
Chapter 2
Introduction to Reinforcement Learning

Zihan Ding, Yanhua Huang, Hang Yuan, and Hao Dong

Abstract In this chapter, we introduce the fundamentals of classical reinforcement
learning and provide a general overview of deep reinforcement learning. We first
start with the basic definitions and concepts of reinforcement learning, including
the agent, environment, action, and state, as well as the reward function. Then, we
describe a classical reinforcement learning problem, the bandit problem, to provide
the readers with a basic understanding of the underlying mechanism of traditional
reinforcement learning. Next, we introduce the Markov process, together with the
Markov reward process and the Markov decision process. These notions are the
cornerstones in formulating reinforcement learning tasks. The combination of the
Markov reward process and value function estimation produces the core results
used in most reinforcement learning methods: the Bellman equations. The optimal
value functions and optimal policy can be derived through solving the Bellman
equations. Three main approaches for solving the Bellman equations are then
introduced: dynamic programming, Monte Carlo method, and temporal difference
learning. We further introduce deep reinforcement learning for both policy and value
function approximation in policy optimization. The contents in policy optimization
are introduced in two main categories: value-based optimization and policy-based
optimization. In value-based optimization, the gradient-based methods are intro-
duced for leveraging deep neural networks, like Deep Q-Networks. In policy-based
optimization, the deterministic policy gradient and stochastic policy gradient are
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introduced in detail with sufficient mathematical proofs. The combination of value-
based and policy-based optimization produces the popular actor-critic structure,
which leads to a large number of advanced deep reinforcement learning algorithms.
This chapter will lay a foundation for the rest of the book, as well as providing the
readers with a general overview of deep reinforcement learning.

Keywords Reinforcement learning · Multi-armed bandit · Markov process ·
Bellman equation · Dynamic programming · Monte Carlo method · Temporal
difference learning · Value-based optimization · Deterministic policy gradient ·
Stochastic policy gradient

2.1 Introduction

This chapter introduces the basic knowledge of reinforcement learning (RL) as well
as deep reinforcement learning (DRL), including the definitions and explanations of
basic concepts, as well as the theoretical proofs of some theorems in reinforcement
learning domain, which are the fundamentals of advanced topics in (deep) reinforce-
ment learning. Therefore, we encourage the readers to read through and understand
well about the contents in this chapter before moving on to the following chapters.
We will start with the basic concepts in reinforcement learning.

The agent and environment are the basic components of reinforcement learning,
as shown in Fig. 2.1. The environment is an entity that the agent can interact with.
For example, an environment can be a Pong game, which is shown on the right-
hand side of Fig. 2.2. The agent controls the paddle to hit the ball back and forth.
An agent can “interact” with the environment by using a predefined action set A =
{A1, A2 . . .}. The action set describes all possible actions. In Pong, the action set
can be {moveUp, moveDown}. The goal of reinforcement learning algorithms is to
teach the agent how to interact “well” with the environment so that the agent is able
to obtain a good score under a predefined evaluation metric. In Pong, the metric
could just be the score that a player gets. An agent will receive a reward r of 1
when the ball hits the wall on the opposite side. In other words, if the agent misses

Fig. 2.1 Agent and environment
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Fig. 2.2 Two types of gaming environments: on the left is the game of Go, where the observation
contains the complete state of the environment, and thus the environment is fully observable. On
the right is the Atari Pong game, where the observation of a single frame does not contain the
velocity of the ball, and thus the environment is partially observable

the ball and lets the ball hit the wall on its side, then its opponent will receive a
reward of 1.

Now, let us take a closer look at the relationship between the agent and the envi-
ronment as depicted in Fig. 2.1. At an arbitrary time step, t , the agent first observes
the current state of the environment, St , and the corresponding reward value, Rt .
The agent then decides what to do next based on the state and reward information.
The action the agent intends to perform, At , gets fed back into the environment
such that we can obtain the new state St+1 and reward Rt+1. The observation of
the environment state s (s is a general representation of state regardless of time
step s) from the agent’s perspective does not always contain all the information
about the environment. If the observation only contains partial state information, the
environment is partially observable. Nevertheless, if the observation contains the
complete state information of the environment, the environment is fully observable.
In practice, the observation is usually a function of the state, which makes it difficult
to differentiate the observations that contain all the state information from the ones
that do not. A better understanding would be from the information perspective that a
fully observable environment should not miss any information in the function from
the underlying state of the whole environment to the observation of the agent.

The board game Go, shown on the left-hand side of Fig. 2.2, is a typical example
of a fully observable environment, where all the placement information of Go pieces
is fully observable for both of the players. The Atari game of Pong with a single
frame as observation is a partially observable environment, where the velocity of
the ball is important for the decision but not available from the stationary frame.

In the literature of reinforcement learning, the action a (a is a general repre-
sentation of action regardless of time step t) is usually conditioned on the state s

to represent the behavior of the agent, under the assumption of fully observable
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environments. If the environment is partially observable for the agent, the agent
usually cannot have direct access to the underlying state, therefore the action has to
be conditioned on the observation, without advanced process.

To provide feedback from the environment to the agent, a reward function R

generates an immediate reward Rt according to the environment status and sends
it to the agent at every time step. In some cases, the reward function depends on the
current state only, i.e., Rt = R(St ). For instance, in Pong, one of the players will
receive the reward immediately, if the ball hits one side of the wall. In this case, the
reward function only depends on the current state. However, sometimes the reward
function can depend on not only the current state and action but also the states and
actions at other time steps. An example would be if in an environment one agent
is asked to memorize a sequence of actions done by another player and then repeat
the same sequence of actions. So the reward will depend on not just one state-action
pair but also the sequence of state-action pairs during the other player’s movement
and this player’s movement. A reward function based on the current state, or even
the current state and action will not be indicative for the agent when mimicking the
whole sequence.

In reinforcement learning, a trajectory is a sequence of states, actions, and
rewards:

τ = (S0, A0, R0, S1, A1, R1, . . .)

which records how the agent interacts with the environment. The initial state in a
trajectory, S0, is randomly sampled from the start-state distribution, denoted by
ρ0, in which:

S0 ∼ ρ0(·) (2.1)

For example, the Atari Pong game always starts with a ball in the center of the
screen and the game of GO usually starts with a chess piece on a random location
of the chessboard.

The transition from a state to the next state can be either a deterministic tran-
sition process or a stochastic transition process. For the deterministic transition,
the next state St+1 is governed by a deterministic function:

St+1 = f (St , At ), (2.2)

where a unique next state St+1 can be found. For the stochastic transition process,
the next state St+1 is described as a probabilistic distribution:

St+1 ∼ p(St+1|St , At ) (2.3)

A trajectory, being referred to also as an episode, is a sequence that goes from the
initial state to the terminal state (for finite cases). For example, playing one entire
game can be considered as an episode. The terminal state is reached when the agent
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wins or loses the game. Sometimes, one episode can have several sub-games rather
than only one. For example, an episode can contain 21 sub-games for the Gym Pong
game.

Finally, we shall discuss two important concepts before the end of the section,
exploitation and exploration, as well as the well-known exploration-exploitation
trade-off. Exploitation means maximizing the agent performance using the existing
knowledge, and its performance is usually evaluated by the expected reward. For
example, a gold digger now has an ore providing him two grams of gold per day, and
he knows that the largest gold ore can give him five grams of gold per day. However,
he also knows that finding a new ore will not only force him to stop exploiting the
current ore but also costs him extra time with a risk of not finding anything at all in
the end. Having these in mind he decides to dig the current ore until it is exhausted
to maximize the reward (gold in this case) via exploitation and give up exploration,
given the large risks of exploration based on his current knowledge. The policy
he took here is the greedy policy, which means the agent constantly performs the
action that yields the highest expected reward based on current information, rather
than taking risky trials which may lead to lower expected rewards.

Exploration means increasing existing knowledge by taking actions and interact-
ing with the environment. Back to the example of the gold digger, he wishes to
spend some time to find new ore, and if he finds a bigger gold ore, he can get
more reward per day. To have a larger long-term return, the short-term return may
be sacrificed. The gold digger is always facing the exploitation and exploration
dilemma as he needs to decide how much the yield a gold mine has for him to
stay and how little the yield a gold mine has for him to keep exploring. Maybe,
he also wants to see enough ores before he can make a well-informed decision.
From the above descriptions, the readers may already have a primary understanding
about the exploration-exploitation trade-off. The exploration-exploitation trade-
off describes the balance between how much efforts the agent makes on exploration
and exploitation, respectively. The trade-off between exploration and exploitation
is a central theme of reinforcement learning research and reinforcement learning
algorithm development. We will explain it with the following bandit problem.

2.2 Bandits

Single-Armed Bandit is a simple gambling machine as shown on the left-hand
side of Fig. 2.3. The agent (player) interacts with the environment (machine) by
pulling a single arm down, and receives a reward when the machine hits the jackpot.
In a casino, there will usually be many bandits lining up in a row. The agent can
choose to pull an arm of any of these slot machines. The distributions of the reward
values r conditioned on the actions a, P(r|a), for different bandits are different but
fixed. The agent, however, does not know the distributions in the beginning, and
the knowledge is acquired through the trials of the agents. The goal is to maximize



52 Z. Ding et al.

Fig. 2.3 Single-armed bandit (left) and multi-armed bandits (right)

the payoffs after some number of selections. The agent will have to choose among
various slot machines at each time step and we refer this game as multi-armed
bandit (MAB) which is shown on the right-hand side of Fig. 2.3. MAB gives the
agent the freedom to make strategic choices of which arm to pull.

We try to solve the MAB problem with standard reinforcement learning methods.
The action a of the agent is to choose which arm to pull. A reward will be given right
after the action is conducted. Formally, at time step t , we are trying to maximize the
expected action value defined as follows:

q(a) = E[Rt |At = a]

If we already know the true value q(a) of each action a, then the problem will be
trivial to solve because we can always choose the action that would yield the best q

value. However, in reality, we typically need to estimate the q value and we denote
the estimate as Q(a), which should be as close to q(a) as possible.

The MAB problem is an excellent example to illustrate the exploration-
exploitation trade-off. After one has estimated the q values for some states, if
the agent is always going to take the action that has the greatest Q value, then
this agent is considered to be greedy and is exploiting the already estimated q

values. If the agent takes on any action that does not have the best Q value,
then this agent is considered to be exploring different options. Neither doing only
exploration or exploitation is a good way to improve the policy of the agent in most
cases.

A simple action-value based method is to estimate Qt(a) using the ratio between
the total rewards received by choosing one action by time t and the total number of
times that this specific action has been chosen:

Qt(a) = sum of the rewards by choosing a before t

number of times a was chosen before t
=

∑t−1
i=0 Ri · 1Ai=a
∑t−1

i=0 1Ai=a
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1predicate is one when the predicate is true otherwise it is zero. The greedy approach
can be thus written as

At = arg max
a

Qt (a) (2.4)

We can, however, easily convert this greedy method into one that also explores other
states with probability ε. We call this method ε-greedy as it randomly chooses an
action with probability ε and most of the time behaves in a greedy fashion. If we
have an infinite number of time steps, we are guaranteed to have Qt(a) converge
to q(a). Moreover, the simple action-value based method is also an online learning
approach which we will explain in detail in the next section.

2.2.1 Online Prediction and Online Learning

Online prediction problems are the class of problems where the agent has to make
predictions about the future. For instance, imagine you have been in Hawaii for a
week, and are asked to predict whether it will rain in the next days. Another example
can be predicting afternoon oil prices based on the observed fluctuations in oil prices
in the morning. Online prediction problems need to be solved with online methods.
Online learning is distinguished from traditional statistic learning in the following
aspects:

• The sample data is presented in an ordered sequence instead of an unordered
batch.

• We will often have to consider the worst case rather than the average case because
we do not want things to go out of control in the learning stage.

• The learning objective can be different as online learning often tries to minimize
regret whereas statistical learning tries to minimize empirical risk. We will
explain what regret is later.

Let us take look at a trivial example in the context of the MAB problem. Let
us say, we observe a reward Rt at each time step t . An easy solution to find out
what the best action is to update the estimate of the q value using Rt and At . A
traditional way to compute the mean is to sum up all the previous rewards when
At has been selected and divide that sum by the count of At . This approach is
more like batch learning as it involves recomputing every time using a batch of data
points. The online alternative would be to use a running average by doing the new
estimate using the previous estimate: Qi(At) = Qi(At) − Qi(At)/N; Qi+1(At ) =
Qi(At) + Rt/N . Qi is the q value after At has been selected i times, and N is the
number of times that At has been selected.
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2.2.2 Stochastic Multi-Armed Bandit

Concretely, if we have K ≥ 2 arms, we will need to select an arm to pull for each
time step t = 1, 2, · · · , T . At each step t , we can observe a reward Ri

t by selecting
the ith arm.

Algorithm 1 Multi-armed bandit learning
Initialize K arms;
Number of time steps T ;
Each arm is associated with vi ∈ [0, 1]. The reward being returned is drawn i.i.d from vi

for t = 1, 2, . . . , T do
The agent selects At = i from the K arms.
The environment returns the reward vector Rt = (R1

t , R2
t , · · · , RK

t ).

The agent observes reward Ri
t .

end for

In a traditional sense, one often tends to maximize the rewards. However, for a
stochastic MAB, we will focus on another metric, regret. The regret after n steps is
defined as:

REn = max
j=1,2,...,K

n∑

t=1

R
j
t −

n∑

t=1

Ri
t

The first term in the subtraction is the total reward that we accumulate until time
n for always receiving the maximized rewards and the second term is the actual
accumulated rewards in a trial that has gone through n time steps.

In order to select the best action, we should try to minimize the expected
regret because of the stochasticity introduced by our actions and rewards. We will
differentiate two different types of regret, the expected regret and pseudo-regret. The
expected regret is defined as:

E[REn] = E

[

max
j=1,2,...,T

n∑

t=1

R
j
t −

n∑

t=1

Ri
t

]

(2.5)

The pseudo-regret is defined as:

REn = max
j=1,2,...,T

E

[
n∑

t=1

R
j
t −

n∑

t=1

Ri
t

]

(2.6)

The key distinction between the above two regrets is the order of the maximization
and expectation. The expected regret is harder to compute. This is because for
the pseudo-regret we only need to find the action that optimizes the regret in
expectation, however, for the expected regret, we will have to find the expected
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regret that is optimal over actions across different trials. Concretely, we have
E[REn] ≥ REn.

Let μi be the mean of vi , where vi is the reward value of the i−th arm, μ∗ =
maxi=1,2,...,T μi . In the stochastic setting, we can rewrite Eq. (2.6) as:

REn = nμ∗ − E

[
n∑

t=1

Ri
t

]

(2.7)

One way to minimize the pseudo-regret is to select the best arm to pull
given the observed sample pulls using ε-greedy which we already talked about
before. A more sophisticated method is called Upper Confidence Bound (UCB)
algorithm. UCB makes use of Hoeffding’s lemma to derive an upper confidence
bound estimate and chooses the arm whose sample mean has been the greatest so
far.

We now introduce the concept of UCB strategy. The exact treatment of using
UCB on stochastic MAB for regret optimization can be found in Bubeck et al.
(2012). We will explain UCB for the situation when we optimize the policy with
respect to the reward. In stochastic MAB, even though the rewards are drawn from
a distribution, the reward function is still stationary over time. Let us refer back
to the ε-greedy method. The ε-greedy method explores non-optimal states with a
probability ε, but the issue is that it considers all the non-optimal states the same
and does not make any differentiation. If we want to thoroughly visit every state, we
should certainly prioritize the states that have not been visited yet or the states with
fewer visits. UCB helps resolve this issue by rewriting Eq. (2.4) into:

At = arg max
a

[

Qt(a) + c

√
ln t

Nt (a)

]

(2.8)

Nt(a) is the number of times action a has been selected till time t and c is a positive
real number that determines how much exploration needs to be done. Eq. (2.8) is
how we would select an action if we have a non-stationary reward function. When
Nt(a) is zero, we consider action a to have the max value. To understand how
UCB works, let us focus on the square-root term, which reflects the amount of
uncertainty we have for the q-value estimate for a. As the number of times that a

is selected increases, the uncertainty decreases as the denominator decreases. Also
as more actions other than a is being selected, the uncertainty increases because the
ln t increases but Nt(a) does not. The log operator on t is saying that the impact
of incoming new time steps decays as we have more time steps in total. UCB
gives some form of an upper bound of the q value for a, and c is the confidence
level.
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2.2.3 Adversarial Multi-Armed Bandit

Stochastic MAB’s reward functions are determined by the probabilistic distributions
that are usually not changed. In reality, this might not be the case. Imagine that if in
a casino, a player wants to make a large profit by playing a group of slot machines
and he has found out which machines are more likely to yield better returns, the
casino owner will change the behavior of the machines so that the casino does
not lose money. This is exactly why adversarial MAB modeling is needed when
the rewards are no longer governed by a stationary probabilistic distributions but
arbitrarily determined by some adversary. Formally, in adversarial MAB, the reward
for the ith arm at time t will be denoted by Ri

t ∈ [0, 1], at the same time, the player
will select an arm at time t , which is denoted by It ∈ {1, . . . ,K}.

One might wonder what if an adversary simply sets all the rewards to zero. This
situation could happen, but there would be little point in playing this game if the
player can get nothing in return. As a matter of fact, even when the opponent can
freely decide what the rewards are going to look like, he would not do so because
if all the rewards are zeros, no one will want to play the game anymore. His job is
actually to give the player enough rewards just to trick the player in believing that
he might have a chance of winning in the long term.

Algorithm 2 Adversarial multi-armed bandit
Initialize K arms;
for t = 1, 2, . . . , T do

The agent selects It from the K arms.
The adversary selects a reward vector Rt = (R1

t , R2
t , . . . , RK

t ) ∈ [0, 1]K
The agent observes reward R

It
t and maybe also observes the rest of the reward vector

depending on the specific problem set up.
end for

Algorithm 2 describes the general setup for adversarial MAB. At each time step,
the agent will choose an arm It to pull and the adversary will decide the reward
vector Rt for this time step. The agent might only be able to observe the reward
for the arm he selects R

It
t or the possible rewards for all the machines, Rt (·). We

still need two more pieces of information for the problem formulation. The first
one is how much the adversary knows about the player’s past behavior. It matters
because, for some casino owners, they might adapt their reward strategies based
on the player’s behavior for more benefit. We will call the adversary who sets the
rewards independent of the past history an oblivious adversary and the one that
sets the rewards based on the past history a non-oblivious adversary. The second
piece of information we have to specify is how much the player knows about the
reward vector. We call the game in which a player has full knowledge of the reward
vector a full-information game and the game with the knowledge of the reward for
the action being played a partial-information game.
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The difference between the oblivious and non-oblivious adversaries only starts
to matter when we have a non-deterministic player. If we have a deterministic
player, a player whose game strategy does not change, it is fairly easy to show
that an adversary can always lower the regret to RE ≥ n/2 where n is the
number of pulls the player takes. Therefore, let us focus on a non-deterministic
player with full information in the first place. We can make use of the hedge
algorithm to tackle this problem. In Algorithm 3, we first set G function to be

Algorithm 3 Hedge for adversarial multi-armed bandit
Initialize K arms;
Gi(0) for i = 1, 2, . . . , K;
for t = 1, 2, . . . , T do

The agent selects At = it from the distribution p(t), where

pi(t) = exp(ηGi (t − 1))
∑K

j exp(ηGj (t − 1))

The agent observes reward vector gt .
Let Gi(t) = G(t − 1) + gi

t , ∀i ∈ [1,K].
end for

zero for all the arms, and use the softmax function to obtain the probability density
function for the new action. η is a parameter greater than zero to control the
temperature. The G function is updated by adding all the new rewards received
for all the arms to allow the arm that has received the greatest reward being the
most likely one to be selected. We refer this algorithm as Hedge. Hedge is also
a building block for the method used under a partial-information game. If we
want to limit the agent’s observation to only Ri

t , then we will need to expand
our reward scalar to a vector such that it can be passed to hedge. Exponential-
weight algorithm for Exploration and Exploitation (Exp3) is the method that
builds on Hedge for the partial information game. It further utilizes a blending of
p(t) and a uniform distribution to ensure that all the machines will get selected
and hence the name exploration and exploitation. Auer et al. (1995) have more
details on how Exp3 can be used and offer analysis on the confidence bound for
regret.

2.2.4 Contextual Bandits

Contextual bandits are also sometimes called associative search tasks. The associa-
tive search tasks are best explained in comparison with the non-associative search
tasks, the MAB tasks that we just described. When the reward function for the
task is stationary, we only need to find the best action, otherwise, when the task
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is non-stationary we will try to keep track of the changes. This is the case for the
non-associative search tasks, but reinforcement learning problems can become a
lot more complicated. For instance, if we have several MAB tasks to play, and
we will have to choose one at each time step. Even though we can still estimate
the general expected reward, the performance is unlikely to be optimal. For cases
like this, it would be useful to associate certain features of the slot machine with
the learned expected reward. Imagine, for each slot machine, there is an LED light
shining different colors at different times. Let us say if the machines with the red
light always yield greater reward than the ones with the blue light, then we will be
able to associate that information with our action selection policy, i.e. selecting the
machines with red lights more.

Contextual bandit tasks are an intermediate between MAB tasks and the full
reinforcement learning problems. They are similar to the MAB tasks because, for
both situations, their actions only impact the immediate rewards. It is also similar
to the full reinforcement learning setting because both require learning a policy
function. To convert contextual bandits tasks to full reinforcement learning tasks,
we will need to allow the actions to influence not just the intermediate rewards but
also the future environment states.

2.3 Markov Decision Process

2.3.1 Markov Process

A Markov process (MP) is a discrete stochastic process with Markov property,
which simplifies the simulation of the world in continuous space. Figure 2.4 shows
an example of MP. Each circle represents a state and each edge represents a state
transition. This graph simulates how a person works on two tasks and goes to bed in
the end. To understand how this diagram works, let us look at this example together.
Imagine, we are currently doing “Task1”, and then with a probability of 0.7 we
continue to execute “Task2”, after which if we manage to pass with a probability of
0.6, we will pass the exam and then go straight to bed.

Figure 2.5 shows the probabilistic graphical model of MP in a probabilistic
inference view, which will be frequently mentioned in later sections. In probabilistic
graphical models, specifically the ones that we use in this book, a circle indicates a
variable, and the arrow with a single direction indicates the relationship between two
variables. For example, “a → b” indicates that variable b is dependent on variable
a. The variable in a circle in white denotes a normal variable, while the variable in
a circle with a shade of gray denotes an observed variable (shown in later figures
of Sect. 2.7), which provides information for taking an inference process of other
normal variables. A solid black square with variables inside indicates those variables
are iterative, which will be shown in later figures as well. The probabilistic graphical
model can help us to have a more intuitive sense of the relationships between
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Task2
s = t2

Task1
s = t1

Pass
s = p

Rest
s = r

Bed
s = b

Game
s = g

0.9

0.1

1

0.3

0.7

0.3

0.6

0.1

1

0.1
0.9

Fig. 2.4 A Markov process example. s denotes the current state and the values on the edges denote
the probabilities of moving from one state to another

St−1 St St+1

p(St|St−1) p(St+1|St)

Fig. 2.5 Graphical model of Markov process: a finite representation with t indicating the time step
and p(St+1|St ) indicating the state transition probability

variables in reinforcement learning, as well as providing rigorous references when
we derive the gradients with respect to different variables along the MP chains.

MP follows the assumption of Markov chain where the next state St+1 is only
dependent on the current state St , with the probability of a state jumping to the next
state described as follows:

p(St+1|St ) = p(St+1|S0, S1, S2, . . . , St ) (2.9)

This formula describes the “memoryless” property, i.e. Markov property, of the
Markov chain. Also, if p(St+2 = s′|St+1 = s) = p(St+1 = s′|St = s) holds
for any time step t and for all possible states, then it is a stationary transition
function along the time axis, which is called the time-homogeneous property, and
the corresponding Markov chain is time-homogeneous Markov chain.

We also frequently use s′ to represent the next state, in which the probability
that state s at time t will lead to state s′ at time t + 1 is as following in a time-
homogeneous Markov chain:

p(s′|s) = p(St+1 = s′|St = s) (2.10)
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The time-homogeneous property is a basic assumption for most of the derivations
in the book, and we will not mention it but follow it as default in most cases.
However, in practice, the time-homogeneous may not always hold, especially
for non-stationary environments, multi-agent reinforcement learning, etc., which
concerns with time-inhomogeneous/non-homogeneous cases.

Given a finite state set S, we can have a state transition matrix P . The P for
Fig. 2.4 is as follows:

g t1 t2 r p b

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.9 0.1 0 0 0 0
0.3 0 0.7 0 0 0

0 0 0 0.1 0.6 0.3
0 0.1 0.9 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

g

t1

t2

r

p

b

where P i,j represents the probability of transferring the current state Si to the next
state Sj . For example, in Fig. 2.4, state s = r will jump to state s = t1 with a
probability of 0.1, and to state s = t2 with 0.9. The sum of each row is equal
to 1 and the P is always a square matrix. These probabilities indicate the whole
process is stochastic. Markov process can be represented by a tuple of < S,P >.
Many simple processes in our world can be represented by this random process as
an approximation, which is also a foundation of reinforcement learning methods.
Mathematically, the next state is sampled from P as follows:

St+1 ∼ P St ,· (2.11)

where symbol ∼ represents the next state St+1 is randomly sampled according to
the categorical distribution of P St ,·.

For infinite state set or continuous case, a finite matrix cannot be used to represent
the transition relationship anymore. Therefore the transition function p(s′|s) is
applied as before, with a corresponding relationship p(s′|s) = P s,s ′ for finite cases.

2.3.2 Markov Reward Process

Even though the agent can interact with the environment via the state transition
matrix P s,s ′ = p(s′|s), there is no way for MP to provide reward feedback from the
environment to the agent. To provide the feedback, Markov reward process (MRP)
extends MP from < S,P > to < S,P , R, γ >. The R and γ represent the reward
function and reward discount factor, respectively. An example of MRP is shown
in Fig. 2.6. Figure 2.7 shows the graphical model of MRP in a probabilistic inference
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Fig. 2.6 A Markov reward
process example. The s

denotes the current state and
the r denotes the immediate
reward for each state. The
values on the edges denote
the probabilities of moving
from one state to the next
state
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Fig. 2.7 Graphical model of
a Markov reward process: a
finite representation with t

indicating the time step
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Rt−1 Rt Rt+1

p(St St 1) p(St St)

view. The reward function depends on the current state:

Rt = R(St ) (2.12)

But the reward is also a result of the previous action based on the previous state.
To better understand the reward as a function of the state, let us take a look at this
example. If the agent passes the exam, the agent can obtain an immediate reward of
ten, and taking a rest can obtain a reward of one, but if the agent works on a task, the
reward of two will be lost. Given a list of immediate reward r for each time step in
a single trajectory τ , a return is the cumulative reward of a trajectory, in which
the undiscounted return of finite process with T time steps (not counting the initial
one) is as follows:

Gt=0:T = R(τ) =
T∑

t=0

Rt (2.13)
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where Rt is the immediate reward at time step t , and T represents the time step of
the terminal state, or the total number of steps in a finite episode. For example, the
trajectory (g, t1, t2, p, b) has an undiscounted return of 5 = −1 − 2 − 2 + 10. Note
that some other literature may use G to represent the return, and R to represent the
immediate reward, but in this book, we use R as the reward function, therefore Rt =
R(St ) gives the immediate reward at time step t , while R(τ) = G

(T )
t=0 represents

the return along the trajectory τ0:T , and r as a general representation of immediate
reward value.

Often, the steps that are closer have a greater impact than the distant ones. We
introduce the concept of discounted return. The discounted return is a weighted
sum of rewards which gives more weights to the closer time steps. We define the
discounted return as follows:

Gt=0:T = R(τ) =
T∑

t=0

γ tRt . (2.14)

where a reward discount factor γ ∈ [0, 1] is used to reduce the weights as the time
step increases. For example in Fig. 2.6, given γ = 0.9, the trajectory (g, t1, t2, p, b)

has a return of 2.87 = −1 − 2 × 0.9 − 2 × 0.92 + 10 × 0.93. If γ = 0, the return is
only related to the current immediate reward; if γ = 1, it is the undiscounted return.
The discounted factor is especially critical when handling with infinite MRP cases,
as it can prevent the return from going to infinite as the time step goes to infinite.
Therefore it makes the infinite MRP process evaluative.

Another view of discount factor γ : for conciseness, the reward discount factor γ

is sometimes omitted in literature (Levine 2018) in a discrete-time finite-horizon
MRP. The discount factor can also be incorporated into the process by simply
modifying the transition dynamics, such that any action produces a transition into
an absorbing state with probability 1 − γ , and all standard transition probabilities
are multiplied by γ .

The value function V (s) represents the expected return from the state s. For
example, if there are two different next states S1 and S2, the values estimated with
the current policy are V π(S1) and V π(S2). The agent policy usually selects the next
state with higher value. If the agent acts according to the policy π , we denote the
value function as V π(s):

V (s) =E[Rt |S0 = s] (2.15)

A simple way to estimate the V (s) is Monte Carlo method, we can randomly
sample a large number of trajectories starting from state s according to the given
state transition matrix P . Take Fig. 2.6 as an example, given γ = 0.9 and P ,
to estimate V π(s = t2), we can randomly sample four trajectories as follows
and compute the returns of all trajectories individually (Note that, in practice, the
number of trajectories is usually far larger than four, but for demonstration purposes
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Fig. 2.8 Markov reward
process and the estimated
value function V (s) by
randomly choosing four
trajectories for each state i.e.,
Monte Carlo method. The red
edges indicate the learned
policy
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·V (s = g) = −1.4125
·V (s = t1) = −0.4595
·V (s = t2) = 2.348
·V (s = r) = 0.5875
·V (s = p) = 10
·V (s = b) = 0

we simply sample four trajectories here.):

• s = (t2, b), R = −2 + 0 × 0.9 = −2
• s = (t2, p, b), R = −2 + 10 × 0.9 + 0 × 0.92 = 7
• s = (t2, r, t2, p, b), R = −2 + 1 × 0.9 − 2 × 0.92 + 10 × 0.93 + 0 × 0.94 = 4.57
• s = (t2, r, t1, t2, b), R = −2+1×0.9−2×0.92−2×0.93+0×0.94 = −0.178

Given the returns of all trajectories, the estimated expected return under state
s = t2 is V (s = t2) = (−2 + 7 + 4.57 − 0.178)/4 = 2.348. Figure 2.8 shows all
estimated expected returns for all states. Given the expected returns under all states,
the simplest policy for the agent is to jump to the next state that has the highest
expected return. The actions that can maximize the expected return are highlighted
by red in Fig. 2.8. Apart from Monte Carlo methods, there are many other methods
to compute V (s), such as Bellman expectation equation and inverse matrix method,
etc., which will be introduced later.

2.3.3 Markov Decision Process

Markov decision processes (MDPs) have been studied since the 1950s and have
been widely used in modeling disciplines such as economics, control theory, and
robotics. To model the process of sequential decision making, MDP is better than
MR and MRP. As Fig. 2.9 shows, different from MRP that the immediate rewards
are conditioned on the state only (reward values on nodes), the immediate rewards
of MDP are associated with the action and state (reward values on edges). Likewise,
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Fig. 2.9 A Markov decision process example, different from MRP in which the immediate
rewards are associated with the state only. The immediate rewards of MDP is associated with
the current state and the action just taken. The black solid node is an initial state

given an action under a state, the next state is not fixed. For example, if the agent
acts “rest” under state s = t2, the next state can be either s = t1 or t2. Fig. 2.10
shows the graphical model of MDP in a probabilistic inference view.

As mentioned above, MP can be defined as the tuple < S,P >, and MRP is
defined as the tuple < S,P , R, γ >, where the element of state transition matrix
is P s,s ′ = p(s′|s). This representation extends the finite-dimension state transition
matrix to an infinite-dimension probability function. Here, MDP is defined as a tuple
of < S,A,P , R, γ >. The element of state transition matrix becomes:

p(s′|s, a) = p(St+1 = s′|St = s,At = a) (2.16)

For instance, most of the edges in Fig. 2.9 have a state transition probability of
one, e.g., p(s′ = t2|s = t1, a = work) = 1, except that p(s′|s = t2, a = rest) =
[0.2, 0.8] which means if the agent performs action a = rest at state s = t2, it
has 0.2 probability will transit to state s′ = t1, and 0.8 probability will keep the
current state. The non-existing edges have a state transition probability of zero e.g.,
p(s′ = t2|s = t1, a = rest) = 0.

A represents the finite action set {a1, a2, . . .}, and the immediate reward
becomes:

Rt = R(St , At ) (2.17)
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St−1 St St+1

p St St 1, At 1 p St St, At

At−1p(At−1|St−1) At At+1

Rt−1 Rt Rt+1

Fig. 2.10 Graphical model of Markov decision process: a finite representation with t indicating
the time step, p(At |St ) as the action choice based on current state, and p(St+1|St , At ) as the state
transition probability based on current state and action. The dashed lines indicate the decision
process made by the agent

A policy π represents the way in which the agent behaves based on its
observations of the environment. Specifically, the policy is a mapping from the each
state s ∈ S and action a ∈ A to the probability distribution π(a|s) for taking action
a in state s, where the distribution is:

π(a|s) = p(At = a|St = s), ∃t (2.18)

Expected return is the expectation of returns over all possible trajectories under
a policy. Therefore, the goal of reinforcement learning is to find the higher
expected return by optimizing the policy. Mathematically, given the start-state
distribution ρ0 and the policy π , the probability of a T-step trajectory for MDP is:

p(τ |π) = ρ0(S0)

T −1∏

t=0

p(St+1|St , At )π(At |St ) (2.19)

Given the reward function R and all possible trajectories τ , the expected return
J (π) is defined as follows:

J (π) =
∫

τ

p(τ |π)R(τ) = Eτ∼π [R(τ)] (2.20)
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where p here means that the trajectory with higher probability will have a higher
weight to the expected return. The RL optimization problem is to improve the
policy for maximizing the expected return with optimization methods. The optimal
policy π∗can be expressed as:

π∗ = arg max
π

J (π) (2.21)

where the ∗ symbol means “optimal” for the rest of the book.
Given policy π , the value function V (s), the expected return under the state, can

be defined as:

V π(s) =Eτ∼π [R(τ)|S0 = s]

=EAt∼π(·|St )

[ ∞∑

t=0

γ tR(St , At )|S0 = s

]
(2.22)

where τ ∼ π means the trajectories τ are sampled given the policy π , At ∼
π(·|St ) means the action under a state is sampled from the policy, the next state
is determined by the state transition matrix P given state s and action a.

In MDP, given an action, we have the action-value function, which depends on
both the state and the action just taken. It gives an expected return under a state and
an action. If the agent acts according to a policy π , we denote it as Qπ(s, a), which
is defined as:

Qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a]

= EAt∼π(·|St )

[ ∞∑

t=0

γ tR(St , At )|S0 = s,A0 = a

]
(2.23)

We need to keep in mind that the Qπ(s, a) depends on π , as the estimation of the
value is an expectation over the trajectories by the policy π . This also indicates if the
π changes, the corresponding Qπ(s, a) will also change accordingly. We therefore
usually call the value function estimated with a specific policy the on-policy value
function, for the distinction from the optimal value function estimated with the
optimal policy.

We can observe the relation between vπ (s) and qπ(s, a):

qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a] (2.24)

vπ (s) = Ea∼π [qπ(s, a)] (2.25)

There are two simple ways to compute the value function vπ (s) and action-value
function qπ(s, a): The first is the exhaustive method follows Eq. (2.19), it first
computes the probabilities of all possible trajectories that start from a state, and
then follows Eqs. (2.22) and (2.23) to compute the V π(s) and Qπ(s, a) for this state.
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The exhaustive method computes the V π(s) for each state individually. However, in
practice, the number of possible trajectories would be large and even infinite. Instead
of using all possible trajectories, we can use Monte Carlo method as described
in the previous MRP section to estimate the V π(s) by randomly sampling a large
number of trajectories. In reality, the estimation formulas of value functions can be
simplified, by leveraging the Markov property in MRP, which leads to the Bellman
equations in the next section.

2.3.4 Bellman Equation and Optimality

Bellman Equation

The Bellman equation, also known as the Bellman expectation equation, is used to
compute the expectation of value function given policy π , over the sampled trajec-
tories guided by the policy. We call this “on-policy” manner as in reinforcement
learning the policy is usually changing, and the value function is conditioned on or
estimated by current policy.

Recall that the definitions of a value function or an action-value function are
vπ (s) = Eτ∼π [R(τ)|S0 = s] and qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a]. We
can derive the Bellman equation for on-policy state-value function in a recursive
relationship:

vπ (s) = Ea∼π(·|s),s ′∼p(·|s,a)[R(τt :T )|St = s]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt + γRt+1 + γ 2Rt+2 + . . . + γ T RT |St = s]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt + γ (Rt+1 + γRt+2 + . . . + γ T −1RT )|S0 = s]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt + γRτt+1:T |St = s]
= EAt∼π(·|St ),St+1∼p(·|St ,At )[Rt + γEa∼π(·|s),s ′∼p(·|s,a)[Rτt+1:T ]|St = s]
= EAt∼π(·|St ),St+1∼p(·|St ,At )[Rt + γ vπ (St+1)|St = s]
= Ea∼π(·|s),s ′∼p(·|s,a)[r + γ vπ (s′)] (2.26)

The final formula above holds because s, a are general representations of states
and actions, while St , At are state and action at time step t only. St , At are
sometimes separated from the general representations s, a to show more clearly
over whom the expectation is taken over in some of above formulas.

Note that in the above derivation we show the Bellman equation for MDP
process, however, the Bellman equation for MRP can be derived by simply removing
the action from it:

v(s) = Es ′∼p(·|s)[r + γ v(s′)] (2.27)
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There is also Bellman equation for on-policy action-value function: qπ(s, a) =
Es ′∼p(·|s,a)[R(s, a) + γEa′∼π(·|s ′)[qπ(s′, a′)]], which can be derived as follows:

qπ(s, a)

= Ea∼π(·|s),s ′∼p(·|s,a)[R(τt :T )|St = s,At = a]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt + γRt+1 + γ 2Rt+2 + · · · + γ T RT |St = s,At = a]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt +γ (Rt+1 +γRt+2 +· · · + γ T −1RT )|St = s,At = a]
= ESt+1∼p(·|St ,At )[Rt + γEa∼π(·|s),s ′∼p(·|s,a)[Rτt+1:T ]|St = s]
= ESt+1∼p(·|St ,At )[Rt + γEAt+1∼π(·|St+1)[qπ(St+1, At+1)]|St = s]
= Es ′∼p(·|s,a)[R(s, a) + γEa′∼π(·|s ′)[qπ(s′, a′)]]

The above derivation is based on the finite MDP with maximal length of T ,
however, these formulas still hold when in the infinite MDP, simply with T replaced
by “∞”. The two Bellman equations also do not depend on the formats of policy,
which means they work for both stochastic policies π(·|s) and deterministic policies
π(s). The usage of π(·|s) is for simplicity here. Also, in deterministic transition
processes, we have p(s′|s, a) = 1.

Solutions of Bellman Equation

The Bellman equation for MRP as in Eq. (2.27) can be solved directly if the
transition function/matrix is known, which is called the inverse matrix method.
We rewrite Eq. (2.27) in a vector form for cases with discrete and finite state space
as:

v = r + γPv (2.28)

where v and r are vectors with their elements v(s) and R(s) for all s ∈ S, and P is
the transition probability matrix with elements p(s′|s) for all s, s′ ∈ S.

Given v = r + γPv, we can directly solve it with:

v = (1 − γP )−1r (2.29)

the complexity of the solution is O(n3), where n is the number of states. Therefore
this method does not work for a large number of states, meaning it may not
be feasible for large-scale or continuous-valued problems. Fortunately, there are
some iterative methods for solving the large-scale MRP problems in practice, like
dynamic programming, Monte Carlo estimation, and temporal-difference learning,
which will be introduced in detail in later sections.
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Optimal Value Functions

Since on-policy value functions are estimated with respect to the policy itself,
different policies will lead to different value functions, even for the same set of
states and actions. Among all those different value functions, we define the optimal
value function as:

v∗(s) = max
π

vπ (s),∀s ∈ S, (2.30)

which is actually the optimal state-value function. We also have the optimal
action-value function as:

q∗(s, a) = max
π

qπ(s, a),∀s ∈ S, a ∈ A, (2.31)

And they have the relationship:

q∗(s, a) = E[Rt + γ v∗(St+1)|St = s,At = a], (2.32)

which can be derived easily by taking the maximization in the last formula of
Eq. (2.26) and plugging in Eqs. (2.25) and (2.30):

q∗(s, a) = E

[
R(s, a) + γ max

π
E

[
qπ

(
s′, a′)]]

= E

[
R(s, a) + γ max

π
vπ

(
s′)]

= E[Rt + γ v∗(St+1)|St = s,At = a].

(2.33)

Another relationship between the two is:

v∗(s) = max
a∼A

q∗(s, a) (2.34)

which is obvious by simply maximizing the two sides of Eq. (2.25).

Bellman Optimality Equation

In the above sections we introduced on-policy Bellman equations for normal value
functions, as well as the definitions of optimal value functions. So we can apply
the Bellman equation on the pre-defined optimal value functions, which gives us
the Bellman optimality equation, or called Bellman equation for optimal value
functions, as follows.
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The Bellman equation for optimal state-value function is:

v∗(s) = max
a

Es ′∼p(·|s,a)[R(s, a) + γ v∗(s′)], (2.35)

which can be derived as follows:

v∗(s) = max
a

Eπ∗,s ′∼p(·|s,a)[R(τt :T )|St = s]

= max
a

Eπ∗,s ′∼p(·|s,a)

[
Rt + γRt+1 + γ 2Rt+2 + · · · + γ T RT |St = s

]

= max
a

Eπ∗,s ′∼p(·|s,a)[Rt + γRτt+1:T |St = s]

= max
a

Es ′∼p(·|s,a)

[

Rt + γ max
a′ Eπ∗,s ′∼p(·|s,a)

[
Rτt+1:T

] |St = s

]

= max
a

Es ′∼p(·|s,a)[Rt + γ v∗(St+1)|St = s]
= max

a
Es ′∼p(·|s,a)[R(s, a) + γ v∗(s′)] (2.36)

Bellman equation for optimal action-value function is:

q∗(s, a) = Es ′∼p(·|s,a)[R(s, a) + γ max
a′ q∗(s′, a′)], (2.37)

which can be derived similarly. Readers can take a practice by finishing the proof.

2.3.5 Other Important Concepts

Deterministic and Stochastic Policies

In the previous sections, the policy is represented as a probability distribution as
π(a|s) = p(At = a|St = s), where the action of the agent is sampled from
the distribution. A policy with action sampled from the probability distribution is
actually called the stochastic policy distribution, with the action:

a = π(·|s) (2.38)

However, if we reduce the variance of the probability distribution of a stochastic
policy and narrow down its range to the limit, we will get a Dirac delta function
(δ function) as a distribution, which is the deterministic policy π(s). Deterministic
policy π(s) also means given a state there is only one unique action as follows:

a ∼ π(s) (2.39)
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Note that the deterministic policy is no longer a mapping from a state and action
to the conditional probability distribution, but rather a mapping from a state to an
action directly. This slight difference will lead to some different derivations in the
policy gradient method introduced in later sections. More detailed categories of
policies in reinforcement learning, especially for deep reinforcement learning with
parameterized policies are introduced in Sect. 2.7.3.

Partially Observed Markov Decision Process

As mentioned in previous sections, when the state in reinforcement learning
environment is not fully represented by the observation for the agent, the envi-
ronment is partially observable. For a Markov decision process, it is called
the partially observed Markov decision process (POMDP), which forms a chal-
lenge for improving the policy without complete information of the environment
states.

2.3.6 Summary of Terminology in Reinforcement Learning

Apart from the terminology in mathematics notations at the beginning of the book,
the summary of terminology for common contents in reinforcement learning is
provided as follows:

• R the reward function, Rt = R(St ) as the reward of state St for MRP, Rt =
R(St , At ) for MDP, St ∈ S.

• R(τ) the γ -discounted return of a trajectory τ , R(τ) = ∑∞
t=0 γ tRt .

• p(τ) the probability of a trajectory:

– p(τ) = ρ0(S0)
∏T −1

t=0 p(St+1|St ) for MP and MRP, ρ0(S0) as start-state
distribution.

– p(τ |π) = ρ0(S0)
∏T −1

t=0 p(St+1|St , At )π(At |St ) for MDP, ρ0(S0) as start-
state distribution.

• J (π) the expected return of policy π , J (π) = ∫
τ p(τ |π)R(τ) = Eτ∼π [R(τ)]

• π∗ optimal policy: π∗ = arg maxπ J (π)

• vπ (s) value of state s under policy π (expected return)
• v∗(s) value of state s under the optimal policy
• qπ(s, a) value of taking action a in state s under policy π

• q∗(s, a) value of taking action a in state s under the optimal policy
• V (s) the estimates of state-value function for MRP starting from state s:
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• V π(s) the estimates of on-policy state-value function for MDP, given a policy π ,
we have expected return:

– V π(s) ≈ vπ (s) = Eτ∼π [R(τ)|S0 = s]
• Qπ(s, a) the estimates of on-policy action-value function for MDP, given a

policy π , we have expected return:

– Qπ(s, a) ≈ qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a]
• V ∗(s) the estimates of optimal state-value function for MDP, we have expected

return according to the optimal policy:

– V ∗(s) ≈ v∗(s) = maxπ Eτ∼π [R(τ)|S0 = s]
• Q∗(s, a) the estimates of on-policy action-value function for MDP, we have

expected return according to the optimal policy:

– Q∗(s, a) ≈ q∗(s, a) = maxπ Eτ∼π [R(τ)|S0 = s,A0 = a]
• Aπ(s, a) the estimated advantage function of state s and action a:

– Aπ(s, a) = Qπ(s, a) − V π(s)

• Relationship of on-policy state-value function vπ (s) and on-policy action-value
function qπ(s, a):

– vπ (s) = Ea∼π [qπ(s, a)]
• Relationship of optimal state-value function vπ (s) and optimal action-value

function qπ(s, a):

– v∗(s) = maxa q∗(s, a)

• a∗(s) the optimal action for state s according to optimal action-value function:

– a∗(s) = arg maxa q∗(s, a)

• Bellman equations for on-policy state-value function:

– vπ (s) = Ea∼π(·|s),s ′∼p(·|s,a)[R(s, a) + γ vπ (s′)]
• Bellman equations for on-policy action-value function:

– qπ(s, a) = Es ′∼p(·|s,a)[R(s, a) + γEa′∼π(·|s ′)[qπ(s′, a′)]]
• Bellman equations for optimal state-value function:

– v∗(s) = maxa Es ′∼p(·|s,a)[R(s, a) + γ v∗(s′)]
• Bellman equations for optimal action-value function:

– q∗(s, a) = Es ′∼p(·|s,a)[R(s, a) + γ maxa′ q∗(s′, a′)]
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2.4 Dynamic Programming

Dynamic Programming (DP) was first introduced by Richard E. Bellman in
the 1950s (Bellman et al. 1954) and has been successfully applied to a range of
challenging fields. In this term, “dynamic” means that the problem has sequential
or temporal components, and “programming” refers to an optimizing policy. DP
provides a general framework for complex dynamic problems by breaking them
down into sub-problems. For example, each number in the Fibonacci sequence is
the sum of the two preceding ones, starting from 0 and 1. One can calculate the 4th
number F4 = F3 + F2 by F4 = (F2 + F1) + F2 by reusing the solution of the
preceding sub-problem F2 = F1 + F0. However, DP requires full knowledge of the
environment, such as the reward model and the transition model, of which we often
have limited knowledge in reinforcement learning. Nonetheless, it does provide a
fundamental framework for learning to interact with the MDP incrementally, as
most of the reinforcement learning algorithms attempt to achieve.

There are two properties that a problem must have for DP to be applicable: opti-
mal substructure and overlapping sub-problems. Optimal substructure means
that the optimal solution of a given problem can be decomposed into solutions to its
sub-problems. Overlapping sub-problems implies that the number of sub-problems
is finite and sub-problems occur recursively so that the sub-solutions can be cached
and reused. While MDPs with finite actions and states satisfy both properties, the
Bellman equation gives the recursive decomposition and value functions store the
optimal solution of sub-problems. So in this section, we assume that state set and
action set are both finite, and a perfect model of the environment is given.

2.4.1 Policy Iteration

Policy Iteration aims to manipulate the policy directly. Starting from arbitrary
policy π , we can evaluate it by applying the Bellman equation recursively:

vπ (s) = Eπ [Rt + γ vπ(St+1) |St = s ] (2.40)

where the expectation is over all possible transitions based on full knowledge of the
environment. A natural idea to obtain a better policy is acting greedily with respect
to vπ :

π ′(s) = greedy(vπ) = arg max
a∈A

qπ(s, a). (2.41)
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The improvement can be proved by:

vπ (s) = qπ(s, π(s))

≤ qπ(s, π ′(s))

= Eπ ′ [Rt + γ vπ (St+1) |St = s ]
≤ Eπ ′ [Rt + γ qπ(St+1, π

′(St+1)) |St = s ]
≤ Eπ ′ [Rt + γRt+1 + γ 2qπ(St+2, π

′(St+2)) |St = s ]
≤ Eπ ′ [Rt + γRt+1 + γ 2Rt+2 + . . . |St = s ] = vπ ′(s).

(2.42)

Apply policy evaluation and greedy improvement above successively until π =
π ′ forms the policy iteration. Generally, the procedure of policy iteration can be
summarized as follows. Given an arbitrary policy πt , for each state s in each iteration
t , we first evaluate vπt (s) and then find a better policy πt+1. We call the former stage
policy evaluation and the later stage policy improvement. Furthermore, we use the
term generalized policy iteration (GPI) to refer to the general interaction of policy
evaluation and policy improvement, as shown in Fig. 2.11.

One fundamental question is whether the process of policy iteration converges
on the optimal value v∗. At each iteration in policy evaluation, for fixed and
deterministic policy π , the value function update can be rewritten by the Bellman
expectation backup operator T π :

(T πV )(s) = (Rπ + γPπV )(s) =
∑

r,s ′
(r + γV (s′))P (r, s′|s, π(s)). (2.43)

Fig. 2.11 Generalized policy
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Then for arbitrary value functions V and V ′, we have the following contraction
proof for T π :

|T πV (s) − T πV ′(s)| = |
∑

r,s ′
(r + γV (s′))P (r, s′|s, π(s))

−
∑

r,s ′
(r + γV ′(s′))P (r, s′|s, π(s))|

= |
∑

r,s ′
γ (V (s′) − V ′(s′))P (r, s′|s, π(s))|

≤
∑

r,s ′
γ |V (s′) − V ′(s′)|P(r, s′|s, π(s))

≤
∑

r,s ′
γ ‖V − V ′‖∞P(r, s′|s, π(s))

= γ ‖V − V ′‖∞,

(2.44)

where ‖V − V ′‖∞ is the ∞-norm. By contraction mapping theorem (also known
as the Banach fixed-point theorem), iterative policy evaluation will converge on the
unique fixed point of T π . Since T πvπ = vπ is a fixed point, so that iterative policy
evaluation converges on vπ . Note that the policy improvement is monotonic, and
there is only a finite number of greedy policies with respect to value functions in
finite MDP. The policy improvement will stop after a finite number of steps, i.e., the
policy iteration will converge on v∗.

2.4.2 Value Iteration

The theoretical basis of value iteration is the principle of optimality which tells
us that π is the optimal policy on one state if and only if π achieves the optimal
value for any reachable successor state. So if we know the solution to sub-problems
v∗(s′), we can find the solution of any initial state s by one-step full backups:

v∗(s) = max
a∈A

R(s, a) + γ
∑

s ′∈S
P(s′|s, a)v∗(s′). (2.45)

The procedure of value iteration is to apply the updates above from the final state
and backward successively. Similar to the convergence proof in policy iteration, the
Bellman optimality operator T ∗:

(T ∗V )(s) = (max
a∈A

Ra + γPaV )(s) = max
a∈A

R(s, a) + γ
∑

s ′∈S
P(s′|s, a)V (s′)

(2.46)
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Algorithm 4 Policy iteration
Initialize V and π for all states
repeat

// Do policy evaluation
repeat

δ ← 0
for s ∈ S do

v ← V (s)

V (s) ← ∑
r,s′ (r + γV (s′))P (r, s′ |s, π(s))

δ ← max(δ, |v − V (s)|)
end for

until δ is smaller than a positive threshold
// Do policy improvement
stable ← true

for s ∈ S do
a ← π(s)

π(s) ← arg maxa

∑
r,s′ (r + γV (s′))P (r, s′ |s, a)

if a �= π(s) then
stable ← f alse

end if
end for

until stable = true

return policy π

is also a contraction mapping for arbitrary value functions V and V ′

|T ∗V (s) − T ∗V ′(s)| = | max
a∈A

[

R(s, a) + γ
∑

s ′∈S
P(s′|s, a)V (s′)

]

− max
a∈A

[

R(s, a) + γ
∑

s ′∈S
P(s′|s, a)V ′(s′)

]

|

≤ max
a∈A

|R(s, a) + γ
∑

s ′∈S
P(s′|s, a)V (s′) − R(s, a)

− γ
∑

s ′∈S
P(s′|s, a)V ′(s′)|

= max
a∈A

|γ
∑

s ′∈S
P(s′|s, a)(V (s′) − V ′(s′))|

≤ max
a∈A

γ
∑

s ′∈S
P(s′|s, a)|V (s′) − V ′(s′)|

(2.47)
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≤ max
a∈A

γ
∑

s ′∈S
P(s′|s, a)‖V − V ′‖∞

= γ ‖V − V ′‖∞ max
a∈A

∑

s ′∈S
P(s′|s, a)

= γ ‖V − V ′‖∞.

Since v∗ is a fixed point of T ∗, the value iteration converges on the optimal value
v∗. Note that in value iteration, only the actual value of successor states are known.
In other words, the values are not complete so we use value function V instead of
value v in the proof above.

It is not obvious when to stop the value iteration algorithm. Williams and
Baird III (1993) gives a sufficient stopping criterion in theory that if the maximum
difference between two successive value functions is less than ε, then the value of
the greedy policy differs from the value function of the optimal policy by no more
than 2εγ

1−γ
at any state.

Algorithm 5 Value iteration
Initialize V for all states
repeat

δ ← 0
for s ∈ S do

u ← V (s)

V (s) ← maxa

∑
r,s′ P (r, s′ |s, a)(r + γV (s′))

δ ← max(δ, |u − V (s)|)
end for

until δ is smaller than a positive threshold
Output greedily policy π(s) = arg maxa

∑
r,s′ P (r, s′|s, a)(r + γV (s′))

2.4.3 Other DPs: Asynchronous DP, Approximate DP,
Real-Time DP

DP methods described so far use synchronous backups, i.e., the value of each state
is backed up on the basis of systematic sweeps. One of the efficient variants is
asynchronous updates, which is a trade-off between speed and accuracy. Asyn-
chronous DP is also available for reinforcement learning settings and is guaranteed
to converge if all states continue to be selected. There are three simple ideas behind
asynchronous DP:
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1. In-Place Update
Synchronous value iteration stores two copies of value function Vt+1(·) and

Vt (·):

Vt+1(s) ← max
a∈A

R(s, a) + γ
∑

s ′∈S
P(s′|s, a)Vt (s

′). (2.48)

In-place value iteration only stores one copy of value function:

V (s) ← max
a∈A

R(s, a) + γ
∑

s ′∈S
P(s′|s, a)V (s′). (2.49)

2. Prioritized Sweeping
In asynchronous DP, one more thing that needs to be considered is the update

order. Given a transition (s, a, s′), prioritized sweeping views the absolute value
of its Bellman error as its magnitude:

|V (s) − max
a∈A

(R(s, a) + γ
∑

s ′∈S
P(s′|s, a)V (s′))|. (2.50)

It can be implemented efficiently by maintaining a priority queue where the
Bellman error of each state is stored or updated after each backup.

3. Real-Time Update
After each time step t , no matter which action is taken, real-time update will

only back up the current state St by:

V (St ) ← max
a∈A

R(St , a) + γ
∑

s ′∈S
P(s′|St , a)V (s′). (2.51)

It can be viewed as selecting the states to update by the guide of the agent’s
experience.

Both synchronous and asynchronous DP back up over the full state set to estimate
the expected return of the next state. Under the perspective of probability, a biased
but efficient choice is using sampled data. We will discuss this topic extensively in
the next section.

2.5 Monte Carlo

Unlike DP, Monte Carlo (MC) methods do not require perfect knowledge of
the environment. MC only needs experience for learning. MC is also a class
of sampling-based methods. MC can obtain good performance by learning from
experience with little prior knowledge about the environment. “Monte Carlo” refers
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to the class of algorithms that have a large component of randomness. Indeed so,
when using MC in reinforcement learning, we will average the rewards for each
state-action pair from different episodes. One example can be with the contextual
bandit problem that we talked about earlier in this chapter. If there is an LED light on
different slot machines, the player can gradually learn from the association between
the lighting information with the relevant reward. We will consider a particular
arrangement of the lights for our state, and the corresponding possible reward is the
value for this state. Initially, we might not have a good estimate for the state-value,
but gradually as we play more, the average state-value pairs should be closer to the
real ones. In this section, we will investigate how to do this estimation properly and
then how to make the best use of this information. Also, we assume that the problem
is episodic and an episode will always terminate regardless of the actions taken.

2.5.1 Monte Carlo Prediction

State-Value Prediction To start with, we will look at the case when using MC
methods to estimate the state-value function for a given policy π . The most intuitive
way to do this is to estimate the state-value function from experience by simply
averaging the return from a particular policy. More specifically, let the function
vπ (s) be the state-value function under policy π . We then collect a pool of episodes
that pass through s. We call each appearance of state s in an episode a visit to
state s. There are two types of estimations, first-visit MC and every-visit MC.
The first-visit MC only considers the return of the first visit to state s in the whole
episode, however, every-visit MC considers every visit to state s in the episode.
These two methods share lots of similarities but have a few theoretical differences.
In Algorithm 6, we are showing exactly how vπ(s) is computed with first-visit MC
estimation. It is simple to convert the first-visit MC prediction to the every-visit MC
prediction by removing the check for a state being the first state. Note that both
types of methods will converge to vπ (s) if we take the number of visits to state s to
infinity.

MC methods can estimate different states independently from each other. Unlike
DP, MC does not use bootstrapping, estimating the value of the current step with the
estimation from other steps (e.g. the next step). This unique feature will enable one
to estimate the state-value directly from the true sampled returns, which can be of
less bias but higher variances.

The state-value function will be handy if a model is given as we can easily select
the optimal action for an arbitrary state by looking at the combined average of the
state-value for a specific action, as in DP. When a model is not known, we will have
to estimate the state-action value instead. Each state-action pair has to be estimated
separately. Now, one learning objective has become the estimation of qπ(s, a), the
expected return at state s by performing action a, under policy π . This is essentially
the same as the estimation of the state-value function as we can just take the average
return at state s and when action a is taken. The only issue is that there might exist
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Algorithm 6 First-visit MC prediction
Input: Initialize policy π

Initialize V (s) for all states
Initialize a list of returns: Returns(s) for all states
repeat

Generate an episode under π : S0, A0, R0, S1, · · · , ST −1, AT −1, Rt

G ← 0
t ← T − 1
for t >= 0 do

G ← γG + Rt+1
if S0, S1, · · · , St−1 does not have St then

Returns(St ).append(G)
V (St ) ← mean(Returns(St ))

end if
t ← t − 1

end for
until convergence

states that could never be visited, and thus have zero return. To choose the optimal
strategy, we must fully explore all states. A naive solution to this issue is to directly
specify the starting state-action pair for each episode and each state-action pair has
a non-zero probability of getting selected. In this way, we can ensure that all state-
action pairs can be visited if we have enough episodes. We refer this assumption as
exploring starts.

2.5.2 Monte Carlo Control

Now, we shall adapt GPI to MC to see how it is used in control. Recall that GPI
consists of two stages: policy evaluation and policy improvement. Policy evaluation
is the same as that of DP as introduced in the previous section and therefore, we
will discuss more about policy improvement. We will make use of a greedy policy
for the action-value, we do not need to have a model in this case. The greedy policy
will always choose the action that has maximal value for a given state:

π(s) = arg max
a

q(s, a) (2.52)

We will go from policy evaluation to policy improvement. For each policy
improvement, we will need to construct πt+1 based on qπt . We will show how the
policy improvement theorem is applicable here:

qπt (s, πt+1(s)) = qπt (s, arg max
a

qπt (s, a)) (2.53)

= max
a

qπt (s, a) (2.54)
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≥ qπt (s, πt (s)) (2.55)

≥ vπt (s) (2.56)

The above proves that πt+1 will be no worse than πt , and thus eventually the
optimal policy can be found. This means that we can use MC for control without
much knowledge about the environment but only the sampled episodes. Here, we
have two assumptions that we need to resolve. The first is the exploring starts and
the second is that we have an infinite number of episodes. We will keep the exploring
starts for now but focus on the second assumption. An easy way to relax this
assumption is to avoid the infinite number of episodes needed for policy evaluation
by directly alternating between evaluation and improvement for single states.

Algorithm 7 MC exploring starts
Initialize π(s) for all states
Initialize Q(s, a) and Returns(s, a) for all state-action pairs
repeat

Randomly select S0 and A0 s.t. all state-action pairs’ probabilities are nonzero.
Generate an episode from S0, A0 under π : S0, A0, R0, S1, · · · , ST −1, AT −1, Rt

G ← 0
t ← T − 1
for t >= 0 do

G ← γG + Rt+1
if S0, A0, S1, A1 · · · , St−1, At−1 does not have St , At then

Returns(St , At ).append(G)
Q(St , At ) ← mean(Returns(St , At ))
π(St ) ← arg maxa Q(St , a)

end if
t ← t − 1

end for
until convergence

2.5.3 Incremental Monte Carlo

As we have seen in both Algorithm 6 and Algorithm 7, we have to take the
averages of the lists of observed rewards, the state values and the state-action values
respectively. There exists a more efficient computational method that allows us to
get rid of the lists of observed returns and simplify the mean calculation step. We
will thus do the update in an episode by episode way. We let the Q(St ,At ) be the
estimation of the state-action value after it has been selected for t − 1 times, which
can be then rewritten as:

Q(St ,At ) = G1 + G2 + · · · + Gt−1

t − 1
(2.57)
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The naive implementation of this is to keep a record of all the returned G values,
and then divide their sum by the visit times. However, we can also compute the same
value by the following:

Qt+1 = 1

t

t∑

i=1

Gi (2.58)

= 1

t

(

Gt +
t−1∑

i=1

Gi

)

(2.59)

= 1

t

(

Gt + (t − 1)
1

t − 1

t−1∑

i=1

Qi

)

(2.60)

= 1

t
(Gt + (t − 1)Qt) (2.61)

= Qt + 1

t
(Gt − Qt) (2.62)

The formulation will give us a much easier time when it comes to the return
computation. This can also appear in a more general form as:

NewEstimate ← OldEstimate + StepSize · (Target − OldEstimate) (2.63)

The “StepSize” is a parameter that controls how fast the estimate is being
updated.

2.6 Temporal Difference Learning

Temporal difference (TD) learning describes another class of algorithm that is at
the core of reinforcement learning by combining the ideas both from DP and MC.
Similar to DP, TD uses bootstrapping in the estimation, however, like MC, it does
not require full knowledge of the environment in the learning process, but applies
a sampling-based optimization approach. In this chapter, we will first introduce
how TD can be used in policy evaluation and then elaborate on the differences
and commonalities between MC, TD, and DP. Lastly, we will end this chapter with
Q-learning, an extremely useful and powerful learning algorithm in both classical
reinforcement learning and deep reinforcement learning.
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2.6.1 TD Prediction

As its name suggests, TD utilizes the error, the difference between the target value
and the estimated value, at different time steps to learn. That reason why it is also
using bootstrapping is that TD forms the target from the observed return and an
estimated state value for the next state. More precisely, the most basic TD method
makes the update using:

V (St ) ← V (St ) + α[Rt+1 + γV (St+1) − V (St )] (2.64)

This method is also called TD(0) or one-step TD for looking one-step ahead. N-
step TD can also be developed easily by extending the target value with discounted
rewards in the N-step future and the estimated state value at the N-th step. If we
observe carefully, the target value during update for MC is Gt which is known only
after one episode, whereas for TD the target value is Rt+1 + γV (St+1) which can
be computed step by step. In Algorithm 8, we are showing how TD(0) can be used
to do policy evaluation.

Algorithm 8 TD(0) for state-value estimation
Input policy π

Initialize V (s) and step size α ∈ (0, 1]
for each episode do

Initialize S0
for Each step St in the current episode do

At ← π(St )

Rt+1, St+1 ← Env(St , At )

V (St ) ← V (St ) + α[Rt+1 + γV (St+1) − V (St )]
end for

end for

Before we move on, it is worthwhile spending time to take a closer look at what
DP, MC, and TD have in common and how they differ from one another. These three
types of algorithms sit at the heart of reinforcement learning and often their usage
is combined together in modern reinforcement learning application. Even though
all of them can be used for policy evaluation and policy improvement, their subtle
differences can contribute to major performance variations in deep reinforcement
learning.

Some forms of GPI are being used by these three methods. The main difference
lies in their policy evaluation schemes. The most obvious difference is that both DP
and TD use bootstrapping but MC does not, and DP requires full knowledge of the
model but MC and TD do not. Furthermore, let us dive deeper into how the learning
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objectives differ among these three.

vπ (s) = Eπ [Gt |St = s] (2.65)

= Eπ [Rt+1 + γGt+1|St = s] (2.66)

= Eπ [Rt+1 + γ vπ (St+1)|St = s] (2.67)

Equation (2.65) stands for the state value estimation for MC methods and
Eq. (2.67) represents the same for DP methods. Both of them are only estimation
but not the true values. TD combines both the MC sampling and DP bootstrapping.
We will now explain briefly how TD can be better than either DP or MC.

First of all, TD does not need a model to learn which DP requires. When TD
is being compared with MC, TD is using an online learning approach meaning it
can learn at every step, however, in order for MC methods to learn, it will have
to wait until one episode is finished which can be tricky to deal with if the task
has very long episodes. There are also problems that are continuous and cannot be
learned in an episodic fashion. Moreover, TD can be faster because it can learn from
transitions disregarding the actions being taken. MC cannot do this. Both TD and
MC methods will eventually converge to vπ (s) asymptotically, nonetheless, we do
not have a proof to show which converges faster but that TD methods converge faster
empirically.

Before we move on, it is also worth discussing the variance and bias trade-off
between TD and MC methods. We know that in a supervised setting a large bias
means that the model is underfitting for the data distribution and a large variance
means that the model is overfitting the data. The bias of an estimator is the difference
between the estimation and the true value. In the case of state value estimation, bias
can be defined as E[V (St )] − V (St ). The variance of an estimator describes how
noisy the estimator is. Again for state-value estimation, variance can be defined as
E[(E[V (St )] − V (St ))

2]. In prediction, regardless of whether it is for the state or
state-action approximation, both TD and MC are doing the update of the form:

V (St ) ← V (St ) + α[Target Value − V (St )]

Essentially, we are doing a weighted average across different episodes. TD and MC
differ in their ways of handling the target value. MC methods directly estimate the
accumulative rewards until the end of an episode, which is exactly how the state
value is defined. They will have no bias, however TD has a greater bias because
its target is estimated with bootstrapping method, Rt+1 + γ vπ (St+1). Now, let us
see why MC tends to have a larger variance. The accumulated reward it has is
computed until the end of each episode, which can vary a lot as different episodes
can have vastly different outcomes. TD resolves this issue by just looking at the
target value locally depending on the current reward and the estimated reward for
the next state/action. Naturally, TD should have less variance.
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TD(λ)

DP and MC have lots of similarities and perhaps there is a mid-ground between
these two paradigms which could be more efficient in solving the problem at hand.
Indeed, TD (λ) is the mid-ground between DP and MC, but we will need to introduce
the concept of eligibility traces and λ return first.

To put it in a simple way, an eligibility trace can provide us with various
computational advantages. To see this, we need to talk about semi-gradient methods
quickly and then explain how eligibility traces can be used. For a detailed treatment
of the policy-gradient method, please refer to Sect. 2.7. Here, we are simply using
some concepts from the gradient-based methods to explain what eligibility traces
can do. Imagine if our state-value function is not in a tabular form, but in a functional
form parameterized by a weight vector w ∈ R

n. w can be, for instance, be the weight
for a neural network. We aim to have v(s,w) ≈ vπ(s). To do this, we can use
stochastic gradient update to reduce the quadratic loss between our approximation
and the true value function. The update rule w.r.t. the weight vector can be written
as the following:

wt+1 = wt − 1

2
α∇wt [vπ (St ) − V (St ,wt )]2 (2.68)

= wt + α[vπ (St ) − V (St ,wt )]∇wt V (St ,wt ) (2.69)

where α is a positive step size.
An eligibility trace is a vector zt ∈ R

n, which is used in such a way that, during
learning, whenever a component of wt is used for estimation, the corresponding
component value in zt also increases and then starts to fade away. The learning will
take place if there is a TD error happening before the value in the trace falls back
to zero. We first initialize all values using zero and then increase the trace using the
gradient. The decay rate is γ λ:

z−1 = 0 (2.70)

zt = γ λzt−1 + ∇wt V (St ,wt ) (2.71)

It becomes easy to see that when λ = 1, the former sum becomes zero and the
return is the same as that of an MC method. When λ = 0, it essentially becomes a
one-step TD method. This is because the trace will always only contain the gradient
of the one-step TD error. An eligibility trace is thus a great way to combine MC and
TD methods.

Moving along, a λ-return is an estimated return value over the next n steps. λ-
returns are a combination of n discounted returns with an existing estimate at the
last step. Formally, it can be written as:

Gt :t+n = Rt+1 + γRt+2 + · · · + γ n−1Rt+n + γ nv(St+n,wt+n−1) (2.72)
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t here is a nonzero scalar and is also less than or equal to T − n. We can make
use of a weighted return in estimation as long as their weights sum up to one. TD(λ)
makes use of this weighted averaging in its update with λ ∈ [0, 1]:

Gλ
t = (1 − λ)

∞∑

n=1

λn−1Gt :t+n (2.73)

Intuitively, what this means is that the very next step return has the largest weight
1 − λ, the two-step return has a weight of (1 − λ)λ, and the weight decays at each
step with a rate of λ. To have a clear picture, let us have a terminal state at time T ,
then the above can be rewritten as

Gλ
t = (1 − λ)

T −t−1∑

n=1

λn−1Gt :t+n + λT −t−1Gt (2.74)

The TD error δt can be defined as:

δt = Rt+1 + γV (St+1,wt ) − V (St ,wt ) (2.75)

The update rule is based on the proportion of the TD error and trace. See
Algorithm 9 for details.

Algorithm 9 Semi-gradient TD(λ) for state-value
Input: policy π

Initialize a differentiable state function v, step size α and value function weight w
for each episode do

Initialize S0
z ← 0
for Each step St in the current episode do

Select At using policy that is based on π

Rt+1, St+1 ← Env(St , At )

z ← γλz + ∇V (St ,wt )

δ ← Rt+1 + γV (St+1,wt ) − V (St ,wt )

w ← w + αδz

end for
end for

2.6.2 Sarsa: On-Policy TD Control

For TD control, the methodology is similar to that of the prediction task except that
we will transition from the state-to-state alternation to state-action pair alternation.
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The update rule can, therefore, be framed as:

Q(St ,At ) ← Q(St ,At ) + α[Rt+1 + γQ(St+1, At+1) − Q(St ,At )] (2.76)

When St is the terminal state, the Q value for the next state-action pair will be zero.
It is referred to by the acronym Sarsa because we have this chain of being in a
state, taking an action, receiving a reward and being in a new state to take another
action. The chain allows us to do a simple update step. The state value gets updated
for each transition and the updated state value is influencing the policy being used
to determine the behavior, so it is also an on-policy method. On-policy methods
generally describe the class of methods that have an update policy which is the same
as its behavior policy, whereas, for the off-policy methods, these two are different.
An example of an off-policy method is Q-learning which we will talk about later. It
assumes a greedy approach while doing the update of its q-value function, whereas,
in fact, for its behavior it is using other policies such as ε-greedy. We now entail the
steps for Sarsa in Algorithm 10. We will have the convergence for both the optimal
policy and action-state values as long as each state-action pair is visited an infinite
number of times.

Algorithm 10 Sarsa (on-policy TD control)
Initialize Q(s, a) for all state-action pairs.
for each episode do

Initialize S0
Select A0 using policy that is based on Q

for Each step St in the current episode do
Select At from St using policy that is based on Q

Rt+1, St+1 ← Env(St , At )

Select At+1 from St+1 using policy that is based on Q

Q(St , At ) ← Q(St , At ) + α[Rt+1 + γQ(St+1, At+1) − Q(St , At )]
end for

end for

What we have shown only has one step time horizon meaning that the approxima-
tion only involves the state-action value of the next step. We can call this 1-step Sarsa
or Sarsa(0), although we can easily extend the bootstrapped target value to include
future steps down the road to, for instance, reduce our bias. As shown by the backup
tree in Fig. 2.12, we see an array of Sarsa variants’ state-action spectrum starting
from the most basic 1-step Sarsa all the way up to the infinite step Sarsa which is an
equivalent of the MC because its target value accounts for the accumulated rewards
until the terminal state. To incorporate this change, we rewrite the discounted returns
as the following:

Gt :t+n = Rt+1 + γRt+2 + · · · + γ n−1Rt+n + γ nQt+n−1(St+n,At+n) (2.77)
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Fig. 2.12 The backup tree for the coverage of the n-step Sarsa methods. Each black circle
represents a state and each white circle represents an action. The last state of the infinite step
Sarsa is a terminal state

The n-step Sarsa is described in Algorithm 11. The major difference it has from
the one-step version is that it has to go back in time to do the update, whereas the
one-step version can do the update as it goes.

Convergence of Sarsa

Now we will discuss the convergence theory of Sarsa algorithm for finite action
space (discrete cases), which requires some additional conditions described below.

Definition 2.1 A learning policy is defined as Greedy in the Limit with Infinite
Exploration (GLIE) if it satisfies the following two properties:

1. If a state is visited infinitely often, then each possible action in that state is chosen
infinitely often, i.e., limk→∞ Nk(s, a) = ∞,∀a, if limk→∞ Nk(s) = ∞.

2. The policy converges on a greedy policy with respect to the learned Q-function in
the limit (as t → ∞), i.e., limk→∞ πk(s, a) = 1(a == arg maxa′∈A Qk(s, a

′)),
where the “==” is a comparison operator and 1(a == b) is 1 if true and 0
otherwise.
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Algorithm 11 n-step Sarsa
Initialize Q(s, a) for all state-action pairs.
Initialize step-size α ∈ (0, 1].
Determine a fixed policy π or use ε-greedy.
for each episode do

Initialize S0
Select A0 using π(S0, A)

T ← INTMAX (the length of an episode)
γ ← 0
for t ← 0, 1, 2, . . . until γ − T − 1 do

if t < T then
Rt+1, St+1 ← Env(St , At )

if St+1 is terminal then
T ← t + 1

else
Select At+1 using π(St , A)

end if
end if
τ ← t − n + 1 (the time step to update. This is an n-step Sarsa, so we will only update the
estimate that is n + 1 steps ago and we will continue to do so until all the eligible states
have been updated.
if τ ≥ 0 then

G ← ∑min(r+n,T )
i=τ+1 γ i−γ −1Ri

if γ + n < T then
G ← G + γ nQ(St+n,Aγ +n)

end if
Q(Sγ ,Aγ ) ← Q(Sγ ,Aγ ) + α[G − Q(Sγ ,Aγ )]

end if
end for

end for

The GLIE is a condition for the convergence of the learning policies, for any
reinforcement learning algorithm that converges to the optimal value function and
whose estimates are always bounded. For example, we can derive a GLIE policy
with ε-greedy strategy as follows:

Lemma 2.1 The ε-greedy policy is GLIE if ε reduces to zero with εk = 1
k

.

We can therefore have the convergence theorem of Sarsa algorithm.

Theorem 2.1 For a finite state-action MDP and a GLIE learning policy, with the
action-value function Q estimated with Sarsa (1-step) by Qt for time step t . Then
Qt converges to Q∗ and the learning policy πt converges to an optimal policy π∗,
if the following conditions are satisfied:

1. The Q values are stored in a lookup table;
2. The learning rate αt (s, a) associated with the state-action pair (s, a) at time

t satisfies 0 ≤ αt(s, a) ≤ 1,
∑

t αt (s, a) = ∞ and
∑

t α2
t (s, a) < ∞ and

αt (s, a) = 0 unless (s, a) = (St , At );
3. V ar[R(s, a)] < ∞.
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A typical sequence of the learning rate as the second condition required is
αt (St , At ) = 1

t
. The proofs of above theorems are not introduced here, but interested

readers can refer to the paper by Singh et al. (2000).

2.6.3 Q-Learning: Off-Policy TD Control

Q-learning is an off-policy TD method that is very similar to Sarsa and plays
an important role in deep reinforcement learning application such as the deep Q-
network, which we will discuss in the next chapter. As shown in Eq. (2.78), the
main difference that Q-learning has from Sarsa is that the target value now is no
longer dependent on the policy being used but only on the state-action function.

Q(St ,At ) ← Q(St ,At ) + α[Rt+1 + γ max
a

Q(St+1, a) − Q(St ,At )] (2.78)

Algorithm 12 Q-learning (off-policy TD control)
Initialize Q(s, a) for all state-action pairs and step size α ∈ (0, 1]
for each episode do

Initialize S0
for Each step St in the current episode do

Select At using policy that is based on Q

Rt+1, St+1 ← Env(St , At )

Q(St , At ) ← Q(St , At ) + α[Rt+1 + γ maxa Q(St+1, a) − Q(St , At )]
end for

end for

In Algorithm 12, we have shown how Q-learning can be used for TD control. It
is easy to convert Q-learning to Sarsa by first choosing the action using the state and
return, and second changing the target value in the update step to be the estimated
action value for the next step instead. This is also a one-step version. We can adapt
the Q-learning into a n-step version by adapting the target value in Eq. (2.78) to
include the discounted returns for the future steps.

Convergence of Q-Learning

The convergence of Q-learning follows similar conditions as the Sarsa algorithm.
Apart from the GLIE condition for the policy, the convergence of Q function in Q-
learning also requires the same requirements on its learning rate and the bounded
reward values, which will not be duplicated here. Details and proofs are available in
the papers (Szepesvári 1998; Watkins and Dayan 1992).
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2.7 Policy Optimization

2.7.1 Overview

In reinforcement learning, the ultimate goal of the agent is to improve its policy to
acquire better rewards. Policy improvement in the optimization domain is called
policy optimization (Fig. 2.13). For deep reinforcement learning, the policy and
value functions are usually parameterized by variables in deep neural networks,
and therefore enable the gradient-based optimization methods to be applied. For
example, Fig. 2.14 shows the graphical model of MDP with the policy parameterized
by variables θ , on a discrete finite time horizon t = 0, . . . , N − 1. The reward
function follows Rt = R(St , At ) and action At ∼ π(·|St ; θ). The dependencies
among variables in the graphical models can help us to understand the underlying
relationships of the MDP for estimation, and it can be useful when we take
derivatives on the final objective to optimize variables on the dependency graphs,
so we will display all those graphical models in this chapter to help understand the
deduction process, especially for differential process. Recently, Levine (2018), Fu
et al. (2018) proposed the method of control as inference, which uses a graphical
model with additional variables indicating optimality on the MDP to incorporate the
probabilistic/variational inference framework into maximum entropy reinforcement
learning with the same objective. This method enables the inference tools to be
applied in the reinforcement learning policy optimization process. But the details of
those methods are beyond the scope of the book here.

Apart from some linear methods, the parameterization of value functions with
deep neural networks is one way of achieving value function approximation,
and it’s the most popular way in the modern deep reinforcement learning domain.
Value function approximation is useful because we cannot always acquire the true
value function easily, and actually we cannot get the true function for most cases
in practice. Figure 2.15 shows the model of MDP with both parameterized policy

Fig. 2.13 Overview of policy optimization in reinforcement learning
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Fig. 2.14 Graphical model
of MDP with parameterized
policy

θ At At+1

Rt Rt+1

St St+1

t = 0, 1, · · · , T − 1

πθ and parameterized value function V π
w (St ), via parameters θ and w respectively.

Figure 2.16 shows the model with parameterized policy πθ and Q-value functions
Qπ

w(St , At ). The gradient-based optimization methods can be used for improving
parameterized policies, usually through the method called policy gradient in
reinforcement learning terminology. However, there are also non-gradient-based
methods for optimizing less complicated policies, like the cross-entropy (CE)
method and so on.

As shown in Fig. 2.13, the methods in policy optimization fall into two main cat-
egories: (1) value-based optimization methods like Q-learning, DQN, etc., which
optimize the action-value function to obtain the preferences for the action choice,
and (2) policy-based optimization methods like REINFORCE, the cross-entropy
method, etc., which directly optimize the policy according to the sampled reward
values. A combination of these two categories was found to be a more effective
approach by people (Sutton et al. 2000; Peters and Schaal 2008; Kalashnikov
et al. 2018), which forms one of the most widely used architecture in model-
free reinforcement learning called actor-critic. Actor-critic methods employ the
optimization of value function as the guidance of policy improvement. The typical
algorithms in the combined category include actor-critic-based algorithms and other
algorithms built upon that, which will be described in detail in later this chapter and
the following chapters.
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Fig. 2.15 Graphical model
of MDP with parameterized
policy and parameterized
value functions

θ At At+1

Rt Rt+1

St St+1

V (St) V (St+1)

w

t = 0, 1, · · · , T − 1

Recap of RL Skeleton

The On-policy Value Function, vπ (s), which gives the expected return if you start
in state s and always act according to policy π :

vπ (s) = Eτ∼π [R(τ)|S0 = s] (2.79)

Recall that the reinforcement learning optimization problem can be expressed as:

π∗ = arg max
π

J (π) (2.80)
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Fig. 2.16 Graphical model
of MDP with parameterized
policy and parameterized
Q-value functions

θ At At+1

Rt Rt+1

St St+1

Q(St, At) Q(St+1, At+1)

w

t = 0, 1, · · · , T − 1

The Optimal Value Function, V ∗(s), which gives the expected return if we start
in state s and always act according to the optimal policy in the environment:

v∗(s) = max
π

vπ (s) (2.81)

v∗(s) = max
π

Eτ∼π [R(τ)|S0 = s] (2.82)

The On-Policy Action-Value Function, qπ(s, a), which gives the expected
return if we start in state s, take an arbitrary action a (which may not come from the
policy), and then forever after act according to policy π :

qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a] (2.83)
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The Optimal Action-Value Function, q∗(s, a), which gives the expected return
if you start in state s, take an arbitrary action a, and then forever after act according
to the optimal policy in the environment:

q∗(s, a) = max
π

qπ(s, a) (2.84)

q∗(s, a) = max
π

Eτ∼π [R(τ)|S0 = s,A0 = a] (2.85)

Value Function and Action-Value Function

vπ (s) = Ea∼π [qπ(s, a)] (2.86)

v∗(s) = max
a

q∗(s, a) (2.87)

Optimal Action

a∗(s) = arg max
a

q∗(s, a) (2.88)

Bellman Equations
Bellman equations for state value and action value are:

vπ (s) = Ea∼π(·|s),s ′∼p(·|s,a)[R(s, a) + γ vπ (s′)] (2.89)

qπ(s, a) = Es ′∼p(·|s,a)[R(s, a) + γEa′∼π(·|s ′)[qπ(s′, a′)]] (2.90)

Bellman Optimality Equations
Bellman optimality equations for state value and action value are:

v∗(s) = max
a

Es ′∼p(·|s,a)[R(s, a) + γ v∗(s′)] (2.91)

q∗(s, a) = Es ′∼p(·|s,a)[R(s, a) + γ max
a′ q∗(s′, a′)] (2.92)

2.7.2 Value-Based Optimization

A value-based optimization method always needs to alternate between value
function estimation under the current policy and policy improvement with the
estimated value function. However, the estimation of a complex value function may
not be a trivial problem (Fig. 2.17).

From the previous sections, we see that the Q-learning can be used for solving
some simple tasks in reinforcement learning. However, the real-world applications
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Fig. 2.17 An overview of methods for solving the value function

or even the quasi-real-world applications may have much larger and complicated
state and action spaces, and the action is usually continuous in practice. For
example, the Go game has 10170 states. In these cases, the traditional lookup table
method in Q-learning cannot work well with the limitation of its scalability, because
each state will have an entry V (s) and each state-action pair will need an entry
Q(s, a). The values in the table are updated one-by-one in practice. Therefore the
requirement of the memory and computational resources will be huge with tabular-
based Q-learning. Moreover, state representations usually need to be manually
specified with aligned data structures in practice.

Value Function Approximation

In order to apply the value-based reinforcement learning in relatively large-scale
tasks, function approximators are applied to handle the above limitations (Fig. 2.17).
Different types of value function approximation are summarized as follows and
shown in Fig. 2.18:

• Linear methods: the approximated function is a linear combination of weights
θ and real-valued vector of features φ(s) = (φ1(s), φ2(s)), . . . , φn(s))

T , where
s is the state. It is denoted as v(s, θ ) = θT φ(s). The TD(λ) method is proven
to be convergent with linear function approximators under certain conditions
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Fig. 2.18 Different value function approximation frameworks. The gray boxes with parameters w

are the function approximators

as shown in Tsitsiklis and Roy (1997). Although the convergence guarantee of
linear methods are attractive, the feature selection or feature representation φ(s)

can be critical in practice when applying linear representations. Different ways
of constructing the features for linear methods are as follows:

– Polynomials: basic polynomial families can be used as feature vectors for
function approximation. Assuming that every state s = (S1, S2, . . . , Sd)T is
a d-dimensional vector, then we have a d-dimensional polynomial basis as
φi(s) = ∏d

j=1 S
ci,j

j , where each ci,j is an integer in set {0, 1, . . . , N}. This

forms order N polynomial basis, with (N + 1)d different functions.
– Fourier basis: the Fourier transformation is usually used to represent sequen-

tial signals in the time/frequency domain. The one-dimensional order-N
Fourier cosine basis with N + 1 functions is: φi(s) = cos(iπs) for s ∈ [0, 1]
and i = 0, . . . , N .

– Coarse coding: the state space can be reduced from high-dimensional to
low-dimensional, like binary representation through a region covering the
determination process, which is called coarse coding.

– Tile coding: in the category of coarse coding, tile coding is an efficient
approach for feature representation on multi-dimensional continuous spaces.
The receptive field of features in tile coding are grouped into partitions of the
input space. Each such partition is called a tilling, and each element of the
partition is called a tile. Multiple tillings are usually applied in combination
with overlapping receptive fields to give the feature vectors in practice.

– Radial basis functions: the radial basis functions (RBF) naturally generalize
the coarse coding, which is binary-valued, to be continuous-valued features in
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[0, 1]. The typical RBF is in Gaussian format φi(s) = exp(−||s−ci ||2
2σ 2

i

), where s

is the state, ci is the feature’s prototypical or center state, and σi is the feature
width.

• Non-linear methods:

– Artificial neural networks: different from the above function approximation
methods, artificial neural networks are widely used as non-linear function
approximators, which are proven to have universal approximation ability
under certain conditions (Leshno et al. 1993). Based on deep learning
techniques, artificial neural networks form the main body of modern DRL
methods with function approximation. Details of deep learning are introduced
in Chap. 1. A typical example of it is the DQN algorithm, deploying an
artificial neural network for Q-value approximation.

• Other methods:

– Decision trees (Pyeatt et al. 2001): the decision trees can be used to represent
the state space by dividing it with decision nodes, which forms a considerable
method for state feature representation.

– Nearest neighbor method: it measures the difference of current state and
previous state in memory, and applies the value of the most similar state in
memory to approximate the value of the current state.

The benefits of using value function approximation include not only the scalabil-
ity to large-scale tasks, but also the ease to generalize to unseen states from the seen
states given continuous state spaces. Moreover, ANN-based function approximation
also reduces or eliminates the need for manually designing features to represent
the states. For model-free methods, the parameters w of the approximators can be
updated with Monte Carlo (MC) or TD learning. The updating of parameters can
be conducted with a batch of samples instead of updating each value in a tabular-
based method one-by-one. This makes it computational efficient when handling
large-scale problems. For model-based methods, the parameters can be updated with
dynamic programming. Details about MC, TD, and DP are introduced in previous
sections.

Potential function approximators include a linear combination of features, neural
networks, decision trees, the nearest neighbor method, etc. The most practical
approximation method for present DRL algorithms is using the neural network,
for its great scalability and generalization for various specific functions. A neural
network is a differential method with gradient-based optimization, which has a
guarantee of convergence to optimum within convex cases and can achieve near-
optimal solutions for some non-convex functions approximation. However, it may
require a large amount of data for training in practice and may cause other
difficulties.

Extending deep learning problems to those of reinforcement learning comes with
additional challenges including non-independently and identically distributed data
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(i.e. non-i.i.d.). Most supervised learning methods are constructed with the assump-
tion that training data is from an i.i.d. and stationary distribution (Schmidhuber
2015). However, the training data in reinforcement learning usually consists of
highly correlated samples from sequential agent–environment interactions, which
violates the independence condition in supervised learning. Even worse, the training
data in reinforcement learning is usually non-stationary as the value function is
estimated with current policy, or at least the state-visit-frequency determined by
current policy, and the policy is updated all the time during training. The agent learns
through exploring different partitions of the state space. All these cases violate the
condition of sampled data being identically distributed.

There are some practical requirements for the representations when using value
function approximation in reinforcement learning, which may lead to divergence
if not considered properly (Achiam et al. 2019). Specifically, the danger of
instability and divergence arises whenever the three conditions are combined: (1)
training on a distribution of transitions other than those naturally generated by the
process whose expectation is being estimated (e.g., off-policy learning); (2) scalable
function approximations (e.g., linear semi-gradient); (3) bootstrapping (e.g., DP,
TD learning). These three main properties can lead to learning divergence only
when they are combined, which is known as the deadly triad (Van Hasselt et al.
2018). Value-based methods using function approximation can also have an over-
/under-estimation problem, if the way of leveraging function approximation is not
fair enough. For example, original DQN has the problem of overestimating the
Q-value (Van Hasselt et al. 2016), which decreases the learning performances in
practice, and the double/dueling DQN techniques are proposed to alleviate the
problem. Generally, policy-based methods with policy gradients have stronger
convergence guarantee compared with value-based methods.

Gradient-Based Value Function Approximation

Considering the value function is parameterized as V π(s) = V π(s; w) or
Qπ(s, a) = Qπ(s, a; w), we can derive the udpate rules with different methods of
estimation. The optimization objective is set to be the mean-squared error (MSE)
between the approximate function V π(s; w) (or Qπ(s, a; w)) and the true value
function vπ (s) (or qπ(s, a)):

J (w) = Eπ [(V π(s; w) − vπ (s))2] (2.93)

or,

J (w) = Eπ [(Qπ(s, a; w) − qπ(s, a))2] (2.94)

Therefore the gradients with stochastic gradient descent are:

�w = α(V π(s; w) − vπ (s))∇wV π (s; w) (2.95)
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or,

�w = α(Qπ (s, a; w) − qπ(s, a))∇wQπ(s, a; w) (2.96)

where the gradients are estimated with each sample in the batch and the weights are
updated in a stochastic manner. The target (true) value functions vπ or qπ in above
equations are usually estimated, sometimes with a target network (DQN) or a max
operator (Q-learning), etc. We show some basic estimations of the value functions
here.

For MC estimation, the target value is estimated with the sampled return Gt .
Therefore, the update gradients of value-function parameters are:

�wt = α(V π(St ; wt) − Gt)∇wt V
π (St ; wt) (2.97)

or,

�wt = α(Qπ(St , At ; wt) − Gt+1)∇wt Q
π(St , At ; wt) (2.98)

For TD(0), the target is the TD target Rt + γVπ(St+1; wt) according to the
Bellman Optimality Equation as Eq. (2.92), therefore:

�wt = α(V π(St ; wt) − (Rt + γVπ(St+1; wt)))∇wt V
π(St ; wt) (2.99)

or,

�wt = α(Qπ (St , At ; wt) − (Rt+1 + γQπ(St+1, At+1; wt))∇wt Q
π(St , At ; wt))

(2.100)

For TD(λ), the target is the λ-return Gλ
t , so the update rule is:

�wt = α(V π (St ; wt) − Gλ
t )∇wt V

π (St ; wt) (2.101)

or,

�wt = α(Qπ(St , At ; wt) − Gλ
t )∇wt Q

π(St , At ; wt) (2.102)

Different estimations have different preferences in bias and variances, which has
already been discussed in previous sections about different estimation methods like
MC and TD.

Example: Deep Q-Network

Deep Q-Network (DQN) is one of the most typical examples for value-based
optimization. It uses a deep neural network for Q-value function approximation in
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Q-Learning, and maintains an experience replay buffer to store transition samples
during the agent–environment interactions. DQN also applies a target network QT ,
which is parameterized by a copy of the original network Q parameter and updated
in a delayed manner, to stabilize the learning process, i.e. to alleviate the non-
stationary data distribution problem in deep learning. It uses the MSE loss following
the above Eq. (2.96), with the true value function qπ replaced by the approximation
function r + γ maxa′ QT (s′, a′) in a greedy manner.

The experience replay buffer provides stability for learning as random batches
are sampled from the buffer to help to alleviate the problems of non-i.i.d. data. It
makes the policy update to be an off-policy manner due to the mismatch between
buffer content from the earlier policy and from the current policy. More details about
the DQN algorithm are introduced in Chap. 4.

2.7.3 Policy-Based Optimization

Before we talk about policy-based optimization, we first introduce common policies
in reinforcement learning. As introduced in previous sections, policies in reinforce-
ment learning can be divided into deterministic and stochastic policies. In deep
reinforcement learning, we use neural networks to represent the policies of both
categories, which are called parameterized policies. Specifically, the parameteri-
zation here indicates the abstract policy is parameterized with the neural network
(including single layer perceptrons), rather than other parametric representations.
With the network parameters θ , the deterministic and stochastic policy can be
written as At = μθ(St ) and At ∼ πθ(·|St ), respectively.

In deep reinforcement learning domain, there are several commonly seen specific
distributions for representing the action distribution of a stochastic policy: the
Bernoulli distribution, categorical distribution, and diagonal Gaussian distribution.
The Bernoulli and categorical distributions work for the discrete action spaces,
either binary or multi-category, while the diagonal Gaussian distributions work for
the continuous action spaces.

The Bernoulli distribution of a single variable x ∈ 0, 1 with parameter θ is:
P(s; θ) = θx(1 − θ)(1−x). Therefore it can be used to represent the actions with
binary value, for either single or multiple dimensions (with a vector of variables),
which works for the so-called binary-action policies.

A categorical policy with categorical distribution as its output can be used in
discrete and finite action spaces, it considers the policy as a classifier, which outputs
the probabilities of each action in the finite action space conditioned on a state e.g.,
π(a|s) = P [At = a|St = s]. The sum of all probabilities is equal to one, therefore
the softmax activation function is usually applied in the last output layer when the
categorical policy is parameterized. Instead of using probability function p(·|·), here
we use P [·|·] specifically for representing the cases with finite action space in a
matrix. The agent can choose one action by sampling according to the categorical
distribution. In practice, the action in this case is usually encoded as a one-hot vector
with the same dimension as the action space as ai = (0, 0, . . . , 1, . . . , 0), so that
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ai � p(·|s) gives p(ai |s), where � is the element-wise product operator and p(·|s)
is the vector of matrix with fixed state s, usually also as the normalized output
layer of the categorical policy. Gumbel-Softmax trick can be applied in practice to
keep the sampling process of categorical distribution differentiable if the categorical
policy is parameterized. Without specific tricks applied, the stochastic node with a
sampling process and operations like arg max are usually non-differentiable, which
is problematic when employed in parameterized policies depending on gradient-
based optimization (introduced in later sections).

Gumbel-Softmax trick (Jang et al. 2016): first, the Gumbel-Max trick allows us
to draw samples from categorical distribution π :

z = one_hot[arg max
i

(zi + log πi)] (2.103)

where “one_hot” is an operation transferring a scalar into a one-hot vector.
However, as mentioned above, the arg max operation is generally non-differentiable.
Therefore, in Gumbel-Softmax trick, a Softmax operation is applied to approximate
the arg max continuously in Gumbel-Max trick:

ai = exp((log πi + gi)/τ )
∑

j exp((log πj + gj )/τ
,∀i = 0, . . . , k (2.104)

where k is the dimension of the desired variable a (the action for reinforcement
learning policy) and gi is the Gumbel variable sampled from the Gumbel dis-
tribution. The Gumbel (0,1) distribution can be sampled using inverse transform
sampling by drawing u ∼ Uniform(0, 1) and computing g = log(log(u)) in
practice.

The diagonal Gaussian policy outputting the means and variances of a diagonal
Gaussian distribution can be used in continuous action spaces. A normal multi-
variate Gaussian distribution contains a mean vector μ and a covariance matrix �,
while the diagonal Gaussian distribution is a special case where only the diagonal
of covariance matrix is non-zero, so we can use a vector σ to represent it. When
applying the diagonal Gaussian distribution to represent the probabilistic actions,
it removes the covariance relationships among different dimensions of the actions.
When the policy is parameterized, the reparametrization trick as below (similar as
in variational autoencoder by Kingma and Welling (2014)) can be applied to sample
actions from the mean and variance vectors, as well as keeping the operations
differentiable.

Reparameterization trick: sampling the action a from a diagonal Gaussian
distribution a ∼ N (μθ , σ θ ) with the mean and variance vectors μθ and σ θ

(parameterized) can be alternatively achieved with sampling a hidden vector z from
a normal Gaussian z ∼ N (0, 1) and derive the action as:

a = μθ + σ θ � z (2.105)

where � is the elementwise product for two vectors of the same shape.
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Fig. 2.19 Different policies in deep reinforcement learning

An overview of common policies in deep reinforcement learning is displayed in
Fig. 2.19, for providing the readers a better understanding.

Policy-Based Optimization methods directly optimize the policy of the agent in
reinforcement learning scenarios without estimating or learning an action-value
function. The sampled reward values are usually used in the optimization process
for improving action preferences. Either gradient-based or gradient-free methods
are applied in the optimization process. Gradient-based methods always apply the
policy gradient, which perhaps represents the most popular class of algorithms used
in continuous-action reinforcement learning, benefiting from scalability to high-
dimensional cases. The typical methods in gradient-based optimization include
REINFORCE, etc. On the other hand, gradient-free algorithms usually have a
faster learning process for relatively simple cases in policy searching, free from the
computationally expensive process of calculating derivatives. The typical methods
in gradient-free category include cross-entropy (CE) method and so on.

Recall that the goal of the agent in reinforcement learning is to maximize the
cumulative discounted reward from the start state, in an expected or estimated view,
which can be denoted as:

J (π) = Eτ∼π [R(τ)] (2.106)

where R(τ) = ∑T
t=0 γ tRt as a discounted expected reward with finite steps (fits

most scenarios), and τ are sampled trajectories.
The policy-based optimization will optimize the policy π with respect to the

above goal J (π), through gradient-based or gradient-free methods. We will first
introduce gradient-based methods and give an example of REINFORCE algorithm,
then introduce a gradient-free (non-gradient-based) algorithms and show the
example CE method.

Gradient-Based Optimization

Gradient-based optimization uses an estimator for the gradients on the expected
return (total reward) obtained from sample trajectories to improve the policy with
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gradient descent/ascent, and the gradient with respect to the policy parameter is
called the policy gradient as follows:

�θ = α∇θ J (πθ ) (2.107)

where θ indicates the policy parameters and α is the learning rate. Methods based
on these gradients of policy parameters are called the policy gradient method. The
policy gradient theorem proposed by Sutton et al. (2000) and Silver et al. (2014)
is shown as follows and will be proved in the following sections.

Note: the representation θ of parameters in Eq. (2.107) is actually improper,
which is supposed to be θ for representing the vector as a default format of the
book (see the chapter of math notation). However, here we apply the vanilla format
θ as an interchangeable way of θ whenever representing the model parameters. This
follows the common format in literature and is also simple. One way to consider the
rationality of this representation is: the gradients of parameters can be taken for each
parameter individually, which is denoted by θ , while the equations are the same for
all parameters. Therefore it also works for applying θ to represent all parameters.
The rest of the book follows the above statements.

Theorem 2.2 (Policy Gradient Theorem)

∇θ J (πθ ) = Eτ∼πθ

[
T∑

t=0

∇θ (log πθ(At |St ))Q
πθ (St , At )

]

(2.108)

= ESt∼ρπ ,At∼πθ [∇θ (log πθ(At |St ))Q
πθ (St , At )] (2.109)

where the second form is derived through defining the discounted state distribution
as in Silver et al. (2014) by ρπ(s′) := ∫

S
∑T

t=0 γ t−1ρ0(s)p(s′|s, t, π)ds and
p(s′|s, t, π) is the transition probability of s to s′ under policy π at time step t .

The policy gradient theorem works for both stochastic policies and deterministic
policies. It was originally proposed by Sutton et al. (2000) for stochastic policies,
but extended to deterministic policies by Silver et al. (2014). For the deterministic
cases, although the deterministic policy gradient theorem (introduced later) does not
look like the above policy gradient theorem, it is proved that the deterministic policy
gradient (DPG) is just a special (limiting) case of the stochastic policy gradient
(SPG), if we parameterize the stochastic policy πμθ ,σ by a deterministic policy μθ :
S → A and a variance parameter σ , such that for σ = 0 the stochastic policy is
equivalent to the deterministic policy, πμθ ,0 ≡ μ. A detailed proof will be provided
in the section of the deterministic policy gradient.

1. Stochastic Policy Gradient
Now we first prove the policy gradient theorem for the stochastic policy, which is
called the stochastic policy gradient method. For simplicity, we assume an episodic
setting in finite MDP with the length of each trajectory fixed as T +1 in this section.
Considering a parameterized stochastic policy πθ(a|s), we then have the probability
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of trajectory p(τ |π) = ρ0(S0)
∏T

t=0 p(St+1|St , At )π(At |St ) for MDP process with
ρ0(S0) as initial state distribution, we can get the logarithm of the probability of
trajectory with parameterized policy πθ as:

log p(τ |θ) = log ρ0(S0) +
T∑

t=0

(

log p(St+1|St , At ) + log πθ(At |St )

)

. (2.110)

We also need the Log-Derivative Trick: ∇θp(τ |θ) = p(τ |θ)∇θ log p(τ |θ)

Therefore we can get the derivative of the log-probability of a trajectory as:

∇θ log p(τ |θ) =∇θ log ρ0(S0) +
T∑

t=0

(

∇θ log p(St+1|St , At ) + ∇θ log πθ(At |St )

)

(2.111)

=
T∑

t=0

∇θ log πθ(At |St ). (2.112)

where the terms containing ρ0(S0) and p(St+1|St , At ) are removed because they do
not depend on parameters θ , although unknown.

Recall that the learning objective is to maximize the expected cumulative reward:

J (πθ ) = Eτ∼πθ [R(τ)] = Eτ∼πθ

[
T∑

t=0

Rt

]

=
T∑

t=0

Eτ∼πθ [Rt ] , (2.113)

where τ = (S0, A0, R0, . . . , ST ,AT ,RT , ST +1) and R(τ) = ∑T
t=0 Rt . We can

directly perform gradient ascent on the parameters of the policy θ to gradually
improve the performance of the policy πθ .

Note that Rt only depends on τt , where τt = (S0, A0, R0, . . . , St , At , Rt , St+1).

∇θEτ∼πθ [Rt ] =∇θ

∫

τt

Rtp(τt |θ)dτt Expand expectation

(2.114)

=
∫

τt

Rt∇θp(τt |θ)dτt Exchange gradient and integral

(2.115)

=
∫

τt

Rtp(τt |θ)∇θ log p(τt |θ)dτt Log-derivative trick

(2.116)

=Eτ∼πθ

[
Rt∇θ log p(τt |θ)

]
Return to expectation form

(2.117)
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The third equality above is due to the log-derivative trick introduced before.
Plug the above formula back to J (πθ),

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

Rt∇θ log p(τt |θ)

]

.

Now we need to compute ∇θ log pθ (τt ), where pθ (τt ) depends on both the policy
πθ and the ground truth of the model p(Rt , St+1|St , At ) which is not available to
the agent. Luckily, to apply the policy gradient method, we only need the gradient
of log pθ (τt ) instead of its original value, which can be derived easily by replacing
the τ = τ0:T in Eq. (2.112) to be τt = τ0:t , which gives:

∇θ log p(τt |θ) =
t∑

t ′=0

∇θ log πθ(At ′ |St ′). (2.118)

Therefore,

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

Rt∇θ

t∑

t ′=0

log πθ(At ′ | St ′)

]

= Eτ∼πθ

[
T∑

t ′=0

∇θ log πθ (At ′ | St ′)
T∑

t=t ′
Rt

]

. (2.119)

Here the last equality is simply by rearranging the summation.
Notice that in the above derivation process we use both the exchanging between

sum and expectation and the exchanging between expectation and sum and deriva-
tive (both valid):

∇θ J (πθ) = ∇θEτ∼πθ [R(τ)] = ∇θEτ∼πθ

[
T∑

t=0

Rt

]

=
T∑

t=0

∇θEτ∼πθ [Rt ]

(2.120)

which ends up to take the integral in Eq. (2.114) over the partial trajectory τt of
length t + 1. However, there is also other way of taking the expectation of the
cumulative reward along the whole trajectory:

∇θ J (πθ) = ∇θEτ∼πθ R(τ) (2.121)

= ∇θ

∫

τ

p(τ |θ)R(τ) Expand expectation (2.122)
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=
∫

τ

∇θp(τ |θ)R(τ) Exchange gradient and integral (2.123)

=
∫

τ

p(τ |θ)∇θ log p(τ |θ)R(τ) Log-derivative trick (2.124)

= Eτ∼πθ [∇θ log p(τ |θ)R(τ)] Return to expectation form
(2.125)

⇒ ∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St )R(τ)

]

(2.126)

= Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St )

T∑

t ′=0

Rt ′

]

(2.127)

A careful reader may notice that the second result in Eq. (2.127) is slightly
different from the first result as in Eq. (2.119). Specifically, the time scales of the
cumulative reward are different. The first result uses only the cumulative future
rewards

∑T
t=t ′ Rt after action At to evaluate the action, while the second result uses

the cumulative rewards on the whole trajectory
∑T

t=0 Rt to evaluate each action
At on that trajectory, including the rewards before choosing that action. Intuitively,
the action should not be evaluated by the rewards happened before that action is
conducted, which is also reinforced by mathematical proof that the rewards obtained
before the action have zero effects on the final expected gradients. Those past
rewards can, therefore, be simply dropped in the derived policy gradient to have
Eq. (2.119), which is called the “reward-to-go” policy gradient. A strict proof of
the equivalence of the two policy gradient formulas is not provided here but can be
referred to here.1 The two derivations here can also be regarded as a proof of the
equivalence of two results.

The ∇ in the above formulas called “nabla” is a specific computational operator
with three basic meanings (gradient, divergence, and curl) in the physics and
mathematics domains, depending on its operational objectives. But in the computer
science domain, the “nabla” operator ∇ is usually used as partial derivative, which
derives the derivative on the following objective explicitly containing the variable
in the footnote position. As the R(τ) in above formulas does not explicitly contain
θ , the ∇θ does not operate on R(τ), although the τ implicitly depends on θ

(according to the graphical model of MDP). We also notice that the expectation in
Eq. (2.127) can be estimated with the sample mean. If we collect a set of trajectories
D = {τi}i=1,...,N where each trajectory is obtained by letting the agent act in the

1Proof of equivalence of two versions of stochastic policy gradient: https://spinningup.openai.com/
en/latest/spinningup/extra_pg_proof1.html.

https://spinningup.openai.com/en/latest/spinningup/extra_pg_proof1.html
https://spinningup.openai.com/en/latest/spinningup/extra_pg_proof1.html
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environment using the policy πθ , the policy gradient can be estimated with

ĝ = 1

|D|
∑

τ∈D

T∑

t=0

∇θ log πθ(At |St )R(τ), (2.128)

The Expected Grad-Log-Prob (EGLP) lemma2 is commonly used in policy
gradient optimization, so we introduce it here.

Lemma 2.2 (EGLP Lemma) Suppose that pθ is a parameterized probability
distribution over a random variable, x. Then:

Ex∼pθ [∇θ log Pθ(x)] = 0. (2.129)

Proof Recall that all probability distributions are normalized:

∫

x

pθ (x) = 1. (2.130)

Take the gradient of both sides of the normalization condition:

∇θ

∫

x

pθ (x) = ∇θ 1 = 0. (2.131)

Use the log derivative trick to get:

0 = ∇θ

∫
x pθ (x) (2.132)

= ∫
x ∇θpθ (x) (2.133)

= ∫
x
pθ (x)∇θ log pθ (x) (2.134)

∴ 0 = Ex∼pθ [∇θ log pθ (x)]. (2.135)

From the EGLP lemma we can directly derive that:

EAt∼πθ [∇θ log πθ(At |St )b(St )] = 0. (2.136)

where b(St ) is called a baseline and is independent of the future trajectory the
expectation is taken over. The baseline is any function dependent only on the
currents state, without affecting the overall expected value in the optimization
formula.

2Referred to OpenAI Spinning Up: https://spinningup.openai.com/en/latest/.

https://spinningup.openai.com/en/latest/
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In the above formulas the optimization goal is finally:

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St )R(τ)

]

(2.137)

We can also modify the reward for total trajectory R(τ) to be reward-to-go Gt

following time step t:

∇θJ (πθ ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St )Gt

]

(2.138)

With the above EGLP lemma, the expected return can be generalized to be:

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St )�t

]

(2.139)

where �t = ∑T
t ′=t (R(St ′ , at ′, St ′+1) − b(St )).

Actually �t could be the following formats for more practical usage:

�t = Qπθ (St , At ) (2.140)

or,

�t = Aπθ (St , At ) = Qπθ (St , At ) − V πθ (St ) (2.141)

which are both proven to be identical to the original format in the expected value,
just with different variances in practice. The proof of these requires law of iterated
expectations:E[X] = E[E[X|Y ]] for two random variables (discrete or continuous).
And this is easy to prove. The rest of the proof is given below:

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St )R(τ)

]

(2.142)

=
T∑

t=0

Eτ∼πθ [∇θ log πθ(At |St )R(τ)] (2.143)

=
T∑

t=0

Eτ:t∼πθ [Eτt :∼πθ [∇θ log πθ(At |St )R(τ)|τ:t ]] (2.144)

=
T∑

t=0

Eτ:t∼πθ [∇θ log πθ(At |St )Eτt :∼πθ [R(τ)|τ:t ]] (2.145)
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=
T∑

t=0

Eτ:t∼πθ [∇θ log πθ(At |St )Eτt :∼πθ [R(τ)|St , At ]] (2.146)

=
T∑

t=0

Eτ:t∼πθ [∇θ (log πθ(At |St ))Q
πθ (St , At )] (2.147)

in which Eτ [·] = Eτ:t [Eτt : [·|τ:t ]] and τ:t = (S0, A0, . . . , St , At ), and Qπθ (St , At ) =
Eτt :∼πθ [R(τ)|St , At ].

Therefore, it’s common to see

∇θJ (πθ ) = Eτ∼πθ

[
T∑

t=0

∇θ (log πθ(At |St ))Q
πθ (St , At )

]

(2.148)

or,

∇θJ (πθ ) = Eτ∼πθ

[
T∑

t=0

∇θ (log πθ(At |St ))A
πθ (St , At )

]

(2.149)

in the literature. In other words, it is equivalent to changing the optimization
objective to be J (πθ ) = Eτ∼π [Qπθ (St , At )] or J (πθ ) = Eτ∼π [Aπθ (St , At )] instead
of original Eτ∼π [R(τ)], in the sense of optimal policy. The Aπθ (St , At ) are usually
estimated with TD-error in practice.

According to whether the environment model is used or not, reinforcement
learning algorithms can be classified into model-free and model-based categories.
For model-free reinforcement learning, pure gradient-based optimization algorithms
are originated from the REINFORCE algorithm, or called the policy gradient
method. For the model-based reinforcement learning category, there are also policy-
based algorithms, like the method applying backpropagation through time (BPTT)
for updating the policy using sampled rewards within episodes. No more details
about model-based methods will be discussed here, and we instead direct the readers
to Chap. 9.

Example: REINFORCE Algorithm

REINFORCE is an algorithm using stochastic policy gradient method as in
Eq. (2.139), where �t = Qπ(St , At ) and it is estimated with sampled rewards
along the trajectory Gt = ∑∞

t ′=t Rt ′ (or discounted version Gt = ∑∞
t ′=t γ t ′−tRt ′)

in REINFORCE. The gradients for updating the policy are:

g = E

[ ∞∑

t=0

∞∑

t ′=t

Rt ′∇θ log πθ(At |St )

]

(2.150)
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Details of REINFORCE algorithm are introduced in Chap. 5.

2. Deterministic Policy Gradient
What has been described above belongs to stochastic policy gradient (SPG), and
it works for optimizing the stochastic policy π(a|s), which represents the action
as a probabilistic distribution based on the current state. The contrary case to the
stochastic policy is the deterministic policy, where a = π(s) is a deterministic
action instead of probability. We can derive the deterministic policy gradient (DPG)
similarly as in SPG, and it also follows the policy gradient theorem numerically (as
a limit case), although they have different explicit expressions.

Note: in the following part of this section, we use μ(s) instead of π(s) as
previously defined to represent the deterministic policy, for removing ambiguity
in the distinction with stochastic policy π(a|s).

For a more rigorous and general definition of DPG we refer to the deterministic
policy gradient theorem proposed by Silver et al. (2014) in Eq. (2.159). We will
introduce the deterministic policy gradient theorem and prove it, in an on-policy
manner first and off-policy later, as well as discussing the relationship of DPG with
SPG in detail.

First of all, we define the performance objective for the deterministic policy
following the same expected discounted reward definition in stochastic policy
gradient:

J (μ) = ESt∼ρμ,At=μ(St )[
∞∑

t=1

γ t−1R(St , At )] (2.151)

=
∫

S

∫

S

∞∑

t=1

γ t−1ρ0(s)p(s′|s, t, μ)R(s′, μ(s′)]dsds′ (2.152)

=
∫

S
ρμ(s)R(s, μ(s))ds (2.153)

where p(s′|s, t, μ) = p(St+1|St , At )p
μ(At |St ), the first probability is the transition

probability and the second is the probability of the action choice. Since it is
deterministic policy, we have pμ(At |St ) = 1 and therefore p(s′|s, t, μ) =
p(St+1|St , μ(St )). Also, the state distribution in above formula is ρμ(s′) :=∫
S

∑∞
t=1 γ t−1ρ0(s)p(s′|s, t, μ)ds.

As V μ(s) = E[∑∞
t=1 γ t−1R(St , At )|S1 = s; μ] = ∫

S
∑∞

t=1 γ t−1p(s′|s, t, μ)

R(s′, μ(s′)]ds′ following the same definition in stochastic policy gradient except
for applying the deterministic policy, we can also derive that

J (μ) =
∫

S
ρ0(s)V

μ(s)ds (2.154)

=
∫

S

∫

S

∞∑

t=1

γ t−1ρ0(s)p(s′|s, t, μ)R(s′, μ(s′)]dsds′ (2.155)
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which is the same as the above representation directly using discounted rewards.
The relationships here also hold for stochastic policy gradient, just with the
deterministic policy μ(s) replaced by the stochastic policy π(a|s). For deterministic
policy, we have V μ(s) = Qμ(s, μ(s)) as the Q-value is an expectation over the
action distribution for stochastic policy, but there is no action distribution but a
single value for the deterministic policy. Therefore we also have the following
representation for deterministic policy,

J (μ) =
∫

S
ρ0(s)V

μ(s)ds (2.156)

=
∫

S
ρ0(s)Q

μ(s, μ(s))ds (2.157)

The different formats of performance objective will be used in the proof of
DPG theorem, as well as several conditions. We list the conditions here without
a detailed derivation process, which can be checked in the original paper by Silver
et al. (2014):

• C.1 The Existence of Continuous Derivatives: p(s′|s, a),∇ap(s′|s, a), μθ (s),

∇θμθ (s), R(s, a),∇aR(s, a), ρ0(s) are continuous in all parameters and vari-
ables s, a, s′, and x.

• C.2 The Boundedness Condition: there exist a, b, and L such that sups ρ0(s) <

b, supa,s,s ′ p(s′|s, a) < b, supa,s R(s, a) < b, supa,s,s ′ ||∇ap(s′|s, a)|| <

L, supa,s ||∇aR(s, a)|| < L.

Theorem 2.3 (Deterministic Policy Gradient Theorem) suppose that the MDP
satisfies conditions C.1 for the existence of ∇θμθ (s),∇aQ

μ(s, a) and the determin-
istic policy gradient, then,

∇θJ (μθ ) =
∫

S
ρμ(s)∇θμθ (s)∇aQ

μ(s, a)|a=μθ (s)ds (2.158)

= Es∼ρμ[∇θμθ (s)∇aQ
μ(s, a)|a=μθ (s)] (2.159)

Proof The proof of deterministic policy gradient theorem generally follows the
same lines of the standard stochastic policy gradient theorem by Sutton et al.
(2000). First of all, in order to exchange derivatives and integrals, and the order
of integration whenever needed in the following proof, we need to use two lemmas,
which are basic mathematical rules in calculus as follows:

• Lemma 2.3 (Leibniz Integral Rule) let f (x, t) be a function such that both
f (x, t) and its partial derivative f ′

x(x, t) are continuous in t and x in some
region of the (x, t)-plane, including a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1. Also suppose
that the functions a(x) and b(x) are both continuous and both have continuous
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derivatives for x0 ≤ x ≤ x1. Then, for x0 ≤ x ≤ x1,

d

dx

∫ b(x)

a(x)

f (x, t)dt = f (x, b(x)) · d

dx
b(x) − f (x, a(x)) · d

dx
a(x)

+
∫ b(x)

a(x)

∂

∂x
f (x, t)dt (2.160)

• Lemma 2.4 (Fubini’s Theorem) Suppose X and Y are σ -finite measure
spaces, and suppose that X × Y is given the product measure (which is unique
as X and Y are σ -finite). Fubini’s theorem states that if f is X × Y integrable,
meaning that f is a measurable function and

∫

X×Y
|f (x, y)|d(x, y) < ∞ (2.161)

then,

∫

X

(∫

Y
f (x, y)dy

)

dx =
∫

Y

(∫

X
f (x, y)dx

)

dy =
∫

X×Y
f (x, y)d(x, y)

(2.162)

To satisfy these two lemmas, we require the necessary conditions provided in C.1
as the Leibniz integral rule requires, which imply that V μθ (s) and ∇θV

μθ (s) are
continuous functions of θ and s. We also follow the assumption of the compactness
of the state space S, which is in C.2 required by Fubini’s theorem and implies
that for any θ , ||∇θV

μθ (s)||, ||∇aQ
μθ (s, a)|a=μθ (s)|| and ||∇θμθ (s)|| are bounded

functions of s. With above conditions, we have the following derivations:

∇θV
μθ (s) = ∇θQ

μθ (s, μθ (s)) (2.163)

= ∇θ (R(s, μθ (s)) +
∫

S
γp(s′|s, μθ (s))V

μθ (s′)ds′) (2.164)

= ∇θμθ (s)∇aR(s, a)|a=μθ (s) + ∇θ

∫

S
γp(s′|s, μθ (s))V

μθ (s′)ds′

(2.165)

= ∇θμθ (s)∇aR(s, a)|a=μθ (s) +
∫

S
γ (p(s′|s, μθ (s))∇θV

μθ (s′)

+ ∇θμθ (s)∇ap(s′|s, a)V μθ (s′))ds′ (2.166)
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= ∇θμθ (s)∇a(R(s, a) +
∫

S
γp(s′|s, a)V μθ (s′)ds′)|a=μθ (s))

+
∫

S
γp(s′|s, μθ (s))∇θV

μθ (s′)ds′ (2.167)

= ∇θμθ (s)∇aQ
μθ (s, a)|a=μθ (s) +

∫

S
γp(s′|s, μθ (s))∇θV

μθ (s′)ds′

(2.168)

In the above derivations, the Leibniz integral rule is used to exchange the
order of derivative and integration, requiring the continuity conditions of
p(s′|s, a), μθ (s), V

μθ (s) and their derivatives with respect to θ . Now we iterate the
above formula with ∇θV

μθ (s) to have:

∇θV
μθ (s) = ∇θμθ (s)∇aQ

μθ (s, a)|a=μθ(s) (2.169)

+
∫

S
γp(s′|s, μθ (s))∇θμθ (s

′)∇aQ
μθ (s′, a)|a=μθ(s ′)ds′ (2.170)

+
∫

S
γp(s′|s, μθ (s))

∫

S
γp(s′′|s′, μθ (s

′))∇θV
μθ (s′′)ds′′ds′

(2.171)

= ∇θμθ (s)∇aQ
μθ (s, a)|a=μθ(s) (2.172)

+
∫

S
γp(s → s′, 1, μθ (s))∇θμθ (s

′)∇aQ
μθ (s′, a)|a=μθ(s ′)ds′

(2.173)

+
∫

S
γ 2p(s → s′, 2, μθ (s))∇θμθ (s

′)∇aQ
μθ (s′, a)|a=μθ(s ′)ds′

(2.174)

+ . . . (2.175)

=
∫

S

∞∑

t=0

γ tp(s → s′, t, μθ (s))∇θμθ (s
′)∇aQ

μθ (s′, a)|a=μθ(s ′)ds′

(2.176)

where we use Fubini’s theorem for changing the order of integration, which requires
the condition that ||∇θV

μθ (s)|| is bound. The above integration contains a special
case with p(s → s′, 0, μθ (s)) = 1 for s′ = s and is 0 for other s′. Now we
take derivative on the modified performance objective, which is the expected value
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function,

∇θJ (μθ ) = ∇θ

∫

S
ρ0(s)V

μθ (s)ds (2.177)

=
∫

S
ρ0(s)∇θV

μθ (s)ds (2.178)

=
∫

S

∫

S

∞∑

t=0

γ tρ0(s)p(s → s′, t, μθ (s))∇θμθ (s
′)

× ∇aQ
μθ (s′, a)|a=μθ(s ′)ds′ds (2.179)

=
∫

S
ρμθ (s)∇θμθ (s)∇aQ

μθ (s, a)|a=μθ (s)ds (2.180)

where we use the Leibniz integral rule for exchanging the derivative and integral,
requiring the conditions that ρ0(s) and V μθ (s) and their derivatives with respect to
θ are continuous, and also the Fubini’s theorem to exchange the order of integration
with the boundedness conditions of integrand. Proof is completed.

Off-Policy Deterministic Policy Gradient
Apart from the on-policy version of DPG derived above, we can also derive the
deterministic policy gradient in an off-policy manner, using the DPG theorem above
and γ -discounted state distribution ρμ(s′) := ∫

S
∑∞

t=1 γ t−1p(s)p(s′|s, t, μ)ds.
Off-policy deterministic policy gradient estimates current policy with samples
from the behavior policy (e.g. previous policies if using replay buffer), which is
different from current policy. In the off-policy settings, the gradients are estimated
using trajectories sampled from a distinct behavior policy β(s) �= μθ(s), and the
corresponding state distribution is ρβ(s), which is not dependent on the policy
parameter θ . And in off-policy case, the performance objective is modified to be the
value function of target policy averaged over the state distribution of the behavior
policy Jβ(μθ ) = ∫

S ρβ(s)V μ(s)ds = ∫
S ρβ(s)Qμ(s, μθ (s))ds, while original

objective follows Eq. (2.157) as J (μθ) = ∫
S ρ0(s)V

μ(s)ds. Note that it is the first
approximation we take in deriving the off-policy deterministic policy gradient, as
J (μθ) ≈ Jβ( uθ ), and we will have another approximation in the following. We can
directly apply the differential operator on the modified objective as follows:

∇θJβ(μθ ) = ∫
S ρβ(s)(∇θμθ (s)∇aQ

μθ (s, a)+∇θQ
μθ (s, a))|a=μ(s)ds (2.181)

≈ ∫
S ρβ(s)∇θμθ (s)∇aQ

μθ (s, a)ds (2.182)

= Es∼ρβ [∇θμθ (s)∇aQ
μθ (s, a)|a=μ(s)] (2.183)

The approximately equivalent symbol in above formulas indicates the difference
between the on-policy DPG and off-policy DPG. The dependency relationships
in above formula need to be carefully considered. The derivative of θ goes
into the integration because ρβ(s) is independent on θ , therefore no term with
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derivative on ρβ(s). As the Qμθ (s, μθ (a)) actually depends on θ in two ways
(two μθ in the expression): (1) it depends on the action a determined by the
deterministic policy μθ with current state s, and (2) the on-policy estimation of
Q value also depends on the policy μθ for choosing actions for future states,
as in Qμθ (s, a) = R(s, a) + ∫

S γp(s′|s, a)V μθ (s′)ds′. So the derivative needs
to be conducted separately. However, the second term ∇θQ

μθ (s, a)|a=μ(s) in the
first formula is dropped in the approximation due to the difficulty in estimation in
practice, which has a similar corresponding operation in off-policy stochastic policy
gradients (Degris et al. 2012).3,4

Relationship of Stochastic Policy Gradient and Deterministic Policy Gradient
As shown in Eq. (2.148), the stochastic policy gradient has the same format as in
policy gradient theorem in the previous paragraph, while the deterministic policy
gradient in Eq. (2.159) seems to have an inconsistent format at first look. However, it
can be proved that for a wide range of stochastic policies, the DPG is a special (limit)
case of the SPG. In this sense, the DPG also satisfies the policy gradient theorem
under certain conditions. In order to achieve that, we parameterize the stochastic
policy πμθ ,σ by a deterministic policy μθ : S → A and a variance parameter
σ , such that for σ = 0 the stochastic policy is equivalent to the deterministic
policy, πμθ ,0 ≡ μ. An additional condition is needed for defining the relationship
between SPG and DPG, which is a composite condition to define the regular delta-
approximation:

• C.3 Regular Delta-Approximation: functions vσ parameterized by σ are said to
be a regular delta-approximation on R ∈ A if they satisfy the conditions: (1) the
distribution vσ converges to a delta distribution limσ↓0

∫
A vσ (a′, a)f (a)da =

f (a′) for a′ ⊆ R and suitably smooth f ; (2) vσ (a′, ·) is supported on compact
C ′

a ⊆ A with Lipschitz boundary, vanishes on the boundary and is continuously
differentiable on Ca′; (3) the gradient ∇a′vσ (a′, a) always exists; (4) translation
invariance: v(a′, a) = v(a′+δ, a+δ) for any a ∈ A, a′ ∈ R, a+δ ∈ A, a′+δ ∈
A.

Theorem 2.4 (Deterministic Policy Gradient as Limit of Stochastic Policy Gra-
dient) Consider a stochastic policy πμθ ,σ such that πμθ ,σ (a|s) = vσ (μθ (s), a),
where σ is a parameter controlling the variance and vσ (μθ (s), a) satisfy C.3 and
the MDP satisfies C.1 and C.2, then,

lim
σ↓0

∇θ J (πμθ ,σ ) = ∇θ J (μθ) (2.184)

3Details and arguments for this operation can be referred to the original paper.
4The paper of Silver D, Lever G, Heess N, et al. Deterministic policy gradient algorithms[C]. 2014.
drops the ∇a on the Q term after approximation in Eq. (15) of the paper, and here we modified this
typo.
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which indicates the gradient of the DPG (r.h.s) is the limit case of standard SPG
(l.h.s).

The proof of the above relationship is an outline of this book and we will not
discuss it here. Details refer to the original paper (Silver et al. 2014).

Applications and Variants of Deterministic Policy Gradient
One of the most famous algorithms of DPG is the deep deterministic policy gradient
(DDPG), which is a deep variant of DPG. DDPG combines DQN and actor-critic
algorithms to use deterministic policy gradients for updating the policy, via a deep-
learning approach. It has the target networks for both the actor and the critic, and
provides for sample-efficient learning but is notoriously challenging to use due to
its extreme brittleness and hyperparameter sensitivity in practice (Duan et al. 2016).
The details and implementation of DDPG will be introduced in later chapters.

From the above we can see that the policy gradient can be estimated in at least
two approaches: SPG and DPG, depending on the type of policy. Actually, they
use two kinds of different estimators, the score function estimator for SPG and the
pathwise derivative estimators for DPG, in the terminology of variational inference
(VI).

A reparameterization trick makes it possible to apply policy gradients derived
from the value function for stochastic policy, which is called the stochastic value
gradients (SVG) (Heess et al. 2015). In SVG algorithms, a value λ is usually
used as SVG(λ) to indicate how many steps are expanded in Bellman recursion.
For example, the SVG(0) and SVG(1) indicate the Bellman recursion expanded
with 0 and 1 step, respectively, and SVG(∞) indicates the Bellman recursion is
expanded along the whole episodic trajectory in a finite horizon. SVG(0) is a model-
free method with the action-value estimated with current policy, and therefore the
value gradients are back-propagated to the policy; while SVG(1) is a model-based
method using a learned transition model to evaluate the value of next state, as in
original paper (Heess et al. 2015).

A very simple but useful example of reparameterization trick is to write a
conditional Gaussian density p(y|x) = N (μ(x), σ 2(x)) as the function y(x) =
μ(x) + σ(x)ε, ε ∼ N (0, 1). So one can produce samples procedurally by first
sampling ε then deterministically constructing y, which makes the sampling process
from the stochastic policy trackable for gradients. And the same procedure for
back-propagating the gradients from the action-value function to the policy is made
feasible in practice. In order to get the gradients for the stochastic policy through the
value function as in DPG, SVG applies the reparameterization trick and takes extra
expectation on stochastic noise. Soft actor-critic (SAC) and the original SVG (Heess
et al. 2015) algorithm both follow this routine to use stochastic policy for continuous
control.

For example, in SAC, the stochastic policy is reparameterized with a mean and
a variance, together with a noise term sampled from a normal distribution. The
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optimization objective in SAC with an additional entropy term is:

π∗ = arg max
π

Eτ∼π

[ ∞∑

t=0

γ t (R(St , At , St+1) + αH(π(·|St )))

]

(2.185)

and therefore the relationship of value function and Q-value function becomes:

V π(s) = Ea∼π [Qπ(s, a)] + αH(π(·|s)) (2.186)

= Ea∼π [Qπ(s, a) − α log π(a|s)] (2.187)

The policy used in SAC is a normalized Gaussian distribution, which is different
from traditional settings. The action in SAC can be represented as below via
reparameterization trick:

aθ(s, ε) = tanh(μθ (s) + σθ (s) · ε), ε ∼ N (0, I ) (2.188)

Due to the stochasticity of the policy in SAC, the policy gradients are derived with
the reparametrization trick through maximizing the expected value function, which
is:

maxθ Ea∼πθ [Qπθ (s, a) − α log πθ(a|s)] (2.189)

= maxθ Eε∼N [Qπθ (s, a(s, ε)) − α log πθ(a(s, ε)|s)] (2.190)

and the gradients can therefore go back through the Q-networks to the policy
network, similar as in DPG, which are:

∇θ
1

|B|
∑

St∈B
(Qπθ (St , a(St , ε)) − α log πθ(a(St , ε)|St )) (2.191)

with a sampled batch B for updating the policy and a(St , ε) sampled from the
stochastic policy with reparameterization trick. In this sense, the reparameterization
trick makes it possible for the stochastic policy to be updated in a similar manner
as DPG, and the resulting SVG is kind of an intermediate between DPG and SPG.
DPG can also be regarded as a deterministic limit of SVG(0).

Gradient-Free Optimization

Apart from gradient-based optimization for policy-based learning, there are also
non-gradient-based (also called gradient-free) optimization methods, which include
cross-entropy (CE) method, covariance matrix adaptation (CMA) (Hansen and
Ostermeier 1996), hill climbing, simplex/amoeba/Nelder-Mead algorithm (Nelder
and Mead 1965), etc.
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Example: Cross-Entropy (CE) Method

Instead of using gradient-based optimization for policies, CE method is usually
faster for policy search in reinforcement learning as a non-gradient-based optimiza-
tion method. In a CE method, the policy is updated iteratively and the optimization
objective for parameters θ of the parameterized policy πθ is:

θ∗ = arg max S(θ) (2.192)

where the S(θ) is the general objective function, and for our reinforcement learning
cases, it could be the discounted expected return: S(θ) = R(τ) = ∑T

t=0 γ tRt .
The policy in the CE method can be parameterized as a multi-variate linear

independent Gaussian distribution, and the distribution of the parameter vector at
iteration t is ft ∼ N(μt , σ

2
t ). After drawing n sample vectors θ1, . . . , θn and

evaluating their value S(θ1), . . . , S(θi), we sort them and select the best �ρ · n�
samples, where 0 < ρ < 1 is the selection ratio. Denoting the set of indices of the
selected samples by I ∈ 1, 2, . . . , n, the mean of the distribution is updated using:

μt+1 =:
∑

i∈I θi

|I | (2.193)

and the deviation update is:

σ 2
t+1 :=

∑
i∈I (θi − μt+1)

T (θi − μt+1)

|I | (2.194)

The cross-entropy method is an efficient and general optimization algorithm.
However, preliminary investigations showed that the applicability of CE to rein-
forcement learning problems is restricted severely by the phenomenon that the
distribution concentrates to a single point too fast. Therefore, its applicability in
reinforcement learning seems to be limited though fast, because it often converges
to suboptimal policies. A standard technique for preventing early convergence is to
introduce noise. General methods include adding a constant or an adaptive value on
the standard deviation term during the iterative process for the Gaussian distribution
like:

σ 2
t+1 :=

∑
i∈I (θi − μt+1)

T (θi − μt+1)

|I | + Zt+1 (2.195)

where Zt = max(5 − t
10 , 0) in work of Szita, et al.
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2.7.4 Combination of Policy-Based and Value-Based Methods

With the above vanilla policy gradient method, some simple reinforcement learning
tasks can be solved. However, there is usually a large variance in the evaluated
updates if we choose to use Monte Carlo or TD(λ) estimation. We can use a critic
as described in the value-based optimization to estimate the action-value function.
So there will be two sets of parameters if we use parameterized value function
as an approximation for policy optimization: the actor parameters and the critic
parameters. This actually forms a very important algorithm architecture called actor-
critic (AC), and typical algorithms include Q-value actor-critic, deep deterministic
policy gradient (DDPG), etc.

Recall the policy gradient theorem introduced in previous sections, the deriva-
tives of performance objective J with respect to the policy parameters θ are:

∇θ J (πθ ) = Eτ∼πθ

T∑

t=0

∇θ log πθ(At |St )Q
π(St , At ) (2.196)

in which the Qπ(St , At ) are the true action-value function, and the simplest
way of estimating Qπ(St , At ) is to use a sampled cumulative return Gt =∑∞

t=0 γ t−1R(St , At ). In AC, we apply a critic to estimate the action-value function:
Qw(St , At ) ≈ Qπ(St , At ). And the update rule of the policy in AC is therefore:

∇θ J (πθ ) = Eτ∼πθ

T∑

t=0

∇θ log πθ(At |St )Q
w(St , At ) (2.197)

where w are parameters of the critic for value function approximation. The
critic can be evaluated with an appropriate policy evaluation algorithms such
as temporal difference (TD) learning, like �w = α(Qπ(St , At ; w) − Rt+1 +
γ vπ (St+1, w))∇wQπ(St , At ; w) for TD(0) estimation as in Eq. (2.100). More
details about AC algorithm and implementation will be discussed in Chaps. 5 and 6.

Although the AC framework helps alleviate the variances in policy updates, it can
introduce bias and potential instability due to replacing the true action-value func-
tion with the estimated one, which requires compatible function approximation
to ensure its unbiased estimation as proposed by Sutton et al. (2000).

Compatible Function Approximation

The compatible function approximation conditions hold for both SPG and DPG. We
will show them individually. The “compatible” here indicates that the approximate
action-value function Qw(s, a) is compatible with the corresponding policy.
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For SPG Specifically, the compatible function approximation proposes two con-
ditions to ensure the unbiased estimation using the approximated action-value
function Qπ(s, a): (1) Qw(s, a) = ∇θ log πθ(a|s)T w and (2) the parameters w are
chosen to minimize the mean-squared error MSE(w) = Es∼ρπ ,a∼πθ [(Qw(s, a) −
Qπ(s, a))2]. More intuitively, condition (1) says that compatible function approxi-
mators are linear in “features” of the stochastic policy, ∇θ log πθ(a|s), and condition
(2) requires that the parameters w are the solution to the linear regression problem
that estimates Qπ(s, a) from these features. In practice, condition (2) is usually
relaxed in favor of policy evaluation algorithms that estimate the value function
more efficiently by temporal difference learning.

If both conditions are satisfied, then the overall algorithm of AC is equivalent to
not using the critic for approximation, like in the REINFORCE algorithm. This can
be proved simply by setting the MSE in the condition (2) equivalent to 0 and taking
gradients, then substituting the condition (1) into it:

∇wMSE(w) = E[2(Qw(s, a) − Qπ(s, a))∇wQw(s, a)] (2.198)

= E[2(Qw(s, a) − Qπ(s, a))∇θ log πθ(a|s)] (2.199)

= 0 (2.200)

⇒ E[Qw(s, a)∇θ log πθ(a|s)] = E[Qπ(s, a)∇θ log πθ(a|s)]
(2.201)

For DPG The two conditions in compatible function approximation are
modified accordingly with respect to the deterministic policy μθ(s): (1)
∇aQ

w(s, a)|a=μθ (s) = ∇θμθ (s)
T w and (2) w minimizes the mean-squared error,

MSE(θ,w) = E[ε(s; θ,w)T ε(s; θ,w)] where ε(s; θ,w) = ∇aQ
w(s, a)|a=μθ (s) −

∇aQ
w(s, a)|a=μθ (s). It can also be proved that these conditions ensure the unbiased

estimation through transferring the approximation back to no-critic cases:

∇wMSE(θ,w) = 0 (2.202)

⇒ E[∇θμθ (s)ε(s; θ,w)] = 0 (2.203)

⇒ E[∇θμθ (s)∇aQ
w(s, a)|a=μθ (s)] = E[∇θμθ (s)∇aQ

μ(s, a)|a=μθ (s)] (2.204)

And it applies to both on-policy Es∼ρμ [·] and off-policy Es∼ρβ [·] cases.

Other Methods

If we replace the action-value function Qπ(s, a) with advantage function Aπ(s, a)

in Eq. (2.196) (as subtracting the baseline does not affect the gradients):

Aπθ (s, a) = Qπθ (s, a) − V πθ (s) (2.205)
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Then we actually get a more advanced algorithm called advantage actor-critic
(A2C), which can use the TD-error to estimate the advantage function. This will
not affect above theorems but changes the variances of gradient estimators.

Recently, people have proposed actor-free methods, like the QT-Opt algorithm
(Kalashnikov et al. 2018) and the Q2-Opt algorithm (Bodnar et al. 2019) based on
that. These methods are combinations of policy-based and value-based optimization
as well, gradient-free CE method and DQN specifically. Instead of using the
sampled discounted return as an estimation of actions sampled from Gaussian
distributions, they apply action value approximation for learning Qπθ (s, a) instead,
which are proved to be efficient and effective for robot learning in reality especially
when there are demonstration datasets.
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