
Chapter 12
Parallel Computing

Huaqing Zhang and Tianyang Yu

Abstract Due to the low sample efficiency of reinforcement learning, parallel
computing is an efficient solution to speed up the training process and improve
the performance. In this chapter, we introduce the framework applying parallel
computation in reinforcement learning. Based on different scenarios, we firstly
analyze the synchronous and asynchronous communication and elaborate parallel
communication in different network typologies. Taking the advantage of parallel
computing, classic distributed reinforcement learning algorithms are depicted and
compared, followed by summaries of fundamental components in the distributed
computing architecture.

Keywords Distributed computing · Asynchronous advantage actor-critic ·
Hybrid GPU/CPU A3C · Importance weighted actor-learner architecture
(IMPALA) · Scalable efficient deep-RL (SEED) · Distributed proximal policy
optimization (DPPO) · Ape-X · Retrace-actor (Reactor) · Recurrent replay
distributed DQN (R2D2)

12.1 Introduction

In deep reinforcement learning, large amounts of data is required for model training.
Take OpenAI Five (OpenAI et al. 2019) as an example, batches of around two mil-
lion frames are applied for training every 2 s, so as to let the agents learn and behave
smartly in the Dota game. Moreover, from the optimization perspective, large batch
size can reduce variance especially for policy gradient methods. However, due to the
sequential interactions between the agent and the environment, the reinforcement
learning algorithm suffers from the low sample efficiency, result in the unsatisfied

H. Zhang (�)
Google LLC, Mountain View, CA, USA

T. Yu
Nanchang University, Nanchang, China

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_12

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_12&domain=pdf
https://doi.org/10.1007/978-981-15-4095-0_12

348 H. Zhang and T. Yu

training performance and slow convergence speed. Parallel computing, referring to
the simultaneous computation on separated but independent tasks, is implemented
as an efficient solution. Generally, the parallelization can be considered from the
following two perspectives:

• Parallel Computation: Data computation is the core procedure to perform
feature engineering, modeling learning, and performance evaluations. The com-
putation is taken over by computing unit, which can be combined and extended
to different scales. Within each level, the performance of computation can be
regarded into two perspectives. One is focusing multiple computing units on
one task. The other is to map multiple computing units to multiple tasks and
apply computation in parallel fashion. Compared with the above computation
strategies, with increasing number of computing units applied on one task, the
efficiency to finish the task increases but soon converges due to some bottleneck
processes. In deep reinforcement learning, when the computing resources are
sufficiently provided, in order to further improve the efficiency, it is beneficial to
separate the task into multiple independent sub-tasks, each allocated to efficient
amounts of computing resources.

• Parallel Transmission: When sufficient computing resources are provided, how
to manage the data transmission between the computing resources may become
the bottleneck to solve the problem. Generally different data transmission
network typologies are put forward for different applications to avoid the
transmission redundancy, to balance the transmission loads and to reduce the
transmission delay. In parallel computing, as there are multiple processes or
threads finishing different tasks at the same time, it is challenging to manage the
data traffic and guarantee the transmission efficiency in the network with limited
communication bandwidth.

In a supervised setting, one simple way to speed up the learning is to process
many different input samples as once. However, in deep reinforcement learning, this
is not possible because we have to let the agent and environment interact with each
other sequentially to obtain all required information. What we should follow in deep
reinforcement learning instead is to apply parallelization on different trajectories or
batches when updating weights in deep policy and value network. In this chapter, we
analyze the parallelization of deep reinforcement learning in the perspective of data
computation and data transmission. We further enumerate significant distributed
computing algorithms and show the general distributed computing architecture to
be applied for large-scale deep reinforcement learning problems.

12.2 Synchronization and Asynchronization

In parallel computing, most of the common data transmission methods apply star
topology, which is composed of one master node and multiple slave nodes. The
master node generally manages the data information for the problem. It applies

12 Parallel Computing 349

data distribution and collection with each slave node. Based on the accumulated
data, the general network parameters are learnt and updated. Each slave node, on
the other hand, receives the allocated data from the master node, performs data
computation and submits its computing results back to the master node. As there
are multiple slave nodes working at the same time, under the management of the
master node, the data computation can be done in parallel to finish a large-scale
problem in cooperation.

The star topology is widely considered in solving deep reinforcement learning
applications. The parallel version of the actor-critic method, for example, usually
adopts one master node and multiple slave nodes. Each slave node maintains a deep
policy network, which has the same structure as all other slave nodes and the master
node. Therefore, the slave nodes can be initialized by copying the weights of the
policy network from their master node. Then it can independently interact with the
environment for exploration. After several rounds of interactions, the slave node
communicates with the master node and sends the information related with the
weights of networks. The information can be single-step exploration experience,
trajectory exploration experience, buffered exploration experiences with priority
information, computed gradients of the network parameters, etc., based on different
detailed architecture. Accumulating the feedback and experience from each slave
node, the master node can update network parameters and further announce its
updated weights to slave nodes for their next round of explorations.

The star topology clearly separates the tasks and accelerates the policy learning
with the parallel computing among slave nodes. However, with different compu-
tation power, each slave node may explore and collect experience with different
time schedules. Then how to determine the pattern for data communication varies
for different problems and system architectures, which generally is classified into
synchronous communication and asynchronous communication.

The synchronous communication pattern is shown in Fig. 12.1, where the red bar
is the time applied for data communication among the nodes and the blue bar is the
time for computation within the node. It is noticed that the time for communication
falls into the same time intervals for all slave nodes. For the master node, it has
same time intervals to communicate with all slave nodes. However, for the slave
nodes, the ones computing faster have to wait until all other slower ones finish the

Fig. 12.1 Synchronization

350 H. Zhang and T. Yu

Fig. 12.2 Asychronization

computation within the round. Thus, synchronous communication is more organized
for the master node to collect and analyze the computation results from the slave
nodes, but there are lots of computing resources wasted on slave nodes due to the
waiting for synchronization.

In order to avoid the waiting time for slave node and improve the efficiency
to apply computing resources, asynchronous communication is put forward cor-
respondingly. As depicted in Fig. 12.2, each slave node is able to submit the
information to the master node as long as it finishes the training task within one
round, and the master node collects the information and synchronizes with the slave
node whenever the slave node finishes. Accordingly, the data communication to
different slave nodes is performed within different time intervals. The master node
may require communication with different slave nodes from time to time, but the
computing resource are fully adopted for model training for each slave node.

12.3 Parallel Communication and Networking

The star topology is a centralized way to apply parallel computation, where the
master node is able to manage and maintain the system to guarantee that all
distributed tasks are well-organized. On the other side, the master node is also the
weakness part of the system. In order to guarantee high performance, the master
node is required to be much more efficient on information processing compared
with the slave nodes. Secondly, the data transmission bandwidth towards the master
node also requires to be sufficient so as to avoid delay for the data computation for
all slave nodes. Moreover, the robustness of the system is highly dependent on the
master node. Whatever issues causing the breakdown event on the master node, the
whole system stops working even though the computing resources on slave nodes
are available and sufficient.

Accordingly, for many application with demanding requirements on robustness
and large-scale parallel computing power, a general distributed data computation
and communication structure is necessary. We assume there are multiple inde-
pendent processes, each of which maintains its own deep reinforcement learning
network and communicates with others frequently from data synchronization.

12 Parallel Computing 351

Fig. 12.3 Tree-structured communication

As each process requires to exchange the information with all other processes,
when the number of processes increasing, the communication cost exponentially
increases. In order to reduce the redundant communication and achieve efficiency
on information synchronization, inter-process communication (IPC) are referred
with message passing interfaces (MPI). Generally MPI provides basic interfaces
for message sending, broadcasting, and receiving for each process. Based on the
standard, different communication structures are further provided to improve the
communication efficiency. The following takes some communication structures as
examples for insights.

• Tree-Structured Communication: Assume there are N processors in the
system. When a process would like to broadcast its information to all other
N − 1 processors, it can follow a tree-structure as shown in Fig. 12.3. In the
tree-structured communication, the processor first communicates with its m − 1
neighboring processes. Then in the next iterations, all neighbors receiving the
information will further communicate to m − 1 new different processors in
parallel to expand to all other processors. Accordingly, with increasing parallel
communication, it takes �logm N� iterations to broadcast the information to all
processors and the information sender processor only requires to send (m −
1)�logm N� times. Compared with the method to send its information to all other
processors, the tree-structured communication reduces the sending times for each
processor but increases the iterations to apply parallel communication.

• Butterfly Communication: When all N processors need to broadcast their
information to all other processors simultaneously, each processor can follow
the tree-structured communication and formulate the butterfly communication
structure. In butterfly communication, as shown in Fig. 12.4, each processor first
sends its information to its neighbors, who will further accumulate and forward
the information to all other processors. As each node can collect and accumulate
the information before transmitting to all other processors, the efficiency is
further improved in distributed fashion. In general, it takes �logm N� iterations
to broadcast the information to all processors and each processor only requires
to send (m − 1)�logm N� times. Moreover, whenever there is a node breakdown
in the middle of communication, all other nodes are still able to continue and let
the information synchronized on all other processors.

352 H. Zhang and T. Yu

Fig. 12.4 Butterfly communication

Based on different communication structures, the parallel computation and trans-
mission for reinforcement learning algorithm can be widely diverse and flexible.
For different applications, the system architecture can be different to improve the
parallelization and efficiency. In the next section, we will further summarize the
general distributed computing architecture in deep reinforcement learning.

12.4 Distributed Reinforcement Learning Algorithms

12.4.1 Asynchronous Advantage Actor-Critic

Asynchronous advantage actor-critic (A3C) (Mnih et al. 2016) is the distributed
algorithm derived from the advantage actor-critic (A2C) method. As shown in
Fig. 12.5, there are multiple actor-learners interacting with separated but identical
environments by applying A2C algorithm. Each actor-learner maintains a policy
network and a value network to make smart actions. For the initialization and
synchronization of the network parameters for all actor-learners, a parameter server
is established, supporting asynchronous communications with all actor-learners.

From the perspective of each actor-learner, we elaborate the learning algorithm
in Algorithm 1. For each learning episode, each actor-learner initially obtains
the network parameters from the parameter server asynchronously. Based on the
synchronized policy network, the actor-learner chooses actions and interacts with
the environment for at most tmax steps. The explored experience is collected to
train the policy and value network, generating the accumulated gradients θ. and
dθv, respectively. After Tmax steps of exploration, the actor-learner reports the
accumulated gradients to the parameter server and updates the general network
parameters θ and θv asynchronously.

12 Parallel Computing 353

Algorithm 1 Asynchronous advantage actor-critic (Actor-Learner)
Hyperparameters: Total number of steps Tmax . Maximum steps for each episode tmax .
Initialize step counter t = 1.
while T ≤ Tmax do

Reset gradients: dθ = 0 and dθv = 0.
Sync with parameter server to obtain network parameters θ ′ = θ and θ ′

v = θv .
tstart = t

Set starting state St for the episode
while Reach terminal state or t − tstart == tmax do

Choose action at based on policy π(St |θ ′)
Act in the environment and receive rewards Rt and next state St+1
t = t + 1, T = T + 1

end while
if Reach terminal state then

R = 0
else

R = V (St |θ ′
v)

end if
for i = t − 1, t − 2, . . . , tstart do

Update discounted rewards R = Ri + γR

Accumulate gradients wrt θ ′, dθ = dθ + ∇θ ′ log π(Si |θ ′)(R − V (Si |θ ′
v))

Accumulate gradients wrt θ ′
v , dθv = dθv + ∂(R − V (Si |θ ′

v))
2/∂θ ′

v

end for
Asynchronously update θ with dθ and θv with dθv .

end while

Fig. 12.5 A3C architecture

354 H. Zhang and T. Yu

12.4.2 Hybrid GPU/CPU A3C

In order to better leverage the GPU’s computational power and improve the compu-
tation efficiency, A3C architecture is further optimized to the hybrid GPU/CPU A3C
(GA3C) (Babaeizadeh et al. 2017). As depicted in Fig. 12.6, from the environments
or simulators to the learning model, there exist components of agent, predictor, and
trainer. The functionality for each component is shown as follows.

• Agent: There are multiple agents interacting with their simulated environments,
respectively. Each agent does not need to maintain a policy network for decision
making. Instead, based on the current state St , the agent pushes one request
to the prediction queue and lets the predictor assist to choose actions from the
general policy network. After the action At is taken and the reward Rt and next
state St+1 are provided from the environment, the agent submits the experience
(St , At , Rt , St+1) to the training queue for the model training.

• Predictor: The predictor collects the requests from the agent in the prediction
queue, batches the requests, and sends to the general policy network for model
inference. The batched input data for model inference takes the advantage of
the parallel computation in GPU, improving the computation efficiency of the
learning model. Based on the number of requests, multiple predictors with
multiple prediction queues are supported to balance the trade-off of computation
latency and computation efficiency.

• Trainer: Receiving the experiences from multiple agents, the trainer collects
the data from the training queue, batches the training data, and sends to
the general policy and value network for model training. The batched model
training improves the computation efficiency with GPU and moreover reduces
the variance and fluctuations in model training.

Fig. 12.6 GA3C architecture

12 Parallel Computing 355

12.4.3 Distributed Proximal Policy Optimization

Distributed Proximal Policy Optimization (DPPO) is a distributed version of the
PPO algorithm. As depicted in Fig. 12.7, the algorithm includes the chief as the
parameter server and workers the same as actor-learners in A3C. It distributes data
collection and gradient calculation over multiple workers, which greatly reduces the
learning time. Periodically, the chief updates parameters after averaging gradients
passed by workers, and then passes the latest parameters to workers synchronously.

The pseudocode of the DPPO algorithm is provided in Algorithms 2, 3, and 4,
corresponding to one chief and two different workers. Workers can be one of the
two versions of PPO algorithm: PPO-Penalty and PPO-Clip. This section provides
the corresponding two DPPO algorithms: DPPO-Penalty and DPPO-Clip. The only
difference is the way in which the workers calculate the gradients, while the chief
part is the same, as shown in the pseudocode.

The chief collects gradients from workers and update parameters. As shown in
Algorithm 2, during each iteration, the chief waits for at least (W − D) gradients
from workers and updates with the averaged gradients. The latest parameters are
returned to workers to continue the sampling and gradients-calculation process.
At each iteration, M and B sub-iterations are performed on actor and critic,
respectively.

Workers collect data samples and calculate gradients, then pass the gradients to
the chief. Algorithms 3 and 4 have a similar process, except for the methods of
calculating the policy gradient. At each iteration, the worker first collects a bunch
of data Dk , calculates Ĝt and Ât , stores πθ as πold, and then performs M and B

sub-iterations on actor and critic, respectively.
In DPPO-Clip, the parameter λ is also shared across workers, but its updates

are determined based on local average KL divergence. Other statistical values for

Fig. 12.7 DPPO architecture

356 H. Zhang and T. Yu

Algorithm 2 DPPO (chief)
Hyperparameters: the number of workers W , threshold for numbers of gradients available
workers D, the number of sub-iterations M,B

Input: initial global policy parameters θ , initial global value function parameters φ

for k = 0, 1, 2, . . . do
for m ∈ {1, . . . ,M} do

Wait until at least W −D gradients wrt. θ are available average gradients and update global
θ

end for
for b ∈ {1, . . . , B} do

Wait until at least W −D gradients wrt. φ are available average gradients and update global
φ

end for
end for

normalization in data collection are also recommended to be shared among workers,
like means and standard deviations of observations, rewards, and advantages. An
additional penalty term is also adopted in DPPO-Clip when the KL divergence
exceeds the valid change. Early stopping is also used during each sub-iteration on
the actor to improve stability.

12.4.4 IMPALA and SEED

Based on the advantage actor-critic (A2C) learning algorithm, the Importance
Weighted Actor-Learner Architecture (IMPALA) (Espeholt et al. 2018) applies the
trajectory experiences of the agents as the communication information for dis-
tributed computation. As shown in Fig. 12.8, the IMPALA architecture is composed
of actors and learners, with the detailed introductions as follows.

• Actor: Within each actor, a replicated policy network interacts with a simulated
environment and stores the experience into the buffer. After certain number of
interactions, each actor sends the trajectory of stored experiences to the learners
and receive the updates of policy network parameters from the learners in a
synchronized fashion.

• Learner: When interacting with the actor, the learner receives the trajectory
experiences of the actors and applies it for model training. The value approxi-
mation at state ST is defined as the n-step V-trace target, as follows:

Target = V (ST) + ∑T +n−1
t=T γ t−T

(
�t−1

i=T ci

)
δtV , (12.1)

where δtV = ρt (Rt + γV (St+1) − V (St)) is the temporal difference. ρt =
min(ρ̄, π(St)

μ(St)
). ci = min(c̄, π(Si)

μ(Si)
). π is the learner policy, which is averagely

several updates ahead of the actor’s policy μ.

12 Parallel Computing 357

Algorithm 3 DPPO (PPO-Penalty worker)
Hyperparameters: KL penalty coefficient λ, adaptive parameters a = 1.5, b = 2, the number
of sub-iterations M,B

Input: initial local policy parameters θ , initial local value function parameters φ

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {τi} by running policy πθ in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

Store partial trajectory information
πold ← πθ

for m ∈ {1, . . . ,M} do

JPPO(θ) =
T∑

t=1

πθ (At |St)

πold(At |St)
Ât − λKL[πold|πθ] − ξ max(0, KL[πold|πθ] − 2KLtarget)

2

if KL[πold|πθ] > 4KLtarget then
break and continue with next outer iteration k + 1

end if
Compute ∇θ JPPO

send gradient wrt. θ to chief
wait until gradient accepted or dropped; update parameters

end for
for b ∈ {1, . . . , B} do

LBL(φ) = − ∑T
t=1(Ĝt − Vφ(St))

2

Compute ∇φLBL

send gradient wrt. φ to chief
wait until gradient accepted or dropped; update parameters

end for
Compute d = Êt [KL[πold(·|St), πθ (·|St)]]
if d < dtarget/a then

λ ← λ/b

else if d > dtarget × a then
λ ← λ × b

end if
end for

Moreover, there can be multiple learners, separated as worker learners and
master learner. Each learner interacts with different actors and finishes model
training independently. Periodically, all worker learners communicate with the
master learner with learning gradients and the master announces the update of
the network parameters synchronously.

The Scalable, Efficient, Deep-RL (SEED) architecture (Espeholt et al. 2019) is
closely related with the IMPALA. The key difference is that the inference policy
network is moved from the actor to the learner, which reduces the computation
requirement for the actor and decreases the communication latency. The detailed
SEED architecture is shown in Fig. 12.9. As each actor implements one or multiple

358 H. Zhang and T. Yu

Algorithm 4 DPPO (PPO-Clip worker)
Hyperparameters: clip factor ε, the number of sub-iterations M,B

Input: initial local policy parameters θ , initial local value function parameters φ

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {τi} by running policy πθ in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

Store partial trajectory information
πold ← πθ

for m ∈ {1, . . . ,M} do
Update the policy by maximizing the PPO-Clip objective:

JPPO(θ) = 1

|Dk |T
∑

τ∈Dk

T∑

t=0

min

(
πθ (At |St)

πold(At |St)
Ât , clip(

π(At |St)

πold(At |St)
, 1 − ε, 1 + ε)Ât

)

Compute ∇θ JPPO

send gradient wrt. θ to chief
wait until gradient accepted or dropped; update parameters

end for
for b ∈ {1, . . . , B} do

Fit value function by regression on mean-squared error:

LBL(φ) = − 1

|Dk |T
∑

τ∈Dk

T∑

t=0

(
Vφ(St) − Ĝt

)2

typically via some gradient descent algorithm
send gradient wrt. φ to chief
wait until gradient accepted or dropped; update parameters

end for
end for

Fig. 12.8 IMPALA architecture

12 Parallel Computing 359

Fig. 12.9 SEED architecture

environments only, all kinds of machines with weak computation power can be
regarded as the actor in the architecture. Based on the instructed actions from
the learner, the actor provides one-step feedback experience to the learner and
the experience is stored in the experience buffer within the learner. After several
iterations, the trajectory data is applied to model training, where V-trace target in
Eq. (12.1) is also applied as the value approximation.

12.4.5 Ape-X, Reactor, and R2D2

In distributed network, considering the multiple interactions between agents and
environments, it is scalable and beneficial to extend prioritized experience replay to
the architecture. Ape-X (Horgan et al. 2018) is the typical distributed architecture
including prioritized experience replay. As shown in Fig. 12.10, there exist multiple
independent actors. Within each actor, an agent interacting with an environment
with the guidance from the policy network. Based on the experience collected
from multiple actors, the learner train the network parameters and learn the optimal
policy. Most importantly, apart from the actor and learner, there exists a replay buffer
collecting the experience from actors, updating the priorities of each experience
entry and batching the prioritized ones to the learner for model training. The batched
prioritized experiences improve the computation efficiency and model learning
performance.

The algorithms from the perspective of each actor are elaborated in Algorithm 5.
Each actor initially synchronizes with the learner on network parameters. The
updated parameters then instruct the agent to interact with the environment.
Receiving the feedback from the environment, the actor calculates the priorities of
the explored experience and sends both the data and priority information to the
replay buffer.

360 H. Zhang and T. Yu

Fig. 12.10 Ape-X architecture

Algorithm 5 Ape-X (Actor)
Hyperparameters: Send to replay with batch size B in local buffer. Number of iterations T

Sync with learner to obtain latest network parameters θ0.
Get initial state S0 from environment.
for t = 0, 1, 2, . . . , T − 1 do

Choose action At based on policy π(St |θt)

Add experience (St , At , Rt , St+1) to the local buffer
if The local buffer reaches its size requirements B then

Get buffered data with batch size B

Calculate the priorities p of the buffered data.
Send the batched buffered data and its priorities to the replay

end if
Periodically sync and update the latest network parameters θt

end for

When the replay buffer collects certain amount of experiences from the actors,
the learner interacts with the replay buffer for learning. The algorithm from the
perspective of the learner is shown in Algorithm 6. For each episode of model
learning, the learner firstly samples prioritized batch of experience data from the
replay buffer. Each data entry is represented as (i, d), where i denotes the index of
the data and d is the detailed information of the experience including state, action,
reward, and next state. The batched data is employed to train network parameters
of the learner, which will periodically synchronize with network parameters of all
actors. After model training, the priorities of the sampled data are adjusted and
updated in replay buffer. Due to the limits of the replay buffer size, periodically, the
data with low priorities will be removed in replay buffer.

Following the general architecture, Ape-X DQN and Ape-X DPG are proposed
when the learning model follows the DQN and DPG algorithm, respectively. In
Ape-X DQN, the Q-network exists in the learner and all actors. The actions for the
actor are guided with the Q values from the network. In Ape-X DPG, both policy

12 Parallel Computing 361

Algorithm 6 Ape-X (Learner)
Hyperparameters: Number of learning episodes T .
Initialize the network parameters θ0.
for t = 1, 2, 3, . . . , T do

Sample a prioritized batch of data (i, d) from replay
Applying training with the batched data
Update network parameters to θt

Calculate the priorities p for batched data d

Update the priorities p for data with index i on replay
Periodically remove data with low priorities in replay

end for

network and value network exist in learner, while each actor only replicates the
policy network to instruct the actions.

Built upon the prioritized distributed replay, Retrace-Actor (Reactor) (Gruslys
et al. 2017) is further put forward based on the actor-critic architecture. Instead of
the single experience, the sequence of experiences are pushed into the buffer and
distributional Retrace(λ) algorithm is implemented to update the estimation of Q

values. In the perspective of the neural network, the LSTM network is added in both
policy and value network for better model learning.

Similarly, Recurrent Replay Distributed DQN (R2D2) (Kapturowski et al.
2018) applies fixed-length sequence of experiences in prioritized distributed replay.
Developed from the DQN, R2D2 implements LSTM layer in the network and train
the LSTM from replay with stored states.

12.4.6 Gorila

Implemented from the Deep Q-Network algorithm, general reinforcement learning
architecture (Gorila) (Nair et al. 2015) is depicted in Fig. 12.11. Synchronizing the
parameters of deep Q-network from the parameter server, the actors interact with the
environment based on the policy instructed by the deep Q-network. The experiences
received from the interactions are instantly forward to the replay buffer. The replay
buffer stores and maintains the collected experience from all actors. Fetching the
batched experience data from the replay buffer, the learner applies model learning
and calculates the gradients of the Q-network. Within the learner, there are one
learning Q-network and one target Q-network to calculate the TD-error. The
learning Q-network sync with the parameter sever for each step of learning, while
the target Q-network sync with the parameter server every N steps. Periodically,
the parameter server receives the gradients from the learner and updates the network
parameters for future explorations.

362 H. Zhang and T. Yu

Fig. 12.11 Gorila architecture

12.5 Distributed Computing Architecture

Based on the basic patterns and structures in parallel computing, in distributed
reinforcement learning, the large-scale parallel computing architecture can be
further explored and investigated. Generally, the system can be composed of the
following basic components:

• Environments: The environment is the component the agent interact with. In
large-scale parallel computing of deep reinforcement learning, the environment
can have multiple replicas which are mapped to different replicas of actors to gain
experience in parallel fashion. Moreover, in model-based reinforcement learning,
the model can also be regarded as simulated environment in the system to help
learning in parallelization.

• Actors: The actor concept in the system refers to the component directly
interacting with the environment. There can be multiple actors mapping to single
or multiple real or simulated environments, and each actor is able to make
actions independently with each other in the assigned environment. The action is
determined by its own or shared policy network or Q-network from the parameter
servers or its corresponding learners. With multiple actions applied sequentially
in the environment, trajectories are formed, which will be pushed into the replay
memory buffers or directly fed into the learners. As interactions between actor
and environment can be costly in time, the parallelization on actors can improve

12 Parallel Computing 363

the speed to generate experiences and contributes to the training performance for
learners.

• Replay Memory Buffers: The replay memory buffer is the component to collect
the planning trajectories from actors and provide to learners for policy learning
or Q learning. As the memory buffer requires to perform fast data writing,
shuffling, and data reading, the storage structure should also support in dynamic
and parallel fashion. Moreover, as most learners reply on the data in replay
memory buffer for training, it is recommended to allocate reply memory buffers
closely connected with learners, so as to guarantee the learning efficiency.

• Learners: The learners are the key component for deep reinforcement learning.
Based on different deep reinforcement learning algorithms, the structure for each
learner will be different. Normally, each learner maintains a policy network or Q-
network and trains the deep network weights based on the actors’ experience in
replay memory buffers. Before and after training, the learner will communicate
with parameter servers for synchronization on deep network weights or its learn-
ing gradients. Either synchronous or asynchronous communication approach can
be applied between multiple learners and parameter servers.

• Parameter Servers: The parameter server is the component to collect all
information from the learners and maintain the weights of policy network or
Q-network in general. The parameter server will periodically synchronize with
all learners for weight updates and assist all learners to start learning based
on the training results from other learners. Moreover, the parameter server can
instruct the actors for its interaction with the environments. In large-scale deep
reinforcement learning system, in order to guarantee robustness and efficiency
for data interactions from parameter servers to learners and actors, the parameter
severs can also be in different kinds of structures and the communication among
parameter servers can be centralized or distributed.

The general computing architecture is combined based on the above components.
As parallel computing is applicable within each component, the structure can be
flexible and easily adapted for the requirements from problems.

References

Babaeizadeh M, Frosio I, Tyree S, Clemons J, Kautz J (2017) Reinforcement learning through
asynchronous advantage actor-critic on a GPU. In: International conference on learning
representations

Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward T, Doron Y, Firoiu V, Harley T,
Dunning I, et al (2018) IMPALA: scalable distributed deep-RL with importance weighted actor-
learner architectures. Preprint. arXiv:180201561

Espeholt L, Marinier R, Stanczyk P, Wang K, Michalski M (2019) SEED RL: scalable and efficient
Deep-RL with accelerated central inference. Preprint. arXiv:191006591

Gruslys A, Dabney W, Azar MG, Piot B, Bellemare M, Munos R (2017) The reactor: a fast and
sample-efficient actor-critic agent for reinforcement learning. Preprint. arXiv:1704.04651

364 H. Zhang and T. Yu

Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, van Hasselt H, Silver D (2018)
Distributed prioritized experience replay. Preprint. arXiv:1803.00933

Kapturowski S, Ostrovski G, Quan J, Munos R, Dabney W (2019) Recurrent experience replay in
distributed reinforcement learning. In: International Conference on Learning Representations
(ICLR).

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K
(2016) Asynchronous methods for deep reinforcement learning. In: International conference
on machine learning (ICML), pp 1928–1937

Nair A, Srinivasan P, Blackwell S, Alcicek C, Fearon R, Maria AD, Panneershelvam V, Suleyman
M, Beattie C, Petersen S, Legg S, Mnih V, Kavukcuoglu K, Silver D (2015) Massively parallel
methods for deep reinforcement learning. Preprint. arXiv:1507.04296

OpenAI: Berner C, Brockman G, Chan B, Cheung V, Dębiak P, Dennison C, Farhi D, Fis-
cher Q, Hashme S, Hesse C, Józefowicz R, Gray S, Olsson C, Pachocki J, Petrov M,
de Oliveira Pinto HP, Raiman J, Salimans T, Schlatter J, Schneider J, Sidor S, Sutskever I, Tang
J, Wolski F, Zhang S (2019) Dota 2 with large scale deep reinforcement learning. Preprint.
arXiv:1912.06680

	12 Parallel Computing
	12.1 Introduction
	12.2 Synchronization and Asynchronization
	12.3 Parallel Communication and Networking
	12.4 Distributed Reinforcement Learning Algorithms
	12.4.1 Asynchronous Advantage Actor-Critic
	12.4.2 Hybrid GPU/CPU A3C
	12.4.3 Distributed Proximal Policy Optimization
	12.4.4 IMPALA and SEED
	12.4.5 Ape-X, Reactor, and R2D2
	12.4.6 Gorila

	12.5 Distributed Computing Architecture
	References

