
Chapter 17
Arena Platform for Multi-Agent
Reinforcement Learning

Zihan Ding

Abstract In this chapter, we introduce a project named Arena for multi-agent
reinforcement learning research. The hands-on instructions are provided in this
chapter for building games with Arena toolkit, including a single agent game and a
simple two-agent game with different reward schemes. The reward scheme in Arena
is a way to specify the social structure among multiple agents, which contains social
relationships of non-learnable, isolated, competitive, collaborative, and mixed types.
Different reward schemes can be applied at the same time in a hierarchical structure
in one game scene, together with the individual-to-group structure for physical units,
to describe the complex relationships in multi-agent systems comprehensively.
Moreover, we also show the process of applying the baseline in Arena, which
provides several implemented multi-agent reinforcement learning algorithms as a
benchmark. Through this project, we want to provide the readers with a useful tool
for investigating multi-agent intelligence with customized game environments and
multi-agent reinforcement learning algorithms.

Keywords Multi-agent reinforcement learning · Learning environment ·
Toolkit · Competitive · Collaborative · Social relationship

In this chapter, we will introduce a powerful toolkit for multi-agent reinforcement
learning (MARL): Arena (Song et al. 2019). Arena is a general evaluation platform
for multi-agent intelligence based on Unity, with learning environments of diverse
logic and representations, as well as easy configurations on complex social tree
relationships between multiple agents. Arena also contains the implementation of
state-of-the-art deep multi-agent reinforcement learning algorithm baselines, which
can help the users to quickly testify the built-up environments. Generally, Arena
is a building toolkit for researchers to easily invent and build unexplored multi-
agent problems with customized game environments. The official website of Arena
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is: https://sites.google.com/view/arena-unity/home. Arena focuses on first-person
or third-person action games, leveraging the fantastic rendering effects of Unity.
Recently published open-sourced project OpenSpiel (https://github.com/deepmind/
open_spiel) by DeepMind, focuses on multi-agent board or card games.

There are two major modules in Arena: (1). the Building Toolkit, which is used
to quickly build multi-agent environments with customized characteristics; (2). the
Baselines, for testing the built-up environments with MARL algorithms. We will
start by building the environments in Arena.

17.1 Intallation

Unity ML-agents toolkit is a prerequisite for Arena, which needs to be installed
before applying Arena. The complete process of installing Arena follows the official
website of Building Toolkit1 and Baseline.2

Note that if you are running on a remote server without a graphical user interface
(e.g., X-Server) or you cannot get access to the X-Server, you will need to set up
the virtual display following instructions in Sect. 17.3.1 or guidelines on the official
website of Arena.

After installation, we can find that in the Arena-BuildingToolkit/
Assets/ArenaSDK/GameSet/ file of Arena folder, there are dozens of built-in
games with both continuous and discrete action spaces. They are pre-designed as
examples for using Arena, you can read the scripts of all those games for better
understanding of how Arena works. All games and abstraction layers share one
Unity project. Each game is held in an independent folder, with the game’s name as
the folder name. The folder ArenaSDK holds all the abstraction layers and shared
code, assets, and utilities. Code style is kept as consistent as possible to the Unity
ML-agents toolkit.

17.2 Build Game with Arena

We will go through making a multi-agent game with the Arena Building Toolkit. It
will not require much coding work with many off-the-shelf assets and multi-agent
features managed by Arena. Before you start, we are expecting you to have some
basic knowledge about Unity. Therefore, you are recommended to finish the roll-a-
ball tutorial (https://learn.unity.com/project/roll-a-ball-tutorial) to learn all the basic
concepts of Unity.

1Building Toolkit: https://github.com/YuhangSong/Arena-BuildingToolkit.
2Baseline: https://github.com/YuhangSong/Arena-Baselines.

https://sites.google.com/view/arena-unity/home
https://github.com/deepmind/open_spiel
https://github.com/deepmind/open_spiel
https://learn.unity.com/project/roll-a-ball-tutorial
https://github.com/YuhangSong/Arena-BuildingToolkit
https://github.com/YuhangSong/Arena-Baselines
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Fig. 17.1 Built-in games in Arena file

In order to use Arena, run Unity, choose open project, and select the cloned or
downloaded “Arena-BuildingToolkit” file. The opening process may take some time
for the first time.

We can see dozens of built-in games in the Arena folder, as shown in Fig. 17.1.
They are pre-designed as examples for using Arena, you can read the scripts of all
those games for better understanding of how Arena works. We will provide basic
instructions on building these games in the following sections.

17.2.1 Simple One-Player Game

We start by building a basic game environment with only one player in it:

• Create a folder to host your game. In this part, we create a folder named “1P” for
only one-player game.

• On the left-side “Hierarchy” window, we delete the original Main Camera and
Directional Light in it. Drag the prefab GlobalManager built in Arena folder
Assets/ArenaSDK/SharedPrefabs as shown in Fig. 17.2, to the left-side
“Hierarchy” window, as shown in Fig. 17.3. Note that the prefabs are useful and
shared components in Unity for using any built-in objects with a simple dragging
operation. GlobalManager in Arena manages the whole game, so all the other
components need to be attached under it.

• Next we need to place a playground for the agent to play on, we find the
prefabs in Arena called PlayGroundWithDeadWalls, and attach it to the child
called World of GlobalManager. The GlobalManager also has another child
TopDownCamera for providing an overall view of the game. This step is shown
in Fig. 17.4.

• Similar as above, we need to attach a BasicAgent from Arena prefabs and attach
it to the GlobalManager as shown in Fig. 17.5. So now we have one agent on the
playground in the scene, and we can manually drag the agent to a proper position,



446 Z. Ding

Fig. 17.2 The Arena built-in prefabs

Fig. 17.3 Drag the GlobalManager in Arena prefabs to the “Hierarchy” window of current game

Fig. 17.4 Choose a playground in Arena prefabs and attach it to the child of the GlobalManager

Fig. 17.5 Choose and attach a BasicAgent in Arena prefabs and attach it to the child of the
GlobalManager
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Fig. 17.6 The scene with a single agent on the playground

Fig. 17.7 Configure the game settings of a single-player game

as in Fig. 17.6. The values of the x, y, and z coordinates of position and rotation
will be displayed on the Transform property of the agent.

• In order to make the game work normally, we also need to configure the
game parameters as shown in Fig. 17.7. Here we only need to change the
Living Condition Based On Child Nodes of the GlobalManager. The Living
Condition is chosen to be At Least Specific Number Living and the At Least
Specific Number Living value is set to be 1. As we only have one agent in
this game, the above settings ensure that whenever the number of agents under
GlobalManager is smaller than one, the game episode will end and restart. Now
we can press the Play button to play the game and operate the agent with keys
“W, A, S, D.” As on the edges of the playground are the “dead walls,” whenever
the agent touches it, it will die and the game will restart. There are lots of other
properties if you apply the BasicAgent, including different Actions Settings,
Reward Functions (for reinforcement learning), etc. You can play around with
them (only the Actions Settings are valid in this simple game) to get familiar
with Arena Building Toolkit.
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17.2.2 Simple Two-Player Game with Reward Scheme

In this section, we will introduce how to deploy more than one agent in the game
environment with a social tree.

• First, let us start from the above single-player game. If we choose the Global-
Manager or the BasicAgent, we will find that for both objects there is a script
called Arena Node (Script) as shown in Figs. 17.8 and 17.9, which is a basic
concept used to define the social relationships in Arena games. Descriptions
about Arena Node will be provided in this section.

• We choose BasicAgent built before and duplicate it by pressing Ctrl+C and
Ctrl+V in the left hierarchy window, as shown in Fig. 17.10. Now we have two
Arena Nodes under the Global Manager, therefore we need to set the Node ID
to be 1 instead of 0 for any one of the BasicAgents in order to discriminate them
(Fig. 17.11). The positions of the agents in the scene can be moved to a proper
position, so as to separate them because the two agents are initialized at the same
position after duplication.

Fig. 17.8 The Arena Node (Script) exists in GlobalManager

Fig. 17.9 The Arena Node (Script) exists in BasicAgent

Fig. 17.10 Duplicate the BasicAgent under the GlobalManager
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Fig. 17.11 Change node ID to be different from each other when there are multiple nodes under
GlobalManager

Fig. 17.12 Set the reward scheme under GlobalManager

• Next we choose GlobalManager, Arena Node (Script), and we can set the
reward functions for the game, as shown in Fig. 17.12. We click the Is Reward
Ranking, which is a competitive reward function for agents under GlobalMan-
ager. We also choose Ranking Win Type to be Survive, which means the agent
died at the last place (surviving in the end) will get a positive reward. If you select
Depart, the reward will be given to the agent died in the first place. We also need
to unclick Is Reward Distance (which gives dense reward values according to
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the distance from the agent to the target) and Is Reward Time (which gives
reward values according to the living time of the agent). Above are different
reward schemes built in Arena, in a competitive and/or collaborative manner.
Different games will have different reward settings to represent different social
structures. You can play around with different reward settings for different games.
For example, if you want to set a dense reward according to the distance between
the agent and the target for a task like reaching the target, you need to click Is
Reward Distance, as well as dragging a target object to the Target blank to make
it work.

• We need to set the At Least Specific Number Living to be 2 under the Living
Condition Based On Child Nodes of GlobalManager, as shown in Fig. 17.13.
So that only when at least two agents are living, the game will continue;
otherwise the game will end and restart. Now we click the Play button, the
game should work normally. As long as one agent died, the game will end and
rewards/penalties will be given to agents as displayed in the Console, as shown
in Fig. 17.14.

• Next we will make the game more complex, we want to have two teams with
each containing two agents to compete with each other. So, first, we create an
empty object at the hierarchy window and name it “2 Player Team”. Then we
attach the Arena Node script to it, as shown in Fig. 17.15.

Fig. 17.13 Set the least number of living agents in GlobalManager

Fig. 17.14 The rewards given to each agent are displayed at the Console
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Fig. 17.15 Attach the Arena Node script to the team object

• Now we drag the two previous BasicAgent to the new-built team object 2 Player
Team. Then we duplicate the 2 Player Team, change the Node ID of the second
team object to be 1 instead of 0. Now we have a structure of teams and agents
as shown in Fig. 17.16. If we click the Play button now, we shall see two teams
with two agents each in the scene as Fig. 17.17.

• As the At Least Specific Number Living of GlobalManager is set to be 2,
any team’s death will cause the game to end. Also as the At Least Specific
Number Living of 2 Player Team is 1 as default, only when both two agents
died at the same team will cause the team to die. We can also set the game
logic to be different, if we set the Living Condition of the 2 Player Team
to be All Living, then any agent died in a team will cause the team to die,
and therefore end the game. From above, you can see that with the social tree
structure like GlobalManager->Team->Agent, Arena can basically support any
kinds of social relationships with the Arena Node through defining the living
and reward schemes.
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Fig. 17.16 The hierarchy structure of two teams with two agents each under the GlobalManager
in Arena

Fig. 17.17 The game scene of two teams with two agents each during the play

17.2.3 Advanced Settings

Reward Scheme

To construct complex social tree relationship, there are five basic multi-agent reward
schemes (BMaRSs) in Arena that define different social paradigms at each node
in the social tree, including: non-learnable (NL), isolated (IS), competitive (CP),
collaborative (CL), competitive and collaborative mixed (CC). Specifically, each
BMaRS is a restriction applied to the reward function, so it corresponds to a batch of
reward functions that can lead to a specific social paradigm. For each BMaRS, Arena
provides multiple ready-to-use reward functions (sparse and dense), simplifying
the construction of games with complex social relationships. Apart from providing
reward functions, Arena also offers a verification option for customized reward
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functions, so that one can make sure that the programmed reward functions lie in
one of the BMaRSs and produce a specific social paradigm. We will introduce these
five different reward schemes in detail.

First we need to give some preliminaries. We consider a Markov game as defined
in the basics of RL, consisting of multiple agents x ∈ X , a finite global state space
st ∈ S, a finite action space ax,t ∈ Ax for each agent x, and a bounded-step reward
space rx,t ∈ R for each agent x. For the environment, it consists of a transition
function g : S × {Ax : x ∈ X} → S, which is a stochastic (due to the stochasticity
of Unity simulator) function st+1 ∼ g

(
st+1|(st , {ax,t : x ∈ X )}), a reward function

for each agent fx : S × {Ax : x ∈ X} → R, which is a deterministic function
rx,t+1 = fx

(
st , {ax,t : x ∈ X }), a joint reward function f = {fx : x ∈ X }, and

episode reward R
f
x = ∑T

t=1 rx,t for each agent x under the joint reward function
f . For the agent, Arena considers that it observes sx,t ∈ Sx , where Sx consists
of a part of the information from the global state space S. Therefore, there is a
policy πx : Sx → Ax , which is a stochastic function ax,t ∼ πx(sx,t ). Besides,
Arena considers that agent x can take a policy πx from a set of policies �x . Arena
assumes that the random seed of all sampling operations is k, which is sampled from
the whole seed space K.

The definitions of different BMaRSs employ the basic concepts including agents
{x : x ∈ X }, policies {πx : �x}, agent rewards {Rf

x : x ∈ X }, and joint reward
functions F = {f : ·} on population X . The five different BMaRSs in Arena are
defined in the following way:

1. Non-learnable (NL) BMaRSs (FNL) are a set of joint reward functions f as
follows:

FNL = {
f : ∀k ∈ K,∀x ∈ X ,∀πx ∈ �x, ∂R

f
x / ∂πx = 0

}
, (17.1)

where 0 is a zero matrix of the same size and shape as the parameter space that
defines πx . Intuitively, FNL means R

f
x for any agent x ∈ X is not optimizable

by improving its policy πx .
2. Isolated (IS) BMaRSs (F IS) are a set of joint reward functions f as follows:

F IS =
{

f : f /∈ FNL and ∀k ∈ K,∀x ∈ X ,∀x ′ ∈ X \ {x},

∀πx ∈ �x,∀πx ′ ∈ �x ′,
∂R

f
x

∂πx ′
= 0

}

, (17.2)

where “\” is the set difference. Intuitively,F IS means that the episode reward R
f
x

received by any agent x ∈ X is not related to any policy πx ′ taken by any other
agent x ′ ∈ X \ {x}. Reward functions fx in f of F IS are often called internal
reward functions in other multi-agent approaches (Hendtlass 2004; Jaderberg
et al. 2018; Bansal et al. 2018), meaning that apart from the reward functions
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applied at a population level (such as win/lost), which are too sparse to learn,
there are also reward functions directing the learning process towards receiving
the population-level rewards, yet are more frequently available, i.e., more dense
(Singh et al. 2009, 2010; Heess et al. 2017). F IS is especially practical when
the agent is a robot requiring continuous control of applying force on each of its
joints, which means basic motor skills (such as moving) need to be learned before
generating population-level intelligence. Therefore, Arena provides f in F IS of:
energy cost, punishment of applying a big force, encouragement of keeping a
steady velocity, and moving distance towards the target.

3. Competitive (CP) BMaRSs (FCP ) are inspired by Cai and Daskalakis (2011)
and defined as

FCP =
{

f : f /∈ FNL ∪ F IS and ∀k ∈ K,∀x ∈ X ,

∀πx ∈ �x,∀πx ′ ∈ �x ′ ,
∂

∫
x ′∈X R

f

x ′dx ′

∂πx

= 0

}

, (17.3)

which intuitively means that for any agent x ∈ X , taking any possible policy
πx ∈ �x , the sum of the episode reward of all agents will not change. If the
episode length is 1, it expresses a classic multi-player zero-sum game (Cai and
Daskalakis 2011).

Useful examples of f within FCP are: (1) agents fight for a limited amount
of resources that are always exhausted at the end of the episode, and the agent
is rewarded for the amount of resources that it gained; and (2) fight till death,
and the reward is given based on the order of death (the reward can also be
based on the reversed order, so that the one departing the game first receives
the highest reward, such as in some poker games, the one who first discards all
cards wins). Rock, Paper, and Scissors in normal-form game (Myerson 2013) and
Cyclic Game in Balduzzi et al. (2019) are both special cases of FCP ;

4. Collaborative (CL) BMaRSs (FCL) are inspired by Cai and Daskalakis (2011)
and defined as

FCL =
{

f : f /∈ FNL ∪ F IS and ∀k ∈ K,∀x ∈ X ,

∀x ′ ∈ X \ {x},∀πx ∈ �x,∀πx ′ ∈ �x ′,
∂R

f

x ′

∂R
f
x

≥ 0

}

, (17.4)

which intuitively means that there is no conflict of interest (∂R
f

x ′ / ∂R
f
x < 0)

for any pair of agents (x ′, x). Besides, since f /∈ FNL ∪ F IS , there is at least
one pair of agents (x, x ′) that makes ∂R

f

x ′ / ∂R
f
x > 0. This indicates that this

pair of agents shares a common interest, so that improving R
f
x for agent x means
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improving R
f

x ′ for agent x ′. The most common example of f within FCL is that
fx for all x ∈ X is identical, such as the moving distance of an object that can
be pushed forward by the joint effort of multiple agents, or the alive duration
of the population (as long as there is at least one agent alive in the population,
the population is alive). Therefore, Arena provides f in FCL: living time of the
team (both positive and negative, since some games require the team to survive
as long as possible, while other games require the team to depart as early as
possible, such as poker).

5. Competitive and Collaborative Mixed (CC) BMaRSs (FCC) are defined to be
any situation other than the above four ones.

FCC = {
f : f /∈ FNL ∪ F IS ∪ FCP ∪ FCL

}
. (17.5)

First, the term ∂
∫
x ′∈X R

f

x ′dx ′ / ∂πx = 0 in (17.3) can be written as
∫
x ′∈X ∂R

f

x ′ / ∂R
f
x dx ′ = 0 (proof is not provided here, which refers to

original paper), which makes an alternative (17.3). Considering FCP in this
alternative (17.3) and FCL in (17.5), an intuitive explanation of FCC is that
there exist circumstances when ∂R

f

x ′ / ∂R
f
x < 0, meaning that the agents are

competitive at this point. But the derivative of total interest
∫
x ′∈X ∂R

f

x ′ / ∂R
f
x dx ′

is not always 0, therefore, the total interest can be maximized with specific
policies, meaning that the agents are collaborative at this point.

Apart from providing several practical f in each BMaRS, Arena also provides
a verification option for each BMaRS, meaning that one can customize a f and
use this verification option to make sure that the programmed f lies in a specific
BMaRS.

The above contents provide the theory about how to use different kinds of reward
functions to define social relationships. Moreover, the reward functions should be
defined with respect to the categories of the above definitions to achieve the expected
social relationships in the population. In practice, the reward functions have some
specific formats like those we mentioned in previous sections. The Arena framework
usually defines the Collaborative and Competitive reward functions in the Arena
Node of GlobalManager, and the Isolated reward functions are defined in the
Arena Node of agents like BasicAgent.

Here is an example for understanding the social tree relationship using different
BMaRs for each Arena Node as shown in Fig. 17.18.3 The reward schemes are
assigned at each Arena Node to define the social relationships of its sub-nodes. The
graphical user interface (GUI) in Fig. 17.18a defines a tree structure in Fig. 17.18b,
representing a population of 4 agents. The tree structure can be easily reconfigured
through dragging, duplicating, or deleting in the GUI in Fig. 17.18a. In this example,

3Figure source: Song, Yuhang, et al. “Arena: A General Evaluation Platform and Building Toolkit
for Multi-Agent Intelligence.” arXiv preprint arXiv:1905.08085 (2019).
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Fig. 17.18 The social tree defined in Arena using different BMaRs for each Arena Node

Fig. 17.19 Common social paradigms defined in Arena framework

each agent has an agent-level BMaRS. The agent is a robot ant, so that the
agent-level BMaRSs are F IS , specifically, the option of ant-motion that directs
the learning towards basic motion skills such as moving forward, as shown in
Fig. 17.18c. Each two agents form a team (which is a set of agents or teams), and the
two agents have team-level BMaRSs. In this example, the two robot ants collaborate
with each other to push a box forward, as shown in Fig. 17.18d. Therefore, the
team-level BMaRSs are FCL, specifically, the moving distance of the box. On the
two teams, Arena has global-level BMaRSs. In this example, the two teams are set
to have a match regarding which team pushes its box to the target point first, as
shown in Fig. 17.18e. Therefore, the global-level BMaRSs are FCP , specifically,
the ranking of the box reaching the target. The final reward function applied to each
agent is a weighted sum of the above three BMaRSs at three levels. One can imagine
defining a social tree of more than three levels, where small teams form into bigger
teams, and BMaRSs are defined at each node to give more complex and structured
social problems. After defining the social tree and applying BMaRSs on each node,
the environment is ready for use with the abstraction layer handling everything else,
such as assigning viewports to each agent in the window, applying the team color,
displaying the agent ID, and generating a top-down view.

Moreover, we can easily extend the above framework to other common social
paradigms, as shown in Fig. 17.19.4

4Figure source: Song, Yuhang, et al. “Arena: A General Evaluation Platform and Building Toolkit
for Multi-Agent Intelligence.” arXiv preprint arXiv:1905.08085 (2019).
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More Agent Prefabs

Apart from the previous BasicAgent, Arena has other more advanced agent prefabs
for the off-the-shelf usage, as shown in Fig. 17.20. The usage of other agents is
mostly like BasicAgent, through dragging and attaching it under the GlobalMan-
ager. The only difference lies in the action space, you need to change a correspond-
ing brain for controlling different agents. For example, the ArenaCrawlerAgent
in the agent prefabs looks like Fig. 17.21, which has continuous action space for
controlling the action values of joints. In order to use this agent properly, we need to
change the brain of ArenaCrawlerAgent to be ArenaCrawlerPlayerContinuous
(PlayerBrain) as shown in Fig. 17.22. Then the game can be exported and used for
training as general games.

17.2.4 Export Binary Game

After you have tested the game in Unity within the player mode, and make sure that
there is no problem in the game settings, you can export the game to be a stand-
alone binary file, and use it for training the MARL algorithms with Python scripts.
This section will show you how to export the game.

Fig. 17.20 Different agent
prefabs in Arena

Fig. 17.21 The
ArenaCrawlerAgent in the
scene
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Fig. 17.22 Change the brain for ArenaCrawlerAgent

Fig. 17.23 The original brain type in player mode

• First, we need to change the brain type from PlayerBrain to a corresponding
LearningBrain (of the same type), the PlayerBrain is used for controlling
the game agents with user keyboard operations and the LearningBrain is to
learn the controlling with learning algorithms. As shown in Fig. 17.23, for
this game, we change the GeneralPlayerDiscrete (PlayerBrain) to be the
GeneralLearnerDiscrete (LearningBrain) in Fig. 17.24. We also uncheck the
Debugging to reduce output information during training.

• To export the game, we choose File->Build Settings, and get a window like in
Fig. 17.25. We set the Target Platform and Architecture accordingly.

• We also need to click Player Settings to check the configurations, as shown in
Fig. 17.26. One thing to notice is that the Display Resolution Dialog needs to be
Disabled to work correctly. Then we go back to the previous window and click
Build. We can get the binary file of the game after building.
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Fig. 17.24 Change the brain type to be LearningBrain to export the game for training

Fig. 17.25 Check the configurations when building the game
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Fig. 17.26 The window of configuring export of the game

17.3 MARL Training

With the exported stand-alone games built with Arena, we can set up the training
process for investigating diverse problems in multi-agent reinforcement learning
(MARL).

Before training, we need to first set up the system. As MARL generally requires
large amounts of computation, we usually need a server to handle the training
process. The basic settings of Arena environments follow the Sect. 17.1 at the
beginning of this chapter. If you cannot use the X-Server properly on the server,
you can follow the following subsection to setup virtual display; otherwise, just
jump to the training sections.
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17.3.1 Setup X-Server

The basic settings of using virtual display are as follows:

# Install Xorg
sudo apt-get update
sudo apt-get install -y xserver-xorg mesa-utils
sudo nvidia-xconfig -a --use-display-device=None

--virtual=1280x1024

# Get the BusID information
nvidia-xconfig --query-gpu-info

# Add the BusID information to your /etc/X11/xorg.conf file
sudo sed -i ’s/ BoardName "GeForce GTX TITAN X"/ BoardName

"GeForce GTX TITAN X"\n BusID "0:30:0"/g’ /etc/X11/xorg.conf

# Remove the Section "Files" from the /etc/X11/xorg.conf file
# And remove two lines that contain Section "Files" and

EndSection
sudo vim /etc/X11/xorg.conf

# Download and install the latest Nvidia driver for ubuntu
# Please refer to

http://download.nvidia.com/XFree86/Linux-#x86_64/latest.txt
wget http://download.nvidia.com/XFree86/Linux-x86_64/390.87/

NVIDIA-Linux-x86_64-390.87.run
sudo /bin/bash ./NVIDIA-Linux-x86_64-390.87.run --accept-license

--no-questions --ui=none

# Disable Nouveau as it will clash with the Nvidia driver
sudo echo ’blacklist nouveau’ | sudo tee -a

/etc/modprobe.d/blacklist.conf
sudo echo ’options nouveau modeset=0’ | sudo tee -a

/etc/modprobe.d/blacklist.conf
sudo echo options nouveau modeset=0 | sudo tee -a

/etc/modprobe.d/nouveau-kms.conf
sudo update-initramfs -u

sudo reboot now

Kill Xorg using one of the following three ways (different ways may work on
different Linux versions):

# approach 1: run following and then run the output of this
command

ps aux | grep -ie Xorg | awk ’{print "sudo kill -9 " $2}’
# approach 2: run following
sudo killall Xorg
# approach 3: run following
sudo init 3
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Start vitual display with:

sudo ls
sudo /usr/bin/X :0 &

You should see the virtual display starts successfully with the output as follows:

X.Org X Server 1.19.5
Release Date: 2017-10-12
X Protocol Version 11, Revision 0
Build Operating System: Linux 4.4.0-97-generic x86_64 Ubuntu
Current Operating System: Linux W5 4.13.0-46-generic #51-Ubuntu

SMP Tue Jun 12 12:36:29 UTC 2018 x86_64
Kernel command line:

BOOT_IMAGE=/boot/vmlinuz-4.13.0-46-generic.efi.signed
root=UUID=5fdb5e18-f8ee-4762-a53b-e58d2b663df1 ro quiet
splash nomodeset acpi=noirq thermal.off=1 vt.handoff=7

Build Date: 15 October 2017 05:51:19PM
xorg-server 2:1.19.5-0ubuntu2 (For technical support please see

http://www.ubuntu.com/support)
Current version of pixman: 0.34.0

Before reporting problems, check http://wiki.x.org
to make sure that you have the latest version.

Markers: (--) probed, (**) from config file, (==) default
setting,
(++) from command line, (!!) notice, (II) informational,
(WW) warning, (EE) error, (NI) not implemented, (??) unknown.

(==) Log file: "/var/log/Xorg.0.log", Time: Fri Jun 14 01:18:40
2019

(==) Using config file: "/etc/X11/xorg.conf"
(==) Using system config directory "/usr/share/X11/xorg.conf.d"

If you are seeing errors, go back to “kill Xorg using one of following three way”
and try another way.

Before running “Arena-Baselines” in a new window, run following command to
attach a virtual display port to the window:

export DISPLAY=:0

17.3.2 Run Training

Create TMUX session (if the machine is a server you connect via SSH) and enter
virtual environment:

tmux new-session -s Arena
source activate Arena
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Continuous Action Space

List of games with continuous action space in Arena:

• ArenaCrawler-Example-v2-Continuous
• ArenaCrawlerMove-2T1P-v1-Continuous
• ArenaCrawlerRush-2T1P-v1-Continuous
• ArenaCrawlerPush-2T1P-v1-Continuous
• ArenaWalkerMove-2T1P-v1-Continuous
• Crossroads-2T1P-v1-Continuous
• Crossroads-2T2P-v1-Continuous
• ArenaCrawlerPush-2T2P-v1-Continuous
• RunToGoal-2T1P-v1-Continuous
• Sumo-2T1P-v1-Continuous
• YouShallNotPass-Dense-2T1P-v1-Continuous

Run the training commands, replace GAME_NAME with above games
and choose proper num-processes (with num-mini-batch equivalent to num-
processes) according to your machine,:

tmux new-session -s Arena
CUDA_VISIBLE_DEVICES=0 python main.py --mode train --env-name

GAME_NAME --obs-type visual --num-frame-stack 4
--recurrent-brain --normalize-obs --trainer ppo --use-gae
--lr 3e-4 --value-loss-coef 0.5 --ppo-epoch 10
--num-processes 16 --num-steps 2048 --num-mini-batch 16
--use-linear-lr-decay --entropy-coef 0 --gamma 0.995 --tau
0.95 --num-env-steps 100000000
--reload-playing-agents-principle OpenAIFive --vis
--vis-interval 1 --log-interval 1 --num-eval-episodes 10
--arena-start-index 31969 --aux 0

Discrete Action Space

List of games with discrete action space in Arena:

• Crossroads-2T1P-v1-Discrete
• FighterNoTurn-2T1P-v1-Discrete
• FighterFull-2T1P-v1-Discrete
• Soccer-2T1P-v1-Discrete
• BlowBlow-2T1P-v1-Discrete
• Boomer-2T1P-v1-Discrete
• Gunner-2T1P-v1-Discrete
• Maze2x2Gunner-2T1P-v1-Discrete
• Maze3x3Gunner-2T1P-v1-Discrete
• Maze3x3Gunner-PenalizeTie-2T1P-v1-Discrete
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• Barrier4x4Gunner-2T1P-v1-Discrete
• Soccer-2T2P-v1-Discrete
• BlowBlow-2T2P-v1-Discrete
• BlowBlow-Dense-2T2P-v1-Discrete
• Tennis-2T1P-v1-Discrete
• Tank-FP-2T1P-v1-Discrete
• BlowBlow-Dense-2T1P-v1-Discrete

Run the training commands, replace GAME_NAME with above games
and choose proper num-processes (with num-mini-batch equivalent to num-
processes) according to your machine,:

CUDA_VISIBLE_DEVICES=0 python main.py --mode train --env-name
GAME_NAME --obs-type visual --num-frame-stack 4
--recurrent-brain --normalize-obs --trainer ppo --use-gae
--lr 2.5e-4 --value-loss-coef 0.5 --ppo-epoch 4
--num-processes 16 --num-steps 1024 --num-mini-batch 16
--use-linear-lr-decay --entropy-coef 0.01 --clip-param 0.1
--num-env-steps 100000000 --reload-playing-agents-principle
OpenAIFive --vis --vis-interval 1 --log-interval 1
--num-eval-episodes 10 --arena-start-index 31569 --aux 0

You can also change other MARL algorithms instead of the PPO above to test
the games you build.

17.3.3 Visualization

To visualize the learning curves for analyzing the training process with Tensorboard,
run:

source activate Arena && tensorboard --logdir ../results/ --port
8888

and visit http://localhost:4253 for visualization with tensorboard.
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