
Chapter 14
Robust Image Enhancement

Yanhua Huang

Abstract Deep generative models such as GAN and Unet have achieved significant
progress over classic methods in several computer vision tasks like super-resolution
and segmentation. However, such learning-based methods lack robustness and
interpretability, which limits their applications in real-world situations. In this
chapter, we discuss a robust way for image enhancement that can combine a
number of interpretable techniques through deep reinforcement learning. We first
present some background about image enhancement. Then we formulate the image
enhancement as a pipeline modeled by MDP. Finally, we show how to implement
an agent on this MDP with PPO algorithm. The experimental environment is
constructed by a real-world dataset that contains 5000 photographs with both the
raw images and adjusted versions by experts. Codes are available at: https://github.
com/deep-reinforcement-learning-book/Chapter14-Robust-Image-Enhancement.

Keywords Image processing · Image enhancement · Robust learning

14.1 Image Enhancement

Image enhancement belongs to image processing techniques. Its principal objective
is to make the processed images more suitable for the needs of various applications.
Typical image enhancement techniques contain denoising, deblurring, and bright-
ness improvement. Real-world images always need multiple image enhancement
techniques. Figure 14.1 shows an enhancement pipeline that consists of brightness
improvements and denoising. Professional photo editing software, such as Adobe
Photoshop, allows powerful image retouching but is not efficient and requires
expertise in photo editing for users. In large-scale situations like recommendation
systems, the subjective quality of images is vital for user experience, where an
automatic image enhancement method that satisfies effectiveness, robustness, and

Y. Huang (�)
Xiaohongshu Technology Co., Ltd., Shanghai, China

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_14

379

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_14&domain=pdf
https://github.com/deep-reinforcement-learning-book/Chapter14-Robust-Image-Enhancement
https://github.com/deep-reinforcement-learning-book/Chapter14-Robust-Image-Enhancement
https://doi.org/10.1007/978-981-15-4095-0_14

380 Y. Huang

Fig. 14.1 An example of image enhancement pipeline. The raw image in the left is underexposed
with JPEG compression noise

efficiency is needed. In particular, robustness is the most important condition,
especially in user-generated content platforms, e.g., Facebook and Twitter, even if
1% of enhancement results are bad it will hurt millions of users.

Unlike image classification or segmentation that has a unique ground truth, the
training data of image enhancement relies on human experts. As a result, no large-
scale public dataset for image enhancement is available. Classical methods are
mainly based on gamma correction and histogram equalization that enhance the
image with the help of prior expert knowledge. These methods do not require a
large amount of data either. Gamma correction takes advantage of nonlinearity in
human perception such as our capacity to perceive light and color (Poynton 2012).
Histogram equalization achieves the idea that allows areas of lower local contrast
to gain a higher contrast for better distribution on the pixel histogram, which is
useful when backgrounds and foregrounds are both bright or both dark such as X-
ray images. Although these methods are fast and simple, the lack of consideration
of contextual information limits their performance.

Recently, learning-based methods, which try to approximate the mapping from
the input image to the desired pixel values with CNN, have achieved great success
(Bychkovsky et al. 2011; Ulyanov et al. 2018; Kupyn et al. 2018; Wang et al.
2019). However, such methods are not without issues. First of all, it is hard to train
a comprehensive neural network that can handle multiple enhancement situations.
Besides, pixel-to-pixel mapping lacks robustness, e.g., it does not perform very well
when dealing with some detailed information such as hair and characters (Zhang
et al. 2019; Nataraj et al. 2019). Some researchers have proposed to apply deep
reinforcement learning to image enhancement by formulating the enhancement
procedure as a sequence of iterative decision-making problems to address the
challenges above (Yu et al. 2018; Park et al. 2018; Furuta et al. 2019). In this
chapter, we follow these methods and propose a new MDP formulation for image
enhancement. We demonstrate our approach on a dataset containing 5000 pairs of
images with code examples, for providing a quick hands-on learning process.

Before discussing the algorithm, we introduce two Python libraries Pillow (Clark
2015) and scikit-image (Van der Walt et al. 2014) that provide a number of friendly

14 Robust Image Enhancement 381

interfaces to implement image enhancement. One can install them directly from
PyPI as follows:

pip install Pillow
pip install scikit-image

Here is an example code for contrast adjustment by Pillow’s sub-module ImageEn-
hance.

from PIL import ImageEnhance

def adjust_contrast(image_rgb, contrast_factor):
"""Adjust contrast
Args:

image_rgb (PIL.Image): RGB image
contrast_factor (float): color balance factor range from 0

to 1.
Return:

PIL.Image object
"""
enhancer = ImageEnhance.Contrast(image_rgb)
return enhancer.enhance(contrast_factor)

14.2 Reinforcement Learning for Robust Processing

When applying reinforcement learning to image enhancement, one needs to first
consider how to construct an MDP in this domain. An idea that naturally emerges
is to consider processing pixels to be states and different image enhancement
technologies to be actions in the context of reinforcement learning. This formulation
provides a combination method of several controllable primary enhancers to achieve
robust and effective results. In this section, we discuss such a reinforcement
learning-based color enhancement method. For simplicity, we only take global
enhancement actions. Note that it is natural to adapt to general enhancement
algorithms by adding region proposal modules (Ren et al. 2015).

Suppose that the training dataset contains N pairs of RGB images {(li, hi)}Ni=1
where li is the low-quality raw image and hi is the high-quality retouched image. In
order to maintain the data distribution, the initial state S0 should be sampled from
{li}Ni=1 uniformly. In each step, the agent takes a predefined action such as contrast
adjustment with a certain factor and then applies it to the current state. Note that the
current state and selected action fully determine the transition, i.e., no environment
uncertainty exists. Following previous works (Park et al. 2018; Furuta et al. 2019),
we use the improvement on CIELAB color space as the transition reward function:

||L(h) − L(St)||22 − ||L(h) − L(St+1)||22 (14.1)

382 Y. Huang

where h is the corresponding high-quality image of S0 and L maps images from
RGB color space to CIELAB color space.

Another important thing is the terminal condition during learning and evaluation.
Unlike reinforcement learning applications on games where the terminal state can
be determined by the environment, agents in image enhancement need to decide an
exit time by themselves. Park et al. (2018) proposed a DQN-based agent that exits
when all predicted Q-values are negative. However, the overestimation problem
of function approximation in Q-learning might lead to less robust results during
inference. We address this issue by training an explicit policy and adding a “NO-
OP” action to represent the exit choice. Table 14.1 lists all predefined actions, where
the action with index 0 represents “NO-OP.”

Training a convolutional neural network from scratch needs a large amount
of retouched image pairs. Instead of using raw image states as observations, we
consider the activation of the last convolutional layer in ResNet50 pre-trained on
the ILSVRC classification dataset (Russakovsky et al. 2015), which is a significant
deep feature that improves many other visual recognition tasks (Ren et al. 2016;
Redmon et al. 2016). Inspired by previous work (Park et al. 2018; Lee et al. 2005),
we further consider the histogram information when constructing observations.
Specifically, we calculate the histogram statistics of the state in RGB color space
over ranges (0, 255), (0, 255), (0, 255), and CIELAB color space over ranges
(0, 100), (−60, 60), (−60, 60). These three features are concatenated as 2048 +
2000 dimensional observations. We select PPO (Schulman et al. 2017) as the policy
optimization algorithm. PPO is an actor-critic method that achieves significant
results on a number of tasks. The network consists of three parts: three-layers feature
extractor serving as a backbone, one-layer actor, and one-layer critic. All layers are
fully connected, where the outputs of the layers in feature extractor are 2048, 512,
and 128 units with ReLU activation, respectively.

Table 14.1 The action set
for global color enhancement

Index Description

0 No operation

1 Contrast ×0.95

2 Contrast ×1.05

3 Saturation ×0.95

4 Saturation ×1.05

5 Brightness ×0.95

6 Brightness ×1.05

7 Red and green ×0.95

8 Red and green ×1.05

9 Green and blue ×0.95

10 Green and blue ×1.05

11 Red and blue ×0.95

12 Red and blue ×1.05

14 Robust Image Enhancement 383

Table 14.2
Hyper-parameters of PPO for
image enhancement

Hyper-parameter Value

Optimizer Adam

Learning rate 1e−5

Clip norm 1.0

GAE λ 0.95

Episodes per iter 4

Optimization per iter 2

Max iter 10,000

Entropy factor 1e−2

Reward scale 0.1

Reward clip [−1, 1]

γ 0.95

We evaluated our method on the MIT-Adobe FiveK (Bychkovsky et al. 2011)
dataset including 5000 raw images, each with five retouched images produced by
different experts (A/B/C/D/E). Following previous work (Park et al. 2018; Wang
et al. 2019), we only use the retouched images by Expert C, which randomly
selected 4500 images for training and the rest 500 images for testing. The raw
images are DNG format while the retouched images are TIFF format. We convert
all of them to JPEG format with quality 100 and color space sRGB by Adobe
Lightroom. For efficient training, we resized images such that the maximal side
consists of 512 pixels for each image. Hyper-parameters are provided in Table 14.2.

From now on, we demonstrate how to implement the algorithm above. First of
all, we need to construct an environment object.

class Env(object):
"""Training env wrapper of image processing RL problem"""
def __init__(self, src, max_episode_length=20,

reward_scale=0.1):
"""
Args:

src (list[str, str]): list of raw and retouched path,
initial

state will sample from it uniformly
max_episode_length (int): max number of actions can be

taken
"""
self._src = src
self._backbone = backbone
self._preprocess = preprocess
self._rgb_state = None
self._lab_state = None
self._target_lab = None
self._current_diff = None
self._count = 0
self._max_episode_length = max_episode_length
self._reward_scale = reward_scale
self._info = dict()

384 Y. Huang

With the ResNet API from TensorFlow, we build the observation by function
_state_feature as follows:

backbone = tf.keras.applications.ResNet50(include_top=False,
pooling=’avg’)

preprocess = tf.keras.applications.resnet50.preprocess_input

def get_lab_hist(lab):
"""Get hist of lab image"""
lab = lab.reshape(-1, 3)
hist, _ = np.histogramdd(lab, bins=(10, 10, 10),

range=((0, 100), (-60, 60), (-60, 60)))
return hist.reshape(1, 1000) / 1000.0

def get_rgb_hist(lab):
"""Get hist of lab image"""
lab = lab.reshape(-1, 3)
hist, _ = np.histogramdd(lab, bins=(10, 10, 10),

range=((0, 255), (0, 255), (0, 255)))
return hist.reshape(1, 1000) / 1000.0

def _state_feature(self):
s = self._preprocess(self._rgb_state)
s = tf.expand_dims(s, axis=0)
context = self._backbone(s).numpy().astype(’float32’)
hist_rgb = get_rgb_hist(self._rgb_state).astype(’float32’)
hist_lab = get_lab_hist(self._lab_state).astype(’float32’)
return np.concatenate([context, hist_rgb, hist_lab], 1)

Then we define the transition function _transit following Table 14.2, and
implement reward function _reward with Eq. (14.1), to construct same interfaces
as OpenAI Gym (Brockman et al. 2016):

def step(self, action):
"""One step"""
self._count += 1
self._rgb_state = self._transit(action)
self._lab_state = rgb2lab(self._rgb_state)
reward = self._reward()
done = self._count >= self._max_episode_length or action == 0
return self._state_feature(), reward, done, self._info

def reset(self):
"""Reset"""
self._count = 0
raw, retouched = map(Image.open, random.choice(self._src))
self._rgb_state = np.asarray(raw)
self._lab_state = rgb2lab(self._rgb_state)
self._target_lab = rgb2lab(np.asarray(retouched))
self._current_diff = self._diff(self._lab_state)
self._info[’max_reward’] = self._current_diff
return self._state_feature()

14 Robust Image Enhancement 385

In contrast to the implementation in Sect. 5.10.6, we apply the PPO (Schulman
et al. 2017) algorithm in the discrete case. Note that we use LogSoftmax as the
activation function in the actor network, which provides better numerical stability
when calculating the surrogate objective. For the PPO agent, we first define its
initialization and act function:

class Agent(object):
"""PPO Agent"""
def __init__(self, feature, actor, critic, optimizer,

epsilon=0.1, gamma=0.95, c1=1.0, c2=1e-4,
gae_lambda=0.95):

"""
Args:

feature (tf.keras.Model): backbone of actor and critic
actor (tf.keras.Model): actor network
critic (tf.keras.Model): critic network
optimizer (tf.keras.optimizers.Optimizer): optimizer

for NNs
epsilon (float): epsilon in clip
gamma (float): reward discount
c1 (float): factor of value loss
c2 (float): factor of entropy

"""
self.feature, self.actor, self.critic = feature, actor,

critic
self.optimizer = optimizer

self._epsilon = epsilon
self.gamma = gamma
self._c1 = c1
self._c2 = c2
self.gae_lambda = gae_lambda

def act(self, state, greedy=False):
"""
Args:

state (numpy.array): 1 * 4048
greedy (bool): whether select action greedily

Returns:
action (int): selected action
logprob (float): log prob of the selected action
value (float): value of the current state

"""
feature = self.feature(state)
logprob = self.actor(feature)
if greedy:

action = tf.argmax(logprob[0]).numpy()
return action, 0, 0

else:
value = self.critic(feature)
logprob = logprob[0].numpy()

386 Y. Huang

action = np.random.choice(range(len(logprob)),
p=np.exp(logprob))

return action, logprob[action], value.numpy()[0, 0]

During sampling, we record the trajectories with the GAE (Schulman et al. 2015)
algorithm

def sample(self, env, sample_episodes, greedy=False):
""" Sample trajectories from given env
Args:

env: environment
sample_episodes (int): how many episodes will be sampled
greedy (bool): whether select action greedily

"""
trajectories = [] # s, a, r, logp
e_reward = 0
e_reward_max = 0
for _ in range(sample_episodes):

s = env.reset()
values = []
while True:

a, logp, v = self.act(s, greedy)
s_, r, done, info = env.step(a)
e_reward += r
values.append(v)
trajectories.append([s, a, r, logp, v])
s = s_
if done:

e_reward_max += info[’max_reward’]
break

episode_len = len(values)
gae = np.empty(episode_len)
reward = trajectories[-1][2]
gae[-1] = last_gae = reward - values[-1]
for i in range(1, episode_len):

reward = trajectories[-i - 1][2]
delta = reward + self.gamma * values[-i] - values[-i -

1]
gae[-i - 1] = last_gae = \

delta + self.gamma * self.gae_lambda * last_gae
for i in range(episode_len):

trajectories[-(episode_len - i)][2] = gae[i] + values[i]
e_reward /= sample_episodes
e_reward_max /= sample_episodes
return trajectories, e_reward, e_reward_max

Finally, the optimization part is provided as follows:

def _train_func(self, b_s, b_a, b_r, b_logp_old, b_v_old):
all_params = self.feature.trainable_weights + \

self.actor.trainable_weights + \
self.critic.trainable_weights

with tf.GradientTape() as tape:

14 Robust Image Enhancement 387

b_feature = self.feature(b_s)
b_logp, b_v = self.actor(b_feature), self.critic(b_feature)

entropy = -tf.reduce_mean(
tf.reduce_sum(b_logp * tf.exp(b_logp), axis=-1))

b_logp = tf.gather(b_logp, b_a, axis=-1, batch_dims=1)
adv = b_r - b_v_old
adv = (adv - tf.reduce_mean(adv)) /

(tf.math.reduce_std(adv) + 1e-8)

c_b_v = b_v_old + tf.clip_by_value(b_v - b_v_old,
-self._epsilon, self._epsilon)

vloss = 0.5 * tf.reduce_max(tf.stack(
[tf.pow(b_v - b_r, 2), tf.pow(c_b_v - b_r, 2)],

axis=1), axis=1)
vloss = tf.reduce_mean(vloss)

ratio = tf.exp(b_logp - b_logp_old)
clipped_ratio = tf.clip_by_value(

ratio, 1 - self._epsilon, 1 + self._epsilon)
pgloss = -tf.reduce_mean(tf.reduce_min(tf.stack(

[clipped_ratio * adv, ratio * adv], axis=1), axis=1))

total_loss = pgloss + self._c1 * vloss - self._c2 * entropy
grad = tape.gradient(total_loss, all_params)
self.optimizer.apply_gradients(zip(grad, all_params))
return entropy

def optimize(self, trajectories, opt_iter):
""" Optimize based on given trajectories """
b_s, b_a, b_r, b_logp_old, b_v_old = zip(*trajectories)
b_s = np.concatenate(b_s, 0)
b_a = np.expand_dims(np.array(b_a, np.int64), 1)
b_r = np.expand_dims(np.array(b_r, np.float32), 1)
b_logp_old = np.expand_dims(np.array(b_logp_old, np.float32),

1)
b_v_old = np.expand_dims(np.array(b_v_old, np.float32), 1)
b_s, b_a, b_r, b_logp_old, b_v_old = map(

tf.convert_to_tensor, [b_s, b_a, b_r, b_logp_old, b_v_old])
for _ in range(opt_iter):

entropy = self._train_func(b_s, b_a, b_r, b_logp_old,
b_v_old)

return entropy.numpy()

where the value loss clipping and advantage normalization are followed by Dhariwal
et al. (2017). Figure 14.2 shows an example result.

388 Y. Huang

Fig. 14.2 An example result of global enhancement on the MIT-Adobe FiveK dataset. The global
brightness is increased while some areas like sky in the upper right corner need local enhancement

References

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016)
OpenAI gym. Preprint. arXiv:160601540

Bychkovsky V, Paris S, Chan E, Durand F (2011) Learning photographic global tonal adjustment
with a database of input/output image pairs. In: Conference on computer vision and pattern
recognition 2011. IEEE, Piscataway, pp 97–104

Clark A (2015) Pillow (PIL fork) documentation. https://github.com/python-pillow/Pillow
Dhariwal P, Hesse C, Klimov O, Nichol A, Plappert M, Radford A, Schulman J, Sidor S, Wu Y,

Zhokhov P (2017) OpenAI baselines. GitHub, GitHub repository
Furuta R, Inoue N, Yamasaki T (2019) Fully convolutional network with multi-step reinforcement

learning for image processing. In: Proceedings of the AAAI conference on artificial intelli-
gence, vol 33, pp 3598–3605

Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J (2018) DeblurGAN: Blind motion
deblurring using conditional adversarial networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 8183–8192

Lee S, Xin J, Westland S (2005) Evaluation of image similarity by histogram intersection. Color
research & application: endorsed by inter-society color council, the colour group (Great
Britain), Canadian society for color, color science association of Japan, Dutch society for
the study of color, the Swedish colour centre foundation, colour society of Australia, centre.
Français de la Couleur 30(4):265–274

Nataraj L, Mohammed TM, Manjunath B, Chandrasekaran S, Flenner A, Bappy JH, Roy-
Chowdhury AK (2019) Detecting GAN generated fake images using co-occurrence matrices. J
Electron Imaging 2019:532-1

Park J, Lee JY, Yoo D, So Kweon I (2018) Distort-and-recover: color enhancement using deep
reinforcement learning. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 5928–5936

Poynton C (2012) Digital video and HD: algorithms and interfaces. Elsevier, Amsterdam
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object

detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 779–788

Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with
region proposal networks. In: Advances in neural information processing systems, pp 91–99

Ren S, He K, Girshick R, Zhang X, Sun J (2016) Object detection networks on convolutional
feature maps. IEEE Trans Pattern Anal Mach Intell 39(7):1476–1481

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M (2015) ImageNet large scale visual recognition challenge. Int J Comput Vision
115(3):211–252

https://github.com/python-pillow/Pillow

14 Robust Image Enhancement 389

Schulman J, Moritz P, Levine S, Jordan M, Abbeel P (2015) High-dimensional continuous control
using generalized advantage estimation. Preprint. arXiv:150602438

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization
algorithms. Preprint. arXiv:170706347

Ulyanov D, Vedaldi A, Lempitsky V (2018) Deep image prior. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 9446–9454

Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E,
Yu T (2014) Scikit-image: image processing in python. PeerJ 2:e453

Wang R, Zhang Q, Fu CW, Shen X, Zheng WS, Jia J (2019) Underexposed photo enhancement
using deep illumination estimation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 6849–6857

Yu K, Dong C, Lin L, Change Loy C (2018) Crafting a toolchain for image restoration by deep
reinforcement learning. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 2443–2452

Zhang S, Zhen A, Stevenson RL (2019) GAN based image deblurring using dark channel prior.
Preprint. arXiv:190300107

	14 Robust Image Enhancement
	14.1 Image Enhancement
	14.2 Reinforcement Learning for Robust Processing
	References

