 proposes to use the
following Kullback–Leibler divergence as training loss:

DKL(ΦT πZ
θ̂
(St , At )||Zθ(St , At )). (4.22)

In addition, the priority is also replaced by KL-Divergence for prioritized experience
replay. For dueling architecture, the output distribution is also split into value stream
and advantage stream, and the aggregated distribution is estimated by

pi(s, a) = exp(Vi(s) + Ai(s, a) − Āi(s, a))
∑

j exp(Vj(s) + Aj(s, a) − Āj (s, a))
, (4.23)

where Āj (s, a) is defined by 1
|A|

∑
a′ Aj(s, a

′).
The main drawback of C51 to achieve distributional reinforcement learning is

that it can only estimate values on a fixed discrete set. Dabney et al. (2018b)
proposed quantile regression DQN (QR-DQN) to address this issue by estimating
the quantiles of the full distribution with quantile regression. Before introducing
QR-DQN, we first review the quantile regression. Recall that empirical risk
minimization with absolute loss function makes the prediction fit the medium
value (50% quantile). More precisely, given random variable x and its label y, for
estimation function f , the empirical mean absolute error is Lmae = E[|f (x) − y|].
Then with the following partial difference:

∂Lmae

∂f (x)
= ∂

∂f (x)
(P (f (x) > y)(f (x) − y) + P(f (x) ≤ y)(y − f (x)))

= P(f (x) > y) − P(f (x) ≤ y) = 0, (4.24)

we can get F(x) = 0.5, where F is the primitive function of f . Generally, for
quantile τ , the quantile loss is defined as Lquantile(τ ) = E[ρτ (f (x) − y)] with

ρτ (α) =
{

τα, if α > 0

(τ − 1)α, otherwise.
(4.25)

Similarly, by
∂Lquantile

∂f (x)
we can get F(x) = 1 − τ , i.e., f (x) is the τ quantile value of

random variable y.
Specifically, QR-DQN considers N uniform quantiles qi = 1

N
for the value

distribution. For a QR-DQN model θ : S → R
N×|A|, during sampling, the Q-value
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Fig. 4.5 Comparison of DQN, C51, and QR-DQN for state s and action a, where arrows point out
the estimation and the number of quantiles in QR-DQN is specified to 4. The architecture of DQN
only outputs the approximation of the actual Q-value. For distributional reinforcement learning,
C51 estimates probabilities on several Q-value supports while QR-DQN provides quantiles of Q-
value

of the state s and action a is the mean of N estimations: Q(s, a) = ∑N
i=1 qiθi(s, a).

During training, the greedy policy with respect to the Q-values in the next state
provides a∗ = arg maxa′ Q(s′, a′), and the distributional Bellman target is T θj =
r + γ θj (s

′, a∗) according to Eq. (4.20). The Lemma 2 in Dabney et al. (2018b)
points out that the following sum minimizes the 1-Wasserstein distance between the
approximate value distribution and the ground truth:

N∑

i=1

Ej

[
ρτ̂i

(T θj − θi(s, a))
]
, (4.26)

where τ̂i = i
N

− 1
2N

.
Figure 4.5 shows a comparison of DQN, C51, and QR-DQN. There are further

works in the flexibility or robustness of parameterized distribution for distributional
reinforcement learning. Readers with more interest in this topic can find related
resources from Dabney et al. (2018a), Mavrin et al (2019), Yang et al. (2019).

4.10 DQN Examples

In this section, we discuss more training details in DQN and its variants. Before
that, we first demonstrate the process of setting up Atari environments and how to
implement some useful wrappers that make training easy and stable.

4.10.1 Related Gym Environment

OpenAI Gym is an open-source toolkit for developing and comparing reinforcement
learning algorithms. It contains a collection of environments, as shown in Fig. 4.6.
One can install it with Atari extension directly from PyPI
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pip install gym[atari]

or from source

git clone https://github.com/openai/gym.git
cd gym
pip install -e .

An environment object env can be created by

import gym
env = gym.make(env_id)

where env_id is a string that represents an environment. All possible env_ids
are available at https://github.com/openai/gym/wiki/Table-of-environments.

Fig. 4.6 Sample frames of some environments in OpenAI Gym

https://github.com/openai/gym/wiki/Table-of-environments
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Fig. 4.7 An example frame
of Breakout. There are several
rows to destroy at the top of
the screen. The agent can
control the bar at the bottom
of the screen to angle your
shots at the images you want
to smash with the ball. The
observations are an RGB
images of the screen with
shape (210, 160, 3)

There are some important methods of env:

1. env.reset() resets the state of the environment and returns the initial
observation.

2. env.render(mode) renders the environment with the given mode. The
default mode is human which renders to the current display or terminal and
returns nothing. You can specify rgb_array mode to make env.render
return numpy.ndarray objects, which is suitable for generating videos.

3. env.step(action) runs one time step of the environment’s dynamics with
the given action, and then returns a tuple (observation, reward,
done, info) where observation is the observation of the current envi-
ronment, reward is the transition reward, done points out whether the episode
has ended, and info contains some auxiliary information.

4. env.seed(seed) sets the seed manually, which is useful for reproduction.

Here is an example of classic game Breakout. It will run an instance of
the BreakoutNoFrameskip-v4 environment until the episode has ended. A
sample frame shows in Fig. 4.7.

import gym
env = gym.make(’BreakoutNoFrameskip-v4’)
o = env.reset()
while True:

env.render()
# take a random action
a = env.action_space.sample()
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o, r, done, _ = env.step(a)
if done:

break
env.close() # close and clean up

Note that NoFrameskipmeans no frame-skip and no action repeat, and v4means
the 4th version which is the newest now. We will use this environment in following
experiments.

Another useful feature in OpenAI Gym is the environment wrapper. It can wrap
the environment object and make the training code more concise. Here is a time
limit wrapper which limits the maximum length of each episode and is a default
wrapper for Atari games.

class TimeLimit(gym.Wrapper):
def __init__(self, env, max_episode_steps=None):

super(TimeLimit, self).__init__(env)
self._max_episode_steps = max_episode_steps
self._elapsed_steps = 0

def step(self, ac):
o, r, done, info = self.env.step(ac)
self._elapsed_steps += 1
if self._elapsed_steps >= self._max_episode_steps:

done = True
info[’TimeLimit.truncated’] = True

return o, r, done, info

def reset(self, **kwargs):
self._elapsed_steps = 0
return self.env.reset(**kwargs)

For efficient training, gym.vector.AsyncVectorEnv provides an imple-
mentation of vectorized wrapper that runs n environments in parallel. All interfaces
receive and return n variables together. Furthermore, it is also possible to implement
a vectorized wrapper with buffer whose interfaces also receive and return n variables
but maintains m > n workers in the background. It is efficient for environments
where some transitions spend more time.

Included some classic control problems, Gym also provides standard interfaces
of a collection of Atari 2600 games with RAM or screen images as input, using
the Arcade Learning Environment (Bellemare et al. 2013). There are at most 18
different buttons in Atari 2600 games as follows:

1. Moving buttons: NOOP, UP, RIGHT, LEFT, DOWN, UPRIGHT, UPLEFT,
DOWNRIGHT, DOWNLEFT

2. Fire buttons: FIRE, UPFIRE, RIGHTFIRE, LEFTFIRE, DOWNFIRE,
UPRIGHTFIRE, UPLEFTFIRE, DOWNRIGHTFIRE, DOWNLEFTFIRE

where NOOP means do-nothing, and FIRE may also be used to start the game. For
convenience, we will refer to buttons’ names as actions later.
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4.10.2 DQN

There are three more training tricks in DQN. First, the following wrappers are used
in order for stable and efficient training:

1. NoopResetEnv takes random number of NOOPs in reset stage to ensure
random initial states. The default maximum no-ops number is 30. This wrapper
helps agent collect more beginning situations, which provides robust learning.

2. MaxAndSkipEnv repeats each action 4 times for efficient training. To further
denoising observation, the returned frame is the max pooling result over pixels
across the last two frames.

3. Monitor records the raw reward. We can also implement some useful functions
such as speed tracer in this wrapper.

4. EpisodicLifeEnv makes the end of life equal to the end of episode, which
helps value estimation (Roderick et al. 2017).

5. FireResetEnv takes action FIRE on reset for environments that need action
FIRE to start the game. This is a prior knowledge for quick start of games.

6. WarpFrame converts the observations to 84 × 84 gray-scale images.
7. ClipRewardEnv wraps the rewards by their sign, which further improves the

stability by not allowing any single mini-batch update to change the parameters
drastically.

8. FrameStack stacks the last 4 frames. Recall that for capturing moving infor-
mation, DQN preprocesses observations by concentrating the current frame and
the previous three, represented by function φ. FrameStack and WarpFrame
implement the φ. Note that we can optimize memory usage by storing common
frames between the observations only once, which is also called lazy-frame trick.

Second, to avoid gradient explosion, DQN (Mnih et al. 2015; DeepMind 2015)
uses gradient clipping of the squared error, which is equivalent to replace MSE by
the Huber loss (Huber 1992) with δ = 1. The Huber loss is given by

Lδ(x) =
{ 1

2x2 |x| ≤ δ

δ(|x| − 1
2δ) otherwise.

(4.27)

Finally, replay buffer samples batch of experiences with replacement, and there
are some warm start steps before updating for a stable beginning.

Note that all three tricks above are applied to all experiments in this section. Now
we show how to build an agent to play Breakout. First of all, for reproducibility, we
set random seeds in related libraries manually:

random.seed(seed)
np.random.seed(seed)
tf.random.set_seed(seed)
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Then we build a Q-network with tf.keras.Model:

class QFunc(tf.keras.Model):
def __init__(self, name):

super(QFunc, self).__init__(name=name)
self.conv1 = tf.keras.layers.Conv2D(

32, kernel_size=(8, 8), strides=(4, 4),
padding=’valid’, activation=’relu’)

self.conv2 = tf.keras.layers.Conv2D(
64, kernel_size=(4, 4), strides=(2, 2),
padding=’valid’, activation=’relu’)

self.conv3 = tf.keras.layers.Conv2D(
64, kernel_size=(3, 3), strides=(1, 1),
padding=’valid’, activation=’relu’)

self.flat = tf.keras.layers.Flatten()
self.fc1 = tf.keras.layers.Dense(512, activation=’relu’)
self.fc2 = tf.keras.layers.Dense(action_dim,

activation=’linear’)

def call(self, pixels, **kwargs):
# scale observation
pixels = tf.divide(tf.cast(pixels, tf.float32),

tf.constant(255.0))
# extract features by convolutional layers
feature =

self.flat(self.conv3(self.conv2(self.conv1(pixels))))
# calculate q-value
qvalue = self.fc2(self.fc1(feature))

return qvalue

The definition of a DQN object consists of attributes Q-network, target Q-
network, number of time steps and optimizer, and synchronize Q-network and target
Q-network as following:

class DQN(object):
def __init__(self):

self.qnet = QFunc(’q’)
self.targetqnet = QFunc(’targetq’)
sync(self.qnet, self.targetqnet)
self.niter = 0
self.optimizer = tf.optimizers.Adam(lr, epsilon=1e-5,

clipnorm=clipnorm)

Declare an internal method to wrap the Q-network and then add a get_action
method to DQN object for ε-greedy behavior:

@tf.function
def _qvalues_func(self, obv):

return self.qnet(obv)

def get_action(self, obv):
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eps = epsilon(self.niter)
if random.random() < eps:

return int(random.random() * action_dim)
else:

obv = np.expand_dims(obv, 0).astype(’float32’)
return self._qvalues_func(obv).numpy().argmax(1)[0]

where epsilon is a function that anneals ε linearly from 1.0 to 0.01 over the
first 10% training time steps. For training, we use three common interfaces train,
_train_func, _tderror_func for DQN and its variants in the following
sections:

def train(self, b_o, b_a, b_r, b_o_, b_d):
self._train_func(b_o, b_a, b_r, b_o_, b_d)

self.niter += 1
if self.niter % target_q_update_freq == 0:

sync(self.qnet, self.targetqnet)

@tf.function
def _train_func(self, b_o, b_a, b_r, b_o_, b_d):

with tf.GradientTape() as tape:
td_errors = self._tderror_func(b_o, b_a, b_r, b_o_, b_d)
loss = tf.reduce_mean(huber_loss(td_errors))

grad = tape.gradient(loss, self.qnet.trainable_weights)
self.optimizer.apply_gradients(zip(grad,

self.qnet.trainable_weights))

return td_errors

@tf.function
def _tderror_func(self, b_o, b_a, b_r, b_o_, b_d):

b_q_ = (1 - b_d) * tf.reduce_max(self.targetqnet(b_o_), 1)
b_q = tf.reduce_sum(self.qnet(b_o) * tf.one_hot(b_a,

action_dim), 1)

return b_q - (b_r + reward_gamma * b_q_)

where train calls _train_func and synchronizes the Q-network and target
Q-network every target_q_update_freq time steps.

Finally, we build the main training procedure:

dqn = DQN()
buffer = ReplayBuffer(buffer_size)

o = env.reset()
nepisode = 0
t = time.time()
for i in range(1, number_time steps + 1):

a = dqn.get_action(o)
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# execute action and feed to replay buffer
# note that ‘_‘ tail in var name means next
o_, r, done, info = env.step(a)
buffer.add(o, a, r, o_, done)

if i >= warm_start and i % train_freq == 0:
transitions = buffer.sample(batch_size)
dqn.train(*transitions)

if done:
o = env.reset()

else:
o = o_

# episode in info is real (unwrapped) message
if info.get(’episode’):

nepisode += 1
reward, length = info[’episode’][’r’], info[’episode’][’l’]
print(

’Time steps so far: {}, episode so far: {}, ’
’episode reward: {:.4f}, episode length: {}’

.format(i, nepisode, reward, length)
)

We run 107 time steps (4 × 107 frames) over three random seeds on Breakout.
For better visualization, we smooth the episode rewards during training. Then we
plot the mean and the standard deviation by following codes:

from matplotlib import pyplot as plt
plt.plot(xs, mean, color=color)
plt.fill_between(xs, mean - std, mean + std, color=color,

alpha=.4)

The performance is shown in Fig. 4.8 with red area.

4.10.3 Double DQN

Double DQN can be implemented easily by using the following double Q estimation
in _tderror_func of the agent:

# double Q estimation
b_a_ = tf.one_hot(tf.argmax(qnet(b_o_), 1), out_dim)
b_q_ = (1 - b_d) * tf.reduce_sum(targetqnet(b_o_) * b_a_, 1)

We also run 107 time steps over three random seeds on Breakout. The performance
is shown in Fig. 4.8 with green area.
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Fig. 4.8 Performances of DQN and its variants on breakout

4.10.4 Dueling DQN

The dueling architecture only changes the Q-network, which can be implemented
by

class QFunc(tf.keras.Model):
def __init__(self, name):

super(QFunc, self).__init__(name=name)
self.conv1 = tf.keras.layers.Conv2D(

32, kernel_size=(8, 8), strides=(4, 4),
padding=’valid’, activation=’relu’)

self.conv2 = tf.keras.layers.Conv2D(
64, kernel_size=(4, 4), strides=(2, 2),
padding=’valid’, activation=’relu’)

self.conv3 = tf.keras.layers.Conv2D(
64, kernel_size=(3, 3), strides=(1, 1),
padding=’valid’, activation=’relu’)

self.flat = tf.keras.layers.Flatten()
self.fc1q = tf.keras.layers.Dense(512, activation=’relu’)
self.fc2q = tf.keras.layers.Dense(action_dim,

activation=’linear’)
self.fc1v = tf.keras.layers.Dense(512, activation=’relu’)
self.fc2v = tf.keras.layers.Dense(1, activation=’linear’)

def call(self, pixels, **kwargs):
# scale observation
pixels = tf.divide(tf.cast(pixels, tf.float32),

tf.constant(255.0))
# extract features by convolutional layers
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feature =
self.flat(self.conv3(self.conv2(self.conv1(pixels))))

# calculate q-value
qvalue = self.fc2q(self.fc1q(feature))
svalue = self.fc2v(self.fc1v(feature))

return svalue + qvalue - tf.reduce_mean(qvalue, 1,
keepdims=True)

We also run 107 time steps over three random seeds on Breakout. The performance
is shown in Fig. 4.8 with cyan area.

4.10.5 Prioritized Experience Replay

There are three main changes in PER from standard DQN. First, the replay buffer
maintains two segment trees with min operator and add operator to calculate
the minimum priority and sum of priorities efficiently. More precisely, attribute
_it_sum is the segment tree object with operation add with two interfaces, sum
for getting the sum of elements in the given range and find_prefixsum_idx
for finding the highest index i such that the sum of the smallest i elements is less
than the input value.

Second, instead of uniform sampling, the sampling strategy of the proportional
information is shown as follows:

res = []
p_total = self._it_sum.sum(0, len(self._storage) - 1)
every_range_len = p_total / batch_size
for i in range(batch_size):

mass = random.random() * every_range_len + i * every_range_len
idx = self._it_sum.find_prefixsum_idx(mass)
res.append(idx)

return res

Third, apart from standard replay buffer, PER must return indexes and normal-
ized weights of sampled experiences. Weights are used for weighting Huber loss,
and indexes are used to update priorities. The sampling step is modified to

*transitions, idxs = buffer.sample(batch_size)
priorities = dqn.train(*transitions)
priorities = np.clip(np.abs(priorities), 1e-6, None)
buffer.update_priorities(idxs, priorities)

and the _train_func is modified to

@tf.function
def _train_func(self, b_o, b_a, b_r, b_o_, b_d, b_w):

with tf.GradientTape() as tape:
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td_errors = self._tderror_func(b_o, b_a, b_r, b_o_, b_d)
loss = tf.reduce_mean(huber_loss(td_errors) * b_w)

grad = tape.gradient(loss, self.qnet.trainable_weights)
self.optimizer.apply_gradients(zip(grad,

self.qnet.trainable_weights))

return td_errors

We also run 107 time steps over three random seeds on Breakout. The perfor-
mance is shown in Fig. 4.8 with magenta area.

4.10.6 Distributed DQN

Distributional reinforcement learning estimates the distribution of the Q-value. In
this section, we show how to implement one of these techniques, C51, to achieve
distributed DQN. In game Breakout, the rewards are all positive. So we replace the
value range [−10, 10] used in Bellemare et al. (2017) by [−1, 19], where −1 allows
some approximation error. To implement C51, first of all, the Q-Network outputs
51 estimations for each action, which can be implemented by adding more output
units in the last fully connection layer. Then instead of the TD error, KL-divergence
between target Q distribution and the estimated distribution is used as loss:

@tf.function
def _kl_divergence_func(self, b_o, b_a, b_r, b_o_, b_d):

b_r = tf.tile(
tf.reshape(b_r, [-1, 1]),
tf.constant([1, atom_num])

) # batch_size * atom_num
b_d = tf.tile(

tf.reshape(b_d, [-1, 1]),
tf.constant([1, atom_num])

)

z = b_r + (1 - b_d) * reward_gamma * vrange # shift value
distribution

z = tf.clip_by_value(z, min_value, max_value) # clip the
shifted distribution

b = (z - min_value) / deltaz
index_help = tf.expand_dims(tf.tile(

tf.reshape(tf.range(batch_size), [batch_size, 1]),
tf.constant([1, atom_num])

), -1)

b_u = tf.cast(tf.math.ceil(b), tf.int32) # upper
b_uid = tf.concat([index_help, tf.expand_dims(b_u, -1)], 2) #

indexes
b_l = tf.cast(tf.math.floor(b), tf.int32)
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b_lid = tf.concat([index_help, tf.expand_dims(b_l, -1)], 2) #
indexes

b_dist_ = self.targetqnet(b_o_) # whole distribution
b_q_ = tf.reduce_sum(b_dist_ * vrange_broadcast, axis=2)
b_a_ = tf.cast(tf.argmax(b_q_, 1), tf.int32)
b_adist_ = tf.gather_nd( # distribution of b_a_

b_dist_,
tf.concat([tf.reshape(tf.range(batch_size), [-1, 1]),

tf.reshape(b_a_, [-1, 1])], axis=1)
)
b_adist = tf.gather_nd( # distribution of b_a

self.qnet(b_o),
tf.concat([tf.reshape(tf.range(batch_size), [-1, 1]),

tf.reshape(b_a, [-1, 1])], axis=1)
) + 1e-8

b_l = tf.cast(b_l, tf.float32)
mu = b_adist_ * (b - b_l) * tf.math.log(tf.gather_nd(b_adist,

b_uid))
b_u = tf.cast(b_u, tf.float32)
ml = b_adist_ * (b_u - b) * tf.math.log(tf.gather_nd(b_adist,

b_lid))
kl_divergence = tf.negative(tf.reduce_sum(mu + ml, axis=1))

return kl_divergence

We also run 107 time steps over three random seeds on Breakout. The perfor-
mance is shown in Fig. 4.8 with blue area.
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