
Deep
Reinforcement
Learning

Hao Dong · Zihan Ding
Shanghang Zhang
Eds.

Fundamentals, Research
and Applications

Deep Reinforcement Learning

Hao Dong • Zihan Ding • Shanghang Zhang
Editors

Deep Reinforcement
Learning
Fundamentals, Research and Applications

Editors
Hao Dong
EECS
Peking University
Beijing, China

Zihan Ding
CS
Imperial College London
London, UK

Shanghang Zhang
EECS
University of California, Berkeley
Berkeley, USA

ISBN 978-981-15-4094-3 ISBN 978-981-15-4095-0 (eBook)
https://doi.org/10.1007/978-981-15-4095-0

Translation from the English language edition: Deep Reinforcement Learning by Hao Dong, Zihan Ding
and Shanghang Zhang Copyright © Springer Nature Singapore Pte Ltd. 2020. All Rights Reserved.
© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://orcid.org/0000-0002-7984-9909
https://orcid.org/0000-0002-6294-888X
https://orcid.org/0000-0003-4047-3526
https://doi.org/10.1007/978-981-15-4095-0

Foreword

I am impressed by the breadth of topics covered by this book. From fundamental
underlying theory of deep reinforcement learning to technical implementation
with elaborated code details, the authors devoted significant efforts to provide a
comprehensive description. Such a style makes the book an ideal study material for
novices and scholars. Embracing the open-source community is an indispensable
reason for deep learning to have such a rapid development. I am glad that this book
is accompanied by the open-source code. I believe that this book will be very useful
for researchers who can learn from such a comprehensive overview of the field, as
well as the engineers who can learn from scratch with hands-on practice using the
open source code examples.

FREng MAE Director of Data Science Institute Yike Guo
Imperial College London
London, UK

This book provides the most reliable entry to deep reinforcement learning, bridging
the gap between fundamentals and practices, featuring detailed explanation and
demonstration of algorithmic implementation, offering tips and cheat sheet. The
authors are researchers and practitioners from leading universities and open source
community who conduct research on deep reinforcement learning or apply its new
techniques in various applications. The book serves as an extremely useful resource
for readers of diverse background and objectives.

Director of the Center on Frontiers of Computing Studies Baoquan Chen
Peking University
Beijing, China

This is a timely book in an important area—deep reinforcement learning (RL). The
book presents a comprehensive set of tools in a clear and succinct fashion: covering
the foundations and popular algorithms of deep RL, practical implementation
details, as well as forward-looking research directions. It is ideally suited for anyone

v

vi Foreword

who would like to learn deep RL, to implement deep RL algorithms for their
applications, or to begin fundamental research in the area of deep RL.

Princeton University Chi Jin
Princeton, NJ, USA

This is a book for pure fans of reinforcement learning, in particular deep reinforce-
ment learning.

Deep reinforcement learning (DRL) has been changing our lives and the world
since 2013 in many ways (e.g. autonomous cars, AlphaGo). It has showed the
capability to comprehend the ‘beauty of Go’ better than professionals. The same
idea is currently being implemented in technology, healthcare and finance. DRL
explores the ultimate answer to one of the most fundamental questions: how do
human beings learn from interaction with environment? This mechanism could be
a silver bullet of avoiding the ‘big data’ trap, a necessary path towards ‘Strong AI’,
as well as a virgin land that no human intelligence has touched before.

This book, written by a group of young researchers with full passion in machine
learning, will show you the world of DRL and enhance your understanding by
means of practical examples and experiences. Recommend to all learners who want
to keep the key to future intelligence in their own pocket.

University College London Kezhi Li
London, UK

Preface

Deep reinforcement learning (DRL) combines deep learning (DL) with a reinforce-
ment learning (RL) architecture. It has been able to perform a wide range of complex
decision-making tasks that were previously intractable for a machine. Moreover,
DRL has contributed to the recent great successes in artificial intelligence (AI) like
AlphaGo and OpenAI Five. Indeed, DRL has opened up many exciting avenues to
explore in a variety of domains such as healthcare, robotics, smart grids, and finance.

Divided into three main parts, this book provides a comprehensive and self-
contained introduction to DRL. The first part introduces the foundations of DL,
RL and widely used DRL methods and then discusses their implementations,
which includes Chaps. 1–6. The second part covers selected DRL research topics
in Chaps. 7–12, which are useful for those would like to specialize in DRL research.
To help readers gain a deep understanding of DRL and quickly apply the techniques
in practice, the third part including Chaps. 13–17 presents a rich set of applications,
such as the AlphaZero and learning to run, with detailed descriptions.

The book is intended for computer science students, both undergraduate and
postgraduate, who would like to learn DRL from scratch, practice its implemen-
tation, and explore the research topics. This book might also appeal to engineers
and practitioners who do not have strong machine learning background but want
to quickly understand how DRL works and use these techniques in their practical
applications.

Beijing, China Hao Dong

vii

Acknowledgements

The authors would like to thank the people who provided feedback and suggestions
on the contents of the book, including: Jie Fu from Mila, Jianhong Wang and Shikun
Liu from Imperial College London, Kun Chen from Peking University, Meng Song
from University of California, San Diego, Chen Ma, Chenjun Xiao and Jingcheng
Mei from University of Alberta, Tong Yu from Samsung Research, Xu Luo from
Fudan University, Dian Shi from University of Houston, Weipeng Zhang from
Shanghai Jiaotong University, Yashu Kang from Georgia Institute of Technology,
Chenxiao Zhao from East China Normal University, Tianlin Liu from Friedrich
Miescher Institute, Gavin Ding from Borealis AI, Ruilong Su from Xiaohongshu
Technology Co., Ltd., and Yingjun Pei from Chinese Academy of Sciences. We
also want to thank Jared Sharp for the language proofread of most chapters in the
book.

Many other people have contributed to this and the code base of the book—
open-source contributors, such as Ruihai Wu, Luo Mai, Rundi Wu, Guo Li,
Cheng Lai, and Jonathan Dekhtiar, who develop and maintain TensorLayer and
the reinforcement learning examples, and colleagues who have provided important
insights into the book design. To all these, we offer our thanks and gratitude. Hao
Dong would especially like to thank the Center on Frontiers of Computing Studies
of the Department of Computer Science at Peking University and Peng Cheng
Laboratory for the strong support of developing and maintaining TensorLayer. Zihan
Ding would like to thank Dr. Edward Johns for sharing his understandings and
useful discussions.

ix

Contents

Part I Fundamentals

1 Introduction to Deep Learning . 3
Jingqing Zhang, Hang Yuan, and Hao Dong

2 Introduction to Reinforcement Learning . 47
Zihan Ding, Yanhua Huang, Hang Yuan, and Hao Dong

3 Taxonomy of Reinforcement Learning Algorithms . 125
Hongming Zhang and Tianyang Yu

4 Deep Q-Networks . 135
Yanhua Huang

5 Policy Gradient . 161
Ruitong Huang, Tianyang Yu, Zihan Ding and Shanghang Zhang

6 Combine Deep Q-Networks with Actor-Critic . 213
Hongming Zhang, Tianyang Yu and Ruitong Huang

Part II Research

7 Challenges of Reinforcement Learning . 249
Zihan Ding and Hao Dong

8 Imitation Learning . 273
Zihan Ding

9 Integrating Learning and Planning . 307
Huaqing Zhang, Ruitong Huang, and Shanghang Zhang

10 Hierarchical Reinforcement Learning . 317
Yanhua Huang

11 Multi-Agent Reinforcement Learning . 335
Huaqing Zhang and Shanghang Zhang

xi

xii Contents

12 Parallel Computing . 347
Huaqing Zhang and Tianyang Yu

Part III Applications

13 Learning to Run . 367
Zihan Ding and Hao Dong

14 Robust Image Enhancement . 379
Yanhua Huang

15 AlphaZero . 391
Hongming Zhang and Tianyang Yu

16 Robot Learning in Simulation. 417
Zihan Ding and Hao Dong

17 Arena Platform for Multi-Agent Reinforcement Learning 443
Zihan Ding

18 Tricks of Implementation . 467
Zihan Ding and Hao Dong

Part IV Summary

19 Algorithm Table . 485
Zihan Ding

20 Algorithm Cheatsheet . 489
Zihan Ding

Editors and Contributors

About the Editors

Hao Dong is currently an Assistant Professor at Peking University. He received
his Ph.D. in Computing from Imperial College London in 2019, supervised by
Prof. Yike Guo. Hao’s research chiefly involves Deep Learning and Computer
Vision, with the goal of reducing the amount of data required for learning intelligent
systems. He is passionate about popularizing artificial intelligence technologies and
established TensorLayer, a deep learning and reinforcement learning library for
scientists and engineers, which won the Best Open Source Software Award at ACM
Multimedia 2017.

Zihan Ding received his M.Sc. degree in Machine Learning with distinction
from the Department of Computing, Imperial College London, supervised by Dr.
Edward Johns. He holds double Bachelor degrees from the University of Science
and Technology of China: in Photoelectric Information Science and Engineering
(Physics) and in Computer Science and Technology. His research interests include
deep reinforcement learning, robotics, computer vision, quantum computation and
machine learning. He has published papers in ICRA, AAAI, NIPS, IJCAI, and
Physical Review. He also contributed to the open-source projects TensorLayer
RLzoo, TensorLet and Arena.

Shanghang Zhang is a postdoctoral research fellow in the Berkeley AI Research
(BAIR) Lab, the Department of Electrical Engineering and Computer Sciences,
UC Berkeley, USA. She received her Ph.D. from Carnegie Mellon University in
2018. Her research interests cover deep learning, computer vision, and reinforce-
ment learning, as reflected in her numerous publications in top-tier journals and
conference proceedings, including NeurIPS, CVPR, ICCV, and AAAI. Her research
mainly focuses on machine learning with limited training data, including low-shot
learning, domain adaptation, and meta-learning, which enables the learning system
to automatically adapt to real-world variations and new environments. She was one

xiii

xiv Editors and Contributors

of the “2018 Rising Stars in EECS”İ (a highly selective program launched at MIT in
2012, which has since been hosted at UC Berkeley, Carnegie Mellon, and Stanford
annually). She has also been selected for the Adobe Academic Collaboration
Fund, Qualcomm Innovation Fellowship (QInF) Finalist Award, and Chiang Chen
Overseas Graduate Fellowship.

About the Authors

Hang Yuan is currently a Ph.D. candidate of Computer Science at the University
of Oxford, specializing in AI Safety for Deep Learning and its applications
in Healthcare AI. He conducted his master thesis at Swiss Federal Institute of
Technology Lausanne (EPFL) with the Computer Vision Lab under Dr. Mathieu
Salzmann and Dr. François Fleuret on the topic of delayed adversarial attack using
recurrent neural networks for Deep Reinforcement Learning. Previously, he has also
researched and studied at Carnegie Mellon University, Max Planck Institute for
Intelligent Systems Empirical Inference Group and Imperial College London. He
obtained his MSc degree at EPFL in Neuroscience and BSc at Jacobs University in
Computer Science under the supervision of Prof. Herbert Jaeger.

Hongming Zhang is currently an engineer at the Institute of Automation, Chinese
Academy of Sciences (CASIA). His research focuses on Reinforcement Learning
and Game Theory. Before CASIA, he received his MSc degree in Statistics
from Peking University, Bachelor degree in Mathematics from Beijing Normal
University.

Jingqing Zhang is currently a Ph.D. candidate at Data Science Institute, Imperial
College London under the supervision of Prof. Yike Guo. His research interest
includes Deep Learning, Machine Learning, Text Mining, Data Mining and their
applications. He received his BEng degree in Computer Science and Technology
from Tsinghua University, 2016, and MRes degree with distinction in Computing
from Imperial College London, 2017.

Yanhua Huang is currently a software engineer at Xiaohongshu Technology
Co., Ltd., working on large-scale machine learning and reinforcement learning
in recommender systems. He received his B.S. degree from the Department of
Mathematics, East China Normal University in July 2016. Yanhua also contributed
to some open-source projects, such as PyTorch, TensorFlow, and Ray.

Tianyang Yu is currently a MSc candidate of Computer Science at Nanchang
University. Previously, he interned at the Institute of Automation, Chinese Academy
of Sciences. Tianyang is interested in Reinforcement Learning and has strong

Editors and Contributors xv

experiences on applying Reinforcement Learning techniques into real-world appli-
cations.

Huaqing Zhang is currently a software engineer at Google LLC, exploring on
the areas of multi-agent reinforcement learning and hierarchical game theory. He
received the B.S. degree in Huazhong University of Science and Technology,
Wuhan, China, in June 2013, and the Ph.D. degree in the department of electronic
and computer engineering at University of Houston, Houston, TX, USA, in Decem-
ber 2017.

Ruitong Huang is currently a researcher at Borealis AI. His research interests
broadly include topics such as online learning, convex optimization, adversarial
learning, and reinforcement learning. Ruitong obtained his PhD in Statistical
Machine Learning from the computing science department of University of Alberta.
Before that, Ruitong spent four years at the University of Science and Technology
of China for his Bachelor degree in Math and two years in the David R. Cheriton
School of Computer Science at University of Waterloo for his Master’s in Symbolic
Computation.

Acronyms

AC Actor-critic
ACKTR Actor-critic using Kronecker-factored trust region
AGAIL Action-guided adversarial imitation learning
AI Artificial intelligence
AIRL Adversarial inverse reinforcement learning
ANN Artificial neural network
A2C Advantage actor-critic
A3C Asynchronous advantage actor-critic
BC Behavioral cloning
BCO Behavioral cloning from observation
BO Bayesian optimization
BPTT Backpropagation through time
CE Cross entropy
CFD Contrastive forward dynamics
CMA Covariance matrix adaptation
CMA-ES Covariance matrix adaptation evolution strategy
CNN Convolutional neural network
CPU Central processing unit
C51 Categorical 51
DAgger Dataset aggreation
DDPG Deep deterministic policy gradient
DDPGfD Deep deterministic policy gradient from demonstration
DL Deep learning
DMP Dynamic movement primitives
DNN Deep neural network
DP Dynamic programming
DPG Deterministic policy gradient
DQN Deep Q-network
DQfD Deep Q-learning from demonstrations
DRL Deep reinforcement learning
EM Expectation maximization

xvii

xviii Acronyms

FAIL Forward adversarial imitation learning
FC Fully connected
FRL Feudal reinforcement learning
FuN Feudal network
GAN Generative adversarial network
GAN-GCL Generative adversarial network guided cost learning
GAIL Generative adversarial imitation learning
GCL Guided cost learning
GMM Gaussian misture model
GMR Gaussian mixture regression
GP Gaussian process
GPU Graphics processing unit
GPI Generalized policy iteration
GPR Gaussian process regression
HAM Hierarchical abstract machine
HIRO Hierarchical reinforcement learning with off-policy correction
HRL Hierarchical reinforcement learning
IfO Imitation learning from observation
IL Imitation learning
ILPO Imitating latent policies from observation
IMPALA Importance weighted actor-learner architecture
InRL Independent reinforcement learning
IRL Inverse reinforcement learning
KL Kullback-Leibler
KMP Kernelized movement primitives
LQR Linear quadratic regulators
LSTM Long short-term memory
MARL Multi-agent reinforcement learning
MaxEnt Maximum entropy
MC Monte Carlo
MCTS Monte Carlo tree search
MDP Markov decision process
ML Machine learning
MLP Multi-layer perceptron
MPO Maximum a posteriori policy optimization
MRP Markov reward process
MSE Mean square error
NAC Normalized actor-critic
OU Ornstein-Uhlenbeck
PBT Population based training
PER Prioritized experience replay
PG Policy gradient
POMDP Partially observed Markov decision process
PPO Proximal policy optimization
ProMP Probabilistic movement primitives

Acronyms xix

QR-DQN Quantile regression deep Q-network
RBF Radial basis function
RCANs Randomized-to-canonical adaptation networks
ReLU Rectified linear unit
RIDM Reinforced inverse dynamics modeling
RL Reinforcement learning
RNN Recurrent neural network
R2D2 Recurrent replay distributed DQN
SAC Soft actor-critic
SEED Scalable and efficient deep-RL
Sim2Real Simulation to reality
SMDP Semi-Markov decision process
SPG Stochastic policy gradient
SRL State representation learning
SVG Stochastic value gradients
TCN Time-contrastive networks
TD Temporal difference
TD3 Twin delayed deep deterministic policy gradient
TRPO Trust region policy optimization
UCB Upper confidence bound
UCT Upper confidence bounds applied to trees
VIME Variational information maximizing exploration

Mathematical Notation

Jingqing Zhang, jingqing.zhang15@imperial.ac.uk.
We have tried to minimize the mathematical content of this book so as to minimize
the requirements for understanding this field.

Fundamentals

x A scalar
x A vector
X A matrix
R The set of real numbers
dy
dx

Derivative of y with respect to x
∂y
∂x

Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

P(X) A probability distribution over a discrete variable
p(X) A probability distribution over a continuous variable, or over a

variable whose type has not been specified
X ∼ p The random variable X has distribution p

E[X] Expectation of a random variable
Var[X] Variance of a random variable
Cov(X, Y) Covariance of two random variables
DKL(P‖Q) Kullback-Leibler divergence of P and Q

N (x;μ,Σ) Gaussian distribution over x with mean μ and covariance Σ

xxi

mailto:jingqing.zhang15@imperial.ac.uk

xxii Mathematical Notation

Deep Reinforcement Learning

s, s′ States
a Action
r Reward
R Reward function
S Set of all non-terminal states
S+ Set of all states, including the terminal state
A Set of actions
R Set of all possible rewards
P Transition matrix
t Discrete time step
T Final time step of an episode
St State at time t

At Action at time t

Rt Reward at time t , typically due, stochastically, to At and St

Gt Return following time t

G
(n)
t n-step return following time t

Gλ
t λ-return following time t

π Policy, decision-making rule
π(s) Action taken in state s under deterministic policy π

π(a|s) Probability of taking action a in state s under stochastic policy π

p(s′, r|s, a) Probability of transitioning to state s′, with reward r , from state s

and action a

p(s′|s, a) Probability of transitioning to state s′, from state s taking action a

vπ (s) Value of state s under policy π (expected return)
v∗(s) Value of state s under the optimal policy
qπ(s, a) Value of taking action a in state s under policy π

q∗(s, a) Value of taking action a in state s under the optimal policy
V, Vt Estimates of state-value function vπ (s) or v∗(s)
Q,Qt Estimates of action-value function qπ(s, a) or q∗(s, a)

τ Trajectory, which is a sequence of states, actions and rewards, τ =
(S0, A0, R0, S1, A1, R1, . . .)

γ Reward discount factor, γ ∈ [0, 1]
ε Probability of taking a random action in ε-greedy policy
α, β Step-size parameters
λ Decay-rate parameter for eligibility traces

Introduction

Ever since the advent of the first computer in 1946, people have been striving
to create more intelligent computers. Artificial Intelligence (AI) has benefited so
much from the rapid development in the computing power and data volume that
it can already outperform humans on many tasks, which were once considered
intractable for machines such as board games like chess and Go, disease diagnosis,
and video gaming. AI technology is also widely incorporated into other applications
like drug discovery, weather prediction, advanced materials, recommended system,
robotics perception and control, autonomous driving, human face recognition,
speech recognition and dialog.

In the recent decade, not only do countries like China, the UK, the US, Japan
and Germany have enacted concrete AI policies to support the development of AI
but also tech giants like Google, Facebook, MicroSoft, Apple, Baidu, Huawei and
Tencent have spent billions on AI research. AI is becoming almost omnipresent
in our daily life, a few examples of which can be self-driving car, face ID, and
chatbots. Without a doubt, AI is of paramount importance for the development of
human society.

Before we dive into this book, we should first understand the relationships
between various subdomains of AI, namely, machine learning (ML), deep learning
(DL), reinforcement learning (RL), and the topic of this book—deep reinforcement
learning (DRL). Figure 1 illustrates their relationships in a Venn diagram, and we
will start to briefly introduce each of them in the following.

Artificial Intelligence

Since computers were first invented, scientists have endeavored to make the
machines become more intelligent. However, the definition of intelligence even till
today is still in an ongoing debate. So, without defining what intelligence is, Sir
Alan Turing first introduced the Turing Test in his paper “Computing Machinery
and Intelligence” at University of Manchester in 1950. The Turing test measures a

xxiii

xxiv Introduction

Fig. 1 Relationship of
artificial intelligent, machine
learning, deep learning,
reinforcement learning, and
deep reinforcement learning

machine’s capability to imitate intelligent human behavior. Specifically, it describes
an “imitation game”, during which an interrogator asks a man and a computer in
another room a series of questions, to determine which of the other two players is
man, and which one is computer. The test is passed, if the computer can fool the
interrogator.

AI was coined by John McCarthy in the famous Dartmouth conference in
summer of 1956. This conference was seen as the starting point of AI being a field of
computer science. In the early days of AI, the AI algorithms were mainly designed
to solve problems that can be formulated by mathematical rules and logic rules.

Machine Learning

ML was coined in 1959 by Arthur Samuel (Bell Labs, IBM, Stanford). An AI
system needs to has the ability to learn its own knowledge from the raw data. This
capacity is known as ML. Many AI problems can be solved by designing a pattern
recognition algorithm to extract features from raw data for that problem, and then
providing these features to the ML algorithm.

For example, in the early days, to perform face recognition with a computer,
we need specific facial feature extraction algorithms. The simplest way is to use
Principal Component Analysis (PCA) to reduce the data dimension, and the feed
these features into a classifier. Handcrafted feature engineering specific for face
recognition is often required to improve the recognition performance. Nonetheless,
it is fairly time-consuming to design the task-specific handcrafted feature extraction
algorithms for different tasks, and let alone in many cases, it is extremely difficult
to design a feature extraction algorithm. For example, the feature extraction of
language translation requires the knowledge of grammar, which may require many
language experts. A general algorithm is desired to extract features for different
tasks, so as to reduce the reliance on prior knowledge from human.

Introduction xxv

Academics have invested lots of efforts in making ML learn the data representa-
tion automatically. Learning representation automatically is able to not only improve
the performance but also rapidly reduce the cost to solve the AI problems.

Deep Learning

Deep Learning (DL) is a subset of ML algorithms based on artificial neural
networks (ANN) Goodfellow et al. (2016). We call it neural network because it
is inspired by biological neural networks. In 1943, Warren Sturgis McCulloch and
Walter Pitts published “A Logical Calculus of the Ideas Immanent in Nervous
Activity,” McCulloch and Pitts (1943) which are deemed as the foundations for
ANN. Since then, ANN shows the potential of automatic feature learning in which
we do not need to design a specific feature learning algorithm for difficult input data,
saving the development time of algorithms.

Deep Neural Network (DNN) is the “deep version” of ANN that consists of
more neural network layers and can have greater data representation capacity as
compared with the “shadow” neural networks. The difference between DL and non-
DL methods is illustrated in Fig. 2, in which the DL methods free developers from
hand-craft feature engineering to extracting and selecting useful features from input
data for the final tasks. We also sometimes call this end-to-end learning as we only
care about the input and the output and less on the feature. It is worth noting that
this layer of abstraction is not always better as many people have spotted that DL
methods tend to offer less transparency and interpretability.

Despite the promises DL has shown today, in the early step of DL history, due to
the high computational cost of ANN, the hardware limitation of computers, and the
black-box problem (we cannot explain what features the neural networks learned),
DL was limited to use in practice and did not get much attention in academia.

This situation changed in 2012, mainly due to a neural network architecture
called Alexnet Krizhevsky et al. (2012) which outperformed previous non-DL algo-
rithms by more than 10% in image classification challenge event, ImageNet Rus-
sakovsky et al. (2015). DL starts to receive more attention and DL-based methods
start to outperform many non-deep learning methods in different fields, such as
computer vision Girshick (2015); Johnson et al. (2016); Ledig et al. (2017); Pathak
et al. (2016); Vinyals et al. (2016) and natural language processing Bahdanau et al.
(2015).

Fig. 2 Non-deep learning vs.
deep learning algorithms

xxvi Introduction

Reinforcement Learning

Even though, DL has a powerful data representation ability but it is not enough to
build a smart AI system. This is because an AI system should not only able to learn
from the provided data but also able to learn from interactions with the real world
environment like a human. RL is a subset of ML that enables computers to learn by
interacting with the real world environment.

In brief, RL separates the real world into two components—an environment and
an agent. The agent interacts with the environment by performing specific actions
and receives feedback from the environment. The feedback is usually termed as
the “reward” in RL. The agent learns to perform “better” by trying to get more
positive rewards from the environment. This learning process forms a feedback loop
between the environment and agent, guiding the improvement of the agent with RL
algorithms.

Deep Reinforcement Learning

DRL is to combine the advantages of DL and RL for building AI systems. The main
reason to use DL in RL is to leverage the scalability of DNN in high-dimensional
space, for example, the value function approximation utilizes the data representation
of DNN to represent the highly compositional data distribution through end-to-end
gradient-based optimization.

DeepMind, a research-oriented AI company established in London, plays an
important role in the DRL history. In 2013, just one year after Alexnet, they
published “Playing Atari with Deep Reinforcement Learning” which is the first
successful DL model that learned how to play seven different Atari games using
the raw pixels as the input without any adjustment of the model and learning
algorithm. Different from the previous methods that relied on handcrafted features,
DeepMind’s method frees developer from feature engineering and outperforms all
previous methods on six of the games and even surpasses a human expert on three
of them.

In 2017, DeepMind’s AlphaGo defeated the No.1 GO player Jie Ke in China, this
event indicates that AI has the ability to perform better than human in a predefined
environment via DRL algorithms. DRL is recognized as a subfield of ML that has
the potential to achieve Artificial General Intelligence (AGI). However, there are
still many challenges need to be addressed before we reach that point.

Introduction xxvii

TensorLayer

Often, understanding the concepts is one thing and having to implement the math-
ematical formulae is a whole other thing. Therefore, at the end of many chapters
of this book, we will also include a practical section in which we implement some
of the key concepts in the corresponding chapter to better illustrate how different
concepts are used in practice. Since DL is becoming increasingly popular, there exist
many open-source frameworks, such as TensorFlow, Chainer, Theano, and Pytorch,
to support automatic optimization for neural networks. In this book, we choose
to adopt TensorLayer, a DL and DRL library designed specifically for researchers
and engineers, which won the Best Open Source Software Award issued by ACM
Multimedia in 2017. By the time we publish this book, TensorLayer supports
TensorFlow as the computational backend, but with the continuous developing,
TensorLayer may support more backends and the usage may be changed. Please
refer to Github for more information https://github.com/tensorlayer/tensorlayer.

Beijing, China Hao Dong
Berkeley, USA Shanghang Zhang

References

Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and
translate. In: Proceedings of the international conference on learning representations (ICLR)

Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE international conference on computer
vision (ICCV), pp 1440–1448

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge. http://www.
deeplearningbook.org

Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-time style transfer and super-
resolution. In: Proceedings of the European conference on computer vision (ECCV)

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional
neural networks. In: Proceedings of the neural information processing systems. Advances in
neural information processing systems, pp 1097–1105

Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz
J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR)

McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull
Math Biophys 5(4):115–133

Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA (2016) Context encoders: feature
learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pp 2536–2544

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla
A, Bernstein M (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis
115(3):211–252

Vinyals O, Toshev A, Bengio S, Erhan D (2016) Show and tell: lessons learned from
the 2015 mscoco image captioning challenge. IEEE Trans Pattern Anal Mach Intell.
arXiv:1609.06647v1

https://github.com/tensorlayer/tensorlayer
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Part I
Fundamentals

Hao Dong
e-mail: hao.dong@pku.edu.cn

The first part of this book has six chapters to introduce the foundations of deep
learning (DL), reinforcement learning (RL), widely used DRL algorithms and their
implementations. Specifically, the first two chapters introduce the basic knowledge
of DL and RL and the combination of the two, i.e. DRL, which are important for the
readers to understand the rest of the book. You can skip these two chapters if you
already have the related knowledge, but we highly recommend that you read through
the second chapter to get familiar with the terminology and the mathematical
formulas for the convenience of reading the following chapters.

The third chapter introduces the taxonomy of RL algorithms, which is intended
to help readers to have an overview of modern DRL algorithms from different
perspectives, such as model-based and model-free, policy-based and value-based,
MC and TD methods, on-policy and off-policy, etc. We recommend that the readers
go back to this chapter if there is any confusion about the categories and properties
of specific algorithms when reading other chapters. For specific DRL algorithms, we
introduce those which are most commonly applied, in detail, from the fourth to sixth
chapters as well as providing the example codes to help the readers to understand
the details of the algorithms and their implementations.

The related codes are released in the following link: https://github.com/
tensorlayer/tensorlayer/tree/master/examples/reinforcement_learning.

https://github.com/tensorlayer/tensorlayer/tree/master/examples/reinforcement_learning
https://github.com/tensorlayer/tensorlayer/tree/master/examples/reinforcement_learning

Chapter 1
Introduction to Deep Learning

Jingqing Zhang, Hang Yuan, and Hao Dong

Abstract This chapter aims to briefly introduce the fundamentals for deep learning,
which is the key component of deep reinforcement learning. We will start with
a naive single-layer network and gradually progress to much more complex but
powerful architectures such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs). We will end this chapter with a couple of examples that
demonstrate how to implement deep learning models in practice.

Keywords Deep learning · Convolutional neural networks · Recurrent neural
networks

1.1 Introduction

This chapter introduces the basics of deep learning that will be used in deep
reinforcement learning. For those who are already familiar with the fundamentals,
please feel free to skip this chapter. This book’s content is meant to be self-
contained, but one might wish to refer to other books like Bishop (2006) and
Goodfellow et al. (2016) to understand some of the topics in depth. Unlike classical
reinforcement learning which uses analytical methods for function approximation,
deep reinforcement learning relies on deep neural networks such that it can leverage
the power of large data volume and increased computing resources. In general, there
are two types of models.

J. Zhang
Imperial College London, London, UK
e-mail: jingqing.zhang15@imperial.ac.uk

H. Yuan
Oxford University, Oxford, UK
e-mail: hang.yuan@keble.ox.ac.uk

H. Dong (�)
Peking University, Beijing, China
e-mail: hao.dong@pku.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_1&domain=pdf
mailto:jingqing.zhang15@imperial.ac.uk
mailto:hang.yuan@keble.ox.ac.uk
mailto:hao.dong@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_1

4 J. Zhang et al.

Discriminative Models study the conditional probability p(y|x) with input data
x and a target label y. In other words, discriminative models predict the label
y given the input data x. Discriminative models are mostly adopted in tasks
such as classification and regression which require discriminative judgement. More
specifically, in terms of classification, a model is designed to categorize the input
data into specific classes from a set of given classes. The binary classification, as the
most fundamental classification task, predicts one class from two candidates. For
example, in the sentiment analysis (Maas et al. 2011), a piece of text is classified
as either positive or negative. In contrast, in multi-label classification, the input data
can be assigned with several classes at the same time. In some cases, instead of
identifying the class directly, a classification model needs to calculate the probability
distribution of classes. For example, the input data has a probability of 80% to
be assigned with class A and a probability of 20% to be assigned with class B.
This probabilistic representation is mostly needed during training for optimization
purposes. Deep learning has achieved great success on classification tasks such as
image classification (Krizhevsky et al. 2009) and text classification (Yang et al.
2019). Unlike classifications, which produce discrete class labels, a regression
studies continuous values. An example of regression is to predict future traffic speed
based on historical traffic data (Liao et al. 2018a,b). Regression models remain
discriminative models as long as they are learning the conditional probability.

Generative Models are designed to study the joint probability p(x, y). Generative
models are usually used to generate observed data by learning the distribution
of the observed data. For example, the generative adversarial networks (GANs)
(Goodfellow et al. 2014) are adopted to generate, reconstruct, and denoise images
(Ledig et al. 2017; Yang et al. 2018). Nonetheless, techniques in deep learning
like GANs have no explicit relationship with the distribution of the observed data
but focus more on the similarity between generated samples and observed data.
Meanwhile, generative models are also used for classification purposes like Naive
Bayes (Ng and Jordan 2002; Rish et al. 2001). Although both generative models
and discriminative models are used for classification, discriminative models only
consider which label should be assigned given the observed data, while generative
models try to learn the distribution of the observed data. For example, Naive
Bayes studies the likelihood p(x|y), i.e. the probability of the observed data to be
generated assuming a label.

Most deep neural networks that have been explored are discriminative models
no matter whether they are initially designed for discriminative or generative
problems. This is because many generative problems in practice can be simplified to
classification or regression problems. For example, question answering (Devlin et al.
2019) selects which part of the provided context is the answer to the given question;
abstractive summarization (Zhang et al. 2019b) selects words from vocabulary to
assemble summaries based on the probability of each word. For both cases, they are
trying to generate something but one uses a classification approach and the other
uses a regression approach.

1 Introduction to Deep Learning 5

Concretely, this chapter covers the mechanical components and techniques such
as the definitions of neurons, activation functions, and optimizers that can build
up deep neural networks and deep learning applications. Fundamental deep neural
networks such as multilayer perceptron (MLP), convolutional neural networks
(CNNs), and recurrent neural networks (RNNs) are also within the scope of
this chapter. Finally, Sect. 1.10 introduces examples of implementing deep neural
networks by TensorFlow and TensorLayer. Please refer to Goodfellow et al. (2016)
for a more detailed introduction to deep learning.

1.2 Perceptron

1.2.1 One Output

A neuron (node) is the basic unit of deep neural networks. Originally, the neuron
was proposed to be an abstract representation of the real neuron in the brain,
which receives electrical impulses from its dendrites. When this specific neuron is
polarized enough, it will send an action potential spike via its axon to the other
adjacent neurons. In a real biological system, these steps do not take place at
once but at a more granular scale. Spiking neural networks are better suited in
describing the underlying biological processes. At the moment, the deep learning
community relies more on deep neural networks (DNNs), also known as artificial
neural networks (ANNs). The neurons in deep neural networks are formalized with
numerical inputs and outputs. A neuron can have many output neurons in the next
layer and a neuron can also have many input neurons in the previous layer. This is
a many-to-many relationship. A neuron in one layer aggregates the signals being
passed through from its input neurons in the previous layer. This aggregated signal
will then be passed through an activation function that will determine the neuronal
behavior. Concretely, if the aggregated signal is strong enough, then the activation
function will “activate” this neuron and pass forward a high value to the output
neurons in the next layer. Otherwise, a low value will be passed forward instead
(Fig. 1.1).

z = w1x1 +w2x2 +w3x3. (1.1)

A neural network can have an arbitrary number of neurons with random
connections among themselves, but for the ease of computation, the neurons are
organized layer after layer. Typically, a single neuron will have at least two layers,
namely the input and output layer as shown in Fig. 1.2. This network can be
formalized by Eq. (1.1) and can help with simple decision-making. An example is
helping a group of students decide whether or not they can play soccer on a day
based on the weather condition. The decision may also rely on some other factors
such as the expense of the soccer field and the students’ availability. If the weather

6 J. Zhang et al.

Fig. 1.1 A neural network
with three input neurons and
one output neuron

Fig. 1.2 A neural network
with bias

condition has a higher impact on the decision, the corresponding weight (w) should
have a greater absolute value. In contrast, factors of less importance should have
weights with a lower absolute value. If a weight is set as zero, the corresponding
input factor is discarded in the decision-making process. This kind of neural network
is also called a single-layer neural network or perceptron.

1.2.2 Bias and Decision Boundary

A bias is an extra scalar that is added to the neuron to shift the value of the output.
For example, Fig. 1.2 shows the single-layer neural network with a bias and it can

1 Introduction to Deep Learning 7

be formalized as:

z = w1x1 +w2x2 +w3x3 + b. (1.2)

The bias can help a neural network to fit the data better. For example, let us define
a binary classification problem, in which the label y is 1 if the input z is positive and
0 otherwise:

y =
{

1 when z > 0
0 otherwise

(1.3)

Then the distribution of data samples is shown in Fig. 1.3 and we need to find
out a set of weights and bias that can best fit the data. The decision boundary is
defined to partition the data samples into the two classes for the binary classification.
Formally, the decision boundary is {x1, x2, x3|w1x1 + w2x2 +w3x3 + b = 0}.

Let us first simplify this problem by having only two inputs, i.e. z = w1x1 +
w2x2 + b. As shown in the left-hand side of Fig. 1.3, without the bias component,
i.e. b = 0, the decision boundary must cross the origin of the Cartesian coordinate
as demonstrated by the blue line in the bottom-left corner. However, this apparently
cannot fit the data distribution well enough as the data samples for both classes
fall on the same side of the boundary. If the bias is non-zero, the decision boundary
crosses both axes at (0,− b

w2
) and (− b

w1
, 0), respectively, and this decision boundary

can fit the data distribution better if the weights and bias are well chosen.
If we come back to the original setting of the problem where the neuron has

three inputs, i.e. z = w1x1 +w2x2 +w3x3 + b, the decision boundary will become
a plane as shown in the right-hand side of Fig. 1.3. In a linear model like the single-
layer neural networks defined in Eq. (1.2), the decision boundary is also called
hyperplane.

Fig. 1.3 Decision boundary of linear model with two and three inputs. Left: z = w1x1+w2x2+b,
Right: z = w1x1 + w2x2 +w3x3 + b

8 J. Zhang et al.

1.2.3 More Than One Output

The single-layer neural network can have multiple neurons. Figure 1.4 shows an
example of a single-layer neural network with two outputs, which are computed by
Eq. (1.4). Since each output is connected with all of the inputs, the output layer is
also called the dense layer, or fully connected (FC) layer:

z1 = w11x1 +w12x2 +w13x3 + b1

z2 = w21x1 +w22x2 +w23x3 + b2.
(1.4)

In practice, the dense layer can be represented by matrix multiplication:

z = Wx + b (1.5)

where W ∈ R
m×n is a matrix to represent weights and z ∈ R

m, x ∈ R
n, b ∈ R

m are
column vectors to represent outputs, inputs, and biases, respectively. In the example
by Eq. (1.4), m = 2 and n = 3.

[
z1

z2

]
=
[
w11 w12 w13

w21 w22 w23

]⎡⎣x1

x2

x3

⎤
⎦+

[
b1

b2

]
(1.6)

Fig. 1.4 The neural network
with three input neurons and
two output neurons

1 Introduction to Deep Learning 9

1.3 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) (Rosenblatt 1958; Ruck et al. 1990) stems from a
single dense layer to have at least two dense layers. Figure 1.5 presents an MLP
consisting of four dense layers. The three layers between the input and output layers
are “hidden” because they are typically not accessible from outside the network,
and we will refer them as the hidden layers. Compared with the network with
a single dense layer, MLP can fit more complex data. In other words, MLP has
a stronger learning capability than a single-layer neural network. However, more
hidden layers in MLP do not necessarily lead to stronger learning capacity. The
universal approximation theorem states that a feedforward network with one hidden
layer (e.g., MLP with one hidden layer) and any squashing activation function
(e.g., sigmoid or tanh) can approximate any Borel measurable function, given that
the hidden layer has sufficient hidden units (Samuel 1959; Hornik et al. 1989;
Goodfellow et al. 2016). However, in practice, such a network can be inflexible
to train or hard to avoid overfitting if the hidden layer is extremely large. Therefore,
deep neural networks including MLP typically have several hidden layers.

We start with the logic operations to demonstrate how a network approximates
a function. The logic operations including AND, OR, NOR, NAND, XNOR, and
XOR take two binary numbers and return either zero or one. For example, AND
returns one if and only if the two binary numbers are both one. Simple logic
operations can be easily approximated by the perceptron, which can be defined by
Eq. (1.7).

f (x) =
{

1 if z > 0
0 otherwise

where z = w1x1 +w2x2 + b (1.7)

Figure 1.6 shows that hyperplanes defined by perceptron can be easily found
to separate the points between zero and one for AND, OR, NOR, and NAND.
However, it is not possible to do the same for XOR or XNOR.

Fig. 1.5 An example of multilayer perceptron (MLP) with three hidden layers and one output
layer. The neurons are represented by al

i , where l the layer index and i is the output index

10 J. Zhang et al.

F
ig

.1
.6

To
p

le
ft

:
T

he
pe

rc
ep

tr
on

w
it

h
tw

o
in

pu
ts

an
d

on
e

ou
tp

ut
.

T
he

re
st

:
H

yp
er

pl
an

es
ca

n
be

fo
un

d
to

se
pa

ra
te

th
e

po
in

ts
be

tw
ee

n
ze

ro
(g

re
en

)
an

d
on

e
(o

ra
ng

e)
fo

r
A

N
D

,O
R

,N
O

R
,N

A
N

D
,b

ut
no

hy
pe

rp
la

ne
de

fin
ed

by
pe

rc
ep

tr
on

ca
n

be
fo

un
d

fo
r

X
O

R
,X

N
O

R

1 Introduction to Deep Learning 11

Fig. 1.7 Left: An MLP that approximates XOR. Mid and right: Transformation from the original
data space to the feature space, where the data points are linearly separable

The XOR cannot be approximated by a linear model directly working on the
original inputs x1, x2 like the perceptron, so we need to transform the inputs first. As
an example, we use MLP with one hidden layer as shown in Fig. 1.7 to approximate
XOR. This MLP first transforms the inputs x1, x2 into a new space by approximating
the logic operations OR and NAND, and then, in the transformed space, the points
are linearly separable by an approximation of AND. The transformed space is also
named feature space and this example shows how learning features can improve the
learning capacity of a model.

1.4 Activation Functions

Matrix addition and multiplication are both linear operators but the learning
capability of a linear model is rather limited. For example, a linear model cannot
easily approximate a cosine function. Most real-world problems that deep neural
networks are applied to solve cannot be simplified as a linear transformation, so
non-linearity is important for deep neural networks. In practice, the non-linearity
of deep neural networks is introduced by activation functions, which are typically
element-wise operations. In addition, the activation functions are necessary when a
model needs to obtain probability vectors instead of vectors with arbitrary values.
The choice of activation functions varies in different applications. Even though there

12 J. Zhang et al.

Fig. 1.8 Demonstration of three element-wise activation functions including sigmoid, tanh, and
ReLU. The sigmoid constrains values between 0 and 1, while the tanh returns values between −1
and 1. The ReLU returns zero when the input is non-positive but is equivalent to f (x) = x when
the input is positive

exist some functions that work well in most deep learning applications, there might
be other functions that have better performance on a case by case basis. Therefore,
the design of activation functions remains an active research area. This section
introduces four commonly used activation functions, namely sigmoid, tanh, ReLU,
and softmax (Fig. 1.8).

The logistic sigmoid as an activation function has float output ranging between 0
and 1 as defined by Eq. (1.8). The sigmoid function can be used at the output layer
for classification purpose. For example, a binary classifier with one output neuron
uses sigmoid to constrain the output value between 0 and 1 and then converts it to a
discrete class label (either 0 or 1) by using a threshold like 0.5.

f (z) = 1

1 + e−z
. (1.8)

Similar to the sigmoid function, the hyperbolic tangent (tanh) constrains output
values to a limited range between −1 and 1 as defined by Eq. (1.9). The tanh
function can be used in the hidden layers (Glorot et al. 2011) to provide non-
linearity. It can also be used in the output layer, e.g. in the generation of images
whose pixel values range between −1 and 1.

f (z) = ez − e−z

ez + e−z
. (1.9)

The rectified linear unit (ReLU), also known as the rectifier, is defined by
Eq. (1.10). The study by Glorot et al. (2011) shows that ReLU is more promising

1 Introduction to Deep Learning 13

than sigmoid and tanh, and ReLU has also been widely adopted in recent works (He
et al. 2016; Cao et al. 2017; Noh et al. 2015). The empirical advantages of ReLU
are:

• Easier to implement and compute: in the implementation of ReLU, a simple
comparison with zero is conducted first and then the activation is set to zero
or z accordingly. Whereas in the sigmoid and tanh, the exponential function is
harder to compute especially in the case of large networks.

• Easier for a network to optimize: ReLU function is close to being linear,
consisting of two linear functions. This property makes the gradient large and
consistent. The gradient of an active neuron by ReLU is always one, but the
gradient of a neuron by sigmoid or tanh suffers from vanishing when the activated
value approaches the limits (i.e., −1, 0, or 1).

f (z) =
{

0 when z <= 0
z when z > 0

(1.10)

However, merely setting negative values to zero in ReLU can lead to information
loss. Imagine, if a neuron constantly outputs zero, it will always output zero in
the future and is unlikely to recover. This can happen because of an inappropriate
learning rate or a negative bias. The work by Xu et al. (2015) proposes a solution
to this with another activation function called leaky ReLU, which is defined in
Eq. (1.11). The scalar α in this equation is a small positive value to control the
slope (e.g., 0.01 or 0.02) so that a little information from the negative scope can be
retained.

f (z) =
{
αz when z <= 0
z when z > 0

(1.11)

The parametric ReLU (PReLU) (He et al. 2015) is similar to the leaky ReLU
except that it considers α as a trainable parameter. There is no clear evidence to
show which one of ReLU, leaky ReLU or PReLU is significantly better than the
others since the choice varies in different scenarios.

Unlike the activation functions mentioned above, the softmax function, defined
by Eq. (1.12), provides normalization based on all values from previous layer’s
outputs. The softmax function first computes the exponential function ez and then
normalizes each entry by dividing it.

f (z)i = ezi∑K
k=1 ezk

(1.12)

In practice, the softmax function is typically only used in the output layer to
normalize the output vector z into a probability vector, where each entry is non-
negative and the entries are added to one. Therefore, the softmax function is widely
used for classification.

14 J. Zhang et al.

1.5 Loss Functions

In deep learning, loss functions are defined to quantify an error, also known
as the loss value or cost, between the prediction and target (i.e., ground truth,
gold standard). The loss value is normally used as the objective to optimize
the parameters of neural networks, such as the weights and biases. This section
introduces some commonly used loss functions and Sect. 1.6 will introduce how to
optimize the parameters based on the loss values.

1.5.1 Cross-Entropy Loss

Before we introduce the cross-entropy loss, we start with a similar concept named
Kullback–Leibler (KL) divergence. The KL divergence measures the similarity
between two distribution P(x) and Q(x):

DKL(P‖Q) = Ex∼P

[
log

P(x)

Q(x)

]
= Ex∼P [log P(x) − log Q(x)] (1.13)

The KL divergence is non-negative and equals to 0 if and only if P and Q have
the same distribution. Since the first term in KL divergence has no relation with Q,
we introduce cross-entropy which can remove the first term.

H(P,Q) = −Ex∼P log Q(x) (1.14)

Therefore, minimizing the cross-entropy with respect to Q is equivalent to
minimizing the KL divergence. As mentioned before, in some deep learning appli-
cations, e.g. classification, deep neural networks calculate a probability distribution
of classes in practice instead of identifying the target class directly. Therefore, we
can use the cross-entropy to measure how well the predicted distribution is and then
update the network accordingly.

We start with binary classification as an example. In binary classification, for
each input data sample xi with target yi (i.e., 0 or 1), a model needs to predict the
probability of each candidate class ŷi,1, ŷi,2. Since ŷi,1 + ŷi,2 = 1, we can rewrite
the prediction as ŷi which represents the probability of one class, so the probability
of the other class is 1 − ŷi . Therefore, a neural network for binary classification
typically has only one output neuron (with sigmoid) and following the definition of
cross-entropy, we have:

L = − 1

N

N∑
i=1

(
yi log ŷi + (1 − yi) log(1 − ŷi)

)
, (1.15)

1 Introduction to Deep Learning 15

where N represents the total number of data samples. Since yi is either 0 or 1,
only one of yi log ŷi and (1 − yi) log(1 − ŷi) is retained for each data sample. If
∀i, yi = ŷi , the cross-entropy loss is zero.

In multinomial classification, where each data sample xi is classified into one
out of three or more candidate classes, a model predicts the probability of each
class {ŷi,1, ŷi,2, . . . , ŷi,M}, where M ≥ 3 and

∑M
j=1 ŷi,j = 1. The target of each

data sample is referred to as ci , which is an integer between [1,M], and it can
be converted to a one-hot vector yi = [yi,1, yi,2, . . . , yi,M], where only yi,ci = 1
and others are zero. Then, we can write the cross-entropy loss for the multinomial
classification as below:

L = − 1

N

N∑
i=1

M∑
j=1

yi,j log ŷj = − 1

N

N∑
i=1

(0 + · · · + yi,ci log ŷci + · · · + 0)

= − 1

N

N∑
i=1

log ŷci . (1.16)

1.5.2 Lp Norm

Given a vector x, p-norm measures its scale such that a vector with larger values
has a larger scale, and it is defined as follows, where p is an integer greater or equal
to 1.

‖x‖p =
(

N∑
i=1

|xi |p
)1/p

i.e.,‖x‖p
p =

N∑
i=1

|xi |p
(1.17)

In deep learning, a p-norm can be used to measure the difference between two
vectors written as Lp, as in Eq. (1.18), where y and ŷ are the target and prediction,
respectively.

Lp = ‖y − ŷ‖p
p =

N∑
i=1

|yi − ŷi |p. (1.18)

16 J. Zhang et al.

1.5.3 Mean Squared Error

The mean squared error (MSE) is the averaged L2 norm as defined by Eq. (1.19).
The MSE can be used for regression problems in which the outputs of a neural
network are continuous values. For example, the difference between two images
can be measured by MSE between pixels of the two images.

L = 1

N
‖y − ŷ‖2

2 =
1

N

N∑
i=1

(yi − ŷi)
2, (1.19)

where N is the number of data samples, and y and ŷ are the target and prediction,
respectively.

1.5.4 Mean Absolute Error

Similar to MSE, the mean absolute error (MAE) can also be used for regression
problems and is defined as the averaged L1 norm.

L = 1

N

N∑
i=1

|yi − ŷi| (1.20)

Both MSE and MAE minimize the difference between y and ŷ. MSE offers
a better mathematical property making it easier to compute the partial derivative
which is required by gradient descent. In contrast, since the absolute term is not
differentiable when yi = ŷi , the partial derivative of MAE needs to walk around
this case. In addition, when the difference between yi and ŷi is greater than 1, MSE
has a larger error value compared to MAE (i.e., (yi − ŷi)

2 vs |yi − ŷi |) which can
lead to a quicker optimization of a network.

1.6 Optimization

In this section we describe the optimization of deep neural networks, or in other
words, how the parameters of deep neural networks are trained. This section covers
back-propagation, gradient descent, stochastic gradient descent, and the selection of
hyper-parameters.

1 Introduction to Deep Learning 17

1.6.1 Gradient Descent and Error Back-Propagation

Given a neural network and a loss function, the training of the neural network is
formalized to learning its parameters θ so that the loss L is minimized. Finding the
minimum by searching θ s.t.
θ L = 0 in a brute-force fashion is infeasible in
practice, especially when the formula is as complex as that of a deep neural network.
Therefore, we consider a process to approach the minimum by small steps and this
technique is called gradient descent.

Figure 1.9 illustrates two examples of gradient descent. The learning process of
gradient descent starts from a randomly picked point and the loss L decreases along
with the update of parameters as denoted by the red dotted path. Similarly, in a
neural network, its parameters are first randomly initialized and updated each step
based on the partial derivative ∂L

∂θ
. More specifically, the parameters are updated

iteratively by θ := θ − α ∂L
∂θ

, where α the learning rate of each step and θ mostly
consists of weights W and biases b of each layer.

Back-Propagation (Rumelhart et al. 1986; LeCun et al. 2015) is a technique to
compute the partial derivative ∂L

∂θ
in the network. To make the computation of ∂L

∂θ

clearer, we introduce an intermediate value δ = ∂L
∂z

, which is the partial derivative
of the loss L with respect to the layer’s output z. Then, the partial derivatives of the
loss L with respect to each parameter, which assemble ∂L

∂θ
, are computed based on

the intermediate value δ.
The layers are indexed as l = 1, 2, . . . L, where L is the index of the output

layer, each layer has an output zl , an intermediate value δl = ∂L
∂zl , and an activation

output al = f (zl) (where f is the activation function). We use an MLP with MSE
loss and a sigmoid activation function as an example. Given zl = W lal−1 + bl ,
al = f (zl) = 1

1+e−zl
, and L = 1

2‖y − aL‖2
2, we represent the partial derivative of

Fig. 1.9 Examples of gradient descent with a trainable parameter (Left) and two trainable
parameters (Right). In gradient descent, the learning process starts from a ranomly picked point.
With the parameters updates shown by the red arrows, the loss L gradually reachs a saddle point.
Note that there is no guarantee the gradient descent can find the global minimum but in most cases
a local minimum is approached

18 J. Zhang et al.

the activation output with respect to its original output as ∂al

∂zl = f ′(zl) = f (zl)(1−
f (zl)) = al (1−al) and the partial derivative of the loss with respect to the activation
output as ∂L

∂aL = (aL − y). To compute the partial derivative of the loss with respect
to the output layer, we apply the chain rule as follows:

• δL = ∂L
∂zL = ∂L

∂aL
∂aL

∂zL = (aL − y
)� (aL

(
1 − aL

))
Then, the partial derivative of the loss with respect to all the other layers’ outputs

can be computed recursively as follows, where l = 1, 2, . . . , L − 1.

• Given zl+1 = W l+1al + bl+1

• Then δl = ∂L
∂zl = ∂L

∂zl+1
∂zl+1

∂al
∂al

∂zl =
(
W l+1)T δl+1 � (al

(
1 − al

))
The second step of the back-propagation is to compute the partial derivative of

the loss with respect to the parameters ∂L
∂W l and ∂L

∂bl of each layer based on the

intermediate value δl .

• Given zl = W lal−1 + bl , we have ∂zl

∂W l = al−1 and ∂zl

∂bl = 1

• Then ∂L
∂W l = ∂L

∂zl
∂zl

∂W l = δl
(
al−1
)T

, ∂L
∂bl = ∂L

∂zl
∂zl

∂bl = δl

Finally, we use the ∂L
∂W l and ∂L

∂bl to update the parameters W l and bl as follows:

• W l := W l − α ∂L
∂W l

• bl := bl − α ∂L
∂bl

With the partial derivative ∂L
∂θ

, gradient descent updates the parameter iteratively
and converges to a minimum point of the loss function as in Fig. 1.9. In practice, the
converged point is typically a local minimum rather than the global one. However,
as deep neural networks offer a good representation capacity, the local minimums
tend to be close to the global minimum (Goodfellow et al. 2016).

In gradient descent, the computation of the loss value L in each iteration can be
expensive if the size of dataset (i.e., total number of data samples) N is large. Given
the MSE in the example above, we can expand the MSE to:

L = 1

2
‖y − aL‖2

2 =
1

2

N∑
i=1

(
yi − aL

i

)2
(1.21)

In practice, the size of dataset can be more than tens of thousands so the
gradient descent suffers from inefficiency due to the computation of L. To tackle
this problem, we introduce stochastic gradient descent which computes L of a small
batch of data samples.

1 Introduction to Deep Learning 19

1.6.2 Stochastic Gradient Descent and Adaptive Learning Rate

Instead of computing the loss L of all training data in each iteration, the stochastic
gradient descent (SGD) (Bottou and Bousquet 2007) randomly selects a small
number of data samples from the training set. These small number of data samples
are named as a mini-batch, and the quantity of data samples in the mini-batch
is referred to as batch size. We can rewrite the Eq. (1.21) with batch size B and
B � N so that the computation of L is much more efficient.

L = 1

2
‖y − aL‖2

2 =
1

2

B∑
i=1

(
yi − aL

i

)2
(1.22)

The training process of stochastic gradient descent is outlined in Algorithm 1. If
the parameters are updated with sufficient times (i.e., sufficient training steps/itera-
tions), the mini-batches can cover the entire training set.

Algorithm 1 The training process of stochastic gradient descent (SGD)
Input: Parameters θ , learning rate α, number of training steps/iterations S

1: for i = 0 to S do
2: Compute L of a mini-batch;
3: Compute ∂L

∂θ
by back-propagation;

4: �θ ← −α ∗ ∂L
∂θ
;

5: θ ← θ + �θ; update the parameters
6: end for
7: return θ; return the trained parameters;

The learning rate controls the step size of each update in SGD. If the learning
rate is too large, the SGD may fail to find the minimum as shown in Fig. 1.10.
If the learning rate is too small, the SGD can be slow to converge (Fig 1.10) or
become stuck in a local minimum which has high error (Fig 1.9). Therefore, it is
difficult to determine a proper fixed learning rate. Recent studies proposed adaptive
learning rates, such as Adam (Kingma and Ba 2014), RMSProp (Tieleman and
Hinton 2017), and Adagrad (Duchi et al. 2011), which speed up the training process
by automatically adapting the learning rate. Adam is one of the most frequently
used algorithm. Instead of using the gradients to update the parameters directly,
Adam computes the running average of the gradients and the second moment of the
gradients to update the parameters as shown in Algorithm 2. The β1 and β2 terms are
the forgetting factors, also known as momentum, for the gradients and the second
moment of the gradients, respectively. By default, β1 is 0.9 and β2 is 0.999 (Kingma
and Ba 2014).

20 J. Zhang et al.

Fig. 1.10 A large learning rate may accelerate the training process but can also make it hard to
train a model with ideal parameters. As shown in the left figure, which has a larger learning rate
than the right figure, the loss value may increase after parameters update and it can be hard to
approach the minimum. In contrast, in the right figure, which has a lower learning rate, the loss
value decreases consistently but in a slower manner

Algorithm 2 The training process of Adam optimization
Input: parameters θ , learning rate α, number of training steps/iterations S, β1 = 0.9, β2 = 0.999,

ε = 10−8

1: m0 ← 0; initialize the first moment vector
2: v0 ← 0; initialize the second moment vector
3: for t = 1 to S do
4: ∂L

∂θ
; compute the gradient using a random mini-batch

5: mt ← β1 ∗ mt−1 + (1 − β1) ∗ ∂L
∂θ
; update the first moment

6: vt ← β2 ∗ vt−1 + (1 − β2) ∗ (∂L
∂θ

)2; update the second moment
7: m̂t ← mt

1−βt
1
; compute the running average of the first moment

8: v̂t ← vt

1−βt
2
; compute the running average of the second moment

9: �θ ← −α ∗ m̂t√
v̂t+ε

;
10: θ ← θ + �θ; update parameters
11: end for
12: return θ; return the trained parameters

1.6.3 Hyper-Parameter Selection

In deep learning, hyper-parameters refer to the settings of a model, such as the
number of layers, and the settings of the training process, such as the number
of steps, batch size, and learning rate. These settings can significantly affect
the performance of a model, so selecting these hyper-parameters appropriately is
essential to obtain an ideal model.

To evaluate the performance of different hyper-parameters, the data is usually
split into training, validation, and testing sets. Then, multiple hyper-parameter
settings are applied to the training set and evaluated on the validation set. Finally,
the model with the best hyper-parameters that performs best on the validation set is
selected for a final evaluation on the testing set.

1 Introduction to Deep Learning 21

Fig. 1.11 An example of four-fold cross-validation. The dataset is split into four subsets (each
row is a subset for demonstration purpose). In each trial, the blue subsets are the training set and
the green subset is the testing set. The final evaluation result is the average of the four trials

Cross-Validation

For a small dataset, splitting the data into training and testing sets may be
problematic. If the size of the training set is too small, the performance of a model
can be harmed since there is no sufficient training data. On the other hand, if the
testing set is too small, a model cannot be adequately evaluated. To tackle this
problem, cross-validation is introduced.

In a k-fold cross-validation, a dataset is split into k non-overlapping subsets and
each subset has the same size. The training/testing process is repeated for k times
and, in each time, one of the subsets is selected for testing and the remainders for
training. The final evaluation result is then averaged by the result across the k trials.
Figure 1.11 illustrates an example of four-fold cross-validation.

1.7 Regularization

Regularization refers to a collection of methods which are designed to make sure a
model not only works well on the training set but also on the testing data and new
dataset. This section introduces the concept of overfitting and some regularization
methods including weight decay, dropout, and batch normalization.

1.7.1 Overfitting

A machine learning model is optimized to minimize the training error (i.e., loss) but
this cannot guarantee that the model can also perform well on the testing data. If the
model is optimized “overly,” the model may even have a significantly large testing
error. This case is called overfitting. For example, in Fig. 1.12, the polynomial model
represented by the dashed curve suffers from overfitting. This model fits the training
data accurately but it fails to fit the testing data. Such a model with overfitting can
be unreliable in real-world applications where there is always new data. In contrast,

22 J. Zhang et al.

Fig. 1.12 A demonstration of overfitting. The blue dots represent training data, and the orange
dots are testing data. Though the linear model represented by the solid line has a larger training
error, it has much smaller testing error than the polynomial model represented by the dashed curve.
Thus, we can say the polynomial model suffers from overfitting

the linear model represented by the solid straight line has fewer parameters while
offering a better fit for the testing data.

Underfitting is opposite to overfitting, where the model cannot fit the training
data, resulting in large error for both training and testing data. However, in practice,
underfitting can be solved by using a larger model (more layers, more parameters,
etc.), but solving overfitting is more challenging. The simplest way to alleviate
overfitting is to use more training data which is not always possible since data
acquisition and data labeling can be expensive.

1.7.2 Weight Decay

Weight decay is a simple but yet effective regularization method targeting the
overfitting problem. It introduces a regularization term as a penalty to encourage
θ with smaller absolute values. For example, as Fig. 1.12 shows, if the parameters
from c to h of the polynomial model have smaller absolute values, the model will
have a lower swing range so that it can better fit the data. The loss function with the
parameter norm penalty is defined as follows:

Ltotal = L(y, ŷ)+ λ�(θ), (1.23)

where L(y, ŷ) is the original loss function computed from the target y and
prediction ŷ, � is the parameter norm penalty function and λ is a small value
that controls the strength of the regularization. Two of the most commonly used
parameter norm penalty functions are L1 = ‖W‖ and L2 = ‖W‖2

2. The parameters

1 Introduction to Deep Learning 23

Fig. 1.13 Left: A demonstration of contour lines of the original loss (red) and L2 (blue). Right:
A demonstration of contour lines of the original loss (red) and L1 (blue). The interaction points
(red crosses) of the two contour lines in each sub-figure indicate that L1 may tend to produce
parameters valued zero and L1 may produce parameters with similar absolute values

of deep neural networks often have absolute values smaller than 1, so L1 can lead to
a large penalty than L2 since |w| > w2 when |w| < 1. Therefore, the loss function
with L1 has the property which encourages the parameters of a network to have
rather small values, or even zeros. This enables the network to implicitly perform
feature selection, i.e. discarding some input features by setting the corresponding
parameters to zero or some small values. As Fig. 1.13 shows, given two parameters
w1, w2, in the coordinate system, w1

2 + w2
2 = r2 is a circle with radius of

r and |w1| + |w2| = r is a square with diagonal length of 2r , both of which
are demonstrated by the blue contour lines. The red contour lines indicate the
original loss L(y, ŷ). The intersection points, represented by the red crosses, of
the parameter norm penalties and the original loss, indicate that L1 is more likely
to produce parameters valued zero than L2, while L2 may produce parameters with
similar absolute values.

1.7.3 Dropout

Deep neural networks with large numbers of neurons can suffer from the co-
adaptation of neurons which can result in overfitting. The co-adaptation of neurons
means that the neurons are dependent on each other. If one of the neurons fails,
all dependent neurons may also fail and this can lead to the failure of the entire
neural network. Dropout (Hinton et al. 2012; Srivastava et al. 2014) is a popular
technique to address this problem by preventing the co-adaptation of neurons
(i.e., parameters). To prevent the co-adaptation of parameters, during training, the
hidden outputs are randomly set to zero, which resembles a random disconnection

24 J. Zhang et al.

Fig. 1.14 Applying dropout to MLP where some neurons are randomly deactivated

of neurons from one layer to the next, as illustrated in Fig. 1.14. During back-
propagation, with a zero-valued output a, the corresponding partial derivative of
the loss with respect to the layer output δ will be zero. In other words, only
the remaining connected neurons are updated. Therefore, the dropout method
can train different sub-networks while allowing all of them to share the same
parameters (Hinton et al. 2012). During testing, dropout is disabled, and no outputs
are set to zero. This means that all sub-networks work together to predict the final
result (i.e., ensemble learning (Hara et al. 2016)). The theoretical proof of dropout
was not presented in the original work by Hinton et al. (2012), but more recent
studies proved its effectiveness in ensemble learning (Hara et al. 2016) and Bayesian
approximation (Gal and Ghahramani 2016).

1.7.4 Batch Normalization

Batch normalization (Ioffe and Szegedy 2015) normalizes the inputs of a layer
to have a mean of 0 and a variance of 1 and can improve the performance of
a neural network and its training stability. Specifically, during training, the batch
normalization layer estimates the mean and variance of the batch inputs using a
moving average. Then, the moving mean and variance are updated to normalize the
batch inputs. During testing, the moving mean and variance are fixed and applied to
normalize the inputs.

Besides improving the performance and stability, batch normalization provides
regularization. Similar to the dropout process that adds a random factor to the hidden
values, the moving mean and variance of batch normalization introduce randomness
as they are updated in each iteration according to the random mini-batch. Therefore,
a neural network is encouraged during training to be robust enough to deal with the
variation (Fig. 1.15).

1 Introduction to Deep Learning 25

Fig. 1.15 An example of image data augmentation. The top-left image is the original image and
the others are obtained by random flip, rotate, shear, shift, and zoom on the original image

Fig. 1.16 A demonstration of where the overfitting starts. The early stopping can be applied so
that the training process is terminated before the overfitting starts

1.7.5 Other Methods for Alleviating Overfitting

There are many other methods designed to prevent overfitting, such as early stopping
and data augmentation. Early stopping allows early termination of the training
process once it matches an empirical criterion, such as a threshold of accuracy
on the validation set. Figure 1.16 shows that the testing loss may start to increase
during training (i.e., the overfitting starts) and early stopping can be applied so that
the training process is terminated before the overfitting starts. Data augmentation
increases the size of training data by augmenting the existing training data. For
example, image data can be augmented by simply flipping, rotating, shifting, and
zooming. Data augmentation methods that generate arbitrary but reasonable data
can reduce overfitting and improve the performance of a model (Simonyan and

26 J. Zhang et al.

Zisserman 2015; He et al. 2016; Howard et al. 2017; Dong et al. 2017b). As with an
image, the audio can be augmented by adding noise or perturbation. A recent study
by Ko et al. (2015) showed that audio data augmentation with speed perturbation
can improve the performance of speech recognition algorithms.

However, it is not applicable to use similar augmenting transformations on
textual data since the order of words provides specific meaning. For example,
“people like dogs” is not semantically equivalent to “dogs like people.” A practical
way to augment textual data can be rephrasing sentences by replacing words with
pre-defined synonyms (Zhang et al. 2015). Moreover, instead of augmenting the
raw textual data, another study (Reed et al. 2016) interpolates the text embeddings
of two random sentences so that the model is aware of the gaps in the text latent
space.

1.8 Convolutional Neural Networks

Convolutional neural networks (CNNs) (LeCun et al. 1989) are a variant of MLP
and are particularly useful in computer vision (Krizhevsky et al. 2012; Simonyan
and Zisserman 2015; He et al. 2016), time series prediction (van den Oord et al.
2016), natural language processing (Zhang et al. 2019a; Yin et al. 2017), and also
reinforcement learning (Rusu et al. 2016; James et al. 2019). Many of the deployed
real-world machine learning systems are built on CNNs, which often demonstrate
far superior performances when being compared against those with conventional
methods. In this section, we introduce two kinds of layers, namely convolutional
layer and pooling layer, which are commonly used to construct CNNs.

Convolutional Layer The convolutional layer has the most distinguishable feature
of CNNs. The idea of its design stems from the study of the human brain again
where we have an array of nearby neurons processing a subset of the visual input.
Concretely, as Fig. 1.17 has shown, the convolution volume uses four different
neurons to process the same region from the input image. Different neurons could
be responsible for different tasks such as edge, color, or angle detection. The neuron
in the convolution input is locally connected rather than being connected to all units
from the previous layer. Convolutional layers can also be stacked one by one, which
means a convolutional layer can be applied to the output from another convolutional
layer. The benefit of a convolutional layer is that it has far fewer connections to the
previous layer than a dense layer so the convolutional layer typically can be trained
more quickly. Figure 1.17 also shows that each neuron in a convolutional layer
contains all the information of a small region and across all channels. For example,
if the input layer is the RGB image input layer, then a neuron in the convolutional
layer has the information after the filter is applied to a small region of the image
across all the RGB image channels.

Regarding the convolution operation inside the convolutional layer, it uses filters
to extract various important features. A layer has an input of height/width W . When

1 Introduction to Deep Learning 27

Fig. 1.17 Computation of the convolution volume from a sample image. There are four neurons
applied to the same region in this example

we convolve an input with a filter of size F , we simply compute a dot product
between the input and the filter values in a sliding window fashion. Then we move
to apply the filter to the next block. The stride S describes how far each input block
is away from each other. For instance, with the stride of two (S = 2), the filter is
applied to the block that is one element away, skipping one row/column essentially.
Lastly, sometimes in order to ensure that boundary values are well-considered, we
have to add zeros on the edge, namely padding. We let the padding size be P . The
output volume size of a convolutional layer can be computed by

⌊
W − F + 2P

S
+ 1

⌋
(1.24)

The output volume has the same depth (number of output channels) as the
number of filters. Figure 1.18 shows a concrete example of the convolution
operation. In this example, there is an image of size 4 × 4 (height × width) with
3 input channels (RGB), and 1 filter sized 3 × 3 × 3 (filter height × filter width ×
input channels) with a stride S = 1 and a padding P = 0. According to Eq. (1.24),
the output height/width is (4 − 3 + 0)/1 + 1 = 2. The depth of the output (number
of output channels) is 1 since there is 1 filter. To compute the top-left value in each
channel, we first compute the dot products between the input image and the filter,
which generate three values, and then sum up the three values to produce the top-left
value. The convolution operation is a special case of

∑
i wixi , where wi is non-zero

in a much smaller set. The output can then be passed through an activation function
which introduces non-linearity.

Pooling Layer Pooling takes advantage of the fact that, for images, neighboring
pixels are similar. So it is assumed that proper down-sampling, such as only
retaining the maximum or the average of a small region, is beneficial for modeling.
There are typically two types of pooling layers to reduce the dimensions, namely
max-pooling and average-pooling. In Fig. 1.19, we are showing examples of max-
pooling and average-pooling on a 4 × 4 input with a stride of 2. The pooling layer

28 J. Zhang et al.

Fig. 1.18 Illustration of the convolution operation. In this example, 1 filter with size 3×3×3 (filter
height × filter width × input channels) is applied on an image sized 4× 4 (height × width) with 3
input channels (RGB). The dot products between the image and the filter are computed across the
channels. The values obtained from the dot products are summed up to produce the top-left value
of the output

Fig. 1.19 2 × 2 max-pooling and average-pooling examples with a stride of 2 on a 4 × 4 input

reduces the dimensions of the output significantly, which makes computation in the
following layers more efficient. For example, there can be hundreds of channels
after a convolutional layer. Before the output is passed to a dense layer, reducing the
dimensions of the output by pooling is preferred so that the successive dense layer
has less computation workload.

1 Introduction to Deep Learning 29

Fig. 1.20 A example of CNN with two convolutional layers, a max-pooling layer, and a dense
layer. Figure created by NN-SVG1

Overall, the convolutional layer and pooling layer together with the dense layer
are the basic components to construct CNNs. Figure 1.20 demonstrates a CNN
with two convolutional layers, a max-pooling layer, and a dense layer. Note that
activation functions can be applied to the output of the convolutional layers in the
same way as the dense layer.

CNNs adopt the idea of parameter sharing which is different from MLP. The
parameter sharing across different parts of a model makes the model more efficient
(fewer parameters and less memory) and possible to handle variable data forms
(different lengths and sizes). Recall that, in a dense layer, there is a weight matrix
whose element wij denotes the connectivity between the i-th neuron in the previous
layer and the j -th neuron in the current layer. However, in a convolutional layer,
the filters are essentially weights, which are used repeatedly when the output values
are being computed. The repeated usage of filters reduces the number of parameters
needed in a convolutional layer and this is why a convolutional layer typically has
far fewer parameters than a dense layer given similar sizes of input and output.

Batch normalization (batch-norm layers) (Ioffe and Szegedy 2015) can be
integrated with CNNs to accelerate the training due to the internal covariate shift.
As mentioned above, the input of a batch-norm layer is normalized by a mean and
a variance, which are independent of other layers. Therefore, intuitively, the batch
normalization simplifies the interactions between layers in the gradient update and
allows larger learning rates which accelerate the training.

LeNet (LeCun et al. 1998), AlexNet (Krizhevsky et al. 2012), and VGGnet
(Simonyan and Zisserman 2015) are some popular CNNs. How to design the
architecture of CNNs for a specific task or a general scenario is still an on-going

1http://alexlenail.me/NN-SVG/LeNet.html.

http://alexlenail.me/NN-SVG/LeNet.html

30 J. Zhang et al.

research topic. The design can be an empirical driven exercise and requires lots of
trials. However, recent works in neural architecture search seem to have provided
more insights (Zoph and Le 2016; Zoph et al. 2018).

1.9 Recurrent Neural Networks

Recurrent neural networks (RNNs) (Rumelhart et al. 1986) is another class of
deep learning architectures and it is designed to process sequential data. Unlike
the images which can be represented by a grid of values, the sequential data refers
to a sequence of values {x1, x2, . . . , xn}, which is also a common data format. For
example, a document is composed of a sequence of words, and the values of a stock
can be represented by a sequence of stock prices.

An important feature of the sequential data is the interaction among elements
within the sequence. For example, provided with a snippet of text, a human reader
may easily infer the content that would come next by only reading the beginning.
However, the modeling of such interaction within the sequence can be more
challenging if the sequence is longer. Therefore, RNNs should be able to effectively
accumulate information provided by the sequential data and adequately consider the
impact of earlier values on later ones in the sequence.

The design of RNNs, like that of CNNs, also adopts parameter sharing. The
use of parameter sharing allows the same weight to be utilized repeatedly across
multiple locations in the input sequential data. For example, RNNs should be able
to learn that the sentences “Deep learning has been popular since the 2010s.” and
“Since the 2010s, deep learning has been popular.” express the same meaning even
though the positions of words are different. Similarly, when the CNNs are used to
classify an image of a cat, the position of the cat in the image should not change the
decision made by the CNNs (Fig. 1.21).

Simple Cell Similar to the CNNs which can process images of variable sizes, the
RNNs can also easily be adjusted to process sequences with variable lengths. The

Fig. 1.21 An illustration of RNN architecture. The cell ingests the value x t and the previous
hidden state ht−1, and then outputs the new hidden state ht

1 Introduction to Deep Learning 31

idea of RNNs is to define a computation unit, referred to as a cell, and the cell is
repeatedly computed given each value in the sequence one by one. The cell has
a state which accumulates the information so far. When the cell is computed, it
takes a value from the sequence and the previous state of the cell as inputs, and
then generates a new state, which will be used in the next computation round.
The simplest RNN cell applies a linear transformation which can be defined as
follows:

ht = W [xt ;ht−1] + b (1.25)

In this equation, the previous state of the cell ht−1 is concatenated with the value
xt and then multiplied by the linear kernel W . A bias b can also be added to the state.
An RNN constructs a deep computational graph as the linear kernel is repeatedly
multiplied. Such a deep computational graph may cause the exploding of gradients
if the eigenvalues of W are greater than 1 in magnitude or vanishing of gradients
if the eigenvalues are less than 1 in magnitude. The exploding of gradients can
make the learning process volatile while the vanishing of gradients can make the
optimization of objectives (cost or loss) less effective. The RNNs with the simple
cell may suffer from either problem if the input sequence is lengthy.

LSTM The long short-term memory networks or LSTMs (Hochreiter et al.
1997) are more sophisticated RNNs to handle the long-term dependencies in long
sequences, and the LSTM computation can serve as a cell in RNNs.

Unlike the simple cell, the LSTM cell has two states: cell state Ct and hidden
state ht . The update process of the cell state forms an information highway
(the orange line in Fig. 1.22) which runs across the entire sequence with simple
computations. This feature allows an easier flow of information throughout the
sequence so that the dependency between two values that are located far away from
each other in the sequence (i.e., long-term dependency) can be properly considered.
Meanwhile, the hidden state is involved with gated computations. The gate controls

Fig. 1.22 An illustration of RNN with the LSTM cell. There are two states in the LSTM which are
the cell state Ct and the hidden state ht . In addition, the three gates control whether information
should be removed or added. Figure reproduced based on Olah (2015)

32 J. Zhang et al.

whether to forget or add information to the flow and is implemented by the sigmoid
function. The output of the sigmoid function is restricted between 0 and 1. In other
words, when the sigmoid function outputs 1, the corresponding information should
be totally kept. In contrast, the corresponding information should be totally forgotten
if the sigmoid function outputs 0.

There are three kinds of gates in an LSTM cell: the forget gate, input gate, and
output gate. The forget state first determines whether certain information should
be removed from the cell state based on the new input. In addition, the input gate
controls whether the new input should be added into the cell state for longer storage
and also for a replacement to any information which has been forgotten. Then
finally, the output state decides what the cell should output based on the new cell
state. The three gates and the computation within the LSTM cell can be formally
defined as follows. Note that σ represents the sigmoid function.

Forget gate: f t = σ(W f [ht−1; xt] + bf)

Input gate: it = σ(W i [ht−1; xt] + bi)

Output gate: ot = σ(W o[ht−1; xt] + bo)

Update cell state: Ct = f t × Ct−1 + it × tanh(WC[ht−1; xt] + bC)

Update hidden state: ht = ot × tanh(Ct)

(1.26)

There is a family of gated RNNs that uses gated recurrent units (or GRUs) and the
LSTM is a member of this family. Recent works have investigated different RNN
architectures but it is still unclear which one is clearly better than others (Cho et al.
2014; Jozefowicz et al. 2015).

RNNs are widely adopted in deep learning to process sequential data like natural
language and time series (Liao et al. 2018b; Chung et al. 2014; Mikolov et al.
2010) and also applied to solve reinforcement learning problems (Peng et al.
2018; Wierstra et al. 2010). Based on the relations between inputs and outputs,
the architecture of RNNs can be modified in different scenarios. For example, a
typical example of sequence input and single output is text classification (Zhang
et al. 2019a; Lee and Dernoncourt 2016) where the input is a sequence of words (a
sentence or a document) and the output is a single label to represent the predicted
class. More challenging tasks such as machine translation (Sutskever et al. 2014;
Luong et al. 2015; Bahdanau et al. 2015) and text summarization (Nallapati et al.
2017) have a sequence input and a sequence output.

1 Introduction to Deep Learning 33

1.10 Deep Learning Examples

This section introduces examples of how to implement deep learning models in
TensorFlow2 and TensorLayer.3 TensorFlow (Abadi et al. 2016) by Google is an
open-source library that enables researchers and engineers to develop deep learning
models, while TensorLayer (Dong et al. 2017a) provides a moderate abstraction
over TensorFlow to make such development easier and more flexible. The content
of this section is validated on Python 3, TensorFlow 2.0, and TensorLayer 2.0 or
later. In the future, TensorLayer will support different computational backend not
only TensorFlow.

1.10.1 Tensor and Gradients

The tensor is the most fundamental computation unit in TensorFlow and it is used
to represent outputs of an operation. A tensor can be created by operations such
as tf.constant, tf.matmul, etc. Tensor does not store the values of the
operation’s outputs but provides access to the computation of those values in a
TensorFlow session. In TensorFlow 2.0, there is no need to run a session manually,
as in eager execution, graphs and sessions are designed to stay in the backend. For
examples, in the matrix multiplication as shown below, matrices can be created by
tf.constant and the multiplication is computed by tf.matmul whose output
is another matrix.

Matrix multiplication in TensorFlow by Tensor.

>>> import tensorflow as tf
>>> a = tf.constant([[1, 2], [1, 2]])
tf.Tensor(
[[1 2]
[1 2]], shape=(2, 2), dtype=int32)
>>> b = tf.constant([[1], [2]])
tf.Tensor(
[[1]
[2]], shape=(2, 1), dtype=int32)
>>> c = tf.matmul(a, b)
tf.Tensor(
[[5]
[5]], shape=(2, 1), dtype=int32)

In the forward propagation of deep neural networks, the tensors are automatically
connected by each other as a graph. Based on the graph and the automatic

2https://github.com/tensorflow/tensorflow.
3https://github.com/tensorlayer/tensorlayer.

https://github.com/tensorflow/tensorflow
https://github.com/tensorlayer/tensorlayer

34 J. Zhang et al.

differentiation technique provided by TensorFlow, gradients can be computed in
the back-propagation. TensorFlow 2.0 provides tf.GradientTape to compute
gradients of recorded operations with respect to its input variables. For example,
the code below shows an example of computing gradients in back-propagation.
The forward propagation and the computation of loss are within the scope of
tf.GradientTape, while the back-propagation and the update of weights
are outside the scope. The tf.GradientTape records all operations that are
executed within the scope onto a tape. Then the gradients associated with each
recorded operation and its input variables are computed by reverse-mode automatic
differentiation. Once the function tape.gradient() is called, the resources
held by tf.GradientTape are released.

Gradients computation in TensorFlow and TensorLayer.

import tensorflow as tf
import tensorlayer as tl
def train(model, dataset, optimizer):

given a model which is an instance of Model by TensorLayer
traverse the dataset where x is input and y is target output
for x, y in dataset:

create the scope of gradient tape
with tf.GradientTape() as tape:

prediction = model(x) # forward propagation
loss = loss_fn(prediction, y) # loss function

back-propagation and computing gradients, then the
resources held by the GradientTape are released

gradients = tape.gradient(loss, model.trainable_weights)
apply the gradients to weights and update the weights by

the optimizer
optimizer.apply_gradients(zip(gradients,

model.trainable_weights))

1.10.2 Define a Model

In TensorLayer 2.0,Model is an entity that consists of multipleLayers and defines
the propagation between the Layers. TensorLayer 2.0 provides two sets of APIs
to define a model. Static model APIs allow users to build a model fluently and
dynamic model APIs provide more flexibility in the forward propagation. A static
model requires users to manually construct a graph and compile it. Once the model
is compiled, the forward propagation cannot be changed. Unlike the static model, the
dynamic model can be executed eagerly like Python normally does and the forward
propagation is mutable.

In the implementation of models, as shown in the examples below, the difference
between a static model and a dynamic model can be summarized in two aspects.
First, when layers in a static model are declared, the connection between layers

1 Introduction to Deep Learning 35

(i.e., the forward propagation) is defined explicitly at the same time. Based on the
connection, for each layer, TensorLayer can automatically infer the size of input
variables from previous layers and then construct weights. When the Model is
finally instanced, only inputs and outputs need to be specified and TensorLayer
automatically builds a graph based on the connection. However, when a dynamic
model is initialized, the forward propagation is still unknown until it is defined in the
function forward later. Thus, the size of input variables cannot be automatically
inferred and it has to been manually provided via the argument in_channels.

Second, the forward propagation of a static model is fixed once the model is con-
structed, so it is easier to accelerate the computation of a static model. TensorFlow
2.0 provides a new feature called tf.function which can be used as a decorator
and accelerate the computation. Unlike the static model, the forward propagation
in a dynamic model can be more flexible. For example, the forward flow can be
controlled based on input values or arguments specified by users. Users are also
allowed to use or abandon any layer in the forward propagation of a dynamic model.

An example of a static model: multilayer perceptron (MLP)

import tensorflow as tf
from tensorlayer.layers import Input, Dense
from tensorlayer.models import Model

a multilayer perceptron (MLP) model with three dense layers
def get_mlp_model(inputs_shape):

ni = Input(inputs_shape)
since the connection between layers is explicitly defined
in_channels of each layer is automatically inferred
nn = Dense(n_units=800, act=tf.nn.relu)(ni)
nn = Dense(n_units=800, act=tf.nn.relu)(nn)
nn = Dense(n_units=10, act=tf.nn.relu)(nn)
automatic build a model based on the connection between

layers
M = Model(inputs=ni, outputs=nn)
return M

MLP = get_mlp_model([None, 784])
switch to evaluation mode
MLP.eval()
ingest data into the model
the computation can be accelerated by using @tf.function in

TensorFlow 2.0
outputs = MLP(data)

An example of a dynamic model: multilayer perceptron (MLP)

import tensorflow as tf
from tensorlayer.layers import Input, Dense
from tensorlayer.models import Model

36 J. Zhang et al.

class MLPModel(Model):
def __init__(self):

super(MLPModel, self).__init__()
since the connection between layers is unknown so far,

in_channels has to be manually provided
assume the input data is size 784
self.dense1 = Dense(n_units=800, act=tf.nn.relu,

in_channels=784)
self.dense2 = Dense(n_units=800, act=tf.nn.relu,

in_channels=800)
self.dense3 = Dense(n_units=10, act=tf.nn.relu,

in_channels=800)

def forward(self, x, foo=False):
define the forward propagation
z = self.dense1(z)
z = self.dense2(z)
out = self.dense3(z)
control the forward flow in a dynamic model
if foo:

out = tf.nn.softmax(out)
return out

MLP = MLPModel()
switch to evaluation mode
MLP.eval()
ingest data into the model
the argument foo controls the forward flow
outputs_1 = MLP(data, foo=True) # with softmax
outputs_2 = MLP(data, foo=False) # without softmax

1.10.3 Customized Layers

TensorLayer 2.0 provides more than a hundred layers for users, and at the same time,
TensorLayer 2.0 also supports Lambda Layer so that users can easily customize
layers. The simplest example is to pass a lambda function into a Lambda Layer
as shown below. Users may also define a customized function with arguments and
the arguments can be passed by fn_args when the Lambda Layer is initialized
or called.

import tensorlayer as tl
x = tl.layers.Input([8, 3], name=’input’)
y = tl.layers.Lambda(lambda x: 2*x)(x) # this layer has no

trainable weights.

def customize_fn(input, foo): # arguments can be set by fn_args
in Lambda Layer.
return foo * input

1 Introduction to Deep Learning 37

z = tl.layers.Lambda(customize_fn, fn_args={’foo’: 42})(x) #
this layer has no weights.

The Lambda Layer can also have trainable weights. The example below
shows that the weight is defined outside the customized function and it should be
passed into the Lambda Layer by fn_weights.

import tensorflow as tf
import tensorlayer as tl
a = tf.Variable(1.0) # weight which is defined outside the scope

of the customized function.
def customize_fn(x):

return x + a
x = tl.layers.Input([8, 3], name=’input’)
y = tl.layers.Lambda(customize_fn, fn_weights=[a])(x) # weights

are passed by fn_weights, which should be a list.

Moreover, the Lambda Layer enables the compatibility of Keras in Tensor-
Layer. Users may define a Keras model and pass the model into a Lambda Layer
as a function since the Keras model is callable. The trainable weights of the Keras
model need to be fetched and then passed into the Lambda Layer so that the
Keras model can be updated together with the customized model.

import tensorflow as tf
import tensorlayer as tl
define a Keras model
layers = [

tf.keras.layers.Dense(10, activation=tf.nn.relu),
tf.keras.layers.Dense(5, activation=tf.nn.sigmoid),
tf.keras.layers.Dense(1, activation=tf.identity)

]
perceptron = tf.keras.Sequential(layers)
in order to get trainable_variables of keras
_ = perceptron(np.random.random([100, 5]).astype(np.float32))

class CustomizeModel(tl.models.Model):
def __init__(self):

super(CustomizeModel, self).__init__()
self.dense = tl.layers.Dense(in_channels=1, n_units=5)
self.lambdalayer = tl.layers.Lambda(perceptron,

perceptron.trainable_variables) # pass the trainable
weights of the model into the Lambda layer.

def forward(self, x):
z = self.dense(x)
z = self.lambdalayer(z)
return z

38 J. Zhang et al.

1.10.4 MLP: Image Classification on MNIST

With the Models, Layers, and other supportive APIs provided by TensorLayer
2.0, users can design and implement their own deep learning models in a straight-
forward and flexible manner. To help readers have a better understanding of how to
write a deep learning model by TensorLayer, let us start from an MLP to classify
images on the MNIST dataset (LeCun et al. 1998), which collects 70,000 images
of handwritten digits. The implementation of a deep learning example typically has
five steps including data loading, building a model, training, testing, and saving the
model.

TensorLayer provides APIs in the submoduletl.files to load various popular
datasets including MNIST, CIFAR10, PTB, CelebA, etc. For example, the MNIST
dataset can be loaded by tl.files.load_mnist_dataset with a specific
shape. The datasets are typically split into three subsets: the training set, validation
set, and testing test.

Loading the MNIST dataset by TensorLayer
X_train, y_train, X_val, y_val, X_test, y_test =

tl.files.load_mnist_dataset(shape=(-1, 784)) # each image in
MNIST is originally sized 28x28, i.e. has 784 pixels.

As introduced in the Sect. 1.10.2, an MLP model can be implemented as a either
static or dynamic model in TensorLayer 2.0. In this example, the MLP model is
designed to have three Dense layers and is implemented as a static model. But
unlike a conventional MLP, the MLP model in this example also has three Dropout
layers, which are used to prevent overfitting.

build the model
ni = tl.layers.Input([None, 784]) # the input is aligned with

the shape of data
the layers of the MLP is connected one by one
nn = tl.layers.Dropout(keep=0.8)(ni)
nn = tl.layers.Dense(n_units=800, act=tf.nn.relu)(nn)
nn = tl.layers.Dropout(keep=0.5)(nn)
nn = tl.layers.Dense(n_units=800, act=tf.nn.relu)(nn)
nn = tl.layers.Dropout(keep=0.5)(nn)
nn = tl.layers.Dense(n_units=10, act=None)(nn)
create the model with specified inputs and outputs
network = tl.models.Model(inputs=ni, outputs=nn, name="mlp")

The training of the MLP model on the MNIST dataset is to learn the weights of
the model. Users can trigger the training process by simply calling the function
tl.utils.fit. In addition, the testing step is to validate if the model has
properly learned from the data and can be triggered by tl.utils.test.

Define a metric to evaluate the accuracy of the model.
Different from the loss function, the metric is NOT used to

backpropagate or update the model.

1 Introduction to Deep Learning 39

def acc(_logits, y_batch):
return tf.reduce_mean(

tf.cast(
tf.equal(

tf.argmax(_logits, 1),
tf.convert_to_tensor(y_batch, tf.int64)),

tf.float32),
name=’accuracy’

)

Training
tl.utils.fit(

network, # the model
train_op=tf.optimizers.Adam(learning_rate=0.0001), # the

optimizer
cost=tl.cost.cross_entropy, # the loss function
X_train=X_train, y_train=y_train, # training set
acc=acc, # the metrics to evaluate the accuracy of a model
batch_size=256, # the size of mini-batch
n_epoch=20, # number of epoch to train
X_val=X_val, y_val=y_val, eval_train=True, # validation set

)

Testing
tl.utils.test(

network, # the model just trained
acc=acc, # the metrics to evaluate the accuracy of a model
X_test=X_test, y_test=y_test, # testing set
batch_size=None, # the size of mini-batch. If None, the whole

testing set is fed into the network together, so only set
it None when the testing set is small.

cost=tl.cost.cross_entropy # the loss function
)

Finally, the weights of the trained MLP model can be saved to a local file so that
the model can be restored later for inference.4

save network weights to a file
network.save_weights(’model.h5’)

1.10.5 CNN: Image Classification on CIFAR10

The CIFAR-10 dataset (Krizhevsky et al. 2009) was a challenging and popular
benchmark for image classification. It collects images from 10 classes and each

4 The full code of the MLP example is available at https://github.com/tensorlayer/tensorlayer/tree/
master/examples/basic_tutorials.

https://github.com/tensorlayer/tensorlayer/tree/master/examples/basic_tutorials
https://github.com/tensorlayer/tensorlayer/tree/master/examples/basic_tutorials

40 J. Zhang et al.

class has 6000 images. The images are sized 32 × 32 with RGB color and each
image exclusively focuses on one single object (class) such as a dog, airplane, ship,
etc. In TensorLayer 2.0, CIFAR-10 can be easily loaded and augmented by using
Dataset and Dataloader APIs.

pre-defined data augmentation
def _fn_train(img, target):

1. Randomly crop a [height, width] section of the image.
img = tl.prepro.crop(img, 24, 24, False)
2. Randomly flip the image horizontally.
img = tl.prepro.flip_axis(img, is_random=True)
3. Subtract off the mean and divide by the variance of the

pixels.
img = tl.prepro.samplewise_norm(img)
target = np.reshape(target, ())
return img, target

loading the training set
train_ds = tl.data.CIFAR10(train_or_test=’train’, shape=(-1, 32,

32, 3))
feed the dataset into a dataloader, which integrates data

augmentation
train_dl = tl.data.Dataloader(train_ds, transforms=[_fn_train],

shuffle=True, batch_size=batch_size,
output_types=(np.float32, np.int32))

loading the testing set
test_ds = tl.data.CIFAR10(train_or_test=’test’, shape=(-1, 32,

32, 3))
feed the dataset into a dataloader
test_dl = tl.data.Dataloader(test_ds, batch_size=batch_size)

the images can be accessed by iteration
for X_batch, y_batch in train_dl:

code to train/test a model

In this example, a CNN model with batch normalization (Ioffe and Szegedy
2015) is trained to classify the images from CIFAR-10. The model has two
convolution blocks, each of which contains a batch normalization layer, and the
blocks are followed by three dense layers.5

a static CNN model with BatchNorm
def get_model_batchnorm(inputs_shape):

customized initialization
W_init = tl.initializers.truncated_normal(stddev=5e-2)
W_init2 = tl.initializers.truncated_normal(stddev=0.04)
b_init2 = tl.initializers.constant(value=0.1)

5The full source code of the CNN example is available at https://github.com/tensorlayer/
tensorlayer/tree/master/examples/basic_tutorials.

https://github.com/tensorlayer/tensorlayer/tree/master/examples/basic_tutorials
https://github.com/tensorlayer/tensorlayer/tree/master/examples/basic_tutorials

1 Introduction to Deep Learning 41

start from a input layer
ni = Input(inputs_shape)

the first convolution block with a Conv2d, a BatchNorm and
a MaxPool.

nn = Conv2d(64, (5, 5), (1, 1), padding=’SAME’,
W_init=W_init, b_init=None)(ni)

nn = BatchNorm2d(decay=0.99, act=tf.nn.relu)(nn)
nn = MaxPool2d((3, 3), (2, 2), padding=’SAME’)(nn)

the second convolution block with a Conv2d, a BatchNorm and
a MaxPool.

nn = Conv2d(64, (5, 5), (1, 1), padding=’SAME’,
W_init=W_init, b_init=None)(nn)

nn = BatchNorm2d(decay=0.99, act=tf.nn.relu)(nn)
nn = MaxPool2d((3, 3), (2, 2), padding=’SAME’)(nn)

the outputs of the convolution blocks are finally fed into
three Dense layers

nn = Flatten()(nn) # reshape the tensor
nn = Dense(384, act=tf.nn.relu, W_init=W_init2,

b_init=b_init2)(nn)
nn = Dense(192, act=tf.nn.relu, W_init=W_init2,

b_init=b_init2)(nn)
nn = Dense(10, act=None, W_init=W_init2)(nn)

create the model given the inputs and outputs
M = Model(inputs=ni, outputs=nn, name=’cnn’)
return M

1.10.6 RNN and Seq2seq: Chatbot

Chatbots are designed to conduct conversation by audio and text in general. In
this example, we simplify the chatbot which takes text as inputs and responses
in text. In this sense, the seq2seq by (Sutskever et al. 2014) can be a good fit for
the chatbot. The seq2seq model has a sequence input and a sequence output. For
example, both the input and output can be a sentence, which is a sequence of words.
In chatbot, the seq2seq model takes a sentence as input and is trained to respond
properly with another sentence. The seq2seq was originally proposed for machine
translation but has potentials on many other sequence-to-sequence scenarios such
as traffic prediction (Liao et al. 2018b) and text summarization (Liu et al. 2018). In
practice, the seq2seq model consists of two RNNs: one encoder and one decoder.
The encoder RNN learns the representation of the input sequence and the decoder
RNN generates the response against the input. TensorLayer provides APIs to build
a seq2seq model with one line of code.

42 J. Zhang et al.

Seq2seq model
model_ = Seq2seq(

decoder_seq_length=decoder_seq_length, # the upper limit of
the sequence length in the decoding

cell_enc=tf.keras.layers.GRUCell, # the cell for the encoder
(RNN)

cell_dec=tf.keras.layers.GRUCell, # the cell for the decoder
(RNN)

n_layer=3, # number of RNN layers for the encoder and decoder
n_units=256, # number of hidden units in RNN layers
embedding_layer=tl.layers.Embedding(vocabulary_size=vocabulary

_size, embedding_size=emb_dim), # the embedding layer of
the encoder

)

An example output of the seq2seq based chatbot model6 is demonstrated below.
The model ingests the input query which is a sentence and outputs several candidate
responses.

Query > happy birthday have a nice day
> thank you so much
> thank babe
> thank bro
> thanks so much
> thank babe i appreciate it

References

Abadi M, Barham P, Chen J, Davis A, Dean J, Devin M, Geoffrey S, Irving G, Devin M,
Kudlur M, Manjunath J, Monga R, Moore S, Murray DG, Derek B, Tucker P, Vasudevan
V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale
machine learning. In: USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, Berkeley

Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and
translate. In: Proceedings of the international conference on learning representations (ICLR)

Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin
Bottou L, Bousquet O (2007) The tradeoffs of large scale learning. In: Proceedings of the

20th international conference on neural information processing systems. Advances in neural
information processing systems, vol 20, pp 161–168

Cao Z, Simon Z, Wei SE, Sheikh SE (2017) Realtime multi-person 2D pose estimation using
part affinity fields. In: Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR)

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014)
Learning phrase representations using RNN encoder-decoder for statistical machine translation.

6The full source code of chatbot is available at https://github.com/tensorlayer/seq2seq-chatbot.

https://github.com/tensorlayer/seq2seq-chatbot

1 Introduction to Deep Learning 43

In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP)

Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural
networks on sequence modeling. Preprint. arXiv:14123555

Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 conference of the
North American chapter of the association for computational linguistics: human language
technologies, vol 1 (long and short papers). Association for Computational Linguistics,
Minneapolis, pp 4171–4186. https://doi.org/10.18653/v1/N19-1423

Dong H, Supratak A, Mai L, Liu F, Oehmichen A, Yu S, Guo Y (2017a) TensorLayer: a versatile
library for efficient deep learning development. In: Proceedings of the ACM Multimedia (MM).
http://tensorlayer.org

Dong H, Zhang J, McIlwraith D, Guo Y (2017b) I2t2i: learning text to image synthesis with textual
data augmentation. In: Proceedings of the IEEE international conference on image processing
(ICIP)

Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and
stochastic optimization. J Mach Learn Res 12:2121–2159

Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: representing model uncertainty
in deep learning. In: Proceedings of the international conference on machine learning (ICML),
pp 1050–1059

Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the
international conference on artificial intelligence and statistics (AISTATS), pp 315–323

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014) Generative adversarial nets. In: Proceedings of the neural information processing
systems conference. Advances in neural information processing systems

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge. http://www.
deeplearningbook.org

Hara K, Saitoh D, Shouno H (2016) Analysis of dropout learning regarded as ensemble learning.
In: Proceedings of the international conference on artificial neural networks (ICANN).
Springer, Berlin, pp 72–79

He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level
performance on ImageNet classification. In: Proceedings of the IEEE international conference
on computer vision, pp 1026–1034

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings
of the IEEE conference on computer vision and pattern recognition (CVPR)

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural
networks by preventing co-adaptation of feature detectors. Preprint. arXiv:12070580

Hochreiter S, Hochreiter S, Schmidhuber J, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal
approximators. Neural Netw 2(5):359–366

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017)
MobileNets: efficient convolutional neural networks for mobile vision applications. Preprint.
arXiv:170404861

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing
internal covariate shift. Preprint. arXiv:150203167

James S, Wohlhart P, Kalakrishnan M, Kalashnikov D, Irpan A, Ibarz J, Levine S, Hadsell R,
Bousmalis K (2019) Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-
to-canonical adaptation networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 12627–12637

Jozefowicz R, Zaremba W, Sutskever I (2015) An empirical exploration of recurrent network
architectures. In: International conference on machine learning, pp 2342–2350

Kingma D, Ba J (2014) Adam: a method for stochastic optimization. In: Proceedings of the
international conference on learning representations (ICLR)

https://doi.org/10.18653/v1/N19-1423
http://tensorlayer.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org

44 J. Zhang et al.

Ko T, Peddinti V, Povey D, Khudanpur S (2015) Audio augmentation for speech recognition. In:
Annual conference of the international speech communication association

Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images.
Technical Report. Citeseer

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional
neural networks. In: Advances in neural information processing systems, pp 1097–1105

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989)
Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278–2324

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz

J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR)

Lee JY, Dernoncourt F (2016) Sequential short-text classification with recurrent and convolutional
neural networks. In: Proceedings of the 2016 conference of the North American chapter of
the association for computational linguistics: human language technologies. Association for
Computational Linguistics, San Diego, pp 515–520. https://doi.org/10.18653/v1/N16-1062

Liao B, Zhang J, Cai M, Tang S, Gao Y, Wu C, Yang S, Zhu W, Guo Y, Wu F (2018a) Dest-
ResNet: a deep spatiotemporal residual network for hotspot traffic speed prediction. In: 2018
ACM multimedia conference on multimedia conference. ACM, New York, pp 1883–1891

Liao B, Zhang J, Wu C, McIlwraith D, Chen T, Yang S, Guo Y, Wu F (2018b) Deep sequence
learning with auxiliary information for traffic prediction. In: Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining. ACM, New York,
pp 537–546

Liu PJ, Saleh M, Pot E, Goodrich B, Sepassi R, Kaiser L, Shazeer N (2018) Generating wikipedia
by summarizing long sequences. In: International conference on learning representations.
https://openreview.net/forum?id=Hyg0vbWC-

Luong T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine
translation. In: Proceedings of the 2015 conference on empirical methods in natural language
processing. Association for Computational Linguistics, Lisbon, pp 1412–1421. https://doi.org/
10.18653/v1/D15-1166

Maas AL, Daly RE, Pham PT, Huang D, Ng AY, Potts C (2011) Learning word vectors for
sentiment analysis. In: Proceedings of the 49th annual meeting of the association for computa-
tional linguistics: human language technologies, HLT ’11, vol 1. Association for Computational
Linguistics, Stroudsburg, pp 142–150. http://dl.acm.org/citation.cfm?id=2002472.2002491

Mikolov T, Karafiát M, Burget L, Cernocky J, Khudanpur S (2010) Recurrent neural network based
language model. In: INTERSPEECH 2010, 11th annual conference of the international speech
communication association, Makuhari

Nallapati R, Zhai F, Zhou B (2017) SummaRuNNer: a recurrent neural network based sequence
model for extractive summarization of documents. In: Proceedings of the thirty-first AAAI
conference on artificial intelligence, AAAI’17. AAAI Press, Palo Alto, pp 3075–3081

Ng AY, Jordan MI (2002) On discriminative vs. generative classifiers: a comparison of logistic
regression and naive Bayes. In: Proceedings of the neural information processing systems.
Advances in neural information processing systems. Conference, pp 841–848

Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In:
Proceedings of the international conference on computer vision (ICCV), pp 1520–1528

Olah C (2015) Understanding LSTM networks. https://colah.github.io/posts/2015-08-
Understanding-LSTMs/

Peng XB, Andrychowicz M, Zaremba W, Abbeel P (2018) Sim-to-real transfer of robotic
control with dynamics randomization. In: 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, Piscataway, pp 1–8

https://doi.org/10.18653/v1/N16-1062
https://openreview.net/forum?id=Hyg0vbWC-
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
http://dl.acm.org/citation.cfm?id=2002472.2002491
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

1 Introduction to Deep Learning 45

Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to
image synthesis. In: Proceedings of the international conference on machine learning (ICML)

Rish I et al (2001) An empirical study of the naive Bayes classifier. In: International joint con-
ference on artificial intelligence 2001 workshop on empirical methods in artificial intelligence.
vol 3, pp 41–46

Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization
in the brain. Psychol Rev 65(6):386

Ruck DW, Rogers SK, Kabrisky M, Oxley ME, Suter BW (1990) The multilayer perceptron as an
approximation to a Bayes optimal discriminant function. IEEE Trans Neural Netw 1(4):296–
298

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating
errors. Nature 323(6088):533

Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R,
Hadsell R (2016) Progressive neural networks. Preprint. arXiv:160604671

Samuel A (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev
3:210–219

Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image
recognition. In: Proceedings of the international conference on learning representations (ICLR)

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In:
Proceedings of the neural information processing systems. Advances in neural information
processing systems. Conference, pp 3104–3112

Tieleman T, Hinton G (2017) Divide the gradient by a running average of its recent magnitude.
COURSERA: neural networks for machine learning. Technical Report

van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior
A, Kavukcuoglu K (2016) WaveNet: a generative model for raw audio. In: Arxiv. https://arxiv.
org/abs/1609.03499

Wierstra D, Förster A, Peters J, Schmidhuber J (2010) Recurrent policy gradients. Log J IGPL
18(5):620–634

Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional
network. In: Proceedings of the international conference on machine learning (ICML) work-
shop

Yang G, Yu S, Dong H, Slaubaugh, GG, Dragotti PL, Ye X, Liu F, Arridge SR, Keegan J,
Guo Y, Firmin DN (2018) DAGAN: deep de-aliasing generative adversarial networks for fast
compressed sensing MRI reconstruction. IEEE Trans Med Imaging 37(6):1310–1321

Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV (2019) XLNet: generalized
autoregressive pretraining for language understanding. In: Advances in neural information
processing systems, pp 5754–5764

Yin W, Kann K, Yu M, Schütze H (2017) Comparative study of CNN and RNN for natural language
processing. Preprint. arXiv:170201923

Zhang X, Zhao J, LeCun Y (2015) Character-level convolutional networks for text classification.
In: Advances in neural information processing systems, pp 649–657

Zhang J, Lertvittayakumjorn P, Guo Y (2019a) Integrating semantic knowledge to tackle zero-shot
text classification. In: Proceedings of the 2019 conference of the North American chapter of the
association for computational linguistics: human language technologies, vol 1 (long and short
papers). Association for Computational Linguistics, Minneapolis, pp 1031–1040. https://doi.
org/10.18653/v1/N19-1108

Zhang J, Zhao Y, Saleh M, Liu PJ (2019b) PEGASUS: Pre-training with extracted gap-sentences
for abstractive summarization. Preprint. arXiv:191208777

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://doi.org/10.18653/v1/N19-1108
https://doi.org/10.18653/v1/N19-1108

46 J. Zhang et al.

Zoph B, Le QV (2016) Neural architecture search with reinforcement learning. Preprint.
arXiv:161101578

Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable
image recognition. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 8697–8710

Chapter 2
Introduction to Reinforcement Learning

Zihan Ding, Yanhua Huang, Hang Yuan, and Hao Dong

Abstract In this chapter, we introduce the fundamentals of classical reinforcement
learning and provide a general overview of deep reinforcement learning. We first
start with the basic definitions and concepts of reinforcement learning, including
the agent, environment, action, and state, as well as the reward function. Then, we
describe a classical reinforcement learning problem, the bandit problem, to provide
the readers with a basic understanding of the underlying mechanism of traditional
reinforcement learning. Next, we introduce the Markov process, together with the
Markov reward process and the Markov decision process. These notions are the
cornerstones in formulating reinforcement learning tasks. The combination of the
Markov reward process and value function estimation produces the core results
used in most reinforcement learning methods: the Bellman equations. The optimal
value functions and optimal policy can be derived through solving the Bellman
equations. Three main approaches for solving the Bellman equations are then
introduced: dynamic programming, Monte Carlo method, and temporal difference
learning. We further introduce deep reinforcement learning for both policy and value
function approximation in policy optimization. The contents in policy optimization
are introduced in two main categories: value-based optimization and policy-based
optimization. In value-based optimization, the gradient-based methods are intro-
duced for leveraging deep neural networks, like Deep Q-Networks. In policy-based
optimization, the deterministic policy gradient and stochastic policy gradient are

Z. Ding (�)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

Y. Huang
Xiaohongshu Technology Co., Ltd., Shanghai, China

H. Yuan
Oxford University, Oxford, UK
e-mail: hang.yuan@keble.ox.ac.uk

H. Dong
Peking University, Beijing, China
e-mail: hao.dong@pku.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_2

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_2&domain=pdf
mailto:zhding@mail.ustc.edu.cn
mailto:hang.yuan@keble.ox.ac.uk
mailto:hao.dong@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_2

48 Z. Ding et al.

introduced in detail with sufficient mathematical proofs. The combination of value-
based and policy-based optimization produces the popular actor-critic structure,
which leads to a large number of advanced deep reinforcement learning algorithms.
This chapter will lay a foundation for the rest of the book, as well as providing the
readers with a general overview of deep reinforcement learning.

Keywords Reinforcement learning · Multi-armed bandit · Markov process ·
Bellman equation · Dynamic programming · Monte Carlo method · Temporal
difference learning · Value-based optimization · Deterministic policy gradient ·
Stochastic policy gradient

2.1 Introduction

This chapter introduces the basic knowledge of reinforcement learning (RL) as well
as deep reinforcement learning (DRL), including the definitions and explanations of
basic concepts, as well as the theoretical proofs of some theorems in reinforcement
learning domain, which are the fundamentals of advanced topics in (deep) reinforce-
ment learning. Therefore, we encourage the readers to read through and understand
well about the contents in this chapter before moving on to the following chapters.
We will start with the basic concepts in reinforcement learning.

The agent and environment are the basic components of reinforcement learning,
as shown in Fig. 2.1. The environment is an entity that the agent can interact with.
For example, an environment can be a Pong game, which is shown on the right-
hand side of Fig. 2.2. The agent controls the paddle to hit the ball back and forth.
An agent can “interact” with the environment by using a predefined action set A =
{A1, A2 . . .}. The action set describes all possible actions. In Pong, the action set
can be {moveUp, moveDown}. The goal of reinforcement learning algorithms is to
teach the agent how to interact “well” with the environment so that the agent is able
to obtain a good score under a predefined evaluation metric. In Pong, the metric
could just be the score that a player gets. An agent will receive a reward r of 1
when the ball hits the wall on the opposite side. In other words, if the agent misses

Fig. 2.1 Agent and environment

2 Introduction to Reinforcement Learning 49

Fig. 2.2 Two types of gaming environments: on the left is the game of Go, where the observation
contains the complete state of the environment, and thus the environment is fully observable. On
the right is the Atari Pong game, where the observation of a single frame does not contain the
velocity of the ball, and thus the environment is partially observable

the ball and lets the ball hit the wall on its side, then its opponent will receive a
reward of 1.

Now, let us take a closer look at the relationship between the agent and the envi-
ronment as depicted in Fig. 2.1. At an arbitrary time step, t , the agent first observes
the current state of the environment, St , and the corresponding reward value, Rt .
The agent then decides what to do next based on the state and reward information.
The action the agent intends to perform, At , gets fed back into the environment
such that we can obtain the new state St+1 and reward Rt+1. The observation of
the environment state s (s is a general representation of state regardless of time
step s) from the agent’s perspective does not always contain all the information
about the environment. If the observation only contains partial state information, the
environment is partially observable. Nevertheless, if the observation contains the
complete state information of the environment, the environment is fully observable.
In practice, the observation is usually a function of the state, which makes it difficult
to differentiate the observations that contain all the state information from the ones
that do not. A better understanding would be from the information perspective that a
fully observable environment should not miss any information in the function from
the underlying state of the whole environment to the observation of the agent.

The board game Go, shown on the left-hand side of Fig. 2.2, is a typical example
of a fully observable environment, where all the placement information of Go pieces
is fully observable for both of the players. The Atari game of Pong with a single
frame as observation is a partially observable environment, where the velocity of
the ball is important for the decision but not available from the stationary frame.

In the literature of reinforcement learning, the action a (a is a general repre-
sentation of action regardless of time step t) is usually conditioned on the state s

to represent the behavior of the agent, under the assumption of fully observable

50 Z. Ding et al.

environments. If the environment is partially observable for the agent, the agent
usually cannot have direct access to the underlying state, therefore the action has to
be conditioned on the observation, without advanced process.

To provide feedback from the environment to the agent, a reward function R

generates an immediate reward Rt according to the environment status and sends
it to the agent at every time step. In some cases, the reward function depends on the
current state only, i.e., Rt = R(St). For instance, in Pong, one of the players will
receive the reward immediately, if the ball hits one side of the wall. In this case, the
reward function only depends on the current state. However, sometimes the reward
function can depend on not only the current state and action but also the states and
actions at other time steps. An example would be if in an environment one agent
is asked to memorize a sequence of actions done by another player and then repeat
the same sequence of actions. So the reward will depend on not just one state-action
pair but also the sequence of state-action pairs during the other player’s movement
and this player’s movement. A reward function based on the current state, or even
the current state and action will not be indicative for the agent when mimicking the
whole sequence.

In reinforcement learning, a trajectory is a sequence of states, actions, and
rewards:

τ = (S0, A0, R0, S1, A1, R1, . . .)

which records how the agent interacts with the environment. The initial state in a
trajectory, S0, is randomly sampled from the start-state distribution, denoted by
ρ0, in which:

S0 ∼ ρ0(·) (2.1)

For example, the Atari Pong game always starts with a ball in the center of the
screen and the game of GO usually starts with a chess piece on a random location
of the chessboard.

The transition from a state to the next state can be either a deterministic tran-
sition process or a stochastic transition process. For the deterministic transition,
the next state St+1 is governed by a deterministic function:

St+1 = f (St , At), (2.2)

where a unique next state St+1 can be found. For the stochastic transition process,
the next state St+1 is described as a probabilistic distribution:

St+1 ∼ p(St+1|St , At) (2.3)

A trajectory, being referred to also as an episode, is a sequence that goes from the
initial state to the terminal state (for finite cases). For example, playing one entire
game can be considered as an episode. The terminal state is reached when the agent

2 Introduction to Reinforcement Learning 51

wins or loses the game. Sometimes, one episode can have several sub-games rather
than only one. For example, an episode can contain 21 sub-games for the Gym Pong
game.

Finally, we shall discuss two important concepts before the end of the section,
exploitation and exploration, as well as the well-known exploration-exploitation
trade-off. Exploitation means maximizing the agent performance using the existing
knowledge, and its performance is usually evaluated by the expected reward. For
example, a gold digger now has an ore providing him two grams of gold per day, and
he knows that the largest gold ore can give him five grams of gold per day. However,
he also knows that finding a new ore will not only force him to stop exploiting the
current ore but also costs him extra time with a risk of not finding anything at all in
the end. Having these in mind he decides to dig the current ore until it is exhausted
to maximize the reward (gold in this case) via exploitation and give up exploration,
given the large risks of exploration based on his current knowledge. The policy
he took here is the greedy policy, which means the agent constantly performs the
action that yields the highest expected reward based on current information, rather
than taking risky trials which may lead to lower expected rewards.

Exploration means increasing existing knowledge by taking actions and interact-
ing with the environment. Back to the example of the gold digger, he wishes to
spend some time to find new ore, and if he finds a bigger gold ore, he can get
more reward per day. To have a larger long-term return, the short-term return may
be sacrificed. The gold digger is always facing the exploitation and exploration
dilemma as he needs to decide how much the yield a gold mine has for him to
stay and how little the yield a gold mine has for him to keep exploring. Maybe,
he also wants to see enough ores before he can make a well-informed decision.
From the above descriptions, the readers may already have a primary understanding
about the exploration-exploitation trade-off. The exploration-exploitation trade-
off describes the balance between how much efforts the agent makes on exploration
and exploitation, respectively. The trade-off between exploration and exploitation
is a central theme of reinforcement learning research and reinforcement learning
algorithm development. We will explain it with the following bandit problem.

2.2 Bandits

Single-Armed Bandit is a simple gambling machine as shown on the left-hand
side of Fig. 2.3. The agent (player) interacts with the environment (machine) by
pulling a single arm down, and receives a reward when the machine hits the jackpot.
In a casino, there will usually be many bandits lining up in a row. The agent can
choose to pull an arm of any of these slot machines. The distributions of the reward
values r conditioned on the actions a, P(r|a), for different bandits are different but
fixed. The agent, however, does not know the distributions in the beginning, and
the knowledge is acquired through the trials of the agents. The goal is to maximize

52 Z. Ding et al.

Fig. 2.3 Single-armed bandit (left) and multi-armed bandits (right)

the payoffs after some number of selections. The agent will have to choose among
various slot machines at each time step and we refer this game as multi-armed
bandit (MAB) which is shown on the right-hand side of Fig. 2.3. MAB gives the
agent the freedom to make strategic choices of which arm to pull.

We try to solve the MAB problem with standard reinforcement learning methods.
The action a of the agent is to choose which arm to pull. A reward will be given right
after the action is conducted. Formally, at time step t , we are trying to maximize the
expected action value defined as follows:

q(a) = E[Rt |At = a]

If we already know the true value q(a) of each action a, then the problem will be
trivial to solve because we can always choose the action that would yield the best q

value. However, in reality, we typically need to estimate the q value and we denote
the estimate as Q(a), which should be as close to q(a) as possible.

The MAB problem is an excellent example to illustrate the exploration-
exploitation trade-off. After one has estimated the q values for some states, if
the agent is always going to take the action that has the greatest Q value, then
this agent is considered to be greedy and is exploiting the already estimated q

values. If the agent takes on any action that does not have the best Q value,
then this agent is considered to be exploring different options. Neither doing only
exploration or exploitation is a good way to improve the policy of the agent in most
cases.

A simple action-value based method is to estimate Qt(a) using the ratio between
the total rewards received by choosing one action by time t and the total number of
times that this specific action has been chosen:

Qt(a) = sum of the rewards by choosing a before t

number of times a was chosen before t
=
∑t−1

i=0 Ri · 1Ai=a∑t−1
i=0 1Ai=a

2 Introduction to Reinforcement Learning 53

1predicate is one when the predicate is true otherwise it is zero. The greedy approach
can be thus written as

At = arg max
a

Qt (a) (2.4)

We can, however, easily convert this greedy method into one that also explores other
states with probability ε. We call this method ε-greedy as it randomly chooses an
action with probability ε and most of the time behaves in a greedy fashion. If we
have an infinite number of time steps, we are guaranteed to have Qt(a) converge
to q(a). Moreover, the simple action-value based method is also an online learning
approach which we will explain in detail in the next section.

2.2.1 Online Prediction and Online Learning

Online prediction problems are the class of problems where the agent has to make
predictions about the future. For instance, imagine you have been in Hawaii for a
week, and are asked to predict whether it will rain in the next days. Another example
can be predicting afternoon oil prices based on the observed fluctuations in oil prices
in the morning. Online prediction problems need to be solved with online methods.
Online learning is distinguished from traditional statistic learning in the following
aspects:

• The sample data is presented in an ordered sequence instead of an unordered
batch.

• We will often have to consider the worst case rather than the average case because
we do not want things to go out of control in the learning stage.

• The learning objective can be different as online learning often tries to minimize
regret whereas statistical learning tries to minimize empirical risk. We will
explain what regret is later.

Let us take look at a trivial example in the context of the MAB problem. Let
us say, we observe a reward Rt at each time step t . An easy solution to find out
what the best action is to update the estimate of the q value using Rt and At . A
traditional way to compute the mean is to sum up all the previous rewards when
At has been selected and divide that sum by the count of At . This approach is
more like batch learning as it involves recomputing every time using a batch of data
points. The online alternative would be to use a running average by doing the new
estimate using the previous estimate: Qi(At) = Qi(At)−Qi(At)/N;Qi+1(At) =
Qi(At) + Rt/N . Qi is the q value after At has been selected i times, and N is the
number of times that At has been selected.

54 Z. Ding et al.

2.2.2 Stochastic Multi-Armed Bandit

Concretely, if we have K ≥ 2 arms, we will need to select an arm to pull for each
time step t = 1, 2, · · · , T . At each step t , we can observe a reward Ri

t by selecting
the ith arm.

Algorithm 1 Multi-armed bandit learning
Initialize K arms;
Number of time steps T ;
Each arm is associated with vi ∈ [0, 1]. The reward being returned is drawn i.i.d from vi

for t = 1, 2, . . . , T do
The agent selects At = i from the K arms.
The environment returns the reward vector Rt = (R1

t , R2
t , · · · , RK

t).

The agent observes reward Ri
t .

end for

In a traditional sense, one often tends to maximize the rewards. However, for a
stochastic MAB, we will focus on another metric, regret. The regret after n steps is
defined as:

REn = max
j=1,2,...,K

n∑
t=1

R
j
t −

n∑
t=1

Ri
t

The first term in the subtraction is the total reward that we accumulate until time
n for always receiving the maximized rewards and the second term is the actual
accumulated rewards in a trial that has gone through n time steps.

In order to select the best action, we should try to minimize the expected
regret because of the stochasticity introduced by our actions and rewards. We will
differentiate two different types of regret, the expected regret and pseudo-regret. The
expected regret is defined as:

E[REn] = E

[
max

j=1,2,...,T

n∑
t=1

R
j
t −

n∑
t=1

Ri
t

]
(2.5)

The pseudo-regret is defined as:

REn = max
j=1,2,...,T

E

[
n∑

t=1

R
j
t −

n∑
t=1

Ri
t

]
(2.6)

The key distinction between the above two regrets is the order of the maximization
and expectation. The expected regret is harder to compute. This is because for
the pseudo-regret we only need to find the action that optimizes the regret in
expectation, however, for the expected regret, we will have to find the expected

2 Introduction to Reinforcement Learning 55

regret that is optimal over actions across different trials. Concretely, we have
E[REn] ≥ REn.

Let μi be the mean of vi , where vi is the reward value of the i−th arm, μ∗ =
maxi=1,2,...,T μi . In the stochastic setting, we can rewrite Eq. (2.6) as:

REn = nμ∗ − E

[
n∑

t=1

Ri
t

]
(2.7)

One way to minimize the pseudo-regret is to select the best arm to pull
given the observed sample pulls using ε-greedy which we already talked about
before. A more sophisticated method is called Upper Confidence Bound (UCB)
algorithm. UCB makes use of Hoeffding’s lemma to derive an upper confidence
bound estimate and chooses the arm whose sample mean has been the greatest so
far.

We now introduce the concept of UCB strategy. The exact treatment of using
UCB on stochastic MAB for regret optimization can be found in Bubeck et al.
(2012). We will explain UCB for the situation when we optimize the policy with
respect to the reward. In stochastic MAB, even though the rewards are drawn from
a distribution, the reward function is still stationary over time. Let us refer back
to the ε-greedy method. The ε-greedy method explores non-optimal states with a
probability ε, but the issue is that it considers all the non-optimal states the same
and does not make any differentiation. If we want to thoroughly visit every state, we
should certainly prioritize the states that have not been visited yet or the states with
fewer visits. UCB helps resolve this issue by rewriting Eq. (2.4) into:

At = arg max
a

[
Qt(a)+ c

√
ln t

Nt (a)

]
(2.8)

Nt(a) is the number of times action a has been selected till time t and c is a positive
real number that determines how much exploration needs to be done. Eq. (2.8) is
how we would select an action if we have a non-stationary reward function. When
Nt(a) is zero, we consider action a to have the max value. To understand how
UCB works, let us focus on the square-root term, which reflects the amount of
uncertainty we have for the q-value estimate for a. As the number of times that a

is selected increases, the uncertainty decreases as the denominator decreases. Also
as more actions other than a is being selected, the uncertainty increases because the
ln t increases but Nt(a) does not. The log operator on t is saying that the impact
of incoming new time steps decays as we have more time steps in total. UCB
gives some form of an upper bound of the q value for a, and c is the confidence
level.

56 Z. Ding et al.

2.2.3 Adversarial Multi-Armed Bandit

Stochastic MAB’s reward functions are determined by the probabilistic distributions
that are usually not changed. In reality, this might not be the case. Imagine that if in
a casino, a player wants to make a large profit by playing a group of slot machines
and he has found out which machines are more likely to yield better returns, the
casino owner will change the behavior of the machines so that the casino does
not lose money. This is exactly why adversarial MAB modeling is needed when
the rewards are no longer governed by a stationary probabilistic distributions but
arbitrarily determined by some adversary. Formally, in adversarial MAB, the reward
for the ith arm at time t will be denoted by Ri

t ∈ [0, 1], at the same time, the player
will select an arm at time t , which is denoted by It ∈ {1, . . . ,K}.

One might wonder what if an adversary simply sets all the rewards to zero. This
situation could happen, but there would be little point in playing this game if the
player can get nothing in return. As a matter of fact, even when the opponent can
freely decide what the rewards are going to look like, he would not do so because
if all the rewards are zeros, no one will want to play the game anymore. His job is
actually to give the player enough rewards just to trick the player in believing that
he might have a chance of winning in the long term.

Algorithm 2 Adversarial multi-armed bandit
Initialize K arms;
for t = 1, 2, . . . , T do

The agent selects It from the K arms.
The adversary selects a reward vector Rt = (R1

t , R2
t , . . . , RK

t) ∈ [0, 1]K
The agent observes reward R

It
t and maybe also observes the rest of the reward vector

depending on the specific problem set up.
end for

Algorithm 2 describes the general setup for adversarial MAB. At each time step,
the agent will choose an arm It to pull and the adversary will decide the reward
vector Rt for this time step. The agent might only be able to observe the reward
for the arm he selects R

It
t or the possible rewards for all the machines, Rt (·). We

still need two more pieces of information for the problem formulation. The first
one is how much the adversary knows about the player’s past behavior. It matters
because, for some casino owners, they might adapt their reward strategies based
on the player’s behavior for more benefit. We will call the adversary who sets the
rewards independent of the past history an oblivious adversary and the one that
sets the rewards based on the past history a non-oblivious adversary. The second
piece of information we have to specify is how much the player knows about the
reward vector. We call the game in which a player has full knowledge of the reward
vector a full-information game and the game with the knowledge of the reward for
the action being played a partial-information game.

2 Introduction to Reinforcement Learning 57

The difference between the oblivious and non-oblivious adversaries only starts
to matter when we have a non-deterministic player. If we have a deterministic
player, a player whose game strategy does not change, it is fairly easy to show
that an adversary can always lower the regret to RE ≥ n/2 where n is the
number of pulls the player takes. Therefore, let us focus on a non-deterministic
player with full information in the first place. We can make use of the hedge
algorithm to tackle this problem. In Algorithm 3, we first set G function to be

Algorithm 3 Hedge for adversarial multi-armed bandit
Initialize K arms;
Gi(0) for i = 1, 2, . . . , K;
for t = 1, 2, . . . , T do

The agent selects At = it from the distribution p(t), where

pi(t) = exp(ηGi (t − 1))∑K
j exp(ηGj (t − 1))

The agent observes reward vector gt .
Let Gi(t) = G(t − 1) + gi

t , ∀i ∈ [1,K].
end for

zero for all the arms, and use the softmax function to obtain the probability density
function for the new action. η is a parameter greater than zero to control the
temperature. The G function is updated by adding all the new rewards received
for all the arms to allow the arm that has received the greatest reward being the
most likely one to be selected. We refer this algorithm as Hedge. Hedge is also
a building block for the method used under a partial-information game. If we
want to limit the agent’s observation to only Ri

t , then we will need to expand
our reward scalar to a vector such that it can be passed to hedge. Exponential-
weight algorithm for Exploration and Exploitation (Exp3) is the method that
builds on Hedge for the partial information game. It further utilizes a blending of
p(t) and a uniform distribution to ensure that all the machines will get selected
and hence the name exploration and exploitation. Auer et al. (1995) have more
details on how Exp3 can be used and offer analysis on the confidence bound for
regret.

2.2.4 Contextual Bandits

Contextual bandits are also sometimes called associative search tasks. The associa-
tive search tasks are best explained in comparison with the non-associative search
tasks, the MAB tasks that we just described. When the reward function for the
task is stationary, we only need to find the best action, otherwise, when the task

58 Z. Ding et al.

is non-stationary we will try to keep track of the changes. This is the case for the
non-associative search tasks, but reinforcement learning problems can become a
lot more complicated. For instance, if we have several MAB tasks to play, and
we will have to choose one at each time step. Even though we can still estimate
the general expected reward, the performance is unlikely to be optimal. For cases
like this, it would be useful to associate certain features of the slot machine with
the learned expected reward. Imagine, for each slot machine, there is an LED light
shining different colors at different times. Let us say if the machines with the red
light always yield greater reward than the ones with the blue light, then we will be
able to associate that information with our action selection policy, i.e. selecting the
machines with red lights more.

Contextual bandit tasks are an intermediate between MAB tasks and the full
reinforcement learning problems. They are similar to the MAB tasks because, for
both situations, their actions only impact the immediate rewards. It is also similar
to the full reinforcement learning setting because both require learning a policy
function. To convert contextual bandits tasks to full reinforcement learning tasks,
we will need to allow the actions to influence not just the intermediate rewards but
also the future environment states.

2.3 Markov Decision Process

2.3.1 Markov Process

A Markov process (MP) is a discrete stochastic process with Markov property,
which simplifies the simulation of the world in continuous space. Figure 2.4 shows
an example of MP. Each circle represents a state and each edge represents a state
transition. This graph simulates how a person works on two tasks and goes to bed in
the end. To understand how this diagram works, let us look at this example together.
Imagine, we are currently doing “Task1”, and then with a probability of 0.7 we
continue to execute “Task2”, after which if we manage to pass with a probability of
0.6, we will pass the exam and then go straight to bed.

Figure 2.5 shows the probabilistic graphical model of MP in a probabilistic
inference view, which will be frequently mentioned in later sections. In probabilistic
graphical models, specifically the ones that we use in this book, a circle indicates a
variable, and the arrow with a single direction indicates the relationship between two
variables. For example, “a → b” indicates that variable b is dependent on variable
a. The variable in a circle in white denotes a normal variable, while the variable in
a circle with a shade of gray denotes an observed variable (shown in later figures
of Sect. 2.7), which provides information for taking an inference process of other
normal variables. A solid black square with variables inside indicates those variables
are iterative, which will be shown in later figures as well. The probabilistic graphical
model can help us to have a more intuitive sense of the relationships between

2 Introduction to Reinforcement Learning 59

Task2
s = t2

Task1
s = t1

Pass
s = p

Rest
s = r

Bed
s = b

Game
s = g

0.9

0.1

1

0.3

0.7

0.3

0.6

0.1

1

0.1
0.9

Fig. 2.4 A Markov process example. s denotes the current state and the values on the edges denote
the probabilities of moving from one state to another

St−1 St St+1

p(St|St−1) p(St+1|St)

Fig. 2.5 Graphical model of Markov process: a finite representation with t indicating the time step
and p(St+1|St) indicating the state transition probability

variables in reinforcement learning, as well as providing rigorous references when
we derive the gradients with respect to different variables along the MP chains.

MP follows the assumption of Markov chain where the next state St+1 is only
dependent on the current state St , with the probability of a state jumping to the next
state described as follows:

p(St+1|St) = p(St+1|S0, S1, S2, . . . , St) (2.9)

This formula describes the “memoryless” property, i.e. Markov property, of the
Markov chain. Also, if p(St+2 = s′|St+1 = s) = p(St+1 = s′|St = s) holds
for any time step t and for all possible states, then it is a stationary transition
function along the time axis, which is called the time-homogeneous property, and
the corresponding Markov chain is time-homogeneous Markov chain.

We also frequently use s′ to represent the next state, in which the probability
that state s at time t will lead to state s′ at time t + 1 is as following in a time-
homogeneous Markov chain:

p(s′|s) = p(St+1 = s′|St = s) (2.10)

60 Z. Ding et al.

The time-homogeneous property is a basic assumption for most of the derivations
in the book, and we will not mention it but follow it as default in most cases.
However, in practice, the time-homogeneous may not always hold, especially
for non-stationary environments, multi-agent reinforcement learning, etc., which
concerns with time-inhomogeneous/non-homogeneous cases.

Given a finite state set S, we can have a state transition matrix P . The P for
Fig. 2.4 is as follows:

g t1 t2 r p b

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.9 0.1 0 0 0 0
0.3 0 0.7 0 0 0

0 0 0 0.1 0.6 0.3
0 0.1 0.9 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

g

t1

t2

r

p

b

where P i,j represents the probability of transferring the current state Si to the next
state Sj . For example, in Fig. 2.4, state s = r will jump to state s = t1 with a
probability of 0.1, and to state s = t2 with 0.9. The sum of each row is equal
to 1 and the P is always a square matrix. These probabilities indicate the whole
process is stochastic. Markov process can be represented by a tuple of < S,P >.
Many simple processes in our world can be represented by this random process as
an approximation, which is also a foundation of reinforcement learning methods.
Mathematically, the next state is sampled from P as follows:

St+1 ∼ P St ,· (2.11)

where symbol ∼ represents the next state St+1 is randomly sampled according to
the categorical distribution of P St ,·.

For infinite state set or continuous case, a finite matrix cannot be used to represent
the transition relationship anymore. Therefore the transition function p(s′|s) is
applied as before, with a corresponding relationship p(s′|s) = P s,s ′ for finite cases.

2.3.2 Markov Reward Process

Even though the agent can interact with the environment via the state transition
matrix P s,s ′ = p(s′|s), there is no way for MP to provide reward feedback from the
environment to the agent. To provide the feedback, Markov reward process (MRP)
extends MP from < S,P > to < S,P , R, γ >. The R and γ represent the reward
function and reward discount factor, respectively. An example of MRP is shown
in Fig. 2.6. Figure 2.7 shows the graphical model of MRP in a probabilistic inference

2 Introduction to Reinforcement Learning 61

Fig. 2.6 A Markov reward
process example. The s

denotes the current state and
the r denotes the immediate
reward for each state. The
values on the edges denote
the probabilities of moving
from one state to the next
state

r = −2

Task2
s = t2

r = −2

Task1
s = t1

r = 10

Pass
s = p

r = 1

Rest
s = r

r = 0

Bed
s = b

r = −1

Game
s = g

0.9

0.1

1

0.3

0.7

0.3

0.6

0.1

1

0.1
0.9

Fig. 2.7 Graphical model of
a Markov reward process: a
finite representation with t

indicating the time step

St−1 St St+1

Rt−1 Rt Rt+1

p(St St 1) p(St St)

view. The reward function depends on the current state:

Rt = R(St) (2.12)

But the reward is also a result of the previous action based on the previous state.
To better understand the reward as a function of the state, let us take a look at this
example. If the agent passes the exam, the agent can obtain an immediate reward of
ten, and taking a rest can obtain a reward of one, but if the agent works on a task, the
reward of two will be lost. Given a list of immediate reward r for each time step in
a single trajectory τ , a return is the cumulative reward of a trajectory, in which
the undiscounted return of finite process with T time steps (not counting the initial
one) is as follows:

Gt=0:T = R(τ) =
T∑

t=0

Rt (2.13)

62 Z. Ding et al.

where Rt is the immediate reward at time step t , and T represents the time step of
the terminal state, or the total number of steps in a finite episode. For example, the
trajectory (g, t1, t2, p, b) has an undiscounted return of 5 = −1− 2− 2+ 10. Note
that some other literature may use G to represent the return, and R to represent the
immediate reward, but in this book, we use R as the reward function, therefore Rt =
R(St) gives the immediate reward at time step t , while R(τ) = G

(T)
t=0 represents

the return along the trajectory τ0:T , and r as a general representation of immediate
reward value.

Often, the steps that are closer have a greater impact than the distant ones. We
introduce the concept of discounted return. The discounted return is a weighted
sum of rewards which gives more weights to the closer time steps. We define the
discounted return as follows:

Gt=0:T = R(τ) =
T∑

t=0

γ tRt . (2.14)

where a reward discount factor γ ∈ [0, 1] is used to reduce the weights as the time
step increases. For example in Fig. 2.6, given γ = 0.9, the trajectory (g, t1, t2, p, b)

has a return of 2.87 = −1− 2× 0.9− 2× 0.92 + 10× 0.93. If γ = 0, the return is
only related to the current immediate reward; if γ = 1, it is the undiscounted return.
The discounted factor is especially critical when handling with infinite MRP cases,
as it can prevent the return from going to infinite as the time step goes to infinite.
Therefore it makes the infinite MRP process evaluative.

Another view of discount factor γ : for conciseness, the reward discount factor γ

is sometimes omitted in literature (Levine 2018) in a discrete-time finite-horizon
MRP. The discount factor can also be incorporated into the process by simply
modifying the transition dynamics, such that any action produces a transition into
an absorbing state with probability 1 − γ , and all standard transition probabilities
are multiplied by γ .

The value function V (s) represents the expected return from the state s. For
example, if there are two different next states S1 and S2, the values estimated with
the current policy are V π(S1) and V π(S2). The agent policy usually selects the next
state with higher value. If the agent acts according to the policy π , we denote the
value function as V π(s):

V (s) =E[Rt |S0 = s] (2.15)

A simple way to estimate the V (s) is Monte Carlo method, we can randomly
sample a large number of trajectories starting from state s according to the given
state transition matrix P . Take Fig. 2.6 as an example, given γ = 0.9 and P ,
to estimate V π(s = t2), we can randomly sample four trajectories as follows
and compute the returns of all trajectories individually (Note that, in practice, the
number of trajectories is usually far larger than four, but for demonstration purposes

2 Introduction to Reinforcement Learning 63

Fig. 2.8 Markov reward
process and the estimated
value function V (s) by
randomly choosing four
trajectories for each state i.e.,
Monte Carlo method. The red
edges indicate the learned
policy

r = −2

Task2
s = t2

r = −2

Task1
s = t1

r = 10

Pass
s = p

r = 1

Rest
s = r

r = −0

Bed
s = b

r = −1

Game
s = g

0.9

0.1

1

0.3

0.7

0.3

0.6

0.1

1

0.1
0.9

·V (s = g) = −1.4125
·V (s = t1) = −0.4595
·V (s = t2) = 2.348
·V (s = r) = 0.5875
·V (s = p) = 10
·V (s = b) = 0

we simply sample four trajectories here.):

• s = (t2, b), R = −2 + 0 × 0.9 = −2
• s = (t2, p, b), R = −2 + 10 × 0.9 + 0 × 0.92 = 7
• s = (t2, r, t2, p, b), R = −2+ 1× 0.9− 2× 0.92+ 10× 0.93+ 0× 0.94 = 4.57
• s = (t2, r, t1, t2, b), R = −2+1×0.9−2×0.92−2×0.93+0×0.94 = −0.178

Given the returns of all trajectories, the estimated expected return under state
s = t2 is V (s = t2) = (−2 + 7 + 4.57 − 0.178)/4 = 2.348. Figure 2.8 shows all
estimated expected returns for all states. Given the expected returns under all states,
the simplest policy for the agent is to jump to the next state that has the highest
expected return. The actions that can maximize the expected return are highlighted
by red in Fig. 2.8. Apart from Monte Carlo methods, there are many other methods
to compute V (s), such as Bellman expectation equation and inverse matrix method,
etc., which will be introduced later.

2.3.3 Markov Decision Process

Markov decision processes (MDPs) have been studied since the 1950s and have
been widely used in modeling disciplines such as economics, control theory, and
robotics. To model the process of sequential decision making, MDP is better than
MR and MRP. As Fig. 2.9 shows, different from MRP that the immediate rewards
are conditioned on the state only (reward values on nodes), the immediate rewards
of MDP are associated with the action and state (reward values on edges). Likewise,

64 Z. Ding et al.

Task2
s = t2

Task1
s = t1

Pass
s = p

Bed
s = b

Game
s = g

a = play

r = −1

a = work

r = 0

a = play

r = −1

a = work

r = −2

a = sleep

r = 0

a = work

r = −2

a = rest

r = 1

a =
sleep

r =
10

0.2 0.8

Fig. 2.9 A Markov decision process example, different from MRP in which the immediate
rewards are associated with the state only. The immediate rewards of MDP is associated with
the current state and the action just taken. The black solid node is an initial state

given an action under a state, the next state is not fixed. For example, if the agent
acts “rest” under state s = t2, the next state can be either s = t1 or t2. Fig. 2.10
shows the graphical model of MDP in a probabilistic inference view.

As mentioned above, MP can be defined as the tuple < S,P >, and MRP is
defined as the tuple < S,P , R, γ >, where the element of state transition matrix
is P s,s ′ = p(s′|s). This representation extends the finite-dimension state transition
matrix to an infinite-dimension probability function. Here, MDP is defined as a tuple
of < S,A,P , R, γ >. The element of state transition matrix becomes:

p(s′|s, a) = p(St+1 = s′|St = s,At = a) (2.16)

For instance, most of the edges in Fig. 2.9 have a state transition probability of
one, e.g., p(s′ = t2|s = t1, a = work) = 1, except that p(s′|s = t2, a = rest) =
[0.2, 0.8] which means if the agent performs action a = rest at state s = t2, it
has 0.2 probability will transit to state s′ = t1, and 0.8 probability will keep the
current state. The non-existing edges have a state transition probability of zero e.g.,
p(s′ = t2|s = t1, a = rest) = 0.

A represents the finite action set {a1, a2, . . .}, and the immediate reward
becomes:

Rt = R(St , At) (2.17)

2 Introduction to Reinforcement Learning 65

St−1 St St+1

p St St 1, At 1 p St St, At

At−1p(At−1|St−1) At At+1

Rt−1 Rt Rt+1

Fig. 2.10 Graphical model of Markov decision process: a finite representation with t indicating
the time step, p(At |St) as the action choice based on current state, and p(St+1|St , At) as the state
transition probability based on current state and action. The dashed lines indicate the decision
process made by the agent

A policy π represents the way in which the agent behaves based on its
observations of the environment. Specifically, the policy is a mapping from the each
state s ∈ S and action a ∈ A to the probability distribution π(a|s) for taking action
a in state s, where the distribution is:

π(a|s) = p(At = a|St = s), ∃t (2.18)

Expected return is the expectation of returns over all possible trajectories under
a policy. Therefore, the goal of reinforcement learning is to find the higher
expected return by optimizing the policy. Mathematically, given the start-state
distribution ρ0 and the policy π , the probability of a T-step trajectory for MDP is:

p(τ |π) = ρ0(S0)

T−1∏
t=0

p(St+1|St , At)π(At |St) (2.19)

Given the reward function R and all possible trajectories τ , the expected return
J (π) is defined as follows:

J (π) =
∫

τ

p(τ |π)R(τ) = Eτ∼π [R(τ)] (2.20)

66 Z. Ding et al.

where p here means that the trajectory with higher probability will have a higher
weight to the expected return. The RL optimization problem is to improve the
policy for maximizing the expected return with optimization methods. The optimal
policy π∗can be expressed as:

π∗ = arg max
π

J (π) (2.21)

where the ∗ symbol means “optimal” for the rest of the book.
Given policy π , the value function V (s), the expected return under the state, can

be defined as:

V π(s) =Eτ∼π [R(τ)|S0 = s]

=EAt∼π(·|St)

[∞∑
t=0

γ tR(St , At)|S0 = s

]
(2.22)

where τ ∼ π means the trajectories τ are sampled given the policy π , At ∼
π(·|St) means the action under a state is sampled from the policy, the next state
is determined by the state transition matrix P given state s and action a.

In MDP, given an action, we have the action-value function, which depends on
both the state and the action just taken. It gives an expected return under a state and
an action. If the agent acts according to a policy π , we denote it as Qπ(s, a), which
is defined as:

Qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a]

= EAt∼π(·|St)

[∞∑
t=0

γ tR(St , At)|S0 = s,A0 = a

]
(2.23)

We need to keep in mind that the Qπ(s, a) depends on π , as the estimation of the
value is an expectation over the trajectories by the policy π . This also indicates if the
π changes, the corresponding Qπ(s, a) will also change accordingly. We therefore
usually call the value function estimated with a specific policy the on-policy value
function, for the distinction from the optimal value function estimated with the
optimal policy.

We can observe the relation between vπ (s) and qπ(s, a):

qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a] (2.24)

vπ (s) = Ea∼π [qπ(s, a)] (2.25)

There are two simple ways to compute the value function vπ (s) and action-value
function qπ(s, a): The first is the exhaustive method follows Eq. (2.19), it first
computes the probabilities of all possible trajectories that start from a state, and
then follows Eqs. (2.22) and (2.23) to compute the V π(s) and Qπ(s, a) for this state.

2 Introduction to Reinforcement Learning 67

The exhaustive method computes the V π(s) for each state individually. However, in
practice, the number of possible trajectories would be large and even infinite. Instead
of using all possible trajectories, we can use Monte Carlo method as described
in the previous MRP section to estimate the V π(s) by randomly sampling a large
number of trajectories. In reality, the estimation formulas of value functions can be
simplified, by leveraging the Markov property in MRP, which leads to the Bellman
equations in the next section.

2.3.4 Bellman Equation and Optimality

Bellman Equation

The Bellman equation, also known as the Bellman expectation equation, is used to
compute the expectation of value function given policy π , over the sampled trajec-
tories guided by the policy. We call this “on-policy” manner as in reinforcement
learning the policy is usually changing, and the value function is conditioned on or
estimated by current policy.

Recall that the definitions of a value function or an action-value function are
vπ (s) = Eτ∼π [R(τ)|S0 = s] and qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a]. We
can derive the Bellman equation for on-policy state-value function in a recursive
relationship:

vπ (s) = Ea∼π(·|s),s ′∼p(·|s,a)[R(τt :T)|St = s]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt + γRt+1 + γ 2Rt+2 + . . .+ γ T RT |St = s]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt + γ (Rt+1 + γRt+2 + . . .+ γ T−1RT)|S0 = s]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt + γRτt+1:T |St = s]
= EAt∼π(·|St),St+1∼p(·|St ,At)[Rt + γEa∼π(·|s),s ′∼p(·|s,a)[Rτt+1:T]|St = s]
= EAt∼π(·|St),St+1∼p(·|St ,At)[Rt + γ vπ (St+1)|St = s]
= Ea∼π(·|s),s ′∼p(·|s,a)[r + γ vπ (s′)] (2.26)

The final formula above holds because s, a are general representations of states
and actions, while St , At are state and action at time step t only. St , At are
sometimes separated from the general representations s, a to show more clearly
over whom the expectation is taken over in some of above formulas.

Note that in the above derivation we show the Bellman equation for MDP
process, however, the Bellman equation for MRP can be derived by simply removing
the action from it:

v(s) = Es ′∼p(·|s)[r + γ v(s′)] (2.27)

68 Z. Ding et al.

There is also Bellman equation for on-policy action-value function: qπ(s, a) =
Es ′∼p(·|s,a)[R(s, a) + γEa′∼π(·|s ′)[qπ(s′, a′)]], which can be derived as follows:

qπ(s, a)

= Ea∼π(·|s),s ′∼p(·|s,a)[R(τt :T)|St = s,At = a]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt + γRt+1 + γ 2Rt+2 + · · · + γ T RT |St = s,At = a]
= Ea∼π(·|s),s ′∼p(·|s,a)[Rt +γ (Rt+1+γRt+2+· · · + γ T−1RT)|St = s,At = a]
= ESt+1∼p(·|St ,At)[Rt + γEa∼π(·|s),s ′∼p(·|s,a)[Rτt+1:T]|St = s]
= ESt+1∼p(·|St ,At)[Rt + γEAt+1∼π(·|St+1)[qπ(St+1, At+1)]|St = s]
= Es ′∼p(·|s,a)[R(s, a) + γEa′∼π(·|s ′)[qπ(s′, a′)]]

The above derivation is based on the finite MDP with maximal length of T ,
however, these formulas still hold when in the infinite MDP, simply with T replaced
by “∞”. The two Bellman equations also do not depend on the formats of policy,
which means they work for both stochastic policies π(·|s) and deterministic policies
π(s). The usage of π(·|s) is for simplicity here. Also, in deterministic transition
processes, we have p(s′|s, a) = 1.

Solutions of Bellman Equation

The Bellman equation for MRP as in Eq. (2.27) can be solved directly if the
transition function/matrix is known, which is called the inverse matrix method.
We rewrite Eq. (2.27) in a vector form for cases with discrete and finite state space
as:

v = r + γPv (2.28)

where v and r are vectors with their elements v(s) and R(s) for all s ∈ S, and P is
the transition probability matrix with elements p(s′|s) for all s, s′ ∈ S.

Given v = r + γPv, we can directly solve it with:

v = (1 − γP)−1r (2.29)

the complexity of the solution is O(n3), where n is the number of states. Therefore
this method does not work for a large number of states, meaning it may not
be feasible for large-scale or continuous-valued problems. Fortunately, there are
some iterative methods for solving the large-scale MRP problems in practice, like
dynamic programming, Monte Carlo estimation, and temporal-difference learning,
which will be introduced in detail in later sections.

2 Introduction to Reinforcement Learning 69

Optimal Value Functions

Since on-policy value functions are estimated with respect to the policy itself,
different policies will lead to different value functions, even for the same set of
states and actions. Among all those different value functions, we define the optimal
value function as:

v∗(s) = max
π

vπ (s),∀s ∈ S, (2.30)

which is actually the optimal state-value function. We also have the optimal
action-value function as:

q∗(s, a) = max
π

qπ(s, a),∀s ∈ S, a ∈ A, (2.31)

And they have the relationship:

q∗(s, a) = E[Rt + γ v∗(St+1)|St = s,At = a], (2.32)

which can be derived easily by taking the maximization in the last formula of
Eq. (2.26) and plugging in Eqs. (2.25) and (2.30):

q∗(s, a) = E

[
R(s, a) + γ max

π
E
[
qπ

(
s′, a′

)]]

= E

[
R(s, a) + γ max

π
vπ

(
s′
)]

= E[Rt + γ v∗(St+1)|St = s,At = a].

(2.33)

Another relationship between the two is:

v∗(s) = max
a∼A

q∗(s, a) (2.34)

which is obvious by simply maximizing the two sides of Eq. (2.25).

Bellman Optimality Equation

In the above sections we introduced on-policy Bellman equations for normal value
functions, as well as the definitions of optimal value functions. So we can apply
the Bellman equation on the pre-defined optimal value functions, which gives us
the Bellman optimality equation, or called Bellman equation for optimal value
functions, as follows.

70 Z. Ding et al.

The Bellman equation for optimal state-value function is:

v∗(s) = max
a

Es ′∼p(·|s,a)[R(s, a)+ γ v∗(s′)], (2.35)

which can be derived as follows:

v∗(s) = max
a

Eπ∗,s ′∼p(·|s,a)[R(τt :T)|St = s]

= max
a

Eπ∗,s ′∼p(·|s,a)

[
Rt + γRt+1 + γ 2Rt+2 + · · · + γ T RT |St = s

]

= max
a

Eπ∗,s ′∼p(·|s,a)[Rt + γRτt+1:T |St = s]

= max
a

Es ′∼p(·|s,a)

[
Rt + γ max

a′
Eπ∗,s ′∼p(·|s,a)

[
Rτt+1:T

] |St = s

]

= max
a

Es ′∼p(·|s,a)[Rt + γ v∗(St+1)|St = s]
= max

a
Es ′∼p(·|s,a)[R(s, a) + γ v∗(s′)] (2.36)

Bellman equation for optimal action-value function is:

q∗(s, a) = Es ′∼p(·|s,a)[R(s, a)+ γ max
a′

q∗(s′, a′)], (2.37)

which can be derived similarly. Readers can take a practice by finishing the proof.

2.3.5 Other Important Concepts

Deterministic and Stochastic Policies

In the previous sections, the policy is represented as a probability distribution as
π(a|s) = p(At = a|St = s), where the action of the agent is sampled from
the distribution. A policy with action sampled from the probability distribution is
actually called the stochastic policy distribution, with the action:

a = π(·|s) (2.38)

However, if we reduce the variance of the probability distribution of a stochastic
policy and narrow down its range to the limit, we will get a Dirac delta function
(δ function) as a distribution, which is the deterministic policy π(s). Deterministic
policy π(s) also means given a state there is only one unique action as follows:

a ∼ π(s) (2.39)

2 Introduction to Reinforcement Learning 71

Note that the deterministic policy is no longer a mapping from a state and action
to the conditional probability distribution, but rather a mapping from a state to an
action directly. This slight difference will lead to some different derivations in the
policy gradient method introduced in later sections. More detailed categories of
policies in reinforcement learning, especially for deep reinforcement learning with
parameterized policies are introduced in Sect. 2.7.3.

Partially Observed Markov Decision Process

As mentioned in previous sections, when the state in reinforcement learning
environment is not fully represented by the observation for the agent, the envi-
ronment is partially observable. For a Markov decision process, it is called
the partially observed Markov decision process (POMDP), which forms a chal-
lenge for improving the policy without complete information of the environment
states.

2.3.6 Summary of Terminology in Reinforcement Learning

Apart from the terminology in mathematics notations at the beginning of the book,
the summary of terminology for common contents in reinforcement learning is
provided as follows:

• R the reward function, Rt = R(St) as the reward of state St for MRP, Rt =
R(St , At) for MDP, St ∈ S.

• R(τ) the γ -discounted return of a trajectory τ , R(τ) =∑∞
t=0 γ tRt .

• p(τ) the probability of a trajectory:

– p(τ) = ρ0(S0)
∏T−1

t=0 p(St+1|St) for MP and MRP, ρ0(S0) as start-state
distribution.

– p(τ |π) = ρ0(S0)
∏T−1

t=0 p(St+1|St , At)π(At |St) for MDP, ρ0(S0) as start-
state distribution.

• J (π) the expected return of policy π , J (π) = ∫τ p(τ |π)R(τ) = Eτ∼π [R(τ)]
• π∗ optimal policy: π∗ = arg maxπ J (π)

• vπ (s) value of state s under policy π (expected return)
• v∗(s) value of state s under the optimal policy
• qπ(s, a) value of taking action a in state s under policy π

• q∗(s, a) value of taking action a in state s under the optimal policy
• V (s) the estimates of state-value function for MRP starting from state s:

72 Z. Ding et al.

• V π(s) the estimates of on-policy state-value function for MDP, given a policy π ,
we have expected return:

– V π(s) ≈ vπ (s) = Eτ∼π [R(τ)|S0 = s]
• Qπ(s, a) the estimates of on-policy action-value function for MDP, given a

policy π , we have expected return:

– Qπ(s, a) ≈ qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a]
• V ∗(s) the estimates of optimal state-value function for MDP, we have expected

return according to the optimal policy:

– V ∗(s) ≈ v∗(s) = maxπ Eτ∼π [R(τ)|S0 = s]
• Q∗(s, a) the estimates of on-policy action-value function for MDP, we have

expected return according to the optimal policy:

– Q∗(s, a) ≈ q∗(s, a) = maxπ Eτ∼π [R(τ)|S0 = s,A0 = a]
• Aπ(s, a) the estimated advantage function of state s and action a:

– Aπ(s, a) = Qπ(s, a)− V π(s)

• Relationship of on-policy state-value function vπ (s) and on-policy action-value
function qπ(s, a):

– vπ (s) = Ea∼π [qπ(s, a)]
• Relationship of optimal state-value function vπ (s) and optimal action-value

function qπ(s, a):

– v∗(s) = maxa q∗(s, a)

• a∗(s) the optimal action for state s according to optimal action-value function:

– a∗(s) = arg maxa q∗(s, a)

• Bellman equations for on-policy state-value function:

– vπ (s) = Ea∼π(·|s),s ′∼p(·|s,a)[R(s, a) + γ vπ (s′)]
• Bellman equations for on-policy action-value function:

– qπ(s, a) = Es ′∼p(·|s,a)[R(s, a) + γEa′∼π(·|s ′)[qπ(s′, a′)]]
• Bellman equations for optimal state-value function:

– v∗(s) = maxa Es ′∼p(·|s,a)[R(s, a) + γ v∗(s′)]
• Bellman equations for optimal action-value function:

– q∗(s, a) = Es ′∼p(·|s,a)[R(s, a) + γ maxa′ q∗(s′, a′)]

2 Introduction to Reinforcement Learning 73

2.4 Dynamic Programming

Dynamic Programming (DP) was first introduced by Richard E. Bellman in
the 1950s (Bellman et al. 1954) and has been successfully applied to a range of
challenging fields. In this term, “dynamic” means that the problem has sequential
or temporal components, and “programming” refers to an optimizing policy. DP
provides a general framework for complex dynamic problems by breaking them
down into sub-problems. For example, each number in the Fibonacci sequence is
the sum of the two preceding ones, starting from 0 and 1. One can calculate the 4th
number F4 = F3 + F2 by F4 = (F2 + F1) + F2 by reusing the solution of the
preceding sub-problem F2 = F1 + F0. However, DP requires full knowledge of the
environment, such as the reward model and the transition model, of which we often
have limited knowledge in reinforcement learning. Nonetheless, it does provide a
fundamental framework for learning to interact with the MDP incrementally, as
most of the reinforcement learning algorithms attempt to achieve.

There are two properties that a problem must have for DP to be applicable: opti-
mal substructure and overlapping sub-problems. Optimal substructure means
that the optimal solution of a given problem can be decomposed into solutions to its
sub-problems. Overlapping sub-problems implies that the number of sub-problems
is finite and sub-problems occur recursively so that the sub-solutions can be cached
and reused. While MDPs with finite actions and states satisfy both properties, the
Bellman equation gives the recursive decomposition and value functions store the
optimal solution of sub-problems. So in this section, we assume that state set and
action set are both finite, and a perfect model of the environment is given.

2.4.1 Policy Iteration

Policy Iteration aims to manipulate the policy directly. Starting from arbitrary
policy π , we can evaluate it by applying the Bellman equation recursively:

vπ (s) = Eπ [Rt + γ vπ(St+1) |St = s] (2.40)

where the expectation is over all possible transitions based on full knowledge of the
environment. A natural idea to obtain a better policy is acting greedily with respect
to vπ :

π ′(s) = greedy(vπ) = arg max
a∈A

qπ(s, a). (2.41)

74 Z. Ding et al.

The improvement can be proved by:

vπ (s) = qπ(s, π(s))

≤ qπ(s, π ′(s))

= Eπ ′ [Rt + γ vπ (St+1) |St = s]
≤ Eπ ′ [Rt + γ qπ(St+1, π

′(St+1)) |St = s]
≤ Eπ ′ [Rt + γRt+1 + γ 2qπ(St+2, π

′(St+2)) |St = s]
≤ Eπ ′ [Rt + γRt+1 + γ 2Rt+2 + . . . |St = s] = vπ ′(s).

(2.42)

Apply policy evaluation and greedy improvement above successively until π =
π ′ forms the policy iteration. Generally, the procedure of policy iteration can be
summarized as follows. Given an arbitrary policy πt , for each state s in each iteration
t , we first evaluate vπt (s) and then find a better policy πt+1. We call the former stage
policy evaluation and the later stage policy improvement. Furthermore, we use the
term generalized policy iteration (GPI) to refer to the general interaction of policy
evaluation and policy improvement, as shown in Fig. 2.11.

One fundamental question is whether the process of policy iteration converges
on the optimal value v∗. At each iteration in policy evaluation, for fixed and
deterministic policy π , the value function update can be rewritten by the Bellman
expectation backup operator T π :

(T πV)(s) = (Rπ + γPπV)(s) =
∑
r,s ′

(r + γV (s′))P (r, s′|s, π(s)). (2.43)

Fig. 2.11 Generalized policy
iteration

Starting πvπ

π v

E
valuation

Im
p
ro
ve
m
en
t

2 Introduction to Reinforcement Learning 75

Then for arbitrary value functions V and V ′, we have the following contraction
proof for T π :

|T πV (s) − T πV ′(s)| = |
∑
r,s ′

(r + γV (s′))P (r, s′|s, π(s))

−
∑
r,s ′

(r + γV ′(s′))P (r, s′|s, π(s))|

= |
∑
r,s ′

γ (V (s′) − V ′(s′))P (r, s′|s, π(s))|

≤
∑
r,s ′

γ |V (s′)− V ′(s′)|P(r, s′|s, π(s))

≤
∑
r,s ′

γ ‖V − V ′‖∞P(r, s′|s, π(s))

= γ ‖V − V ′‖∞,

(2.44)

where ‖V − V ′‖∞ is the ∞-norm. By contraction mapping theorem (also known
as the Banach fixed-point theorem), iterative policy evaluation will converge on the
unique fixed point of T π . Since T πvπ = vπ is a fixed point, so that iterative policy
evaluation converges on vπ . Note that the policy improvement is monotonic, and
there is only a finite number of greedy policies with respect to value functions in
finite MDP. The policy improvement will stop after a finite number of steps, i.e., the
policy iteration will converge on v∗.

2.4.2 Value Iteration

The theoretical basis of value iteration is the principle of optimality which tells
us that π is the optimal policy on one state if and only if π achieves the optimal
value for any reachable successor state. So if we know the solution to sub-problems
v∗(s′), we can find the solution of any initial state s by one-step full backups:

v∗(s) = max
a∈A

R(s, a) + γ
∑
s ′∈S

P(s′|s, a)v∗(s′). (2.45)

The procedure of value iteration is to apply the updates above from the final state
and backward successively. Similar to the convergence proof in policy iteration, the
Bellman optimality operator T ∗:

(T ∗V)(s) = (max
a∈A

Ra + γPaV)(s) = max
a∈A

R(s, a) + γ
∑
s ′∈S

P(s′|s, a)V (s′)

(2.46)

76 Z. Ding et al.

Algorithm 4 Policy iteration
Initialize V and π for all states
repeat

// Do policy evaluation
repeat

δ ← 0
for s ∈ S do

v ← V (s)

V (s) ←∑
r,s′ (r + γV (s′))P (r, s′ |s, π(s))

δ ← max(δ, |v − V (s)|)
end for

until δ is smaller than a positive threshold
// Do policy improvement
stable ← true

for s ∈ S do
a ← π(s)

π(s) ← arg maxa

∑
r,s′ (r + γV (s′))P (r, s′ |s, a)

if a �= π(s) then
stable ← f alse

end if
end for

until stable = true

return policy π

is also a contraction mapping for arbitrary value functions V and V ′

|T ∗V (s)− T ∗V ′(s)| = |max
a∈A

[
R(s, a) + γ

∑
s ′∈S

P(s′|s, a)V (s′)
]

− max
a∈A

[
R(s, a) + γ

∑
s ′∈S

P(s′|s, a)V ′(s′)
]
|

≤ max
a∈A

|R(s, a) + γ
∑
s ′∈S

P(s′|s, a)V (s′) − R(s, a)

− γ
∑
s ′∈S

P(s′|s, a)V ′(s′)|

= max
a∈A

|γ
∑
s ′∈S

P(s′|s, a)(V (s′) − V ′(s′))|

≤ max
a∈A

γ
∑
s ′∈S

P(s′|s, a)|V (s′)− V ′(s′)|

(2.47)

2 Introduction to Reinforcement Learning 77

≤ max
a∈A

γ
∑
s ′∈S

P(s′|s, a)‖V − V ′‖∞

= γ ‖V − V ′‖∞ max
a∈A

∑
s ′∈S

P(s′|s, a)

= γ ‖V − V ′‖∞.

Since v∗ is a fixed point of T ∗, the value iteration converges on the optimal value
v∗. Note that in value iteration, only the actual value of successor states are known.
In other words, the values are not complete so we use value function V instead of
value v in the proof above.

It is not obvious when to stop the value iteration algorithm. Williams and
Baird III (1993) gives a sufficient stopping criterion in theory that if the maximum
difference between two successive value functions is less than ε, then the value of
the greedy policy differs from the value function of the optimal policy by no more
than 2εγ

1−γ
at any state.

Algorithm 5 Value iteration
Initialize V for all states
repeat

δ ← 0
for s ∈ S do

u ← V (s)

V (s) ← maxa

∑
r,s′ P (r, s′ |s, a)(r + γV (s′))

δ ← max(δ, |u − V (s)|)
end for

until δ is smaller than a positive threshold
Output greedily policy π(s) = arg maxa

∑
r,s′ P (r, s′|s, a)(r + γV (s′))

2.4.3 Other DPs: Asynchronous DP, Approximate DP,
Real-Time DP

DP methods described so far use synchronous backups, i.e., the value of each state
is backed up on the basis of systematic sweeps. One of the efficient variants is
asynchronous updates, which is a trade-off between speed and accuracy. Asyn-
chronous DP is also available for reinforcement learning settings and is guaranteed
to converge if all states continue to be selected. There are three simple ideas behind
asynchronous DP:

78 Z. Ding et al.

1. In-Place Update
Synchronous value iteration stores two copies of value function Vt+1(·) and

Vt (·):

Vt+1(s) ← max
a∈A

R(s, a) + γ
∑
s ′∈S

P(s′|s, a)Vt (s
′). (2.48)

In-place value iteration only stores one copy of value function:

V (s) ← max
a∈A

R(s, a) + γ
∑
s ′∈S

P(s′|s, a)V (s′). (2.49)

2. Prioritized Sweeping
In asynchronous DP, one more thing that needs to be considered is the update

order. Given a transition (s, a, s′), prioritized sweeping views the absolute value
of its Bellman error as its magnitude:

|V (s) − max
a∈A

(R(s, a) + γ
∑
s ′∈S

P(s′|s, a)V (s′))|. (2.50)

It can be implemented efficiently by maintaining a priority queue where the
Bellman error of each state is stored or updated after each backup.

3. Real-Time Update
After each time step t , no matter which action is taken, real-time update will

only back up the current state St by:

V (St) ← max
a∈A

R(St , a)+ γ
∑
s ′∈S

P(s′|St , a)V (s′). (2.51)

It can be viewed as selecting the states to update by the guide of the agent’s
experience.

Both synchronous and asynchronous DP back up over the full state set to estimate
the expected return of the next state. Under the perspective of probability, a biased
but efficient choice is using sampled data. We will discuss this topic extensively in
the next section.

2.5 Monte Carlo

Unlike DP, Monte Carlo (MC) methods do not require perfect knowledge of
the environment. MC only needs experience for learning. MC is also a class
of sampling-based methods. MC can obtain good performance by learning from
experience with little prior knowledge about the environment. “Monte Carlo” refers

2 Introduction to Reinforcement Learning 79

to the class of algorithms that have a large component of randomness. Indeed so,
when using MC in reinforcement learning, we will average the rewards for each
state-action pair from different episodes. One example can be with the contextual
bandit problem that we talked about earlier in this chapter. If there is an LED light on
different slot machines, the player can gradually learn from the association between
the lighting information with the relevant reward. We will consider a particular
arrangement of the lights for our state, and the corresponding possible reward is the
value for this state. Initially, we might not have a good estimate for the state-value,
but gradually as we play more, the average state-value pairs should be closer to the
real ones. In this section, we will investigate how to do this estimation properly and
then how to make the best use of this information. Also, we assume that the problem
is episodic and an episode will always terminate regardless of the actions taken.

2.5.1 Monte Carlo Prediction

State-Value Prediction To start with, we will look at the case when using MC
methods to estimate the state-value function for a given policy π . The most intuitive
way to do this is to estimate the state-value function from experience by simply
averaging the return from a particular policy. More specifically, let the function
vπ (s) be the state-value function under policy π . We then collect a pool of episodes
that pass through s. We call each appearance of state s in an episode a visit to
state s. There are two types of estimations, first-visit MC and every-visit MC.
The first-visit MC only considers the return of the first visit to state s in the whole
episode, however, every-visit MC considers every visit to state s in the episode.
These two methods share lots of similarities but have a few theoretical differences.
In Algorithm 6, we are showing exactly how vπ(s) is computed with first-visit MC
estimation. It is simple to convert the first-visit MC prediction to the every-visit MC
prediction by removing the check for a state being the first state. Note that both
types of methods will converge to vπ (s) if we take the number of visits to state s to
infinity.

MC methods can estimate different states independently from each other. Unlike
DP, MC does not use bootstrapping, estimating the value of the current step with the
estimation from other steps (e.g. the next step). This unique feature will enable one
to estimate the state-value directly from the true sampled returns, which can be of
less bias but higher variances.

The state-value function will be handy if a model is given as we can easily select
the optimal action for an arbitrary state by looking at the combined average of the
state-value for a specific action, as in DP. When a model is not known, we will have
to estimate the state-action value instead. Each state-action pair has to be estimated
separately. Now, one learning objective has become the estimation of qπ(s, a), the
expected return at state s by performing action a, under policy π . This is essentially
the same as the estimation of the state-value function as we can just take the average
return at state s and when action a is taken. The only issue is that there might exist

80 Z. Ding et al.

Algorithm 6 First-visit MC prediction
Input: Initialize policy π

Initialize V (s) for all states
Initialize a list of returns: Returns(s) for all states
repeat

Generate an episode under π : S0, A0, R0, S1, · · · , ST−1, AT−1, Rt

G ← 0
t ← T − 1
for t >= 0 do

G ← γG + Rt+1
if S0, S1, · · · , St−1 does not have St then

Returns(St).append(G)
V (St) ← mean(Returns(St))

end if
t ← t − 1

end for
until convergence

states that could never be visited, and thus have zero return. To choose the optimal
strategy, we must fully explore all states. A naive solution to this issue is to directly
specify the starting state-action pair for each episode and each state-action pair has
a non-zero probability of getting selected. In this way, we can ensure that all state-
action pairs can be visited if we have enough episodes. We refer this assumption as
exploring starts.

2.5.2 Monte Carlo Control

Now, we shall adapt GPI to MC to see how it is used in control. Recall that GPI
consists of two stages: policy evaluation and policy improvement. Policy evaluation
is the same as that of DP as introduced in the previous section and therefore, we
will discuss more about policy improvement. We will make use of a greedy policy
for the action-value, we do not need to have a model in this case. The greedy policy
will always choose the action that has maximal value for a given state:

π(s) = arg max
a

q(s, a) (2.52)

We will go from policy evaluation to policy improvement. For each policy
improvement, we will need to construct πt+1 based on qπt . We will show how the
policy improvement theorem is applicable here:

qπt (s, πt+1(s)) = qπt (s, arg max
a

qπt (s, a)) (2.53)

= max
a

qπt (s, a) (2.54)

2 Introduction to Reinforcement Learning 81

≥ qπt (s, πt (s)) (2.55)

≥ vπt (s) (2.56)

The above proves that πt+1 will be no worse than πt , and thus eventually the
optimal policy can be found. This means that we can use MC for control without
much knowledge about the environment but only the sampled episodes. Here, we
have two assumptions that we need to resolve. The first is the exploring starts and
the second is that we have an infinite number of episodes. We will keep the exploring
starts for now but focus on the second assumption. An easy way to relax this
assumption is to avoid the infinite number of episodes needed for policy evaluation
by directly alternating between evaluation and improvement for single states.

Algorithm 7 MC exploring starts
Initialize π(s) for all states
Initialize Q(s, a) and Returns(s, a) for all state-action pairs
repeat

Randomly select S0 and A0 s.t. all state-action pairs’ probabilities are nonzero.
Generate an episode from S0, A0 under π : S0, A0, R0, S1, · · · , ST−1, AT−1, Rt

G ← 0
t ← T − 1
for t >= 0 do

G ← γG + Rt+1
if S0, A0, S1, A1 · · · , St−1, At−1 does not have St , At then

Returns(St , At).append(G)
Q(St , At) ← mean(Returns(St , At))
π(St) ← arg maxa Q(St , a)

end if
t ← t − 1

end for
until convergence

2.5.3 Incremental Monte Carlo

As we have seen in both Algorithm 6 and Algorithm 7, we have to take the
averages of the lists of observed rewards, the state values and the state-action values
respectively. There exists a more efficient computational method that allows us to
get rid of the lists of observed returns and simplify the mean calculation step. We
will thus do the update in an episode by episode way. We let the Q(St ,At) be the
estimation of the state-action value after it has been selected for t − 1 times, which
can be then rewritten as:

Q(St ,At) = G1 +G2 + · · · +Gt−1

t − 1
(2.57)

82 Z. Ding et al.

The naive implementation of this is to keep a record of all the returned G values,
and then divide their sum by the visit times. However, we can also compute the same
value by the following:

Qt+1 = 1

t

t∑
i=1

Gi (2.58)

= 1

t

(
Gt +

t−1∑
i=1

Gi

)
(2.59)

= 1

t

(
Gt + (t − 1)

1

t − 1

t−1∑
i=1

Qi

)
(2.60)

= 1

t
(Gt + (t − 1)Qt) (2.61)

= Qt + 1

t
(Gt −Qt) (2.62)

The formulation will give us a much easier time when it comes to the return
computation. This can also appear in a more general form as:

NewEstimate ← OldEstimate + StepSize · (Target − OldEstimate) (2.63)

The “StepSize” is a parameter that controls how fast the estimate is being
updated.

2.6 Temporal Difference Learning

Temporal difference (TD) learning describes another class of algorithm that is at
the core of reinforcement learning by combining the ideas both from DP and MC.
Similar to DP, TD uses bootstrapping in the estimation, however, like MC, it does
not require full knowledge of the environment in the learning process, but applies
a sampling-based optimization approach. In this chapter, we will first introduce
how TD can be used in policy evaluation and then elaborate on the differences
and commonalities between MC, TD, and DP. Lastly, we will end this chapter with
Q-learning, an extremely useful and powerful learning algorithm in both classical
reinforcement learning and deep reinforcement learning.

2 Introduction to Reinforcement Learning 83

2.6.1 TD Prediction

As its name suggests, TD utilizes the error, the difference between the target value
and the estimated value, at different time steps to learn. That reason why it is also
using bootstrapping is that TD forms the target from the observed return and an
estimated state value for the next state. More precisely, the most basic TD method
makes the update using:

V (St) ← V (St)+ α[Rt+1 + γV (St+1) − V (St)] (2.64)

This method is also called TD(0) or one-step TD for looking one-step ahead. N-
step TD can also be developed easily by extending the target value with discounted
rewards in the N-step future and the estimated state value at the N-th step. If we
observe carefully, the target value during update for MC is Gt which is known only
after one episode, whereas for TD the target value is Rt+1 + γV (St+1) which can
be computed step by step. In Algorithm 8, we are showing how TD(0) can be used
to do policy evaluation.

Algorithm 8 TD(0) for state-value estimation
Input policy π

Initialize V (s) and step size α ∈ (0, 1]
for each episode do

Initialize S0
for Each step St in the current episode do

At ← π(St)

Rt+1, St+1 ← Env(St , At)

V (St) ← V (St)+ α[Rt+1 + γV (St+1)− V (St)]
end for

end for

Before we move on, it is worthwhile spending time to take a closer look at what
DP, MC, and TD have in common and how they differ from one another. These three
types of algorithms sit at the heart of reinforcement learning and often their usage
is combined together in modern reinforcement learning application. Even though
all of them can be used for policy evaluation and policy improvement, their subtle
differences can contribute to major performance variations in deep reinforcement
learning.

Some forms of GPI are being used by these three methods. The main difference
lies in their policy evaluation schemes. The most obvious difference is that both DP
and TD use bootstrapping but MC does not, and DP requires full knowledge of the
model but MC and TD do not. Furthermore, let us dive deeper into how the learning

84 Z. Ding et al.

objectives differ among these three.

vπ (s) = Eπ [Gt |St = s] (2.65)

= Eπ [Rt+1 + γGt+1|St = s] (2.66)

= Eπ [Rt+1 + γ vπ (St+1)|St = s] (2.67)

Equation (2.65) stands for the state value estimation for MC methods and
Eq. (2.67) represents the same for DP methods. Both of them are only estimation
but not the true values. TD combines both the MC sampling and DP bootstrapping.
We will now explain briefly how TD can be better than either DP or MC.

First of all, TD does not need a model to learn which DP requires. When TD
is being compared with MC, TD is using an online learning approach meaning it
can learn at every step, however, in order for MC methods to learn, it will have
to wait until one episode is finished which can be tricky to deal with if the task
has very long episodes. There are also problems that are continuous and cannot be
learned in an episodic fashion. Moreover, TD can be faster because it can learn from
transitions disregarding the actions being taken. MC cannot do this. Both TD and
MC methods will eventually converge to vπ (s) asymptotically, nonetheless, we do
not have a proof to show which converges faster but that TD methods converge faster
empirically.

Before we move on, it is also worth discussing the variance and bias trade-off
between TD and MC methods. We know that in a supervised setting a large bias
means that the model is underfitting for the data distribution and a large variance
means that the model is overfitting the data. The bias of an estimator is the difference
between the estimation and the true value. In the case of state value estimation, bias
can be defined as E[V (St)] − V (St). The variance of an estimator describes how
noisy the estimator is. Again for state-value estimation, variance can be defined as
E[(E[V (St)] − V (St))

2]. In prediction, regardless of whether it is for the state or
state-action approximation, both TD and MC are doing the update of the form:

V (St) ← V (St) + α[Target Value − V (St)]

Essentially, we are doing a weighted average across different episodes. TD and MC
differ in their ways of handling the target value. MC methods directly estimate the
accumulative rewards until the end of an episode, which is exactly how the state
value is defined. They will have no bias, however TD has a greater bias because
its target is estimated with bootstrapping method, Rt+1 + γ vπ (St+1). Now, let us
see why MC tends to have a larger variance. The accumulated reward it has is
computed until the end of each episode, which can vary a lot as different episodes
can have vastly different outcomes. TD resolves this issue by just looking at the
target value locally depending on the current reward and the estimated reward for
the next state/action. Naturally, TD should have less variance.

2 Introduction to Reinforcement Learning 85

TD(λ)

DP and MC have lots of similarities and perhaps there is a mid-ground between
these two paradigms which could be more efficient in solving the problem at hand.
Indeed, TD (λ) is the mid-ground between DP and MC, but we will need to introduce
the concept of eligibility traces and λ return first.

To put it in a simple way, an eligibility trace can provide us with various
computational advantages. To see this, we need to talk about semi-gradient methods
quickly and then explain how eligibility traces can be used. For a detailed treatment
of the policy-gradient method, please refer to Sect. 2.7. Here, we are simply using
some concepts from the gradient-based methods to explain what eligibility traces
can do. Imagine if our state-value function is not in a tabular form, but in a functional
form parameterized by a weight vector w ∈ R

n. w can be, for instance, be the weight
for a neural network. We aim to have v(s,w) ≈ vπ(s). To do this, we can use
stochastic gradient update to reduce the quadratic loss between our approximation
and the true value function. The update rule w.r.t. the weight vector can be written
as the following:

wt+1 = wt − 1

2
α∇wt [vπ (St) − V (St ,wt)]2 (2.68)

= wt + α[vπ (St) − V (St ,wt)]∇wt V (St ,wt) (2.69)

where α is a positive step size.
An eligibility trace is a vector zt ∈ R

n, which is used in such a way that, during
learning, whenever a component of wt is used for estimation, the corresponding
component value in zt also increases and then starts to fade away. The learning will
take place if there is a TD error happening before the value in the trace falls back
to zero. We first initialize all values using zero and then increase the trace using the
gradient. The decay rate is γ λ:

z−1 = 0 (2.70)

zt = γ λzt−1 +∇wt V (St ,wt) (2.71)

It becomes easy to see that when λ = 1, the former sum becomes zero and the
return is the same as that of an MC method. When λ = 0, it essentially becomes a
one-step TD method. This is because the trace will always only contain the gradient
of the one-step TD error. An eligibility trace is thus a great way to combine MC and
TD methods.

Moving along, a λ-return is an estimated return value over the next n steps. λ-
returns are a combination of n discounted returns with an existing estimate at the
last step. Formally, it can be written as:

Gt :t+n = Rt+1 + γRt+2 + · · · + γ n−1Rt+n + γ nv(St+n,wt+n−1) (2.72)

86 Z. Ding et al.

t here is a nonzero scalar and is also less than or equal to T − n. We can make
use of a weighted return in estimation as long as their weights sum up to one. TD(λ)
makes use of this weighted averaging in its update with λ ∈ [0, 1]:

Gλ
t = (1 − λ)

∞∑
n=1

λn−1Gt :t+n (2.73)

Intuitively, what this means is that the very next step return has the largest weight
1 − λ, the two-step return has a weight of (1 − λ)λ, and the weight decays at each
step with a rate of λ. To have a clear picture, let us have a terminal state at time T ,
then the above can be rewritten as

Gλ
t = (1 − λ)

T−t−1∑
n=1

λn−1Gt :t+n + λT−t−1Gt (2.74)

The TD error δt can be defined as:

δt = Rt+1 + γV (St+1,wt)− V (St ,wt) (2.75)

The update rule is based on the proportion of the TD error and trace. See
Algorithm 9 for details.

Algorithm 9 Semi-gradient TD(λ) for state-value
Input: policy π

Initialize a differentiable state function v, step size α and value function weight w
for each episode do

Initialize S0
z ← 0
for Each step St in the current episode do

Select At using policy that is based on π

Rt+1, St+1 ← Env(St , At)

z ← γλz +∇V (St ,wt)

δ ← Rt+1 + γV (St+1,wt)− V (St ,wt)

w ← w + αδz

end for
end for

2.6.2 Sarsa: On-Policy TD Control

For TD control, the methodology is similar to that of the prediction task except that
we will transition from the state-to-state alternation to state-action pair alternation.

2 Introduction to Reinforcement Learning 87

The update rule can, therefore, be framed as:

Q(St ,At) ← Q(St ,At) + α[Rt+1 + γQ(St+1, At+1) −Q(St ,At)] (2.76)

When St is the terminal state, the Q value for the next state-action pair will be zero.
It is referred to by the acronym Sarsa because we have this chain of being in a
state, taking an action, receiving a reward and being in a new state to take another
action. The chain allows us to do a simple update step. The state value gets updated
for each transition and the updated state value is influencing the policy being used
to determine the behavior, so it is also an on-policy method. On-policy methods
generally describe the class of methods that have an update policy which is the same
as its behavior policy, whereas, for the off-policy methods, these two are different.
An example of an off-policy method is Q-learning which we will talk about later. It
assumes a greedy approach while doing the update of its q-value function, whereas,
in fact, for its behavior it is using other policies such as ε-greedy. We now entail the
steps for Sarsa in Algorithm 10. We will have the convergence for both the optimal
policy and action-state values as long as each state-action pair is visited an infinite
number of times.

Algorithm 10 Sarsa (on-policy TD control)
Initialize Q(s, a) for all state-action pairs.
for each episode do

Initialize S0
Select A0 using policy that is based on Q

for Each step St in the current episode do
Select At from St using policy that is based on Q

Rt+1, St+1 ← Env(St , At)

Select At+1 from St+1 using policy that is based on Q

Q(St , At) ← Q(St , At)+ α[Rt+1 + γQ(St+1, At+1)− Q(St , At)]
end for

end for

What we have shown only has one step time horizon meaning that the approxima-
tion only involves the state-action value of the next step. We can call this 1-step Sarsa
or Sarsa(0), although we can easily extend the bootstrapped target value to include
future steps down the road to, for instance, reduce our bias. As shown by the backup
tree in Fig. 2.12, we see an array of Sarsa variants’ state-action spectrum starting
from the most basic 1-step Sarsa all the way up to the infinite step Sarsa which is an
equivalent of the MC because its target value accounts for the accumulated rewards
until the terminal state. To incorporate this change, we rewrite the discounted returns
as the following:

Gt :t+n = Rt+1 + γRt+2 + · · · + γ n−1Rt+n + γ nQt+n−1(St+n,At+n) (2.77)

88 Z. Ding et al.

Fig. 2.12 The backup tree for the coverage of the n-step Sarsa methods. Each black circle
represents a state and each white circle represents an action. The last state of the infinite step
Sarsa is a terminal state

The n-step Sarsa is described in Algorithm 11. The major difference it has from
the one-step version is that it has to go back in time to do the update, whereas the
one-step version can do the update as it goes.

Convergence of Sarsa

Now we will discuss the convergence theory of Sarsa algorithm for finite action
space (discrete cases), which requires some additional conditions described below.

Definition 2.1 A learning policy is defined as Greedy in the Limit with Infinite
Exploration (GLIE) if it satisfies the following two properties:

1. If a state is visited infinitely often, then each possible action in that state is chosen
infinitely often, i.e., limk→∞ Nk(s, a) = ∞,∀a, if limk→∞ Nk(s) = ∞.

2. The policy converges on a greedy policy with respect to the learned Q-function in
the limit (as t → ∞), i.e., limk→∞ πk(s, a) = 1(a == arg maxa′∈A Qk(s, a

′)),
where the “==” is a comparison operator and 1(a == b) is 1 if true and 0
otherwise.

2 Introduction to Reinforcement Learning 89

Algorithm 11 n-step Sarsa
Initialize Q(s, a) for all state-action pairs.
Initialize step-size α ∈ (0, 1].
Determine a fixed policy π or use ε-greedy.
for each episode do

Initialize S0
Select A0 using π(S0, A)

T ← INTMAX (the length of an episode)
γ ← 0
for t ← 0, 1, 2, . . . until γ − T − 1 do

if t < T then
Rt+1, St+1 ← Env(St , At)

if St+1 is terminal then
T ← t + 1

else
Select At+1 using π(St , A)

end if
end if
τ ← t − n+ 1 (the time step to update. This is an n-step Sarsa, so we will only update the
estimate that is n + 1 steps ago and we will continue to do so until all the eligible states
have been updated.
if τ ≥ 0 then

G ←∑min(r+n,T)
i=τ+1 γ i−γ−1Ri

if γ + n < T then
G ← G + γ nQ(St+n,Aγ+n)

end if
Q(Sγ ,Aγ) ← Q(Sγ ,Aγ)+ α[G − Q(Sγ ,Aγ)]

end if
end for

end for

The GLIE is a condition for the convergence of the learning policies, for any
reinforcement learning algorithm that converges to the optimal value function and
whose estimates are always bounded. For example, we can derive a GLIE policy
with ε-greedy strategy as follows:

Lemma 2.1 The ε-greedy policy is GLIE if ε reduces to zero with εk = 1
k

.

We can therefore have the convergence theorem of Sarsa algorithm.

Theorem 2.1 For a finite state-action MDP and a GLIE learning policy, with the
action-value function Q estimated with Sarsa (1-step) by Qt for time step t . Then
Qt converges to Q∗ and the learning policy πt converges to an optimal policy π∗,
if the following conditions are satisfied:

1. The Q values are stored in a lookup table;
2. The learning rate αt (s, a) associated with the state-action pair (s, a) at time

t satisfies 0 ≤ αt(s, a) ≤ 1,
∑

t αt (s, a) = ∞ and
∑

t α2
t (s, a) < ∞ and

αt (s, a) = 0 unless (s, a) = (St , At);
3. V ar[R(s, a)] < ∞.

90 Z. Ding et al.

A typical sequence of the learning rate as the second condition required is
αt (St , At) = 1

t
. The proofs of above theorems are not introduced here, but interested

readers can refer to the paper by Singh et al. (2000).

2.6.3 Q-Learning: Off-Policy TD Control

Q-learning is an off-policy TD method that is very similar to Sarsa and plays
an important role in deep reinforcement learning application such as the deep Q-
network, which we will discuss in the next chapter. As shown in Eq. (2.78), the
main difference that Q-learning has from Sarsa is that the target value now is no
longer dependent on the policy being used but only on the state-action function.

Q(St ,At) ← Q(St ,At)+ α[Rt+1 + γ max
a

Q(St+1, a)−Q(St ,At)] (2.78)

Algorithm 12 Q-learning (off-policy TD control)
Initialize Q(s, a) for all state-action pairs and step size α ∈ (0, 1]
for each episode do

Initialize S0
for Each step St in the current episode do

Select At using policy that is based on Q

Rt+1, St+1 ← Env(St , At)

Q(St , At) ← Q(St , At)+ α[Rt+1 + γ maxa Q(St+1, a)− Q(St , At)]
end for

end for

In Algorithm 12, we have shown how Q-learning can be used for TD control. It
is easy to convert Q-learning to Sarsa by first choosing the action using the state and
return, and second changing the target value in the update step to be the estimated
action value for the next step instead. This is also a one-step version. We can adapt
the Q-learning into a n-step version by adapting the target value in Eq. (2.78) to
include the discounted returns for the future steps.

Convergence of Q-Learning

The convergence of Q-learning follows similar conditions as the Sarsa algorithm.
Apart from the GLIE condition for the policy, the convergence of Q function in Q-
learning also requires the same requirements on its learning rate and the bounded
reward values, which will not be duplicated here. Details and proofs are available in
the papers (Szepesvári 1998; Watkins and Dayan 1992).

2 Introduction to Reinforcement Learning 91

2.7 Policy Optimization

2.7.1 Overview

In reinforcement learning, the ultimate goal of the agent is to improve its policy to
acquire better rewards. Policy improvement in the optimization domain is called
policy optimization (Fig. 2.13). For deep reinforcement learning, the policy and
value functions are usually parameterized by variables in deep neural networks,
and therefore enable the gradient-based optimization methods to be applied. For
example, Fig. 2.14 shows the graphical model of MDP with the policy parameterized
by variables θ , on a discrete finite time horizon t = 0, . . . , N − 1. The reward
function follows Rt = R(St , At) and action At ∼ π(·|St ; θ). The dependencies
among variables in the graphical models can help us to understand the underlying
relationships of the MDP for estimation, and it can be useful when we take
derivatives on the final objective to optimize variables on the dependency graphs,
so we will display all those graphical models in this chapter to help understand the
deduction process, especially for differential process. Recently, Levine (2018), Fu
et al. (2018) proposed the method of control as inference, which uses a graphical
model with additional variables indicating optimality on the MDP to incorporate the
probabilistic/variational inference framework into maximum entropy reinforcement
learning with the same objective. This method enables the inference tools to be
applied in the reinforcement learning policy optimization process. But the details of
those methods are beyond the scope of the book here.

Apart from some linear methods, the parameterization of value functions with
deep neural networks is one way of achieving value function approximation,
and it’s the most popular way in the modern deep reinforcement learning domain.
Value function approximation is useful because we cannot always acquire the true
value function easily, and actually we cannot get the true function for most cases
in practice. Figure 2.15 shows the model of MDP with both parameterized policy

Fig. 2.13 Overview of policy optimization in reinforcement learning

92 Z. Ding et al.

Fig. 2.14 Graphical model
of MDP with parameterized
policy

θ At At+1

Rt Rt+1

St St+1

t = 0, 1, · · · , T − 1

πθ and parameterized value function V π
w (St), via parameters θ and w respectively.

Figure 2.16 shows the model with parameterized policy πθ and Q-value functions
Qπ

w(St , At). The gradient-based optimization methods can be used for improving
parameterized policies, usually through the method called policy gradient in
reinforcement learning terminology. However, there are also non-gradient-based
methods for optimizing less complicated policies, like the cross-entropy (CE)
method and so on.

As shown in Fig. 2.13, the methods in policy optimization fall into two main cat-
egories: (1) value-based optimization methods like Q-learning, DQN, etc., which
optimize the action-value function to obtain the preferences for the action choice,
and (2) policy-based optimization methods like REINFORCE, the cross-entropy
method, etc., which directly optimize the policy according to the sampled reward
values. A combination of these two categories was found to be a more effective
approach by people (Sutton et al. 2000; Peters and Schaal 2008; Kalashnikov
et al. 2018), which forms one of the most widely used architecture in model-
free reinforcement learning called actor-critic. Actor-critic methods employ the
optimization of value function as the guidance of policy improvement. The typical
algorithms in the combined category include actor-critic-based algorithms and other
algorithms built upon that, which will be described in detail in later this chapter and
the following chapters.

2 Introduction to Reinforcement Learning 93

Fig. 2.15 Graphical model
of MDP with parameterized
policy and parameterized
value functions

θ At At+1

Rt Rt+1

St St+1

V (St) V (St+1)

w

t = 0, 1, · · · , T − 1

Recap of RL Skeleton

The On-policy Value Function, vπ (s), which gives the expected return if you start
in state s and always act according to policy π :

vπ (s) = Eτ∼π [R(τ)|S0 = s] (2.79)

Recall that the reinforcement learning optimization problem can be expressed as:

π∗ = arg max
π

J (π) (2.80)

94 Z. Ding et al.

Fig. 2.16 Graphical model
of MDP with parameterized
policy and parameterized
Q-value functions

θ At At+1

Rt Rt+1

St St+1

Q(St, At) Q(St+1, At+1)

w

t = 0, 1, · · · , T − 1

The Optimal Value Function, V ∗(s), which gives the expected return if we start
in state s and always act according to the optimal policy in the environment:

v∗(s) = max
π

vπ (s) (2.81)

v∗(s) = max
π

Eτ∼π [R(τ)|S0 = s] (2.82)

The On-Policy Action-Value Function, qπ(s, a), which gives the expected
return if we start in state s, take an arbitrary action a (which may not come from the
policy), and then forever after act according to policy π :

qπ(s, a) = Eτ∼π [R(τ)|S0 = s,A0 = a] (2.83)

2 Introduction to Reinforcement Learning 95

The Optimal Action-Value Function, q∗(s, a), which gives the expected return
if you start in state s, take an arbitrary action a, and then forever after act according
to the optimal policy in the environment:

q∗(s, a) = max
π

qπ(s, a) (2.84)

q∗(s, a) = max
π

Eτ∼π [R(τ)|S0 = s,A0 = a] (2.85)

Value Function and Action-Value Function

vπ (s) = Ea∼π [qπ(s, a)] (2.86)

v∗(s) = max
a

q∗(s, a) (2.87)

Optimal Action

a∗(s) = arg max
a

q∗(s, a) (2.88)

Bellman Equations
Bellman equations for state value and action value are:

vπ (s) = Ea∼π(·|s),s ′∼p(·|s,a)[R(s, a) + γ vπ (s′)] (2.89)

qπ(s, a) = Es ′∼p(·|s,a)[R(s, a) + γEa′∼π(·|s ′)[qπ(s′, a′)]] (2.90)

Bellman Optimality Equations
Bellman optimality equations for state value and action value are:

v∗(s) = max
a

Es ′∼p(·|s,a)[R(s, a) + γ v∗(s′)] (2.91)

q∗(s, a) = Es ′∼p(·|s,a)[R(s, a) + γ max
a′

q∗(s′, a′)] (2.92)

2.7.2 Value-Based Optimization

A value-based optimization method always needs to alternate between value
function estimation under the current policy and policy improvement with the
estimated value function. However, the estimation of a complex value function may
not be a trivial problem (Fig. 2.17).

From the previous sections, we see that the Q-learning can be used for solving
some simple tasks in reinforcement learning. However, the real-world applications

96 Z. Ding et al.

Fig. 2.17 An overview of methods for solving the value function

or even the quasi-real-world applications may have much larger and complicated
state and action spaces, and the action is usually continuous in practice. For
example, the Go game has 10170 states. In these cases, the traditional lookup table
method in Q-learning cannot work well with the limitation of its scalability, because
each state will have an entry V (s) and each state-action pair will need an entry
Q(s, a). The values in the table are updated one-by-one in practice. Therefore the
requirement of the memory and computational resources will be huge with tabular-
based Q-learning. Moreover, state representations usually need to be manually
specified with aligned data structures in practice.

Value Function Approximation

In order to apply the value-based reinforcement learning in relatively large-scale
tasks, function approximators are applied to handle the above limitations (Fig. 2.17).
Different types of value function approximation are summarized as follows and
shown in Fig. 2.18:

• Linear methods: the approximated function is a linear combination of weights
θ and real-valued vector of features φ(s) = (φ1(s), φ2(s)), . . . , φn(s))

T , where
s is the state. It is denoted as v(s, θ) = θT φ(s). The TD(λ) method is proven
to be convergent with linear function approximators under certain conditions

2 Introduction to Reinforcement Learning 97

Fig. 2.18 Different value function approximation frameworks. The gray boxes with parameters w

are the function approximators

as shown in Tsitsiklis and Roy (1997). Although the convergence guarantee of
linear methods are attractive, the feature selection or feature representation φ(s)

can be critical in practice when applying linear representations. Different ways
of constructing the features for linear methods are as follows:

– Polynomials: basic polynomial families can be used as feature vectors for
function approximation. Assuming that every state s = (S1, S2, . . . , Sd)T is
a d-dimensional vector, then we have a d-dimensional polynomial basis as
φi(s) = ∏d

j=1 S
ci,j

j , where each ci,j is an integer in set {0, 1, . . . , N}. This

forms order N polynomial basis, with (N + 1)d different functions.
– Fourier basis: the Fourier transformation is usually used to represent sequen-

tial signals in the time/frequency domain. The one-dimensional order-N
Fourier cosine basis with N + 1 functions is: φi(s) = cos(iπs) for s ∈ [0, 1]
and i = 0, . . . , N .

– Coarse coding: the state space can be reduced from high-dimensional to
low-dimensional, like binary representation through a region covering the
determination process, which is called coarse coding.

– Tile coding: in the category of coarse coding, tile coding is an efficient
approach for feature representation on multi-dimensional continuous spaces.
The receptive field of features in tile coding are grouped into partitions of the
input space. Each such partition is called a tilling, and each element of the
partition is called a tile. Multiple tillings are usually applied in combination
with overlapping receptive fields to give the feature vectors in practice.

– Radial basis functions: the radial basis functions (RBF) naturally generalize
the coarse coding, which is binary-valued, to be continuous-valued features in

98 Z. Ding et al.

[0, 1]. The typical RBF is in Gaussian format φi(s) = exp(−||s−ci ||2
2σ 2

i

), where s

is the state, ci is the feature’s prototypical or center state, and σi is the feature
width.

• Non-linear methods:

– Artificial neural networks: different from the above function approximation
methods, artificial neural networks are widely used as non-linear function
approximators, which are proven to have universal approximation ability
under certain conditions (Leshno et al. 1993). Based on deep learning
techniques, artificial neural networks form the main body of modern DRL
methods with function approximation. Details of deep learning are introduced
in Chap. 1. A typical example of it is the DQN algorithm, deploying an
artificial neural network for Q-value approximation.

• Other methods:

– Decision trees (Pyeatt et al. 2001): the decision trees can be used to represent
the state space by dividing it with decision nodes, which forms a considerable
method for state feature representation.

– Nearest neighbor method: it measures the difference of current state and
previous state in memory, and applies the value of the most similar state in
memory to approximate the value of the current state.

The benefits of using value function approximation include not only the scalabil-
ity to large-scale tasks, but also the ease to generalize to unseen states from the seen
states given continuous state spaces. Moreover, ANN-based function approximation
also reduces or eliminates the need for manually designing features to represent
the states. For model-free methods, the parameters w of the approximators can be
updated with Monte Carlo (MC) or TD learning. The updating of parameters can
be conducted with a batch of samples instead of updating each value in a tabular-
based method one-by-one. This makes it computational efficient when handling
large-scale problems. For model-based methods, the parameters can be updated with
dynamic programming. Details about MC, TD, and DP are introduced in previous
sections.

Potential function approximators include a linear combination of features, neural
networks, decision trees, the nearest neighbor method, etc. The most practical
approximation method for present DRL algorithms is using the neural network,
for its great scalability and generalization for various specific functions. A neural
network is a differential method with gradient-based optimization, which has a
guarantee of convergence to optimum within convex cases and can achieve near-
optimal solutions for some non-convex functions approximation. However, it may
require a large amount of data for training in practice and may cause other
difficulties.

Extending deep learning problems to those of reinforcement learning comes with
additional challenges including non-independently and identically distributed data

2 Introduction to Reinforcement Learning 99

(i.e. non-i.i.d.). Most supervised learning methods are constructed with the assump-
tion that training data is from an i.i.d. and stationary distribution (Schmidhuber
2015). However, the training data in reinforcement learning usually consists of
highly correlated samples from sequential agent–environment interactions, which
violates the independence condition in supervised learning. Even worse, the training
data in reinforcement learning is usually non-stationary as the value function is
estimated with current policy, or at least the state-visit-frequency determined by
current policy, and the policy is updated all the time during training. The agent learns
through exploring different partitions of the state space. All these cases violate the
condition of sampled data being identically distributed.

There are some practical requirements for the representations when using value
function approximation in reinforcement learning, which may lead to divergence
if not considered properly (Achiam et al. 2019). Specifically, the danger of
instability and divergence arises whenever the three conditions are combined: (1)
training on a distribution of transitions other than those naturally generated by the
process whose expectation is being estimated (e.g., off-policy learning); (2) scalable
function approximations (e.g., linear semi-gradient); (3) bootstrapping (e.g., DP,
TD learning). These three main properties can lead to learning divergence only
when they are combined, which is known as the deadly triad (Van Hasselt et al.
2018). Value-based methods using function approximation can also have an over-
/under-estimation problem, if the way of leveraging function approximation is not
fair enough. For example, original DQN has the problem of overestimating the
Q-value (Van Hasselt et al. 2016), which decreases the learning performances in
practice, and the double/dueling DQN techniques are proposed to alleviate the
problem. Generally, policy-based methods with policy gradients have stronger
convergence guarantee compared with value-based methods.

Gradient-Based Value Function Approximation

Considering the value function is parameterized as V π(s) = V π(s;w) or
Qπ(s, a) = Qπ(s, a;w), we can derive the udpate rules with different methods of
estimation. The optimization objective is set to be the mean-squared error (MSE)
between the approximate function V π(s;w) (or Qπ(s, a;w)) and the true value
function vπ (s) (or qπ(s, a)):

J (w) = Eπ [(V π(s;w) − vπ (s))2] (2.93)

or,

J (w) = Eπ [(Qπ(s, a;w) − qπ(s, a))2] (2.94)

Therefore the gradients with stochastic gradient descent are:

�w = α(V π(s;w) − vπ (s))∇wV π (s;w) (2.95)

100 Z. Ding et al.

or,

�w = α(Qπ (s, a;w)− qπ(s, a))∇wQπ(s, a;w) (2.96)

where the gradients are estimated with each sample in the batch and the weights are
updated in a stochastic manner. The target (true) value functions vπ or qπ in above
equations are usually estimated, sometimes with a target network (DQN) or a max
operator (Q-learning), etc. We show some basic estimations of the value functions
here.

For MC estimation, the target value is estimated with the sampled return Gt .
Therefore, the update gradients of value-function parameters are:

�wt = α(V π(St ;wt)−Gt)∇wt V
π (St ;wt) (2.97)

or,

�wt = α(Qπ(St , At ;wt) −Gt+1)∇wt Q
π(St , At ;wt) (2.98)

For TD(0), the target is the TD target Rt + γVπ(St+1;wt) according to the
Bellman Optimality Equation as Eq. (2.92), therefore:

�wt = α(V π(St ;wt)− (Rt + γVπ(St+1;wt)))∇wt V
π(St ;wt) (2.99)

or,

�wt = α(Qπ (St , At ;wt)− (Rt+1 + γQπ(St+1, At+1;wt))∇wt Q
π(St , At ;wt))

(2.100)

For TD(λ), the target is the λ-return Gλ
t , so the update rule is:

�wt = α(V π (St ;wt) −Gλ
t)∇wt V

π (St ;wt) (2.101)

or,

�wt = α(Qπ(St , At ;wt) −Gλ
t)∇wt Q

π(St , At ;wt) (2.102)

Different estimations have different preferences in bias and variances, which has
already been discussed in previous sections about different estimation methods like
MC and TD.

Example: Deep Q-Network

Deep Q-Network (DQN) is one of the most typical examples for value-based
optimization. It uses a deep neural network for Q-value function approximation in

2 Introduction to Reinforcement Learning 101

Q-Learning, and maintains an experience replay buffer to store transition samples
during the agent–environment interactions. DQN also applies a target network QT ,
which is parameterized by a copy of the original network Q parameter and updated
in a delayed manner, to stabilize the learning process, i.e. to alleviate the non-
stationary data distribution problem in deep learning. It uses the MSE loss following
the above Eq. (2.96), with the true value function qπ replaced by the approximation
function r + γ maxa′ QT (s′, a′) in a greedy manner.

The experience replay buffer provides stability for learning as random batches
are sampled from the buffer to help to alleviate the problems of non-i.i.d. data. It
makes the policy update to be an off-policy manner due to the mismatch between
buffer content from the earlier policy and from the current policy. More details about
the DQN algorithm are introduced in Chap. 4.

2.7.3 Policy-Based Optimization

Before we talk about policy-based optimization, we first introduce common policies
in reinforcement learning. As introduced in previous sections, policies in reinforce-
ment learning can be divided into deterministic and stochastic policies. In deep
reinforcement learning, we use neural networks to represent the policies of both
categories, which are called parameterized policies. Specifically, the parameteri-
zation here indicates the abstract policy is parameterized with the neural network
(including single layer perceptrons), rather than other parametric representations.
With the network parameters θ , the deterministic and stochastic policy can be
written as At = μθ(St) and At ∼ πθ(·|St), respectively.

In deep reinforcement learning domain, there are several commonly seen specific
distributions for representing the action distribution of a stochastic policy: the
Bernoulli distribution, categorical distribution, and diagonal Gaussian distribution.
The Bernoulli and categorical distributions work for the discrete action spaces,
either binary or multi-category, while the diagonal Gaussian distributions work for
the continuous action spaces.

The Bernoulli distribution of a single variable x ∈ 0, 1 with parameter θ is:
P(s; θ) = θx(1 − θ)(1−x). Therefore it can be used to represent the actions with
binary value, for either single or multiple dimensions (with a vector of variables),
which works for the so-called binary-action policies.

A categorical policy with categorical distribution as its output can be used in
discrete and finite action spaces, it considers the policy as a classifier, which outputs
the probabilities of each action in the finite action space conditioned on a state e.g.,
π(a|s) = P [At = a|St = s]. The sum of all probabilities is equal to one, therefore
the softmax activation function is usually applied in the last output layer when the
categorical policy is parameterized. Instead of using probability function p(·|·), here
we use P [·|·] specifically for representing the cases with finite action space in a
matrix. The agent can choose one action by sampling according to the categorical
distribution. In practice, the action in this case is usually encoded as a one-hot vector
with the same dimension as the action space as ai = (0, 0, . . . , 1, . . . , 0), so that

102 Z. Ding et al.

ai � p(·|s) gives p(ai |s), where � is the element-wise product operator and p(·|s)
is the vector of matrix with fixed state s, usually also as the normalized output
layer of the categorical policy. Gumbel-Softmax trick can be applied in practice to
keep the sampling process of categorical distribution differentiable if the categorical
policy is parameterized. Without specific tricks applied, the stochastic node with a
sampling process and operations like arg max are usually non-differentiable, which
is problematic when employed in parameterized policies depending on gradient-
based optimization (introduced in later sections).

Gumbel-Softmax trick (Jang et al. 2016): first, the Gumbel-Max trick allows us
to draw samples from categorical distribution π :

z = one_hot[arg max
i

(zi + log πi)] (2.103)

where “one_hot” is an operation transferring a scalar into a one-hot vector.
However, as mentioned above, the arg max operation is generally non-differentiable.
Therefore, in Gumbel-Softmax trick, a Softmax operation is applied to approximate
the arg max continuously in Gumbel-Max trick:

ai = exp((log πi + gi)/τ)∑
j exp((log πj + gj)/τ

,∀i = 0, . . . , k (2.104)

where k is the dimension of the desired variable a (the action for reinforcement
learning policy) and gi is the Gumbel variable sampled from the Gumbel dis-
tribution. The Gumbel (0,1) distribution can be sampled using inverse transform
sampling by drawing u ∼ Uniform(0, 1) and computing g = log(log(u)) in
practice.

The diagonal Gaussian policy outputting the means and variances of a diagonal
Gaussian distribution can be used in continuous action spaces. A normal multi-
variate Gaussian distribution contains a mean vector μ and a covariance matrix �,
while the diagonal Gaussian distribution is a special case where only the diagonal
of covariance matrix is non-zero, so we can use a vector σ to represent it. When
applying the diagonal Gaussian distribution to represent the probabilistic actions,
it removes the covariance relationships among different dimensions of the actions.
When the policy is parameterized, the reparametrization trick as below (similar as
in variational autoencoder by Kingma and Welling (2014)) can be applied to sample
actions from the mean and variance vectors, as well as keeping the operations
differentiable.

Reparameterization trick: sampling the action a from a diagonal Gaussian
distribution a ∼ N (μθ , σ θ) with the mean and variance vectors μθ and σ θ

(parameterized) can be alternatively achieved with sampling a hidden vector z from
a normal Gaussian z ∼ N (0, 1) and derive the action as:

a = μθ + σ θ � z (2.105)

where � is the elementwise product for two vectors of the same shape.

2 Introduction to Reinforcement Learning 103

Fig. 2.19 Different policies in deep reinforcement learning

An overview of common policies in deep reinforcement learning is displayed in
Fig. 2.19, for providing the readers a better understanding.

Policy-Based Optimization methods directly optimize the policy of the agent in
reinforcement learning scenarios without estimating or learning an action-value
function. The sampled reward values are usually used in the optimization process
for improving action preferences. Either gradient-based or gradient-free methods
are applied in the optimization process. Gradient-based methods always apply the
policy gradient, which perhaps represents the most popular class of algorithms used
in continuous-action reinforcement learning, benefiting from scalability to high-
dimensional cases. The typical methods in gradient-based optimization include
REINFORCE, etc. On the other hand, gradient-free algorithms usually have a
faster learning process for relatively simple cases in policy searching, free from the
computationally expensive process of calculating derivatives. The typical methods
in gradient-free category include cross-entropy (CE) method and so on.

Recall that the goal of the agent in reinforcement learning is to maximize the
cumulative discounted reward from the start state, in an expected or estimated view,
which can be denoted as:

J (π) = Eτ∼π [R(τ)] (2.106)

where R(τ) = ∑T
t=0 γ tRt as a discounted expected reward with finite steps (fits

most scenarios), and τ are sampled trajectories.
The policy-based optimization will optimize the policy π with respect to the

above goal J (π), through gradient-based or gradient-free methods. We will first
introduce gradient-based methods and give an example of REINFORCE algorithm,
then introduce a gradient-free (non-gradient-based) algorithms and show the
example CE method.

Gradient-Based Optimization

Gradient-based optimization uses an estimator for the gradients on the expected
return (total reward) obtained from sample trajectories to improve the policy with

104 Z. Ding et al.

gradient descent/ascent, and the gradient with respect to the policy parameter is
called the policy gradient as follows:

�θ = α∇θ J (πθ) (2.107)

where θ indicates the policy parameters and α is the learning rate. Methods based
on these gradients of policy parameters are called the policy gradient method. The
policy gradient theorem proposed by Sutton et al. (2000) and Silver et al. (2014)
is shown as follows and will be proved in the following sections.

Note: the representation θ of parameters in Eq. (2.107) is actually improper,
which is supposed to be θ for representing the vector as a default format of the
book (see the chapter of math notation). However, here we apply the vanilla format
θ as an interchangeable way of θ whenever representing the model parameters. This
follows the common format in literature and is also simple. One way to consider the
rationality of this representation is: the gradients of parameters can be taken for each
parameter individually, which is denoted by θ , while the equations are the same for
all parameters. Therefore it also works for applying θ to represent all parameters.
The rest of the book follows the above statements.

Theorem 2.2 (Policy Gradient Theorem)

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ (log πθ(At |St))Q
πθ (St , At)

]
(2.108)

= ESt∼ρπ ,At∼πθ [∇θ (log πθ(At |St))Q
πθ (St , At)] (2.109)

where the second form is derived through defining the discounted state distribution
as in Silver et al. (2014) by ρπ(s′) := ∫

S
∑T

t=0 γ t−1ρ0(s)p(s′|s, t, π)ds and
p(s′|s, t, π) is the transition probability of s to s′ under policy π at time step t .

The policy gradient theorem works for both stochastic policies and deterministic
policies. It was originally proposed by Sutton et al. (2000) for stochastic policies,
but extended to deterministic policies by Silver et al. (2014). For the deterministic
cases, although the deterministic policy gradient theorem (introduced later) does not
look like the above policy gradient theorem, it is proved that the deterministic policy
gradient (DPG) is just a special (limiting) case of the stochastic policy gradient
(SPG), if we parameterize the stochastic policy πμθ ,σ by a deterministic policy μθ :
S → A and a variance parameter σ , such that for σ = 0 the stochastic policy is
equivalent to the deterministic policy, πμθ ,0 ≡ μ. A detailed proof will be provided
in the section of the deterministic policy gradient.

1. Stochastic Policy Gradient
Now we first prove the policy gradient theorem for the stochastic policy, which is
called the stochastic policy gradient method. For simplicity, we assume an episodic
setting in finite MDP with the length of each trajectory fixed as T +1 in this section.
Considering a parameterized stochastic policy πθ(a|s), we then have the probability

2 Introduction to Reinforcement Learning 105

of trajectory p(τ |π) = ρ0(S0)
∏T

t=0 p(St+1|St , At)π(At |St) for MDP process with
ρ0(S0) as initial state distribution, we can get the logarithm of the probability of
trajectory with parameterized policy πθ as:

log p(τ |θ) = log ρ0(S0)+
T∑

t=0

(
log p(St+1|St , At)+ log πθ(At |St)

)
. (2.110)

We also need the Log-Derivative Trick: ∇θp(τ |θ) = p(τ |θ)∇θ log p(τ |θ)

Therefore we can get the derivative of the log-probability of a trajectory as:

∇θ log p(τ |θ) =∇θ log ρ0(S0)+
T∑

t=0

(
∇θ log p(St+1|St , At)+∇θ log πθ(At |St)

)

(2.111)

=
T∑

t=0

∇θ log πθ(At |St). (2.112)

where the terms containing ρ0(S0) and p(St+1|St , At) are removed because they do
not depend on parameters θ , although unknown.

Recall that the learning objective is to maximize the expected cumulative reward:

J (πθ) = Eτ∼πθ [R(τ)] = Eτ∼πθ

[
T∑

t=0

Rt

]
=

T∑
t=0

Eτ∼πθ [Rt] , (2.113)

where τ = (S0, A0, R0, . . . , ST ,AT ,RT , ST+1) and R(τ) = ∑T
t=0 Rt . We can

directly perform gradient ascent on the parameters of the policy θ to gradually
improve the performance of the policy πθ .

Note that Rt only depends on τt , where τt = (S0, A0, R0, . . . , St , At , Rt , St+1).

∇θEτ∼πθ [Rt] =∇θ

∫
τt

Rtp(τt |θ)dτt Expand expectation

(2.114)

=
∫

τt

Rt∇θp(τt |θ)dτt Exchange gradient and integral

(2.115)

=
∫

τt

Rtp(τt |θ)∇θ log p(τt |θ)dτt Log-derivative trick

(2.116)

=Eτ∼πθ

[
Rt∇θ log p(τt |θ)

]
Return to expectation form

(2.117)

106 Z. Ding et al.

The third equality above is due to the log-derivative trick introduced before.
Plug the above formula back to J (πθ),

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

Rt∇θ log p(τt |θ)

]
.

Now we need to compute∇θ log pθ (τt), where pθ (τt) depends on both the policy
πθ and the ground truth of the model p(Rt , St+1|St , At) which is not available to
the agent. Luckily, to apply the policy gradient method, we only need the gradient
of log pθ (τt) instead of its original value, which can be derived easily by replacing
the τ = τ0:T in Eq. (2.112) to be τt = τ0:t , which gives:

∇θ log p(τt |θ) =
t∑

t ′=0

∇θ log πθ(At ′ |St ′). (2.118)

Therefore,

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

Rt∇θ

t∑
t ′=0

log πθ(At ′ | St ′)

]

= Eτ∼πθ

[
T∑

t ′=0

∇θ log πθ (At ′ | St ′)
T∑

t=t ′
Rt

]
. (2.119)

Here the last equality is simply by rearranging the summation.
Notice that in the above derivation process we use both the exchanging between

sum and expectation and the exchanging between expectation and sum and deriva-
tive (both valid):

∇θ J (πθ) = ∇θEτ∼πθ [R(τ)] = ∇θEτ∼πθ

[
T∑

t=0

Rt

]
=

T∑
t=0

∇θEτ∼πθ [Rt]

(2.120)

which ends up to take the integral in Eq. (2.114) over the partial trajectory τt of
length t + 1. However, there is also other way of taking the expectation of the
cumulative reward along the whole trajectory:

∇θ J (πθ) = ∇θEτ∼πθ R(τ) (2.121)

= ∇θ

∫
τ

p(τ |θ)R(τ) Expand expectation (2.122)

2 Introduction to Reinforcement Learning 107

=
∫

τ

∇θp(τ |θ)R(τ) Exchange gradient and integral (2.123)

=
∫

τ

p(τ |θ)∇θ log p(τ |θ)R(τ) Log-derivative trick (2.124)

= Eτ∼πθ [∇θ log p(τ |θ)R(τ)] Return to expectation form
(2.125)

⇒ ∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St)R(τ)

]
(2.126)

= Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St)

T∑
t ′=0

Rt ′

]
(2.127)

A careful reader may notice that the second result in Eq. (2.127) is slightly
different from the first result as in Eq. (2.119). Specifically, the time scales of the
cumulative reward are different. The first result uses only the cumulative future
rewards

∑T
t=t ′ Rt after action At to evaluate the action, while the second result uses

the cumulative rewards on the whole trajectory
∑T

t=0 Rt to evaluate each action
At on that trajectory, including the rewards before choosing that action. Intuitively,
the action should not be evaluated by the rewards happened before that action is
conducted, which is also reinforced by mathematical proof that the rewards obtained
before the action have zero effects on the final expected gradients. Those past
rewards can, therefore, be simply dropped in the derived policy gradient to have
Eq. (2.119), which is called the “reward-to-go” policy gradient. A strict proof of
the equivalence of the two policy gradient formulas is not provided here but can be
referred to here.1 The two derivations here can also be regarded as a proof of the
equivalence of two results.

The ∇ in the above formulas called “nabla” is a specific computational operator
with three basic meanings (gradient, divergence, and curl) in the physics and
mathematics domains, depending on its operational objectives. But in the computer
science domain, the “nabla” operator ∇ is usually used as partial derivative, which
derives the derivative on the following objective explicitly containing the variable
in the footnote position. As the R(τ) in above formulas does not explicitly contain
θ , the ∇θ does not operate on R(τ), although the τ implicitly depends on θ

(according to the graphical model of MDP). We also notice that the expectation in
Eq. (2.127) can be estimated with the sample mean. If we collect a set of trajectories
D = {τi}i=1,...,N where each trajectory is obtained by letting the agent act in the

1Proof of equivalence of two versions of stochastic policy gradient: https://spinningup.openai.com/
en/latest/spinningup/extra_pg_proof1.html.

https://spinningup.openai.com/en/latest/spinningup/extra_pg_proof1.html
https://spinningup.openai.com/en/latest/spinningup/extra_pg_proof1.html

108 Z. Ding et al.

environment using the policy πθ , the policy gradient can be estimated with

ĝ = 1

|D|
∑
τ∈D

T∑
t=0

∇θ log πθ(At |St)R(τ), (2.128)

The Expected Grad-Log-Prob (EGLP) lemma2 is commonly used in policy
gradient optimization, so we introduce it here.

Lemma 2.2 (EGLP Lemma) Suppose that pθ is a parameterized probability
distribution over a random variable, x. Then:

Ex∼pθ [∇θ log Pθ(x)] = 0. (2.129)

Proof Recall that all probability distributions are normalized:

∫
x

pθ (x) = 1. (2.130)

Take the gradient of both sides of the normalization condition:

∇θ

∫
x

pθ (x) = ∇θ 1 = 0. (2.131)

Use the log derivative trick to get:

0 = ∇θ

∫
x pθ (x) (2.132)

= ∫
x ∇θpθ (x) (2.133)

= ∫
x
pθ (x)∇θ log pθ (x) (2.134)

∴ 0 = Ex∼pθ [∇θ log pθ (x)]. (2.135)

From the EGLP lemma we can directly derive that:

EAt∼πθ [∇θ log πθ(At |St)b(St)] = 0. (2.136)

where b(St) is called a baseline and is independent of the future trajectory the
expectation is taken over. The baseline is any function dependent only on the
currents state, without affecting the overall expected value in the optimization
formula.

2Referred to OpenAI Spinning Up: https://spinningup.openai.com/en/latest/.

https://spinningup.openai.com/en/latest/

2 Introduction to Reinforcement Learning 109

In the above formulas the optimization goal is finally:

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St)R(τ)

]
(2.137)

We can also modify the reward for total trajectory R(τ) to be reward-to-go Gt

following time step t:

∇θJ (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St)Gt

]
(2.138)

With the above EGLP lemma, the expected return can be generalized to be:

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St)�t

]
(2.139)

where �t =∑T
t ′=t (R(St ′ , at ′, St ′+1)− b(St)).

Actually �t could be the following formats for more practical usage:

�t = Qπθ (St , At) (2.140)

or,

�t = Aπθ (St , At) = Qπθ (St , At) − V πθ (St) (2.141)

which are both proven to be identical to the original format in the expected value,
just with different variances in practice. The proof of these requires law of iterated
expectations:E[X] = E[E[X|Y]] for two random variables (discrete or continuous).
And this is easy to prove. The rest of the proof is given below:

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(At |St)R(τ)

]
(2.142)

=
T∑

t=0

Eτ∼πθ [∇θ log πθ(At |St)R(τ)] (2.143)

=
T∑

t=0

Eτ:t∼πθ [Eτt :∼πθ [∇θ log πθ(At |St)R(τ)|τ:t]] (2.144)

=
T∑

t=0

Eτ:t∼πθ [∇θ log πθ(At |St)Eτt :∼πθ [R(τ)|τ:t]] (2.145)

110 Z. Ding et al.

=
T∑

t=0

Eτ:t∼πθ [∇θ log πθ(At |St)Eτt :∼πθ [R(τ)|St , At]] (2.146)

=
T∑

t=0

Eτ:t∼πθ [∇θ (log πθ(At |St))Q
πθ (St , At)] (2.147)

in which Eτ [·] = Eτ:t [Eτt : [·|τ:t]] and τ:t = (S0, A0, . . . , St , At), and Qπθ (St , At) =
Eτt :∼πθ [R(τ)|St , At].

Therefore, it’s common to see

∇θJ (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ (log πθ(At |St))Q
πθ (St , At)

]
(2.148)

or,

∇θJ (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ (log πθ(At |St))A
πθ (St , At)

]
(2.149)

in the literature. In other words, it is equivalent to changing the optimization
objective to be J (πθ) = Eτ∼π [Qπθ (St , At)] or J (πθ) = Eτ∼π [Aπθ (St , At)] instead
of original Eτ∼π [R(τ)], in the sense of optimal policy. The Aπθ (St , At) are usually
estimated with TD-error in practice.

According to whether the environment model is used or not, reinforcement
learning algorithms can be classified into model-free and model-based categories.
For model-free reinforcement learning, pure gradient-based optimization algorithms
are originated from the REINFORCE algorithm, or called the policy gradient
method. For the model-based reinforcement learning category, there are also policy-
based algorithms, like the method applying backpropagation through time (BPTT)
for updating the policy using sampled rewards within episodes. No more details
about model-based methods will be discussed here, and we instead direct the readers
to Chap. 9.

Example: REINFORCE Algorithm

REINFORCE is an algorithm using stochastic policy gradient method as in
Eq. (2.139), where �t = Qπ(St , At) and it is estimated with sampled rewards
along the trajectory Gt = ∑∞

t ′=t Rt ′ (or discounted version Gt = ∑∞
t ′=t γ t ′−tRt ′)

in REINFORCE. The gradients for updating the policy are:

g = E

[∞∑
t=0

∞∑
t ′=t

Rt ′∇θ log πθ(At |St)

]
(2.150)

2 Introduction to Reinforcement Learning 111

Details of REINFORCE algorithm are introduced in Chap. 5.

2. Deterministic Policy Gradient
What has been described above belongs to stochastic policy gradient (SPG), and
it works for optimizing the stochastic policy π(a|s), which represents the action
as a probabilistic distribution based on the current state. The contrary case to the
stochastic policy is the deterministic policy, where a = π(s) is a deterministic
action instead of probability. We can derive the deterministic policy gradient (DPG)
similarly as in SPG, and it also follows the policy gradient theorem numerically (as
a limit case), although they have different explicit expressions.

Note: in the following part of this section, we use μ(s) instead of π(s) as
previously defined to represent the deterministic policy, for removing ambiguity
in the distinction with stochastic policy π(a|s).

For a more rigorous and general definition of DPG we refer to the deterministic
policy gradient theorem proposed by Silver et al. (2014) in Eq. (2.159). We will
introduce the deterministic policy gradient theorem and prove it, in an on-policy
manner first and off-policy later, as well as discussing the relationship of DPG with
SPG in detail.

First of all, we define the performance objective for the deterministic policy
following the same expected discounted reward definition in stochastic policy
gradient:

J (μ) = ESt∼ρμ,At=μ(St)[
∞∑
t=1

γ t−1R(St , At)] (2.151)

=
∫
S

∫
S

∞∑
t=1

γ t−1ρ0(s)p(s′|s, t, μ)R(s′, μ(s′)]dsds′ (2.152)

=
∫
S

ρμ(s)R(s, μ(s))ds (2.153)

where p(s′|s, t, μ) = p(St+1|St , At)p
μ(At |St), the first probability is the transition

probability and the second is the probability of the action choice. Since it is
deterministic policy, we have pμ(At |St) = 1 and therefore p(s′|s, t, μ) =
p(St+1|St , μ(St)). Also, the state distribution in above formula is ρμ(s′) :=∫
S
∑∞

t=1 γ t−1ρ0(s)p(s′|s, t, μ)ds.
As V μ(s) = E[∑∞

t=1 γ t−1R(St , At)|S1 = s;μ] = ∫S∑∞
t=1 γ t−1p(s′|s, t, μ)

R(s′, μ(s′)]ds′ following the same definition in stochastic policy gradient except
for applying the deterministic policy, we can also derive that

J (μ) =
∫
S

ρ0(s)V
μ(s)ds (2.154)

=
∫
S

∫
S

∞∑
t=1

γ t−1ρ0(s)p(s′|s, t, μ)R(s′, μ(s′)]dsds′ (2.155)

112 Z. Ding et al.

which is the same as the above representation directly using discounted rewards.
The relationships here also hold for stochastic policy gradient, just with the
deterministic policy μ(s) replaced by the stochastic policy π(a|s). For deterministic
policy, we have V μ(s) = Qμ(s, μ(s)) as the Q-value is an expectation over the
action distribution for stochastic policy, but there is no action distribution but a
single value for the deterministic policy. Therefore we also have the following
representation for deterministic policy,

J (μ) =
∫
S

ρ0(s)V
μ(s)ds (2.156)

=
∫
S

ρ0(s)Q
μ(s, μ(s))ds (2.157)

The different formats of performance objective will be used in the proof of
DPG theorem, as well as several conditions. We list the conditions here without
a detailed derivation process, which can be checked in the original paper by Silver
et al. (2014):

• C.1 The Existence of Continuous Derivatives: p(s′|s, a),∇ap(s′|s, a), μθ (s),

∇θμθ (s), R(s, a),∇aR(s, a), ρ0(s) are continuous in all parameters and vari-
ables s, a, s′, and x.

• C.2 The Boundedness Condition: there exist a, b, and L such that sups ρ0(s) <

b, supa,s,s ′ p(s′|s, a) < b, supa,s R(s, a) < b, supa,s,s ′ ||∇ap(s′|s, a)|| <

L, supa,s ||∇aR(s, a)|| < L.

Theorem 2.3 (Deterministic Policy Gradient Theorem) suppose that the MDP
satisfies conditions C.1 for the existence of ∇θμθ (s),∇aQ

μ(s, a) and the determin-
istic policy gradient, then,

∇θJ (μθ) =
∫
S

ρμ(s)∇θμθ (s)∇aQ
μ(s, a)|a=μθ (s)ds (2.158)

= Es∼ρμ[∇θμθ (s)∇aQ
μ(s, a)|a=μθ (s)] (2.159)

Proof The proof of deterministic policy gradient theorem generally follows the
same lines of the standard stochastic policy gradient theorem by Sutton et al.
(2000). First of all, in order to exchange derivatives and integrals, and the order
of integration whenever needed in the following proof, we need to use two lemmas,
which are basic mathematical rules in calculus as follows:

• Lemma 2.3 (Leibniz Integral Rule) let f (x, t) be a function such that both
f (x, t) and its partial derivative f ′

x(x, t) are continuous in t and x in some
region of the (x, t)-plane, including a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1. Also suppose
that the functions a(x) and b(x) are both continuous and both have continuous

2 Introduction to Reinforcement Learning 113

derivatives for x0 ≤ x ≤ x1. Then, for x0 ≤ x ≤ x1,

d

dx

∫ b(x)

a(x)

f (x, t)dt = f (x, b(x)) · d

dx
b(x)− f (x, a(x)) · d

dx
a(x)

+
∫ b(x)

a(x)

∂

∂x
f (x, t)dt (2.160)

• Lemma 2.4 (Fubini’s Theorem) Suppose X and Y are σ -finite measure
spaces, and suppose that X × Y is given the product measure (which is unique
as X and Y are σ -finite). Fubini’s theorem states that if f is X × Y integrable,
meaning that f is a measurable function and

∫
X×Y

|f (x, y)|d(x, y) < ∞ (2.161)

then,

∫
X

(∫
Y

f (x, y)dy

)
dx =

∫
Y

(∫
X

f (x, y)dx

)
dy =

∫
X×Y

f (x, y)d(x, y)

(2.162)

To satisfy these two lemmas, we require the necessary conditions provided in C.1
as the Leibniz integral rule requires, which imply that V μθ (s) and ∇θV

μθ (s) are
continuous functions of θ and s. We also follow the assumption of the compactness
of the state space S, which is in C.2 required by Fubini’s theorem and implies
that for any θ , ||∇θV

μθ (s)||, ||∇aQ
μθ (s, a)|a=μθ (s)|| and ||∇θμθ (s)|| are bounded

functions of s. With above conditions, we have the following derivations:

∇θV
μθ (s) = ∇θQ

μθ (s, μθ (s)) (2.163)

= ∇θ (R(s, μθ (s))+
∫
S

γp(s′|s, μθ (s))V
μθ (s′)ds′) (2.164)

= ∇θμθ (s)∇aR(s, a)|a=μθ (s) +∇θ

∫
S

γp(s′|s, μθ (s))V
μθ (s′)ds′

(2.165)

= ∇θμθ (s)∇aR(s, a)|a=μθ (s) +
∫
S

γ (p(s′|s, μθ (s))∇θV
μθ (s′)

+ ∇θμθ (s)∇ap(s′|s, a)V μθ (s′))ds′ (2.166)

114 Z. Ding et al.

= ∇θμθ (s)∇a(R(s, a) +
∫
S

γp(s′|s, a)V μθ (s′)ds′)|a=μθ (s))

+
∫
S

γp(s′|s, μθ (s))∇θV
μθ (s′)ds′ (2.167)

= ∇θμθ (s)∇aQ
μθ (s, a)|a=μθ (s) +

∫
S

γp(s′|s, μθ (s))∇θV
μθ (s′)ds′

(2.168)

In the above derivations, the Leibniz integral rule is used to exchange the
order of derivative and integration, requiring the continuity conditions of
p(s′|s, a), μθ (s), V

μθ (s) and their derivatives with respect to θ . Now we iterate the
above formula with ∇θV

μθ (s) to have:

∇θV
μθ (s) = ∇θμθ (s)∇aQ

μθ (s, a)|a=μθ(s) (2.169)

+
∫
S

γp(s′|s, μθ (s))∇θμθ (s
′)∇aQ

μθ (s′, a)|a=μθ(s ′)ds′ (2.170)

+
∫
S

γp(s′|s, μθ (s))

∫
S

γp(s′′|s′, μθ (s
′))∇θV

μθ (s′′)ds′′ds′

(2.171)

= ∇θμθ (s)∇aQ
μθ (s, a)|a=μθ(s) (2.172)

+
∫
S

γp(s → s′, 1, μθ (s))∇θμθ (s
′)∇aQ

μθ (s′, a)|a=μθ(s ′)ds′

(2.173)

+
∫
S

γ 2p(s → s′, 2, μθ (s))∇θμθ (s
′)∇aQ

μθ (s′, a)|a=μθ(s ′)ds′

(2.174)

+ . . . (2.175)

=
∫
S

∞∑
t=0

γ tp(s → s′, t, μθ (s))∇θμθ (s
′)∇aQ

μθ (s′, a)|a=μθ(s ′)ds′

(2.176)

where we use Fubini’s theorem for changing the order of integration, which requires
the condition that ||∇θV

μθ (s)|| is bound. The above integration contains a special
case with p(s → s′, 0, μθ (s)) = 1 for s′ = s and is 0 for other s′. Now we
take derivative on the modified performance objective, which is the expected value

2 Introduction to Reinforcement Learning 115

function,

∇θJ (μθ) = ∇θ

∫
S

ρ0(s)V
μθ (s)ds (2.177)

=
∫
S

ρ0(s)∇θV
μθ (s)ds (2.178)

=
∫
S

∫
S

∞∑
t=0

γ tρ0(s)p(s → s′, t, μθ (s))∇θμθ (s
′)

× ∇aQ
μθ (s′, a)|a=μθ(s ′)ds′ds (2.179)

=
∫
S

ρμθ (s)∇θμθ (s)∇aQ
μθ (s, a)|a=μθ (s)ds (2.180)

where we use the Leibniz integral rule for exchanging the derivative and integral,
requiring the conditions that ρ0(s) and V μθ (s) and their derivatives with respect to
θ are continuous, and also the Fubini’s theorem to exchange the order of integration
with the boundedness conditions of integrand. Proof is completed.

Off-Policy Deterministic Policy Gradient
Apart from the on-policy version of DPG derived above, we can also derive the
deterministic policy gradient in an off-policy manner, using the DPG theorem above
and γ -discounted state distribution ρμ(s′) := ∫

S
∑∞

t=1 γ t−1p(s)p(s′|s, t, μ)ds.
Off-policy deterministic policy gradient estimates current policy with samples
from the behavior policy (e.g. previous policies if using replay buffer), which is
different from current policy. In the off-policy settings, the gradients are estimated
using trajectories sampled from a distinct behavior policy β(s) �= μθ(s), and the
corresponding state distribution is ρβ(s), which is not dependent on the policy
parameter θ . And in off-policy case, the performance objective is modified to be the
value function of target policy averaged over the state distribution of the behavior
policy Jβ(μθ) = ∫

S ρβ(s)V μ(s)ds = ∫
S ρβ(s)Qμ(s, μθ (s))ds, while original

objective follows Eq. (2.157) as J (μθ) =
∫
S ρ0(s)V

μ(s)ds. Note that it is the first
approximation we take in deriving the off-policy deterministic policy gradient, as
J (μθ) ≈ Jβ(uθ), and we will have another approximation in the following. We can
directly apply the differential operator on the modified objective as follows:

∇θJβ(μθ)=
∫
S ρβ(s)(∇θμθ (s)∇aQ

μθ (s, a)+∇θQ
μθ (s, a))|a=μ(s)ds (2.181)

≈ ∫
S ρβ(s)∇θμθ (s)∇aQ

μθ (s, a)ds (2.182)

= Es∼ρβ [∇θμθ (s)∇aQ
μθ (s, a)|a=μ(s)] (2.183)

The approximately equivalent symbol in above formulas indicates the difference
between the on-policy DPG and off-policy DPG. The dependency relationships
in above formula need to be carefully considered. The derivative of θ goes
into the integration because ρβ(s) is independent on θ , therefore no term with

116 Z. Ding et al.

derivative on ρβ(s). As the Qμθ (s, μθ (a)) actually depends on θ in two ways
(two μθ in the expression): (1) it depends on the action a determined by the
deterministic policy μθ with current state s, and (2) the on-policy estimation of
Q value also depends on the policy μθ for choosing actions for future states,
as in Qμθ (s, a) = R(s, a) + ∫S γp(s′|s, a)V μθ (s′)ds′. So the derivative needs
to be conducted separately. However, the second term ∇θQ

μθ (s, a)|a=μ(s) in the
first formula is dropped in the approximation due to the difficulty in estimation in
practice, which has a similar corresponding operation in off-policy stochastic policy
gradients (Degris et al. 2012).3,4

Relationship of Stochastic Policy Gradient and Deterministic Policy Gradient
As shown in Eq. (2.148), the stochastic policy gradient has the same format as in
policy gradient theorem in the previous paragraph, while the deterministic policy
gradient in Eq. (2.159) seems to have an inconsistent format at first look. However, it
can be proved that for a wide range of stochastic policies, the DPG is a special (limit)
case of the SPG. In this sense, the DPG also satisfies the policy gradient theorem
under certain conditions. In order to achieve that, we parameterize the stochastic
policy πμθ ,σ by a deterministic policy μθ : S → A and a variance parameter
σ , such that for σ = 0 the stochastic policy is equivalent to the deterministic
policy, πμθ ,0 ≡ μ. An additional condition is needed for defining the relationship
between SPG and DPG, which is a composite condition to define the regular delta-
approximation:

• C.3 Regular Delta-Approximation: functions vσ parameterized by σ are said to
be a regular delta-approximation on R ∈ A if they satisfy the conditions: (1) the
distribution vσ converges to a delta distribution limσ↓0

∫
A vσ (a′, a)f (a)da =

f (a′) for a′ ⊆ R and suitably smooth f ; (2) vσ (a′, ·) is supported on compact
C ′a ⊆ A with Lipschitz boundary, vanishes on the boundary and is continuously
differentiable on Ca′; (3) the gradient ∇a′vσ (a′, a) always exists; (4) translation
invariance: v(a′, a) = v(a′+δ, a+δ) for any a ∈ A, a′ ∈ R, a+δ ∈ A, a′+δ ∈
A.

Theorem 2.4 (Deterministic Policy Gradient as Limit of Stochastic Policy Gra-
dient) Consider a stochastic policy πμθ ,σ such that πμθ ,σ (a|s) = vσ (μθ (s), a),
where σ is a parameter controlling the variance and vσ (μθ (s), a) satisfy C.3 and
the MDP satisfies C.1 and C.2, then,

lim
σ↓0

∇θ J (πμθ ,σ) = ∇θ J (μθ) (2.184)

3Details and arguments for this operation can be referred to the original paper.
4The paper of Silver D, Lever G, Heess N, et al. Deterministic policy gradient algorithms[C]. 2014.
drops the ∇a on the Q term after approximation in Eq. (15) of the paper, and here we modified this
typo.

2 Introduction to Reinforcement Learning 117

which indicates the gradient of the DPG (r.h.s) is the limit case of standard SPG
(l.h.s).

The proof of the above relationship is an outline of this book and we will not
discuss it here. Details refer to the original paper (Silver et al. 2014).

Applications and Variants of Deterministic Policy Gradient
One of the most famous algorithms of DPG is the deep deterministic policy gradient
(DDPG), which is a deep variant of DPG. DDPG combines DQN and actor-critic
algorithms to use deterministic policy gradients for updating the policy, via a deep-
learning approach. It has the target networks for both the actor and the critic, and
provides for sample-efficient learning but is notoriously challenging to use due to
its extreme brittleness and hyperparameter sensitivity in practice (Duan et al. 2016).
The details and implementation of DDPG will be introduced in later chapters.

From the above we can see that the policy gradient can be estimated in at least
two approaches: SPG and DPG, depending on the type of policy. Actually, they
use two kinds of different estimators, the score function estimator for SPG and the
pathwise derivative estimators for DPG, in the terminology of variational inference
(VI).

A reparameterization trick makes it possible to apply policy gradients derived
from the value function for stochastic policy, which is called the stochastic value
gradients (SVG) (Heess et al. 2015). In SVG algorithms, a value λ is usually
used as SVG(λ) to indicate how many steps are expanded in Bellman recursion.
For example, the SVG(0) and SVG(1) indicate the Bellman recursion expanded
with 0 and 1 step, respectively, and SVG(∞) indicates the Bellman recursion is
expanded along the whole episodic trajectory in a finite horizon. SVG(0) is a model-
free method with the action-value estimated with current policy, and therefore the
value gradients are back-propagated to the policy; while SVG(1) is a model-based
method using a learned transition model to evaluate the value of next state, as in
original paper (Heess et al. 2015).

A very simple but useful example of reparameterization trick is to write a
conditional Gaussian density p(y|x) = N (μ(x), σ 2(x)) as the function y(x) =
μ(x) + σ(x)ε, ε ∼ N (0, 1). So one can produce samples procedurally by first
sampling ε then deterministically constructing y, which makes the sampling process
from the stochastic policy trackable for gradients. And the same procedure for
back-propagating the gradients from the action-value function to the policy is made
feasible in practice. In order to get the gradients for the stochastic policy through the
value function as in DPG, SVG applies the reparameterization trick and takes extra
expectation on stochastic noise. Soft actor-critic (SAC) and the original SVG (Heess
et al. 2015) algorithm both follow this routine to use stochastic policy for continuous
control.

For example, in SAC, the stochastic policy is reparameterized with a mean and
a variance, together with a noise term sampled from a normal distribution. The

118 Z. Ding et al.

optimization objective in SAC with an additional entropy term is:

π∗ = arg max
π

Eτ∼π

[∞∑
t=0

γ t (R(St , At , St+1) + αH(π(·|St)))

]
(2.185)

and therefore the relationship of value function and Q-value function becomes:

V π(s) = Ea∼π [Qπ(s, a)] + αH(π(·|s)) (2.186)

= Ea∼π [Qπ(s, a) − α log π(a|s)] (2.187)

The policy used in SAC is a normalized Gaussian distribution, which is different
from traditional settings. The action in SAC can be represented as below via
reparameterization trick:

aθ(s, ε) = tanh(μθ (s) + σθ (s) · ε), ε ∼ N (0, I) (2.188)

Due to the stochasticity of the policy in SAC, the policy gradients are derived with
the reparametrization trick through maximizing the expected value function, which
is:

maxθ Ea∼πθ [Qπθ (s, a) − α log πθ(a|s)] (2.189)

= maxθ Eε∼N [Qπθ (s, a(s, ε)) − α log πθ(a(s, ε)|s)] (2.190)

and the gradients can therefore go back through the Q-networks to the policy
network, similar as in DPG, which are:

∇θ
1

|B|
∑
St∈B

(Qπθ (St , a(St , ε))− α log πθ(a(St , ε)|St)) (2.191)

with a sampled batch B for updating the policy and a(St , ε) sampled from the
stochastic policy with reparameterization trick. In this sense, the reparameterization
trick makes it possible for the stochastic policy to be updated in a similar manner
as DPG, and the resulting SVG is kind of an intermediate between DPG and SPG.
DPG can also be regarded as a deterministic limit of SVG(0).

Gradient-Free Optimization

Apart from gradient-based optimization for policy-based learning, there are also
non-gradient-based (also called gradient-free) optimization methods, which include
cross-entropy (CE) method, covariance matrix adaptation (CMA) (Hansen and
Ostermeier 1996), hill climbing, simplex/amoeba/Nelder-Mead algorithm (Nelder
and Mead 1965), etc.

2 Introduction to Reinforcement Learning 119

Example: Cross-Entropy (CE) Method

Instead of using gradient-based optimization for policies, CE method is usually
faster for policy search in reinforcement learning as a non-gradient-based optimiza-
tion method. In a CE method, the policy is updated iteratively and the optimization
objective for parameters θ of the parameterized policy πθ is:

θ∗ = arg max S(θ) (2.192)

where the S(θ) is the general objective function, and for our reinforcement learning
cases, it could be the discounted expected return: S(θ) = R(τ) =∑T

t=0 γ tRt .
The policy in the CE method can be parameterized as a multi-variate linear

independent Gaussian distribution, and the distribution of the parameter vector at
iteration t is ft ∼ N(μt , σ

2
t). After drawing n sample vectors θ1, . . . , θn and

evaluating their value S(θ1), . . . , S(θi), we sort them and select the best �ρ · n�
samples, where 0 < ρ < 1 is the selection ratio. Denoting the set of indices of the
selected samples by I ∈ 1, 2, . . . , n, the mean of the distribution is updated using:

μt+1 =:
∑

i∈I θi

|I | (2.193)

and the deviation update is:

σ 2
t+1 :=

∑
i∈I (θi − μt+1)

T (θi − μt+1)

|I | (2.194)

The cross-entropy method is an efficient and general optimization algorithm.
However, preliminary investigations showed that the applicability of CE to rein-
forcement learning problems is restricted severely by the phenomenon that the
distribution concentrates to a single point too fast. Therefore, its applicability in
reinforcement learning seems to be limited though fast, because it often converges
to suboptimal policies. A standard technique for preventing early convergence is to
introduce noise. General methods include adding a constant or an adaptive value on
the standard deviation term during the iterative process for the Gaussian distribution
like:

σ 2
t+1 :=

∑
i∈I (θi − μt+1)

T (θi − μt+1)

|I | + Zt+1 (2.195)

where Zt = max(5 − t
10 , 0) in work of Szita, et al.

120 Z. Ding et al.

2.7.4 Combination of Policy-Based and Value-Based Methods

With the above vanilla policy gradient method, some simple reinforcement learning
tasks can be solved. However, there is usually a large variance in the evaluated
updates if we choose to use Monte Carlo or TD(λ) estimation. We can use a critic
as described in the value-based optimization to estimate the action-value function.
So there will be two sets of parameters if we use parameterized value function
as an approximation for policy optimization: the actor parameters and the critic
parameters. This actually forms a very important algorithm architecture called actor-
critic (AC), and typical algorithms include Q-value actor-critic, deep deterministic
policy gradient (DDPG), etc.

Recall the policy gradient theorem introduced in previous sections, the deriva-
tives of performance objective J with respect to the policy parameters θ are:

∇θ J (πθ) = Eτ∼πθ

T∑
t=0

∇θ log πθ(At |St)Q
π(St , At) (2.196)

in which the Qπ(St , At) are the true action-value function, and the simplest
way of estimating Qπ(St , At) is to use a sampled cumulative return Gt =∑∞

t=0 γ t−1R(St , At). In AC, we apply a critic to estimate the action-value function:
Qw(St , At) ≈ Qπ(St , At). And the update rule of the policy in AC is therefore:

∇θ J (πθ) = Eτ∼πθ

T∑
t=0

∇θ log πθ(At |St)Q
w(St , At) (2.197)

where w are parameters of the critic for value function approximation. The
critic can be evaluated with an appropriate policy evaluation algorithms such
as temporal difference (TD) learning, like �w = α(Qπ(St , At ;w) − Rt+1 +
γ vπ (St+1, w))∇wQπ(St , At ;w) for TD(0) estimation as in Eq. (2.100). More
details about AC algorithm and implementation will be discussed in Chaps. 5 and 6.

Although the AC framework helps alleviate the variances in policy updates, it can
introduce bias and potential instability due to replacing the true action-value func-
tion with the estimated one, which requires compatible function approximation
to ensure its unbiased estimation as proposed by Sutton et al. (2000).

Compatible Function Approximation

The compatible function approximation conditions hold for both SPG and DPG. We
will show them individually. The “compatible” here indicates that the approximate
action-value function Qw(s, a) is compatible with the corresponding policy.

2 Introduction to Reinforcement Learning 121

For SPG Specifically, the compatible function approximation proposes two con-
ditions to ensure the unbiased estimation using the approximated action-value
function Qπ(s, a): (1) Qw(s, a) = ∇θ log πθ(a|s)T w and (2) the parameters w are
chosen to minimize the mean-squared error MSE(w) = Es∼ρπ ,a∼πθ [(Qw(s, a) −
Qπ(s, a))2]. More intuitively, condition (1) says that compatible function approxi-
mators are linear in “features” of the stochastic policy,∇θ log πθ(a|s), and condition
(2) requires that the parameters w are the solution to the linear regression problem
that estimates Qπ(s, a) from these features. In practice, condition (2) is usually
relaxed in favor of policy evaluation algorithms that estimate the value function
more efficiently by temporal difference learning.

If both conditions are satisfied, then the overall algorithm of AC is equivalent to
not using the critic for approximation, like in the REINFORCE algorithm. This can
be proved simply by setting the MSE in the condition (2) equivalent to 0 and taking
gradients, then substituting the condition (1) into it:

∇wMSE(w) = E[2(Qw(s, a)−Qπ(s, a))∇wQw(s, a)] (2.198)

= E[2(Qw(s, a)−Qπ(s, a))∇θ log πθ(a|s)] (2.199)

= 0 (2.200)

⇒ E[Qw(s, a)∇θ log πθ(a|s)] = E[Qπ(s, a)∇θ log πθ(a|s)]
(2.201)

For DPG The two conditions in compatible function approximation are
modified accordingly with respect to the deterministic policy μθ(s): (1)
∇aQ

w(s, a)|a=μθ (s) = ∇θμθ (s)
T w and (2) w minimizes the mean-squared error,

MSE(θ,w) = E[ε(s; θ,w)T ε(s; θ,w)] where ε(s; θ,w) = ∇aQ
w(s, a)|a=μθ (s) −

∇aQ
w(s, a)|a=μθ (s). It can also be proved that these conditions ensure the unbiased

estimation through transferring the approximation back to no-critic cases:

∇wMSE(θ,w) = 0 (2.202)

⇒ E[∇θμθ (s)ε(s; θ,w)] = 0 (2.203)

⇒ E[∇θμθ (s)∇aQ
w(s, a)|a=μθ (s)] = E[∇θμθ (s)∇aQ

μ(s, a)|a=μθ (s)] (2.204)

And it applies to both on-policy Es∼ρμ [·] and off-policy Es∼ρβ [·] cases.

Other Methods

If we replace the action-value function Qπ(s, a) with advantage function Aπ(s, a)

in Eq. (2.196) (as subtracting the baseline does not affect the gradients):

Aπθ (s, a) = Qπθ (s, a)− V πθ (s) (2.205)

122 Z. Ding et al.

Then we actually get a more advanced algorithm called advantage actor-critic
(A2C), which can use the TD-error to estimate the advantage function. This will
not affect above theorems but changes the variances of gradient estimators.

Recently, people have proposed actor-free methods, like the QT-Opt algorithm
(Kalashnikov et al. 2018) and the Q2-Opt algorithm (Bodnar et al. 2019) based on
that. These methods are combinations of policy-based and value-based optimization
as well, gradient-free CE method and DQN specifically. Instead of using the
sampled discounted return as an estimation of actions sampled from Gaussian
distributions, they apply action value approximation for learning Qπθ (s, a) instead,
which are proved to be efficient and effective for robot learning in reality especially
when there are demonstration datasets.

References

Achiam J, Knight E, Abbeel P (2019) Towards characterizing divergence in deep Q-learning.
Preprint. arXiv:190308894

Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (1995) Gambling in a rigged casino: the
adversarial multi-armed bandit problem. In: Proceedings of IEEE 36th annual foundations of
computer science. IEEE, Piscataway, pp 322–331

Bellman R et al (1954) The theory of dynamic programming. Bull Am Math Soc 60(6):503–515
Bodnar C, Li A, Hausman K, Pastor P, Kalakrishnan M (2019) Quantile QT-Opt for risk-aware

vision-based robotic grasping. Preprint. arXiv:191002787
Bubeck S, Cesa-Bianchi N et al (2012) Regret analysis of stochastic and nonstochastic multi-armed

bandit problems. Found Trends® Mach Learn 5(1):1–122
Degris T, White M, Sutton RS (2012) Linear off-policy actor-critic. In: In international conference

on machine learning. Citeseer
Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement

learning for continuous control. In: International conference on machine learning, pp 1329–
1338

Fu J, Singh A, Ghosh D, Yang L, Levine S (2018) Variational inverse control with events: a general
framework for data-driven reward definition. In: Advances in neural information processing
systems, pp 8538–8547

Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In: Proceedings of IEEE international conference
on evolutionary computation. IEEE, Piscataway, pp 312–317

Heess N, Wayne G, Silver D, Lillicrap T, Erez T, Tassa Y (2015) Learning continuous control
policies by stochastic value gradients. In: Advances in neural information processing systems,
pp 2944–2952

Jang E, Gu S, Poole B (2016) Categorical reparameterization with gumbel-softmax. Preprint.
arXiv:161101144

Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, Quillen D, Holly E, Kalakrishnan M,
Vanhoucke V et al (2018) Qt-opt: scalable deep reinforcement learning for vision-based robotic
manipulation. Preprint. arXiv:180610293

Kingma DP, Welling M (2014) Auto-encoding variational Bayes. In: Proceedings of the interna-
tional conference on learning representations (ICLR)

Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural Netw 6(6):861–867

Levine S (2018) Reinforcement learning and control as probabilistic inference: tutorial and review.
Preprint. arXiv:180500909

2 Introduction to Reinforcement Learning 123

Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313
Peters J, Schaal S (2008) Natural actor-critic. Neurocomputing 71(7–9):1180–1190
Pyeatt LD, Howe AE et al (2001) Decision tree function approximation in reinforcement learning.

In: Proceedings of the third international symposium on adaptive systems: evolutionary
computation and probabilistic graphical models, Cuba, vol 2, pp 70–77

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy

gradient algorithms. In: Proceedings of the 31 st international conference on machine learning,
Beijing

Singh S, Jaakkola T, Littman ML, Szepesvári C (2000) Convergence results for single-step on-
policy reinforcement-learning algorithms. Mach Learn 38(3):287–308

Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforce-
ment learning with function approximation. In: Advances in neural information processing
systems, pp 1057–1063

Szepesvári C (1998) The asymptotic convergence-rate of Q-learning. In: Advances in neural
information processing systems, pp 1064–1070

Tsitsiklis JN, Roy BV (1997) An analysis of temporal-difference learning with function approxi-
mation. Technical Report. IEEE transactions on automatic control

Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double Q-learning. In:
Thirtieth AAAI conference on artificial intelligence

Van Hasselt H, Doron Y, Strub F, Hessel M, Sonnerat N, Modayil J (2018) Deep reinforcement
learning and the deadly triad. Preprint. arXiv:181202648

Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8(3–4):279–292
Williams RJ, Baird III LC (1993) Analysis of some incremental variants of policy iteration: first

steps toward understanding actor-critic learning systems. Technical Report. NU-CCS-93-11.
Northeastern University, College of Computer Science

Chapter 3
Taxonomy of Reinforcement Learning
Algorithms

Hongming Zhang and Tianyang Yu

Abstract In this chapter, we introduce and summarize the taxonomy and categories
for reinforcement learning (RL) algorithms. Figure 3.1 presents an overview of
the typical and popular algorithms in a structural way. We classify reinforcement
learning algorithms from different perspectives, including model-based and model-
free methods, value-based and policy-based methods (or combination of the two),
Monte Carlo methods and temporal-difference methods, on-policy and off-policy
methods. Most reinforcement learning algorithms can be classified under different
categories according to the above criteria, hope this helps to provide the readers
some overviews of the full picture before introducing the algorithms in detail in
later chapters.

Keywords Model-based · Model-free · Value-based · Policy-based · Monte
Carlo (MC) methods · Temporal-difference (TD) methods · On-policy ·
Off-policy

We introduce the classification of reinforcement learning from the following
perspectives: model-based methods and model-free methods, value-based methods
and policy-based methods, Monte Carlo methods and temporal-difference methods,
on-policy methods and off-policy methods. Hopefully, the introduction of these new
terms can make an easy start for a newcomer in the field of reinforcement learning.
The algorithms introduced in Chaps. 4, 5, and 6 follow the taxonomy of value-
based methods, policy-based methods, and the combination of the two methods,
respectively.

H. Zhang (�)
Peking University, Beijing, China
e-mail: zhanghongming@pku.edu.cn

T. Yu
Nanchang University, Nanchang, China

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_3

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_3&domain=pdf
mailto:zhanghongming@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_3

126 H. Zhang and T. Yu

F
ig

.3
.1

M
ap

of
re

in
fo

rc
em

en
t

le
ar

ni
ng

al
go

ri
th

m
s.

B
ox

es
w

it
h

th
ic

k
li

ne
s

de
no

te
di

ff
er

en
t

ca
te

go
ri

es
,o

th
er

s
de

no
te

sp
ec

ifi
c

al
go

ri
th

m
s

3 Taxonomy of Reinforcement Learning Algorithms 127

3.1 Model-Based and Model-Free

We begin with the model-based methods and model-free methods for the discussion
of the taxonomy in reinforcement learning. In deep learning, a model means a
specific function with initialized parameters (pre-trained model) or learned param-
eters (well-trained model) such as a deep neural network. However, in model-based
reinforcement learning, a “model” means an ensemble of acquired environmental
knowledge. Recall that in Markov decision process (MDP), there are five elements
denoted as: S,A,P , R, γ . S and A denote the state space and the action space
of the environment; R(s, a) denotes a reward function that returns a reward when
an agent takes action a at state s; p(s′|s, a) denotes a transition function, it gives
the transition probability of the environment transferring from s to s′ when taking
action a; γ denotes the discount factor. If all these elements are known, some
planning methods introduced in Chap. 2 can be used directly without interaction
with the environment, such as value iteration, policy iteration, etc. However, the
reward function R and the transition function p(s′|s, a) are usually unknown to the
agent. The agent needs to go through lots of trials and errors and learns by observing
the environment to leverage the reward feedback.

There are two ways for achieving the above learning process shown in Fig. 3.2.
One way is to predict the elements of the environment. Even though the functions
R and P are unknown, the agent can get some samples by taking actions in the
environment. If the samples (s, a, s′, r) are sufficient, the values of p(s′|s, a) and r

can be predicted by supervised learning. After that, all the elements are known and
planning methods can be used directly. This way is called model-based. Another
way is not to model the environment but to look for the optimal policy directly.
For example, the Q-learning algorithm chooses each action with the highest Q-
value and converges to an optimal Q-value function; the policy gradient algorithm
searches the optimal policy in policy space directly. These two algorithms do not
focus on the model and search for the highest reward directly. This approach is

Fig. 3.2 Model-based methods and model-free methods

128 H. Zhang and T. Yu

called model-free. The difference between model-based and model-free is whether
the agent will get or learn the model (or dynamics) of the environment, such as the
transition function and the reward function.

The model-based methods can be split into two categories: the methods that work
with a given model and the methods that learn the model. For the methods that work
with a given model, the models for the reward function and the transition process can
be accessed directly by the agent. For example, in the AlphaGo algorithm (Silver
et al. 2016), the rules of the Go game are specified, which can be described with
the computer language easily. The transition function and reward function in Go are
all known for the agent to evaluate and improve its policy. For the other category,
the methods that learn the model cannot acquire the model directly due to the
complexity or opaqueness of the environment, but the agent can learn a model
from interactions with the environment first and then apply the model in policy
improvement. Typical examples for the second category include the World Models
algorithm (Ha and Schmidhuber 2018), the I2A algorithm (Racanière et al. 2017),
etc. Like in the World Models algorithm, the agent collects some data (St , At , St+1)

from a random policy and encodes it into a low dimensional latent vector zt using
a variational auto-encoder (VAE) (Baldi 2012). Then these data (Zt , At , Zt+1) are
used to learn a predictive model of the future latent vector z. After that, the agent
can improve its policy via the learned model.

The key advantage of model-based methods is that the future states and rewards
can be anticipated in advance via the environment model, which helps the agent
to make better planning. Some typical methods include pure planning and expert
iteration (Sutton and Barto 2018). For example, the MBMF algorithm (Nagabandi
et al. 2018) adopts pure planning techniques; the AlphaGo algorithm (Silver et al.
2016) adopts expert iteration. The disadvantage of model-based methods lies in the
fact that the model is usually not available, and the dynamics of the environment can
be complex, which may not even be represented explicitly. Moreover, the learned
models are usually inaccurate in practice, which induce bias for estimation. The
policy estimated and improved based on a biased model usually collapses when
applying in the true environment.

Model-free methods do not try to build a model of the environment. The agent
interacts with the environment directly and improves its performance based on the
explored samples. Compared with model-based methods, model-free methods are
straightforward to implement for they do not care about the model, which can be
hard to learn if not given. However, model-free methods also tend to suffer from
their own problems. Sometimes the cost of exploring in a real-world environment
can be extremely high in terms of time consumption, tear and wear of equipment,
and safety risks. For example, in the case of an automatic pilot, we cannot train an
agent to explore in the real world with a model-free method without any further
precautions because any traffic accident will be too much of a cost to bear.

Most of the algorithms introduced in Chaps. 4, 5, and 6 are model-free algo-
rithms, including the deep Q-networks (DQN) algorithm (Mnih et al. 2015), policy
gradient (PG) methods (Sutton et al. 2000), the deep deterministic policy gradient
(DDPG) algorithm (Lillicrap et al. 2015), etc. But model-based methods are playing

3 Taxonomy of Reinforcement Learning Algorithms 129

a more and more important role, due to the low sample efficiency of model-
free methods (details in Chap. 7). For example, AlphaGo (Silver et al. 2016) and
AlphaZero (Silver et al. 2018, 2017) in Chap. 15 belong to model-based algorithms.

3.2 Value-Based and Policy-Based

Recall that in Chap. 2, there are two main categories for policy optimization in
deep reinforcement learning, the value-based methods and policy-based methods.
A combination of the two engenders the actor-critic class of algorithms and other
algorithms like QT-Opt (Kalashnikov et al. 2018), which leverage the value function
for updating the policy. The relationship is shown in Fig. 3.3. The value-based
methods usually imply the optimization of the action-value function Qπ(s, a).
The optimal value function after optimization is Qπ∗

(s, a) = maxa Qπ(s, a),
therefore the optimal policy can be derived by π∗ ≈ arg maxπ Qπ (“≈” due to
the approximation error). The advantages of value-based method lie in the sample
efficiency is high, the variance of value function estimation is small, and it is not
easy to fall into local optimum. The disadvantages are that it usually cannot handle
the continuous action space problem, and the ε-greedy strategy and the max operator
such as in DQN can easily result in overestimation.

Common value-based algorithms include Q-learning (Watkins and Dayan 1992),
DQN (Mnih et al. 2015) and its variants: (1) Prioritized Experience Replay (Schaul
et al. 2015) weights the data based on TD error to improve learning efficiency; (2)
Dueling DQN (Wang et al. 2016) improves the network structure. It decomposes the

Fig. 3.3 Value-based and policy-based methods. Figure comes from Li (2017)

130 H. Zhang and T. Yu

action-value function Q into the state-value function V and the advantage function
A to improve the approximation capacity; (3) Double DQN (Van Hasselt et al. 2016)
chooses and evaluates actions with different parameters to solve the overestimation
problem; (4) Retrace (Munos et al. 2016) revises the calculation method of Q value
and reduces the variance of value estimation; (5) Noisy DQN (Fortunato et al.
2017) adds noise to network parameters to increase exploration; (6) Distributed
DQN (Bellemare et al. 2017) refines the estimation of Q value into the estimation
of distribution.

The policy-based method optimizes the policy directly; it updates the policy iter-
atively until the accumulative return is maximized. Compared with the value-based
method, a policy-based method has the advantages of simpler policy parameteriza-
tion, better convergence, and is suitable for continuous or high dimensional action
space. Some common policy-based algorithms include PG (Sutton et al. 2000),
TRPO (Schulman et al. 2015), PPO (Schulman et al. 2017; Heess et al. 2017), etc.
TRPO and PPO restrict the update step based on PG to prevent policy collapse and
make the algorithm more stable.

In addition to the simple value-based methods and policy-based methods, the
more popular methods are the combination of the two, which gives an actor-critic
framework. The actor-critic method combines the merits of value-based method
and policy-based method, using the value-based methods to learn a Q function or
value function to improve sample efficiency and using the policy-based methods to
learn the policy function, which is suitable for discrete or continuous action space.
This kind of method can be regarded as an extension of the value-based methods
in continuous action space, or as an improvement of the policy-based method for
reducing sampling variance. Although this method absorbs the advantages of the
two methods, it also inherits the corresponding disadvantages. For example, the
critic also has the problem of overestimation, and the actor has the problem of
insufficient exploration. Some common actor-critic deep reinforcement learning
algorithms include the actor-critic (AC) algorithm (Sutton and Barto 2018) and a
series of improvements: (1) A3C (Mnih et al. 2016) extends AC to asynchronous
and parallel learning, disturbs the correlation between data, and improves the speed
of data collection and training; (2) DDPG (Lillicrap et al. 2015) inherits DQN’s
target network, and the actor is a deterministic policy; (3) TD3 (Fujimoto et al. 2018)
introduces clipped double Q-learning mode and delayed policy update strategy to
solve the overestimation problem; (4) Entropy regularization is introduced in Q-
value estimation by SAC (Haarnoja et al. 2018) to enhance exploration.

3.3 Monte Carlo and Temporal Difference

The differences between the Monte Carlo (MC) and temporal-difference (TD)
methods have already discussed in Chap. 2 and some algorithms are shown in
Fig. 3.4. Here we summarize their differences again for the completion of this
chapter. TD is an intermediate form between dynamic programming (DP) and MC

3 Taxonomy of Reinforcement Learning Algorithms 131

Fig. 3.4 Monte Carlo methods and temporal-difference methods

methods. Both TD and DP use bootstrapping for estimation and both TD and MC
do not require the full knowledge of the environment. What makes MC differ from
TD the most is how the learning update is done. MC has to wait until an episode is
finished to update, whereas DP can do an update at each time step. This difference
will let TD methods have larger biases, whereas MC methods have larger variances.

3.4 On-Policy and Off-Policy

The difference between on-policy and off-policy is from the perspective of policy
(Fig. 3.5). On-policy methods attempt to evaluate or improve the policy that is
used to make decisions, whereas off-policy methods evaluate or improve a policy
different from that used to generate the data. The on-policy method requires the
agent itself to interact with the environment; that is to say, the policy that interacts

Fig. 3.5 On-policy and off-policy methods

132 H. Zhang and T. Yu

with the environment and the policy to be improved must be the same one. The
off-policy method does not need to conform to it, the experience of other agents
interacting with the environment can also be used to improve the policy. The
common on-policy method is Sarsa, which selects an action based on the current
policy and executes the action, then it uses the data to update the current policy. So,
the policy that interacts with the environment and the updated policy is the same
one. It updates Q function as follows:

Q(St ,At) ← Q(St ,At) + α[Rt + γQ(St+1, At+1)−Q(St ,At)]. (3.1)

Q-learning is a typical off-policy method. It adopts the max operation and an ε-
greedy policy when choosing actions, which makes the policy that interacts with the
environment and the updated policy not the same policy. It updates Q function as
follows:

Q(St ,At) ← Q(St ,At) + α[Rt + γ max
a

Q(St+1, At+1)− Q(St ,At)]. (3.2)

References

Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of
the international conference on machine learning (ICML), pp 37–50

Bellemare MG, Dabney W, Munos R (2017) A distributional perspective on reinforcement
learning. In: Proceedings of the 34th international conference on machine learning, vol 70,
pp 449–458. JMLR.org

Fortunato M, Azar MG, Piot B, Menick J, Osband I, Graves A, Mnih V, Munos R, Hassabis D,
Pietquin O, et al (2017) Noisy networks for exploration. arXiv:170610295

Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic
methods. arXiv:180209477

Ha D, Schmidhuber J (2018) Recurrent world models facilitate policy evolution. In: Advances in
neural information processing systems, pp 2450–2462

Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv:180101290

Heess N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami S, Riedmiller
M, et al (2017) Emergence of locomotion behaviours in rich environments. arXiv:170702286

Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, Quillen D, Holly E, Kalakrishnan
M, Vanhoucke V, et al (2018) QT-Opt: Scalable deep reinforcement learning for vision-based
robotic manipulation. arXiv:180610293

Li Y (2017) Deep reinforcement learning: an overview. arXiv:170107274
Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous

control with deep reinforcement learning. arXiv:150902971
Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,

Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529–533

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016)
Asynchronous methods for deep reinforcement learning. In: International Conference on
Machine Learning (ICML), pp 1928–1937

JMLR. org

3 Taxonomy of Reinforcement Learning Algorithms 133

Munos R, Stepleton T, Harutyunyan A, Bellemare M (2016) Safe and efficient off-policy
reinforcement learning. In: Advances in Neural Information Processing Systems, pp 1054–
1062

Nagabandi A, Kahn G, Fearing RS, Levine S (2018) Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning. In: 2018 IEEE international
conference on robotics and automation (ICRA), IEEE, Piscataway, pp 7559–7566

Racanière S, Weber T, Reichert D, Buesing L, Guez A, Rezende DJ, Badia AP, Vinyals O, Heess N,
Li Y, et al (2017) Imagination-augmented agents for deep reinforcement learning. In: Advances
in neural information processing systems, pp 5690–5701

Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay. Preprint,
arXiv:1511.05952

Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust region policy optimization. In:
International Conference on Machine Learning (ICML), pp 1889–1897

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization
algorithms. arXiv:170706347

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J,
Antonoglou I, Panneershelvam V, Lanctot M, et al (2016) Mastering the game of go with deep
neural networks and tree search. Nature 529(7587):484

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran
D, Graepel T, et al (2017) Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv:171201815

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D,
Graepel T, et al (2018) A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362(6419):1140–1144

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge
Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforce-

ment learning with function approximation. In: Advances in neural information processing
systems, pp 1057–1063

Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double Q-learning. In:
Thirtieth AAAI conference on artificial intelligence

Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N (2016) Dueling network architectures
for deep reinforcement learning. In: International conference on machine learning, pp 1995–
2003

Watkins CJ, Dayan P (1992) Q-learning. Mach. Learn. 8(3–4):279–292

Chapter 4
Deep Q-Networks

Yanhua Huang

Abstract This chapter aims to introduce one of the most important deep rein-
forcement learning algorithms, called deep Q-networks. We will start with the
Q-learning algorithm via temporal difference learning, and introduce the deep Q-
networks algorithm and its variants. We will end this chapter with code examples
and experimental comparison of deep Q-networks and its variants in practice.

Keywords Temporal difference learning · DQN · Double DQN · Dueling
DQN · Prioritized experience replay · Distributional reinforcement learning

4.1 Introduction

One of the most significant breakthroughs in reinforcement learning was the
development of an off-policy temporal difference (TD) control algorithm, known
as Q-learning, which is introduced in Chap. 2. Q-Learning has been proven to
converge towards the optimal solution in a tabular case or using linear function
approximation. However, it is known that Q-learning is unstable or even to diverge
when using a non-linear function approximator such as a neural network to represent
the Q-value function (Tsitsiklis and Van Roy 1996). With the advances in training
deep neural networks, deep Q-networks (DQN) (Mnih et al. 2015) addressed this
issue and ignited the research of deep reinforcement learning. In this chapter, we
first review the background of Q-learning. Then we introduce DQN and its variants
with detailed theories and explanations. Finally, in Sect. 4.10, we demonstrate
their implementation details and empirical performance on the Atari games with
code examples, for providing the readers a quick hands-on learning process. The

Y. Huang (�)
Xiaohongshu Technology Co., Ltd., Shanghai, China

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_4

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_4&domain=pdf
https://doi.org/10.1007/978-981-15-4095-0_4

136 Y. Huang

complete implementation of each algorithm is available in the repository provided
together with the book.1

4.2 Background

Model-free methods provide a general way to tackle MDP-based decision-making
problems, where “model” means an explicit model for the transition probability
distribution and the reward function associated with the MDP. TD learning is a class
of model-free methods. Recall that in Sect. 2.4 we discuss that if a perfect model of
the MDP is available, one can get the optimal plan with dynamic programming by
reusing the optimal solution of sub-problems recursively. TD learning follows such
an idea that we can estimate the value of sub-problems with bootstrapping even
though the estimation is not optimal all the time.

Sub-problems are represented by states in MDP. The value vπ (s) of a state s with
a policy π is defined by the expected return starting from s and acting with π :

vπ (s) = Eπ [Rt + γ vπ (St+1)|St = s], (4.1)

where γ ∈ [0, 1] is the discount rate. TD learning decomposes the estimation above
with bootstrapping. Given a value function V : S → R, the simplest version, TD(0),
is the following one-step bootstrapping:

V (St) ← V (St)+ α[Rt + γV (St+1)− V (St)], (4.2)

where Rt + γV (St+1) and Rt + γV (St+1)− V (St) are known as the TD target and
TD error, respectively.

The value of a policy provides a way to estimate the acting performance. To
further know how to select the action in a particular state, we would like to calculate
the quality of the state-action combinations. Q-value allows such estimation:

qπ(s, a) = Eπ [Rt+1 + γ vπ(St+1)|St = s,At = a]. (4.3)

The simplest way to perform a better policy is acting greedily π ′(s, a) =
arg maxa′ q

π(s, a′), where the improvement can be ensured with qπ ′(s, a) =
maxa′ qπ(s, a′) ≥ qπ(s, a). An alternative for considering exploration is to act
greedily most of the time, but with a small probability ε instead to select randomly
from all actions with equal probability regardless of their Q-values. This method is

1Codes are available at: https://github.com/deep-reinforcement-learning-book/Chapter4-DQN.

https://github.com/deep-reinforcement-learning-book/Chapter4-DQN

4 Deep Q-Networks 137

called ε-greedy. We can calculate the Q-value of ε-greedy policy π ′ by

qπ(s, π ′(s)) = (1 − ε) max
a∈A

qπ(s, a)+ ε

|A|
∑
a∈A

qπ(s, a). (4.4)

Note that the sum of π(s,a)−ε/|A|
1−ε

over a ∈ A is equal to 1. With the truth that the
maximum is not less than the weighted average, we can get

qπ(s, π ′(s)) = (1 − ε) max
a∈A

qπ(s, a)
∑
a∈A

π(s, a) − ε/|A|
1 − ε

+ ε

|A|
∑
a∈A

qπ(s, a)

≥ (1 − ε)
∑
a∈A

π(s, a)− ε/|A|
1 − ε

qπ(s, a)

+ ε

|A|
∑
a∈A

qπ(s, a) = qπ(s, π(s)),

(4.5)

which tells us that the Q-value of acting with the ε-greedy policy π ′ is not less
than the origin policy π , i.e., ε-greedy method ensures policy improvement. We
will discuss policy improvement with Q-value function in the next section.

4.3 Sarsa and Q-Learning

Similar to the update rule for the value function in TD(0), it is straightforward to
update the Q-value function after every transition from a non-terminal state St :

Q(St ,At) ← Q(St ,At) + α[Rt + γQ(St+1, At+1) −Q(St ,At)], (4.6)

where both At and At+1 are selected ε-greedily with respect to Q. If St+1 is a
terminal state, then Q(St+1, At+1) is defined as zero. We can continually estimate Q

for the behavior policy π , and change π toward greediness with respect to Q at the
same time. This algorithm is known as Sarsa. Note that π plays two roles in Sarsa—
for experience generation and policy improvement. Basically, the policy used to
generate behavior is called the behavior policy, and the policy that is evaluated and
improved is called the target policy. The algorithm where the behavior policy and
the target policy are the same, such as Sarsa, is known as the on-policy method.

On-policy methods are kinds of trial-and-error processes but only the experiences
generated by the current policy are used for improvement. Off-policy methods
address this issue with introspection, where the experience generated by the
behavior policy is “off” (not following) the target policy. The off-policy technique
allows reusing past experience. Q-learning is an off-policy method. Its simplest

138 Y. Huang

form, one-step Q-learning, follows the update rule below:

Q(St ,At) ← Q(St ,At)+ α[Rt + γ max
At+1

Q(St+1, At+1)−Q(St ,At)], (4.7)

where At is sampled by ε-greedy with respect to Q. Note that At+1 is selected
greedily, i.e., contrast to Sarsa, in Q-learning the behavior policy is also ε-greedy but
the target policy is greedy. One-step Q-learning only takes in current transition. An
alternative way to get more accurate Q-values in approximation case is to use multi-
steps rewards, i.e., multi-steps Q-learning. Note that multi-steps Q-learning needs
to consider the mismatches in subsequent rewards to keep the Q-value function
approximating the expected return under the target policy as in Eq. (4.3). We will
discuss multi-steps Q-learning in Sect. 4.9.

4.4 Why Deep Learning: Value Function Approximation

In tabular settings, the action-value functions can be represented by a big two-
dimensional table, i.e., one entry for each discrete state and action. However,
it is inefficient to deal with large-scale space such as raw pixels input, and let
alone continuous control tasks. Fortunately, generalization from different inputs by
function approximation has been widely studied, and we can utilize this technique
in value-based reinforcement learning.

Let us consider the function approximation in Q-learning with some parameter
θ . The approximator can be linear models, decision trees, or neural networks. Then
the update rule in Eq. (4.7) is rewritten as

θt ← arg min
θ

L(Q(St , At ; θ), Rt + γQ(St+1, At+1; θ)), (4.8)

where L represents the loss function, e.g., mean squared error. While one can solve
the optimization problem above by collecting batch samples, which constructs the
fitted Q iteration (Riedmiller 2005) shown as Algorithm 1, where S′i is the successor
state of Si . An online stochastic variant with gradient is the online Q iteration
algorithm presented in Algorithm 2.

Algorithm 1 Fitted Q iteration
for iteration i = 1, T do

Collect D samples {(Si , Ai, Ri, S
′
i)}Di=1

for t = 1,K do
Set Yi ← Ri + γ maxa Q(S′i , a; θ)

Set θ ← arg minθ ′
1
2

∑D
i=1(Q(Si , Ai; θ ′)− Yi)

2

end for
end for

4 Deep Q-Networks 139

Algorithm 2 Online Q iteration
for iteration = 1, T do

Select action a and observe (s, a, r, s′)
Set y ← r + γ maxa′ Q(s′, a′; θ)

Set θ ← θ − α(Q(s, a; θ) − y)
dQ(s,a;θ)

dθ
end for

Note that both the fitted Q iteration and online Q iteration are off-policy
algorithms so that the past experience can be reused many times. We will discuss
this topic further in the next section.

Recall that we introduce the convergence of value iteration in Sect. 2.4.2 with
the Bellman optimality backup operator T ∗. We define a new operator B with
function approximation by BV = arg minV ′∈Ω L(V ′, V), where Ω is the set of all
possible value functions that can be approximated. Note that the arg min in B can
be viewed as a projection from T ∗V to Ω . So the backup operator with function
approximation can be represented by BT ∗. While T ∗ is contracted with ∞-norm
and B is contracted with L2-norm for MSE loss. However, BT ∗ is not contracted
of any kind. So value iteration is unstable and might even diverge when a non-
linear function approximator such as a neural network is used to represent the value
function (Tsitsiklis and Van Roy 1997). We leave the discussion about the stability
of training with deep neural networks in the next section.

4.5 DQN

In the last section, we introduce the method to learn action-value functions
with approximation and its instability of convergence. To achieve the end-to-end
decision-making in complex problems with raw pixel input, DQN combines Q-
learning with deep learning with two key ideas to address the instability issue and
achieves significant progress on Atari games.

The first one is known as replay buffer, which is a biologically inspired
mechanism termed experience replay (McClelland et al. 1995; O’Neill et al.
2010; Lin 1993). At each time step t , DQN stores the experience of the agent
(St , At , Rt , St+1) into replay buffer, and then draws a mini-batch of samples from
this buffer uniformly to apply the Q-learning update. Replay buffer has several
advantages over the fitted Q iteration. First, the experience in each step can be
reused to learn the Q-function, which allows for greater data efficiency. Second, if
there is no replay buffer, as in the fitted Q iteration, mini-batch samples are collected
consecutively, i.e., they are highly correlated, which increases the variance of the
updates. Third, experience replay avoids the situation that the samples used to train
are determined by the previous parameters, which smooths out learning and reduces
oscillations or divergence in the parameters. In practice, only the last N experience
tuples are stored in the replay buffer to save the memory.

140 Y. Huang

Table 4.1 The effects of replay and separating the target Q-network

Game With replay
and target Q

With replay but
without target Q

With target Q but
without replay

Without replay
and target Q

Breakout 316.8 240.7 10.2 3.2

Enduro 1006.3 831.4 141.9 29.1

River raid 7446.6 4102.8 2867.7 1453.0

Seaquest 2894.4 822.6 1003.0 275.8

Space invaders 1088.9 826.3 373.2 302.0

Data comes from Mnih et al. (2015)

The second idea aims to further improve the stability with neural networks.
Instead of the desired Q-network, a separate network, known as target network,
is used to generate the Q-learning targets. Furthermore, at every C steps, the target
network will be synchronized with the primary Q-network by copying directly (hard
update) or exponentially decaying average (soft update). The target network makes
the generation of the Q-learning target delay with old parameters, which reduces the
divergence and oscillations much more. For example, the update making Q-value
increase on action (St , At) may increase Q(St+1, a) for all action a because of the
similarity between St and St+1, where the training target constructed by Q-network
will be overestimated.

The effect of two enhancements above on five Atari games is shown in Table 4.1.
Agents were trained for 1e7 frames with the hyperparameters search. Each agent
was evaluated every 250,000 training frames for 135,000 validation frames, and the
highest average episode score is reported.

Since it is challenging to feed histories of arbitrary length as inputs to a
neural network, DQN instead works on the fixed-length representation of histories
produced by a function φ. More precisely, φ concentrates on the current and the
previous three frame, which is useful for tracking temporal information, e.g., object
moving. The full algorithm is presented in Algorithm 3. The raw frames are resized
to 84 × 84 and converted to gray-scale. The function φ stacks the 4 most recent
frames as the input to the neural network. In addition, the architecture of the neural
network consists of three convolutional layers and two fully connected layers with
a single output for each valid action. We will discuss more training details in
Sect. 4.10.2.

4.6 Double DQN

Double DQN is an enhancement of DQN for reducing overestimation (Van Hasselt
et al. 2016). Before taking a closer look, let us first illustrate the overestimation
problem in classic DQN. The Q-learning target Rt + γ maxa Q(St+1, a) contains
a max operator. Q is noisy, which may be caused by environment, non-stationarity,
function approximation or any other reasons. Note that the expectation of maximum

4 Deep Q-Networks 141

Algorithm 3 DQN
1: Hyperparameters: replay buffer capacity N , reward discount factor γ , delayed steps C for

target action-value function update, ε-greedy factor ε

2: Input: empty replay buffer D, initial parameters θ of action-value function Q

3: Initialize target action-value function Q̂ with parameter θ̂ ← θ

4: for episode = 0, 1, 2, . . . do
5: Initialize environment and get observation O0
6: Initialize sequence S0 = {O0} and preprocess sequence φ0 = φ(S0)

7: for t = 0, 1, 2, . . . do
8: With probability ε select a random action At , otherwise select At =

arg maxa Q(φ(St), a; θ)

9: Execute action At and observe Ot+1 and reward Rt

10: If the episode has ended, set Dt = 1. Otherwise, set Dt = 0
11: Set St+1 = {St , At ,Ot+1} and preprocess φt+1 = φ(St+1)

12: Store transition (φt , At , Rt ,Dt , φt+1) in D
13: Sample random minibatch of transitions (φi , Ai, Ri ,Di, φ

′
i) from D

14: If Di = 0, set Yi = Ri + γ maxa′ Q̂(φ′
i , a

′; θ̂). Otherwise, set Yi = Ri

15: Perform a gradient descent step on (Yi − Q(φi,Ai; θ))2 with respect to θ

16: Synchronize the target Q̂ every C steps
17: If the episode has ended, break the loop
18: end for
19: end for

noise is not less than the maximum expectation of noises, i.e., E[max(ε1, . . . , εn)] ≥
(max(E[ε1], . . . ,E[εn])). So the next Q-values are always overestimated. Thrun
and Schwartz (1993) provides further theoretical analysis and experimental results.

Note that the training target in standard DQN can be rewritten by

Rt + γ Q̂(St+1, arg max
a

Q̂(St+1, a; θ̂); θ̂), (4.9)

where θ̂ is used in both action selection and value evaluation. The central idea of
double DQN is to decorrelate the noises in selection and evaluation by using two
different networks in these two stages. The Q-network in the DQN architecture
provides a natural candidate for the extra network. Recall that it is the evaluation
role of the target network that improves the stability more. As a consequence, the
Q-learning target used in double DQN is

Rt + γ Q̂(St+1, arg max
a

Q(St+1, a; θ); θ̂). (4.10)

Following Wang et al. (2016), we measure improvement in percentage (positive
or negative) in score over the better of human and baseline agent scores:

ScoreAgent − ScoreBaseline

max(ScoreBaseline, ScoreHuman)− ScoreRandom
. (4.11)

The improvement over DQN are available in Fig. 4.1.

142 Y. Huang

D
em

on
A
tt
ac
k

T
im

e
P
ilo

t

A
st
er
ix

U
p
an

d
D
ow

n

W
iz
ar
d
O
f
W
or

Tu
ta
nk

ha
m

Ja
m
es

B
on

d

K
an

ga
ro
o

B
an

k
H
ei
st

G
op

he
r

V
id
eo

P
in
ba

ll

D
ef
en

de
r

E
nd

ur
o

Sp
ac
e
In
va
de

rs

Za
xx

on

P
ho

en
ix

A
m
id
ar

R
iv
er

R
ai
d

N
am

e
T
hi
s
G
am

e

Sk
iin

g

B
ea
m

R
id
er

A
lie

n

A
ss
au

lt

B
er
ze
rk

Se
aq

ue
st

F
is
hi
ng

D
er
by

Fr
os
tb
it
e

Su
rr
ou

nd

Q
*B

er
t

K
un

g-
Fu

M
as
te
r

B
ow

lin
g

R
oa

d
R
un

ne
r

St
ar

G
un

ne
r

D
ou

bl
e
D
un

k

B
re
ak

ou
t

Fr
ee
w
ay

C
en
ti
pe

de

C
ra
zy

C
lim

be
r

B
at
tl
e
Zo

ne

B
ox

in
g

P
it
fa
ll!

Po
ng

R
ob

ot
an

k

M
on

te
zu

m
a’
s
R
ev
en

ge

P
ri
va
te

E
ye

H
.E
.R

.O
.

A
st
er
oi
ds

G
ra
vi
ta
r

So
la
ri
s

C
ho

pp
er

C
om

m
an

d

Ve
nt
ur
e

M
s.

Pa
c-
M
an

Ic
e
H
oc
ke
y

K
ru
ll

Ya
rs
’
R
ev
en

ge

A
tl
an

ti
s

Te
nn

is

0%

200%

400%

N
o
rm

a
li
z
e
d
 S

c
o
re

Fig. 4.1 Improvements of double DQN (Van Hasselt et al. 2016) over DQN (Mnih et al. 2015)
in Atari benchmark, using the metric described in Eq. (4.11). All scores come from Wang et al.
(2016) (Table 2)

4.7 Dueling DQN

For some states, different actions are not relevant to the expected value, and we do
not need to learn the effect of each action for such states. For example, imagine
standing on the mountain and watching the sunrise. The pleasant view comforts
you a lot, which provides a high reward. You can stay here, and the Q-values of
different actions do not matter. So decoupling the action-independent value of state
and Q-value may lead to more robust learning.

Dueling DQN proposes a new network architecture to achieve this idea (Wang
et al. 2016). More precisely, the Q-value can be split into state value part and action
advantage part as following:

Qπ(s, a) = V π(s)+ Aπ(s, a) (4.12)

and dueling DQN separates the representations of these two parts by

Q(s, a; θ, θv, θa) = V (s; θ, θv)+ (A(s, a; θ, θa)−max
a′

A(s, a′; θ, θa)), (4.13)

where θv and θa are parameters of the two streams of fully connected layers, θ

represent the parameters in convolutional layers. Note that the max operator in
Eq. (4.13) ensures identifiability that the Q-value recovers state value and action
advantage uniquely. Otherwise, the training may ignore the state value term and
make the advantage function converge to Q-value only. Moreover, Wang et al.
(2016) also proposed to replace max with average as the following for better
stability:

4 Deep Q-Networks 143

T
im

e
P
ilo

t

D
em

on
A
tt
ac
k

U
p
an

d
D
ow

n

Sp
ac
e
In
va
de

rs

A
st
er
ix

P
ho

en
ix

E
nd

ur
o

B
an

k
H
ei
st

W
iz
ar
d
O
f
W
or

Se
aq

ue
st

K
an

ga
ro
o

Tu
ta
nk

ha
m

Fr
os
tb
it
e

D
ef
en

de
r

R
iv
er

R
ai
d

Za
xx

on

G
op

he
r

A
m
id
ar

C
ho

pp
er

C
om

m
an

d

R
oa

d
R
un

ne
r

Ja
m
es

B
on

d

St
ar

G
un

ne
r

N
am

e
T
hi
s
G
am

e

Ya
rs
’
R
ev
en

ge

Su
rr
ou

nd

F
is
hi
ng

D
er
by

D
ou

bl
e
D
un

k

M
s.

Pa
c-
M
an

Q
*B

er
t

K
ru
ll

A
lie

n

A
tl
an

ti
s

B
er
ze
rk

Sk
iin

g

C
ra
zy

C
lim

be
r

K
un

g-
Fu

M
as
te
r

C
en
ti
pe

de

Ve
nt
ur
e

B
ea
m

R
id
er

B
at
tl
e
Zo

ne

Ic
e
H
oc
ke
y

B
ox

in
g

B
ow

lin
g

A
ss
au

lt

P
it
fa
ll!

Po
ng

G
ra
vi
ta
r

A
st
er
oi
ds

R
ob

ot
an

k

H
.E
.R

.O
.

M
on

te
zu

m
a’
s
R
ev
en

ge

P
ri
va
te

E
ye

B
re
ak

ou
t

So
la
ri
s

Te
nn

is

V
id
eo

P
in
ba

ll

Fr
ee
w
ay

0%

200%

400%

N
o
rm

a
li
ze

d
S
co

re

Fig. 4.2 Improvements of dueling DQN (Wang et al. 2016) over DQN (Mnih et al. 2015) in Atari
benchmark, using the metric described in Eq. (4.11). All scores come from Wang et al. (2016)
(Table 2)

Q(s, a; θ, θv, θa) = V (s; θ, θv)+ (A(s, a; θ, θa)− 1

|A|
∑
a′

A(s, a′; θ, θa))

(4.14)

by which the advantage function only need to adapt to the direct of mean advantage
instead of pursuing the optimal advantage.

Training of the dueling architectures, as with standard DQN, requires only
more layers. The experiments show that dueling architectures lead to better policy
evaluation in the presence of many similar-valued actions. The improvement over
DQN is available in Fig. 4.2.

4.8 Prioritized Experience Replay

One remaining area of improvement in standard DQN is a better sampling strategy
for experience replay. Prioritized experience replay (PER) is a technique for
prioritizing experience, so as to replay important transitions more frequently (Schaul
et al. 2015). The central idea of PER is to consider the importance of transitions with

144 Y. Huang

TD error δ, which can be viewed as a surprising measure. Why this can be of help is
that some of the experience might contain more information to learn as compared to
the others. Giving those more information-rich experience a greater chance of being
replayed will help make the whole learning process faster and more efficient.

The most direct idea is using TD error for prioritization directly. However, it
has several issues. First, sweeping over whole memory is inefficient. In addition, it
is sensitive to noises such as approximation error and stochastic rewards. Finally,
greedy makes error shrink slowly, which may cause the beginning transitions with
high error replayed frequently. To overcome these issues, Schaul et al. (2015)
proposed to use the following sampling probability for transition i:

P(i) = pα
i∑

k pα
k

, (4.15)

where pi > 0, known as the priority of transition i, α is an exponent hyper-
parameter with α = 0 corresponding to the uniform case, and k is enumerated
on sampled transitions. There are two variants of pi . The first one is proportional
prioritization pi = |δi | + ε, where δi is the TD error of transition i and ε is a small
positive value for numerical stability. The second one is rank-based prioritization
pi = 1

rank(i)
, where rank(i) is the rank of transition i according to |δi |.

Remind that it is the random sampling from a large replay buffer that helps to
decorrelate the samples. But the purely random sampling is abandoned when adding
priority sampling. Decreasing the training weight for high priority transitions may
make sense. PER uses the importance-sampling weights to correct this bias for
transition i:

wi = (NP(i))−β, (4.16)

where N is the size of replay buffer, P is the probability defined in Eq. (4.15), and
β is a hyper-parameter annealed up to 1 during training because the unbiased nature
of the updates will nearly converge at the end of the training. This weight is usually
folded into the loss function to construct weighted learning.

For efficient implementation, the cumulative density function of sampling
probability is approximated by a piece-wise linear function with k segments. More
precisely, the priorities are stored in a query-efficient data structure called the
segment tree. During run-time, PER first samples a segment, and then sample
uniformly among the transitions within it. The improvement over DQN is available
in Fig. 4.3.

4 Deep Q-Networks 145

Ja
m
es

B
on

d

D
em

on
A
tt
ac
k

A
st
er
ix

G
op

he
r

T
im

e
P
ilo

t

D
ou

bl
e
D
un

k

E
nd

ur
o

P
ho

en
ix

K
an

ga
ro
o

B
ea
m

R
id
er

Su
rr
ou

nd

Tu
ta
nk

ha
m

Fr
os
tb
it
e

A
ss
au

lt

B
an

k
H
ei
st

Sp
ac
e
In
va
de

rs

N
am

e
T
hi
s
G
am

e

Za
xx

on

U
p
an

d
D
ow

n

K
un

g-
Fu

M
as
te
r

M
s.

Pa
c-
M
an

F
is
hi
ng

D
er
by

A
m
id
ar

W
iz
ar
d
O
f
W
or

Se
aq

ue
st

V
id
eo

P
in
ba

ll

R
oa

d
R
un

ne
r

R
iv
er

R
ai
d

C
ho

pp
er

C
om

m
an

d

A
lie

n

D
ef
en

de
r

C
ra
zy

C
lim

be
r

A
tl
an

ti
s

B
er
ze
rk

Ic
e
H
oc
ke
y

Sk
iin

g

Q
*B

er
t

K
ru
ll

St
ar

G
un

ne
r

Fr
ee
w
ay

H
.E
.R

.O
.

B
ox

in
g

So
la
ri
s

B
at
tl
e
Zo

ne

A
st
er
oi
ds

Po
ng

G
ra
vi
ta
r

P
ri
va
te

E
ye

M
on

te
zu

m
a’
s
R
ev
en

ge

P
it
fa
ll!

B
ow

lin
g

C
en
ti
pe

de

R
ob

ot
an

k

B
re
ak

ou
t

Ve
nt
ur
e

Ya
rs
’
R
ev
en

ge

Te
nn

is

0%

200%

400%

600%

N
o
rm

a
li
ze

d
S
co

re

Fig. 4.3 Improvements of prioritized experience replay (Schaul et al. 2015) with rank-based
prioritization over DQN (Mnih et al. 2015) in Atari benchmark, using the metric described in
Eq. (4.11). All scores come from Wang et al. (2016) (Table 2)

4.9 Other Improvements: Multi-Step Learning, Noisy Nets,
and Distributional Reinforcement Learning

Including double Q-learning, dueling architecture, and PER, Rainbow combines
three more extensions to DQN and achieves significant results on the Atari domain
(Hessel et al. 2018). We discuss them and their expansions in this section. The
first one is multi-step learning. n-step return allows for accurate estimation and
was proven to lead faster learning with suitably tuned n (Sutton and Barto 2018).
However, there may exist a mismatch in the action selection between the target and
behavior policy within the multi-steps during off-policy learning. One can find a
systematic study about correcting this mismatch in Hernandez-Garcia and Sutton
(2019). Rainbow uses the truncated n-step return R

(k)
t from a given state St directly

(Hessel et al. 2018; Castro et al. 2018), where R
(k)
t is defined by

R
(k)
t =

n−1∑
k=0

γ kRt+k. (4.17)

The Q-learning target in multi-step variant of Q-learning is then defined by

R
(k)
t + γ k max

a
Q(St+k, a). (4.18)

The second one is noisy nets (Fortunato et al. 2017). It is an alternative
exploration algorithm for ε-greedy, especially for games requiring huge exploration
such as Montezuma’s Revenge. The noise is added into linear layer y = (Wx + b)

146 Y. Huang

Fig. 4.4 A distributional
Bellman operator in
continuous case. Given the
return distribution of the next
state under policy π (blue
curve), it is first discounted by
the reward discounter γ (red
curve), and then be shifted by
the reward in current time
step (black curve)

−10 −5 0 5 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Value

D
en

si
ty

P πZ

γP πZ

R + γP πZ

by an extra noisy stream

y = (Wx + b) + ((Wnoisy � εw)x + bnoisy � εb), (4.19)

where � refers to the element-wise product, both Wnoisy and bnoisy are trainable
parameters whereas εw and εb are random scales annealed down to zero. The
experiment shows that noisy nets yield substantially higher scores for a wide range
of Atari games over several baselines.

The last one is distributional reinforcement learning (Bellemare et al. 2017),
which gives a new perspective on value estimation. Instead of considering the
expectation of returns represented by random variable Zπ , Bellemare et al. (2017)
proposed to estimate the distribution of Zπ with the distributional Bellman operator
T π :

T πZ = R + γPπZ. (4.20)

Figure 4.4 shows a continuous case of T π .
The distributional variant of DQN used in Rainbow, known as categorical

DQN (Bellemare et al. 2017), models the action-value distribution by a discrete
distribution parameterized by a vector z with N elements (also known as atoms)
zi = Vmin + (i − 1)�z, where [Vmin, Vmax] is the action-value range and �z =
Vmax−Vmin

N−1 . In practice, N is usually specified to 51 so sometimes this algorithm
is also called C51. The parametric model θ of C51 outputs the probabilities
pi(s, a) = eθi(s,a)/

∑
j eθj (s,a) on each atom as distribution Zθ . Note that discrete

approximation causes disjoint supports of the Bellman update T πZ and the
parametrization Zθ . C51 addresses this issue by projecting the target distribution
T πZ

θ̂
onto the support Zθ . More precisely, given a transition (St , At , Rt , St+1),

the i-th component of projected target ΦT πZ
θ̂
(St , At) with double Q-learning is

4 Deep Q-Networks 147

calculated by

N∑
j=1

pj

(
St+1, arg max

a
zᵀp(St+1, a; θ); θ̂

)
[1 − |[Rt + γ zj]Vmax

Vmin
− zi |

�z
]10,

(4.21)

where [·]ba bounds its argument in the range [a, b]. TD error cannot measure
the difference between value distributions. As a result, C51 proposes to use the
following Kullback–Leibler divergence as training loss:

DKL(ΦT πZ
θ̂
(St , At)||Zθ(St , At)). (4.22)

In addition, the priority is also replaced by KL-Divergence for prioritized experience
replay. For dueling architecture, the output distribution is also split into value stream
and advantage stream, and the aggregated distribution is estimated by

pi(s, a) = exp(Vi(s) + Ai(s, a) − Āi(s, a))∑
j exp(Vj(s) + Aj(s, a)− Āj (s, a))

, (4.23)

where Āj (s, a) is defined by 1
|A|
∑

a′ Aj(s, a
′).

The main drawback of C51 to achieve distributional reinforcement learning is
that it can only estimate values on a fixed discrete set. Dabney et al. (2018b)
proposed quantile regression DQN (QR-DQN) to address this issue by estimating
the quantiles of the full distribution with quantile regression. Before introducing
QR-DQN, we first review the quantile regression. Recall that empirical risk
minimization with absolute loss function makes the prediction fit the medium
value (50% quantile). More precisely, given random variable x and its label y, for
estimation function f , the empirical mean absolute error is Lmae = E[|f (x) − y|].
Then with the following partial difference:

∂Lmae

∂f (x)
= ∂

∂f (x)
(P (f (x) > y)(f (x)− y)+ P(f (x) ≤ y)(y − f (x)))

= P(f (x) > y)− P(f (x) ≤ y) = 0, (4.24)

we can get F(x) = 0.5, where F is the primitive function of f . Generally, for
quantile τ , the quantile loss is defined as Lquantile(τ) = E[ρτ (f (x)− y)] with

ρτ (α) =
{

τα, if α > 0

(τ − 1)α, otherwise.
(4.25)

Similarly, by
∂Lquantile

∂f (x)
we can get F(x) = 1− τ , i.e., f (x) is the τ quantile value of

random variable y.
Specifically, QR-DQN considers N uniform quantiles qi = 1

N
for the value

distribution. For a QR-DQN model θ : S → R
N×|A|, during sampling, the Q-value

148 Y. Huang

P̃ (q = Q)

Q

1

Q(s, a)

DQN

P̃ (q = z)

Qz10

0.1

z20

0.6

z40

0.3

C51

P̃ (q ≤ θ)

Q

0.25

θ1

0.50

θ2

0.75

θ3

1.00

θ4

QR-DQN

Fig. 4.5 Comparison of DQN, C51, and QR-DQN for state s and action a, where arrows point out
the estimation and the number of quantiles in QR-DQN is specified to 4. The architecture of DQN
only outputs the approximation of the actual Q-value. For distributional reinforcement learning,
C51 estimates probabilities on several Q-value supports while QR-DQN provides quantiles of Q-
value

of the state s and action a is the mean of N estimations: Q(s, a) =∑N
i=1 qiθi(s, a).

During training, the greedy policy with respect to the Q-values in the next state
provides a∗ = arg maxa′ Q(s′, a′), and the distributional Bellman target is T θj =
r + γ θj (s

′, a∗) according to Eq. (4.20). The Lemma 2 in Dabney et al. (2018b)
points out that the following sum minimizes the 1-Wasserstein distance between the
approximate value distribution and the ground truth:

N∑
i=1

Ej

[
ρτ̂i

(T θj − θi(s, a))
]
, (4.26)

where τ̂i = i
N
− 1

2N
.

Figure 4.5 shows a comparison of DQN, C51, and QR-DQN. There are further
works in the flexibility or robustness of parameterized distribution for distributional
reinforcement learning. Readers with more interest in this topic can find related
resources from Dabney et al. (2018a), Mavrin et al (2019), Yang et al. (2019).

4.10 DQN Examples

In this section, we discuss more training details in DQN and its variants. Before
that, we first demonstrate the process of setting up Atari environments and how to
implement some useful wrappers that make training easy and stable.

4.10.1 Related Gym Environment

OpenAI Gym is an open-source toolkit for developing and comparing reinforcement
learning algorithms. It contains a collection of environments, as shown in Fig. 4.6.
One can install it with Atari extension directly from PyPI

4 Deep Q-Networks 149

pip install gym[atari]

or from source

git clone https://github.com/openai/gym.git
cd gym
pip install -e .

An environment object env can be created by

import gym
env = gym.make(env_id)

where env_id is a string that represents an environment. All possible env_ids
are available at https://github.com/openai/gym/wiki/Table-of-environments.

Fig. 4.6 Sample frames of some environments in OpenAI Gym

https://github.com/openai/gym/wiki/Table-of-environments

150 Y. Huang

Fig. 4.7 An example frame
of Breakout. There are several
rows to destroy at the top of
the screen. The agent can
control the bar at the bottom
of the screen to angle your
shots at the images you want
to smash with the ball. The
observations are an RGB
images of the screen with
shape (210, 160, 3)

There are some important methods of env:

1. env.reset() resets the state of the environment and returns the initial
observation.

2. env.render(mode) renders the environment with the given mode. The
default mode is human which renders to the current display or terminal and
returns nothing. You can specify rgb_array mode to make env.render
return numpy.ndarray objects, which is suitable for generating videos.

3. env.step(action) runs one time step of the environment’s dynamics with
the given action, and then returns a tuple (observation, reward,
done, info) where observation is the observation of the current envi-
ronment, reward is the transition reward, done points out whether the episode
has ended, and info contains some auxiliary information.

4. env.seed(seed) sets the seed manually, which is useful for reproduction.

Here is an example of classic game Breakout. It will run an instance of
the BreakoutNoFrameskip-v4 environment until the episode has ended. A
sample frame shows in Fig. 4.7.

import gym
env = gym.make(’BreakoutNoFrameskip-v4’)
o = env.reset()
while True:

env.render()
take a random action
a = env.action_space.sample()

4 Deep Q-Networks 151

o, r, done, _ = env.step(a)
if done:

break
env.close() # close and clean up

Note that NoFrameskipmeans no frame-skip and no action repeat, and v4means
the 4th version which is the newest now. We will use this environment in following
experiments.

Another useful feature in OpenAI Gym is the environment wrapper. It can wrap
the environment object and make the training code more concise. Here is a time
limit wrapper which limits the maximum length of each episode and is a default
wrapper for Atari games.

class TimeLimit(gym.Wrapper):
def __init__(self, env, max_episode_steps=None):

super(TimeLimit, self).__init__(env)
self._max_episode_steps = max_episode_steps
self._elapsed_steps = 0

def step(self, ac):
o, r, done, info = self.env.step(ac)
self._elapsed_steps += 1
if self._elapsed_steps >= self._max_episode_steps:

done = True
info[’TimeLimit.truncated’] = True

return o, r, done, info

def reset(self, **kwargs):
self._elapsed_steps = 0
return self.env.reset(**kwargs)

For efficient training, gym.vector.AsyncVectorEnv provides an imple-
mentation of vectorized wrapper that runs n environments in parallel. All interfaces
receive and return n variables together. Furthermore, it is also possible to implement
a vectorized wrapper with buffer whose interfaces also receive and return n variables
but maintains m > n workers in the background. It is efficient for environments
where some transitions spend more time.

Included some classic control problems, Gym also provides standard interfaces
of a collection of Atari 2600 games with RAM or screen images as input, using
the Arcade Learning Environment (Bellemare et al. 2013). There are at most 18
different buttons in Atari 2600 games as follows:

1. Moving buttons: NOOP, UP, RIGHT, LEFT, DOWN, UPRIGHT, UPLEFT,
DOWNRIGHT, DOWNLEFT

2. Fire buttons: FIRE, UPFIRE, RIGHTFIRE, LEFTFIRE, DOWNFIRE,
UPRIGHTFIRE, UPLEFTFIRE, DOWNRIGHTFIRE, DOWNLEFTFIRE

where NOOP means do-nothing, and FIRE may also be used to start the game. For
convenience, we will refer to buttons’ names as actions later.

152 Y. Huang

4.10.2 DQN

There are three more training tricks in DQN. First, the following wrappers are used
in order for stable and efficient training:

1. NoopResetEnv takes random number of NOOPs in reset stage to ensure
random initial states. The default maximum no-ops number is 30. This wrapper
helps agent collect more beginning situations, which provides robust learning.

2. MaxAndSkipEnv repeats each action 4 times for efficient training. To further
denoising observation, the returned frame is the max pooling result over pixels
across the last two frames.

3. Monitor records the raw reward. We can also implement some useful functions
such as speed tracer in this wrapper.

4. EpisodicLifeEnv makes the end of life equal to the end of episode, which
helps value estimation (Roderick et al. 2017).

5. FireResetEnv takes action FIRE on reset for environments that need action
FIRE to start the game. This is a prior knowledge for quick start of games.

6. WarpFrame converts the observations to 84 × 84 gray-scale images.
7. ClipRewardEnv wraps the rewards by their sign, which further improves the

stability by not allowing any single mini-batch update to change the parameters
drastically.

8. FrameStack stacks the last 4 frames. Recall that for capturing moving infor-
mation, DQN preprocesses observations by concentrating the current frame and
the previous three, represented by function φ. FrameStack and WarpFrame
implement the φ. Note that we can optimize memory usage by storing common
frames between the observations only once, which is also called lazy-frame trick.

Second, to avoid gradient explosion, DQN (Mnih et al. 2015; DeepMind 2015)
uses gradient clipping of the squared error, which is equivalent to replace MSE by
the Huber loss (Huber 1992) with δ = 1. The Huber loss is given by

Lδ(x) =
{ 1

2x2 |x| ≤ δ

δ(|x| − 1
2δ) otherwise.

(4.27)

Finally, replay buffer samples batch of experiences with replacement, and there
are some warm start steps before updating for a stable beginning.

Note that all three tricks above are applied to all experiments in this section. Now
we show how to build an agent to play Breakout. First of all, for reproducibility, we
set random seeds in related libraries manually:

random.seed(seed)
np.random.seed(seed)
tf.random.set_seed(seed)

4 Deep Q-Networks 153

Then we build a Q-network with tf.keras.Model:

class QFunc(tf.keras.Model):
def __init__(self, name):

super(QFunc, self).__init__(name=name)
self.conv1 = tf.keras.layers.Conv2D(

32, kernel_size=(8, 8), strides=(4, 4),
padding=’valid’, activation=’relu’)

self.conv2 = tf.keras.layers.Conv2D(
64, kernel_size=(4, 4), strides=(2, 2),
padding=’valid’, activation=’relu’)

self.conv3 = tf.keras.layers.Conv2D(
64, kernel_size=(3, 3), strides=(1, 1),
padding=’valid’, activation=’relu’)

self.flat = tf.keras.layers.Flatten()
self.fc1 = tf.keras.layers.Dense(512, activation=’relu’)
self.fc2 = tf.keras.layers.Dense(action_dim,

activation=’linear’)

def call(self, pixels, **kwargs):
scale observation
pixels = tf.divide(tf.cast(pixels, tf.float32),

tf.constant(255.0))
extract features by convolutional layers
feature =

self.flat(self.conv3(self.conv2(self.conv1(pixels))))
calculate q-value
qvalue = self.fc2(self.fc1(feature))

return qvalue

The definition of a DQN object consists of attributes Q-network, target Q-
network, number of time steps and optimizer, and synchronize Q-network and target
Q-network as following:

class DQN(object):
def __init__(self):

self.qnet = QFunc(’q’)
self.targetqnet = QFunc(’targetq’)
sync(self.qnet, self.targetqnet)
self.niter = 0
self.optimizer = tf.optimizers.Adam(lr, epsilon=1e-5,

clipnorm=clipnorm)

Declare an internal method to wrap the Q-network and then add a get_action
method to DQN object for ε-greedy behavior:

@tf.function
def _qvalues_func(self, obv):

return self.qnet(obv)

def get_action(self, obv):

154 Y. Huang

eps = epsilon(self.niter)
if random.random() < eps:

return int(random.random() * action_dim)
else:

obv = np.expand_dims(obv, 0).astype(’float32’)
return self._qvalues_func(obv).numpy().argmax(1)[0]

where epsilon is a function that anneals ε linearly from 1.0 to 0.01 over the
first 10% training time steps. For training, we use three common interfaces train,
_train_func, _tderror_func for DQN and its variants in the following
sections:

def train(self, b_o, b_a, b_r, b_o_, b_d):
self._train_func(b_o, b_a, b_r, b_o_, b_d)

self.niter += 1
if self.niter % target_q_update_freq == 0:

sync(self.qnet, self.targetqnet)

@tf.function
def _train_func(self, b_o, b_a, b_r, b_o_, b_d):

with tf.GradientTape() as tape:
td_errors = self._tderror_func(b_o, b_a, b_r, b_o_, b_d)
loss = tf.reduce_mean(huber_loss(td_errors))

grad = tape.gradient(loss, self.qnet.trainable_weights)
self.optimizer.apply_gradients(zip(grad,

self.qnet.trainable_weights))

return td_errors

@tf.function
def _tderror_func(self, b_o, b_a, b_r, b_o_, b_d):

b_q_ = (1 - b_d) * tf.reduce_max(self.targetqnet(b_o_), 1)
b_q = tf.reduce_sum(self.qnet(b_o) * tf.one_hot(b_a,

action_dim), 1)

return b_q - (b_r + reward_gamma * b_q_)

where train calls _train_func and synchronizes the Q-network and target
Q-network every target_q_update_freq time steps.

Finally, we build the main training procedure:

dqn = DQN()
buffer = ReplayBuffer(buffer_size)

o = env.reset()
nepisode = 0
t = time.time()
for i in range(1, number_time steps + 1):

a = dqn.get_action(o)

4 Deep Q-Networks 155

execute action and feed to replay buffer
note that ‘_‘ tail in var name means next
o_, r, done, info = env.step(a)
buffer.add(o, a, r, o_, done)

if i >= warm_start and i % train_freq == 0:
transitions = buffer.sample(batch_size)
dqn.train(*transitions)

if done:
o = env.reset()

else:
o = o_

episode in info is real (unwrapped) message
if info.get(’episode’):

nepisode += 1
reward, length = info[’episode’][’r’], info[’episode’][’l’]
print(

’Time steps so far: {}, episode so far: {}, ’
’episode reward: {:.4f}, episode length: {}’

.format(i, nepisode, reward, length)
)

We run 107 time steps (4 × 107 frames) over three random seeds on Breakout.
For better visualization, we smooth the episode rewards during training. Then we
plot the mean and the standard deviation by following codes:

from matplotlib import pyplot as plt
plt.plot(xs, mean, color=color)
plt.fill_between(xs, mean - std, mean + std, color=color,

alpha=.4)

The performance is shown in Fig. 4.8 with red area.

4.10.3 Double DQN

Double DQN can be implemented easily by using the following double Q estimation
in _tderror_func of the agent:

double Q estimation
b_a_ = tf.one_hot(tf.argmax(qnet(b_o_), 1), out_dim)
b_q_ = (1 - b_d) * tf.reduce_sum(targetqnet(b_o_) * b_a_, 1)

We also run 107 time steps over three random seeds on Breakout. The performance
is shown in Fig. 4.8 with green area.

156 Y. Huang

Fig. 4.8 Performances of DQN and its variants on breakout

4.10.4 Dueling DQN

The dueling architecture only changes the Q-network, which can be implemented
by

class QFunc(tf.keras.Model):
def __init__(self, name):

super(QFunc, self).__init__(name=name)
self.conv1 = tf.keras.layers.Conv2D(

32, kernel_size=(8, 8), strides=(4, 4),
padding=’valid’, activation=’relu’)

self.conv2 = tf.keras.layers.Conv2D(
64, kernel_size=(4, 4), strides=(2, 2),
padding=’valid’, activation=’relu’)

self.conv3 = tf.keras.layers.Conv2D(
64, kernel_size=(3, 3), strides=(1, 1),
padding=’valid’, activation=’relu’)

self.flat = tf.keras.layers.Flatten()
self.fc1q = tf.keras.layers.Dense(512, activation=’relu’)
self.fc2q = tf.keras.layers.Dense(action_dim,

activation=’linear’)
self.fc1v = tf.keras.layers.Dense(512, activation=’relu’)
self.fc2v = tf.keras.layers.Dense(1, activation=’linear’)

def call(self, pixels, **kwargs):
scale observation
pixels = tf.divide(tf.cast(pixels, tf.float32),

tf.constant(255.0))
extract features by convolutional layers

4 Deep Q-Networks 157

feature =
self.flat(self.conv3(self.conv2(self.conv1(pixels))))

calculate q-value
qvalue = self.fc2q(self.fc1q(feature))
svalue = self.fc2v(self.fc1v(feature))

return svalue + qvalue - tf.reduce_mean(qvalue, 1,
keepdims=True)

We also run 107 time steps over three random seeds on Breakout. The performance
is shown in Fig. 4.8 with cyan area.

4.10.5 Prioritized Experience Replay

There are three main changes in PER from standard DQN. First, the replay buffer
maintains two segment trees with min operator and add operator to calculate
the minimum priority and sum of priorities efficiently. More precisely, attribute
_it_sum is the segment tree object with operation add with two interfaces, sum
for getting the sum of elements in the given range and find_prefixsum_idx
for finding the highest index i such that the sum of the smallest i elements is less
than the input value.

Second, instead of uniform sampling, the sampling strategy of the proportional
information is shown as follows:

res = []
p_total = self._it_sum.sum(0, len(self._storage) - 1)
every_range_len = p_total / batch_size
for i in range(batch_size):

mass = random.random() * every_range_len + i * every_range_len
idx = self._it_sum.find_prefixsum_idx(mass)
res.append(idx)

return res

Third, apart from standard replay buffer, PER must return indexes and normal-
ized weights of sampled experiences. Weights are used for weighting Huber loss,
and indexes are used to update priorities. The sampling step is modified to

*transitions, idxs = buffer.sample(batch_size)
priorities = dqn.train(*transitions)
priorities = np.clip(np.abs(priorities), 1e-6, None)
buffer.update_priorities(idxs, priorities)

and the _train_func is modified to

@tf.function
def _train_func(self, b_o, b_a, b_r, b_o_, b_d, b_w):

with tf.GradientTape() as tape:

158 Y. Huang

td_errors = self._tderror_func(b_o, b_a, b_r, b_o_, b_d)
loss = tf.reduce_mean(huber_loss(td_errors) * b_w)

grad = tape.gradient(loss, self.qnet.trainable_weights)
self.optimizer.apply_gradients(zip(grad,

self.qnet.trainable_weights))

return td_errors

We also run 107 time steps over three random seeds on Breakout. The perfor-
mance is shown in Fig. 4.8 with magenta area.

4.10.6 Distributed DQN

Distributional reinforcement learning estimates the distribution of the Q-value. In
this section, we show how to implement one of these techniques, C51, to achieve
distributed DQN. In game Breakout, the rewards are all positive. So we replace the
value range [−10, 10] used in Bellemare et al. (2017) by [−1, 19], where −1 allows
some approximation error. To implement C51, first of all, the Q-Network outputs
51 estimations for each action, which can be implemented by adding more output
units in the last fully connection layer. Then instead of the TD error, KL-divergence
between target Q distribution and the estimated distribution is used as loss:

@tf.function
def _kl_divergence_func(self, b_o, b_a, b_r, b_o_, b_d):

b_r = tf.tile(
tf.reshape(b_r, [-1, 1]),
tf.constant([1, atom_num])

) # batch_size * atom_num
b_d = tf.tile(

tf.reshape(b_d, [-1, 1]),
tf.constant([1, atom_num])

)

z = b_r + (1 - b_d) * reward_gamma * vrange # shift value
distribution

z = tf.clip_by_value(z, min_value, max_value) # clip the
shifted distribution

b = (z - min_value) / deltaz
index_help = tf.expand_dims(tf.tile(

tf.reshape(tf.range(batch_size), [batch_size, 1]),
tf.constant([1, atom_num])

), -1)

b_u = tf.cast(tf.math.ceil(b), tf.int32) # upper
b_uid = tf.concat([index_help, tf.expand_dims(b_u, -1)], 2) #

indexes
b_l = tf.cast(tf.math.floor(b), tf.int32)

4 Deep Q-Networks 159

b_lid = tf.concat([index_help, tf.expand_dims(b_l, -1)], 2) #
indexes

b_dist_ = self.targetqnet(b_o_) # whole distribution
b_q_ = tf.reduce_sum(b_dist_ * vrange_broadcast, axis=2)
b_a_ = tf.cast(tf.argmax(b_q_, 1), tf.int32)
b_adist_ = tf.gather_nd(# distribution of b_a_

b_dist_,
tf.concat([tf.reshape(tf.range(batch_size), [-1, 1]),

tf.reshape(b_a_, [-1, 1])], axis=1)
)
b_adist = tf.gather_nd(# distribution of b_a

self.qnet(b_o),
tf.concat([tf.reshape(tf.range(batch_size), [-1, 1]),

tf.reshape(b_a, [-1, 1])], axis=1)
) + 1e-8

b_l = tf.cast(b_l, tf.float32)
mu = b_adist_ * (b - b_l) * tf.math.log(tf.gather_nd(b_adist,

b_uid))
b_u = tf.cast(b_u, tf.float32)
ml = b_adist_ * (b_u - b) * tf.math.log(tf.gather_nd(b_adist,

b_lid))
kl_divergence = tf.negative(tf.reduce_sum(mu + ml, axis=1))

return kl_divergence

We also run 107 time steps over three random seeds on Breakout. The perfor-
mance is shown in Fig. 4.8 with blue area.

References

Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The arcade learning environment: an
evaluation platform for general agents. J Artif Intell Res 47:253–279

Bellemare MG, Dabney W, Munos R (2017) A distributional perspective on reinforcement
learning. In: Proceedings of the 34th international conference on machine learning, vol 70,
pp 449–458. JMLR.org

Castro PS, Moitra S, Gelada C, Kumar S, Bellemare MG (2018) Dopamine: a research framework
for deep reinforcement learning. http://arxiv.org/abs/1812.06110

Dabney W, Ostrovski G, Silver D, Munos R (2018a) Implicit quantile networks for distributional
reinforcement learning. In: International conference on machine learning, pp 1104–1113

Dabney W, Rowland M, Bellemare MG, Munos R (2018b) Distributional reinforcement learning
with quantile regression. In: Thirty-second AAAI conference on artificial intelligence

DeepMind (2015) Lua/Torch implementation of DQN. https://github.com/deepmind/dqn
Fortunato M, Azar MG, Piot B, Menick J, Osband I, Graves A, Mnih V, Munos R, Hassabis D,

Pietquin O, et al (2017) Noisy networks for exploration. arXiv:170610295
Hernandez-Garcia JF, Sutton RS (2019) Understanding multi-step deep reinforcement learning:

a systematic study of the DQN target. In: Proceedings of the neural information processing
systems (advances in neural information processing systems) workshop

JMLR. org
http://arxiv.org/abs/1812.06110
https://github.com/deepmind/dqn

160 Y. Huang

Hessel M, Modayil J, Van Hasselt H, Schaul T, Ostrovski G, Dabney W, Horgan D, Piot B, Azar
M, Silver D (2018) Rainbow: combining improvements in deep reinforcement learning. In:
Thirty-second AAAI conference on artificial intelligence

Huber PJ (1992) Robust estimation of a location parameter. In: Breakthroughs in statistics,
Springer, Berlin, pp 492–518

Lin LJ (1993) Reinforcement learning for robots using neural networks. Tech. Rep., Carnegie-
Mellon Univ Pittsburgh PA School of Computer Science

Mavrin B, Yao H, Kong L, Wu K, Yu Y (2019) Distributional reinforcement learning for efficient
exploration. In: International conference on machine learning, pp 4424–4434

McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning
systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychol Rev 102(3):419

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529–533

O’Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J (2010) Play it again: reactivation of waking
experience and memory. Trends Neurosci 33(5):220–229

Riedmiller M (2005) Neural fitted Q iteration–first experiences with a data efficient neural
reinforcement learning method. In: European conference on machine learning. Springer, Berlin,
pp 317–328

Roderick M, MacGlashan J, Tellex S (2017) Implementing the deep Q-network. arXiv:171107478
Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay. In: International

conference on learning representations
Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge
Thrun S, Schwartz A (1993) Issues in using function approximation for reinforcement learning. In:

Proceedings of the 1993 Connectionist Models Summer School Hillsdale. Lawrence Erlbaum,
New Jersey

Tsitsiklis J, Van Roy B (1996) An analysis of temporal-difference learning with function approx-
imation technical. Report LIDS-P-2322) Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Tech Rep

Tsitsiklis JN, Van Roy B (1997) Analysis of temporal-difference learning with function approxi-
mation. In: Advances in Neural Information Processing Systems, pp 1075–1081

Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double Q-learning. In:
Thirtieth AAAI conference on artificial intelligence

Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N (2016) Dueling network architectures
for deep reinforcement learning. In: International conference on machine learning, pp 1995–
2003

Yang D, Zhao L, Lin Z, Qin T, Bian J, Liu TY (2019) Fully parameterized quantile function for
distributional reinforcement learning. In: Advances in neural information processing systems,
pp 6190–6199

Chapter 5
Policy Gradient

Ruitong Huang, Tianyang Yu, Zihan Ding, and Shanghang Zhang

Abstract Policy gradient methods are a type of reinforcement learning techniques
that rely upon optimizing parameterized policies with respect to the expected
return (long-term cumulative reward) by gradient descent. They do not suffer from
many of the problems that have been traditional reinforcement learning approaches
such as the lack of guarantees of an accurate value function, the intractability
problem resulting from the uncertain state information, and the complexity arising
from continuous states and actions. In this chapter, we will introduce a list of
popular policy gradient methods. Starting with the basic policy gradient method
REINFORCE, we then introduce the actor-critic method, the distributed versions
of actor-critic, and trust region policy optimization and its approximate versions,
each one improving its precedent. All the methods introduced in this chapter will
be accompanied with its pseudo-code and, at the end of this chapter, a concrete
implementation example.

Keywords Policy optimization · Policy gradient · Actor-critic · Trust region
policy optimization · Proximal policy optimization

R. Huang
Borealis AI, Toronto, ON, Canada

T. Yu
Nanchang University, Nanchang, China

Z. Ding
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

S. Zhang (�)
University of California, Berkeley, CA, USA

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_5

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_5&domain=pdf
mailto:zhding@mail.ustc.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_5

162 R. Huang et al.

5.1 Introduction

We introduce policy gradient methods in this chapter. Different from the deep Q-
learning in the last chapter that focuses on learning the Q value function, policy
gradient methods directly perform learning on the parameterized policy function
πθ . By doing so, policy gradient methods are more suitable for high-dimensional or
continuous action spaces, as they need no discretization or solving another layer
of value maximization problem on the action space. Another benefit of policy
gradient methods, compared to value-based methods, is that policy gradient methods
can naturally model stochastic policies.1 Moreover, policy gradient methods use
the gradient information to guide the optimization, which generally enjoy better
convergence properties.2

Policy gradient methods directly optimize the agent’s policy with gradient ascent
on the network’s parameters. In this chapter, we will start with the basic gradient
ascent idea to derive the vanilla policy gradient method, called REINFORCE, in
Sect. 5.2. Vanilla policy gradient suffers the high variance problem. As we will see
later, one way to mitigate this problem is by the idea of actor-critic in Sect. 5.3.
Interestingly, actor-critic shares a similar design to the GAN framework, which we
will discuss in Sect. 5.4. A distributed version of actor-critic will also be discussed
in Sects. 5.5 and 5.6. We further improve policy gradient methods by considering
the gradient step in the policy space rather than the parameter space. One of the
popular algorithms doing so is trust region policy optimization (TRPO), as presented
in Sect. 5.7, followed by its improved version Proximal Policy Optimization (PPO)
in Sect. 5.8 and actor-critic K-factor trust region (ACKTR) in Sect. 5.9.

Furthermore, we provide examples with code implementation in Sect. 5.10 for
each of the algorithms we introduced, for providing the readers a quick hands-
on learning process. The full implementation of each algorithm is available in the
repository provided together with the book.3

5.2 REINFORCE: Vanilla Policy Gradient

The algorithm REINFORCE follows a straightforward idea of performing gradient
ascent on the parameters of the policy θ to gradually improve the performance of

1In the value learning setting, the agent needs to explicitly construct its exploration like ε-greedy
to model the stochastic policies.
2But only to local optima rather than global ones.
3Code link: https://github.com/tensorlayer/tensorlayer/tree/master/examples/reinforcement_
learning.

https://github.com/tensorlayer/tensorlayer/tree/master/examples/reinforcement_learning
https://github.com/tensorlayer/tensorlayer/tree/master/examples/reinforcement_learning

5 Policy Gradient 163

the policy πθ . Recall that by Eq. (2.119) we have

∇θ J (πθ) = Eτ∼πθ

[
T∑

t=0

Rt∇θ

t∑
t ′=0

log πθ(At ′ | St ′)

]

= Eτ∼πθ

[
T∑

t ′=0

∇θ log πθ(At ′ | St ′)
T∑

t=t ′
Rt

]
. (5.1)

Remark 1
∑T

t=i Rt can be seen as an estimate of the cumulative reward from time
i for taking Ai on state Si and following the current policy. In fact,

∑T
t=i Rt can

be interpreted as Qi(Ai, Si), the Q value of Ai on the state Si at time i. Thus, one
interpretation of REINFORCE is to weight the gradient by the cumulative reward of
each action, encouraging the agent to take the action Ai that has greater cumulative
reward.

One can easily extend the policy gradient to the infinite horizon setting with the
discount factor γ by replacing T in the above equation by ∞ and weighting each
Rt by γ t ,

∇J (θ) = Eτ∼πθ

[∞∑
t ′=0

∇θ log πθ(At ′ | St ′)γ
t ′

∞∑
t=t ′

γ t−t ′Rt

]
. (5.2)

In fact, using a discount factor also helps reduce the high variance of the gradient
estimate, as it assigns lower weights to future rewards that have higher variance. In
practice, γ t ′ is usually removed to avoid overemphasizing on early states.

Despite of its simplicity, naive REINFORCE has been observed to suffer a large
variance when estimating the gradient. Indeed, the complexity of the model, and
thus the randomness of Rt , grows exponentially with the trajectory length L. To
alleviate the large variance problem, we further introduce a baseline b(Si), where
b(Si) is a function only depending on Si (or more importantly, not dependent to Ai).

With the baseline b(St), the gradients of the reinforcement learning objective can
be represented as:

∇J (θ) = Eτ∼πθ

[∞∑
t ′=0

∇θ log πθ(At ′ | St ′)

(∞∑
t=t ′

γ t−t ′Rt − b(St ′)

)]
. (5.3)

The above equality is due to one key observation that

Eτ,θ

[∇θ log πθ(At ′ | St ′)b(St ′)
] = Eτ,θ

[
b(St ′)Eθ

[∇ log πθ(At ′ | St ′)| St ′
]] = 0,

(5.4)

where the last equality is due to the EGLP lemma in Lemma 2.2. The final
REINFORCE algorithm with baseline is summarized in Algorithm 1.

164 R. Huang et al.

Algorithm 1 REINFORCE with baseline
Hyperparameters: step size ηθ , reward discount factor γ , number of time steps L, batch size
B, baseline value b

Input: initial policy parameters θ0
Initialize θ = θ0
for k = 1, 2, . . . , do

Run policy πθ for B trajectories, each one with L time steps, and collect {St,�, At,�, Rt,�}
Ât,� =∑L

�′=� γ �′−�Rt,� − b(St,�)

J (θ) = 1
B

∑B
t=1
∑L

�=0 log πθ (At,�|St,�)Ât,�

θ = θ + ηθ∇J (θ)

Update b(St,�) by {St,�, At,�, Rt,�}
end for
Return θ

The intuition behind subtracting a baseline is a variance reduction technique.
Consider to estimate E [X] for some random variable X. For any Y such that
E [Y] = 0, the sampled mean of X − Y is still an unbiased estimator. Furthermore,
the variance of X − Y

V(X − Y) = V(X) + V(Y)− 2cov(X, Y), (5.5)

where cov(X, Y) is the covariance between X and Y . Therefore, if one can find
another random variable Y that has small variance and is strongly correlated with
X, then the sampled mean of X − Y is another unbiased estimator of E [X] with a
smaller variance. One common choice of b(Si) is its (estimated) state value V (Si),
leading to our vanilla actor-critic method. Recent works have also proposed other
candidates for the baseline function. Interested readers may refer to Liu et al (2017),
Wu et al. (2018), Li and Wang (2018) for more details.

5.3 Actor-Critic

The actor-critic (AC) method (Konda and Tsitsiklis 2000; Sutton et al. 2000) is
situated in the intersection of policy-based methods and value-based methods. As
mentioned in the last section, one can use the state value as a baseline to reduce the
variance of the estimated gradient in the vanilla policy gradient method. The actor-
critic method follows this idea that learns together an actor, the policy function
π(·|s), and the critic, the value function V π(s). Moreover, actor-critic also uses the
idea of bootstrapping to estimate the Q value, replacing

∑∞
t=i γ t−iRt − b(Si) by

the TD error, i.e., Ri + γV π(Si+1)− V π(Si). Here we use the L-step TD error.
The critic, V

πθ

ψ (s), is optimized to minimize the square of the L-step TD error.

ψ = ψ − ηψ∇J
V

πθ
ψ

(ψ), (5.6)

5 Policy Gradient 165

where ηψ is the step size and

J
V

πθ
ψ

(ψ) = 1

2

(
i+L−1∑

t=i

γ t−iRt + γ LV
πθ

ψ (S′)− V
πθ

ψ (Si)

)2

. (5.7)

Here S′ is the state reached after L steps of rollout under policy πθ , and thus

∇J
V

πθ
ψ

(ψ) =
(

V
πθ

ψ (Si)−
i+L−1∑

t=i

γ t−iRt − γ LV
πθ

ψ (S′)
)
∇V

πθ

ψ (Si). (5.8)

Similarly the actor, πθ(·|s), takes a state s as its input and outputs a policy or
an action. We update the policy function similar as in the vanilla policy gradient
method.

θ = θ + ηθ∇Jπθ (θ), (5.9)

where ηθ is the step size and

∇J (θ) = Eτ,θ

[∞∑
i=0

∇ log πθ(Ai | Si)

(
i+L−1∑

t=i

γ t−iRt + γ LV
πθ

ψ (S′)− V
πθ

ψ (Si)

)]
.

(5.10)

While θ and ψ are used to denote the parameters of πθ and V
πθ

ψ separately for the
purpose of generality, they do not necessarily be different. In practice when using
neural networks as the function approximators, the lower layers are usually shared
between πθ and V

πθ

ψ as the common state representation. Moreover, in practice L

is commonly set to be 1, which gives the TD(1) estimation. The AC algorithm is
summarized in Algorithm 2.

It is worth mentioning that one can instead use the Q value function as the critic
in the actor-critic method. In the update of the actor, the advantage function can now
be estimated by

Q(s, a) − V (s) = Q(s, a) −
∑
a

π(a|s)Q(s, a). (5.11)

The loss function for the learning of the critic Q is now by

JQ = (Rt + γQ(St+1, At+1)− Q(St ,At))
2 , (5.12)

or

JQ =
(

Rt + γ
∑
a

πθ (a|St+1)Q(St+1, a)−Q(St ,At)

)2

, (5.13)

166 R. Huang et al.

where At+1 is sampled from the current policy πθ given St+1.

Algorithm 2 Actor-critic
Hyperparameters: step size ηθ and ηψ , reward discount factor γ

Input: initial policy parameters θ0, initial value function parameters ψ0
Initialize θ = θ0 and ψ = ψ0
for t = 0, 1, 2, . . . do

Run policy πθ for one step, collection {St , At , Rt , St+1}
Estimate advantages Ât = Rt + γV

πθ

ψ (St+1)− V
πθ

ψ (St)

J (θ) =∑t log πθ (At |St)Ât

J
V

πθ
ψ

(ψ) =∑t Â2
t

ψ = ψ + ηψ∇J
V

πθ
ψ

(ψ), θ = θ + ηθ∇J (θ)

end for
Return (θ, ψ)

5.4 Generative Adversarial Networks and Actor-Critic

On first look, generative adversarial networks (shortened as GAN, which is intro-
duced in Chap. 1) (Goodfellow et al. 2014) and actor-critic are two different models
proposed for different categories in machine learning. One is generative model and
another is reinforcement learning algorithm. But they are actually very similar in
their structures. For GAN, there are two parts: the generative network for generating
objects with some inputs, and the discriminative network as a successive part after
the generative network for judging how realistic the generated objects are. For the
actor-critic framework, there are also two parts: the actor network who generates
actions with respect to the state inputs, and a critic network as a successive part
after the actor to evaluate the action with a value function (e.g., the value of next
state or the Q-value).

So, GAN and actor-critic basically follow the same structure: there are two
successive parts, with the first one for generating stuff and the second one for
evaluating the generated stuff with a score (or value). An optimization method
is chosen to increase the accuracy of the second evaluation part. It then back-
propagates the gradients through the second part to the first part to let it generate
desired objects, with the score or value function as a criteria.

The detailed comparison of GAN and actor-critic are discussed as follows, as
well as depicted in Fig. 5.1:

• For the first generative part: the generator in GAN and the actor in AC are
basically the same, for both the forward process of inference and the backward
process with gradient-based optimization. The generator takes the random
variables as inputs, and output generated objects for forward process; and for
backward optimization process its goal is to maximize the discriminative score
of the generated objects. The actor takes the states as inputs and outputs actions,

5 Policy Gradient 167

Fig. 5.1 The comparison of GAN and actor-critic structures. In GAN, the z is the input noise
variable sampled from, for example, a normal distribution, and x is the data sample from the real
objects. In actor-critic, the s and a are state and action, respectively

and for optimization its goal is to maximize the evaluated value of the action-state
pairs.

• For the second evaluating part: the optimization formulas of the discriminator
and the critic are different due to their different utilities, but following the similar
objectives. There is an extra input from the real objects for the discriminator. Its
optimization rule is to maximize the discriminative value of the real objects and
minimize the discriminative value of the generated objects. This rule makes the
discriminator more accurate, which satisfies the facts. For the critic, it uses the
temporal difference (TD) error as a bootstrapping method according to optimal
Bellman equation in reinforcement learning for optimizing the value function.

There are also other models which are very similar to each other. For example,
the auto-encoder (AE) and GAN can simply be taken as a reverse structure of each
other, etc. Noticing these similarities of different deep learning frameworks will help
you to have a more comprehensive understanding of the commonality of present
methods in different domains, which also helps to propose new frameworks for
unsolved tasks.

168 R. Huang et al.

Fig. 5.2 The design of A2C

5.5 Synchronous Advantage Actor-Critic (A2C)

Synchronous advantage actor-critic (A2C) (Mnih et al. 2016) is similar to the actor-
critic algorithm discussed in the last section, but focuses on parallel training.

As shown in Fig. 5.2, the global actor and the global critic are maintained and
updated in the master node. The reinforcement learning agent in each worker talks to
the master node via a coordinator. The coordinator is responsive for waiting until all
the experience from each worker is collected and then performing a 1-step learning
of the global actor and critic based on the collected trajectories. After the global
actor is updated, each worker synchronizes with the master node, and continues
to interact with the environment using the updated actor. In the master node, the
way the actor and the critic are updated is the same as in the actor-critic algorithm,
where a squared TD error is used as the loss for the learning on the critic, and policy
gradient with TD error is used to update the actor.

Under such design, the workers are only responsible for interacting with the
environment while all the updates happen in the master node. In practice, one may
hope to alleviate the heavy computation in the master node as much as possible by
delegating it to the worker nodes.4 To do that, each worker may also keep a copy of
the current global critic. After collecting a trajectory, the worker computes gradients
for both the actor and critic. Instead of updating the local actor and critic, the
gradients are sent back to the master. The task of the coordinator is then collecting
and aggregating the gradients from all the workers and performing a simple update

4This usually depends on the computation resource of each worker, e.g., if GPU computing is
available in the workers.

5 Policy Gradient 169

on the global models. Both the updated actor and critic are then synchronized again
with all the workers. The outline of the algorithm is shown in Algorithm 3.

Algorithm 3 A2C
Master:
Hyperparameters: step size ηψ and ηθ , set of workers W
Input: initial policy parameters θ0, initial value function parameters ψ0
Initialize θ = θ0 and ψ = ψ0
for k = 0, 1, 2, . . . do

(gψ , gθ) = 0
for worker in W do

(gψ , gθ) = (gψ, gθ)+ worker(V πθ

ψ , πθ)

end for
ψ = ψ − ηψgψ ; θ = θ + ηθgθ .

end for

Worker:
Hyperparameters: reward discount factor γ , the length of trajectory L

Input: value function V
πθ

ψ , policy πθ

Run policy πθ for L time steps, collection {St , At , Rt , St+1}
Estimate advantages Ât = Rt + γV

πθ

ψ (St+1)− V
πθ

ψ (St)

J (θ) =∑t log πθ (At |St)Ât

J
V

πθ
ψ

(ψ) =∑t Â2
t

(gψ , gθ) = (∇J
V

πθ
ψ

(ψ),∇J (θ))

Return (gψ , gθ)

5.6 Asynchronous Advantage Actor-Critic (A3C)

Asynchronous advantage actor-critic (A3C) (Mnih et al. 2016) is just an asyn-
chronous version of A2C. In A3C, the coordinator is removed. Each worker talks
directly to the global actor and critic. Instead of waiting until all the gradients from
the workers are collected, the master updates the global actor-critic whenever there
is a worker finishing the gradient computation, thus the computation efficiency is
generally better compared to A2C. However, by doing so, each worker talks to the
master independently, and thus it is also possible that the gradient computed is no
longer for the current global actor-critic.

Remark 2 While it seems ad hoc to sacrifice the consistency among different
workers for the learning efficiency, asynchronous update is actually very popu-
lar in parallel optimization for neural networks. It has been shown that, being
asynchronous not only speeds up the learning but also automatically begets a
momentum-like term to SGD (Mitliagkas et al. 2016).

170 R. Huang et al.

Algorithm 4 A3C
Master:
Hyperparameters: step size ηψ and ηθ , current policy πθ , value function V

πθ

ψ

Input: gradients gψ , gθ

ψ = ψ − ηψgψ ; θ = θ + ηθgθ .
Return (V πθ

ψ , πθ)

Worker:
Hyperparameters: reward discount factor γ , the length of trajectory L

Input: value function V
πθ

ψ , policy πθ

(gθ , gψ) = (0, 0)

for k = 1, 2, . . . , do
(θ, ψ) = Master(gθ , gψ)

Run policy πθ for L time steps, collection {St , At , Rt , St+1}
Estimate advantages Ât = Rt + γV

πθ

ψ (St+1)− V
πθ

ψ (St)

J (θ) =∑t log πθ (At |St)Ât

J
V

πθ
ψ

(ψ) =∑t Â2
t

(gψ , gθ) = (∇J
V

πθ
ψ

(ψ),∇J (θ))

end for

5.7 Trust Region Policy Optimization (TRPO)

In the previous sections, we have introduced the vanilla policy gradient method and
its parallelized versions. Recall that in policy gradient with 1-step actor-critic, we
update the policy by

θ = θ + ηθ∇J (θ), (5.14)

where

∇J (θ) = Eτ,θ

[∞∑
i=0

∇ log πθ(Ai | Si)A
πθ (Si , Ai)

]
, (5.15)

and the advantage function Aπθ (s, a) is defined as

Aπθ (s, a) = Qπθ (s, a) − V
πθ

ψ (s). (5.16)

Similar to the standard gradient descent algorithm, vanilla policy gradient
method also suffers the step size pitfall. In particular, the gradient ∇J (θ) only
provides the local first-order information at the current θ that completely ignores
the curvature of the reward landscape. Therefore, if the step size ηθ is large in the
highly curve area, the algorithm may suffer a performance collapse. On the other
hand, if the step size is set too small, the learning would be too conservative to
make progress. Even worse, ∇J (θ) in policy gradient needs to be estimated by

5 Policy Gradient 171

samples from the current policy πθ , which makes the dependence of the learning
performance on a proper step size more sensitive.

Another limitation of vanilla policy gradient methods is that the update happens
in the parameter space rather than the policy space

� = {π |π ≥ 0,

∫
π = 1}. (5.17)

This makes the step size ηθ more difficult to tune in practice. Why? Note that the
same ηθ may have completely different update magnitudes in the policy space,
depending on the current πθ . For example, consider a policy π = (σ (θ), 1 − σ(θ))

in two cases where σ(θ) is the sigmoid function. Assume that in the first case θ is
updated from θ = 6 to θ = 3, and in the second case θ is updated from θ = 1.5
to θ = −1.5. Both cases have the same update magnitude in the parameter space.
However, in the first case, the update in the policy space is from π ≈ (1.00, 0.00)

to π ≈ (0.95, 0.05), while in the second case, with the same update length in
the parameter space, the update is from π = (0.82, 0.18) to π = (0.18, 0.82).
The same update length of θ may result in completely different update scales in
πθ .

In this section we aim to develop an algorithm that can handle the step size
more properly in policy gradient based on the idea of trust region, called trust
region policy optimization (TRPO) (Schulman et al. 2015). Note that our goal is
to find an updated policy π ′

θ that improves the current policy πθ . The following
lemma provides an insightful connection between the performance of πθ and
π ′

θ : the improvement from πθ to π ′
θ can be measured by the advantage function

on πθ , Aπθ (s, a) (Kakade and Langford 2002). Denote the parameters of π ′
θ by

θ ′.

Lemma 5.1

J (θ ′) = J (θ)+ Eτ∼π ′
θ

[∞∑
t=0

γ tAπθ (St , At)

]
, (5.18)

where J (θ) = Eτ∼πθ

[∑∞
t=0 γ tR(St , At)

]
and τ is the state-action trajectory

generated by π ′
θ .

Therefore, learning the optimal policy πθ is equivalent to maximizing the bonus
term

Eτ∼π ′
θ

[∞∑
t=0

γ tAπθ (St , At)

]
. (5.19)

172 R. Huang et al.

However, the above expectation is taken over π ′
θ and thus difficult to optimize

directly. Instead, TRPO optimizes an approximation of it, denoted by Lπθ (π
′
θ).

Eτ∼π ′
θ

[∞∑
t=0

γ tAπθ (St , At)

]
(5.20)

= Es∼ρπ ′
θ
(s)

[
Ea∼π ′

θ (a| s)
[
Aπθ (s, a)| s]] (5.21)

≈ Es∼ρπθ
(s)

[
Ea∼π ′

θ (a| s)
[
Aπθ (s, a)| s]] (5.22)

= Es∼ρπθ
(s)

[
Ea∼πθ (a| s)

[
π ′

θ (a| s)
πθ (a| s)A

πθ (s, a)| s
]]

(5.23)

= Eτ∼πθ

[∞∑
t=0

γ t π
′
θ (At | St)

πθ (At | St)
Aπθ (St , At)

]
(5.24)

�=: Lπθ (π
′
θ). (5.25)

Although the above approximation seems coarse, it turns out its approximation
error can be theoretically bounded, as shown in the next theorem.

Theorem 5.1 Let Dmax
KL (πθ‖π ′

θ) = maxs DKL(πθ‖π ′
θ), then

|J (θ ′) − J (θ)− Lπθ (π
′
θ)| ≤ CDmax

KL (πθ‖π ′
θ), (5.26)

where C is a constant independent to π ′
θ ,

Therefore, if Dmax
KL (πθ‖π ′

θ) is small, it is reasonable to optimize Lπθ (π
′
θ), which is

the idea of TRPO. In practice, TRPO tries to optimize Lπθ (π
′
θ) under the constraint

that considers the average KL-divergence.

max
π ′

θ

Lπθ (π
′
θ) (5.27)

s.t. Es∼ρπθ

[
DKL(πθ‖π ′

θ)
] ≤ δ.

5.7.1 Natural Gradient

It remains to solve the constraint optimization problem in TRPO. Here we use
the first-order approximation for the objective function and the second-order
approximation in the constraint. It turns out that the gradient ofLπθ (π

′
θ) at the policy

5 Policy Gradient 173

πθ is the same as in actor-critic.

g = ∇θLπθ (π
′
θ)|θ = Eτ∼πθ

[∞∑
t=0

γ t ∇θπ
′
θ (At | St)

πθ (At | St)
Aπθ (St , At)

] ∣∣∣∣
θ

(5.28)

= Eτ∼πθ

[∞∑
t=0

γ t∇θ log πθ(At | St)

∣∣∣∣
θ

Aπθ (St , At)

]
. (5.29)

Moreover, let H denote the Hessian matrix of Es∼ρπθ

[
DKL(πθ‖π ′

θ)
]
. The TRPO

algorithm solves the optimization problem at the current πθ ,

θ ′ = arg max
θ ′

g�(θ ′ − θ) (5.30)

s.t. (θ ′ − θ)�H(θ ′ − θ) ≤ δ,

where the gradients are calculated in first order and the constraint is in second order.
Solution to the above problem has an analytic form

θ ′ = θ +
√

2δ

g�H−1g
H−1g. (5.31)

In practice, we use the conjugate gradient algorithm to approximate H−1g.5 We
also pick a proper step size to enforce the sample KL-divergence constraint.

Lastly, the value function is learned by minimizing the MSE error. The complete
TRPO algorithm is presented in Algorithm 5 which is based on paper (Schulman
et al. 2015).

Remark 5.1 The negative Hessian matrix −H is also called Fisher information
matrix. In fact, using the Fisher information matrix in gradient descent has been
well explored in the batch setting, called natural gradient descent. One nice property
about natural gradient descent is it is invariant under reparameterization, i.e., the
gradient remains the same regardless of the parametrization method used to compute
it. We omit the details here. For more details, please refer to the paper (Amari
1998).

5In general, computing H−1 requires computation complexity �(N3), which is too expensive in
practice as here N is the number of the parameters.

174 R. Huang et al.

Algorithm 5 TRPO
Hyperparameters: KL-divergence limit δ, backtracking coefficient α, maximum number of
backtracking steps K

Input: empty replay buffer Dk, initial policy parameters θ0, initial value function parameters φ0
for episode = 0, 1, 2, . . . do

Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

Estimate policy gradient as

ĝk = 1

|Dk |
∑

τ∈Dk

T∑
t=0

∇θ log πθ (At |St)|θk
Ât (5.32)

Use the conjugate gradient algorithm to compute

x̂k ≈ Ĥ−1
k ĝk (5.33)

where Ĥk is the Hessian of the sample average KL-divergence
Update the policy by backtracking line search with

θk+1 = θk + αj

√
2δ

x̂T
k Ĥkx̂k

x̂k (5.34)

where j ∈ {0, 1, 2, . . . K} is the smallest value which improves the sample loss and satisfies
the sample KL-divergence constraint
Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk |T
∑

τ∈Dk

T∑
t=0

(
Vφ(St)− Ĝt

)2
(5.35)

typically via some gradient descent algorithm
end for

5.8 Proximal Policy Optimization (PPO)

As one can easily see in the last section, TRPO is relatively complicated and
suffers a computation burden in computing the natural gradient. Even with
an approximation of H−1g, it still requires many steps of conjugate gradient
for every single parameter update. In this section, we introduce another policy
gradient method, proximal policy optimization(PPO), that enforces the similarity
between πθ and π ′

θ in a simpler and more efficient way (Schulman et al.
2017).

5 Policy Gradient 175

Recall that TRPO tends to optimize Eq (5.27).

max
π ′

θ

Lπθ (π
′
θ) (5.36)

s.t. Es∼ρπθ

[
DKL(πθ‖π ′

θ)
] ≤ δ. (5.37)

Instead of optimizing with a hard constraint, PPO tends to optimize its regularization
version.

max
π ′

θ

Lπθ (π
′
θ)− λEs∼ρπθ

[
DKL(πθ‖π ′

θ)
]
. (5.38)

Here λ is the regularization coefficient. For every δ in Eq. (5.27), there existing
a corresponding constant λ that recovers the same optimizer. However, such λ

depends on πθ . Thus it makes sense to have an adaptive λ for Eq. (5.38). Here we
particularly check the KL-divergence constraint to decide if λ should be enlarged or
reduced. We call such algorithm PPO-Penalty, as presented in Algorithm 6 which is
based on these papers (Schulman et al. 2017; Heess et al. 2017).

Algorithm 6 PPO-penalty
Hyperparameters: reward discount factor γ , KL penalty coefficient λ, adaptive parameters
a = 1.5, b = 2, the number of sub-iterations M,B

Input: initial policy parameters θ , initial value function parameters φ

for k = 0, 1, 2, . . . do
Run policy πθ for T time steps, collection {St , At , Rt }
Estimate advantages Ât =∑t ′>t γ t ′−tRt ′ − Vφ(St)

πold ← πθ

for m ∈ {1, . . . ,M} do
JPPO(θ) =∑T

t=1
πθ (At |St)
πold(At |St)

Ât − λÊt [DKL(πold(·|St)‖πθ (·|St))]
Update θ by a gradient method w.r.t JPPO(θ)

end for
for b ∈ {1, . . . , B} do

LBL(φ) = −∑T
t=1

(∑
t ′>t γ t ′−tRt ′ − Vφ(St)

)2

end for
Compute d = Êt [DKL(πold(·|St)‖πθ (·|St))]
if d < dtarget/a then

λ ← λ/b

else if d > dtarget × a then
λ ← λ× b

end if
end for

Another alternative approach to TRPO is to directly clipping the objective value

for the policy gradient, thus resulting a more conservative update. Denote
π ′

θ (At |St)

πθ (At |St)

by �t (θ
′). It has been found that the following objective provides a simple and stable

176 R. Huang et al.

learning performance (empirically) for policy gradient method.

LPPO-Clip(π ′
θ) = Eπθ

[
min
(
�t (θ

′)Aπθ (St , At),

clip(�t (θ
′), 1 − ε, 1 + ε)Aπθ (St , At)

)]
, (5.39)

where clip(x, 1 − ε, 1 + ε) clips x within [1 − ε, 1 + ε]. The resulted algo-
rithm is called PPO-Clip, as presented in Algorithm 7 which is based on paper
(Schulman et al. 2017). In particular, PPO-Clip first clips �t (θ

′) within [1−ε, 1+ε]
to ensure that π ′

θ is close to πθ . The final learning objective is then by taking the
minimum between the clipped objected and the unclipped one. Thus PPO-Clip is
maximizing a lower bound of the target objective, while maintaining the property
that the update from πθ to π ′

θ is controllable.

Algorithm 7 PPO-clip
Hyperparameters: clip factor ε, the number of sub-iterations M,B

Input: initial policy parameters θ , initial value function parameters φ

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {τi} by running policy πθk

in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

for m ∈ {1, . . . ,M} do

�t (θ
′) = πθ (At |St)

πθold(At |St)
(5.40)

Update the policy by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

1

|Dk |T
∑
τ∈Dk

T∑
t=0

min(�t (θ
′)Aπθold (St , At), (5.41)

clip(�t (θ
′), 1 − ε, 1 + ε)Aπθold (St , At)) (5.42)

typically via stochastic gradient ascent with Adam
end for
for b ∈ {1, . . . , B} do

Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk |T
∑

τ∈Dk

T∑
t=0

(
Vφ(St)− Ĝt

)2

typically via some gradient descent algorithm
end for

end for

5 Policy Gradient 177

5.9 Actor Critic Using Kronecker-Factored Trust Region
(ACKTR)

Actor critic using Kronecker-factored trust region (ACKTR) (Wu et al. 2017) is
another alternative to alleviate the computation overhead in TRPO. The idea of
ACKTR is to use the Kronecker-factored approximated curvature (K-FAC) (Martens
and Grosse 2015; Grosse and Martens 2016) to compute the natural gradient. In this
section, we present the idea of ACKTR for a MLP policy network.

Note that

E

[
∂2

∂2θ
DKL(πold‖πθ)

]
(5.43)

= −E

[
πold

∂2

∂2θ
log πθ

]
(5.44)

= −Es∼ρπold

[
Ea∼πold

[
∂2

∂2θ
log πθ(a|s)

]]
(5.45)

= Es∼ρπold

[
Ea∼πold

[
(∇θ log πθ(a|s)) (∇θ log πθ(a|s))�

]]
. (5.46)

Recall that TRPO needs to run multiple steps of conjugate gradient in order to
approximate H−1g. The idea of ACKTR is to approximate H−1 by a block diagonal
matrix, where each block corresponds to the Fisher information matrix of each
layer separately. Assume that for the � layer, xout = W�xin and W� is a matrix
in the dimension of din × din. The idea of Kronecker factorization comes from the
observation that the gradient ∇W�L is an outer product (∇xoutL)x�in , thus

(∇θ log πθ(a|s)) (∇θ log πθ (a|s))� = xinx
�
in ⊗ (∇xoutL)(∇xoutL)�, (5.47)

where ⊗ denotes the Kronecker product. Furthermore,

(
(∇θ log πθ(a|s)) (∇θ log πθ(a|s))�

)−1
g (5.48)

=
(
xinx

�
in ⊗ (∇xoutL)(∇xoutL)�

)−1
g (5.49)

=
[(

xinx
�
in

)−1 ⊗
(
(∇xoutL)(∇xoutL)�

)−1
]

g. (5.50)

Therefore, instead of inverting a (dindout) × (dindout) matrix, which is �(d3
ind

3
out)

naively, ACKTR only needs to invert two matrices in dimensions of din × din and
dout × dout, thus the computational complexity is �(d3

in + d3
out).

178 R. Huang et al.

The ACKTR algorithm is presented in Algorithm 8. The idea of ACKTR can also
be applied to the learning of the value network. Interested readers can refer to Wu
et al. (2017) for more details which we omit here.

Algorithm 8 ACKTR
1: Hyperparameters: learning rate ηmax , trust region radius δ

2: Input: empty replay buffer D, initial policy parameters θ0, initial value function parameters
φ0

3: for k = 0, 1, 2, . . . do
4: Collect set of trajectories Dk = {τi |i = 0, 1, . . .} by running policy πk = π(θk) in the

environment
5: Compute cumulative return Gt

6: Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

7: Estimate policy gradient as

ĝk = 1

|Dk |
∑

τ∈Dk

T∑
t=0

∇θ log πθ (At |St)|θk
Ât (5.51)

8: for l = 0, 1, 2, . . . do

vec(�θl
k) = vec(A−1

l ∇θ l
k
ĝkS

−1
l) (5.52)

where Al = E[ala
T
l], Sl = E[(∇sl ĝk)(∇sl ĝk)

T] (Al, Sl are calculated with running
average among episodes), al is the input activation vector and sl = Wlal with the weight
matrix Wl of lth layer, and vec(·) operation is used for transforming the matrix into
one-dimensional vector

9: end for
10: Update the policy by K-FAC approximated natural gradient as

θk+1 = θk + ηk�θk (5.53)

where ηk = min(ηmax,

√
2δ

θT
k Ĥkθk

) and Ĥ l
k = Al ⊗ Sl for lth layer.

11: Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk |T
∑

τ∈Dk

T∑
t=0

(
Vφ(St)−Gt

)2 (5.54)

via Gauss-Newton second-order gradient descent algorithm (also uses K-FAC approxima-
tion)

12: end for

5 Policy Gradient 179

5.10 Policy Gradient Examples

In the previous sections, we introduce several algorithms based on policy gradient in
a theoretical perspective with pseudo codes, which involves REINFORCE (vanilla
policy gradient), actor-citric (AC), synchronous advantage actor-critic (A2C), asyn-
chronous advantage actor-critic (A3C), trust region policy optimization (TRPO),
proximal policy optimization (PPO), and actor critic using Kronecker-factored
trust region (ACKTR). In this section, we provide the Python code examples for
above algorithms, and apply them on the OpenAI Gym environments. We will
first briefly introduce the environments used in the examples, then provide detailed
implementations for each algorithm. Although most of the algorithms introduced
in this chapter are applicable to the environments of both continuous action space
and discrete action space, the provided code examples may only work for specific
environments of a single type of action space as a demonstration. Nevertheless, the
readers can feel free to modify the algorithms slightly for adapting it to the other
environments with different types of action space. The complete codes are provided
at repository.6

5.10.1 Related Gym Environments

The following sections give some examples based on the OpenAI Gym environment.
Examples can be divided into discrete and continuous action spaces.

import gym
env = gym.make(’Pong-v0’)
print(env.action_space)

The code above builds a ‘Pong-v0’ environment and shows the action space of it. Try
to replace ‘Pong-v0’ to a different environment id like ‘CartPole-v1’ or ‘Pendulum-
v0’ can build a different environment.

And the following sections also used some open source library. We can import
them by using the following code:

import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
import tensorlayer as tl
...

6https://github.com/tensorlayer/tensorlayer/tree/master/examples/reinforcement_learning.

https://github.com/tensorlayer/tensorlayer/tree/master/examples/reinforcement_learning

180 R. Huang et al.

Discrete Action Space: Atari Pong Game and CartPole

Two games in OpenAI Gym with discrete action space are introduced here:
Pong (Fig. 5.3) and CartPole (Fig. 5.4).

Pong

In the Pong game, the green tablet is controlled to move up and down to hit the ball.
The example uses the ‘Pong-v0’ version. In this version, the state space is an RGB
image tensor with shape (210, 160, 3). The input action is an integer in 0,1,2,3,4,5,
which denotes the following meanings: 0 : NOOP, 1 : FIRE, 2 : RIGHT, 3 :
LEFT, 4 : RIGHT FIRE, 5 : LEFT FIRE.

CartPole

CartPole is a classical inverted pendulum environment. We will control the move-
ment of the car to keep the pole erect. In the CartPole-v0 environment, the
observation space is a four-dimensional vector representing the position and speed
of the car, the angle of the pole, and the speed of the pole tip. The input action is 0
or 1 to control the car to move left or right.

Fig. 5.3 Pong

5 Policy Gradient 181

Fig. 5.4 CartPole

Fig. 5.5 BipedalWalker

Continuous Action Space: BipedalWalker-v2 and Pendulum-v0

In this part, we talk about environments with continuous action space: Bipedal-
Walker (Fig. 5.5) and Pendulum (Fig. 5.6).

BipedalWalker-v2

BipedalWalker-v2 is a bipedal robot walking simulation environment. In the
environment, we need to control the robot to walk on relatively flat ground and
eventually reach its destination. The state space is a 24-dimensional vector, which
denotes the angle, speed, and radars’ information. The environmental action space
is a four-dimensional continuous action space, which controls the rotation of four
joints of the robot’s feet.

182 R. Huang et al.

Fig. 5.6 Pendulum

Pendulum-v0

Pendulum-v0 is a classical inverted pendulum environment. In the environment,
we need to control the rotation of the pole to make it erect. The state space is
a three-dimensional vector which denotes cos(θ), sin(θ), �(θ). Here, θ is the
angle between the pole and the vertically upward direction. The action is only one
dimension that controls the rotational moment.

It is worth noting that this environment has no terminal state, which means,
the end of the game should be set artificially. By default, the environment has a
maximum step size limit of 200. When running more than 200 steps, the done
variable returned by step() function is True. Because of this limitation, when
manually setting the maximum step loop size per round is greater than 200, it will
still force the exit of the round in 200 steps because done is true. The following code
can be used to lift the limit.

import gym
env = gym.make(’Pendulum-v0’)
env = env.unwrapped # lift the limit

5.10.2 REINFORCE: Atari Pong Game and CartPole-v0

Pong

Before we start, we need to prepare the environment, model, optimizer, and initialize
some variables that we will use later.

env = gym.make("Pong-v0") # create environment
observation = env.reset() # reset environment
prev_x = None
running_reward = None
reward_sum = 0
episode_number = 0

prepared to collect data
xs, ys, rs = [], [], []

5 Policy Gradient 183

epx, epy, epr = [], [], []

model = get_model([None, D]) # create model
train_weights = model.trainable_weights

optimizer = tf.optimizers.RMSprop(lr=learning_rate,
decay=decay_rate) # create optimizer

model.train() # set model to train mode (in case you add dropout
into the model)

start_time = time.time()
game_number = 0

After the preparation, the main loop can be started. At first we need to preprocess
the observation. Then the preprocessed observation passed to variable x. After
feeding x into the network, we will get the evaluation of the probability of each
action by the network.

Here we only use three actions: NOOP,UP,DOWN . In REINFORCE algo-
rithm, softmax function is used to output each action’s probability and action is
chosen according to probability finally.

while True:
if render:

env.render()

cur_x = prepro(observation)
x = cur_x - prev_x if prev_x is not None else np.zeros(D,

dtype=np.float32)
x = x.reshape(1, D)
prev_x = cur_x

_prob = model(x)
prob = tf.nn.softmax(_prob)

action. 1: STOP 2: UP 3: DOWN
action = tl.rein.choice_action_by_probs(prob[0].numpy(), [1,

2, 3])

Now we have actions that we choose based on the current state. It is time to
interact with the environment. The environment performs the next step according to
the current action, and returns next observation, reward, done state, and additional
information(the _ variable). We store these data for update.

observation, reward, done, _ = env.step(action)

reward_sum += reward
xs.append(x) # all observations in an episode
ys.append(action - 1) # all fake labels in an episode (action

begins from 1, so minus 1)
rs.append(reward) # all rewards in an episode

184 R. Huang et al.

If the done state returned by step() function is true, it means that current
episode is over. We can reset the environment and start a new episode. But before
that, we need to preprocess the data we have just collected in this episode and store
in the cross-episode data list.

if done:
episode_number += 1
game_number = 0

epx.extend(xs)
epy.extend(ys)
disR = tl.rein.discount_episode_rewards(rs, gamma)
disR -= np.mean(disR)
disR /= np.std(disR)
epr.extend(disR)
xs, ys, rs = [], [], []

After the agent has played a lot of games and collected enough data, it can start
to update. We use cross-entropy loss and gradient descent method to calculate the
gradient of each parameter. Then apply the gradient to the corresponding parameter
and an update is complete.

if episode_number % batch_size == 0:
print(’batch over...... updating parameters......’)
with tf.GradientTape() as tape:

_prob = model(epx)
_loss = tl.rein.cross_entropy_reward_loss(_prob,

epy, disR)
grad = tape.gradient(_loss, train_weights)
optimizer.apply_gradients(zip(grad, train_weights))

epx, epy, epr = [], [], []

The content above describes the main work, and the rest of the code is mainly
used to display training related data for us to view the training trend. We use moving
average to calculate running reward for each episode, just to reduce the degree
of data jitter to facilitate observation of trends. Finally, do not forget to reset the
environment, because at this point the current episode is over.

if episode_number % (batch_size * 100) == 0:
tl.files.save_npz(network.all_params,

name=model_file_name + ’.npz’)

running_reward = reward_sum if running_reward is None else
running_reward * 0.99 + reward_sum * 0.01

print(’resetting env. episode reward total was {}. running
mean: {}’.format(reward_sum, running_reward))

reward_sum = 0
observation = env.reset() # reset env

5 Policy Gradient 185

prev_x = None

if reward != 0:
print(

(’episode %d: game %d took %.5fs, reward: %f’ %
(episode_number, game_number, time.time() -

start_time, reward)
), (’’ if reward == -1 else ’ !!!!!!!!’)

)
start_time = time.time()
game_number += 1

CartPole

The algorithm here is the same as Pong. We make the whole algorithm into a class,
and write each code into corresponding functions. This can make the code more
convenient to read and use. The structure of the policy gradient class is as follows:

class PolicyGradient:
def __init__(self, state_dim, action_num, learning_rate=0.02,

gamma=0.99): # Class initialization. Creates model,
optimizer and required variables.
...

def get_action(self, s, greedy=False): # Algorithm chooses
actions based on action distribution.
...

def store_transition(self, s, a, r): # Stores data generated
by interaction with the environment.
...

def learn(self): # Algorithm uses stored data to learn and
update itself.
...

def _discount_and_norm_rewards(self): # Calculate and
normalize discounted rewards.
...

def save(self): # save model
...

def load(self): # load model
...

The initialization function firstly created some variables, then created the model,
and finally created adam optimizer as policy optimizer. Through the code block, we
can see the policy net we created here is just a network with just one hidden layer.

186 R. Huang et al.

def __init__(self, state_dim, action_num, learning_rate=0.02,
gamma=0.99):
self.gamma = gamma

self.state_buffer, self.action_buffer, self.reward_buffer
= [], [], []

input_layer = tl.layers.Input([None, state_dim],
tf.float32)

layer = tl.layers.Dense(
n_units=30, act=tf.nn.tanh,

W_init=tf.random_normal_initializer(mean=0,
stddev=0.3),

b_init=tf.constant_initializer(0.1)
)(input_layer)
all_act = tl.layers.Dense(

n_units=action_num, act=None,
W_init=tf.random_normal_initializer(mean=0,
stddev=0.3),

b_init=tf.constant_initializer(0.1)
)(layer)

self.model = tl.models.Model(inputs=input_layer,
outputs=all_act)

self.model.train()
self.optimizer = tf.optimizers.Adam(learning_rate)

After we have got the policy net by initialization, we calculate the probability
of each action with state by calling the get_action() function. By setting
‘greedy=True’ can simply get the action with the highest probability rather than
get the action by sampling the action probability.

def get_action(self, s, greedy=False):
_logits = self.model(np.array([s], np.float32))
_probs = tf.nn.softmax(_logits).numpy()
if greedy:

return np.argmax(_probs.ravel())
return tl.rein.choice_action_by_probs(_probs.ravel())

But the action we choose at this moment may not be correct. Only through
continuous learning can the network make better and better decisions. This is what
the learn() function does. This part of the function is basically the same as
the code of pong example. We use the discounted and normalized rewards and
cross-entropy loss to update the model. After each update, transition data will be
discarded.

def learn(self):
discount and normalize episode reward
discounted_ep_rs_norm = self._discount_and_norm_rewards()
with tf.GradientTape() as tape:

_logits = self.model(np.vstack(self.ep_obs))

5 Policy Gradient 187

neg_log_prob =
tf.nn.sparse_softmax_cross_entropy_with_logits
(logits=_logits, labels=np.array(self.ep_as))

loss = tf.reduce_mean(neg_log_prob *
discounted_ep_rs_norm)

grad = tape.gradient(loss, self.model.trainable_weights)
self.optimizer.apply_gradients(zip(grad,

self.model.trainable_weights))

self.ep_obs, self.ep_as, self.ep_rs = [], [], [] # empty
episode data

return discounted_ep_rs_norm

The learn() function needs to use the stored data generated by the interaction
between the agent and the environment. So we use the store_transition()
function to store each state, action, and reward.

def store_transition(self, s, a, r):
self.ep_obs.append(np.array([s], np.float32))
self.ep_as.append(a)
self.ep_rs.append(r)

Policy gradient algorithm uses Monte Carlo method. So we need to calculate
the discounted rewards as follows. Normalize episode rewards is also helpful for
learning.

def _discount_and_norm_rewards(self):
discount episode rewards
discounted_ep_rs = np.zeros_like(self.ep_rs)
running_add = 0
for t in reversed(range(0, len(self.ep_rs))):

running_add = running_add * self.gamma + self.ep_rs[t]
discounted_ep_rs[t] = running_add

normalize episode rewards
discounted_ep_rs -= np.mean(discounted_ep_rs)
discounted_ep_rs /= np.std(discounted_ep_rs)
return discounted_ep_rs

Like Pong code, let us prepare the environment and algorithm first. After creating
the environment, we generate an instance of policy gradient class called agent.

env = gym.make(ENV_ID).unwrapped
reproducible
np.random.seed(RANDOM_SEED)
tf.random.set_seed(RANDOM_SEED)
env.seed(RANDOM_SEED)
agent = PolicyGradient(

action_num=env.action_space.n,
state_dim=env.observation_space.shape[0],

)
t0 = time.time()

188 R. Huang et al.

In training mode, we use the actions from the model to interact with the
environment, store transition data, and update the policy in each episode. To simplify
the code, agent is updated directly at the end of each round.

if args.train:
all_episode_reward = []
for episode in range(TRAIN_EPISODES):

reset the environment
state = env.reset()
episode_reward = 0

for step in range(MAX_STEPS): # in one episode
if RENDER:

env.render()

choose action
action = agent.get_action(state)

interact with the environment
next_state, reward, done, info = env.step(action)

store transition
agent.store_transition(state, action, reward)

state = next_state
episode_reward += reward
stop if environment returns done
if done:

break
update model at the end of each game
agent.learn()
print(

’Training | Episode: {}/{} | Episode Reward: {:.0f}
| Running Time: {:.4f}’.format(
episode + 1, TRAIN_EPISODES, episode_reward,
time.time() - t0))

We can add some code and extend some functions after each round to show the
training process better. We print the total reward of each episode and calculated
running reward by using moving average. After that plot the running reward for
easy viewing of training trends. Finally, remember to save the model.

agent.save()
plt.plot(all_episode_reward)
if not os.path.exists(’image’):

os.makedirs(’image’)
plt.savefig(os.path.join(’image’, ’pg.png’))

5 Policy Gradient 189

If we use test mode, things are much easier. Just load the pre-trained model and
use it to interact with the environment.

if args.test:
test
agent.load()
for episode in range(TEST_EPISODES):

state = env.reset()
episode_reward = 0
for step in range(MAX_STEPS):

env.render()
state, reward, done, info =

env.step(agent.get_action(state, True))
episode_reward += reward
if done:

break
print(

’Testing | Episode: {}/{} | Episode Reward: {:.0f} |
Running Time: {:.4f}’.format(
episode + 1, TEST_EPISODES, episode_reward,
time.time() - t0))

5.10.3 AC: CartPole-v0

Actor-critic computes the baseline (critic) using the TD method, it can update the
policy at each step after interaction with the environment, which is quite different
from the MC method.

In actor-critic algorithm, we made two classes, actor and critic. Their structures
are as follows:

class Actor(object):
def __init__(self, state_dim, action_num, lr=0.001): #Class

initialization. Creates model, optimizer and required
variables.
...

def learn(self, state, action, td_error): # update model
...

def get_action(self, state, greedy=False): # choose action by
action probability distribution or greedy
...

def save(self): # save trained weights
...

def load(self): # load trained weights
...

class Critic(object):

190 R. Huang et al.

def __init__(self, state_dim, lr=0.01): #Class
initialization. Creates model, optimizer and required
parameters.
...

def learn(self, state, reward, state_): # update model
...

def save(self): # save trained weights
...

def load(self): # load trained weights
...

The actor part is almost like the policy gradient algorithm. The only difference
is that the learn() function uses the TD-error value as the estimated advantage
value instead of the discounted reward value for updating.

def learn(self, state, action, td_error):
with tf.GradientTape() as tape:

_logits = self.model(np.array([state]))
_exp_v =

tl.rein.cross_entropy_reward_loss(logits=_logits,
actions=[action], rewards=td_error[0])

grad = tape.gradient(_exp_v, self.model.trainable_weights)
self.optimizer.apply_gradients(zip(grad,

self.model.trainable_weights))
return _exp_v

Unlike the PG algorithm, the AC algorithm has a critic with a value network that
can estimate the value of each state. So the initialization function is quite clear, just
create the network and the optimizer.

class Critic(object):
def __init__(self, state_dim, lr=0.01):

input_layer = tl.layers.Input([1, state_dim], name=’state’)
layer = tl.layers.Dense(

n_units=30, act=tf.nn.relu6,
W_init=tf.random_uniform_initializer(0, 0.01),
name=’hidden’

)(input_layer)
layer = tl.layers.Dense(n_units=1, act=None,

name=’value’)(layer)
self.model = tl.models.Model(inputs=input_layer,

outputs=layer, name="Critic")
self.model.train()

self.optimizer = tf.optimizers.Adam(lr)

After the initialization function, we have got a value network. The next step is the
learn() function. The learn() function is very simple. Its main content is to
calculate TD-error δ by using equation δ = R + γV (s′)− V (s). And use TD-error
as an estimate of advantage to calculate the loss and return value.

5 Policy Gradient 191

def learn(self, state, reward, state_, done):
d = 0 if done else 1
v_ = self.model(np.array([state_]))
with tf.GradientTape() as tape:

v = self.model(np.array([state]))
TD_error = r + d * lambda * V(newS) - V(S)
td_error = reward + d * LAM * v_ - v
loss = tf.square(td_error)

grad = tape.gradient(loss, self.model.trainable_weights)
self.optimizer.apply_gradients(zip(grad,

self.model.trainable_weights))

The save and load functions are as usual. We can also save network parameters
as .npz files.

def save(self): # save trained weights
if not os.path.exists(os.path.join(’model’, ’ac’)):

os.makedirs(os.path.join(’model’, ’ac’))
tl.files.save_npz(self.model.trainable_weights,

name=os.path.join(’model’, ’ac’, ’model_critic.npz’))

def load(self): # load trained weights
tl.files.load_and_assign_npz(name=os.path.join(’model’,

’ac’, ’model_critic.npz’), network=self.model)

The code of the training main loop is very similar to the previous code. The only
difference is the timing of the update. By using TD-error, we can update at each
step.

if args.train:
all_episode_reward = []
for episode in range(TRAIN_EPISODES):

reset the environment
state = env.reset().astype(np.float32)
step = 0 # number of step in this episode
episode_reward = 0 # rewards of all steps
while True:

if RENDER: env.render()
choose actions and interact with the environment
action = actor.get_action(state)
state_new, reward, done, info = env.step(action)
state_new = state_new.astype(np.float32)

if done: reward = -20 # reward shaping trick
episode_reward += reward

update models at each step after interaction with
the environment

td_error = critic.learn(state, reward, state_new,
done)

actor.learn(state, action, td_error)

192 R. Huang et al.

state = state_new
step += 1

run until the environment returns done or reach
max step limit

if done or step >= MAX_STEPS:
break

The plot and test part is just the same as code in policy gradient code block.

5.10.4 A3C: BipedalWalker-v2

There are a global actor-critic and several workers in A3C. The global actor-critic’s
role is to update the network with the data collected by workers. Each worker has
its own AC network, which interacts with the environment and pushes the collected
data to Global AC, then pulls the latest network weights from Global AC to and
substitutes its weights. The worker class structure is showed as follows:

class Worker(object):
def __init__(self, name): # initialize worker

...
def work(self, globalAC): # worker main function

...

As described above, each worker has its own actor and critic net. So in the
initialization function, we created the model by instantiating the ACNet class.

class Worker(object):
def __init__(self, name):

self.env = gym.make(GAME)
self.name = name
self.AC = ACNet(name)

The work is the main function of the worker. It is similar to the main loop in the
previous code, but it is different in the update part. As usual, the main content of the
loop is to get actions from the agent and interact with the environment.

def work(self, globalAC):
global GLOBAL_RUNNING_R, GLOBAL_EP
total_step = 1
buffer_s, buffer_a, buffer_r = [], [], []

while not COORD.should_stop() and GLOBAL_EP <
MAX_GLOBAL_EP:

reset environment

5 Policy Gradient 193

s = self.env.reset()
ep_r = 0

while True:
visualize Worker_0 during training
if self.name == ’Worker_0’ and total_step % 30 == 0:

self.env.render()

choose actions and interact with the environment
s = s.astype(’float32’) # double to float
a = self.AC.choose_action(s)
s_, r, done, _info = self.env.step(a)
s_ = s_.astype(’float32’) # double to float

set robot falls reward to -2 instead of -100
if r == -100: r = -2

ep_r += r

store transitions
buffer_s.append(s)
buffer_a.append(a)
buffer_r.append(r)

But when the agent gets enough data and starts to update, it updates the global
networks. After that, parameters of local networks will be replaced by the latest
updated global networks parameters.

if total_step % UPDATE_GLOBAL_ITER == 0 or done: #
update global and assign to local net
if done:

v_s_ = 0 # terminal
else:

v_s_ = self.AC.critic(s_[np.newaxis, :])[0,0]
reduce dim from 2 to 0

discounted reward
buffer_v_target = []
for r in buffer_r[::-1]: # reverse buffer r

v_s_ = r + GAMMA * v_s_
buffer_v_target.append(v_s_)

buffer_v_target.reverse()
buffer_s =

tf.convert_to_tensor(np.vstack(buffer_s))
buffer_a =

tf.convert_to_tensor(np.vstack(buffer_a))
buffer_v_target = tf.convert_to_tensor

(np.vstack(buffer_v_target).astype(’float32’))

update gradients on global network
self.AC.update_global(buffer_s, buffer_a,

buffer_v_target.astype(’float32’), globalAC)
buffer_s, buffer_a, buffer_r = [], [], []

194 R. Huang et al.

update local network from global network
self.AC.pull_global(globalAC)

s = s_
total_step += 1
if done:

if len(GLOBAL_RUNNING_R) == 0: # record running
episode reward
GLOBAL_RUNNING_R.append(ep_r)

else: # moving average
GLOBAL_RUNNING_R.append(0.95 *

GLOBAL_RUNNING_R[-1] + 0.05 * ep_r)

print(’Training | {}, Episode: {}/{} | Episode
Reward: {:.4f} | Running Time: {:.4f}’\

.format(self.name, GLOBAL_EP, MAX_GLOBAL_EP,
ep_r, time.time()-T0))

GLOBAL_EP += 1
break

The ACNet class used in the above is a simple class that includes actors and
critics. Its structure can be shown as follows:

class ACNet(object):
def __init__(self, scope):

...
def update_global(self, buffer_s, buffer_a, buffer_v_target,

globalAC):
...

def pull_global(self, globalAC): # run by a local, pull
weights from the global nets
...

def get_action(self, s, greedy=False): # run by a local
...

def save(self): # save trained weights
...

def load(self): # load trained weights
...

The update_global() function is the most important function. As we can
see, the function uses sampled data to calculate the gradients but applied to the
global networks. After that, update the data from global net and start the loop again.
In this way, multiple workers are updated asynchronously.

def update_global(
self, buffer_s, buffer_a, buffer_v_target, globalAC

): # refer to the global Actor-Crtic network for updating it
with samples
’’’ update the global critic ’’’
with tf.GradientTape() as tape:

self.v = self.critic(buffer_s)

5 Policy Gradient 195

self.v_target = buffer_v_target
td = tf.subtract(self.v_target, self.v, name=’TD_error’)
self.c_loss = tf.reduce_mean(tf.square(td))

self.c_grads = tape.gradient(self.c_loss,
self.critic.trainable_weights)

OPT_C.apply_gradients(zip(self.c_grads,
globalAC.critic.trainable_weights)) # local grads
applies to global net

del tape # Drop the reference to the tape
’’’ update the global actor ’’’
with tf.GradientTape() as tape:

self.mu, self.sigma = self.actor(buffer_s)
self.test = self.sigma[0]
self.mu, self.sigma = self.mu * A_BOUND[1], self.sigma

+ 1e-5

normal_dist = tfd.Normal(self.mu, self.sigma) # no
tf.contrib for tf2.0

self.a_his = buffer_a # float32
log_prob = normal_dist.log_prob(self.a_his)
exp_v = log_prob * td # td is from the critic part, no

gradients for it
entropy = normal_dist.entropy() # encourage exploration
self.exp_v = ENTROPY_BETA * entropy + exp_v
self.a_loss = tf.reduce_mean(-self.exp_v)

self.a_grads = tape.gradient(self.a_loss,
self.actor.trainable_weights)

OPT_A.apply_gradients(zip(self.a_grads,
globalAC.actor.trainable_weights)) # local grads
applies to global net

return self.test # for test purpose

The function of updating the local network is very simple, just simply replace the
parameters of local net with the parameters of global net.

def pull_global(self, globalAC): # run by a local, pull
weights from the global nets
for l_p, g_p in zip(self.actor.trainable_weights,

globalAC.actor.trainable_weights):
l_p.assign(g_p)

for l_p, g_p in zip(self.critic.trainable_weights,
globalAC.critic.trainable_weights):
l_p.assign(g_p)

Finally, start the threads in turn in the main function.

env = gym.make(GAME)
N_S = env.observation_space.shape[0]
N_A = env.action_space.shape[0]

A_BOUND = [env.action_space.low, env.action_space.high]
A_BOUND[0] = A_BOUND[0].reshape(1, N_A)
A_BOUND[1] = A_BOUND[1].reshape(1, N_A)

196 R. Huang et al.

with tf.device("/cpu:0"):
GLOBAL_AC = ACNet(GLOBAL_NET_SCOPE) # we only need its

params

T0 = time.time()
if args.train:

with tf.device("/cpu:0"):
OPT_A = tf.optimizers.RMSprop(LR_A, name=’RMSPropA’)
OPT_C = tf.optimizers.RMSprop(LR_C, name=’RMSPropC’)

workers = []
Create worker
for i in range(N_WORKERS):

i_name = ’Worker_%i’ % i # worker name
workers.append(Worker(i_name, GLOBAL_AC))

COORD = tf.train.Coordinator()

start TF threading
worker_threads = []
for worker in workers:

t = threading.Thread(target=worker.work)
job = lambda: worker.work(GLOBAL_AC)
t = threading.Thread(target=job)
t.start()
worker_threads.append(t)

COORD.join(worker_threads)

GLOBAL_AC.save()
plt.plot(GLOBAL_RUNNING_R)
if not os.path.exists(’image’):

os.makedirs(’image’)
plt.savefig(os.path.join(’image’, ’a3c.png’))

5.10.5 TRPO: Pendulum-v0

TRPO uses the trust region method to take the largest steps allowed under KL-
divergence constraints to improve the strategy. The example uses generalized
advantage estimator as well. Let us first see how GAE_Buffer is implemented.

class GAE_Buffer:
def __init__(self, obs_dim, act_dim, size, gamma=0.99,

lam=0.95): # initialize buffer
...

def store(self, obs, act, rew, val, logp, mean, log_std): #
store datas into the buffer
...

def finish_path(self, last_val=0): # compute advantage
estimates with GAE-Lambda

5 Policy Gradient 197

...
def _discount_cumsum(self, x, discount): # compute discounted

cumulative sums
...

def is_full(self): # returns whether the buffer is full or not
...

def get(self): # get all data from the buffer
...

We create buffers and variables that will be used later in the initialization
function.

class GAE_Buffer:
def __init__(self, obs_dim, act_dim, size, gamma=0.99,

lam=0.95):
self.obs_buf = np.zeros((size, obs_dim), dtype=np.float32)
self.act_buf = np.zeros((size, act_dim), dtype=np.float32)
self.adv_buf = np.zeros(size, dtype=np.float32)
self.rew_buf = np.zeros(size, dtype=np.float32)
self.ret_buf = np.zeros(size, dtype=np.float32)
self.val_buf = np.zeros(size, dtype=np.float32)
self.logp_buf = np.zeros(size, dtype=np.float32)
self.mean_buf = np.zeros(size, dtype=np.float32)
self.log_std_buf = np.zeros(size, dtype=np.float32)
self.gamma, self.lam = gamma, lam
self.ptr, self.path_start_idx, self.max_size = 0, 0, size

In the store() function, we store the data in the corresponding buffer and then
move the pointer.

def store(self, obs, act, rew, val, logp, mean, log_std):
assert self.ptr < self.max_size # buffer has to have room

so you can store
self.obs_buf[self.ptr] = obs
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.val_buf[self.ptr] = val
self.logp_buf[self.ptr] = logp
self.mean_buf[self.ptr] = mean
self.log_std_buf[self.ptr] = log_std
self.ptr += 1

The finish_path() function is called at the end of a trajectory or when an
epoch ends. It extracts the current trajectory to calculate GAE-Lambda advantage
and rewards-to-go which will be targets for the value function.

def finish_path(self, last_val=0):
path_slice = slice(self.path_start_idx, self.ptr)
rews = np.append(self.rew_buf[path_slice], last_val)
vals = np.append(self.val_buf[path_slice], last_val)
the next two lines implement GAE-Lambda advantage

calculation

198 R. Huang et al.

deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1]
self.adv_buf[path_slice] = self._discount_cumsum(deltas,

self.gamma * self.lam)

the next line computes rewards-to-go, to be targets for
the value function

self.ret_buf[path_slice] = self._discount_cumsum(rews,
self.gamma)[:-1]

self.path_start_idx = self.ptr

The _discount_cumsum() function we used in the previous function is
shown below. We used SciPy(an open source library) build-in function to do this.

def _discount_cumsum(self, x, discount):
return scipy.signal.lfilter([1], [1, float(-discount)],

x[::-1], axis=0)[::-1]

The is_full() function simply checks whether the pointer reaches the end.

def is_full(self):
return self.ptr == self.max_size

When the buffer is full, we fetch the data and reset the pointer. Here we use the
advantage normalization trick.

def get(self):
assert self.ptr == self.max_size # buffer has to be full

before you can get
self.ptr, self.path_start_idx = 0, 0

the next two lines implement the advantage normalization
trick

adv_mean, adv_std = np.mean(self.adv_buf),
np.std(self.adv_buf)

self.adv_buf = (self.adv_buf - adv_mean) / adv_std
return [self.obs_buf, self.act_buf, self.adv_buf,

self.ret_buf, self.logp_buf, self.mean_buf,
self.log_std_buf]

Next we will describe the TRPO class. Its structure is shown below.

class TRPO:
def __init__(self, state_dim, action_dim, action_bound): #

create networks, optimizers and variables.
...

def get_action(self, state, greedy=False): # get action and
other values
...

def pi_loss(self, states, actions, adv, old_log_prob): #
calculate policy loss
...

5 Policy Gradient 199

def gradient(self, states, actions, adv, old_log_prob): #
calculate the gradient of the policy network
...

def train_vf(self, states, rewards_to_go): # train value
function
...

def kl(self, states, old_mean, old_log_std): # calculate
kl-divergence
...

def _flat_concat(self, xs): # flatten variables
...

def get_pi_params(self): # get parameters of the policy
network
...

def set_pi_params(self, flat_params): # set parameters of the
policy network
...

def save(self): # save parameters
...

def load(self): # load parameters
...

def cg(self, Ax, b): # conjugate gradient algorithm
...

def hvp(self, states, old_mean, old_log_std, x): # calculate
Hessian-vector product
...

def update(self): # update all networks
...

def finish_path(self, done, next_state): # finish a trajectory
...

As usual, we set up the network, optimizer, and other variables in the initial-
ization function. Here the policy network only outputs the mean value of each
action dimension. We use a single variable as the log std value to act on all action
dimensions.

class TRPO:
def __init__(self, state_dim, action_dim, action_bound):

critic
with tf.name_scope(’critic’):

layer = input_layer = tl.layers.Input([None,
state_dim], tf.float32)

for d in HIDDEN_SIZES:
layer = tl.layers.Dense(d, tf.nn.relu)(layer)

v = tl.layers.Dense(1)(layer)
self.critic = tl.models.Model(input_layer, v)
self.critic.train()

actor
with tf.name_scope(’actor’):

layer = input_layer = tl.layers.Input([None,
state_dim], tf.float32)

for d in HIDDEN_SIZES:

200 R. Huang et al.

layer = tl.layers.Dense(d, tf.nn.relu)(layer)
mean = tl.layers.Dense(action_dim, tf.nn.tanh)(layer)
mean = tl.layers.Lambda(lambda x: x *

action_bound)(mean)
log_std = tf.Variable(np.zeros(action_dim,

dtype=np.float32))

self.actor = tl.models.Model(input_layer, mean)
self.actor.trainable_weights.append(log_std)
self.actor.log_std = log_std
self.actor.train()

self.buf = GAE_Buffer(state_dim, action_dim, BATCH_SIZE,
GAMMA, LAM)

self.critic_optimizer =
tf.optimizers.Adam(learning_rate=VF_LR)

self.action_bound = action_bound

With the network, we can use the following function to get the action correspond-
ing to the state. Besides, we need to calculate some additional data to store in the
GAE buffer.

def get_action(self, state, greedy=False):
state = np.array([state], np.float32)
mean = self.actor(state)
log_std = tf.convert_to_tensor(self.actor.log_std)
std = tf.exp(log_std)
std = tf.ones_like(mean) * std
pi = tfp.distributions.Normal(mean, std)

if greedy:
action = mean

else:
action = pi.sample()

action = np.clip(action, -self.action_bound,
self.action_bound)

logp_pi = pi.log_prob(action)

value = self.critic(state)
return action[0], value, logp_pi, mean, log_std

The following code shows how policy loss is calculated. We firstly calculate
surrogate advantage, a measure of how current policy performs relative to the old
policy using data from the old policy. And then use the negative surrogate advantage
as policy loss.

def pi_loss(self, states, actions, adv, old_log_prob):
mean = self.actor(states)
pi = tfp.distributions.Normal(mean,

tf.exp(self.actor.log_std))
log_prob = pi.log_prob(actions)[:, 0]
ratio = tf.exp(log_prob - old_log_prob)

5 Policy Gradient 201

surr = tf.reduce_mean(ratio * adv)
return -surr

By calling the previously defined pi_loss() function, we can easily calculate
the gradient.

def gradient(self, states, actions, adv, old_log_prob):
pi_params = self.actor.trainable_weights
with tf.GradientTape() as tape:

loss = self.pi_loss(states, actions, adv, old_log_prob)
grad = tape.gradient(loss, pi_params)
gradient = self._flat_concat(grad)
return gradient, loss

The way to train the value network is shown below. Just fit value function by
regression on mean-squared error

def train_vf(self, states, rewards_to_go):
with tf.GradientTape() as tape:

value = self.critic(states)
loss = tf.reduce_mean((rewards_to_go - value[:, 0]) **

2)
grad = tape.gradient(loss, self.critic.trainable_weights)
self.critic_optimizer.apply_gradients(zip(grad,

self.critic.trainable_weights))

The way to calculate the KL-divergence is as follows. We first generate action
distributions based on the mean and std values, and then calculate the KL-
divergence.

def kl(self, states, old_mean, old_log_std):
old_mean = old_mean[:, np.newaxis]
old_log_std = old_log_std[:, np.newaxis]
old_std = tf.exp(old_log_std)
old_pi = tfp.distributions.Normal(old_mean, old_std)

mean = self.actor(states)
std = tf.exp(self.actor.log_std)*tf.ones_like(mean)
pi = tfp.distributions.Normal(mean, std)

kl = tfp.distributions.kl_divergence(pi, old_pi)
all_kls = tf.reduce_sum(kl, axis=1)
return tf.reduce_mean(all_kls)

In this example code, many parameters are flattened by the _flat_concat()
function. In this way we can simplify many calculations.

def _flat_concat(self, xs):
return tf.concat([tf.reshape(x, (-1,)) for x in xs],

axis=0)

202 R. Huang et al.

When using the _flat_concat() function, the process of get and set
parameters needs some simple processing.

def get_pi_params(self):
pi_params = self.actor.trainable_weights
return self._flat_concat(pi_params)

def set_pi_params(self, flat_params):
pi_params = self.actor.trainable_weights
flat_size = lambda p: int(np.prod(p.shape.as_list())) #

the ’int’ is important for scalars
splits = tf.split(flat_params, [flat_size(p) for p in

pi_params])
new_params = [tf.reshape(p_new, p.shape) for p, p_new in

zip(pi_params, splits)]
return tf.group([p.assign(p_new) for p, p_new in

zip(pi_params, new_params)])

The save and load functions are the same as before.

def save(self):
path = os.path.join(’model’, ’trpo’)
if not os.path.exists(path):

os.makedirs(path)
tl.files.save_weights_to_hdf5(os.path.join(path,

’actor.hdf5’), self.actor)
tl.files.save_weights_to_hdf5(os.path.join(path,

’critic.hdf5’), self.critic)

def load(self):
path = os.path.join(’model’, ’trpo’)
tl.files.load_hdf5_to_weights_in_order(os.path.join(path,

’actor.hdf5’), self.actor)
tl.files.load_hdf5_to_weights_in_order(os.path.join(path,

’critic.hdf5’), self.critic)

The following code implements the conjugate gradient algorithm.7 By using this
function can compute the matrix-vector product instead of computing and storing
the whole matrix directly.

def cg(self, Ax, b):
x = np.zeros_like(b)
r = copy.deepcopy(b) # Note: should be ’b - Ax(x)’, but

for x=0, Ax(x)=0. Change if doing warm start.
p = copy.deepcopy(r)
r_dot_old = np.dot(r, r)
for _ in range(CG_ITERS):

z = Ax(p)
alpha = r_dot_old / (np.dot(p, z) + EPS)

7https://en.wikipedia.org/wiki/Conjugate_gradient_method.

https://en.wikipedia.org/wiki/Conjugate_gradient_method

5 Policy Gradient 203

x += alpha * p
r -= alpha * z
r_dot_new = np.dot(r, r)
p = r + (r_dot_new / r_dot_old) * p
r_dot_old = r_dot_new

return x

The following code shows the process of calculating Hessian-vector product by

using the Hx = ∇θ

((∇θ D̄KL(θ ||θk)
)T

x
)

formula. Damping coefficient is used

here to change calculation Hx → (αI + H)x for numerical stability.

def hvp(self, states, old_mean, old_log_std, x):
pi_params = self.actor.trainable_weights
with tf.GradientTape() as tape1:

with tf.GradientTape() as tape0:
d_kl = self.kl(states, old_mean, old_log_std)

g = self._flat_concat(tape0.gradient(d_kl, pi_params))
l = tf.reduce_sum(g * x)

hvp = self._flat_concat(tape1.gradient(l, pi_params))

if DAMPING_COEFF > 0:
hvp += DAMPING_COEFF * x

return hvp

With the above preparations, we can finally start to update. Firstly, we sample
data from the GAE buffer and calculate the gradient and loss. Next, we use the
conjugate gradient algorithm to calculate variable x which corresponds to x̂k in

the formula x̂k ≈ Ĥ−1
k ĝk . Then, we calculate the

√
2δ

x̂T
k Ĥkx̂k

part in the formula

θk+1 = θk + αj

√
2δ

x̂T
k Ĥkx̂k

x̂k . After that, use the backtracking line search to update

the policy net. And finally, update value function by MSE loss.

def update(self):
states, actions, adv, rewards_to_go, logp_old_ph, old_mu,

old_log_std = self.buf.get()
g, pi_l_old = self.gradient(states, actions, adv,

logp_old_ph)

Hx = lambda x: self.hvp(states, old_mu, old_log_std, x)
x = self.cg(Hx, g)

alpha = np.sqrt(2 * DELTA / (np.dot(x, Hx(x)) + EPS))
old_params = self.get_pi_params()

def set_and_eval(step):
params = old_params - alpha * x * step
self.set_pi_params(params)
d_kl = self.kl(states, old_mu, old_log_std)
loss = self.pi_loss(states, actions, adv, logp_old_ph)

204 R. Huang et al.

return [d_kl, loss]

trpo with backtracking line search, hard kl
for j in range(BACKTRACK_ITERS):

kl, pi_l_new = set_and_eval(step=BACKTRACK_COEFF ** j)
if kl <= DELTA and pi_l_new <= pi_l_old:

Accepting new params at step of line search
break

else:
Line search failed! Keeping old params.
set_and_eval(step=0.)

Value function updates
for _ in range(TRAIN_V_ITERS):

self.train_vf(states, rewards_to_go)

A finish_path() function is also needed when cutting off a trajectory or
when an epoch is over. If the trajectory finished because the agent reached a terminal
state, the last value should be 0.

def finish_path(self, done, next_state):
if not done:

next_state = np.array([next_state], np.float32)
last_val = self.critic(next_state)

else:
last_val = 0

self.buf.finish_path(last_val)

The main loop of the code is shown below. We create the environment, agent,
and some useful variable at first.

env = gym.make(ENV_ID).unwrapped

reproducible
np.random.seed(RANDOM_SEED)
tf.random.set_seed(RANDOM_SEED)
env.seed(RANDOM_SEED)

state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
action_bound = env.action_space.high

agent = TRPO(state_dim, action_dim, action_bound)
t0 = time.time()

In the training mode, we store the data generated by the interaction between the
agent and the environment into the buffer, and train it once the buffer is full.

if args.train: # train
all_episode_reward = []
for episode in range(TRAIN_EPISODES):

state = env.reset()

5 Policy Gradient 205

state = np.array(state, np.float32)
episode_reward = 0
for step in range(MAX_STEPS):

if RENDER:
env.render()

action, value, logp, mean, log_std =
agent.get_action(state)

next_state, reward, done, _ = env.step(action)
next_state = np.array(next_state, np.float32)
agent.buf.store(state, action, reward, value, logp,

mean, log_std)
episode_reward += reward
state = next_state
if agent.buf.is_full():

agent.finish_path(done, next_state)
agent.update()

if done:
break

agent.finish_path(done, next_state)
if episode == 0:

all_episode_reward.append(episode_reward)
else:

all_episode_reward.append(all_episode_reward[-1] *
0.9 + episode_reward * 0.1)

print(
’Training | Episode: {}/{} | Episode Reward: {:.4f}

| Running Time: {:.4f}’.format(
episode+1, TRAIN_EPISODES, episode_reward,
time.time() - t0

)
)
if episode % SAVE_FREQ == 0:

agent.save()
agent.save()

Then add plot code to facilitate the observation of the training process

plt.plot(all_episode_reward)
if not os.path.exists(’image’):

os.makedirs(’image’)
plt.savefig(os.path.join(’image’, ’trpo.png’))

After training is complete, we can start testing the model

if args.test:
test
agent.load()
for episode in range(TEST_EPISODES):

state = env.reset()
episode_reward = 0
for step in range(MAX_STEPS):

env.render()
action, *_ = agent.get_action(state, greedy=True)

206 R. Huang et al.

state, reward, done, info = env.step(action)
episode_reward += reward
if done:

break
print(

’Testing | Episode: {}/{} | Episode Reward: {:.4f} |
Running Time: {:.4f}’.format(
episode + 1, TEST_EPISODES, episode_reward,
time.time() - t0))

5.10.6 PPO: Pendulum-v0

PPO is a family of first-order methods, which is different from TRPO’s second-order
method.

In PPO-Penalty, the objective function has a KL-divergence penalty term to solve
a KL-constrained update like TRPO. The structure of the PPO class is shown as
follows:

class PPO(object):
def __init__(self, state_dim, action_dim, action_bound,

method=’clip’): # initialization function, create
actor_old, actor and critic.
...

def train_actor(self, state, action, adv, old_pi): # actor
training function
...

def train_critic(self, reward, state): # critic training
function
...

def update(self): # the main training function
...

def get_action(self, s, greedy=False): # choose action
...

def save(self): # save networks
...

def load(self): # load networks
...

def store_transition(self, state, action, reward): # Store
state, action, reward at each step
...

def finish_path(self, next_state): # Calculate cumulative
reward
...

In the PPO algorithm, we build both actor and critic in the initialization function.
PPO has two method: PPO-Penalty and PPO-Clip. We can set the corresponding
parameters according to different methods. Since the environment is continuous

5 Policy Gradient 207

motion control, we use the random stochastic policy network to output mean and
log standard deviation to represent the action distribution. In addition, we used a
lambda layer here to multiply mean value by 2 because the action range of the
‘Pendulum-v0’ environment is [−2, 2].

class PPO(object):
def __init__(self, state_dim, action_dim, action_bound,

method=’clip’):
critic
with tf.name_scope(’critic’):

inputs = tl.layers.Input([None, state_dim], tf.float32,
’state’)

layer = tl.layers.Dense(64, tf.nn.relu)(inputs)
layer = tl.layers.Dense(64, tf.nn.relu)(layer)
v = tl.layers.Dense(1)(layer)

self.critic = tl.models.Model(inputs, v)
self.critic.train()

actor
with tf.name_scope(’actor’):

inputs = tl.layers.Input([None, state_dim], tf.float32,
’state’)

layer = tl.layers.Dense(64, tf.nn.relu)(inputs)
layer = tl.layers.Dense(64, tf.nn.relu)(layer)
a = tl.layers.Dense(action_dim, tf.nn.tanh)(layer)
mean = tl.layers.Lambda(lambda x: x * action_bound,

name=’lambda’)(a)
logstd = tf.Variable(np.zeros(action_dim,

dtype=np.float32))
self.actor = tl.models.Model(inputs, mean)
self.actor.trainable_weights.append(logstd)
self.actor.logstd = logstd
self.actor.train()
self.actor_opt = tf.optimizers.Adam(LR_A)
self.critic_opt = tf.optimizers.Adam(LR_C)

self.method = method
if method == ’penalty’:

self.kl_target = KL_TARGET
self.lam = LAM

elif method == ’clip’:
self.epsilon = EPSILON

self.state_buffer, self.action_buffer = [], []
self.reward_buffer, self.cumulative_reward_buffer = [], []
self.action_bound = action_bound

The actor training function updates actor by using PPO method. PPO uses
specialized objective function to prevent the new strategy to get far from the old
one.

208 R. Huang et al.

def train_actor(self, state, action, adv, old_pi):
with tf.GradientTape() as tape:

mean, std = self.actor(state), tf.exp(self.actor.logstd)
pi = tfp.distributions.Normal(mean, std)

ratio = tf.exp(pi.log_prob(action) -
old_pi.log_prob(action))

surr = ratio * adv
if self.method == ’penalty’: # ppo penalty

kl = tfp.distributions.kl_divergence(old_pi, pi)
kl_mean = tf.reduce_mean(kl)
aloss = -(tf.reduce_mean(surr - self.lam * kl))

else: # ppo clip
aloss = -tf.reduce_mean(

tf.minimum(surr,
tf.clip_by_value(ratio, 1. -

self.epsilon, 1. + self.epsilon) *
adv)

)
a_gard = tape.gradient(aloss, self.actor.trainable_weights)
self.actor_opt.apply_gradients(zip(a_gard,

self.actor.trainable_weights))

if self.method == ’kl_pen’:
return kl_mean

The critic training function update critic is shown as follows. Just calculate the
advantage and minimize the loss function

∑
t Â2

t .

def train_critic(self, reward, state):
reward = np.array(reward, dtype=np.float32)
with tf.GradientTape() as tape:

advantage = reward - self.critic(state)
loss = tf.reduce_mean(tf.square(advantage))

grad = tape.gradient(loss, self.critic.trainable_weights)
self.critic_opt.apply_gradients(zip(grad,

self.critic.trainable_weights))

In the update() function, we first calculate the old pi distribution and then
perform the update step. If we use the PPO-Penalty method, we also need to update
the lambda value according to the KL-divergence after updating the actor.

def update(self):
s = np.array(self.state_buffer, np.float32)
a = np.array(self.action_buffer, np.float32)
r = np.array(self.cumulative_reward_buffer, np.float32)
mean, std = self.actor(s), tf.exp(self.actor.logstd)
pi = tfp.distributions.Normal(mean, std)
adv = r - self.critic(s)

update actor

5 Policy Gradient 209

if self.method == ’kl_pen’:
for _ in range(A_UPDATE_STEPS):

kl = self.a_train(s, a, adv, pi)
if kl < self.kl_target / 1.5:

self.lam /= 2
elif kl > self.kl_target * 1.5:

self.lam *= 2
else:

for _ in range(A_UPDATE_STEPS):
self.a_train(s, a, adv, pi)

update critic
for _ in range(C_UPDATE_STEPS):

self.c_train(r, s)

self.state_buffer.clear()
self.action_buffer.clear()
self.cumulative_reward_buffer.clear()
self.reward_buffer.clear()

The get_action() function feeds the current state into the network to obtain
the mean and standard deviation of the current action distribution. With this action
distribution, we can sample actions.

def get_action(self, s, greedy=False):
state = state[np.newaxis, :].astype(np.float32)
mean, std = self.actor(state), tf.exp(self.actor.logstd)
if greedy:

action = mean[0]
else:

pi = tfp.distributions.Normal(mean, std)
action = tf.squeeze(pi.sample(1), axis=0)[0] # choosing

action
return np.clip(action, -self.action_bound,

self.action_bound)

The save(), load(), store_transition() functions are similar to the
previous codes and will not be explained here. The finish_path() function
is used to calculate cumulative reward when the game ends or a batch of data is
collected.

def finish_path(self, next_state, done):
if done:

v_s_ = 0
else:

v_s_ = self.critic(np.array([next_state],
np.float32))[0, 0]

discounted_r = []
for r in self.reward_buffer[::-1]:

v_s_ = r + GAMMA * v_s_
discounted_r.append(v_s_)

discounted_r.reverse()

210 R. Huang et al.

discounted_r = np.array(discounted_r)[:, np.newaxis]
self.cumulative_reward_buffer.extend(discounted_r)
self.reward_buffer.clear()

The main function is quite similar. Firstly, create environment and PPO agent.

env = gym.make(ENV_ID).unwrapped

reproducible
env.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
tf.random.set_seed(RANDOM_SEED)

state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
action_bound = env.action_space.high

agent = PPO(state_dim, action_dim, action_bound)
t0 = time.time()

Then use the agent to interact with the environment and store data. After a
game ends or collected enough data, run finish_path() function to calculate
cumulative reward. Update the agent when a batch of data is collected. After many
studies, the agent can play the game very well.

if args.train:
all_episode_reward = []
for episode in range(TRAIN_EPISODES):

state = env.reset()
episode_reward = 0
for step in range(MAX_STEPS): # in one episode

if RENDER:
env.render()

action = agent.get_action(state)
state_, reward, done, info = env.step(action)
agent.store_transition(state, action, reward)
state = state_
episode_reward += reward

update ppo
if len(agent.state_buffer) >= BATCH_SIZE:

agent.finish_path(state_, done)
agent.update()

if done:
break

agent.finish_path(state_, done)
print(

’Training | Episode: {}/{} | Episode Reward: {:.4f}
| Running Time: {:.4f}’.format(
episode + 1, TRAIN_EPISODES, episode_reward,

time.time() - t0)
)

5 Policy Gradient 211

if episode == 0:
all_episode_reward.append(episode_reward)

else:
all_episode_reward.append(all_episode_reward[-1] *

0.9 + episode_reward * 0.1)

agent.save()
plt.plot(all_episode_reward)
if not os.path.exists(’image’):

os.makedirs(’image’)
plt.savefig(os.path.join(’image’, ’ppo.png’))

Finally, test the agent as usual.

if args.test:
test
agent.load()
for episode in range(TEST_EPISODES):

state = env.reset()
episode_reward = 0
for step in range(MAX_STEPS):

env.render()
state, reward, done, info =

env.step(agent.get_action(state, greedy=True))
episode_reward += reward
if done:

break
print(

’Testing | Episode: {}/{} | Episode Reward: {:.4f} |
Running Time: {:.4f}’.format(
episode + 1, TEST_EPISODES, episode_reward,
time.time() - t0))

References

Amari SI (1998) Natural gradient works efficiently in learning. Neural Comput 10(2):251–276
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio

Y (2014) Generative adversarial nets. In: Proceedings of the neural information processing
systems (Advances in neural information processing systems) conference

Grosse R, Martens J (2016) A Kronecker-factored approximate fisher matrix for convolution
layers. In: International conference on machine learning (ICML), pp 573–582

Heess N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami S, Riedmiller
M, et al (2017) Emergence of locomotion behaviours in rich environments. arXiv:170702286

Kakade S, Langford J (2002) Approximately optimal approximate reinforcement learning. In:
Proceedings of the international conference on machine learning (ICML), vol 2, pp 267–274

Konda VR, Tsitsiklis JN (2000) Actor-critic algorithms. In: Advances in neural information
processing systems, pp 1008–1014

Li J, Wang B (2018) Policy optimization with second-order advantage information.
arXiv:180503586

212 R. Huang et al.

Liu H, Feng Y, Mao Y, Zhou D, Peng J, Liu Q (2017) Action-dependent control variates for policy
optimization via stein’s identity. arXiv:171011198

Martens J, Grosse R (2015) Optimizing neural networks with Kronecker-factored approximate
curvature. In: International conference on machine learning (ICML), pp 2408–2417

Mitliagkas I, Zhang C, Hadjis S, Ré C (2016) Asynchrony begets momentum, with an application
to deep learning. In: 2016 54th annual Allerton conference on communication, control, and
computing (Allerton). IEEE, Piscataway, pp 997–1004

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016)
Asynchronous methods for deep reinforcement learning. In: International Conference on
Machine Learning (ICML), pp 1928–1937

Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust region policy optimization. In:
International conference on machine learning (ICML), pp 1889–1897

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization
algorithms. arXiv:170706347

Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforce-
ment learning with function approximation. In: Advances in neural information processing
systems, pp 1057–1063

Wu Y, Mansimov E, Grosse RB, Liao S, Ba J (2017) Scalable trust-region method for deep
reinforcement learning using Kronecker-factored approximation. In: Advances in neural
information processing systems, pp 5279–5288

Wu C, Rajeswaran A, Duan Y, Kumar V, Bayen AM, Kakade S, Mordatch I, Abbeel P
(2018) Variance reduction for policy gradient with action-dependent factorized baselines.
arXiv:180307246

Chapter 6
Combine Deep Q-Networks
with Actor-Critic

Hongming Zhang, Tianyang Yu, and Ruitong Huang

Abstract The deep Q-network algorithm is one of the most well-known deep
reinforcement learning algorithms, which combines reinforcement learning with
deep neural networks to approximate the optimal action-value functions. It receives
only the pixels as inputs and achieves human-level performance on Atari games.
Actor-critic methods transform the Monte Carlo update of the REINFORCE
algorithm into the temporal-difference update for learning the policy parameters.
Recently, some algorithms that combine deep Q-networks with actor-critic methods
such as the deep deterministic policy gradient algorithm are very popular. These
algorithms take advantages of both methods and perform well in most environments
especially with continuous action spaces. In this chapter, we give a brief introduction
of the advantages and disadvantages of each kind of method, then introduce some
classical algorithms that combine deep Q-networks and actor-critic like the deep
deterministic policy gradient algorithm, the twin delayed deep deterministic policy
gradient algorithm, and the soft actor-critic algorithm.

Keywords Deep Q-network · Actor-critic · Deep deterministic policy gradient ·
Twin delayed deep deterministic policy gradient · Soft actor-critic

6.1 Introduction

The deep Q-network (DQN) (Mnih et al. 2015) algorithm is a classical off-policy
method. It combines the Q-learning algorithm with a deep neural network to realize
end-to-end learning from visual inputs to decision outputs. This algorithm has

H. Zhang (�)
Peking University, Beijing, China
e-mail: zhanghongming@pku.edu.cn

T. Yu
Nanchang University, Nanchang, China

R. Huang
Borealis AI, Toronto, ON, Canada

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_6

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_6&domain=pdf
mailto:zhanghongming@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_6

214 H. Zhang et al.

Table 6.1 Characteristics of DQN and actor-critic

Algorithm On-policy/off-policy Sample efficiency Action space

DQN Off-policy High Discrete

Actor-critic On-policy Low Continuous

DQN+Actor-critic Off-policy High Discrete and continuous

achieved human-level performance on Atari games using raw pixel inputs. However,
while the inputs can be unprocessed and high-dimensional observation spaces, DQN
can only handle discrete and low-dimensional action spaces. For continuous and
high-dimensional action spaces, DQN fails to calculate the Q value of each action.

The actor-critic (AC) (Sutton and Barto 2018) method is an extension of the
REINFORCE (Sutton and Barto 2018) algorithm. By incorporating a critic, this
method transforms policy gradient’s Monte Carlo update into a temporal-difference
update. Through this multi-step method, the degree of bootstrapping can be flexibly
selected, so the update of policy does not need to wait until the end of the game.
Though some bias will be introduced in temporal-difference update, it can reduce
variances and accelerate the learning. However, the original actor-critic method is
still an on-policy algorithm, and the sample efficiency of on-policy methods is much
lower than off-policy methods.

Combining DQN with actor-critic can take advantages of both algorithms.
Because of DQN, actor-critic methods are transformed into off-policy methods.
Networks can be trained with samples from a replay buffer that improves sample
efficiency. Sampling from a replay buffer can also minimize correlations between
samples, which can learn value functions in a stable and robust way. Also, due to the
actor-critic method, we can easily handle problems with continuous action spaces
by using a network to learn a policy π (Table 6.1).

Next, we introduce some classical algorithms: the deep deterministic policy
gradient (DDPG) algorithm (Lillicrap et al. 2015), and its improvements: the twin
delayed deep deterministic policy gradient (TD3) algorithm (Fujimoto et al. 2018)
and the soft actor-critic (SAC) algorithm (Haarnoja et al. 2018a).

6.2 Deep Deterministic Policy Gradient (DDPG)

The deep deterministic policy gradient (DDPG) algorithm can be regarded as a
combination of the deterministic policy gradient (DPG) algorithm (Silver et al.
2014) and deep neural networks; The DDPG algorithm can also be viewed as an
extension of the DQN algorithm in continuous action space. It wants to tackle
the problem with continuous action spaces that DQN cannot be straightforwardly
applied to. DDPG establishes a Q function (critic) and a policy function (actor)
simultaneously. The Q function (critic) is the same with DQN, temporal-difference

6 Combine Deep Q-Networks with Actor-Critic 215

methods (TD methods) are used to update it. The policy gradient algorithm is used
to update the policy function (actor) through the value from Q function (critic).

In DDPG, the actor is a deterministic policy function, denoted as π(s), and the
parameter is denoted as θπ . The action of each step is calculated directly by At =
π(St |θπ

t), which does not need to sample from a stochastic policy.
A critical problem here is how to balance exploration and exploitation with this

deterministic policy. In DDPG, noises sampled from a noise process N are added to
actions when training. The action is At = π(St |θπ

t)+Nt . N can be chosen according
to the specific task; the original paper uses an Ornstein–Uhlenbeck process (O–U
process) (Uhlenbeck and Ornstein 1930).

The O–U process satisfies the following stochastic differential equation:

dXt = θ(π −Xt)dt + σdWt, (6.1)

where Xt is a random variable, θ > 0, x, σ > 0 are parameters. Wt is a Wiener
process or named Brownian Motion (It and McKean 1965), which has the following
properties:

• Wt is a process with independent increments, which means for times T0 < T1 <

. . . < Tn, random variables WT0 ,WT1 −WT0 , . . . ,WTn −WTn−1 are independent.
• For any time t and �t , W(t +�t)−W(t) ∼ N(0, σ 2

W �t).
• Wt is a continuous function about t .

We know the Markov Decision Process (MDP) is based on Markov Chains; MDP
satisfies the property p(Xt+1|Xt, . . . , X1) = p(Xt+1|Xt), where Xt is a random
variable at time step t . This means the random variable Xt is conditioned on the
last time step’s random variable Xt−1, which is time-correlated. The O–U noise is
also time-correlated, which conforms to the property of Markov Decision Process
(MDP). However, more recent results suggest that time-uncorrelated, mean-zero
Gaussian noise also works well.

Back to the algorithm, the action-value function Q(s, a|θQ) is learned using the
Bellman equation as in DQN.

In the state St , the next state St+1 and the return Rt are obtained by executing
action At = π(St |θπ

t) through the policy π . We have

Qπ(St , At) = E[r(St , At)+ γQπ(St+1, π(St+1))]. (6.2)

Then we can compute the Q value:

Yi = Ri + γQπ(St+1, π(St+1)). (6.3)

Using gradient descent to minimize the loss function:

L = 1

N

∑
i

(
Yi −Q(Si ,Ai |θQ)

)2
. (6.4)

216 H. Zhang et al.

The policy function π is updated by applying the chain rule to the expected
return from the start distribution J . Here, J = ERi ,Si∼E,Ai∼π [R1] (E denotes the
environment) and Rt =∑T

i=t γ (i−t)r(Si , Ai). We have

∇θπ J ≈ESt∼ρβ

[
∇θπ Q

(
s, a|θQ

)
|s=St ,a=π(St |θπ)

]
,

=ESt∼ρβ

[
∇aQ

(
s, a|θQ

)
|s=St ,a=π(St)∇θπ π

(
s|θπ
) |s=St

]
.

(6.5)

Learning in mini-batches:

∇θπ J ≈ 1

N

∑
i

∇aQ
(
s, a|θQ

)
|s=Si,a=π(Si)∇θπ π

(
s|θπ
) |Si . (6.6)

In addition, DDPG adopts a similar way of the target network like DQN, but it
updates network parameters by exponential smoothing rather than directly copying
the parameters:

θQ′ ← ρθQ + (1 − ρ)θQ′
, (6.7)

θπ ′ ← ρθπ + (1 − ρ)θπ ′
. (6.8)

Since the hyperparameter ρ � 1 here, the target network changes very slowly
and smoothly, which improves the stability of learning.

The whole pseudocode shows in Algorithm 1.

6.3 Twin Delayed Deep Deterministic Policy Gradient (TD3)

The twin delayed deep deterministic policy gradient (TD3) algorithm is an improve-
ment of DDPG, where three critical techniques are used:

1. Clipped double Q-learning for actor-critic: learn two Q-value functions, which
is similar to double Q-learning.

2. Target networks and delayed policy updates: update the policy (and the target
network) less frequently than the Q-value function.

3. Target policy smoothing regularization: Add noise to the target action to smooth
the Q-value function and avoid overfitting.

For the first technique, we know that in DQN, there is an overestimation problem
due to the existence of the max operation, this problem also exists in DDPG, because
Q(s, a) is updated in the same way as DQN

Q(s, a) ← Ra
s + γ max

â
Q
(
s′, â
)
. (6.9)

6 Combine Deep Q-Networks with Actor-Critic 217

Algorithm 1 DDPG
Hyperparameters: soft update factor ρ, reward discount factor γ

Input empty replay buffer D, initialize parameters θQ of critic network Q(s, a|θQ) and
parameters θπ of actor network π(s|θπ), target network Q′ and π ′
Initialize target network Q′ and π ′ with weights θQ′ ← θQ, θπ ′ ← θπ

for episode = 1,M do
Initialize a random process N for action exploration
Receive initial observation state S1
for t = 1, T do

Selection action At = π(St |θπ)+Nt

Execute action At and observe reward Rt , and observe new state St+1
Store transion (St , At , Rt ,Dt , St+1) in D
Set Yi = Ri + γ (1 − Dt)Q

′(St+1, π
′(St+1|θπ ′

)|θQ′
)

Update critic by minimizing the loss:

L = 1

N

∑
i

(Yi −Q(Si, Ai |θQ))2

Update the actor policy using the sampled policy gradient:

∇θπ J ≈ 1

N

∑
i

∇aQ(s, a|θQ)|s=Si ,a=π(Si)∇θπ π(s|θπ)|Si

Update the target networks:
θQ′ ← ρθQ + (1 − ρ)θQ′

θπ ′ ← ρθπ + (1 − ρ)θπ ′

end for
end for

This is not a problem in the tabular case, because the Q-values are stored
precisely. However, when we use a network as a function approximator in a more
complex case, the estimation of Q-value will be noisy. That is to say:

Qapprox(s′, â) = Qtarget
(
s′, â
)+ Y â

s ′ , (6.10)

where Y â
s ′ is a noise with zero mean. But with the max operator, the noise induces a

difference between Qapprox and Qtarget . Denote the difference as Zs , we have

Zs
def=Ra

s + γ max
â

Qapprox
(
s′, â
)−
(

Ra
s + γ max

â
Qtarget(s′, â)

)
,

=γ

(
max

â
Qapprox(s′, â) − max

â
Qtarget(s′, â)

)
.

(6.11)

Considering the noise Y â
s ′ , some of the Q-values might be too small, while others

might be too large. The max operator always picks the largest value for each state,

218 H. Zhang et al.

which will make it sensitive to overestimate the correct Q-values for some actions.
In this case, this noise will lead to E[Zs] > 0 and cause the overestimation problem.

The TD3 algorithm incorporates the idea of double Q-learning in DDPG; it
establishes two Q-value networks to compute the value of the next state:

Qθ ′1
(
s′, a′

) = Qθ ′1
(
s′, πφ1(s

′)
)
, (6.12)

Qθ ′2
(
s′, a′

) = Qθ ′2
(
s′, πφ1(s

′)
)
. (6.13)

Use the minimum of the two values (clipped) to compute the Bellman equation:

Y1 = r + γ min
i=1,2

Qθ ′i
(
s′, πφ1(s

′)
)
. (6.14)

With clipped double Q-learning, the value target will not introduce additional
overestimation over using the standard Q-learning target. While this update rule
may induce an underestimation bias, this is preferable to an overestimation bias.
Because unlike overestimated actions, the value of underestimated actions will not
be explicitly propagated through the policy update (Fujimoto et al. 2018).

For the second technique, we know that the target network is a good tool to
achieve stability in deep reinforcement learning. As deep function approximators
require multiple gradient updates to converge, target networks provide a stable
objective in the learning procedure and allow better coverage of the training data.
So, if target networks can be used to reduce the error over multiple updates, and
policy updates on high-error states cause divergent behavior, then the policy network
should be updated at a lower frequency than the value network, to first minimize
error before introducing a policy update. In this way, the TD3 algorithm reduces
the update frequency of the policy function. It only updates the policy and target
networks after a fixed number of updates d to the critic. The less frequent policy
updates can make the update of Q-value function has a smaller variance, and thus a
higher quality policy can be obtained.

For the third technique, a concern with deterministic policies is that they can
overfit to narrow peaks in the value estimate. In TD3 paper, the author enforces the
notion that similar actions should have similar value, so fitting the value of a small
area around the target action makes sense:

y = r + Eε

[
Qθ ′
(
s′, πφ′ (s

′) + ε
)]

. (6.15)

By adding a truncated normal distribution noise to each action as a regularization,
the computation of Q-values can be smoothed to avoid overfitting.

This makes a modified target update:

y = r + γQθ ′
(
s′, πφ′ (s

′) + ε
)
, ε ∼ clip(N(0, σ),−c, c). (6.16)

The whole pseudocode shows in Algorithm 2.

6 Combine Deep Q-Networks with Actor-Critic 219

Algorithm 2 TD3
1: Hyperparameters: soft update factor ρ, reward discount factor γ , clip factor c

2: Input: empty replay buffer D, initial parameters θ1, θ2 of critic networks Qθ1,Qθ2 , initial
parameters φ of actor network πφ

3: Initialize target networks θ̂1 ← θ1, θ̂2 ← θ2, φ̂ ← φ

4: for t = 1 to T do do
5: Select action with exploration noise At ∼ πφ(St)+ ε, ε ∼ N (0, σ)

6: Observe reward Rt and new state St+1
7: Store transition tuple (St , At , Rt ,Dt , St+1) in D
8: Sample mini-batch of N transitions (St , At , Rt ,Dt , St+1) from D
9: ãt+1 ← π

φ
′ (St+1)+ ε, ε ∼ clip(N (0, σ̃ ,−c, c))

10: y ← Rt + γ (1 − Dt) mini=1,2 Qθi
′ (St+1, ãt+1)

11: Update critics θi ← arg minθi
N−1∑(y − Qθi

(St , At))
2

12: if t mod d then
13: Update φ by the deterministic policy gradient:
14: ∇φJ (φ) = N−1∑∇aQθ1(St , At)|At=πφ(St)∇φπφ(St)

15: Update target networks:
16: θ̂i ← ρθi + (1 − ρ)θ̂i

17: φ̂ ← ρφ + (1 − ρ)φ̂

18: end if
19: end for

6.4 Soft Actor-Critic (SAC)

The soft actor-critic (SAC) algorithm follows the idea of maximum entropy
reinforcement learning, where instead of maximizing the discounted cumulative
reward, the optimal policy aims to maximize its entropy regularized reward, thus
encouraging the exploration of the policy.

max
πθ

E

[∑
t

γ t (r(St , At)+ αH(πθ (·|St)))

]
, (6.17)

where α is the regularization coefficient. Maximum entropy reinforcement learning
has been well explored in the literature (Ziebart et al. 2008; Levine and Koltun 2013;
Fox et al. 2016; Nachum et al. 2017; Haarnoja et al. 2017). Here we only introduce
the idea of soft policy iteration which serves as the fundamental of the SAC method.

6.4.1 Soft Policy Iteration

Soft policy iteration is a general algorithm for learning the optimal maximum
entropy policies with provable guarantees. Similar to policy iteration, soft policy
iteration also has two steps: soft policy evaluation and soft policy improvement.

220 H. Zhang et al.

Let

V π(s) = E

[∑
t

γ t (r(St , At)+ αH(π(·|St)))

]
, (6.18)

where S0 = s. Further let

Q(s, a) = r(s, a)+ γE
[
V (s′)

]
, (6.19)

where s′ ∼ Pr (·|s, a) is the next state. It is straightforward to verify that

V π(s) = Ea∼π

[
Q(s, a) − α log(a|s)] . (6.20)

In the soft policy evaluation step, define the Bellman backup operator T by

T πQ(s, a) = r(s, a) + γE
[
V π(s′)

]
. (6.21)

Similar to policy evaluation, one can prove that for any map Q0 : S ×A → R,
Qk will converge to the soft Q-value of π , where Qk = T πQk−1.

In the policy improvement step, we solve the entropy regularized reward
maximization problem with the current Q values.

π(·|s) = arg max
π

Ea∼π [Q(s, a) + αH(π)] . (6.22)

Solving the above optimization problem (Fox et al. 2016; Nachum et al. 2017),
one can get that

π(·|s) =
exp
(

1
α
Q(s, ·)

)
Z(s)

, (6.23)

where Z(s) is the normalizing factor, i.e. Z(s) = ∑a exp
(

1
α
Q(s, a)

)
. Given that

the optimal π may not be representable in the policy model, we instead update the
policy by

π(·|s) = arg min
π∈�

DKL

⎛
⎝π(·|s)‖

exp
(

1
α
Q(s, ·)

)
Z(s)

⎞
⎠ . (6.24)

Not surprising, one can also prove the policy monotonically improvement
property for the above soft policy improvement step, even with the projection to
� using KL-divergence. The next theorem shows that soft policy iteration, similar
to policy iteration, converges to the optimal solution.

6 Combine Deep Q-Networks with Actor-Critic 221

Theorem 6.1 Let π0 ∈ � be any initialized policy. Assume that by performing
soft policy iteration steps, π0 converges to π∗. Then Qπ∗(s, a) ≥ Qπ(s, a) for any
(s, a) ∈ S ×A and any π ∈ �.

We omit all the proofs of this section of this book. Interested readers can refer
to (Haarnoja et al. 2018b) for more details.

6.4.2 SAC

SAC extends soft policy iteration to the setting with function approximation which
is more practical. Instead of estimating the true Q value of the policy π for policy
improvement, SAC performs an alternative optimization on both the value function
and the policy.

Consider a parametrized Q function Qφ(s, a) and policy πθ . Here we consider
the continuous action setting, where the output of πθ is a Gaussian mean and
covariance. Similarly, the Q function can be learned by minimizing the soft Bellman
residual,

JQ(φ) = E

[(
Q(St ,At)− r(St , At) − γESt+1

[
Vφ̃(St+1)

])2
]

. (6.25)

where Vφ̃(s) = Eπθ

[
Qφ̃(s, a)− α log πθ(a|s)

]
, and Qφ̃ is a target Q network,

whose parameter φ̃ is obtained as an exponentially moving average of φ. Moreover,
the policy πθ can be learned by minimizing the expected KL-divergence.

Jπ (θ) = Es∼D
[
Ea∼πθ

[
α log πθ(a|s)−Qφ(s, a)

]]
. (6.26)

In practice, SAC uses two Q-networks (as well as two target Q-networks) to
mitigate the biased Q value problem, i.e. Qφ(s, a) = min

(
Qφ1(s, a),Qφ2(s, a)

)
.

Note that Jπ (θ) has the expectation taken on πθ . To optimize Jπ(θ), one option is
to use the idea of likelihood ratio gradient estimator (Williams 1992). However, in
the continuous action setting, one can instead use the reparametrization trick for the
policy network, which usually results in a lower variance estimator. To do that, we
reparametrize πθ as an action network taking both state s and a standard Gaussian
noise ε as its input.

a = fθ (s, ε). (6.27)

Plugging into Jπ(θ),

Jπ (θ) = Es∼D,ε∼N
[
α log πθ(fθ (s, ε)|s) −Qφ(s, fθ (s, ε))

]
, (6.28)

222 H. Zhang et al.

where N is the standard Gaussian distribution, and πθ is now defined implicitly in
terms of fθ .

Finally, SAC also provides a way in automatically update the regularization
coefficient α, by minimizing the following loss:

J (α) = Ea∼πθ

[−α log πθ(a|s)− ακ
]
, (6.29)

where κ is a hyperparameter interpreted as the target entropy. Such updating
schemes for α are also called automating entropy adjustments. The intuition
behind J (α) is the dual form of the original policy optimization problem with the
constraint that the average entropy at each time step should be at least κ . For more
rigorous statement around automating entropy adjustment, please refer to the SAC
paper (Haarnoja et al. 2018b). We summarize the SAC algorithm in Algorithm 3.

Algorithm 3 Soft actor-critic (SAC)
Hyperparameters: target entropy κ , step sizes λQ, λπ , λα , exponentially moving average
coefficient τ

Input: initial policy parameters θ , initial Q value function parameters φ1 and φ2
D = ∅; φ̃i = φi , for i = 1, 2
for k = 0, 1, 2, . . . do

for t = 0, 1, 2, . . . do
Sample At from πθ (·|St), collect (Rt , St+1)

D = D ∪ {St , At , Rt , St+1}
end for
Perform multiple step of gradients:

φi = φi − λQ∇JQ(φi) for i = 1, 2
θ = θ − λπ∇θ Jπ (θ)

α = α − λα∇J (α)

φ̃i = (1 − τ)φi + τ φ̃i for i = 1, 2
end for
Output θ , φ1, φ2

6.5 Examples

This section will share examples of DDPG, TD3, and SAC. They are all actor-
critic methods and use a Q-network as a critic. Examples are based on the OpenAI
Gym Environment. Since these algorithms are based on continuous action space,
“Pendulum-v0” environment is used.

6 Combine Deep Q-Networks with Actor-Critic 223

6.5.1 Related Gym Environment

As mentioned above, Pendulum-v0 is a classical inverted pendulum environment
with three-dimensional observation space and one-continuous action space. At each
step, the environment returns a reward affected by the current rotation angle, speed,
and acceleration. The goal of this task is to turn the pendulum upside down to gain
the maximum score.

6.5.2 DDPG: Pendulum-v0

DDPG uses off-policy data and TD methods. The structure of DDPG class can be
shown as follows:

class DDPG(object):
def __init__(self, action_dim, state_dim, action_range):

...
def ema_update(self):

...
def get_action(self, s, greedy=False):

...
def learn(self):

...
def store_transition(self, s, a, r, s_):

...
def save(self):

...
def load(self):

...

There are four networks created in the initialization function. They are the actor,
critic, actor target, and critic target. The parameters of the target network will be
replaced with the corresponding network parameters.

class DDPG(object):
def __init__(self, action_dim, state_dim, action_range):

self.memory = np.zeros((MEMORY_CAPACITY, state_dim * 2 +
action_dim + 1), dtype=np.float32)

self.pointer = 0
self.action_dim, self.state_dim, self.action_range =

action_dim, state_dim, action_range
self.var = VAR

W_init = tf.random_normal_initializer(mean=0, stddev=0.3)
b_init = tf.constant_initializer(0.1)

224 H. Zhang et al.

def get_actor(input_state_shape, name=’’):
input_layer = tl.layers.Input(input_state_shape,

name=’A_input’)
layer = tl.layers.Dense(n_units=64, act=tf.nn.relu,

W_init=W_init, b_init=b_init,
name=’A_l1’)(input_layer)

layer = tl.layers.Dense(n_units=64, act=tf.nn.relu,
W_init=W_init, b_init=b_init, name=’A_l2’)(layer)

layer = tl.layers.Dense(n_units=action_dim,
act=tf.nn.tanh, W_init=W_init, b_init=b_init,
name=’A_a’)(layer)

layer = tl.layers.Lambda(lambda x: action_range *
x)(layer)

return tl.models.Model(inputs=input_layer,
outputs=layer, name=’Actor’ + name)

def get_critic(input_state_shape, input_action_shape,
name=’’):
state_input = tl.layers.Input(input_state_shape,

name=’C_s_input’)
action_input = tl.layers.Input(input_action_shape,

name=’C_a_input’)
layer = tl.layers.Concat(1)([state_input, action_input])
layer = tl.layers.Dense(n_units=64, act=tf.nn.relu,

W_init=W_init, b_init=b_init, name=’C_l1’)(layer)
layer = tl.layers.Dense(n_units=64, act=tf.nn.relu,

W_init=W_init, b_init=b_init, name=’C_l2’)(layer)
layer = tl.layers.Dense(n_units=1, W_init=W_init,

b_init=b_init, name=’C_out’)(layer)
return tl.models.Model(inputs=[state_input,

action_input], outputs=layer, name=’Critic’ + name)

self.actor = get_actor([None, state_dim])
self.critic = get_critic([None, state_dim], [None,

action_dim])
self.actor.train()
self.critic.train()

def copy_para(from_model, to_model):
for i, j in zip(from_model.trainable_weights,

to_model.trainable_weights):
j.assign(i)

self.actor_target = get_actor([None, state_dim],
name=’_target’)

copy_para(self.actor, self.actor_target)
self.actor_target.eval()

self.critic_target = get_critic([None, state_dim], [None,
action_dim], name=’_target’)

copy_para(self.critic, self.critic_target)
self.critic_target.eval()

6 Combine Deep Q-Networks with Actor-Critic 225

self.ema = tf.train.ExponentialMovingAverage(decay=1 -
TAU) # soft replacement

self.actor_opt = tf.optimizers.Adam(LR_A)
self.critic_opt = tf.optimizers.Adam(LR_C)

During the training process, the parameters of the target network will be updated
by a moving average.

def ema_update(self):
paras = self.actor.trainable_weights +

self.critic.trainable_weights
self.ema.apply(paras)
for i, j in zip(self.actor_target.trainable_weights +

self.critic_target.trainable_weights, paras):
i.assign(self.ema.average(j))

As the policy network is a deterministic policy network, we need to add some
randomness if we do not choose actions by greedy methods. We used a normal
distribution here and the value of variance decreases in the process of the update
iteration. The randomness can also be changed to other methods, such as an O–U
noise.

def get_action(self, state, greedy=False):
a = self.actor(np.array([s], dtype=np.float32))[0]
if greedy:

return a

add randomness to action selection for exploration
return np.clip(np.random.normal(a, self.var),

-self.action_range,
self.action_range)

In the learn() function, we sample the off-policy data from the replay buffer
and use the Bellman equation to learn the Q-function. After that, the policy can be
learned by maximizing the Q-value. Finally, target networks will be updated with
Polyak averaging (Polyak 1964) by using formula θQ′ ← ρθQ+(1−ρ)θQ′

, θπ ′ ←
ρθπ + (1 − ρ)θπ ′

.

def learn(self):
self.var *= .9995
indices = np.random.choice(MEMORY_CAPACITY,

size=BATCH_SIZE)
bt = self.memory[indices, :]
bs = bt[:, :self.s_dim]
ba = bt[:, self.s_dim:self.s_dim + self.a_dim]
br = bt[:, -self.s_dim - 1:-self.s_dim]
bs_ = bt[:, -self.s_dim:]

with tf.GradientTape() as tape:
a_ = self.actor_target(bs_)

226 H. Zhang et al.

q_ = self.critic_target([bs_, a_])
y = br + GAMMA * q_
q = self.critic([bs, ba])
td_error = tf.losses.mean_squared_error(y, q)

c_grads = tape.gradient(td_error,
self.critic.trainable_weights)

self.critic_opt.apply_gradients(zip(c_grads,
self.critic.trainable_weights))

with tf.GradientTape() as tape:
a = self.actor(bs)
q = self.critic([bs, a])
a_loss = -tf.reduce_mean(q) # maximize the q

a_grads = tape.gradient(a_loss,
self.actor.trainable_weights)

self.actor_opt.apply_gradients(zip(a_grads,
self.actor.trainable_weights))

self.ema_update()

The store_transition() function uses a replay buffer to store the transi-
tion of each step.

def store_transition(self, s, a, r, s_):
s = s.astype(np.float32)
s_ = s_.astype(np.float32)
transition = np.hstack((s, a, [r], s_))
index = self.pointer % MEMORY_CAPACITY # replace the old

memory with new memory
self.memory[index, :] = transition
self.pointer += 1

The main function is straightforward, the agent interacts with the environment at
each step, stores data into the replay buffer, and uses sampled batch data from the
replay buffer to update the networks.

env = gym.make(ENV_ID).unwrapped

reproducible
env.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
tf.random.set_seed(RANDOM_SEED)

state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
action_range = env.action_space.high # scale action,

[-action_range, action_range]

agent = DDPG(action_dim, state_dim, action_range)
t0 = time.time()

if args.train: # train
all_episode_reward = []

6 Combine Deep Q-Networks with Actor-Critic 227

for episode in range(TRAIN_EPISODES):
state = env.reset()
episode_reward = 0
for step in range(MAX_STEPS):

if RENDER:
env.render()

Add exploration noise
action = agent.get_action(state)
state_, reward, done, info = env.step(action)
agent.store_transition(state, action, reward, state_)
if agent.pointer > MEMORY_CAPACITY:

agent.learn()
state = state_
episode_reward += reward
if done:

break

if episode == 0:
all_episode_reward.append(episode_reward)

else:
all_episode_reward.append(all_episode_reward[-1] *

0.9 + episode_reward * 0.1)
print(

’Training | Episode: {}/{} | Episode Reward: {:.4f}
| Running Time: {:.4f}’.format(
episode+1, TRAIN_EPISODES, episode_reward,
time.time() - t0

)
)

agent.save()
plt.plot(all_episode_reward)
if not os.path.exists(’image’):

os.makedirs(’image’)
plt.savefig(os.path.join(’image’, ’ddpg.png’))

The agent can be tested after training.

if args.test:
test
agent.load()
for episode in range(TEST_EPISODES):

state = env.reset()
episode_reward = 0
for step in range(MAX_STEPS):

env.render()
state, reward, done, info =

env.step(agent.get_action(state, greedy=True))
episode_reward += reward
if done:

break
print(

228 H. Zhang et al.

’Testing | Episode: {}/{} | Episode Reward: {:.4f} |
Running Time: {:.4f}’.format(
episode + 1, TEST_EPISODES, episode_reward,
time.time() - t0))

6.5.3 TD3: Pendulum-v0

TD3 code uses these classes: ReplayBuffer class, QNetwork class,
PolicyNetwork class, and TD3 class.
ReplayBuffer class is used to build a replay buffer, so it should have the

function of push() and sample().

class ReplayBuffer:
def __init__(self, capacity):

...
def push(self, state, action, reward, next_state, done):

...
def sample(self, batch_size):

...
def __len__(self):

...

The push() function appends data to the buffer and move the pointer.

def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:

self.buffer.append(None)
self.buffer[self.position] = (state, action, reward,

next_state, done)
self.position = int((self.position + 1) % self.capacity) #

as a ring buffer

The sample() function simply samples data from the buffer and returns.

def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack,

zip(*batch)) # stack for each element
return state, action, reward, next_state, done

By refactoring the __len__() function, the buffer size will be returned when
called by the len() function.

def __len__(self):
return len(self.buffer)

6 Combine Deep Q-Networks with Actor-Critic 229

The QNetwork class is used to build the Q-network for critic. It is another
coding way for building networks.

class QNetwork(Model):
def __init__(self, num_inputs, num_actions, hidden_dim,

init_w=3e-3):
super(QNetwork, self).__init__()
input_dim = num_inputs + num_actions
w_init = tf.random_uniform_initializer(-init_w, init_w)
self.linear1 = Dense(n_units=hidden_dim, act=tf.nn.relu,

W_init=w_init, in_channels=input_dim, name=’q1’)
self.linear2 = Dense(n_units=hidden_dim, act=tf.nn.relu,

W_init=w_init, in_channels=hidden_dim, name=’q2’)
self.linear3 = Dense(n_units=1, W_init=w_init,

in_channels=hidden_dim, name=’q3’)

def forward(self, input):
x = self.linear1(input)
x = self.linear2(x)
x = self.linear3(x)
return x

The PolicyNetwork class is used to build the policy network for the
actor. While building the network, it also adds evaluate(), get_action(),
sample_action() functions.

class PolicyNetwork(Model):
def __init__(self, num_inputs, num_actions, hidden_dim,

action_range=1., init_w=3e-3):
...

def forward(self, state):
...

def evaluate(self, state, eval_noise_scale):
...

def get_action(self, state, explore_noise_scale,
greedy=False):
...

def sample_action(self):
...

The following part of the code shows how to build the network:

class PolicyNetwork(Model):
def __init__(self, num_inputs, num_actions, hidden_dim,

action_range=1., init_w=3e-3):
super(PolicyNetwork, self).__init__()
w_init = tf.random_uniform_initializer(-init_w, init_w)
self.linear1 = Dense(n_units=hidden_dim, act=tf.nn.relu,

W_init=w_init, in_channels=num_inputs, name=’policy1’)
self.linear2 = Dense(n_units=hidden_dim, act=tf.nn.relu,

W_init=w_init, in_channels=hidden_dim, name=’policy2’)

230 H. Zhang et al.

self.linear3 = Dense(n_units=hidden_dim, act=tf.nn.relu,
W_init=w_init, in_channels=hidden_dim, name=’policy3’)

self.output_linear = Dense(n_units=num_actions,
W_init=w_init,
b_init=tf.random_uniform_initializer(-init_w, init_w),
in_channels=hidden_dim, name=’policy_output’)

self.action_range = action_range
self.num_actions = num_actions

def forward(self, state):
x = self.linear1(state)
x = self.linear2(x)
x = self.linear3(x)
output = tf.nn.tanh(self.output_linear(x)) # unit range

output [-1, 1]
return output

The evaluate() function generates actions with the states for calculating
gradients. It uses the trick of target policy smoothing for generating noisy actions.

def evaluate(self, state, eval_noise_scale):
state = state.astype(np.float32)
action = self.forward(state)
action = self.action_range * action
add noise
normal = Normal(0, 1)
eval_noise_clip = 2 * eval_noise_scale
noise = normal.sample(action.shape) * eval_noise_scale
noise = tf.clip_by_value(noise, -eval_noise_clip,

eval_noise_clip)
action = action + noise
return action

The get_action() function generates actions with the states to interact with
the environment.

def get_action(self, state, explore_noise_scale,
greedy=False):
action = self.forward([state])
action = self.action_range * action.numpy()[0]
if greedy:

return action
add noise
normal = Normal(0, 1)
noise = normal.sample(action.shape) * explore_noise_scale
action += noise
return action.numpy()

6 Combine Deep Q-Networks with Actor-Critic 231

The sample_action() function is used to generate random actions at the
beginning of training.

def sample_action(self,):
a = tf.random.uniform([self.num_actions], -1, 1)
return self.action_range * a.numpy()

The TD3 class is the core content of the TD3 algorithm.

class TD3():
def __init__(self, state_dim, action_dim, replay_buffer,

hidden_dim, action_range,
policy_target_update_interval=1, q_lr=3e-4,
policy_lr=3e-4): # create replay buffer and networks
...

def target_ini(self, net, target_net): # hard-copy update for
initializing target networks
...

def target_soft_update(self, net, target_net, soft_tau):
#soft update the target net with Polyak averaging
...

def update(self, batch_size, eval_noise_scale,
reward_scale=10., gamma=0.9, soft_tau=1e-2): # update all
networks in TD3
...

def save(self): # save trained weights
...

def load(self): # load trained weights
...

The initialization function creates twin q-networks, policy-networks, and their
target networks. Six networks are established in total.

class TD3():
def __init__(self, state_dim, action_dim, replay_buffer,

hidden_dim, action_range,
policy_target_update_interval=1, q_lr=3e-4,
policy_lr=3e-4):
self.replay_buffer = replay_buffer

initialize all networks
self.q_net1 = QNetwork(state_dim, action_dim, hidden_dim)
self.q_net2 = QNetwork(state_dim, action_dim, hidden_dim)
self.target_q_net1 = QNetwork(state_dim, action_dim,

hidden_dim)
self.target_q_net2 = QNetwork(state_dim, action_dim,

hidden_dim)
self.policy_net = PolicyNetwork(state_dim, action_dim,

hidden_dim, action_range)
self.target_policy_net = PolicyNetwork(state_dim,

action_dim, hidden_dim, action_range)
print(’Q Network (1,2): ’, self.q_net1)

232 H. Zhang et al.

print(’Policy Network: ’, self.policy_net)

initialize weights of target networks
self.target_q_net1 = self.target_ini(self.q_net1,

self.target_q_net1)
self.target_q_net2 = self.target_ini(self.q_net2,

self.target_q_net2)
self.target_policy_net = self.target_ini(self.policy_net,

self.target_policy_net)

set train mode
self.q_net1.train()
self.q_net2.train()
self.target_q_net1.train()
self.target_q_net2.train()
self.policy_net.train()
self.target_policy_net.train()

self.update_cnt = 0
self.policy_target_update_interval =

policy_target_update_interval

self.q_optimizer1 = tf.optimizers.Adam(q_lr)
self.q_optimizer2 = tf.optimizers.Adam(q_lr)
self.policy_optimizer = tf.optimizers.Adam(policy_lr)

The target_ini() function and target_soft_update() function are
used to update the parameters of target networks. The difference is that the former
one is a hard copy replacement and the latter one updates the parameters by Polyak
averaging.

def target_ini(self, net, target_net):=
for target_param, param in

zip(target_net.trainable_weights,
net.trainable_weights):
target_param.assign(param)

return target_net

def target_soft_update(self, net, target_net, soft_tau):=
for target_param, param in

zip(target_net.trainable_weights,
net.trainable_weights):
target_param.assign(target_param * (1.0 - soft_tau) +

param * soft_tau) # copy weight value into target
parameters

return target_net

Next is the most critical part: the update() function. This part fully reflects
the three tricks of the TD3 algorithm.

6 Combine Deep Q-Networks with Actor-Critic 233

At the beginning of the function, we first sample data from the replay buffer.

def update(self, batch_size, eval_noise_scale,
reward_scale=10., gamma=0.9, soft_tau=1e-2):
’’’ update all networks in TD3 ’’’
self.update_cnt += 1

sample batch data
state, action, reward, next_state, done =

self.replay_buffer.sample(batch_size)
reward = reward[:, np.newaxis] # expand dim
done = done[:, np.newaxis]

Next, we use a target policy smoothing trick by adding noise to the target action.
This makes it harder for the policy to exploit Q-value function errors by smoothing
out Q values along changes in action.

Trick Three: Target Policy Smoothing. Add noise to the
target action

new_next_action = self.target_policy_net.evaluate(
next_state, eval_noise_scale=eval_noise_scale

) # clipped normal noise

normalize with batch mean and std
reward = reward_scale * (reward - np.mean(reward, axis=0))

/ np.std(reward, axis=0)

The next trick is clipped double-Q learning. It learns two Q-value functions and
uses the smaller Q-value to form the targets in the Bellman error loss function. In
this way, the overestimation of the Q-value can be mitigated.

Training Q Function
target_q_input = tf.concat([next_state, new_next_action],

1) # the dim 0 is number of samples

Trick One: Clipped Double-Q Learning. Use the smaller
Q-value.

target_q_min =
tf.minimum(self.target_q_net1(target_q_input),
self.target_q_net2(target_q_input))

target_q_value = reward + (1 - done) * gamma *
target_q_min # if done==1, only reward

q_input = tf.concat([state, action], 1) # input of q_net

with tf.GradientTape() as q1_tape:
predicted_q_value1 = self.q_net1(q_input)
q_value_loss1 =

tf.reduce_mean(tf.square(predicted_q_value1 -
target_q_value))

q1_grad = q1_tape.gradient(q_value_loss1,
self.q_net1.trainable_weights)

234 H. Zhang et al.

self.q_optimizer1.apply_gradients(zip(q1_grad,
self.q_net1.trainable_weights))

with tf.GradientTape() as q2_tape:
predicted_q_value2 = self.q_net2(q_input)
q_value_loss2 =

tf.reduce_mean(tf.square(predicted_q_value2 -
target_q_value))

q2_grad = q2_tape.gradient(q_value_loss2,
self.q_net2.trainable_weights)

self.q_optimizer2.apply_gradients(zip(q2_grad,
self.q_net2.trainable_weights))

The last trick is the “delayed” policy updates trick. The policy and its target net-
works are updated less frequently than the Q-value function. The paper recommends
one policy update for every two Q-value function updates.

Training Policy Function
Trick Two: ‘‘Delayed’’İ Policy Updates. Update the

policy less frequently
if self.update_cnt % self.policy_target_update_interval ==

0:
with tf.GradientTape() as p_tape:

new_action = self.policy_net.evaluate(
state, eval_noise_scale=0.0

) # no noise, deterministic policy gradients
new_q_input = tf.concat([state, new_action], 1)
’’’ implementation 1 ’’’
predicted_new_q_value =

tf.minimum(self.q_net1(new_q_input),self.q_net2
(new_q_input))

’’’ implementation 2 ’’’
predicted_new_q_value = self.q_net1(new_q_input)
policy_loss = -tf.reduce_mean(predicted_new_q_value)

p_grad = p_tape.gradient(policy_loss,
self.policy_net.trainable_weights)

self.policy_optimizer.apply_gradients(zip(p_grad,
self.policy_net.trainable_weights))

Soft update the target nets
self.target_q_net1 =

self.target_soft_update(self.q_net1,
self.target_q_net1, soft_tau)

self.target_q_net2 =
self.target_soft_update(self.q_net2,
self.target_q_net2, soft_tau)

self.target_policy_net =
self.target_soft_update(self.policy_net,
self.target_policy_net, soft_tau)

6 Combine Deep Q-Networks with Actor-Critic 235

The following code is part of the training code. We first create the environment
and the agent.

initialization of env
env = gym.make(ENV_ID).unwrapped
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
action_range = env.action_space.high # scale action,

[-action_range, action_range]

reproducible
env.seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
tf.random.set_seed(RANDOM_SEED)

initialization of buffer
replay_buffer = ReplayBuffer(REPLAY_BUFFER_SIZE)
initialization of trainer
agent = TD3(state_dim, action_dim, action_range, HIDDEN_DIM,

replay_buffer,
POLICY_TARGET_UPDATE_INTERVAL, Q_LR, POLICY_LR)

t0 = time.time()

Before starting each episode, it is necessary to do some initialization. In this
code, the training time is limited by the total number of steps instead of the max
episode iterations. And because the network is built in different ways, you need an
extra call of the function before using it.

training loop
if args.train:

frame_idx = 0
all_episode_reward = []
need an extra call here to make inside functions be able

to use model.forward
state = env.reset().astype(np.float32)
agent.policy_net([state])
agent.target_policy_net([state])

At the very beginning, a random sample was used by the agent to provide enough
data for the update. After that the agent was left to interact with the environment and
update at every step as usual.

for episode in range(TRAIN_EPISODES):
state = env.reset().astype(np.float32)
episode_reward = 0
for step in range(MAX_STEPS):

if RENDER:
env.render()

if frame_idx > EXPLORE_STEPS:
action = agent.policy_net.get_action(state,

EXPLORE_NOISE_SCALE)

236 H. Zhang et al.

else:
action = agent.policy_net.sample_action()

next_state, reward, done, _ = env.step(action)
next_state = next_state.astype(np.float32)
done = 1 if done is True else 0

replay_buffer.push(state, action, reward,
next_state, done)

state = next_state
episode_reward += reward
frame_idx += 1

if len(replay_buffer) > BATCH_SIZE:
for i in range(UPDATE_ITR):

agent.update(BATCH_SIZE, EVAL_NOISE_SCALE,
REWARD_SCALE)

if done:
break

Finally, we provide the necessary functions to visualize the training process and
save the agent.

if episode == 0:
all_episode_reward.append(episode_reward)

else:
all_episode_reward.append(all_episode_reward[-1] *

0.9 + episode_reward * 0.1)
print(

’Training | Episode: {}/{} | Episode Reward: {:.4f}
| Running Time: {:.4f}’.format(
episode+1, TRAIN_EPISODES, episode_reward,
time.time() - t0

)
)

agent.save()
plt.plot(all_episode_reward)
if not os.path.exists(’image’):

os.makedirs(’image’)
plt.savefig(os.path.join(’image’, ’td3.png’))

6.5.4 SAC: Pendulum-v0

SAC is an entropy method. The target q value uses the minimum of the
two Q network and log probability of policy π(ã|s). The example code used
ReplayBuffer class, SoftQNetwork class, PolicyNetwork class, and
SAC class.

6 Combine Deep Q-Networks with Actor-Critic 237

The ReplayBuffer class and the SoftQNetwork class are almost the same
as ReplayBuffer class and QNetwork class in TD3 code, so we can skip them
and see the code after.

class ReplayBuffer: # a ring buffer for storing transitions and
sampling for training
def __init__(self, capacity):

...
def push(self, state, action, reward, next_state, done):

...
def sample(self, batch_size):

...
def __len__(self):

...

class SoftQNetwork(Model): # the network for evaluate values of
state-action pairs: Q(s,a)
def __init__(self, num_inputs, num_actions, hidden_dim,

init_w=3e-3):
...

def forward(self, input):
...

The PolicyNetwork class is also similar. The difference is that SAC uses a
stochastic policy network instead of a deterministic policy network, which causes
some differences.

class PolicyNetwork(Model):
def __init__(self, num_inputs, num_actions, hidden_dim,

action_range=1., init_w=3e-3, log_std_min=-20,
log_std_max=2):
...

def forward(self, state):
...

def evaluate(self, state, epsilon=1e-6):
...

def get_action(self, state, greedy=False):
...

def sample_action(self):
...

The stochastic network outputs mean values and log standard deviations to depict
an action distribution. Therefore, the network has two outputs.

class PolicyNetwork(Model):
def __init__(self, num_inputs, num_actions, hidden_dim,

action_range=1., init_w=3e-3, log_std_min=-20,
log_std_max=2):
super(PolicyNetwork, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
w_init = tf.keras.initializers.glorot_normal(seed=None)

238 H. Zhang et al.

self.linear1 = Dense(n_units=hidden_dim, act=tf.nn.relu,
W_init=w_init, in_channels=num_inputs, name=’policy1’)

self.linear2 = Dense(n_units=hidden_dim, act=tf.nn.relu,
W_init=w_init, in_channels=hidden_dim, name=’policy2’)

self.linear3 = Dense(n_units=hidden_dim, act=tf.nn.relu,
W_init=w_init, in_channels=hidden_dim, name=’policy3’)

self.mean_linear = Dense(n_units=num_actions,
W_init=w_init,
b_init=tf.random_uniform_initializer(-init_w, init_w),
in_channels=hidden_dim, name=’policy_mean’)

self.log_std_linear = Dense(n_units=num_actions,
W_init=w_init,
b_init=tf.random_uniform_initializer(-init_w, init_w),
in_channels=hidden_dim, name=’policy_logstd’)

self.action_range = action_range
self.num_actions = num_actions

A clip method on log standard deviations is used in the forward() function to
prevent the standard deviation value from becoming too large.

def forward(self, state):
x = self.linear1(state)
x = self.linear2(x)
x = self.linear3(x)
mean = self.mean_linear(x)
log_std = self.log_std_linear(x)
log_std = tf.clip_by_value(log_std, self.log_std_min,

self.log_std_max)
return mean, log_std

The evaluate() function uses a reparameterization trick to sample actions
from the action distribution so that the gradient here can be propagated back. It
also calculates the log probability of the sampled actions on the original action
distribution.

def evaluate(self, state, epsilon=1e-6):
state = state.astype(np.float32)
mean, log_std = self.forward(state)
std = tf.math.exp(log_std) # no clip in evaluation, clip

affects gradients flow
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action_0 = tf.math.tanh(mean + std * z) # TanhNormal

distribution as actions; reparameterization trick
action = self.action_range * action_0
according to original paper, with an extra last term for

normalizing different action range
log_prob = Normal(mean, std).log_prob(mean + std * z) -

tf.math.log(1. - action_0 ** 2 + epsilon) -
np.log(self.action_range)

both dims of normal.log_prob and -log(1-a**2) are
(N,dim_of_action);

the Normal.log_prob outputs the same dim of input
features instead of 1 dim probability,

6 Combine Deep Q-Networks with Actor-Critic 239

needs sum up across the dim of actions to get 1 dim
probability; or else use Multivariate Normal.

log_prob = tf.reduce_sum(log_prob, axis=1)[:, np.newaxis]
expand dim as reduce_sum causes 1 dim reduced

return action, log_prob, z, mean, log_std

The get_action() function is a simplified version of the previous function.
It only samples actions from the action distributions.

def get_action(self, state, greedy=False):
mean, log_std = self.forward([state])
std = tf.math.exp(log_std)
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action = self.action_range * tf.math.tanh(

mean + std * z
) # TanhNormal distribution as actions; reparameterization

trick

action = self.action_range * tf.math.tanh(mean) if greedy
else action

return action.numpy()[0]

The sample_action() function is much more simple. It is only used at the
very beginning of training to sample data for the first update.

def sample_action(self,):
a = tf.random.uniform([self.num_actions], -1, 1)
return self.action_range * a.numpy()

The structure of the SAC we will talk about next is as follows:

class SAC():
def __init__(self, state_dim, action_dim, replay_buffer,

hidden_dim, action_range, soft_q_lr=3e-4, policy_lr=3e-4,
alpha_lr=3e-4): # create networks and variables
...

def target_ini(self, net, target_net): # hard-copy update for
initializing target networks
...

def target_soft_update(self, net, target_net, soft_tau): #
soft update the target net with Polyak averaging
...

def update(self, batch_size, reward_scale=10.,
auto_entropy=True, target_entropy=-2, gamma=0.99,
soft_tau=1e-2): # update all networks in SAC
...

def save(self): # save trained weights
...

def load(self): # load trained weights
...

240 H. Zhang et al.

There are 5 networks in SAC algorithm. They are two soft Q-networks and their
target networks, and a stochastic policy network. An alpha variable is also needed
as a trade-off coefficient for the entropy regularization.

class SAC():
def __init__(self, state_dim, action_dim, replay_buffer,

hidden_dim, action_range, soft_q_lr=3e-4, policy_lr=3e-4,
alpha_lr=3e-4):
self.replay_buffer = replay_buffer

initialize all networks
self.soft_q_net1 = SoftQNetwork(state_dim, action_dim,

hidden_dim)
self.soft_q_net2 = SoftQNetwork(state_dim, action_dim,

hidden_dim)
self.target_soft_q_net1 = SoftQNetwork(state_dim,

action_dim, hidden_dim)
self.target_soft_q_net2 = SoftQNetwork(state_dim,

action_dim, hidden_dim)
self.policy_net = PolicyNetwork(state_dim, action_dim,

hidden_dim, action_range)
self.log_alpha = tf.Variable(0, dtype=np.float32,

name=’log_alpha’)
self.alpha = tf.math.exp(self.log_alpha)
print(’Soft Q Network (1,2): ’, self.soft_q_net1)
print(’Policy Network: ’, self.policy_net)
set mode
self.soft_q_net1.train()
self.soft_q_net2.train()
self.target_soft_q_net1.eval()
self.target_soft_q_net2.eval()
self.policy_net.train()

initialize weights of target networks
self.target_soft_q_net1 =

self.target_ini(self.soft_q_net1,
self.target_soft_q_net1)

self.target_soft_q_net2 =
self.target_ini(self.soft_q_net2,
self.target_soft_q_net2)

self.soft_q_optimizer1 = tf.optimizers.Adam(soft_q_lr)
self.soft_q_optimizer2 = tf.optimizers.Adam(soft_q_lr)
self.policy_optimizer = tf.optimizers.Adam(policy_lr)
self.alpha_optimizer = tf.optimizers.Adam(alpha_lr)

Let us introduce the update() function next. The other functions are the
same as the previous code, so we can skip them. As usual, at the beginning of the
update() function, we sample data from the replay buffer first. A normalization
on reward values can improve the training effect.

6 Combine Deep Q-Networks with Actor-Critic 241

def update(self, batch_size, reward_scale=10.,
auto_entropy=True, target_entropy=-2, gamma=0.99,
soft_tau=1e-2):
state, action, reward, next_state, done =

self.replay_buffer.sample(batch_size)
reward = reward[:, np.newaxis] # expand dim
done = done[:, np.newaxis]
reward = reward_scale * (reward - np.mean(reward, axis=0))

/ (
np.std(reward, axis=0) + 1e-6

) # normalize with batch mean and std; plus a small number
to prevent numerical problem

After that, we will calculate the target Q-value based on the next state. SAC
used the minimum of the two target networks which is the same as TD3. But they
differ in that SAC adds entropy regularization when calculating target q value. The
log_prob part here is the entropy which is a measure of randomness in the policy.

Training Q Function
new_next_action, next_log_prob, _, _, _ =

self.policy_net.evaluate(next_state)
target_q_input = tf.concat([next_state, new_next_action],

1) # the dim 0 is number of samples
target_q_min = tf.minimum(

self.target_soft_q_net1(target_q_input),
self.target_soft_q_net2(target_q_input)

) - self.alpha * next_log_prob
target_q_value = reward + (1 - done) * gamma *

target_q_min # if done==1, only reward

After calculating the target Q-value, training the Q function is simple.

q_input = tf.concat([state, action], 1) # the dim 0 is
number of samples

with tf.GradientTape() as q1_tape:
predicted_q_value1 = self.soft_q_net1(q_input)
q_value_loss1 =

tf.reduce_mean(tf.losses.mean_squared_error
(predicted_q_value1, target_q_value))

q1_grad = q1_tape.gradient(q_value_loss1,
self.soft_q_net1.trainable_weights)

self.soft_q_optimizer1.apply_gradients(zip(q1_grad,
self.soft_q_net1.trainable_weights))

with tf.GradientTape() as q2_tape:
predicted_q_value2 = self.soft_q_net2(q_input)
q_value_loss2 =

tf.reduce_mean(tf.losses.mean_squared_error
(predicted_q_value2, target_q_value))

242 H. Zhang et al.

q2_grad = q2_tape.gradient(q_value_loss2,
self.soft_q_net2.trainable_weights)

self.soft_q_optimizer2.apply_gradients(zip(q2_grad,
self.soft_q_net2.trainable_weights))

The policy loss is the expected future return plus expected future entropy. By
maximizing the loss function, the policy will be trained to maximize a trade-off
between expected return and entropy.

Training Policy Function
with tf.GradientTape() as p_tape:

new_action, log_prob, z, mean, log_std =
self.policy_net.evaluate(state)

new_q_input = tf.concat([state, new_action], 1) # the
dim 0 is number of samples

’’’ implementation 1 ’’’
predicted_new_q_value =

tf.minimum(self.soft_q_net1(new_q_input),
self.soft_q_net2(new_q_input))

’’’ implementation 2 ’’’
predicted_new_q_value = self.soft_q_net1(new_q_input)
policy_loss = tf.reduce_mean(self.alpha * log_prob -

predicted_new_q_value)
p_grad = p_tape.gradient(policy_loss,

self.policy_net.trainable_weights)
self.policy_optimizer.apply_gradients(zip(p_grad,

self.policy_net.trainable_weights))

Finally, we update the entropy trade-off coefficient alpha and target networks.

Updating alpha w.r.t entropy
alpha: trade-off between exploration (max entropy) and

exploitation (max Q)
if auto_entropy is True:

with tf.GradientTape() as alpha_tape:
alpha_loss = -tf.reduce_mean((self.log_alpha *

(log_prob + target_entropy)))
alpha_grad = alpha_tape.gradient(alpha_loss,

[self.log_alpha])
self.alpha_optimizer.apply_gradients(zip(alpha_grad,

[self.log_alpha]))
self.alpha = tf.math.exp(self.log_alpha)

else: # fixed alpha
self.alpha = 1.
alpha_loss = 0

Soft update the target value nets
self.target_soft_q_net1 =

self.target_soft_update(self.soft_q_net1,
self.target_soft_q_net1, soft_tau)

6 Combine Deep Q-Networks with Actor-Critic 243

self.target_soft_q_net2 =
self.target_soft_update(self.soft_q_net2,
self.target_soft_q_net2, soft_tau)

The main loop process of training is the same as TD3. First, build the environ-
ment and the agent.

initialization of env
env = gym.make(ENV_ID).unwrapped
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
action_range = env.action_space.high # scale action,

[-action_range, action_range]

reproducible
env.seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
tf.random.set_seed(RANDOM_SEED)

initialization of buffer
replay_buffer = ReplayBuffer(REPLAY_BUFFER_SIZE)
initialization of trainer
agent = SAC(state_dim, action_dim, action_range, HIDDEN_DIM,

replay_buffer, SOFT_Q_LR, POLICY_LR, ALPHA_LR)
t0 = time.time()

Then, use the agent to interact with the environment and store sampled data for
updates. Before the first update, a random action sample is used.

training loop
if args.train:

frame_idx = 0
all_episode_reward = []

need an extra call here to make inside functions be able
to use model.forward

state = env.reset().astype(np.float32)
agent.policy_net([state])

for episode in range(TRAIN_EPISODES):
state = env.reset().astype(np.float32)
episode_reward = 0
for step in range(MAX_STEPS):

if RENDER:
env.render()

if frame_idx > EXPLORE_STEPS:
action = agent.policy_net.get_action(state)

else:
action = agent.policy_net.sample_action()

next_state, reward, done, _ = env.step(action)
next_state = next_state.astype(np.float32)

244 H. Zhang et al.

done = 1 if done is True else 0
replay_buffer.push(state, action, reward,

next_state, done)
state = next_state
episode_reward += reward
frame_idx += 1

When enough data are collected, we can start to update at each step.

if len(replay_buffer) > BATCH_SIZE:
for i in range(UPDATE_ITR):

agent.update(
BATCH_SIZE, reward_scale=REWARD_SCALE,

auto_entropy=AUTO_ENTROPY,
target_entropy=-1. * action_dim

)
if done:

break

Through the above steps, the agent can become more and more powerful through
updates. The next step is to better represent the training process.

if episode == 0:
all_episode_reward.append(episode_reward)

else:
all_episode_reward.append(all_episode_reward[-1] *

0.9 + episode_reward * 0.1)
print(

’Training | Episode: {}/{} | Episode Reward: {:.4f}
| Running Time: {:.4f}’.format(
episode+1, TRAIN_EPISODES, episode_reward,
time.time() - t0

)
)

Finally, save the agent and plot the figure.

agent.save()
plt.plot(all_episode_reward)
if not os.path.exists(’image’):

os.makedirs(’image’)
plt.savefig(os.path.join(’image’, ’sac.png’))

References

Fox R, Pakman A, Tishby N (2016) Taming the noise in reinforcement learning via soft updates.
In: Proceedings of the thirty-second conference on uncertainty in artificial intelligence. AUAI
Press, Corvallis, pp 202–211

6 Combine Deep Q-Networks with Actor-Critic 245

Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic
methods. arXiv:180209477

Haarnoja T, Tang H, Abbeel P, Levine S (2017) Reinforcement learning with deep energy-based
policies. In: Proceedings of the 34th international conference on machine learning, vol 70, pp
1352–1361. JMLR.org

Haarnoja T, Zhou A, Abbeel P, Levine S (2018a) Soft actor-critic: off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv:180101290

Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J, Kumar V, Zhu H, Gupta A, Abbeel P,
et al (2018b) Soft actor-critic algorithms and applications. arXiv:181205905

It K, McKean H (1965) Diffusion processes and their sample paths. Die Grundlehren der math
Wissenschaften, vol 125. Springer, Berlin

Levine S, Koltun V (2013) Guided policy search. In: International conference on machine learning,
pp 1–9

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous
control with deep reinforcement learning. arXiv:150902971

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529–533

Nachum O, Norouzi M, Xu K, Schuurmans D (2017) Bridging the gap between value and policy
based reinforcement learning. In: Advances in neural information processing systems, pp 2775–
2785

Polyak BT (1964) Some methods of speeding up the convergence of iteration methods. USSR
Comput Math Math Phys 4(5):1–17

Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy
gradient algorithms. In: Proceedings of the 31st international conference on machine learning

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge
Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys. Rev. 36(5):823
Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Mach Learn 8(3–4):229–256
Ziebart BD, Maas AL, Bagnell JA, Dey AK (2008) Maximum entropy inverse reinforcement

learning. In: Proceedings of the AAAI conference on artificial intelligence, Chicago, vol 8,
pp 1433–1438

JMLR. org

Part II
Research

Zihan Ding
e-mail: zhding@mail.ustc.edu.cn

The following chapters introduce selected research topics in deep reinforcement
learning, which would be useful if the readers would like to have a deeper
understanding or start the related research.

We first discuss several challenges of deep reinforcement learning in Chap. 7,
including sample efficiency, learning stability, catastrophic interference, explo-
ration, meta-learning and representation learning, multi-agent reinforcement learn-
ing, sim2real, and large-scale reinforcement learning. Then we compose six chap-
ters to introduce different advanced research topics and algorithms in deep rein-
forcement learning, as well as indicating how they are related to and applied for
solving those challenges. From a research perspective, lots of recent advances are
introduced in this part of contents with seven chapters in total.

Chapter 8 introduces the imitation learning in relatively comprehensive per-
spectives. Combination of imitation learning and reinforcement learning helps to
alleviate the challenge of low sample efficiency in deep reinforcement learning,
through leveraging the expert demonstrations in the learning process.

Chapter 9 introduces model-based reinforcement learning, which also improves
the learning efficiency in deep reinforcement learning, but through leveraging
the models of environments. Model-based reinforcement learning is a worthwhile
direction with fruitful advanced contents when facing real-world applications, as
well as a frontier hotspot.

Chapter 10 describes hierarchical reinforcement learning, which helps with prob-
lems including catastrophic interference and hard exploration in deep reinforcement
learning, as well as improving the overall learning efficiency. Options framework
and feudal reinforcement learning are highlighted in the description.

Chapter 11 describes the concept of multi-agent reinforcement learning, as an
extension of reinforcement learning to tasks with more than one agent. Competitive
and collaborative relationships among agents, Nash equilibrium and some multi-
agent reinforcement learning algorithms are detailed in this chapter.

248 II Research

Chapter 12 introduces parallel computing in deep reinforcement learning, for
solving the scalability challenge and improving the learning speed in wall-clock
time. Different parallel training frameworks are introduced in this chapter, which
helps to employ deep reinforcement learning in large-scale real-world applications.

The related codes are released in the following link: https://github.com/deep-
reinforcement-learning-book.

https://github.com/deep-reinforcement-learning-book
https://github.com/deep-reinforcement-learning-book

Chapter 7
Challenges of Reinforcement Learning

Zihan Ding and Hao Dong

Abstract This chapter introduces the existing challenges in deep reinforcement
learning research and applications, including: (1) the sample efficiency problem; (2)
stability of training; (3) the catastrophic interference problem; (4) the exploration
problems; (5) meta-learning and representation learning for the generality of
reinforcement learning methods across tasks; (6) multi-agent reinforcement learning
with other agents as part of the environment; (7) sim-to-real transfer for bridging
the gaps between simulated environments and the real world; (8) large-scale
reinforcement learning with parallel training frameworks to shorten the wall-clock
time for training, etc. This chapter proposes the above challenges with potential
solutions and research directions, as the primers of the advanced topics in the second
main part of the book, including Chaps. 8–12, to provide the readers a relatively
comprehensive understanding about the deficiencies of present methods, recent
development, and future directions in deep reinforcement learning.

Keywords Sample efficiency · Stability · Catastrophic interference ·
Exploration · Meta-learning · Representation learning · Generality · Multi-agent
reinforcement learning · Sim2real · Scalability

7.1 Sample Efficiency

A sample-efficient (or data-efficient) algorithm in reinforcement learning means
that the algorithm can make better use of the collected samples, so that it can
learn to improve the policy faster. With the same number of training samples (e.g.,
the time steps in reinforcement learning), a sample-efficient method can provide a

Z. Ding (�)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

H. Dong
Peking University, Beijing, China
e-mail: hao.dong@pku.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_7

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_7&domain=pdf
mailto:zhding@mail.ustc.edu.cn
mailto:hao.dong@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_7

250 Z. Ding and H. Dong

superior performance on the learning curve or final results, compared with other
“sample-inefficient” methods. Take the game Pong as an example: a normal human
only needs dozens of trials to basically master the game and achieve a relatively
good score. However, for present reinforcement learning algorithms (especially with
model-free methods), it may need at least tens of thousands of samples to gradually
learn some useful policies. This forms a crucial problem in reinforcement learning:
how can we design a more efficient reinforcement learning algorithm for an agent
to learn faster with fewer examples?

The importance of this problem is mostly due to the cost of real-time or real-
world interactions between the agent and the environment, or even the time and
energy consumption of the interactions in simulated environments at present. Most
of present reinforcement learning algorithms are of such a low learning efficiency on
a large-scale or continuous-space problem that a typical training process even with
fast simulation still requires unbearable waiting time with current computational
power. It can only be worse for real-world interactions. Potential problems of
time consumption, wear and tear of equipment, safety during the exploration of
reinforcement learning and risks of failure cases all make stricter requirements on
the learning efficiency of reinforcement learning methods in practice.

Improving data efficiency requires either having informative prior knowledge or
extracting information more efficiently from available data. Starting from these two
points, there are several approaches in present literature for solving the problem of
learning efficiency:

• Learning from expert demonstrations. The idea of learning from demonstrations
requires an expert to provide samples with high reward values. It actually falls
into an category called “imitation learning,” which tries not only to mimic the
expert actions but also to learn a generalized policy for handling unseen cases
as well. The combination of imitation learning and reinforcement learning is
actually a very promising area which has been heavily investigated in recent
years for applications like the game of Go, robotic learning, etc., to alleviate
the problem of low learning efficiency of reinforcement learning.

The key of learning from expert demonstrations is to extract the underlying
principles for generating good actions from the available demonstration dataset,
and apply it to more general cases. More contents about learning from demon-
strations are discussed in Chap. 8.

• Model-based reinforcement learning rather than model-free reinforcement learn-
ing. As introduced in the previous chapter, a model-based reinforcement learning
method usually indicates that the agent not only learns a policy for predicting its
action, but also learns a model of the environment for assisting the planning,
thereby accelerating the learning process of the policy. The model of the
environment basically contains two models: a transition model, which gives
the state change after the agent makes an action, and a reward model, which
determines how much reward the agent will get from the environment as a
feedback of its action.

7 Challenges of Reinforcement Learning 251

Learning an accurate model of the environment provides additional informa-
tion for better evaluation of the agent’s current policy, which could potentially
make the learning process more efficient. However, the model-based methods
have their own drawbacks. For instance, model-based methods always suffer
from “model bias” problem in practice, i.e. the model-based methods usually
inherently assume that the learned dynamic model of the environment sufficiently
and accurately resembles the real one. But this may not always be true if there are
only a few samples for the model to learn from, leading to an inaccurate model.
It could be problematic when the policy learned together with the inaccurate or
biased model is employed in the true environment.

One of the efficient model-based reinforcement learning algorithms is called
PILCO (Deisenroth and Rasmussen 2011), which applies non-parametric prob-
abilistic model Gaussian Processes (GPs) to resemble the dynamic model of the
environment. It leverages the straightforward solving process of GP methods
for efficient model learning, instead of using the neural network approximation.
The policy evaluation and improvement are performed based on the learned
probabilistic model. For a cart-double-pendulum swing up task in the real world,
the PILCO method only takes about 20–30 trials to learn an effective policy for
controlling, while the other methods like multi-layered perceptrons for learning a
dynamic model will finally take at least hundreds of trials. However, the PILCO
method has its own problems as well in that it cannot guarantee to search an
optimal control as the non-convex optimization problem for learning the policy
parameters, and the solving process of a GP is not scalable to high-dimensional
parameter space for complicated models. Other model-based methods together
with a general overview of model-based reinforcement learning are introduced
in Chap. 9.

• Design more efficient learning algorithms through solving existing defects.
The above two methods are trying to solve the learning efficiency problem
through leveraging additional external information. If no extra information can
be leveraged or the dynamic model of environments is hard to learn accurately,
we should improve the efficiency of algorithms without extra information. There
are usually two categories of reinforcement learning algorithms according to their
updating manner: on-policy and off-policy, as described in previous chapters. The
on-policy methods can evaluate the policy with less bias but larger variances,
while the off-policy can leverage a large batch of randomly sampled data to
achieve lower variances.

Many advanced and efficient algorithms have been proposed in recent years.
Most of them are targeted at some specific defects of conventional algorithms.
For reducing the variance of policy gradients, the critic network is introduced
to evaluate the action-value function in actor-critic; for scaling reinforcement
learning tasks from small scale to large scale, deep neural networks are employed
in DQN to improve the tabular-based Q-learning algorithm. To address the over-
estimation problem of the max operator in DQN updating rules, the double DQN
method is proposed with an additional Q-network. For boosting exploration, a
noisy DQN is proposed with parameter noise, and soft actor-critic (abbreviated as
SAC, introduced in Chap. 6) is created with adaptive entropy for the probabilistic

252 Z. Ding and H. Dong

distribution given by the policy. To extend the DQN methods from solving
only the discrete tasks to continuous cases, deep deterministic policy gradient
(abbreviated as DDPG, introduced in Chap. 6) algorithm is proposed. In order
to stabilize the learning process of DDPG, twin-delayed DDPG (abbreviated as
TD3, introduced in Chap. 6) is proposed with additional networks and delayed
update schedule. To ensure a safe update in on-policy reinforcement learn-
ing policy optimization, trust-region-based algorithms like trust region policy
optimization (abbreviated as TRPO, introduced in Chap. 5) are proposed. To
reduce the computational time with second-order optimization in TRPO, the
PPO (abbreviated as PPO, introduced in Chap. 5) algorithm is proposed with
first-order approximation. For accelerating the second-order natural gradient
descent methods, the algorithm actor-critic using Kronecker-factored trust region
(abbreviated as ACKTR, introduced in Chap. 5) is proposed to use the Kronecker-
factored method for approximating the inverse fisher information matrix in
second-order optimization process. Maximum a posteriori policy optimization
(MPO) (Abdolmaleki et al. 2018) and its on-policy variant V-MPO (Song et al.
2019) relate to the policy optimization in a perspective of “reinforcement learning
as inference.” The MPO employs probabilistic inference tools like expectation
maximization (EM) for optimizing a maximum entropy reinforcement learning
objective. The above algorithms are just a small proportion of the overall
development in the field of reinforcement learning algorithms. We direct the
readers to the literature for more algorithms for improving the efficiency and
other drawbacks of reinforcement learning. At the same time, the structures of
proposed reinforcement learning algorithms are becoming more and more com-
plicated, with more flexible parameters either being learned adaptively or being
manually chosen, which requires more delicate considerations in the research of
reinforcement learning. Sometimes those additional hyper-parameters improve
the learning performances greatly, but sometimes they could also make the
learning process more sensitive, of which you should take care case by case.

• In the above cases we assume the data samples are information-rich, but the
learning efficiency of reinforcement learning algorithms is low. In practice, it
is usually common to see the samples’ lack of useful information, especially
for the sparse-reward tasks. For example, for a single binary valued success
label of task completion, the intermediate samples may all have an immediate
zero reward without any discrimination. The information contained in those
samples are naturally scarce. In cases like this, the way to effectively explore the
learning space without the reward instructions can be crucial. Techniques like
hindsight experience replay (Andrychowicz et al. 2017), hierarchical learning
structure (Kulkarni et al. 2016), intrinsic reward (Sukhbaatar et al. 2018),
curiosity-driven exploration (Pathak et al. 2017), and other effective exploration
strategies (Houthooft et al. 2016) are applied in some works. The learning
efficiency in reinforcement learning is significantly affected by the exploration
process due to the intrinsic properties of reinforcement learning, and effec-
tive exploration can improve the efficiency of learning from samples through
gathering more informative samples. As exploration is another big challenge in

7 Challenges of Reinforcement Learning 253

reinforcement learning, it will be discussed individually in one of the following
sections.

7.2 Learning Stability

Deep reinforcement learning can be terribly unstable or stochastic. Here the term
“unstable” indicates the differences of the learning performances during time for
single run or for horizontal comparison across multiple runs. The unstable learning
process during time shows up as the large local variances or non-monotonicity on
the single learning curve, e.g. sometimes the learning performance even degrades
for some reasons. And the unstable learning for different runs displays as a large
difference in the performances across trials at each stage during training, resulting
in large variances for horizontal comparisons.

The unstable and unpredictable properties of deep neural networks are further
exacerbated in the deep reinforcement learning domain, due to shifting objective
distribution, unsatisfied requirements of independent and identically distributed
(i.i.d.) data, the unstable biased estimation of value function approximation, and so
on. These factors lead to noise in the gradient estimators, which further causes the
unstable learning performances. Different from learning a fixed training dataset in
supervised learning (not considering the batch constrained reinforcement learning),
reinforcement learning methods usually learn from the samples that are highly
correlated. For example, the learning agent mostly takes samples explored with the
policy, either by the current policy for on-policy learning or the previous policy
for off-policy learning (sometimes even other policies). Samples generated during
the sequential interactions between the agent and the environment can be highly
correlated, which breaks the independent requirement for effective learning with
neural networks. Since the value function is evaluated on the trajectories chosen by
the current policy, there is a dependency relationship of value function on the policy
for estimating it. Due to the policy changing over the training time, the optimization
manifold of the parameterized value function changes over time as well. Consider-
ing the policy is usually stochastic for the benefits of exploration during training, the
value function is even more untraceable. This ends up with the unsatisfied condition
of identically distributed data for learning. The unstable learning is mostly caused by
the variances in policy gradient or value function estimation. However, the biased
estimation is another source of unstable performances in reinforcement learning,
especially when the bias is unstable itself. For example, recall that in Chap. 2, the
compatible function approximation condition needs to be satisfied so as to provide
an unbiased estimation of action-value function Qπ(s, a) with Qw(s, a). There are
also several other conditions to ensure an unbiased estimation of value functions, as
well as further requirements to ensure advanced reinforcement learning algorithms
have accurate and correct gradients for improving the policy. However, in practice,
those requirements or conditions are usually relaxed, which ends up with unstable
biased estimation of value function, or large variances in the policy gradients. In

254 Z. Ding and H. Dong

Fig. 7.1 Learning curves in experiments of VIME. Figure is adapted from Houthooft et al. (2016).
(a) MountainCar. (b) CartPoleSwingup. (c) HalfCheetah

most cases people are talking about the bias and variance trade-off for estimation in
reinforcement learning algorithms, but the unstable bias term itself can contribute in
the unstable learning performances as well. There are also other factors contributing
to the unstable learning performances, like randomness in the exploration strategy,
randomness in the environment, random seeds for numerical calculations, etc.

Take the example of some experiments in the paper by Houthooft et al. (2016),
which proposes the variational information maximizing exploration (VIME) as an
exploration strategy to be applied on general reinforcement learning algorithms.
Some learning performances are displayed in their comparison of algorithms, and
the learning results using TRPO or TRPO+VIME for three different environments
almost all show large variances in their learning curves, as shown in Fig. 7.1. For the
environment MountainCar, the learning curves of TRPO algorithm could cover the
whole range of reward value [0, 1], and it is almost a similar case with TRPO+VIME
method for HalfCheetah environment. We need to note that TRPO is already a
relatively stable reinforcement learning algorithm than other algorithms for most
cases, with the second-order optimization in gradient descent and the trust-region
constraint. Other algorithms like DDPG can be even more unstable during training,
the noisy exploration can even deteriorate the learning performance after training
for a long time (Fujimoto et al. 2018).

The randomness of the learning process with reinforcement learning makes it
hard to evaluate the performance of algorithms accurately, which also addresses the
importance of applying different random seeds to get averaged results.

Previous investigations (Henderson et al. 2018) about deep reinforcement learn-
ing give some conclusions about the instability and sensitivity of experiments in
deep reinforcement learning:

• The policy network architecture can significantly impact results in both TRPO
and DDPG.

• For hidden layers of policy network or value network, usually ReLU or leaky
ReLU activations perform the best across environments and algorithms. The
effects are not consistent across algorithms or environments.

7 Challenges of Reinforcement Learning 255

• Reward rescaling can have a large effect, but results were inconsistent across
environments and scaling values.

• Five random seeds (a common reporting metric) may not be enough to argue
significant results, since with careful selection you can get non-overlapping
confidence intervals for different random seeds even with exactly the same
implementation.

• The stability of environment dynamics can severely affect the learning perfor-
mance of reinforcement learning algorithms. For example, an unstable environ-
ment could diminish the effective learning performance of DDPG rapidly.

People have been working on solving the stability problem in reinforcement
learning for a long time. To solve the variances in the cumulative reward function for
the original REINFORCE algorithm, the value function approximation is introduced
to estimate the reward value. Furthermore, the action-value function is also used for
reward function approximation, which reduces the variances even if it is biased.
Methods like this form a mainstream of deep reinforcement learning algorithms
combining Q-learning with the policy gradient methods, as introduced in previous
Chap. 6. In the original DQN (Mnih et al. 2013), the methods of using the target
network with delayed update and the replay buffer help alleviate the problem of
unstable learning. Usually a deep function approximator requires multiple gradient
updates to converge instead of a single update, and the target network provides a
stable objective during the learning process, which help with the convergence on the
training data. To some extent, it satisfies the identically distributed requirement that
is broken by reinforcement learning without the target networks. The replay buffer
provides the DQN an off-policy learning manner, and randomly sampled data from
the buffer for training is more close to the independent distributed data, which helps
to stabilize the learning process as well. More details of the DQN are introduced in
Chap. 4. Moreover, the TD3 algorithm (details in Chap. 6) applies the target policy
smooth regularization on top of the stable techniques applied in DQN, with the
smoothness assumption that similar actions should have similar value. Therefore
the target value is estimated with noise on the action to reduce the variance. TD3
also employs a pair of critics instead of a single one in DDPG, the further stabilize
the learning performances. On the other hand, for policy-gradient based methods,
TRPO uses second-order optimization to provide more stable updates with more
comprehensive information, as well as applying the constraints on updated policy
to ensure conservative but steady improvements.

However, even with the above works, instability, randomness, and sensitivity
to initialization and hyper-parameters make it difficult for reinforcement learning
researchers to evaluate the algorithms across tasks and reproduce the results, which
still forms a big challenge for the reinforcement learning community.

256 Z. Ding and H. Dong

7.3 Catastrophic Interference

As reinforcement learning usually has a dynamics learning process instead of
learning with a fixed dataset as in supervised learning, it can be regarded as a process
of chasing a running goal with dataset being updated during the whole period. For
example, in Chap. 2 we introduce the on-policy value function V π(s) and action-
value function Qπ(s, a), which are both estimated with the current policy π . But the
policy is updated all the time during the learning process, which leads to a dynamic
estimation of the value functions. Although applying the off-policy replay buffer
helps to alleviate the problem with relatively stationary training dataset, the samples
in the buffer still change along with the agent’s exploration process. Therefore, a
problem called catastrophic interference or catastrophic forgetting (Kirkpatrick
et al. 2017) can happen during learning process especially when the policy or the
value function is learnt based on the deep learning method with neural networks, and
it describes the poor ability in handling this kind of incremental learning mentioned
above. The new data usually makes the trained network change a lot to fit it, but
forgets what it has learned in previous training process even if it is useful. This is a
limitation of applying neural networks as approximators in reinforcement learning
methods.

The natural and human-like learning process is actually on-policy learning,
instead of the off-policy approach. Humans keep learning new things everyday
in real time instead of learning from their memories all the time. However, the
on-policy reinforcement learning still struggles to improve learning efficiency, and
tries to prevent the catastrophic interference problem. Trust-region-based algorithms
like TRPO and PPO make a constraint about the potential range of updated policy
during learning, to ensure a steady but relatively slow improvement in learning
performance. For on-policy learning, the data is usually collected as correlated
data, which contributes to the catastrophic interference a lot. Therefore, off-policy
learning methods apply an experience replay buffer for alleviating this problem,
so that the old data will remain during learning to some extent. Techniques like
prioritized experience replay and hindsight experience replay are proposed to
leverage the data stored in the replay buffer according to their importance or goals
in a sophisticated manner.

Catastrophic forgetting also happens when the learning process has multiple
stages. For example, in the sim-to-real policy transfer process, the policy usually
needs to be pre-trained in the simulated environment and then fine-tuned with the
real-world data. However, the loss function for the two processes may be different in
practice, and may not always be consistent with the overall reinforcement learning
objective. Like in the work by Jeong et al. (2019a), the image observations are
embedded in to latent representation as inputs of the policy, and the embedding
network is fine-tuned for sim-to-real adaptation with a self-supervised loss instead
of the original reinforcement learning loss in simulation training process. This
kind of mismatch of the loss function in a multi-stage training process will cause
catastrophic forgetting in practice, which means that the policy has chances to

7 Challenges of Reinforcement Learning 257

forget the skills obtained in pre-training. To solve that, freezing partial layers of the
network and keep updating the network with previous loss function can help during
the post-training process, which tries to maintain the pre-trained network to the best
during post-training process. Another similar idea is the residual policy learning
mentioned in Chap. 8 Sect. 8.6, which also freezes the weights of the pre-trained
network but applies an additional network alongside to learn the corrections.

7.4 Exploration

Exploration is another main challenge in reinforcement learning, which greatly
affects the learning efficiency as mentioned in previous section. Rather than
discussing the exploration-exploitation trade-off, which is a classical and well-
known problem in reinforcement learning mentioned in Chap. 2, we focus on the
challenge of exploration itself here in this section. The hardness of exploration in
reinforcement learning lies in sparse rewards, large action space, and non-stationary
environments for exploration, as well as the safety problems in real-world explo-
ration, etc. Exploration means finding more information about the environments
through interactions, usually counter to exploitation, which denotes exploiting
known information to maximize reward. The learning process of reinforcement
learning is based on trial-and-error. An optimal policy cannot be learned unless
those optimal trajectories have been explored before. For example, Atari games
like Montezuma’s Revenge, Pitfall in OpenAI Gym are hard to solve for general
reinforcement learning algorithms due to the hardness of exploration, and the game
scenes of them are shown in Fig. 7.2,1 which usually contain a complicated maze to
be solved with a long sequence of operations. They are like a maze solving problem
but via more complicated structures and hierarchies. Montezuma’s Revenge is a
very typical example with sparse rewards in the task, which makes the exploration
in reinforcement learning very hard to conduct. Within one game scene, the agent
in Montezuma’s Revenge has to finish dozens of subsequent actions to pass one
room, while there are 23 rooms of different game scenes that the agent needs
to navigate itself. A wrong action at each time step could potentially make the
agent fail to pass. A similar case happens in the game Pitfall. These games are
usually used as a benchmark for evaluating the exploration ability of reinforcement
learning methods. OpenAI2 and Deepmind (Aytar et al. 2018) have both claimed
they have solved this game Montezuma’s Revenge with efficient deep reinforcement
learning methods. However, the results are actually not very satisfying. In both of
their solutions, the expert demonstrations are leveraged to assist exploration. For
example, in Deepmind’s solution they let the agent watch the YouTube videos, while
OpenAI uses human demonstrations for better initialization of agent’s position.

1Figures source: https://gym.openai.com/envs/#atari.
2https://openai.com/blog/learning-montezumas-revenge-from-a-single-demonstration/.

https://gym.openai.com/envs/#atari
https://openai.com/blog/learning-montezumas-revenge-from-a-single-demonstration/

258 Z. Ding and H. Dong

Fig. 7.2 Atari games that are hard to learn: Montezuma’s revenge (left) and pitfall (right)

The bottleneck of this kind of sparse-reward task actually lies in exploration.
Sparse rewards can make the value networks and policy networks optimized on
hyper-surfaces that are not smooth and not convex, or even discontinuous at some
stages of training. Therefore, the policy after one-step optimization may not help
with exploring higher-reward regions. The agent would find it very hard to explore
a high-reward trajectory during its exploration with traditional exploration strategy
like random actions or ε-greedy policy. Even if they have sampled one near-
optimal trajectory, the value-based or policy-based optimization methods may not
pay enough attention to it, which could also end up with a failure or slow process of
learning a good policy. The problems described above address the defects of current
deep reinforcement learning methods.

Apart from the sparse rewards, large action space and non-stationary environ-
ments also raise the difficulty of exploration for reinforcement learning agents. A
typical example is the StarCraft II game solved by Vinyals et al. (2019). Table 7.13

compares the Atari games, Go, and StarCraft in their information types, action
space, moves in a game, and number of players. The large action space and length
of game control sequences make it extremely hard for exploring a good policy in
StarCraft. Moreover, the multi-player settings make opponents part of the game
environment for the agent, which increases the hardness of exploration as well.

To solve the problem of exploration, researchers have been looking into concepts
including imitation learning (as in Chap. 8), intrinsic reward/motivation, hierarchi-
cal learning (as in Chap. 10), etc. With imitation learning, the agent tries to mimic
expert demonstrations from human or other sources to improve the efficiency of its
learning with less difficulty in exploring near-optimal samples. Intrinsic motivation

3Data source: Oriol Vinyals, Deep Reinforcement Learning Workshop, NeurIPS 2019.

7 Challenges of Reinforcement Learning 259

Table 7.1 Comparison of
different games

Atari Go StarCraft

Information type Near-perfect Perfect Imperfect

Action space 17 361 1026

Moves per game 100’s 100’s 1000’s

Players Single Two Multiple

is based on the notion that behavior is not just the result of external reward,
but is also driven by internal desires, like acquiring more effective information
about the unknown. For example, babies can learn about the world so fast with
curiosity-driven exploration. Curiosity is one of the internal drives to improve the
agent’s learning towards the final goal. More internal drives are worth exploring
in the research. Hierarchical learning decomposes the complicated and hard-to-
explore tasks into smaller sub-tasks, which are easier to learn. For example, the
feudal network (FuN) as a key method in feudal reinforcement learning applies a
hierarchical structure with manager and worker to solve the Montezuma’s Revenge
via more effective exploration and learning (Vezhnevets et al. 2017).

In recent years, some new methods have been proposed to solve the exploration
problem, one of them being Go-Explore, which is not a deep reinforcement learning
solution. The main idea of Go-Explore is to first explore the game world using
deterministic training without neural networks, i.e. not using deep reinforcement
learning approaches, then to apply a deep neural network for imitation learning on
the best trajectories, to make the policy robust to randomness of the environments.
To solve the large-scale highly complicated game like StarCraft II, DeepMind’s
researchers (Vinyals et al. 2019) apply the population-based training framework to
effectively explore the global optimal strategies, and the set of agents is called the
league. Different agents are initialized around different clusters on the distribution,
to ensure the diversity during exploration. The population-based training provides
more thorough explorations than a single agent in the policy space.

Exploration in real-world tasks also corresponds with the safety problem. For
example, when considering an autonomous driving car controlled by an agent, the
failure cases with car accidents are what the agent is supposed to learn from. But an
actual car cannot be used in reality to collect those failure cases for the agent to learn
with a low and acceptable consumption. A real car cannot even take random actions
for exploration, which could lead to disastrous results. The same problem happens in
other real-world applications like robotic manipulations, robotic surgery, and so on.
To solve this problem, sim-to-real transfer is developed for applying reinforcement
learning in the real world, which achieves the training process in simulation and
transfers the policy into reality.

260 Z. Ding and H. Dong

7.5 Meta-Learning and Representation Learning

Apart from improving the learning efficiency on a specific task, researchers are
seeking a way to improve the overall learning performance on different tasks, which
relates to the generality and versatility of models. So how can we make the agent
learn faster on a new task based on what it has learned from an old task? Several
concepts can be introduced here, including meta-learning, representation learning,
transfer learning, etc.

The problem of meta-learning can actually be traced back to 1980s–1990s
(Bengio et al. 1990). Recent fast development deep learning and deep reinforcement
learning bring this problem back into our sight. A lot of exciting new ideas are
proposed, such as those based on model-agnostic meta-learning, and more powerful
frameworks for learning across tasks are invented in recent years, which makes
this area develop very fast. The original goal of meta-learning is to let the agent
learn to solve different tasks or grasp different skills. However, we cannot suffer
learning from scratch for each task, especially with deep learning methods for
approximation. Meta-learning, also called learning to learn, is proposed to let
the agent learn faster on a new task with previous experience, rather than regarding
each task as an independent task. Usually a standard learner for learning a specific
task is taken as an inner-loop learning process for meta-learning, while a meta-
learner for learning to update the inner-loop learners is regarded as an outer-loop
learning process. These two learning processes are optimized at the same time or in
an iterative manner. Three main categories of meta-learning are: recurrent models,
metric learning, and learning the optimizers. The combination of meta-learning
and reinforcement learning gives the meta-reinforcement learning methods. An
effective meta-reinforcement learning method like model-agnostic meta-learning
(Finn et al. 2017) can solve a simple but new task with few-shot learning, or few
steps for updating.

For a specific task domain, there may be some hidden correlations among
different tasks. Can we enable the agent to master these underlying principles from
some sampled tasks in this domain, and therefore generalize what have learned
to other tasks, so as to learn them faster? Learning the underlying relationships
or principles is related to a concept called representation learning (Bengio
et al. 2013). Representation learning is originally proposed in machine learning,
and is defined as learning the representations from the raw data and extract
useful information or features for the classifiers or the predictors (like policies in
reinforcement learning). Representation learning tries to learn some abstract and
compact features to represent the raw materials, and with this kind of abstraction,
the predictors or classifiers will not degrade their performances, but with a higher
learning efficiency. Learning the hidden representation can be extremely useful
for improving the learning efficiency of reinforcement learning, and transferring
these general principles will benefit the learning process on different tasks. The
representation learning is usually used for learning compact representation of
complex states of reinforcement learning environments, which is called state

7 Challenges of Reinforcement Learning 261

representation learning (SRL). The representation contains the invariance and
distinction properties in a proper abstract space, which is distilled from variant
domains. For example, in a sequence of frames of a video capturing the motion
of objects, the set of the key points on the corners (or other specific points on
the surfaces) of the object is an invariant and robust representation of the object
motion, although the pixels in frames are always variant along with the objects’
motion. Those key points are sometimes called the descriptors in computer vision
terminology, within a descriptor space. Under this representation, the positions of
those key points are changing during the object motion, and therefore can represent
the motion of the object. Different objects will have different sets of key points,
which can be used to distinguish them from each other. This area of representation
learning for reinforcement learning is important when the reinforcement learning
policy is transferred across domains, including different task domains, simulation-
to-reality domain transfer, and so on. It is promising and still under exploration,
which provides a direction for exploring how humans leverage the knowledge for
planning.

7.6 Multi-Agent Reinforcement Learning

In the chapters we introduced above, there is only one agent trying to find its
optimal policy in an environment, which belongs to the category of single-agent
reinforcement learning. Apart from single-agent reinforcement learning, we can
actually set several agents inside the same scene, to explore the policies for
multi-agents at the same time in an alternating or simultaneous manner, which is
called multi-agent reinforcement learning (MARL). MARL is promising and worth
exploring as it provides a way to investigate the swarm intelligence, more dynamic
environments for each agent, and innovations from the agents themselves, etc.

Modern learning algorithms are more so outstanding test-takers, but less so
innovators. The ceiling of an agent’s intelligence may be limited by the complexity
of its environment. Thus, the emergence of innovation is becoming a hot topic for
artificial intelligence (AI). One of the most promising paths towards such a vision
is learning via social interaction with multi-agent learning. In multi-agent learning,
how the agents beat the opponents or collaborate with each other is not defined
by the builder of the environment. For example, the inventor of the ancient game
of Go never defines what strategies are good enough to beat the opponent, but the
opponent usually forms part of the dynamic environment. However, enormous and
sophisticated strategies are invented while a population of human players/artificial
agents evolve by improving themselves over the others, i.e. each agent is acting as
an environment for the others and improving itself means proposing new problems
for the others.

Combinations of traditional game theory and modern deep reinforcement learn-
ing are explored (Lanctot et al. 2017; Nowé et al. 2012) in recent years for MARL,
as well as new ideas like self-play (Silver et al. 2018a; Heinrich and Silver 2016;

262 Z. Ding and H. Dong

Shoham et al. 2003; Berner et al. 2019), prioritized fictitious self-play (Vinyals et al.
2019), population-based training (PBT) (Jaderberg et al. 2017; Vinyals et al. 2019),
and independent reinforcement learning (InRL) (Tan 1993; Lanctot et al. 2017).
MARL not only makes it possible to explore the distributional intelligence in a
multi-agent environment, but can also help to learn the near-optimal or close-to-
equilibrium agent policy in a complex large-scale environment, like in Deepmind’s
AlphaStar for mastering the game of StarCraft II shown in Fig. 7.3. The AlphaStar
framework applies PBT, by employing a league of agents, each of which is a single
colored block with index in Fig. 7.3, to ensure sufficient exploration in the policy
space. The unit of policy optimization is no longer the single policy for each agent
in PBT, but rather the league of agents. The overall strategy will not merely care
about the improvement of a single policy, but more about the overall performances
in the agent league. More contents about MARL are introduced in Chap. 11.

7.7 Sim to Real

Reinforcement learning methods can successfully solve a large variety of tasks in
simulated environments, and can sometimes even beat the best human performance
for specific areas as in the game of Go. However, the challenge of applying
reinforcement learning methods for real-world tasks remains unsolved. Apart from
playing Atari games, strategy computer games, or board games, potential applica-
tions of reinforcement learning in real world include robotics control, autonomous
driving vehicles, autonomous drone control, etc. These tasks which involve real-
world hardware usually have high requirements for safety and accuracy. For these
cases, a single operation by mistake can even lead to disastrous results. This is a
more considerable problem when the policy is learned with reinforcement learning
methods, of which the exploration process makes great differences for the learning
agent without even considering the sample complexity in real world. Modern
machine control in industry still depends heavily on traditional control methods,
instead of state-of-the-art machine learning or reinforcement learning solutions.
However, it is still a wonderful dream of controlling those physical machines with a
smart agent that plenty of researchers in corresponding areas are working towards.

Recent years have seen the application of deep reinforcement learning to a
growing repertoire of control problems. But due to the high sample complexity
of reinforcement learning algorithms and other physical limitations, many of the
capabilities demonstrated in simulation have yet to be replicated in the physical
world. We will demonstrate the ideas mainly with the robot learning example, which
is a more and more active research direction attracting attentions from both the
academia and the industry.

Guided policy search (GPS) (Levine and Koltun 2013) represents one of the few
algorithms capable of training policies directly on a real robot within limited time.
By leveraging trajectory optimization with learned linear dynamics models, the
method is able to develop complex manipulation skills with relatively small numbers

7 Challenges of Reinforcement Learning 263

F
ig

.7
.3

T
ra

in
in

g
sc

he
m

e
of

A
lp

ha
St

ar
.E

ac
h

sm
al

lb
lo

ck
in

di
ca

te
s

an
ag

en
tt

ra
in

ed
in

th
e

A
lp

ha
St

ar
le

ag
ue

264 Z. Ding and H. Dong

Fig. 7.4 The figure shows
the difference of MDP in both
simulation and in reality due
to the time delays for both the
state capture and the policy
inference processes, which
form one of the factors for
reality gap

of interactions with the environment. Researchers have also explored parallelizing
training across multiple robots (Levine et al. 2018). Kalashnikov et al. (2018) also
propose the QT-Opt algorithm with a distributed training framework on 7 real
robots at the same time, but with a cost of 800 robot hours data collection over
the course of 4 months. They demonstrate the successful cases of robot learning
directly deployed in real world, but the time consumption and requirement of
resources are unbearable. Furthermore, successful examples of training policies
directly on physical systems have so far been demonstrated only on relatively
restrictive domains.

Sim-to-real transfer is an alternative approach for directly training deep rein-
forcement learning agents in reality, and is attracting more attention than before due
to the development of simulation performances and other facts. Instead of directly
training in real world, sim-to-real transfer works through a quick learning process
in simulation. Recent years have seen great achievements in sim-to-real approaches
for successfully deploying reinforcement learning agents in reality (Andrychowicz
et al. 2018; Akkaya et al. 2019). However, the approach of sim-to-real has its own
drawbacks compared with directly deploy training processes in real environments,
which are mostly caused by the differences of simulation and reality environments
called the reality gap. There are varieties of factors causing the reality gap in
practice, depending on the specific systems. For example, the differences in system
dynamics will cause the dynamic gap in simulation and reality (Fig. 7.4). Different
approaches are also proposed to solve the problems in sim-to-real transfer, which
will be discussed in later paragraphs as well.

We first try to understand the concept of the reality gap. The reality gap in real-
world application can be understood to some extent with the Fig. 7.5 from the work
of Jeong et al. (2019b), which displays the difference of simulated trajectories and
real trajectories on robot as well as the difference of simulation and the reference.
For robotic control tasks with reinforcement learning, the reference is the control
signal sent by the agent or the desired behaviors on the joint angle of the robot arm.
Due to the latency, inertance and other dynamic inaccuracy, both the trajectories
in simulations and in reality have quite significant differences with the reference.
Moreover, the trajectory in reality differs from the one in simulation as well, which

7 Challenges of Reinforcement Learning 265

Fig. 7.5 Differences of robotic control among reference, simulation and reality, for a simple
control process on the joint angle. Figure is adapted from the paper by Jeong et al. (2019b)

is the reality gap. The system identification in the graph is a method for configuring
the values of dynamics parameters in the system, which can be applied by the policy
or the simulator to mitigate the differences between the simulated dynamics and the
real dynamics. The generalized force mode (GFM) is a newly proposed method in
their paper (Jeong et al. 2019b) for calibrating the simulator with extra forces, which
provides more similar trajectory in simulation as the real trajectory. However, the
reality gap still exists even with the identification and calibration approaches, which
will affect the transferred policy from simulation to reality.

Apart from the difference in the trajectories for simulation and reality at each
time step due to different dynamic processes, there are also other sources of the
reality gap. For example, the time delay of system response or system observation
construction in continuous real-world control system, which may not exist in ideal
simulation cases with discrete time steps. As shown in Fig. 7.4, in the MDP of
simulated environments or conventional reinforcement learning settings, the state
capture and policy inference process are assumed to have zero time consumption
all the time, while in real-world cases, both of these two processes can take
a considerable amount of time, which makes the agent always making action
choices based on lagged observation from previous states during the previous action
execution.

The above problem can also affect the trajectories to display different patterns
for simulation and reality, as shown in Fig. 7.6. Considering an object manipulation
task, even if we neglect the time consumption of the policy inference due to
the fast forward process of a neural network, the position of the object in real
world may need to be captured with a camera and tracked with some localization
techniques, which may require some considerable time to process. This process
will induce the time delay during the observation construction, and it displays the

266 Z. Ding and H. Dong

Fig. 7.6 The figure displays the time delay in the observed state (position) of the object under the
same control signals. The real-world trajectory (below) is delayed compared with the simulated
trajectory (above) due to the extra observation construction process in reality. Different lines show
several trials and the bold ones are the means

time gap in the figure between the real-world trajectories and the simulated ones,
even with the same control signals. These kind of delayed observations make
the reinforcement learning agent in the real world only capable of receiving the
previous observation Ot−1 to make an action choice At for the current step instead
of directly observing the current state St . So the policies may generally have the
form π(At |Ot−δ) according to the time delay δ in practice, which is different from
the policy trained in simulation with real-time observation and therefore with a bad
performance. One way of solving this is to modify the simulator to have the same
time delay for the reinforcement learning agent to learn. However, this induces other
problems like how to accurately represent and measure the time delay between
simulation and real world, how to ensure the performance of the learned agent
based on the delayed observation, etc. Recently, Ramstedt et. al. proposed real-time
reinforcement learning (Ramstedt and Pal 2019) method, and Xiao et. al. proposed
the method of “thinking while moving” with continuous-time MDP settings to
mitigate the problem of real-time environments with delayed observations and
concurrent action choices for reinforcement learning, which displays smoother
trajectories for controlling in real world.

As shown above, the main problem for sim-to-real transfer in reinforcement
learning perspective is: the policies trained in simulation cannot work all the time in
the real world due to the reality gap, which describes the differences of simulation
and reality. Due to this modeling error, policies that are successful in simulation
may not be transferred well to their real-world counterparts. Generally, the methods
for solving sim-to-real transfer can be divided into at least two main categories: the
zero-shot methods and adaptive learning methods. The problem of transfer learning
for control policies from simulation to the real world can be viewed as an instance

7 Challenges of Reinforcement Learning 267

of domain adaptation, where a model trained in a source domain is transferred
to a new target domain. One of the key assumptions behind these methods is that
the different domains share common characteristics such that representations and
behaviors learned in one will prove useful for the other. Domain adaptation requires
data in the new domain to adapt the pre-trained policies in the new domain. Due
to the complexity or harness for acquiring data in the new domain, e.g. collecting
samples in reality, the efficiency of this kind of adaptive learning needs to be
high. Methods like meta-learning (Arndt et al. 2019; Nagabandi et al. 2018) and
residual policy learning (Silver et al. 2018b; Johannink et al. 2019), progressive
networks (Rusu et al. 2016a,b) are applied in these scenarios. Zero-shot transfer
is a complementary class of techniques for domain adaptation that is particularly
well suited for learning in simulation. This means no further learning process on
real-world data is applied during the transfer process. Domain randomization is
one typical type of method within the category of zero-shot transfer. With domain
randomization, discrepancies between the source and target domains are modeled
as variability in the source domain. Instead of overfitting to the characteristics of
the specific simulator settings, more general policies can be learned through domain
randomization. Randomization can be applied on different characteristics according
to the specific application. For example, for robotic manipulation task, the amount
of friction and mass, the errors in torques and velocities will all affect the control
accuracy when applied in real robot. Those parameters can therefore be randomized
in simulators for training a more robust policy with reinforcement learning (Peng
et al. 2018), which is called dynamics randomization. Randomization in the visual
domain has been used to directly transfer vision-based policies from simulation to
the real world without requiring real images during training (Sadeghi and Levine
2016; Tobin et al. 2017). Potential components for visual feature randomization
include texture, lighting, objects positions, etc.

The reality gap is usually task-dependent, and it can be caused by the differences
in dynamic parameters or even the definitions of dynamic process. Apart from
the dynamics randomization (Peng et al. 2018) or visual feature (observation)
randomization, there are some other methods for bridging the reality gap. Learning
a dynamics-aware policy with system identification (Yu et al. 2017; Zhou et al.
2019) is a promising direction, which tries to learn a policy conditioned on the
system characteristics like dynamics parameters or embeddings of trajectories.
There are also methods trying to minimize the discrepancies between sim and real,
like the GFM method mentioned previously for force calibration, etc. Sim-to-real
via sim-to-sim (James et al. 2019) is another approach for crossing the reality
gap using Randomized-to-Canonical Adaptation Networks (RCANs). It transforms
randomized or real-world images to their equivalent non-randomized canonical
versions, which are similar to ones in simulation. The progressive nets (Rusu et al.
2016a) can be applied for sim-to-real transfer (Rusu et al. 2016b), which is a
general framework that enables reuse of everything from low-level visual features
to high-level policies for transfer to new tasks, enabling a compositional, yet simple,
approach to building complex skills.

268 Z. Ding and H. Dong

The computational framework nowadays deploys the discrete computation pro-
cess based on binary operations, so we should always admit the difference of
simulation and the real world to some extent. This is because the latter is continuous
in space and time (in classical physics systems at least). As long as the learning
algorithms are not efficient enough to be directly applied in real world like a
human’s mind (or even so), it is always useful to achieve some pre-trained model
in simulation. And it can be better if the model has certain level of generalization
ability in real-world cases, which is the significance of the algorithms for sim-to-
real transfer. In other words, the sim-to-real methods provide the methodology of
learning a model always with respect to the reality gap, no matter how accurate the
simulators can be.

7.8 Large-Scale Reinforcement Learning

As discussed in previous sections, reinforcement learning applications in real world
suffer from several problems at present, like delayed observations, domain shifts,
etc., generally within the scope of reality gap. However, there are other factors
that hinder the application of reinforcement learning, either in simulated cases
and in real-world cases. One of the most challenging problems is the scalability
of reinforcement learning, although deep reinforcement learning is leveraging the
general representative ability of deep neural networks. This proposes the challenge
of large-scale reinforcement learning.

We can take a look at some examples first. In the applications of mastering
the large-scale real-time computer games like StarCraft II and Dota 2, teams of
DeepMind and OpenAI propose methods AlphaStar (Vinyals et al. 2019) and Ope-
nAI Five (Berner et al. 2019), respectively. In AlphaStar, both deep reinforcement
learning methods and supervised learning (e.g., behavioral cloning in imitation
learning) are applied in a population-based training (PBT) framework, as well
as advanced network structures like scatter connections, transformer, and pointer
networks, which make the deep reinforcement learning methods liable to only a
small fraction of the overall strategy. The steps which become more critical for
finally solving the task in AlphaStar are how to efficiently learn from existing
demonstration data and apply the pre-trained policy as initialization of reinforce-
ment learning agents, and how to effectively combine different sub-optimal policies
explored by different agents in the league. In OpenAI Five, a self-play framework
is applied instead of the PBT framework, but it also leverages the imitation learning
from human demonstration. The above facts show that, present deep reinforcement
learning algorithms themselves are still not effective and efficient enough to solve
a large-scale task perfectly in an end-to-end manner for most cases. Some other
techniques like imitation learning (in Chap. 8), hierarchical reinforcement learning
strategies (in Chap. 10), and so on are generally required for solving the large-scale
problems.

7 Challenges of Reinforcement Learning 269

Moreover, a parallel learning framework is usually employed in the large-scale
problems as well. For example, in the algorithm QT-Opt (Kalashnikov et al. 2018)
for solving real-world robot learning tasks, to handle the paralleled robot sampling,
a replay buffer containing both on-policy and off-policy data is applied, as well as
distributed training workers to learn the policy efficiently with data from the buffer.
A distributed or paralleled sampling and training framework is critical for solving
the large-scale problems, especially for high-dimensional state and action spaces.
Espeholt et al. (2018) proposed the method called importance weighted actor-
learner architecture (IMPALA) and Espeholt et al. (2019) proposed SEED (Scalable,
Efficient Deep-RL) for large-scale distributed reinforcement learning. Furthermore,
the distributed framework for reinforcement learning usually concerns the balance
between different computational devices (e.g., CPUs and GPUs), as discussed in
Chap. 18. In terms of reinforcement learning algorithms, asynchronous advantage
actor-critic (A3C) (Mnih et al. 2016), distributed proximal policy optimization
(DPPO) (Heess et al. 2017), recurrent replay distributed DQN (R2D2) (Kapturowski
et al. 2018) are proposed in recent years for supporting better parallel sampling and
training in reinforcement learning. More contents about parallel computation for
reinforcement learning are introduced in Chap. 12.

7.9 Others

Apart from the above-mentioned challenges in (deep) reinforcement learning, there
are also other challenges like the explainability (Madumal et al. 2019) of deep
reinforcement learning, the safety problem (Berkenkamp et al. 2017; Garcıa and
Fernández 2015) in applications of reinforcement learning, hardness in theoretical
proofs of complexity (Lattimore et al. 2013; Koenig and Simmons 1993), efficiency
(Jin et al. 2018), and convergence property (Papavassiliou and Russell 1999)
for reinforcement learning algorithms, and figuring out the role of reinforcement
learning methods in general artificial intelligence, etc. These contents are beyond
the scope of the book, readers with interests are encouraged to explore the frontiers
of these domains.

At the end of this chapter, we quote some words by Richard Sutton (2019).4 “One
thing that should be learned from the bitter lesson is the great power of general
purpose methods, of methods that continue to scale with increased computation
even as the available computation becomes very great. The two methods that seem
to scale arbitrarily in this way are search and learning. ” This is based on the
observations that the previous success in computer chess and computer Go, as well
as in speech recognition and computer vision, the general statistical methods (e.g.,
neural networks) won over the human-knowledge-based methods. So the built-in
knowledge in intelligent agents may satisfy the researchers within a short term,

4Richard S. Sutton. “The Bitter Lesson.” March 13, 2019.

270 Z. Ding and H. Dong

but may hinder the general progress of general artificial intelligence in a long run.
“The second general point to be learned from the bitter lesson is that the actual
contents of minds are tremendously, irredeemably complex; we should stop trying
to find simple ways to think about the contents of minds, such as simple ways to
think about space, objects, multiple agents, or symmetries. All these are part of the
arbitrary, intrinsically-complex, outside world. They are not what should be built in,
as their complexity is endless; instead we should build in only the meta-methods that
can find and capture this arbitrary complexity. ” This emphasizes the importance
of proposing meta-methods that can handle the complexity of the world naturally,
rather than applying the relatively simple cognitive structures and decision-making
mechanisms that are manually built by humans for special functionalities.

References

Abdolmaleki A, Springenberg JT, Tassa Y, Munos R, Heess N, Riedmiller M (2018) Maximum a
posteriori policy optimisation. arXiv:180606920

Akkaya I, Andrychowicz M, Chociej M, Litwin M, McGrew B, Petron A, Paino A, Plappert M,
Powell G, Ribas R, et al (2019) Solving Rubik’s cube with a robot hand. arXiv:191007113

Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R, Welinder P, McGrew B, Tobin J,
Abbeel OP, Zaremba W (2017) Hindsight experience replay. In: Advances in neural information
processing systems, pp 5048–5058

Andrychowicz M, Baker B, Chociej M, Jozefowicz R, McGrew B, Pachocki J, Petron A, Plappert
M, Powell G, Ray A, et al (2018) Learning dexterous in-hand manipulation. arXiv:180800177

Arndt K, Hazara M, Ghadirzadeh A, Kyrki V (2019) Meta reinforcement learning for sim-to-real
domain adaptation. arXiv:190912906

Aytar Y, Pfaff T, Budden D, Paine T, Wang Z, de Freitas N (2018) Playing hard exploration games
by watching YouTube. In: Advances in neural information processing systems, pp 2930–2941

Bengio Y, Bengio S, Cloutier J (1990) Learning a synaptic learning rule. Université de Montréal,
Département d’informatique et de recherche opérationnelle

Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives.
IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

Berkenkamp F, Turchetta M, Schoellig A, Krause A (2017) Safe model-based reinforcement
learning with stability guarantees. In: Advances in neural information processing systems, pp
908–918

Berner C, Brockman G, Chan B, Cheung V, Dębiak P, Dennison C, Farhi D, Fischer Q, Hashme S,
Hesse C, et al (2019) Dota 2 with large scale deep reinforcement learning. arXiv:191206680

Deisenroth M, Rasmussen CE (2011) PILCO: a model-based and data-efficient approach to policy
search. In: Proceedings of the 28th international conference on machine learning (ICML-11),
pp 465–472

Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward T, Doron Y, Firoiu V, Harley T,
Dunning I, et al (2018) IMPALA: scalable distributed deep-RL with importance weighted actor-
learner architectures. arXiv:180201561

Espeholt L, Marinier R, Stanczyk P, Wang K, Michalski M (2019) Seed RL: Scalable and efficient
deep-RL with accelerated central inference. arXiv:191006591

Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep
networks. In: Proceedings of the 34th international conference on machine learning, vol 70,
pp 1126–1135. JMLR.org

Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic
methods. arXiv:180209477

JMLR. org

7 Challenges of Reinforcement Learning 271

Garcıa J, Fernández F (2015) A comprehensive survey on safe reinforcement learning. J Mach
Learn Res 16(1):1437–1480

Heess N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami S, Riedmiller
M, et al (2017) Emergence of locomotion behaviours in rich environments. arXiv:170702286

Heinrich J, Silver D (2016) Deep reinforcement learning from self-play in imperfect-information
games. arXiv:160301121

Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D (2018) Deep reinforcement
learning that matters. In: Thirty-second AAAI conference on artificial intelligence

Houthooft R, Chen X, Duan Y, Schulman J, Turck FD, Abbeel P (2016) VIME: variational
information maximizing exploration. https://1605.09674

Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green
T, Dunning I, Simonyan K, et al (2017) Population based training of neural networks.
arXiv:171109846

James S, Wohlhart P, Kalakrishnan M, Kalashnikov D, Irpan A, Ibarz J, Levine S, Hadsell R,
Bousmalis K (2019) Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-
to-canonical adaptation networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 12627–12637

Jeong R, Aytar Y, Khosid D, Zhou Y, Kay J, Lampe T, Bousmalis K, Nori F (2019a) Self-supervised
sim-to-real adaptation for visual robotic manipulation. arXiv:191009470

Jeong R, Kay J, Romano F, Lampe T, Rothorl T, Abdolmaleki A, Erez T, Tassa Y, Nori F
(2019b) Modelling generalized forces with reinforcement learning for sim-to-real transfer.
arXiv:191009471

Jin C, Allen-Zhu Z, Bubeck S, Jordan MI (2018) Is Q-learning provably efficient? In: Advances in
neural information processing systems, pp 4863–4873

Johannink T, Bahl S, Nair A, Luo J, Kumar A, Loskyll M, Ojea JA, Solowjow E, Levine S (2019)
Residual reinforcement learning for robot control. In: 2019 international conference on robotics
and automation (ICRA). IEEE, Piscataway, pp 6023–6029

Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, Quillen D, Holly E, Kalakrishnan
M, Vanhoucke V, et al (2018) QT-opt: scalable deep reinforcement learning for vision-based
robotic manipulation. arXiv:180610293

Kapturowski S, Ostrovski G, Quan J, Munos R, Dabney W (2018) Recurrent experience replay
in distributed reinforcement learning. In: International conference on learning representations.
https://openreview.net/forum?id=r1lyTjAqYX

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan J,
Ramalho T, Grabska-Barwinska A, et al (2017) Overcoming catastrophic forgetting in neural
networks. Proc Natl Acad Sci 114(13):3521–3526

Koenig S, Simmons RG (1993) Complexity analysis of real-time reinforcement learning. In:
Proceedings of the AAAI conference on artificial intelligence, pp 99–107

Kulkarni TD, Narasimhan K, Saeedi A, Tenenbaum J (2016) Hierarchical deep reinforcement
learning: integrating temporal abstraction and intrinsic motivation. In: Advances in neural
information processing systems, pp 3675–3683

Lanctot M, Zambaldi V, Gruslys A, Lazaridou A, Tuyls K, Pérolat J, Silver D, Graepel T (2017) A
unified game-theoretic approach to multiagent reinforcement learning. In: Advances in neural
information processing systems, pp 4190–4203

Lattimore T, Hutter M, Sunehag P, et al (2013) The sample-complexity of general reinforcement
learning. In: Proceedings of the 30th international conference on machine learning

Levine S, Koltun V (2013) Guided policy search. In: International conference on machine learning,
pp 1–9

Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D (2018) Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection. Int J Robot Res 37(4–
5):421–436

Madumal P, Miller T, Sonenberg L, Vetere F (2019) Explainable reinforcement learning through a
causal lens. arXiv:190510958

https://1605.09674
https://openreview.net/forum?id=r1lyTjAqYX

272 Z. Ding and H. Dong

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013)
Playing Atari with deep reinforcement learning. arXiv:13125602

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K
(2016) Asynchronous methods for deep reinforcement learning. In: International conference
on machine learning (ICML), pp 1928–1937

Nagabandi A, Clavera I, Liu S, Fearing RS, Abbeel P, Levine S, Finn C (2018) Learning to adapt
in dynamic, real-world environments through meta-reinforcement learning. arXiv:180311347

Nowé A, Vrancx P, De Hauwere YM (2012) Game theory and multi-agent reinforcement learning.
In: Reinforcement learning. Springer, Berlin, pp 441–470

Papavassiliou VA, Russell S (1999) Convergence of reinforcement learning with general function
approximators. In: International joint conference on artificial intelligence, vol 99, pp 748–755

Pathak D, Agrawal P, Efros AA, Darrell T (2017) Curiosity-driven exploration by self-supervised
prediction. In: Proceedings of the international conference on machine learning (ICML)

Peng XB, Andrychowicz M, Zaremba W, Abbeel P (2018) Sim-to-real transfer of robotic
control with dynamics randomization. In: 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, Piscataway, pp 1–8

Ramstedt S, Pal C (2019) Real-time reinforcement learning. In: Advances in neural information
processing systems, pp 3067–3076

Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R,
Hadsell R (2016a) Progressive neural networks. arXiv:160604671

Rusu AA, Vecerik M, Rothörl T, Heess N, Pascanu R, Hadsell R (2016b) Sim-to-real robot learning
from pixels with progressive nets. arXiv:161004286

Sadeghi F, Levine S (2016) Cad2rl: Real single-image flight without a single real image.
arXiv:161104201

Shoham Y, Powers R, Grenager T (2003) Multi-agent reinforcement learning: a critical survey.
Web manuscript

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D,
Graepel T, et al (2018a) A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362(6419):1140–1144

Silver T, Allen K, Tenenbaum J, Kaelbling L (2018b) Residual policy learning. arXiv:181206298
Song HF, Abdolmaleki A, Springenberg JT, Clark A, Soyer H, Rae JW, Noury S, Ahuja A, Liu

S, Tirumala D, et al (2019) V-MPO: On-policy maximum a posteriori policy optimization for
discrete and continuous control. arXiv:190912238

Sukhbaatar S, Lin Z, Kostrikov I, Synnaeve G, Szlam A, Fergus R (2018) Intrinsic motivation
and automatic curricula via asymmetric self-play. In: International conference on learning
representations. https://openreview.net/forum?id=SkT5Yg-RZ

Tan M (1993) Multi-agent reinforcement learning: independent vs. cooperative agents. In:
Proceedings of the international conference on machine learning (ICML)

Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbeel P (2017) Domain randomization
for transferring deep neural networks from simulation to the real world. In: International
conference on intelligent robots and systems (IROS)

Vezhnevets AS, Osindero S, Schaul T, Heess N, Jaderberg M, Silver D, Kavukcuoglu K
(2017) Feudal networks for hierarchical reinforcement learning. In: Proceedings of the 34th
international conference on machine learning, vol 70, pp 3540–3549. JMLR.org

Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell
R, Ewalds T, Georgiev P, et al (2019) Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575(7782):350–354

Yu W, Tan J, Liu CK, Turk G (2017) Preparing for the unknown: learning a universal policy with
online system identification. arXiv:170202453

Zhou W, Pinto L, Gupta A (2019) Environment probing interaction policies. arXiv:190711740

https://openreview.net/forum?id=SkT5Yg-RZ
JMLR. org

Chapter 8
Imitation Learning

Zihan Ding

Abstract To alleviate the low sample efficiency problem in deep reinforcement
learning, imitation learning, or called apprenticeship learning, is one of the potential
approaches, which leverages the expert demonstrations in sequential decision-
making process. In order to provide the readers a comprehensive understanding
about how to effectively extract information from the demonstration data, we
introduce the most important categories in imitation learning, including behavioral
cloning, inverse reinforcement learning, imitation learning from observations,
probabilistic methods, and other methods. Imitation learning can either be regarded
as an initialization or a guidance for training the agent in the scope of reinforce-
ment learning. Combination of imitation learning and reinforcement learning is a
promising direction for efficient learning and faster policy optimization in practice.

Keywords Imitation learning · Apprenticeship learning · Demonstration ·
Reinforcement learning · Behavioral cloning · Inverse reinforcement learning ·
Generative adversarial networks · Sample efficiency

8.1 Introduction

As we know, reinforcement learning (RL), especially model-free reinforcement
learning, suffers from low sample efficiency as discussed in the chapter of present
challenges in reinforcement learning (Chap. 7). Hundreds of thousands of examples
are usually needed to solve an uncomplicated task with human-level performance.
However, humans can learn to solve the tasks with significantly shorter periods of
time and a much smaller number of samples. Apart from improving the efficiency
of reinforcement learning algorithms themselves through more elaborate algorithm
design with mathematical guarantees, we can actually let the agent leverage

Z. Ding (�)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_8

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_8&domain=pdf
mailto:zhding@mail.ustc.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_8

274 Z. Ding

additional information resource, like expert demonstrations. The expert demonstra-
tions contain biased choices for the policy with prior knowledge, which can be
distilled and transferred into agent policies in reinforcement learning, through a
proper learning process. The task of learning from an expert is called imitation
learning (IL) (also known as apprenticeship learning). Humans and animals are
born to learn from mimicking other individuals of the same kind, which inspires the
method of imitation learning for an intelligent agent to learn from demonstrations
by others. On the other hand, supervised learning is much more efficient in the
aspect of data usage compared with reinforcement learning, due to the benefits of
labeled data. Therefore, the method of supervised learning can be incorporated into
the agent’s learning process to improve its efficiency if demonstrations are provided
in a labeled format.

In this chapter, we introduce different approaches for learning a policy with
demonstrations. The overview of algorithms and methods in imitation learning
categories is shown in Fig. 8.1. We will introduce detailed methods of imitation
learning in the following sections, summarized in several main categories including
(1) behavioral cloning (BC), (2) inverse reinforcement learning (IRL), (3) imitation
learning from observations (IfO, or ILFO in some other literature (Sun et al.
2019)), (4) probabilistic methods, and (5) other approaches. BC is the most simple
and straightforward way of using the demonstration data in a supervised learning
manner, which is widely applied due to its simplicity and is usually regarded as a
cornerstone to build more advanced methods on. IRL is useful in applications where
it may be difficult to write down an explicit reward function specifying exactly
how different desiderata should be traded off. For example, how much attention
should be paid on taking care of different reflectors for automatic driving vehicles
based on visual observations is hard to specify through reward engineering. IRL
is an approach to recover the unknown reward function from the demonstration
data and uses it for further reinforcement learning process. The IfO actually solves
the drawback of imitation learning that it usually requires actions as labels for the
state inputs, which often happens in human imitation learning process. The methods
from a probabilistic inference view include using Gaussian mixture regression or
Gaussian process regression to represent the demonstration data and therefore guide
the action policy, which is a more efficient alternative for deep neural network
methods in some cases. There are also other approaches like directly feeding
demonstrations into a replay buffer for off-policy reinforcement learning, etc. After
introducing basic categories of different imitation learning methods, we will discuss
the relationship of imitation learning and reinforcement learning, like applying
imitation learning as an initialization of reinforcement learning in order to improve
the learning efficiency of reinforcement learning. Finally, we introduce some other
specific methods in imitation learning with reinforcement learning, which are either
combinations of previous conceptions or outliers of the summarized categories as
Fig. 8.1.

The concept of imitation learning can be defined with the apprenticeship learning
formalism (Abbeel and Ng 2004): the learner finds a policy π that performs no
worse than expert πE with respect to an unknown reward function r(s, a). We

8 Imitation Learning 275

F
ig

.8
.1

O
ve

rv
ie

w
of

im
it

at
io

n
le

ar
ni

ng
al

go
ri

th
m

s

276 Z. Ding

define the occupancy measure ρπ ∈ D : S × A → R of a policy π ∈ �

as: ρπ(s, a) = π(a|s)∑∞
t=0 γ tp(St = s|π) (Puterman 2014), which is a joint

distribution of state and action estimated with current policy. Owing to the one-to-
one correspondence between � and D, an imitation learning problem is equivalent
to a matching problem between ρπ (s, a) and ρπE (s, a). A general objective of
imitation learning is to learn a policy:

π̂ = arg min
π∈�

ψ∗(ρπ − ρπE) − λH(π) (8.1)

where ψ∗ is a distance measurement between ρπ and ρπE , and H(π) is a normaliza-
tion term with trade-off factor λ. For instance, the normalization term can be defined
as the γ -discounted causal entropy of policy π : H(π) � Eπ [− log π(s, a)]. The
overall goal of imitation learning is to increase the similarity of the distribution of
{(s, a)} samples from current policy and the distribution of those in demonstration
dataset, with respect to the some constraints on policy parameters.

8.2 Behavioral Cloning: Supervised Learning Approach

The imitation learning with demonstrations can be naturally regarded as a super-
vised learning task, if the demonstration data is provided with labels (e.g., a
good action for the state can be regarded as a label). In reinforcement learning
circumstances, the labeled demonstration data D usually contains the pairs of state
and action as: D = {(si, ai)|i = 1, . . . , N}, where N is the size of the demonstration
dataset and index i indicates the si and ai are at the same time step. The state-action
pairs can be shuffled for training under the MDP assumption, i.e. the optimal action
only depends on the current state. Considering an initial policy πθ parameterized by
θ with input state s and output deterministic action πθ(s) in reinforcement learning
settings, we have demonstrations dataset D = {(si , ai)|i = 1, . . . , N} generated
from experts, which could be used to train the policy, with an objective as follows:

min
θ

∑
(si ,ai)∼D

||ai − πθ(si)||22 (8.2)

The cases with stochastic policies πθ(ã|s) in some specific formats, e.g. Gaussian
policy, etc., can be handled as well using the reparameterization trick:

min
θ

∑
ãi∼π(·|si),(si,ai)∼D

||ai − ãi||22 (8.3)

This supervised learning approach to directly imitate the expert demonstration is
called the behavioral cloning (BC) in the literature.

8 Imitation Learning 277

8.2.1 Challenges of BC

• Covariate Shift: Although imitation learning can provide a relatively good
performance for the cases similar to samples in the demonstration dataset (used
for policy training), it could still suffer from bad generalization for samples it
never meets during training, as the demonstration dataset only contains finite
samples. For example, the new samples during testing can be around another
cluster in distribution rather than the same one for training if it is a multimodal
distribution, like applying the classifier for cats on distinguishing dogs in
practice. As the BC approach boils down the decision-making problem to a
supervised learning problem, this well-known problem of covariate shift (Ross
and Bagnell 2010) in machine learning can potentially make the learned policy
brittle, which is challenging in BC methods. Figure 8.2 further elaborates the
covariate shift in BC.

• Compounding Errors: BC suffers greatly from the compounding error, a
situation where minor errors are compounded over time and finally induce a
dramatically different state distribution (Ross et al. 2011). The MDP property of
reinforcement learning tasks is the key factor leading to the compounding error,
i.e. the amplification effect of consecutive errors. The main reason of the error
for each time step can actually be caused by the covariance shift described above,
in BC methods. Figure 8.3 shows the compounding errors.

8.2.2 Dataset Aggregation

Dataset Aggregation (DAgger) (Ross et al. 2011) is a more advanced no-
regret iterative algorithm for imitation learning from demonstrations following the
approach of BC. It proactively chooses demonstration samples that the policy has
larger chances to meet afterwards, according to the previous training iterations,

Fig. 8.2 The covariate shift: the learned function (black dashed line) fits well on the training
samples (orange “cross”), but has large prediction bias on the testing samples (blue dot). The red
line is the ground truth

278 Z. Ding

Fig. 8.3 The compounding
errors increase along the
trajectory chosen by current
policy in a task with
sequential decisions

which makes DAgger more effective and efficient for online imitation learning
in sequential prediction problem like reinforcement learning. The demonstration
dataset D is continuously aggregated with new dataset Di for time step i containing
expert actions and corresponding states visited by current policy during the whole
imitation learning process. So, DAgger also has a drawback that it needs to
iteratively interact with the expert, which is usually demanding in real-world
applications. The algorithm of DAgger is shown in Algorithm 1, where π∗ is the
expert policy and βi is the parameter for soft-updating the policy at iteration i.

Algorithm 1 DAgger
1: Initialize D ← ∅.
2: Initialize the policy π̂1 to any policy in policy set �.
3: for i = 1, 2, . . . , N do
4: πi ← βiπ

∗ + (1 − βi)π̂i .
5: Sample several T -step trajectories using πi .
6: Get dataset Di = {(s, π∗(s))} of visited states by πi and actions given by the expert.
7: Aggregate datasets: D ← D ∪Di . Train current policy π̂i+1 on D.
8: end for
9: Return policy π̂N+1.

8.2.3 Variational Dropout

A method for alleviating the generalization problem in imitation learning is pre-
training with variational dropout (Blau et al. 2018), instead of fully cloning
the behavior of expert demonstrations in BC methods. The weights pre-trained
with the demonstration dataset are parameterized as Gaussian distributions with
Gaussian dropout of a certain variance threshold value for initializing reinforcement
learning policies. Variational dropout approach for imitation learning (Molchanov
et al. 2017) can be taken as a more advanced method for generalization than noise
injection in the weights of pre-trained neural networks, it reduces the sensitivity

8 Imitation Learning 279

of choosing the magnitude of noise, which is a useful technique when applying
imitation learning for initializing reinforcement learning.

8.2.4 Other Methods in BC

Some other concepts are involved in behavioral cloning as well. For example,
some methods provide ways to generalize demonstrations to more general scenarios
in a task using framework like dynamic movement primitives (DMPs) (Pastor
et al. 2009), which apply a set of differential equations to represent any recorded
movement. The differential equations in DMP usually contain adjustable weights,
as well as non-linear functions to allow the generation of arbitrarily complex
movements. Therefore DMP is more of an analytical-form solution compared with
the “black-box” deep learning methods in behavioral cloning. Moreover, there exists
a method in one-shot imitation learning (Duan et al. 2017) using soft attention on
demonstrations to generalize model to unseen scenarios in training data. It is a meta-
learning scheme to map one demonstration of one task to an effective policy for a
variety of tasks. There are some other methods, which will not be discussed here.

8.3 Inverse Reinforcement Learning Approach

Another major category of imitation learning approaches is composed of techniques
based on inverse reinforcement learning (IRL) (Ng et al. 2000; Russell 1998).
The IRL problem is defined to be the problem of extracting a reward function
given observed, optimal behavior, represented as expert policy πE . Instead of
directly learning a mapping from states to actions using the demonstration data,
IRL-based methods iteratively alternate between using the demonstration to infer
a hidden reward/cost function and using reinforcement learning with the inferred
reward function to learn an imitating policy. IRL chooses the reward function R

to make the policy optimal and moreover to favor solutions that make any single-
step deviation from πE as costly as possible. For all reward functions R satisfying
|R(s)| ≤ Rmax,∀s, IRL method chooses the R∗ following:

R∗ = arg max
R

∑
s∈S

(
Qπ(s, aE)− max

a∈A\aE

Qπ(s, a)

)
(8.4)

where aE = πE(s) or aE ∼ π(·|s) is the expert (optimal) action. IRL-
based techniques have been used for a variety of tasks such as maneuvering a
helicopter (Abbeel and Ng 2004) and object manipulation (Finn et al. 2016b). IRL
(Ng et al. 2000; Russell 1998) tries to extract a reward function from observed
optimal behavior, like the expert demonstrations, but the reward function may not be
unique (discussed later). A typical method in IRL is to use maximum causal entropy

280 Z. Ding

regularization, which is maximum entropy (MaxEnt) IRL (Ziebart et al. 2010). The
MaxEnt IRL can be represented as the following two stages:

IRL(πE) = arg max
R

EπE [R(s, a)] − RL(R) (8.5)

RL(R) = max
π

H(π(·|s))+ Eπ [R(s, a)] (8.6)

which forms the RL ◦ IRL(πE) policy learning framework. The first formula
IRL(πE) learns a reward function to maximize the difference of reward values
between the expert policy and the reinforcement learning policy, and it can be
replaced by Eq. (8.4) as the Q value is an estimation of rewards. The second formula
RL(R) is the entropy-regularized (forward) reinforcement learning with the learned
reward function R from the first formula. The entropy H(π(·|s)) here is the entropy
of the policy distribution given a specific state.

Shannon’s information entropy of distribution P over random variable X mea-
sures the uncertainty of that probability distribution.

Definition 8.1 The entropy of a discrete random variable, X, distributed according
to p is

Hp(X) = Ep(X)[− log p(X)] = −
∑
X∈X

p(X) log p(X) (8.7)

For the case of stochastic policies in reinforcement learning, the random variables
are usually aligned in a vector with the same dimension as the action space. The
commonly used distributions are diagonal Gaussian distributions and categorical
distributions, the derivation of their entropy is trivial (referred to the chapters for
algorithms implementation).

It is also common to see the cost function c(s, a) = −R(s, a), which is
minimized in the reinforcement learning process as follows:

RL(c) = arg min
π

−H(π)+ Eπ [c(s, a)] (8.8)

where H(π) = Eπ [− log π(a|s)] is called entropy of policy π . The cost function
c(s, a) is usually a measurement of the similarity between distributions from current
policy π and the demonstrations dataset. The entropy term H(π) can be regarded
as a normalization term for the uniqueness of optimality.

By substituting the above formula into the IRL formula Eq. (8.5), we can
represent the objective of IRL in a max–min form, which tries to learn a cost
function c(s, a) of state s and action a with the objective of maximizing the entropy-
regularized reward, as well as learning the policy π .

max
c

(
min
π

−Eπ [− log π(a|s)] + Eπ [c(s, a)]
)
− EπE [c(s, a)] (8.9)

8 Imitation Learning 281

where the πE denotes the expert policy for generating expert demonstrations and
π is the policy trained in reinforcement learning process. The learned cost function
will assign high entropy to expert policy and low entropy to other policies.

8.3.1 Challenges of IRL

• Non-uniqueness of Reward (or Reward Ambiguity): The function search in
IRL is ill-posed as the demonstrated behavior could be induced by multiple
reward/cost functions. It originates from the concept of reward shaping (Ng
et al. 1999), which describes a class of reward transformations that preserve the
optimal policy. The main result is that under the following reward transformation:

r̂(s, a, s′) = r(s, a, s′) + γφ(s′)− φ(s) (8.10)

the optimal policy remains unchanged for any function φ : S → R. The reward
function learned with IRL methods from demonstration data only cannot disam-
biguate between reward functions within the class of above transformations.

Constraints are thereby imposed on the rewards or the policy to ensure the
optimality uniqueness of the demonstrated behavior. For example, the reward
function is usually defined to be a linear (Ng et al. 2000; Abbeel and Ng 2004) or
convex (Syed et al. 2008) combination of the state features. The learned policy is
also assumed to have the maximum entropy (Ziebart et al. 2008) or the maximum
causal entropy (Ziebart et al. 2010). These explicit constraints potentially limit
the generability of the proposed methods (Ho and Ermon 2016).

• Intensive Computational Cost: The IRL could learn a better policy from
demonstrations and interactions in the general reinforcement learning process.
However, using reinforcement learning to optimize the policy given the inferred
reward function requires the agent to interact with its environment, which can
be costly from the perspectives of time and safety. Moreover, the IRL step
typically requires the agent to solve an MDP in the inner loop of iterative reward
optimization (Abbeel and Ng 2004; Ziebart et al. 2008), which can be extremely
costly from a computational perspective. However, recently, a number of methods
have been developed, which relieve this requirement (Finn et al. 2016b; Ho and
Ermon 2016). One of these approaches is called generative adversarial imitation
from observation (GAIL) (Ho and Ermon 2016), which will be described in
Sect. 8.3.2.

8.3.2 Generative Adversarial Approach

The generative adversarial imitation learning (GAIL) (Ho and Ermon 2016) borrows
the idea of generative adversarial training in generative adversarial networks

282 Z. Ding

(GANs) (Goodfellow et al. 2014). The associated algorithm can be thought of as
trying to induce an imitator state-action occupancy measure that is similar to that
of the demonstrator. It applies a discriminator in GAN for providing the estimation
of an action-value function based on demonstrations. In a general process of action-
value based reinforcement learning with algorithms like TRPO, PPO, etc., the action
value is provided from the demonstrations with a generative approach as:

Q(s, a) = ETi
[log(Dωi+1(s, a))] (8.11)

where Ti are samples from explorations for iteration i and Dωi+1(s, a) is the output
value from the discriminator with parameters ωi+1. The ωi+1 indicates the Q-value
is estimated with one-step updated discriminator weights, therefore with iteration
i + 1. The loss function of the discriminator is defined in a general way:

Loss = ETi
[∇ω log(Dω(s, a))] + ETE

[∇ω log(1 − Dω(s, a))] (8.12)

where the Ti ,TE are samples from explorations and expert demonstrations, respec-
tively. ω are parameters of the discriminator. Figure 8.4 shows the architecture of
GAIL.

With the method of GAIL, the policy can be learned with samples generalized
from demonstrations with lower computational cost, compared with methods via
IRL. It does not need to interact with the expert during training, which happens in
method like DAgger and is sometimes not accessible in practice.

This approach can be further generated to multimodal policy for learning across
tasks. Multimodal imitation learning with GAN (Hausman et al. 2017) applies
a more advanced objective function (additional latent indices for different tasks)

Fig. 8.4 The architecture of GAIL, adapted from Ho and Ermon (2016)

8 Imitation Learning 283

in a generative adversarial form, to automatically segment the demonstrations for
different tasks and learn a multimodal policy in an imitation manner.

According to Goodfellow et al. (2014) (details of GANs are introduced in
Chap. 1), with infinite data and infinite computation, at optimality, the distribution of
generated state-action pairs should exactly match the distribution of demonstrated
state-action pairs under the GAIL objective. The downside to this approach,
however, is that we bypass the intermediate step of recovering rewards. Specifically,
note that we cannot extract reward functions from the discriminator, as Dω(s, a)

will converge to 0.5 for all (s, a) pairs.

8.3.3 Generative Adversarial Network Guided Cost Learning
(GAN-GCL)

As mentioned above, the GAIL method cannot recover the reward function from
the demonstration data. A similar work named generative adversarial network
guided cost learning (GAN-GCL) optimizes the guided cost learning (GCL) method
based on GAN’s structure, to extract an optimal reward function from the optimal
discriminator trained with the demonstration data. We will describe this method in
details.

The GAN-GCL method (specifically the GCL) is based on the maximum causal
entropy IRL described above, which considers an entropy-regularized Markov
decision process (MDP). The goal in entropy-regularized MDP for reinforcement
learning is to maximize the expected entropy-regularized discounted reward:

π∗ = arg max
π

Eτ∼π

[
T∑

t=0

γ t (r(St , At)+H(π(·|St)))

]
(8.13)

which is a more specific term used for learning the policy in practice originated
from Eq. (8.5). It can be shown that the optimal policy π∗(a|s) gives trajectory
distribution satisfying π∗(a|s) ∝ exp(Q∗

sof t (s, a)) (Ziebart et al. 2010), where

Q∗
sof t (St , At) = r(St , At) + Eτ∼π [∑T

t ′=t γ t ′−t (r(st ′, at ′) + H(π(·|st ′)))] denotes
the soft Q-function (also used in soft actor-critic algorithm).

The IRL problem can be interpreted as solving the maximum likelihood problem:

max
θ

Eτ∼πE [log pθ (τ)] (8.14)

where πE is the expert policy for providing demonstrations, and pθ (τ) ∝
p(S0)

∏T
t=0 p(St+1|St , At)e

γ trθ (St ,At) parameterizes the reward function rθ (s, a)

but with the dynamics (or transition) and initial state distribution of the MDP.
pθ(τ) is the trajectory-centric distribution of the demonstration data derived from
state-centric πE , pθ(τ) ∼ πE . With deterministic transition p(St+1|St , At) = 1,

284 Z. Ding

this simplifies to an energy-based model pθ(τ) ∝ e
∑T

t=0 γ t rθ (St ,At) (Ziebart et al.
2008). The parameterized reward function can be learned through optimizing
parameters θ w.r.t the above objective. Similar to processes before, we can
introduce the cost function here as the negative discounted cumulative rewards
cθ = −∑T

t=0 γ t rθ (St , At), parameterized by θ . Then the MaxEnt IRL can
be viewed as modeling the demonstrations using a Boltzmann distribution in a
trajectory-centric formulation, where the energy is given by the cost function cθ :

pθ (τ) = 1

Z
exp(−cθ(τ)) (8.15)

where τ is the state-action trajectory and cθ (τ) = ∑t cθ (St , At), and the partition
function Z is the integral of exp(−cθ (τ)) over all trajectories consistent with the
environment dynamics, for normalizing the probability. Estimating the partition
function Z is difficult for large-scale or continuous domains, as precise estimation
with dynamic programming for Z can only work in small and discrete domains.
Otherwise we need to use approximated estimation methods, like the sampling-
based GCL method.

GCL uses importance sampling for estimating Z with a new distribution q(τ)

(the original demonstration distribution is p(τ)) in MaxEnt IRL formulation:

θ∗ = arg min
θ

Eτ∼p[− log pθ(τ)] (8.16)

= arg min
θ

Eτ∼p[cθ(τ)] + log Z (8.17)

= arg min
θ

Eτ∼p[cθ(τ)] + log

(
Eτ ′∼q

[
exp(−cθ (τ

′))
q(τ ′)

])
(8.18)

where the τ ′ is sampled from distribution q and q(τ ′) gives its probability.
Therefore q can be optimized through minimizing the KL-divergence between q(τ ′)
and 1

Z
exp(−cθ (τ

′)) for updating the q(τ ′) during learning θ or equivalently as
following:

q∗ = minEτ∼q [cθ(τ)] + Eτ∼q [log q(τ)] (8.19)

Finn et al. (2016a) proposed to use GAN’s manner for the above optimization
problem, which optimizes the GCL with GAN structure and is similar to the GAIL
method but with different specific formulations.

Note that in GAN the discriminator also tries to approximate one distribution
with the other as:

D∗(τ) = p(τ)

p(τ) + q(τ)
(8.20)

8 Imitation Learning 285

We can apply it here in the GCL of MaxEnt IRL formulation,

Dθ(τ) =
1
Z

exp(−cθ (τ))

1
Z

exp(−cθ(τ)) + q(τ)
(8.21)

which leads to the method GAN-GCL. The policy π is trained to maximize Rθ(τ) =
log(1 − Dθ(τ)) − log Dθ(τ), and the reward function is therefore learned through
optimizing the discriminator. The policy is learned through updating the sampling
distribution q(τ) used to estimate the partition function. If the optimality is reached,
the optimal cost function c∗θ = −R∗

θ (τ) = −∑T
t=0 γ t r∗θ (St , At) can be learned for

evaluating the optimal reward function, and the optimal policy can be derived with
π∗ = q∗. GAN-GCL provides an alternative approach for optimizing the MaxEnt
IRL problem instead of directly maximizing the likelihood.

8.3.4 Adversarial Inverse Reinforcement Learning (AIRL)

As the above GAN-GCL is trajectory-centric, which means the full trajectories are
estimated, it has high variance in estimation compared with estimating the single
state-action pair. The adversarial inverse reinforcement learning (AIRL) (Fu et al.
2017) proposes to directly estimate the single state and action:

Dθ(s, a) = exp(fθ (s, a))

exp(fθ (s, a)) + π(a|s) (8.22)

where the π(a|s) is the sampling distribution to be updated and the fθ (s, a) is the
learned function. The partition function is ignored in the above formula and the
normalization of probability values can be guaranteed with SoftMax operator or
sigmoid output activation in practice. It is proven that at optimality, f ∗(s, a) =
log π∗(a|s) = A∗(s, a), which gives the advantage function of optimal policy.
However, the advantage function is a heavily entangled reward function with a
baseline value subtracted. Fu et al. (2017) argue that the reward function cannot
be robustly recovered for the changes in environment dynamics. Therefore, they
also propose to learn the disentangled reward with AIRL through decoupling the
reward function from the advantage function:

Dθ,φ(s, a, s′) = exp(fθ,φ(s, a, s′))
exp(fθ,φ(s, a, s′))+ π(a|s) (8.23)

where fθ,φ is restricted to a reward approximator gθ and a shaping term hφ as:

fθ,φ(s, a, s′) = gθ (s, a) + γ hφ(s′) − hφ(s) (8.24)

where the extra approximation of hφ is required.

286 Z. Ding

8.4 Imitation Learning from Observation (IfO)

First, imitation learning from observation (IfO) is imitation learning without fully
observable actions. One typical example of IfO is learning from the videos, in
which the ground-truth actions of objects are not available from the frames only,
but humans can still learn from videos like mimicking the actions. Therefore the
examples of learning from videos are common to see in the literature of IfO.
IfO regards imitation learning from a different perspective, compared with other
methods introduced above. Therefore, there are inevitable overlappings of some
specific methods introduced in this section with some methods introduced above,
but in the IfO category. When you read this section, you should keep in mind that
the IfO methods are in most cases orthogonal to other categories of methods as it
looks at the imitation learning in a different perspective and focuses on the problem
of unobservable actions.

The aforementioned algorithms, however, can hardly handle the demonstrations
with partial or unobservable actions. One idea to learning from these demonstrations
is to first recover actions from states and then adopt standard imitation learning
algorithms to learn a policy from the recovered state-action pairs. For example,
Torabi et al. recover actions from states by learning a dynamic model of state
transitions, and then use a BC algorithm to find the optimal policy (Torabi et al.
2018a). However, the performance of this method is highly dependent on the learned
dynamic model and may fail when the states transit with noise. Instead, Merel et
al. proposed to learn from only state (or state feature) trajectories. They extended
the GAIL framework to learn a control policy from only states of motion capture
demonstrations (Merel et al. 2017) and showed that partial state features without
demonstrator actions suffice for adversarial imitation. Similarly, Eysenbach et al.
pointed out that the policy should control which states the agent visits, and thus
use the states to train a policy by maximizing mutual information between the
policy and the state trajectories (Eysenbach et al. 2018). Other studies have also
tried to learn from raw observations instead of states. For instance, Stadie et al.
extracted features from observations by the domain adaptation method to ensure
that experts and novices are in the same feature space (Stadie et al. 2017). However,
only using demonstrated states or state features may require a huge number of
environmental interactions during the training since any possible information from
actions is ignored.

In order to provide more clear structure about advanced methods in IfO, we
organize the methods of IfO in the literature into two general groups: (1) model-
based algorithms, and (2) model-free algorithms, which also follow one of the
main taxonomies in reinforcement learning (as shown in Chap. 3). Next, we discuss
the features of each group and present relevant algorithms from the literature as
examples.

8 Imitation Learning 287

8.4.1 Model-Based

Similar to model-based reinforcement learning (as in Chap. 9), if the model of
the environment can be learned precisely with low consumption, it can benefit
the learning process through efficient planning. As imitation learning is about
mimicking a sequential of actions instead of a single one in the interactive process
with the environment, it inevitably involves the dynamics of the environment,
which can be learned with model-based approaches. According to different types of
dynamics models, the model-based IfO methods can be categorized as: (1) inverse
dynamics models or (2) forward dynamics models.

Inverse Dynamics Models An inverse dynamics model is a mapping from state
transitions {(St , St+1)} to actions {At} (Hanna and Stone 2017). One work by
Nair et al. (2017) in this category learns to predict a sequence of actions for rope
manipulation with the sequences of images of a human manipulating a rope from
initial condition to a goal condition, which requires to learn a pixel-level inverse
dynamics model as follows:

At = Mθ(It , It+1) (8.25)

where the At is the predicted action by the inverse dynamics model M with the
input pair of images It , It+1, and the model is parameterized by θ . A convolutional
neural network is used for learning the inverse dynamics model. The robot collects
rope manipulation samples with an exploration policy automatically. The collected
samples are used for learning the inverse dynamics model, after which the robot
conducts planning with the learned model and desired states from the human
demonstration. The learned inverse dynamics model M∗

θ can actually serve as the
policy for choosing actions similar to the demonstration with respect to the desired
frame I e:

At = M∗
θ

(
It , I

e
t+1

)
(8.26)

Another work called reinforced inverse dynamics modeling (RIDM) (Pavse et al.
2019) applies a reinforced post-training for fine-tuning the learned inverse dynamics
model after training on samples collected with a pre-defined exploration policy. The
pre-trained inverse dynamics model, as said above, is regarded as the policy for the
agent in a reinforcement learning setting and a sparse reward function R can be
applied for reinforcement learning fine-tuning process:

θ∗ = arg max
θ

∑
t

R

(
St ,M

pre
θ

(
St , S

e
t+1

))
(8.27)

where M
pre
θ is the pre-trained model and fine-tuned here in a reinforcement learning

manner.

288 Z. Ding

The covariance matrix adaptation evolution strategy (CMA-ES) or Bayesian
optimization (BO) methods can be applied for optimizing the model for a low-
dimensional cases. However, the author assumes that each observation transition
is reachable through the application of a single action. Targeting at removing this
unnecessary assumption, Pathak et al. (2018) allow the agent to execute multiple
actions until it gets close enough to the next demonstrated frame.

The algorithms introduced above try to recover the policy with the inverse
dynamics model for each single demonstration state. The behavioral cloning from
observation (BCO) algorithm proposed by Torabi et al. (2018a), on the other hand,
tries to recover the demonstration dataset with full observation-action pairs using
the learned inverse dynamics model, and then learn the policy with the augmented
demonstration dataset in a regular imitation learning manner, as shown in Fig. 8.5.

Guo et al. (2019) propose to apply a tensor-based model to infer the unobserved
actions of the expert state sequences (the IfO problem), which is shown in Fig. 8.6.
The policy of the agent is then optimized via a hybrid objective combining
reinforcement learning and imitation learning as:

θ∗ = arg min
θ

LRL(π(a|s; θ))−E(
Se

t ,Se
t+1

)
∼D
[

log πθ

(
M
(
Se

t , S
e
t+1

)|Se
t

)]
(8.28)

where the LRL is a regular reinforcement learning loss term with policy π

parameterized by θ . D is the demonstration dataset, and the second term is the
behavioral cloning loss for maximizing the likelihood of predicting “expert” actions
given the expert states se and inverse dynamics model M . Guo’s method is, in a
way, a combination of RIDM and BCO methods. Instead of using a parameterized
inverse dynamics model like in other methods above, the inverse dynamics model
M here is a low-rank tensor model with advantages over deep neural networks. The
reward signals are required for providing the reinforcement learning loss, which is
similar to RIDM.

Fig. 8.5 The learning framework of Behavioral Cloning from Observation (BCO), adapted from
Torabi et al. (2018a)

8 Imitation Learning 289

Fig. 8.6 The learning framework of hybrid reinforcement learning with expert state sequences
framework, adapted from Guo et al. (2019)

Forward Dynamics Models A forward dynamics model is a mapping from state-
action pairs, {(St , At)}, to the next states, {St+1}. One typical method leveraging the
forward dynamics model in IfO is called imitating latent policies from observation
(ILPO) (Edwards et al. 2018). ILPO applies two networks in its learning process: the
latent policy network and the action remapping network. The latent policy network
includes an action inference module which maps the state St to a latent action z, and
a forward dynamics module which predicts the next state St+1 given current state St

and the latent action z. The update rules of these two modules are as follows:

ω∗ = arg minE(
Se

t ,Se
t+1

)
∼D
[
||Gω(Se

t , z) − Se
t+1||22

]
(8.29)

for the latent dynamics model Gω and

θ∗ = arg maxE(
Se

t ,Se
t+1

)
∼D
[
||
∑

z

πθ

(
z|Se

t

)
Gω

(
Se

t , z
)− Se

t+1||22
]

(8.30)

for the latent policy πθ(·|z), where D is the expert demonstration dataset.
However, since the latent action produced in the latent policy network may

not necessarily be the true action in real dynamics of the environment, the action
remapping network is applied for associating the latent actions to the true actions.
The usage of latent actions requires no interactions with the environment during
learning the latent model and latent policy, while the remapping action network
only needs limited number of interactions with the environment, which makes the
algorithm efficient in the learning process.

290 Z. Ding

8.4.2 Model-Free

Apart from model-based IfO methods with the learned dynamics models, there are
also model-free IfO methods, which is another main category for learning without
the models. The models can be hard to learn well for highly complicated dynamics,
as in regular reinforcement learning settings. There are two main approaches for
model-free IfO: (1) generative adversarial methods and (2) reward-engineering
methods. The generative approach is similar as in regular IL, but with the states
as demonstrations only.

Generative Adversarial Methods A general framework in the generative adver-
sarial IfO is modified from previously introduced GAIL method in IRL for regular
IL. Instead of feeding the state-action pairs into the discriminator, only the states are
compared with the discriminator from either explored samples of current policy or
the expert demonstration, which gives the loss:

Loss = ED[∇ω log(Dω(s))] + EDe [∇ω log(1 −Dω(s))] (8.31)

where D is the explored sample set with current policy and De is the demonstration
dataset. Different specific algorithms will have different specific forms and modifi-
cations based on that.

For example, Merel et al. (2017) developed a variant of GAIL with only partially
observed state features and without access to actions to provide human-like motions
for humanoids via the GAN’s structure. Similar as RIDM method and hybrid
reinforcement learning method in model-based IfO, it also applies the reinforcement
learning module together with an imitation learning module, but with a hierarchical
structure. The reinforcement learning module is a high-level controller built on
the low-level controller with the BC method for capturing the motion features of
humanoid. Trajectories of states and actions are collected during the interaction
process of a stochastic policy π and the environment, which corresponds to the
generator in GAN framework. The state-action pairs are transformed into features,
z, in which the actions may be excluded. The demonstration data are assumed to
be in the same feature space according to the original paper. Either demonstration
data or generated data are evaluated by the discriminator to yield a probability of the
data being demonstration data. The output value of the discriminator is then used
as a reward to update the imitation policy using reinforcement learning, similar to
Eq. (8.12) in GAIL. An additional context variable is also applied for learning multi-
behavior policies. The loss of the discriminator can be written as:

Loss = Ez∼s,s∼D[∇ω log(Dω(z, c))] + Eze∼se,se∼De

[∇ω log(1 − Dω(ze, ce))
]

(8.32)

where z, ze are encoded features of s, se sampled from reinforcement learning
explorations D and expert demonstrationsDe, respectively, and c, ce are the context
variables indicating different behaviors.

8 Imitation Learning 291

Fig. 8.7 The architecture of OptionGAN, adapted from Henderson et al. (2018)

The OptionGAN (Henderson et al. 2018) proposed by Henderson et. al. applies
the option framework in hierarchical reinforcement learning (details in Chap. 10)
to recover the joint reward-policy options with generative adversarial architecture
using only observed states, as shown in Fig. 8.7. With the decomposition of policies,
it is able to not only learn well on simple tasks, but also learn a general policy over
options for complicated continuous control tasks.

One potential problem of IfO with above methods is that, even if the learned
optimal policy is able to generate a state distribution that is very similar to the expert
policy, it still does not mean that the actions are exactly the same for both imitation
policy and the expert policy for all states. A simple example by Torabi et al. (2019d)
would be, in a ring-like environment, two agents that move with the same speed but
different directions (i.e., one clockwise and another one counter-clockwise) would
result in each exhibiting the same state distribution even though their behaviors are
opposite to one another (i.e., different action distributions given the states).

One way of solving above mismatch problem in action distributions is to feed
a sequence of states instead of a single one to the discriminator, like proposed by
Torabi et al. (2019b) and Torabi et al. (2018b), a similar algorithm but only with the
difference that the discriminator considers state transitions, {(St , St+1)}, as the input
instead of single states. This changes the loss function of the discriminator to be

ED[∇ω log(Dω(St , St+1))] + EDe [∇ω log(1 −Dω(St , St+1))] (8.33)

292 Z. Ding

Fig. 8.8 Imitation learning from observations only, using the proprioceptive state. Figure is
adapted from Torabi et al. (2019c)

where the state sequence can also be chosen to be longer than two in practice.
Another work by Torabi et al. (2019c) leverages the proprioceptive features

as the state input for the policy instead of the observed images, to model the
humans or animals proprioception-based control in reinforcement learning agents.
Because of the low dimensions of the proprioceptive features, the policy can be
represented by a simple multi-layer perceptron (MLP) instead of a convolutional
neural network (CNN), while the discriminator still takes a sequence of observed
images as inputs from both the explored samples and the expert demonstration, as
shown in Fig. 8.8. The low-dimensional proprioceptive features make the learning
process more efficient as well.

As mentioned in Chap. 7, the low sample efficiency is one of the key problems
in present reinforcement learning algorithms, which also holds for the imitation
learning and IfO areas. As the generative adversarial approaches are within the IRL
domain, those methods introduced above can suffer from intensive computational
cost as mentioned in Sect. 8.3. These adversarial imitation algorithms often require
large numbers of demonstration examples and learning iterations to learn a policy
imitating a demonstrator’s behavior successfully. To further improve the sample
efficiency of above methods, Torabi et al. (2019a) proposed to apply the linear
quadratic regulators (LQR) (Tassa et al. 2012) as a trajectory-centric reinforcement
learning method during the policy learning process, which has potential to make it
possible to apply the algorithm for real-robot imitation learning.

The above works are mostly based on the basic assumptions that the demon-
stration data space and the imitators’ learning space are consistent. However,
when there is a mismatch between the two spaces, for example, the changes of
viewpoint by placing the camera in different positions in the three-dimensional
space for providing observation, the general imitation learning methods will have a
degradation in performance. The difference of the spaces of demonstration and the
imitator can be either in action space or the state space. For the difference in action
spaces, Żołna et al. (2018) proposed to use pairs of states with random time gaps
instead of consecutive states as the input of the discriminator, which can be regarded
as dataset augmentation with noise for more robust and general performances. In
their own experiments, it is indeed shown to improve the performances of imitator’s
policy with different action spaces from the demonstration. While for the difference
of the state space, like the viewpoint changing mentioned above, Stadie et al.
(2017) have proposed to apply a classifier to distinguish among samples of different
viewpoints, with the output values of some initial layers in the discriminator as

8 Imitation Learning 293

inputs. The proposed method leverages the idea of domain confusion to learn the
domain agnostic features, where the domain indicates different viewpoints in this
case. The confusion is maximized in the first layers of the discriminator (as a feature
extractor) but minimized for the classifier, which also leverages the adversarial
training framework. After training, the learned features of the extractor (first several
layers of the discriminator) are invariant to the viewpoint.

There are also some other works in this field. Sun et al. (2019) proposed the first
provably efficient algorithm in IfO, called Forward Adversarial Imitation Learning
(FAIL), which can learn a near-optimal policy with the number of samples in a
polynomial relationship with all relevant parameters but independent of the number
of unique observations. The minimax game in FAIL learns a policy that matches
the state distribution of the next state given the policies of the previous time steps.
Recently, a method called Action-Guided Adversarial Imitation Learning (AGAIL)
proposed by Sun and Ma (2019) tries to leverage the states and incomplete actions in
demonstrations, which is a combination of IfO and traditional IL. The discriminator
is used for discriminating single states, similar to the approach of Merel et al. (2017)
described before. Additionally, a guided Q-network is employed to learn the true
posterior of p(ae|a ∼ π(se)) in a supervised learning manner, where (se, ae) denote
samples of expert demonstration.

Reward-Engineering Methods The generative adversarial approach naturally
provides the reward signals, from which the imitation policy can learn in a reinforce-
ment learning manner. Apart from the generative adversarial approach, there are also
methods with reward engineering for solving model-free IfO. Actually, the method
RIDM in model-based IfO is a method with reward engineering mentioned in the
previous section. The reward engineering indicates the need of manually designed
reward functions for learning an imitation policy in a reinforcement learning manner
with expert demonstrations. Reward engineering transfers the supervised learning
approach of imitation learning into a reinforcement learning problem through
formalizing the reward function for the reinforcement learning agent. What needs
to be noticed is that the manually designed reward function does not have to be the
true reward function leading to the expert policy, but more of an estimation from
the demonstration dataset or prior knowledge about the tasks. For example, Kimura
et al. (2018) proposed to use the Euclidean distance of the predicted next state by the
predictor and the true next state by the demonstrator as the reward function. Then
the reward function is used for learning an imitation policy in general reinforcement
learning settings.

Another reward-engineering approach is called time-contrastive networks
(TCNs) proposed by Sermanet et al. (2018) (Fig. 8.9). To handle the multi-
viewpoint problem as mentioned before, which is important for learning from
human behaviors, the TCN method learns a viewpoint invariant representation
capturing the relationships among objects with the TCN network using several
(two in the original paper) synchronous camera views from different perspectives.
The adversarial training is therefore applied in the embedded representation space
instead of the original state space in other IfO methods. The representation is

294 Z. Ding

attraction repulsion

Fig. 8.9 The learning framework of time-contrastive network (TCN) with a triplet loss for
observation embedding in self-supervised imitation learning from observations only. Figure is from
Sermanet et al. (2018)

trained with a triplet loss with the TCN embedding network. The triplet loss is set to
disperse the temporal neighbors of consecutive frames in the video demonstration
with similar visual features but different actual dynamic states and also to attract
those simultaneous frames from different viewpoints but with the same dynamic
state in the embedding space. Therefore, the imitation policy can learn with
unlabeled video of human demonstrations in a self-supervised learning manner.
Similar as in Kimura’s work, the reward function is defined to be the Euclidean
distance between the state of demonstration and the state of the agent at each time
step, but in the embedding space instead of the state space. The TCN is designed to
work for single frame state embedding. Dwibedi et al. (2018) extended the work of
TCN to multiple frames embedding for better representing the patterns in trajectory.
Aytar et al. (2018) also took a similar approach, learning an embedding function for
the YouTube video frames based on the demonstration, to solve the hard-exploration
tasks like Montezuma’s Revenge and Pitfall mentioned in the exploration challenge
of Chap. 7. It can handle the small variance in domain like video artifacts and color
changes. The measurement of closeness between the imitator’s embedded states
and some demonstrator’s embedded states is also used as the reward function.

8 Imitation Learning 295

As mentioned in the previous section of the adversarial generative approach,
a classifier can be employed to distinguish among observations from different
viewpoints. A classifier can also be used to predict the order of frames in the demon-
stration as proposed by Goo and Niekum (2019), via a shuffle-and-learn (Misra et al.
2016) training manner. A reward function can be defined with respect to the learned
classifier for training the imitator policy. Also in previous sections of the adversarial
generative approach, the mismatch between the state spaces, like being caused by
the viewpoints, can be handled with an invariant feature representation. However,
instead of using the output values of the discriminator with demonstration states
and the imitator’s state as inputs, it can also train an imitation policy with a reward
function defined to be the Euclidean distance between the two kinds of states in the
representation space, as proposed by Gupta et al. (2017) and Liu et al. (2018).

8.4.3 Challenges of IfO

With the above mentioned methods developed in IfO, the agent can learn the policy
from the observed states only, but still suffers from several problems as mentioned
in the survey by Torabi et al. (2019d), which are listed as the challenges below:

• Embodiment Mismatch: The embodiment mismatch generally describes the
differences of appearances (for visual-based control), dynamics, and other
features between the imitator’s domain and the demonstrator’s domain. A typical
example would be letting a robotic arm mimic the motion of a human’s arm.
Due to the significant differences in the controlling dynamics and perspectives of
looking at the agents, the imitation learning process can be potentially very hard
to conduct. Even determining if the robot is in the same state as the human’s arm
can be difficult. One way to solve this is to learn the hidden correspondences or
latent representations that are invariant for the differences of the two domains,
and conducting the imitation learning based on the correspondences or in that
learned representation space. One IfO method developed to address this problem
learns a correspondence between the embodiments using autoencoders in a
supervised fashion (Gupta et al. 2017). The autoencoder is trained in such a way
that the encoded representations are invariant with respect to the embodiment
features. Another method learns the correspondence in an unsupervised fashion
with a small amount of human supervision (Sermanet et al. 2018).

• Viewpoint Difference: As mentioned in several methods described above, like
the TCN and some methods in model-based IfO, the difference of viewpoints can
degrade the performance of the imitation policy significantly, for visual-based
control with demonstration data provided by images or videos from a camera.
Generally an encoding model for representing the states in a viewpoint invariant
space is required as in Sieb et al. (2019), or a classifier for predicting the specific
viewpoint for one frame as in Stadie et al. (2017). Another IfO approach that
attempts to address this issue learns a context translation model to translate an

296 Z. Ding

observation by predicting it in the target context (Liu et al. 2018). The translation
is learned using data that consists of images of the target context and the source
context, and the task is to translate the frame from the source context to that of the
target. It would require the similar samples of the target context to be collected
as in the source context.

8.5 Probabilistic Methods

Apart from the parameterized methods with deep neural networks (DNN), a
variety of probabilistic inference methods are applied for imitation learning as
well, especially in the robot motion domains, which include Gaussian mixture
regression (GMR) (Calinon 2016), dynamical movement primitives (DMPs) (Pastor
et al. 2009), probabilistic movement primitives (ProMPs) (Paraschos et al. 2013),
kernelized movement primitives (KMP) (Huang et al. 2019), Gaussian process
regression (GPR) (Schneider and Ertel 2010), and GMR-based GP process (Jaquier
et al. 2019). As this book aims at introducing deep reinforcement learning with
parameterization methods using DNN, we will only briefly discuss about prob-
abilistic methods because the combination of probabilistic methods with DRL is
non-trivial, unlike other previous approaches introduced in this chapter.

However, even if it is hard to apply the probabilistic methods on DRL tasks
like using the supervised imitation learning as an initialization for reinforcement
learning introduced in next section, probabilistic methods are still attractive to be
investigated for imitation learning with several advantageous properties. Unlike
the deterministic prediction results given by DNN, the covariance matrices of
the prediction distributions computed by GMR, ProMPs, and KMP encode the
variability of the predicted trajectory. This can be useful when applying the
learned model on predicting or decision-making tasks where the belief of the
prediction is also important, like ensuring the safety during robotic manipulation or
vehicle driving cases. Apart from that, probabilistic methods usually have analytic
solutions with the support of probabilistic theory, which is different from the “black-
box” optimization process of DNN-based methods. This also makes probabilistic
methods able to be solved within a short time when the amount of data is small.
Probabilistic methods like GMR-based GP process have the quick adaptability for
the unseen input datapoints, which will be discussed in the following sections. For
probabilistic methods in IL, the dataset is considered to be provided in a labeled
format with pairs of input and output, which is usually the set of state-action pairs
{(si, ai)|i = 0, . . . , N} for common reinforcement learning cases or time-state pairs
{(t, St)|t = 0, . . . , N} (Jaquier et al. 2019) for the time-aligned demonstrations.

GMR-based GP regression is a combination of Gaussian mixture regression and
Gaussian process regression. GMR exploits the Gaussian conditioning theorem to
estimate the distribution of output data given input data. A Gaussian Mixture Model
(GMM) is used to fit on the joint distribution of input and output datapoints with an
Expectation Maximization (EM) algorithm. The conditional means and covariances

8 Imitation Learning 297

Fig. 8.10 GMR-based GP process for imitation learning. The left image shows the prior mean
of the process and the sample trajectories in blue and purples lines, respectively. The right image
shows the prior mean (same as the left one), sampled, and predicted trajectories in blue, pink, and
red lines, respectively. The three black dots in the right image are observations. Figure is adapted
from Jaquier et al. (2019)

given observed input can be solved in closed form, and the output can therefore
be predicted via a linear combination of conditional expectations with the test
input datapoints. GP aims at learning a deterministic input–output relationship,
just like DNN’s approach, based on a Gaussian prior over potential objective
functions. The GMR-based GP is combined as a GP with its prior mean equal to
the conditional mean of the GMR model, and with its kernel in the form of a sum of
all separable kernels associated with the components of the corresponding GMM.
This combination takes the advantage of the ability of GPs to encode various prior
beliefs through the mean and kernel functions and allows the variability information
retrieved by GMR to be encapsulated in the uncertainty estimated by the GP. When
given new and unseen input observation points, the GMR-based GP method is able
to quickly adapt to them and predict reasonable outputs as shown in Fig. 8.10. For
a two-dimensional trajectories estimation process, the left image in Fig. 8.10 shows
the given samples in purple lines, and the prior mean in blue line. The right image
is the GMR-based GP process with 3 new observation points in black, and with the
pink lines showing the sampled trajectories and red line as prediction. This method
is testified to have a great performance on leveraging demonstrations but quickly
adapting to new datapoints, which can be applied on manipulating the robot to avoid
obstacles with demonstrations.

8.6 IL as Initialization for RL

The basic setup for applying imitation learning is to learn a policy without any rein-
forcement signals but only the demonstrations data, which means the learned policy
through imitation learning is the final policy from the demonstrations. However, in
practice, the policy learned from imitation learning is usually not general enough,

298 Z. Ding

especially for unseen cases. Therefore, we can leverage the imitation learning
in the reinforcement learning process, which improves the learning efficiency of
reinforcement learning. For example, a pre-trained policy using demonstration data
can be used to initialize the policy in reinforcement learning. More about these
approaches will be discussed later. Therefore, we do not require the policy from
imitation learning to be optimal, but good enough with a relatively simple imitation
learning process, like applying a supervised learning approach. So, we only choose
some of the simple and straightforward methods described below as an initialization
method for subsequent reinforcement learning processes. Those fancier techniques
in imitation learning will provide a better initialization policy with no doubts, but
may have drawbacks as longer pre-training time and so on.

Generally, the policy learned from imitating the demonstrations in a supervised
manner, including the BC, DAgger, Variational Dropout, and so on, can be
regarded as a good initialization for reinforcement learning policy, using methods
like policy replacement or residual policy learning described in the following
sections. We will experimentally show the improvement in reinforcement learning
with the initialization policy trained using above mentioned supervised learning
methods in the following sections.

In addition to the policy replacement approach for initialization of reinforcement
learning, residual policy learning (Silver et al. 2018; Johannink et al. 2019)
is another approach to realize initialization. It is based on good but imperfect
controllers for robot manipulation tasks, and to learn a residual policy on top of that
initial controller. For robot manipulation in real world, the initial controller could
be a pre-trained policy in simulation; and for robot manipulation in simulation,
the initial controller could be from the pre-trained supervised learning with expert
trajectories as in Sect. 8.3.2.

The action in residual policy learning follows the combinatorial policy, which is
the sum of the initial policy πini and the residual policy πres :

a = πini(s)+ πres(s) (8.34)

In this way, the residual policy learning is able to preserve the initialized policy
performance to the best advantage.

Example: DDPG with Residual Policy Learning
We apply the DDPG algorithm for leveraging the demonstrations with residual
policy learning. According to the residual policy learning, the actor’s policy in
DDPG consists of two parts: one is the pre-trained initialization policy, which
will be fixed after initialization, and another one is the residual policy to be
trained during the learning process. The initialization policy is pre-trained with the
demonstration samples generated from inverse kinematics, which is the same as the
policy replacement method. The pre-trained initialization policy only works for the

8 Imitation Learning 299

actor part in DDPG. The process of applying residual policy learning in DDPG is as
follows:

(1) Initialize all neural networks in DDPG with residual learning, including a
general initialization of the critic, target critic, and an initialization with zero-
valued final layers for the residual policy and the target residual policy, and
an initialization with imitation learning for the policy and the corresponding
target, totally six networks. Fix the initialized policy and its target, and start the
training process.

(2) Let the agent interact with the environment, and the action value is the sum
of the action values from the initialization policy and the residual policy: a =
aini + ares ; store samples in the form of (s, ares , s

′, r, done).
(3) Draw samples (s, ares , s

′, r, done) from the memory buffer, we have

Qtarget(s, ares) = r + γQT
(
s, πT

res(s)
)

(8.35)

where QT , πT
res denote the target critic and the target residual policy, respec-

tively. The critic loss is MSE(Qtarget(s, ares),Q(s, ares)). The objective for
the actor is to maximize the action-value function of state s and action ares as
follows:

max
θ

Q(s, ares) = max
θ

Q(s, πres (s|θ)) (8.36)

which can be optimized via deterministic policy gradient.
(4) Repeat above steps (2) and (3) until the policy is converged or near optimal.

Compared with general DDPG algorithm, the difference of applying residual
policy learning is just to learn action-value function and the policy with respect to
the residual policy actions instead of the overall actions for the agent.

8.7 Other Approaches of Leveraging Demonstrations in RL

8.7.1 Feeding Demonstrations into Replay Buffer

Instead of pre-training a policy to initialize the reinforcement learning policy, deep
Q-learning from demonstrations (DQfD) (Hester et al. 2018) leverages demon-
strations through directly feeding those expert trajectories into memory buffer of
off-policy reinforcement learning. It applies DQN for only discrete action space
applications. DQfD uses a replay buffer initialized with all expert demonstrations
and then keeps storing new samples in it. It applies the prioritized experience replay
to sample the training batch from the replay buffer, and DQfD trains the policy
using a combination of a supervised hinge loss for imitating the demonstrations and
a general TD loss.

300 Z. Ding

The approach of deep deterministic policy gradient from demonstrations
(DDPGfD) (Večerík et al. 2017) is a method similar with the DQfD method as
described above, but applies DDPG for continuous action space applications.
DDPGfD leverages demonstrations through directly feeding those expert
trajectories into memory of off-policy reinforcement learning (e.g., DDPG), to train
the policy with both demonstrations and explorations. The prioritized experience
replay (Schaul et al. 2015) is used as a natural balance of the two sources of training
data. DDPGfD can work on solvable simple tasks for reinforcement learning, while
learning from sparse rewards on harder task requires more active exploration during
training.

Nair et al. (2018) proposed a method based on DQfD and DDPGfD to have better
learning efficiency for hard tasks where further exploration based on demonstrations
matters. The policy loss is a combination of policy gradient loss and the behavioral
cloning loss, which gives the gradients as follows:

λ1∇θ J − λ2∇θLBC (8.37)

where the J is the general reinforcement learning objective (maximized) and LBC

(minimized) is the behavior cloning loss as defined at the beginning of this chapter.
Moreover, the Q-filter technique is applied in this method, which requires the

behavioral cloning loss to be only applied to states where the learned critic Q(s, a)

determines that the demonstrator action is better than the actor action:

LBC =
ND∑
i=1

||π(si |θπ) − ai ||21Q(si,ai)>Q(si,π(si)) (8.38)

where the ND is number of samples in demonstration dataset and (si , ai) are
sampled from the demonstration dataset. This ensures the policy to explore better
actions other than being restricted by the demonstration data.

Using the same approach, QT-Opt (Kalashnikov et al. 2018) and Quantile QT-
Opt (Bodnar et al. 2019) algorithms also apply a combination of on-policy buffer
and an off-policy demonstration buffer to conduct off-line learning with actor-free
CE method with DQN, which achieves the state-of-the-art performances in real-
world robot learning tasks based on images.

8.7.2 Normalized Actor-Critic

Normalized actor-critic (NAC) (Gao et al. 2018) is another method for efficient
reinforcement learning with demonstrations, and it pretrains a policy as initialization
for a refinement reinforcement learning process. The key difference of NAC
from other methods is that it uses exactly the same objective for the processes
of pre-training an initialization policy with demonstrations and the refinement

8 Imitation Learning 301

reinforcement learning process (not like a combination of supervised loss and
reinforcement learning loss in DQfD, or two separate training processes with
different loss in policy replacement and behavioral cloning methods), which makes
NAC robust to suboptimal demonstrations data.

The NAC method is similar to methods of DDPGfD or DQfD, but trains the
policy sequentially from demonstrations and samples from interactions instead of
using samples from both sources at the same time.

8.7.3 Reward Shaping with Demonstrations

Reward shaping with demonstrations (Brys et al. 2015) is a method focusing on
the initialization of value function instead of the action policy for reinforcement
learning. It provides the agent an intermediate reward for enriching the sparse
reward signals:

RF (s, a, s′) = R(s, a, s′)+ FD(s, a, s′) (8.39)

where the shaping reward FD from demonstrations D is defined with potential
function φ in the following form to guarantee the convergence:

FD(s, a, s′, a′) = γφD(s′, a′) − φD(s, a) (8.40)

and φD is defined as:

φD(s, a) = max
(sd ,a)

e
− 1

2

(
s−sd
)T

�−1
(
s−sd
)

(8.41)

which is to maximize the value of the potential for the state s that is most similar as
the demonstration state sd . The optimized potential function is used to initialize the
action-value function Q in reinforcement learning:

Q0(s, a) = φD(s, a) (8.42)

The intuition of the reward shaping method is to bias the exploration in favor
of those state-action pairs in demonstrations or close to those in demonstrations
for accelerating the training process of reinforcement learning. Reward shaping
provides a good approach of initialization for the value-evaluation function in
reinforcement learning process.

Other methods like unsupervised perceptual rewards (Sermanet et al. 2016) also
learn a dense and smooth reward functions with the demonstrations, using features
in a pre-trained deep model.

302 Z. Ding

8.8 Summary

Due to the low learning efficiency challenge of reinforcement learning as mentioned
in Chap. 7, in this chapter, we introduce imitation learning (IL) as one potential
solution leveraging the expert demonstration. The overall chapter is summarized
into several main categories. The behavior cloning methods introduced in Sect. 8.2
are the most straightforward way of imitation learning in a supervised learning
manner, which can be further combined with reinforcement learning like as an
initialization introduced in Sect. 8.6. A more advanced way of combining the
imitation learning with reinforcement learning is through IRL by recovering a
reward function explicitly or implicitly from demonstration, as in Sect. 8.3. Methods
like MaxEnt can explicitly learn the reward function but with heavy computation
cost. Other methods in the generative adversarial approach like GAIL, GAN-GCL,
AIRL learn in a more efficient way. Another problem is if the actions are missing in
the demonstration dataset, like learning from the videos only, how to work properly
with imitation learning? This falls into the category of IfO as in Sect. 8.4. Since the
IfO problem is from another perspective, those methods mentioned before like BC,
IRL can also be applied in IfO with proper modifications. The methods in IfO are
generally summarized in model-based and model-free categories. The model-based
method learns the dynamics model from samples, and it can actually recover the
observation-only demonstration dataset with actions through leveraging the action-
state relationship in the model, explicitly or implicitly. Then, the regular imitation
learning methods can be applied if the actions are recovered explicitly. Methods
like RIDM, BCO, ILPO, etc., fall into this model-based IfO category. For the
model-free methods in IfO, either the reward engineering or generative adversarial
approach can be applied for providing the reward function to enable reinforcement
learning. Methods like OptionGAN, FAIL, AGAIL, and so on are in the category of
generative adversarial IfO, while TCN and some other methods are in the category
of reward engineering IfO. The two categories here in IfO actually also apply for
general IL, like GAIL as a generative adversarial method and recently proposed
contrastive forward dynamics (CFD) (Jeong et al. 2019) as a reward-engineering
method for learning from demonstration with both observations and actions in
IL. Then the probabilistic methods including GMR, GPR, and DMR-based GP
are introduced as an alternative for general IL, with high-efficiency learning for
relatively low-dimensional cases, as in Sect. 8.5. Finally some other approaches like
DDPGfD and DQfD for feeding demonstration data into replay buffer in off-policy
reinforcement learning and so on are introduced in Sect. 8.7. The research area of
imitation learning is still very active as an efficient approach for solving learning
problems, with an organic combination with reinforcement learning.

8 Imitation Learning 303

References

Abbeel P, Ng AY (2004) Apprenticeship learning via inverse reinforcement learning. In: Proceed-
ings of the twenty-first international conference on machine learning. ACM, New York, p 1

Aytar Y, Pfaff T, Budden D, Paine T, Wang Z, de Freitas N (2018) Playing hard exploration games
by watching YouTube. In: Advances in neural information processing systems, pp 2930–2941

Blau T, Ott L, Ramos F (2018) Improving reinforcement learning pre-training with variational
dropout. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS).
IEEE, Piscataway, pp 4115–4122

Bodnar C, Li A, Hausman K, Pastor P, Kalakrishnan M (2019) Quantile QT-Opt for risk-aware
vision-based robotic grasping. Preprint. arXiv:191002787

Brys T, Harutyunyan A, Suay HB, Chernova S, Taylor ME, Nowé A (2015) Reinforcement
learning from demonstration through shaping. In: Twenty-fourth international joint conference
on artificial intelligence

Calinon S (2016) A tutorial on task-parameterized movement learning and retrieval. Intel Serv
Robot 9(1):1–29

Duan Y, Andrychowicz M, Stadie B, Ho OJ, Schneider J, Sutskever I, Abbeel P, Zaremba W (2017)
One-shot imitation learning. In: Advances in neural information processing systems, pp 1087–
1098

Dwibedi D, Tompson J, Lynch C, Sermanet P (2018) Learning actionable representations from
visual observations. In: 2018 IEEE/RSJ international conference on intelligent robots and
systems (IROS). IEEE, Piscataway, pp 1577–1584

Edwards AD, Sahni H, Schroecker Y, Isbell CL (2018) Imitating latent policies from observation.
Preprint. arXiv:180507914

Eysenbach B, Gupta A, Ibarz J, Levine S (2018) Diversity is all you need: learning skills without
a reward function. Preprint. arXiv:180206070

Finn C, Christiano P, Abbeel P, Levine S (2016a) A connection between generative adversarial net-
works, inverse reinforcement learning, and energy-based models. Preprint. arXiv:161103852

Finn C, Levine S, Abbeel P (2016b) Guided cost learning: deep inverse optimal control via policy
optimization. In: International conference on machine learning, pp 49–58

Fu J, Luo K, Levine S (2017) Learning robust rewards with adversarial inverse reinforcement
learning. Preprint. arXiv:171011248

Gao Y, Lin J, Yu F, Levine S, Darrell T, et al (2018) Reinforcement learning from imperfect
demonstrations. Preprint. arXiv:180205313

Goo W, Niekum S (2019) One-shot learning of multi-step tasks from observation via activity
localization in auxiliary video. In: 2019 international conference on robotics and automation
(ICRA). IEEE, Piscataway, pp 7755–7761

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014) Generative adversarial nets. In: Proceedings of the neural information processing
systems (Advances in neural information processing systems) conference

Guo X, Chang S, Yu M, Tesauro G, Campbell M (2019) Hybrid reinforcement learning with expert
state sequences. Preprint. arXiv:190304110

Gupta A, Devin C, Liu Y, Abbeel P, Levine S (2017) Learning invariant feature spaces to transfer
skills with reinforcement learning. Preprint. arXiv:170302949

Hanna JP, Stone P (2017) Grounded action transformation for robot learning in simulation. In:
Thirty-first AAAI conference on artificial intelligence

Hausman K, Chebotar Y, Schaal S, Sukhatme G, Lim JJ (2017) Multi-modal imitation learning
from unstructured demonstrations using generative adversarial nets. In: Advances in neural
information processing systems, pp 1235–1245

Henderson P, Chang WD, Bacon PL, Meger D, Pineau J, Precup D (2018) OptionGAN: learning
joint reward-policy options using generative adversarial inverse reinforcement learning. In:
Thirty-second AAAI conference on artificial intelligence

304 Z. Ding

Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B, Horgan D, Quan J, Sendonaris
A, Osband I, et al (2018) Deep Q-learning from demonstrations. In: Thirty-second AAAI
conference on artificial intelligence

Ho J, Ermon S (2016) Generative adversarial imitation learning. In: Advances in neural information
processing systems, pp 4565–4573

Huang Y, Rozo L, Silvério J, Caldwell DG (2019) Kernelized movement primitives. Inter J Robot
Res 38(7):833–852

Jaquier N, Ginsbourger D, Calinon S (2019) Learning from demonstration with model-based
Gaussian process. Preprint. arXiv:191005005

Jeong R, Aytar Y, Khosid D, Zhou Y, Kay J, Lampe T, Bousmalis K, Nori F (2019) Self-supervised
sim-to-real adaptation for visual robotic manipulation. Preprint. arXiv:191009470

Johannink T, Bahl S, Nair A, Luo J, Kumar A, Loskyll M, Ojea JA, Solowjow E, Levine S (2019)
Residual reinforcement learning for robot control. In: 2019 international conference on robotics
and automation (ICRA). IEEE, Piscataway, pp 6023–6029

Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, Quillen D, Holly E, Kalakrishnan
M, Vanhoucke V, et al (2018) QT-Opt: scalable deep reinforcement learning for vision-based
robotic manipulation. Preprint. arXiv:180610293

Kimura D, Chaudhury S, Tachibana R, Dasgupta S (2018) Internal model from observations for
reward shaping. Preprint. arXiv:180601267

Liu Y, Gupta A, Abbeel P, Levine S (2018) Imitation from observation: learning to imitate
behaviors from raw video via context translation. In: 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, Piscataway, pp 1118–1125

Merel J, Tassa Y, Srinivasan S, Lemmon J, Wang Z, Wayne G, Heess N (2017) Learning human
behaviors from motion capture by adversarial imitation. Preprint. arXiv:170702201

Misra I, Zitnick CL, Hebert M (2016) Shuffle and learn: unsupervised learning using temporal
order verification. In: European conference on computer vision. Springer, Berlin, pp 527–544

Molchanov D, Ashukha A, Vetrov D (2017) Variational dropout sparsifies deep neural networks.
In: Proceedings of the 34th international conference on machine learning, vol 70, JMLR.org,
pp 2498–2507

Nair A, Chen D, Agrawal P, Isola P, Abbeel P, Malik J, Levine S (2017) Combining self-supervised
learning and imitation for vision-based rope manipulation. In: 2017 IEEE international
conference on robotics and automation (ICRA). IEEE, Piscataway, pp 2146–2153

Nair A, McGrew B, Andrychowicz M, Zaremba W, Abbeel P (2018) Overcoming exploration
in reinforcement learning with demonstrations. In: 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, Piscataway, pp 6292–6299

Ng AY, Harada D, Russell S (1999) Policy invariance under reward transformations: theory and
application to reward shaping. In: Proceedings of the international conference on machine
learning (ICML), vol 99, pp 278–287

Ng AY, Russell SJ, et al (2000) Algorithms for inverse reinforcement learning. In: Proceedings of
the international conference on machine learning (ICML), vol 1, p 2

Paraschos A, Daniel C, Peters JR, Neumann G (2013) Probabilistic movement primitives. In:
Advances in neural information processing systems, pp 2616–2624

Pastor P, Hoffmann H, Asfour T, Schaal S (2009) Learning and generalization of motor skills
by learning from demonstration. In: 2009 IEEE international conference on robotics and
automation. IEEE, Piscataway, pp 763–768

Pathak D, Mahmoudieh P, Luo G, Agrawal P, Chen D, Shentu Y, Shelhamer E, Malik J, Efros
AA, Darrell T (2018) Zero-shot visual imitation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp 2050–2053

Pavse BS, Torabi F, Hanna JP, Warnell G, Stone P (2019) RIDM: reinforced inverse dynamics
modeling for learning from a single observed demonstration. Preprint. arXiv:190607372

Puterman ML (2014) Markov decision processes: discrete stochastic dynamic programming.
Wiley, Hoboken

Ross S, Bagnell D (2010) Efficient reductions for imitation learning. In: Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp 661–668

8 Imitation Learning 305

Ross S, Gordon G, Bagnell D (2011) A reduction of imitation learning and structured prediction to
no-regret online learning. In: Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pp 627–635

Russell SJ (1998) Learning agents for uncertain environments. In: The 11th annual conference on
computational learning theory, vol 98, pp 101–103

Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay. In: International
conference on learning representations

Schneider M, Ertel W (2010) Robot learning by demonstration with local Gaussian process
regression. In: 2010 IEEE/RSJ international conference on intelligent robots and systems.
IEEE, Piscataway, pp 255–260

Sermanet P, Xu K, Levine S (2016) Unsupervised perceptual rewards for imitation learning.
Preprint. arXiv:161206699

Sermanet P, Lynch C, Chebotar Y, Hsu J, Jang E, Schaal S, Levine S, Brain G (2018)
Time-contrastive networks: self-supervised learning from video. In: 2018 IEEE international
conference on robotics and automation (ICRA). IEEE, Piscataway, pp 1134–1141

Sieb M, Xian Z, Huang A, Kroemer O, Fragkiadaki K (2019) Graph-structured visual imitation.
Preprint. arXiv:190705518

Silver T, Allen K, Tenenbaum J, Kaelbling L (2018) Residual policy learning. Preprint.
arXiv:181206298

Stadie BC, Abbeel P, Sutskever I (2017) Third-person imitation learning. Preprint.
arXiv:170301703

Sun M, Ma X (2019) Adversarial imitation learning from incomplete demonstrations. Preprint.
arXiv:190512310

Sun W, Vemula A, Boots B, Bagnell JA (2019) Provably efficient imitation learning from
observation alone. Preprint. arXiv:190510948

Syed U, Bowling M, Schapire RE (2008) Apprenticeship learning using linear programming. In:
Proceedings of the 25th international conference on machine learning. ACM, New York, pp
1032–1039

Tassa Y, Erez T, Todorov E (2012) Synthesis and stabilization of complex behaviors through online
trajectory optimization. In: 2012 IEEE/RSJ international conference on intelligent robots and
systems. IEEE, Piscataway, pp 4906–4913

Torabi F, Warnell G, Stone P (2018a) Behavioral cloning from observation. Preprint.
arXiv:180501954

Torabi F, Warnell G, Stone P (2018b) Generative adversarial imitation from observation. Preprint.
arXiv:180706158

Torabi F, Geiger S, Warnell G, Stone P (2019a) Sample-efficient adversarial imitation learning
from observation. Preprint. arXiv:190607374

Torabi F, Warnell G, Stone P (2019b) Adversarial imitation learning from state-only demon-
strations. In: Proceedings of the 18th international conference on autonomous agents and
multiagent systems, international foundation for autonomous agents and multiagent systems,
pp 2229–2231

Torabi F, Warnell G, Stone P (2019c) Imitation learning from video by leveraging proprioception.
Preprint. arXiv:190509335

Torabi F, Warnell G, Stone P (2019d) Recent advances in imitation learning from observation.
Preprint. arXiv:190513566

Večerík M, Hester T, Scholz J, Wang F, Pietquin O, Piot B, Heess N, Rothörl T, Lampe T,
Riedmiller M (2017) Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. Preprint. arXiv:170708817

Ziebart BD, Maas AL, Bagnell JA, Dey AK (2008) Maximum entropy inverse reinforcement
learning. In: Proceedings of the AAAI conference on artificial intelligence, Chicago, vol 8,
pp 1433–1438

306 Z. Ding

Ziebart BD, Bagnell JA, Dey AK (2010) Modeling interaction via the principle of maximum causal
entropy. In: Proceedings of the 27th international conference on international conference on
machine learning

Żołna K, Rostamzadeh N, Bengio Y, Ahn S, Pinheiro PO (2018) Reinforced imitation learning
from observations

Chapter 9
Integrating Learning and Planning

Huaqing Zhang, Ruitong Huang, and Shanghang Zhang

Abstract In this chapter, reinforcement learning is analyzed from the perspective
of learning and planning. We initially introduce the concepts of model and model-
based methods, with the highlight of advantages on model planning. In order to
include the benefits of both model-based and model-free methods, we present the
integration architecture combining learning and planning, with detailed illustration
on Dyna-Q algorithm. Finally, for the integration of learning and planning, the
simulation-based search applications are analyzed.

Keywords Model-based · Model-free · Dyna · Monte Carlo tree search ·
Temporal difference (TD) search

9.1 Introduction

In reinforcement learning, the agent is allowed to interact with the environment.
Information collected during each round of interaction is regarded as the agent’s
experience and assists the agent to improve its policy. Generally, we refer learning as
the policy improvement process based on actual experience during the interactions.
As the simplest learning protocol, the direct policy learning is elaborated in Fig. 9.1.
The agent initially takes actions in the environment following current policy. Based
on the action and current state of the agent, the environment provides feedback of
rewards, which let agent evaluate the performance of current policy and explore the
policy improvement opportunities. However, direct policy learning is based on the
experience of every single step of the action. Due to the uncertainty and randomness

H. Zhang
Google LLC, Mountain View, CA, USA

R. Huang
Borealis AI, Toronto, ON, Canada

S. Zhang (�)
University of California, Berkeley, CA, USA

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_9

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_9&domain=pdf
https://doi.org/10.1007/978-981-15-4095-0_9

308 H. Zhang et al.

Fig. 9.1 Direct policy learning

of the environment, each experience may have large variance, which affects the
learning speed and performance.

In order to improve the learning efficiency, for each episode of policy learning, it
is beneficial to accumulate multiple rounds of interactions as the agent’s experience.
The interactions can be collected by performing roll-outs in the environment, which
refer to forming a specific state-action-reward trajectory in the environment based
on the current state and policy. In general model-free methods, the agent performs
online roll-out in actual environment and combines the interactions for policy
learning.

However, when the roll-out is applied online, generating experience with the
environment is costly. In industrial scenarios, for example, some states may indicate
system failure or engine explosion, which is dangerous to explore in actual situation
for policy learning. Furthermore, the roll-out in the real environment has to be done
sequentially. The failure on parallel computing results in low sample efficiency
and slow learning speed. Therefore, for some scenarios, it is desirable to propose
simulated environment and replace the real environment to generate experiences.
We regard the roll-out from the simulated environment as planning, which can
efficiently generate abundant simulated experiences with parallel computing for
policy learning. In order to implement effective simulated environment for planning,
the model-based methods are put forward and introduced in Sect. 9.2.

9.2 Model-Based Method

In order to apply planning, the concept of model is implemented between the agent
and the environment (Kaiser et al. 2019). As shown in Fig. 9.2, when the agent stays
in state St and takes actions At , the environment provides feedback rewards Rt+1
and next state St+1 information for the model. Based on the information collected
from the experience between the agent and environment, the model representing the
relations between St+1 and (St , At) is called the transition model. The model rep-
resenting the relations between Rt+1 and (St , At) is called the reward model. When

9 Integrating Learning and Planning 309

Fig. 9.2 Model-based reinforcement learning methods

the states are not fully represented by the observations, there is also the observation
model M(Ot |St) and representation model M(St+1|St , At ,Ot+1) (Hafner et al.
2019), where the Ot is the corresponding observation of the state at time step t . For
example, the images captured for representing the object motion are observations,
as a function of the underlying dynamics state of the object. However, we will
assume the state is fully observed and mainly focus on the transition model and the
reward model in the following. The models can be formulated with two functions or
distributions Fs and Fr , to fit the relations, i.e.,

St+1 ∼ Fs (St , At) , (9.1)

Rt+1 = Fr (St , At) . (9.2)

The model learning is a supervised regression learning process, which aims to
build a visualized environment and function the same as the original one. Therefore,
the model can be applied for planning by the agent with the insights on the true
environment and help it perform policy learning.

For different application scenarios, the relations for model learning and policy
learning may vary.

• Direct Learning: If the agent has already interacted with the environment multi-
ple times following rule-based or expert knowledge, the collected experience can
be directly applied for model learning first. When model is well learnt, the agent
can regard the model as the environment and interact with it for policy learning.

• Iterative Learning: If the model is not well learnt, the model learning and policy
learning can be performed iteratively. Based on limited experience from the
interactions between the agent and the environment, some but limited insights
about the environment can be learnt by the model. With the planning based
on weakly learnt simulated model, the agent improves its policy a little and
takes actions in real environment so as to provide further experience for model
learning. With the number of iterations increasing, both the model learning

310 H. Zhang et al.

and policy learning gradually converge to the optimal results. Therefore, model
learning and policy learning are able to assist each other and learn efficiently.

Accordingly, the model-based reinforcement learning establishes a model by
learning from the real environment and performs planning with the agent for its
policy learning. The advantages for the model learning can be depicted as follows.

• As the planning can be done with the interactions between the agent and the
model, the agent does not need to take actions in the real environment for
exploration and policy learning. Thus, for some environment that are costly
on taking online actions, the model-based method can reduce the training time
and guarantee the safety issues during the policy learning. For example, the
real-world robot learning tasks require the robot manipulation in practice, like
in Qt-opt (Kalashnikov et al. 2018) method, seven robots are collecting real-
world samples days and nights for achieving the grasping task. A simulated
environment (either learnt or manually engineered) can save large amounts of
time and wear and tear of robots.

• When the policy learning is applied between the agent and the simulated model,
the learning can be done in parallel. In the distributed system where there exist
multiple learners contributing to the policy learning, each learner can interact
with one model simulated from the environment. Therefore, the planning of
multiple corresponding models can be independent with each other and does not
affect the current state of the real environment. The parallelization on policy
learning can improve the efficiency and scalability of the learning problem.

Nevertheless, considering the structure of model-based reinforcement learning,
the weakness also exists.

• In model-based reinforcement learning, the performance of model learning will
affect the policy learning results. For the complicated and dynamic environment
scenarios, if the learnt model is unable to simulate the insights of the real
environment, the agent actually interacts with the planning of a wrong or
inaccurate model, which will further increase the error on the learnt policy.

• If there are some updates of adjustments on the environment, it takes several
iterations for the model to learn the changes and further takes time for the agent
to adjust the policy. Accordingly, the agent may have long delay to response and
adapt to the changes on the online environment, which is not suitable for some
applications with real-time requirements.

9.3 Integrated Architectures

Considering the pros and cons of model-free and model-based reinforcement
learning methods, it is promising to combine the advantages of both model-based
and model-free methods by integrating the learning and planning procedures. For

9 Integrating Learning and Planning 311

different applications scenarios, the architectures integrating learning and planning
are different.

Generally, in model-free method, the agent learns policies directly from real
experience with the environment. No planning is adopted for policy improvement.
In basic model-based method, model learning is firstly applied by the interactions
between the agent and the environment. Based on the learnt model, the planning is
applied and the policy can be iteratively learnt from the planning experience.

Since the model is implemented between the agent and the environment, for the
policy learning of the agent, the experience can be classified into two categories.

• Real experience: In real experience, information is sampled directly from
the interactions between the agent and the environment. Generally the real
experience reflects the correct features of the environment, but it is costly and
the states the hard to manually change or recover.

• Simulated experience: The simulated experience is generated by the planning
of the model. The experience may not precisely provide the true features from
the real environment, but the model is easy to manuscript and the model learning
tries to minimizes the gap of mistakes.

For policy learning, if both real experience and simulated experience can be
combined and considered simultaneously, we can take the advantages of both
model-free and basic model-based methods, so as to improve the learning efficiency
and accuracy. Therefore, the Dyna architecture is put forward (Sutton 1991). As
shown in Fig. 9.3, based on the basic model-based method, during the policy
learning, the agent updates the policy not only from the simulated experience with
the learnt model, but considering the real experience with the real environment.
Thus, in policy learning, the simulated experience can guarantee the quantity
required from learning to reduce the variance of learning the features of the
environment, while the real experience shows the correct features and dynamic
changes from the environment, so as to reduce the bias through learning from the
environment.

Fig. 9.3 Dyna architecture

312 H. Zhang et al.

Based on the architecture, the Dyna-Q algorithm is put forward and depicted in
Algorithm 1. In the Dyna-Q learning, a Q table is established and maintained to
instruct the actions of the agent. For each episode of learning, the Q table is learnt
and updated from one-step action of the agent in the real environment. Moreover,
the simulated model also learns from the real experience, and applies planning to
generate n simulated experience for future learning. Accordingly, with the number
of episode increasing, the Q table is learnt and converges to the correct results.

Algorithm 1 Dyna-Q
Initialize Q(s, a) and Model(s, a) for all s ∈ S and a ∈ A
Do forever:

(a) s ← current (non-terminal) state
(b) a ← ε-greedy(s,Q)
(c) Execute action a; Observe resultant reward r , Get next state s′
(d) Q(s, a) ← Q(s, a) + α

[
r + γ maxa′ Q(s′, a′)− Q(s, a)

]
(e) Model(s, a) ← r, s′
(f) Repeat n times:

s ← random previously observed state
a ← random action previously taken in s

r, s′ ← Model(s, a) random action previously taken in S

Q(s, a) ← Q(s, a) + α
[
r + γ maxa′ Q(s′, a′)− Q(s, a)

]

9.4 Simulation-Based Search

In this section, we put more focus on the planning and introduce simulation-based
search methods, which initialize at current state and take samples to roll out the
trajectory. Accordingly, simulation-based search methods are generally the forward
search paradigm using sample-based planning. The concept of forward search and
sampling are further shown as follows.

• Forward search: Considering the planning of the problem, current state has
more significance compared with all other states in Markov decision process
(MDP). It is beneficial to view the MDP with finite choices in another perspec-
tive, which is a tree structure and the root is the current state. As shown in the
Fig. 9.4, the forward search algorithm selects best action from the current state
and look ahead for future planning in the branches of the tree structure.

• Sampling: When the planning is applied based on the MDP, from the current
state, there may exist multiple options for the next states. Thus sampling is
required in planning to randomly select the next state and continue to roll out
the forward search. The randomness on the next state selection may follow some
probabilities or distributions, which reflects the simulation policy adopted by the
agent.

9 Integrating Learning and Planning 313

Fig. 9.4 Forward search

During the simulation-based search, the simulation policy is considered to
instruct the planning direction. The simulation policy relates to the learning policy
and assists on efficient planning to reflect the correct evaluations of the current
policy of the agent.

For the rest of the section, we introduce different kinds of simulation-based
search methods and combine with learning for problem-solving.

9.4.1 Simple Monte Carlo Search

When both the model M and policy π are fixed and initially provided, the simple
Monte Carlo search can be applied to evaluate the performance of the action and
update the learnt policy based on the experience. As shown in Algorithm 2, for each
action a, a ∈ A applied on current state St , following the simulated policy π , K

trajectories can be formulated and the total revenue from each trajectory is denoted
as Gk

t . Based on the recorded trajectories, the performance by taking action At is
evaluated as Q(St ,At). And based on the Q value of all actions, the optimal one is
selected and the next state is determined.

Algorithm 2 Simple Monte Carlo search
Provided the model M and simulation policy π

for each action a ∈ A do
for each episode k ∈ {1, 2, . . . , K} do

Following the model M and simulation policy π , roll out in the environment started from
current state St

Record the trajectory as {St , a, Rk
t+1, S

k
t+1, A

k
t+1, R

k
t+2, . . . S

k
T }

end for

Evaluate actions by mean return. Q(St , a) = 1
K

K∑
k=1

Gk
t

end for
The learnt policy is to select current action with maximum Q value At = arg maxa∈A Q(St , a)

314 H. Zhang et al.

9.4.2 Monte Carlo Tree Search

One clear drawback of simple Monte Carlo search is that the simulation policy π is
prefixed, and, thus, never leverages the new information collected during planning.
Monte Carlo Tree Search (MCTS) (Browne et al. 2012) is designed to overcome
this drawback. In particular, MCTS proposes to maintain a search tree for keeping
the collected information and improve the simulation policy gradually.

As shown in Algorithm 3, after sampling a trajectory from the current state St ,
MCTS updates the Q value for all the visited state and action pair (s, a) along the
trajectory, similarly by the average reward of all the trajectories starting from (s, a).
Then the simulation policy π on the nodes in the search tree is updated accordingly
based on the new Q value in the tree. One example of updating π can be similar
to the Q-learning, where at any node (state) s, π picks the optimal action based
on the current Q with ε uniform exploration. When the simulation reaches a new
state that is currently not in the tree, π sticks to the default policy like uniform
exploration. The first new state in the trajectory will then be added into the search
tree.1 Such evaluation and policy improvement is repeated for every simulation until
the simulation budget is reached. Lastly, the agent selects the action with maximum
Q value at the current state St .

Algorithm 3 Monte Carlo tree search
Provided the model M
Initialize simulation policy π

for each action a ∈ A do
for each episode k ∈ {1, 2, . . . , K} do

Following the model M and simulation policy π , roll out in the environment started from
current state St

Record the trajectory as {St , a, Rt+1, St+1, At+1, Rt+2, . . . ST }
Update the Q value of every (Si , Ai), i = t, . . . , T by mean return starting from (Si , Ai)

with At = a

Update the simulation policy π according to the current Q values
end for

end for
Output the action with maximum Q value at the current state, At = arg maxa∈A Q(St , a)

9.4.3 TD Search

Apart from the Monte Carlo (MC) search methods, the temporal difference (TD)
search can also be considered (Silver et al. 2012). Compared with the MC methods,
the TD search does not require to roll out a trajectory to evaluate and update the

1Another option can be adding all the new nodes in the trajectory into the search tree.

9 Integrating Learning and Planning 315

current policy. Instead, in TD search, for each step of simulation, the policy is
updated and instructs to select the action for the next state.

The TD search is applied in Dyna-2 algorithm (Silver et al. 2008), as depicted in
Algorithm 4. In Dyna-2, the agent stores two sets of weights, denoted as long-term
memory and short-term memory. Applying TD learning, the weights of short-term
memory is updated with the simulated experience. The learnt Q with the weights
of short-term memory further assists the agent to take actions in real environment.
The higher-level TD learning is applied to update the weights of long-term memory.
Finally, the learnt Q with weights θ is the learnt policy for the agent.

Algorithm 4 Dyna-2
function LEARNING

Initialize Fs and Fr

θ ← 0 # Initialize the weights of long-term memory
loop

s ← S0
θ ← 0 # Initialize the weights of short-term memory
z ← 0 # Initialize eligibility trace
SEARCH(s)
a ← π(s;Q) # Choose action based on polity related with Q

while s is not terminal do
Execute a, observe reward r and next state s′
(Fs ,Fr) ← UpdateModel(s, a, r, s′)
SEARCH(s′)
a′ ← π(s′;Q) # Choose action applied in the next state s′
δ ← r + Q(s′, a′)− Q(s, a) # Calculate TD-error
θ ← θ + α(s, a)δz # Update weights of long-term memory
z ← λz+ φ # Update eligibility trace
s ← s′, a ← a′

end while
end loop

end function

function SEARCH(s)
while time available do

z ← 0 # Clear eligibility trace
a ← π(s;Q) # Choose action based on polity related with Q

while s is not terminal do
s′ ← Fs (s, a) # Sample transition
r ← Fr (s, a) # Sample reward
a′ ← π(s′;Q)

δ ← R + Q(s′, a′)− Q(s, a) # Calculate TD-error
θ ← θ + α(s, a)δz # Update weights of short-term memory
z ← λz+ φ # Update eligibility trance in short-term memory
s ← s′, a ← a′

end while
end while

end function

316 H. Zhang et al.

Compared with the MC methods, as the policy is updated for each step, TD
search generally is more efficient. However, due to the frequent update, the search
trends to reduce the variance but increase the bias for problem-solving.

References

Browne CB, Powley E, Whitehouse D, Lucas SM, Cowling PI, Rohlfshagen P, Tavener S, Perez
D, Samothrakis S, Colton S (2012) A survey of Monte Carlo tree search methods. IEEE Trans
Comput Intel AI Games 4(1):1–43

Hafner D, Lillicrap T, Ba J, Norouzi M (2019) Dream to control: learning behaviors by latent
imagination. Preprint. arXiv:191201603

Kaiser L, Babaeizadeh M, Milos P, Osinski B, Campbell RH, Czechowski K, Erhan D, Finn C,
Kozakowski P, Levine S, Mohiuddin A, Sepassi R, Tucker G, Michalewski H (2019) Model-
based reinforcement learning for Atari. Preprint. arXiv:1903.00374

Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, Quillen D, Holly E, Kalakrishnan
M, Vanhoucke V, et al (2018) Qt-opt: scalable deep reinforcement learning for vision-based
robotic manipulation. Preprint. arXiv:180610293

Silver D, Sutton RS, Müller M (2008) Sample-based learning and search with permanent and
transient memories. In: Proceedings of the 25th international conference on machine learning.
ACM, New York, pp 968–975

Silver D, Sutton RS, Müller M (2012) Temporal-difference search in computer go. Mach Learn
87(2):183–219

Sutton RS (1991) Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bull 2(4):160–163

Chapter 10
Hierarchical Reinforcement Learning

Yanhua Huang

Abstract In this chapter, we introduce hierarchical reinforcement learning, which
is a type of methods to improve the learning performance by constructing and
leveraging the underlying structures of cognition and decision making process.
Specifically, we first introduce the backgrounds and two primary categories of
hierarchical reinforcement learning: options framework and feudal reinforcement
learning. Then we have a detailed introduction of some typical algorithms in these
categories, including strategic attentive writer, option-critic, and feudal networks,
etc. Finally, we provide a summary of recent works on hierarchical reinforcement
learning at the end of this chapter.

Keywords Hierarchical reinforcement learning · Options framework ·
Option-critic · Feudal reinforcement learning · Feudal networks

10.1 Introduction

Recently, deep reinforcement learning has achieved significant successes in many
domains (Mnih et al. 2015; Schulman et al. 2015; Silver et al. 2016, 2017; Levine
et al. 2018). Nevertheless, it is still a challenge for agents to learn long-term
planning, especially in some environments with sparse rewards and long time
horizon, such as Dota (OpenAI 2018) and StarCraft (Vinyals et al. 2019). Hier-
archical reinforcement learning (HRL) provides a way for finding spatio-temporal
abstractions and behavioral patterns of such complex control problems (Sutton et al.
1999; Dayan and Hinton 1993; Dietterich 2000; Dayan 1993; Kaelbling 1993; Parr
and Russell 1998a; Vezhnevets et al. 2016; Barto and Mahadevan 2003; Bacon et al.
2017; Vezhnevets et al. 2017; Dietterich 1998; Nachum et al. 2018; Hausknecht
2000). Similar to the hierarchical structures of human cognition, HRL has the
potential to abstract multi-level control where long-horizon planning and meta-

Y. Huang (�)
Xiaohongshu Technology Co., Ltd., Shanghai, China

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_10

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_10&domain=pdf
https://doi.org/10.1007/978-981-15-4095-0_10

318 Y. Huang

learning in higher-level guide the lower-level controllers. The modularization of
hierarchical structures also allows transferability and interpretability, e.g., the skills
about understanding the map and reaching beneficial states are commonly useful
in games like grid-world (Tamar et al. 2016) or Doom (Kempka et al. 2016; Bhatti
et al. 2016).

Most of the previous research on HRL began with four primary works: options
framework (Sutton et al. 1999), feudal reinforcement learning (FRL) (Dayan
and Hinton 1993), MAXQ decomposition (Dietterich 2000), and hierarchical
abstract machines (HAMs) (Parr and Russell 1998b,a). The higher-level policy
in the options framework switches lower-level policies at special time steps, to
decompose the problems temporally. The senior controller in FRL agents proposes
explicit goals, e.g., some particular states, for lower-level controllers to reach, to
achieve a hierarchical decomposition of the state space. MAXQ also provides a
state abstraction method by combining the solutions of decomposed sub-tasks with
respect to the Q-value function. HAMs considers the learning process where actions
that the agent can perform are constrained by hierarchies of finite state machines,
to reduce the search space for large and complicated problems. In this chapter, we
focus on recent works on applying deep learning to HRL. Specifically, we discuss
two algorithms belonging to the options framework and FRL, respectively, and then
provides a brief summary of deep HRL at the end of this chapter.

10.2 Options Framework

The options framework (Sutton et al. 1999; Hausknecht 2000) formalizes the idea
of temporally extended actions. Options, also referred to as skills (Da Silva et al.
2012) or macro-actions (Hauskrecht et al. 1998; Vezhnevets et al. 2016), is a sub-
policy with a termination condition, which observes the environment and outputs
actions until the termination condition is satisfied. The termination condition is a
kind of implicit term for splitting the trajectory into temporal parts, representing
that the corresponding sub-policy has done its own work and the top-level policy-
over-options needs to switch to another option. Given an MDP with states set S and
actions set A, an option ω ∈ � is defined as a triple (Iω, πω, βω) where Iω ⊆ S is
an initiation set of states, πω : S × A → [0, 1] is an intra-option policy, and βω :
S → [0, 1] is a termination function that provides stochastic terminal condition with
Bernoulli distribution. An option ω is available for state s if and only if s ∈ Iω. An
agent picks an option using its policy-over-options and subsequently follows it until
termination, at which point the policy-over-options is queried again and the process
continues. Note that if the option ω is taken, then actions are selected according
to πω until the option terminates stochastically according to βω. For example, an
option named open-the-door might consists of a policy for reaching, grasping, and
turning the door knob, and a termination condition for determining the probability
of the door being opened.

10 Hierarchical Reinforcement Learning 319

Fig. 10.1 Options under SMDP perspective, adapted from Sutton et al. (1999). Top: The state
trajectory of a MDP. Middle: The state trajectory of a Semi-Markov Decision Process (SMDP).
Bottom: The state trajectory of a MDP over two-level hierarchy. Filled circles represent SMDP
decisions, while open circles are primitive steps within the corresponding option

In particular, an options framework consists of two-level hierarchy: each element
in the bottom level is an option and the top level is a policy-over-options that picks
an option at the beginning of episode or the termination of previous option. Policy-
over-options learns from the reward signal given by the environment, while options
can be learned with explicit sub-goals. For example, in the tabular case, each state
can be viewed as a candidate of sub-goals (Wiering and Schmidhuber 1997; Schaul
et al. 2015). Once the options are given, by treating them as actions, the top level
can be learned using standard techniques. Recently, for complex environments like
Minecraft and Atari, predefined sub-goals achieve promising performance with the
combination of deep learning (Tessler et al. 2017; Kulkarni et al. 2016).

In options framework, top-level module learns a policy-over-options, and the
bottom-level module learns policies to accomplish the objective of each option,
which can be viewed as a decomposition of the Markov processes over temporal
level, i.e., several time steps. The semi-Markov decision process (SMDP) provides
a theoretical view of the options framework with the uncertainty in the time duration
between actions (Sutton et al. 1999) as shown in Fig. 10.1. SMDP is a standard
MDP with an additional element F : (S,A,P,R,F), where F(t|s, a) gives the
probability that the transition time is t for state s in action a. Informally, the top-level
control in options framework can be viewed as a policy over SMDP. For multi-level
options, higher-level options represent a further temporally extended SMDP than
the lower-level options below (Riemer et al. 2018).

It is demonstrated that handcrafted options can achieve significant performance
with the combination of deep learning even in challenging environments like

320 Y. Huang

Minecraft and Atari (Tessler et al. 2017; Kulkarni et al. 2016). However, the
initiation set and termination condition is a restriction for the option framework.
For example, a handcrafted policy πω for a mobile robot to dock with its battery
charger might be defined only for states in which the battery charger is within sight.
The termination condition indicates the probability of termination to be 1 when
the robot is successfully docked or the state is outside of Iω. As a consequence,
discovering options autonomously has been the subject of HRL. We introduce two
algorithms that propose to formulate option discovery as an optimization problem
with solutions that are compatible with function approximation. The first one is a
deep recurrent neural network named STRategic Attentive Writer (STRAW) that
learns options with open-loop intra-option policies. The second one is the option-
critic architecture that considers close-loop intra-option policies.

10.2.1 STRategic Attentive Writer (STRAW)

STRAW (Vezhnevets et al. 2016) is a novel deep recurrent neural network archi-
tecture that temporally abstracts commonly occurring sequences of actions, i.e.,
macro-actions, and learns a policy over them end-to-end. Note that macro-action is
a particular option that is represented implicitly inside the neural network, where
the action sequence (or distribution over them) is decided at the time that the
macro-action is initiated. STRAW consists of two modules for short-term action
distributions and long-term plan, respectively.

The first module translates environment observations into an action-plan—a
state variable which represents an explicit stochastic plan of future actions. At
time step t , the action-plan is represented by matrix A ∈ R

|A|×T where T is the
maximum time horizon of the plan. The τ -th column in A corresponds to the logits
of actions at time step t + τ .

The second module maintains commitment-plan by single row matrix ct ∈
R

1×T —a state variable that determines at which step the network terminates a
macro-action and updates the action-plan. At time step t , the first element of ct−1

provides the parameter of the Bernoulli distribution for the terminate condition.
During commitment, both the action-plan At and the commitment-plan ct are rolled
over to the next step by a time-shift operator ρ, where ρ shifts the given matrix by
removing the first column and appending zero to the rear (Fig. 10.2).

Figure 10.2 shows an example of workflow with action-plans and commitment-
plans in STRAW. To update these two types of plans, STRAW uses attentive writing
technique (Gregor et al. 2015) over the temporal dimension, which allows the
network focusing on the current part. This technique applies an array of Gaussian
filters to plans along the temporal dimension. More precisely, for temporal size
K , a grid of |A| × K one-dimensional Gaussian filters is positioned on the plan
by specifying the coordinates of the grid center and the stride between adjacent
filters. Note that the stride is similar to the same term in CNN. Let ψA be the
attention parameters for action-plan, i.e., grid position, stride, and standard deviation

10 Hierarchical Reinforcement Learning 321

Fig. 10.2 The workflow of STRAW in a maze navigation game, adapted from Vezhnevets et al.
(2016). The observations are raw pixels, where pixels with the colors blue, black, red, and green
correspond to the wall, corridor, agent, and goal, respectively. The action space consists of moving
to four positions. When t = 1, the frame’s feature extracted by a conversational network is feed
into STRAW. STRAW generates two plans immediately. During the successive 2 time steps, two
plans are rolled over by ρ. And then the agent comes to the corner and the commitment-plan ct

gives a replan signal

of Gaussian filters. STRAW defines the attention operations as follows:

D = write
(
p,ψA

t

); βt = read
(
At , ψA

t

)
, (10.1)

where p ∈ R
A×K is a patch of plan with temporal size K . The write operation

produces the smoothed plan D of the same size as At , while the read operation
produces a read patch βt ∈ R

A×K . Furthermore, given zt as the feature repre-
sentation of observation in time step t and applying similar attentive technique to
commitment-plan, the algorithm for updating plans is shown in Algorithm 1, where
f ψ , f A, and f c are the linear functions, h is a multi-layer perceptron, b ∈ R

1×T is
a bias filled with same scalar parameter b, and e is a scalar which is fixed to 40 in
Vezhnevets et al. (2016) for frequently re-planning.

For further structured exploration, STRAW uses reparameterization trick on the
diagonal Gaussian distribution: Q(zt |ζt) = N (μ(ζt), σ (ζt)), where ζt is the output
of the feature extractor. The training loss of STRAW is defined as follows:

L =
T∑

t=1

(
L
(
At
)+ αgt KL(Q(zt |ζt)|P(zt))+ λct

1

)
, (10.2)

322 Y. Huang

Algorithm 1 Plans update in STRAW
if gt = 1 then

Compute attention parameter of action-plan ψA
t = f ψ(zt)

Apply attentive read: βt = read(At−1, ψA
t)

Compute intermediate representation εt = h(concat(βt , zt))

Compute attention parameter of commitment-plan ψc
t = f c(concat(ψA

t , εt))

Update At = ρ(At−1)+ write(f A(εt), ψ
A
t)

Update ct = Sigmoid(b + write(e, ψc
t))

else
Update At = ρ(At−1)

Update ct = ρ(ct−1)

end if

where L is a domain specific loss function, e.g., negative log-likelihood of return,
P(zt) is a prior, and the last term penalizes re-planning and encourages commit-
ment.

Note that STRAW is a neural network architecture. For reinforcement learning
tasks, a variety of learning algorithms are available. Vezhnevets et al. (2016) showed
the performance on 2D mazes and Atari games with A3C (Mnih et al. 2016). 2D
mazes are 2D grid-worlds with two types of cells—walls and corridors, where one of
the corridor cells is chosen randomly as the goal. The agent fully observes the state
of the maze and needs to reach the goal with structured exploration. In this task,
Vezhnevets et al. (2016) showed that STRAW outperforms LSTM for the policy,
and stays close to the optimal policy given by the Dijkstra algorithm. In the Atari
domain, Vezhnevets et al. (2016) chose eight games that require some degree of
planning and exploration, where STRAW and its variant reach higher scores on 6
out of 8 games than LSTM and simple feed-forward network.

10.2.2 The Option-Critic Architecture

The option-critic architecture (Bacon et al. 2017) extends policy gradient theorem
to options, which provides a joint learning of options and policy-over-options in an
end-to-end manner. It optimizes the discounted return directly. First consider the
option-value function defined as follows:

Q�(s, ω) =
∑
a

πω(a|s)QU(s, ω, a), (10.3)

where QU : S ×�×A → R is the value of executing an action in the context of a
state-option pair (s, ω):

QU(s, ω, a) = R(s, a) + γ
∑
s ′

p(s′|s, a)U(ω, s′), (10.4)

10 Hierarchical Reinforcement Learning 323

where U : �× S → R is the value of executing ω upon entering a state s′:

U(ω, s′) = (1 − βω(s′))Q�(s′, ω) + βω(s′)V�(s′), (10.5)

where V� : S → R is the optimal value function over options:

V�(s′) = max
ω∈�

Eω

[
k−1∑
n=0

γ nRt+n + γ kV�(St+k)|St = s′
]

, (10.6)

where k is the expected duration of ω when taken in state s′. Hence we can define
A� : S ×� → R as the advantage function over options by

A�(s, ω) = Q�(s, ω) − V�(s). (10.7)

If option ωt has been initiated or is executing at time step t in state St , by viewing
state-option pairs as regular states in Markov chain, the probability of transitioning
to (St+1, ωt+1) in one step is:

∑
a

πωt (a|St)p(St+1|St , a)[(1 − βωt (St+1))1ωt=ωt+1 + βωt (St+1)π�(ωt+1|St+1)].
(10.8)

By assuming all options available everywhere, the transition above is a unique
stationary distribution over state-option pairs.

The architecture of stochastic gradient descent algorithm for learning options
is shown in Fig. 10.3, where the gradients are given by Theorems 10.1 and 10.2.

Fig. 10.3 The option-critic
architecture, adapted from
Bacon et al. (2017)

324 Y. Huang

Moreover, Bacon et al. (2017) proposed to learn the values at a fast timescale
while updating the intra-option policies and termination functions at a slower rate
based on a two-timescale framework (Konda and Tsitsiklis 2000). We can see
that in reference to the actor-critic architectures, intra-option policies, termination
functions, and policy-over-options belong to the actor part while the critic consists
of QU and A�.

Theorem 10.1 (Intra-Option Policy Gradient Theorem (Bacon et al. 2017))
Given a set of Markov options with stochastic intra-option policies differentiable
in their parameters θ , the gradient of the expected discounted return with respect to
θ and initial condition (ŝ, ω̂) is

∑
s,ω

μ�(s, ω|ŝ, ω̂)
∑
a

∂πω,θ (a|s)
∂θ

QU(s, ω, a), (10.9)

where μ�(s, ω|ŝ, ω̂) is a discounted weighting of state-option pairs along trajecto-
ries starting from (ŝ, ω̂):

∑∞
t=0 γ tp(St = s, ωt = ω|S0 = ŝ, ω0 = ω̂).

Theorem 10.2 (Termination Gradient Theorem (Bacon et al. 2017)) Given a
set of Markov options with stochastic termination functions differentiable in their
parameters ϕ, the gradient of the expected discounted return objective with respect
to ϕ and the initial condition (ŝ, ω̂) is

−
∑
s ′,ω

μ�(s′, ω|ŝ, ω̂)
∂βω,ϕ(s′)

∂ϕ
A�(s′, ω), (10.10)

where μ�(s′, ω|ŝ, ω̂) is a discounted weighting of state-option pairs from (ŝ, ω̂),
the same function as in the Intra-Option Policy Gradient Theorem.

Bacon et al. (2017) presented experiments in both discrete and continuous
environments. In the discrete case, Bacon et al. (2017) trained on 4 Atari games
in the Arcade Learning Environment (ALE) (Bellemare et al. 2013) with the same
configuration as Mnih et al. (2015). The result shows that the option-critic was
capable of learning structural options in all games. In the continuous domain, Bacon
et al. (2017) selected the Pinball domain Konidaris and Barto (2009) where the
agent controls a ball in a 2D maze with arbitrarily shaped polygons to a randomly
generated target location. The trajectory learned by the option-critic shows the agent
can achieve temporal abstraction.

10.3 Feudal Reinforcement Learning

Feudal reinforcement learning (FRL) (Dayan and Hinton 1993) considered a feudal
control hierarchy in which managers have sub-managers who work for them and
super-managers for whom they work. It mirrors the hierarchical aspects of a feudal

10 Hierarchical Reinforcement Learning 325

fiefdom, where managers in each level can set tasks, reward, and punishment to
their sub-managers. Notice that there are two key principles to guarantee the feudal
rule: Reward Hiding and Information Hiding. Reward hiding means that sub-
managers should obey their managers whether or not the command satisfies the
super-managers. Information hiding means that sub-managers do not know their
manager’s task, while super-manager also do not know tasks the manager has set
for the sub-managers. The top level of feudal agents, instead of learning a temporal
decomposition of options like the options framework, decomposes the problem with
respect to the state space by producing an explicit goal for the bottom-level policies.
Such architecture allows reinforcement learning to scale to large domains with a
clear division of labor among managerial levels.

Inspired by such decoupling learning, Vezhnevets et al. (2017) introduced a
novel neural architecture called FeUdal Networks (FuNs) to discover sub-goals
automatically, with soft condition about reward hiding and information hiding. It
decouples end-to-end learning across multiple levels, which allows for utilizing
different resolutions of time. Furthermore, hierarchical reinforcement learning with
off-policy correction (HIRO) further improves sample efficiency with off-policy
experience (Nachum et al. 2018). The experiments show that HIRO makes signifi-
cant progresses and can solve exceedingly complex tasks that combine locomotion
and rudimentary object interaction.

10.3.1 FeUdal Networks (FuNs)

A FeUdal Network (FuN) is a fully differentiable modular neural network for FRL
with two modules: the manager and the worker. The manager sets goals at a lower
temporal resolution in a latent state space, while the worker learns to achieve goals
with intrinsic rewards. Figure 10.4 shows the architecture of FuN, where the forward
process is described by the following equations:

zt = f Percept(St) (10.11)

mt = f Mspace(zt) (10.12)

hM
t , ĝt = f Mrnn(mt, h

M
t−1

); gt = ĝt /||ĝt ||; (10.13)

wr = φ

(
t∑

i=t−c

gi

)
(10.14)

hW ,Ut = f Wrnn(zt , h
W
t−1

)
(10.15)

πt = Sof tMax(Utwt), (10.16)

326 Y. Huang

St fPercept zt ∈ R
d

fMspace mt ∈ R
d fMrnn gt ∈ R

d Transition Policy Gradient

Manager

fWrnn φ

Ut ∈ R
|At|×k

wt ∈ R
k×1

× πt Policy Gradient

Worker

No Gradients

Fig. 10.4 The architecture of FuNs, adapted from Vezhnevets et al. (2017). Hyper-parameters k

and d are specified to k = 16 � d = 256 in Vezhnevets et al. (2017)

where zt is the representation of St , f Mspace provides states mt to the Manager,
and gt represents the goal outputted by the Manager. Note that following the two
principles in FRL, there are no gradients propagated between Manager and Worker,
but the perceptual module f Percept that takes in observations is shared. Both f Mrnn

for Manager and f Wrnn for Worker are recurrent modules, and f Mspace is fully-
connected. hM and hW correspond to the internal states of the manager and the
worker, respectively. φ is a linear transform without biases that maps a goal gt into
an embedding vector wt . Ut represents the embedding matrix of actions, outputting
the logits of the worker’s policy via a matrix product with wt .

Consider the standard reinforcement learning setup that maximize the discounted
return Gt =∑∞

k=0 γ kRt+k . A natural idea to learn the whole architecture is training
end-to-end by a policy gradient algorithm because FuNs are fully differentiable.
However, it will cause the gradients to propagate from the Worker to the Manager
through the goal, which may make the goal just internal latent variables instead of
hierarchical signals. As a consequence, FuNs train the Manager and the Worker
independently. For the Manager, the update rule is followed by predicting the
advantages directions:

∇gt =
(
Gt − V M

t (St , θ)
)
∇θdcos(mt+c −mt, gt (θ)), (10.17)

where V M
t is the Manager’s value function and dcos(α, β) = αT β/(|α||β|) is the

cosine similarity. On the other hand, the Worker can be trained by any off-the-shelf

10 Hierarchical Reinforcement Learning 327

deep reinforcement learning algorithm with the intrinsic reward defined as follows:

RI
t = 1

c

c∑
i=1

dcos(mt −mt−i, gt−i), (10.18)

where the directional shift in state space provides a structural invariance to the goal.
In practice, FuNs soft the reward hiding condition in original FRL by training the
Worker with Rt + αRI

t , where α is a hyper-parameter for regulating the influence
of the intrinsic reward.

Vezhnevets et al. (2017) also provided a theoretical analysis about the train-
ing rule of the Manager. Consider a high-level policy-over-policies o(St , θ) that
selects among several sub-policies with same fixed-duration c. For each sub-
policy, the transition distribution p(St+c|St , o) can be viewed as a transition policy
πT (St+c|St , θ). Similar to the SMDP perspective of the options framework, we can
apply policy gradient theorem to πT (St+c|St , θ) in the higher-level MDP

∇θπ
T (St+c|St , θ) = E

[(
Gt − V M

t (St , θ)
)∇θ log p(St+c|St , o)

]
(10.19)

which is called transition policy gradients. With the assumption that direction
St+c − St follows the Mises-Fisher distribution, we would have log p(St+c|St , o) ∝
dcos(St+c − St , gt).

Besides, Vezhnevets et al. (2017) proposed the dilated LSTM for the Manager,
which is analogous to dilated CNN for large receptive field without loss of resolution
or coverage. Dilated LSTM maintains several internal LSTM cell states. At any time
step, only one of the cell states is updated, and the output is the pooled result of the
last c states that have been updated.

Note that similar to STRAW, FuN is also a neural network architecture for
HRL. Vezhnevets et al. (2017) selected A3C as learning algorithms, and designed a
series of experiments that showed the effectiveness of FuN over LSTM. First of all,
Vezhnevets et al. (2017) presented the analysis of FuN on Montezuma’s Revenge.
Montezuma’s Revenge is a difficult problem in Atari games for reinforcement
learning agents, requiring multiple skills to avoid lethal traps and learn from
sparse rewards. The experimental results showed that FuN achieves significant
improvement in sample efficiency. Furthermore, Vezhnevets et al. (2017) also
showed the improved performance on ten more Atari games, where FuN achieves
significantly higher scores than Option-Critic. Likewise, Vezhnevets et al. (2017)
used four different levels of DeepMind Lab 3D game platform (Beattie et al. 2016)
to validate FuN. It demonstrates that FuN learns meaningful sub-policies, which are
then efficiently integrated with memory to produce rewarding behavior.

328 Y. Huang

10.3.2 Off-policy Correction

HRL methods propose to train multiple layers of policies to perform temporal and
behavioral abstraction. In previous sections, we discussed STRAW and FuNs for
learning a hierarchy of policies within neural architectures, and Option-Critic for
learning both the internal policies and the termination conditions of options end-to-
end. There are number of issues remained in HRL, e.g., generality, transferability,
and sample efficiency. In this section, we discuss HIerarchical Reinforcement
learning with Off-policy correction (HIRO) (Nachum et al. 2018) which gives a
generally applicable and data-efficient method for training HRL agents.

For generality, HIRO considers the scheme that higher-level controllers supervise
lower-level controllers by proposing some goals automatically. More precisely, at
each time step t , HIRO drives the agent with a goal gt . Given a user-specific
parameter c, if t is a multiple of c, the goal gt is produced by the higher-level
policy μh, otherwise gt is provided by the goal transition function h: gt =
h(St−1, gt−1, St) with previous goal gt−1. Similar to FuNs, the goal refers to
the higher-level decision that contains information about desired positions and
orientations. The experiments found that, instead of representing the goal within
an embedding space, using the raw observation directly is more effective by HIRO.
Note that we can design the intrinsic reward and goal transition function by domain
knowledge in specific tasks. Specifically, in the simplest case, the intrinsic reward is
defined by

RI
t = −||St + gt − St+1||2, (10.20)

and the goal transition function is defined by

h(St−1, gt−1, St) = St−1 + gt−1 − St (10.21)

to maintain the goal directions.
For data efficiency, HIRO extends the off-policy technique to both higher and

lower-level training. HIRO lets the lower-level policy μl store the experience
(St , gt , At , R

I
t , St+1, h(St , gt , St+1)) and train these policies with arbitrary off-

policy algorithm by viewing gt as an additional input into the models. For the
higher-level policy, the transition tuples (St :t+c, gt :t+c, At :t+c, Rt :t+c, St+c) (‘:’
means slice in Python, do not contain the last element) can also be trained with
an arbitrary off-policy algorithm by viewing gt as an action and accumulating
Rt :t+c as a reward. However, the transitions obtained from past lower-level con-
trollers do not accurately reflect the actions. To tackle this issue, HIRO proposed
using the re-label technique to correcting high-level transitions. The old transition
(St , gt ,

∑
Rt :t+c, St+c) will be re-labeled with a different goal ĝt such that ĝt

maximizes the probability μl(At :t+c|St :t+c, ĝt :t+c), where ĝt+1:t+c is computed by
the goal transition function h. With stochastic behavior policies, the log probability

10 Hierarchical Reinforcement Learning 329

Fig. 10.5 The architecture of
HIRO, adapted from Nachum
et al. (2018). The
lower-policy takes in
higher-level goals and
interacts with the
environment directly, where
goals are generated by
higher-level policy or goal
transition function

Environment

μl: Off-policy training with goal-conditioned rewards

μh: Off-policy training with goal re-labelling

s a

r

g0 g1 gc−1 gc
h h h...

log μl(At :t+c|St :t+c, ĝt :t+c) can be computed by

log μl(At :t+c|St :t+c, ĝt :t+c) ∝ −1

2

t+c−1∑
i=t

||At − μl(Si , ĝi)||22 + const. (10.22)

In practice, HIRO chooses the goal that maximizes the log probability above from
a candidate goal set that includes the original goal, a goal corresponding to the
difference St+c − St and goals sampled from a diagonal Gaussian distribution with
each mean item equivalent to the element in the vector of St+c−St randomly, where
the minus is an element-wise operator.

The full architecture of HIRO is shown in Fig. 10.5. Nachum et al. (2018)
validated HIRO on four challenging tasks in Duan et al. (2016). The experiments
show that off-policy correction provides a significant benefit and relabelling in
lower-level controllers provides an initial speed-up in training.

10.4 Other Works

In this section, we provide a brief summary of recent work in HRL. Figure 10.6
shows two kinds of taxonomy. According to the reward signal of low-level policies,
there are typically two categories of these works. The first proposes to learn low-
level policies end-to-end directly from environment, such as STRAW (Vezhnevets
et al. 2016) and the option-critic architecture (Bacon et al. 2017) introduced before.
The second argues that learning from auxiliary rewards can achieve better hierarchy,
such as the FuNs (Vezhnevets et al. 2017) and HIRO (Nachum et al. 2018)
introduced before.

330 Y. Huang

High-level abstracted objectives Temporal abstraction

State abstraction

State space decomposition

Learning from environment

Using auxiluary reward
Low-level reward signal

Fig. 10.6 Two perspectives of HRL algorithms

Generally, the first approach can gain more effectiveness from end-to-end learn-
ing. Most of the work in this branch focus on options. For option discovery, both
the STRAW (Vezhnevets et al. 2016) and the option-critic architecture (Bacon et al.
2017) can be viewed as top-down approaches, where the observed rewards are used
to climb gradients. Machado et al. (2017) instead introduced a bottom-up method
that utilized representations of the environment captured by Proto-value functions
(PVFs) under a graph Laplacian framework, which provided task-independent
options with theoretical foundations. Riemer et al. (2018) extended option-critic
architecture and derived policy gradient theorems for a deep hierarchy of options.
The resultant hierarchical option-critic obtains efficient empirical performances on
both discrete and continuous environments. Harutyunyan et al. (2018) proposed
to improve the termination condition by decoupling it into the behavior and
target terminations as off-policy learning, which showed faster convergence by
their experiments. Motivated by the SMDP view of options, Sharma et al. (2017)
proposed Fine Grained Action Repetition (FiGAR) that learns to acquire the ability
to predict the number of time steps for which an action chosen for execution
is to be repeated. In addition, it is straightforward for combining meta-learning
with this end-to-end approach to form a hierarchical architecture. Frans et al.
(2017) developed a meta-learning algorithm for improving sample efficiency on
unseen tasks by sharing the hierarchical structure of primitives-policies and achieve
significant results on 3D humanoid robots. However, it is still an issue to scale
this approach to complex domains because of the sole dependency on final tasks
(Nachum et al. 2018; Bacon et al. 2017; Frans et al. 2017).

The second approach instead uses auxiliary rewards. Both FuNs (Vezhnevets
et al. 2017) and HIRO (Nachum et al. 2018) construct the intrinsic reward with goal-
oriented directions for lower-level policies. There are many other works focusing
on goal-oriented rewards that make performance progress on a range of domains.
Universal value function approximators (UVFAs) (Schaul et al. 2015) generalize
value functions over goals. Levy et al. (2018) further introduced hindsight goal
transitions that extends the idea of hindsight experience replay (Andrychowicz et al.
2017), which achieves significant stability. Kulkarni et al. (2016) introduced h-DQN
that learns hierarchical action-value functions at different time scales, where the
action-value function in the top level learns policy-over-options and the action-value
function in the lower level learns to satisfy given sub-goals. Another method to

10 Hierarchical Reinforcement Learning 331

construct handcrafted auxiliary rewards by taking the advantages of domain knowl-
edge. Heess et al. (2016) introduced an architecture for locomotion tasks by first
pre-training on several related simple tasks. Tessler et al. (2017) proposed a lifelong
learning system for the Minecraft domain that selectively transfers learned skills to
new tasks. Florensa et al. (2017) introduced stochastic neural network architecture
that learns higher-level policies with pre-trained skills, which requires minimal
domain knowledge about the downstream tasks and utilizes the transferability of
learned skills. However, both goal-oriented rewards and handcrafted rewards are
difficult to scale to tasks in other domain naively, such as pixel-wise observations.

We can also understand HRL algorithms through the perspective of abstracted
objectives. Options framework typically learns temporal abstraction while FuNs
consider state abstraction. HIRO can be viewed as both considering state abstraction
and temporal abstraction, where goals provide state direction and goal transition
function models temporal information. For temporal abstraction, contrast to options
framework, Haarnoja et al. (2018) used graphical models to achieve another
hierarchical idea that in hierarchy, each layer attempts to solve the current task
directly if it is not fully successful. This makes the job easier for the layer
above it. Besides state abstraction and temporal abstraction, Mnih et al. (2014)
provided a state space decomposition method by taking the advantage of an attention
mechanism. More precisely, this work adds a visual attention mechanism to the state
space before selecting actions, where the attention achieves a high-level planning in
state space (Sahni et al. 2017; Schulman 2016). For selecting abstraction objects,
the main objective is to answer: how does a higher policy guide the lower-policies?
For a domain with adequate prior knowledge, a skills combination learning through
meta-learning may achieve better performance. For long-term planning, temporal
abstraction is necessary in the highest level.

As we saw, HRL is still an advanced topic of reinforcement learning with many
issues to be addressed. Recall that the motivation of HRL is to achieve hierarchical
abstraction to improve sample efficiency and reuse learned skills for long time
horizon problems. The empirical results have shown hierarchical architecture brings
advantages but there is not enough evidence that it does achieve hierarchical
abstraction or just more efficient exploration (Nachum et al. 2018). Additional future
works on probabilistic planning, hierarchies over other reinforcement learning
domain, and theoretical guarantees may provide breakthroughs.

References

Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R, Welinder P, McGrew B, Tobin J,
Abbeel OP, Zaremba W (2017) Hindsight experience replay. In: Advances in neural information
processing systems, pp 5048–5058

Bacon PL, Harb J, Precup D (2017) The option-critic architecture. In: Thirty-first AAAI conference
on artificial intelligence

Barto AG, Mahadevan S (2003) Recent advances in hierarchical reinforcement learning. Discrete
Event Dyn Syst 13(1–2):41–77

332 Y. Huang

Beattie C, Leibo JZ, Teplyashin D, Ward T, Wainwright M, Küttler H, Lefrancq A, Green S, Valdés
V, Sadik A, et al (2016) DeepMind lab. Preprint. arXiv:161203801

Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The arcade learning environment: an
evaluation platform for general agents. J Artif Intell Res 47:253–279

Bhatti S, Desmaison A, Miksik O, Nardelli N, Siddharth N, Torr PH (2016) Playing doom with
slam-augmented deep reinforcement learning. Preprint. arXiv:161200380

Da Silva B, Konidaris G, Barto A (2012) Learning parameterized skills. Preprint. arXiv:12066398
Dayan P (1993) Improving generalization for temporal difference learning: the successor represen-

tation. Neural Comput 5(4):613–624
Dayan P, Hinton GE (1993) Feudal reinforcement learning. In: Advances in neural information

processing systems, pp 271–278
Dietterich TG (1998) The MAXQ method for hierarchical reinforcement learning. In: Proceedings

of the international conference on machine learning (ICML), vol 98, Citeseer, pp 118–126
Dietterich TG (2000) Hierarchical reinforcement learning with the MAXQ value function decom-

position. J Artif Intell Res 13:227–303
Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement

learning for continuous control. In: International conference on machine learning, pp 1329–
1338

Florensa C, Duan Y, Abbeel P (2017) Stochastic neural networks for hierarchical reinforcement
learning. Preprint. arXiv:170403012

Frans K, Ho J, Chen X, Abbeel P, Schulman J (2017) Meta learning shared hierarchies. Preprint.
arXiv:171009767

Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D (2015) Stochastic backpropagation
and approximate inference in deep generative models. In: Proceedings of the international
conference on machine learning (ICML)

Haarnoja T, Hartikainen K, Abbeel P, Levine S (2018) Latent space policies for hierarchical
reinforcement learning. Preprint. arXiv:180402808

Harutyunyan A, Vrancx P, Bacon PL, Precup D, Nowe A (2018) Learning with options that
terminate off-policy. In: Thirty-second AAAI conference on artificial intelligence

Hausknecht MJ (2000) Temporal abstraction in reinforcement learning. PhD thesis
Hauskrecht M, Meuleau N, Kaelbling LP, Dean T, Boutilier C (1998) Hierarchical solution of

Markov decision processes using macro-actions. In: Proceedings of the fourteenth conference
on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers, Burlington, pp 220–229

Heess N, Wayne G, Tassa Y, Lillicrap T, Riedmiller M, Silver D (2016) Learning and transfer of
modulated locomotor controllers. Preprint. arXiv:161005182

Kaelbling LP (1993) Hierarchical learning in stochastic domains: preliminary results. In: Proceed-
ings of the tenth international conference on machine learning (ICML), vol 951, pp 167–173

Kempka M, Wydmuch M, Runc G, Toczek J, Jaśkowski W (2016) ViZDoom: A Doom-
based AI research platform for visual reinforcement learning. In: 2016 IEEE conference on
computational intelligence and games (CIG). IEEE, Piscataway, pp 1–8

Konda VR, Tsitsiklis JN (2000) Actor-critic algorithms. In: Advances in neural information
processing systems, pp 1008–1014

Konidaris G, Barto AG (2009) Skill discovery in continuous reinforcement learning domains using
skill chaining. In: Advances in neural information processing systems, pp 1015–1023

Kulkarni TD, Narasimhan K, Saeedi A, Tenenbaum J (2016) Hierarchical deep reinforcement
learning: integrating temporal abstraction and intrinsic motivation. In: Advances in neural
information processing systems, pp 3675–3683

Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D (2018) Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection. Int J Robot Res 37(4–
5):421–436

Levy A, Platt R, Saenko K (2018) Hierarchical reinforcement learning with hindsight. Preprint.
arXiv:180508180

10 Hierarchical Reinforcement Learning 333

Machado MC, Bellemare MG, Bowling M (2017) A Laplacian framework for option discovery
in reinforcement learning. In: Proceedings of the 34th international conference on machine
learning, vol 70, JMLR.org, pp 2295–2304

Mnih V, Heess N, Graves A, et al (2014) Recurrent models of visual attention. In: Advances in
neural information processing systems, pp 2204–2212

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement
learning. Nature 518:529–533

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K
(2016) Asynchronous methods for deep reinforcement learning. In: International conference
on machine learning (ICML), pp 1928–1937

Nachum O, Gu SS, Lee H, Levine S (2018) Data-efficient hierarchical reinforcement learning. In:
Advances in neural information processing systems, pp 3303–3313

OpenAI (2018) Openai five. https://blog.openai.com/openai-five/
Parr R, Russell SJ (1998a) Reinforcement learning with hierarchies of machines. In: Advances in

neural information processing systems, pp 1043–1049
Parr RE, Russell S (1998b) Hierarchical control and learning for Markov decision processes.

University of California, Berkeley
Riemer M, Liu M, Tesauro G (2018) Learning abstract options. In: Advances in neural information

processing systems, pp 10424–10434
Sahni H, Kumar S, Tejani F, Schroecker Y, Isbell C (2017) State space decomposition and subgoal

creation for transfer in deep reinforcement learning. Preprint. arXiv:170508997
Schaul T, Horgan D, Gregor K, Silver D (2015) Universal value function approximators. In:

International conference on machine learning, pp 1312–1320
Schulman J (2016) Optimizing expectations: from deep reinforcement learning to stochastic

computation graphs. PhD thesis, UC Berkeley
Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust region policy optimization. In:

International conference on machine learning (ICML), pp 1889–1897
Sharma S, Lakshminarayanan AS, Ravindran B (2017) Learning to repeat: fine grained action

repetition for deep reinforcement learning. Preprint. arXiv:170206054
Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J,

Antonoglou I, Panneershelvam V, Lanctot M, et al (2016) Mastering the game of go with deep
neural networks and tree search. Nature 529:484–489

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran
D, Graepel T, et al (2017) Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. Preprint. arXiv:171201815

Sutton RS, Precup D, Singh S (1999) Between MDPs and semi-MDPs: a framework for temporal
abstraction in reinforcement learning. Artif Intell 112(1–2):181–211

Tamar A, Wu Y, Thomas G, Levine S, Abbeel P (2016) Value iteration networks. In: Advances in
neural information processing systems, pp 2154–2162

Tessler C, Givony S, Zahavy T, Mankowitz DJ, Mannor S (2017) A deep hierarchical approach to
lifelong learning in minecraft. In: Thirty-first AAAI conference on artificial intelligence

Vezhnevets A, Mnih V, Osindero S, Graves A, Vinyals O, Agapiou J, et al (2016) Strategic attentive
writer for learning macro-actions. In: Advances in neural information processing systems, pp
3486–3494

Vezhnevets AS, Osindero S, Schaul T, Heess N, Jaderberg M, Silver D, Kavukcuoglu K
(2017) Feudal networks for hierarchical reinforcement learning. In: Proceedings of the 34th
international conference on machine learning, vol 70, JMLR.org, pp 3540–3549

Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell
R, Ewalds T, Georgiev P, et al (2019) Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575(7782):350–354

Wiering M, Schmidhuber J (1997) HQ-learning. Adapt Behav 6(2):219–246

https://blog.openai.com/openai-five/

Chapter 11
Multi-Agent Reinforcement Learning

Huaqing Zhang and Shanghang Zhang

Abstract In reinforcement learning, complicated applications require involving
multiple agents to handle different kinds of tasks simultaneously. However, increas-
ing the number of agents brings in the challenges on managing the interactions
among them. In this chapter, according to the optimization problem for each
agent, equilibrium concepts are put forward to regulate the distributive behaviors
of multiple agents. We further analyze the cooperative and competitive relations
among the agents in various scenarios, combining with typical multi-agent rein-
forcement learning algorithms. Based on all kinds of interactions, a game theoretical
framework is finalized for general modeling in multi-agent scenarios. Analyzing the
optimization and equilibrium situation for each component of the framework, the
optimal multi-agent reinforcement learning policy for each agent can be guided and
explored.

Keywords Multi-agent reinforcement learning · Equilibrium · Game theory ·
Zero-sum game · Chicken dare game · Stackelberg game

11.1 Introduction

Basic reinforcement learning is powerful on reinforcing one agent to behave out-
standingly based on the rules and rewards reflected by the environment. However,
for various applications in artificial intelligence, when the environment is in large-
scale and the tasks are complicated, not only do we expect one single agent to
make smart actions, but also we hope there exist a group of agents who can
communicate and make decisions with each other. Accordingly, we need to propose
and apply learning strategies for each agent. Considering the interactions among

H. Zhang
Google LLC, Mountain View, CA, USA

S. Zhang (�)
University of California, Berkeley, CA, USA

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_11

335

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_11&domain=pdf
https://doi.org/10.1007/978-981-15-4095-0_11

336 H. Zhang and S. Zhang

multiple agents, multi-agent reinforcement learning is put forwards to achieve the
expectation.

For clear analysis and better understanding, we set the basic component of multi-
agent learning as agent, policy, and utility, which are further elaborated as follows.

• Agent: We define the agent as the autonomous individual, which can inde-
pendently interact with the environment and take its own strategy based on
the observation of others’ behaviors, aiming to achieve maximum revenue or
minimum loss for itself. In the considered scenarios, there exists multiple agents.
When the number of agent equals to one. The multi-agent reinforcement learning
is identical to regular reinforcement learning scenarios.

• Policy: Each agent follows its own policy in the multi-agent reinforcement
learning. The policy is normally designed to maximize the revenue and minimize
the cost of the agent while it is affected by the environment and the policies of
other agents.

• Utility: Each agent has unique utility, considering its requirements and depen-
dencies with the environment and other agents. The utility is defined as the
revenue minus the cost of the agent based on different objectives. In multi-agent
scenarios, each agent aims to maximize its own utility through learning from the
environment and other agents.

Accordingly, in the multi-agent reinforcement learning, agents are assigned
with their own utility functions. Based on the observation and experience through
interactions, each agent performs policy learning autonomously, aiming to optimize
its own utility value, without considering the utilities of other agents’. Therefore,
there may exist competitions or co-operations through the interactions with all other
agents. Considering different kinds of interactions among multiple agents, game
theoretical analysis is commonly applied as a powerful tool for decision making
(Fudenberg and Tirole 1991). Based on different scenarios, the games can be fitted
into different categories, listed as follows.

• Static Game: The static game is the simplest form to model the interactions of
agents. In the static game, single decision is required by each agent. As each
agent only acts once, unexpected cheating and betraying in the static game can
be profitable. Thus, each agent is required to carefully predict the strategies of
the other agents so as to act smartly to gain high utility.

• Repeated Game: The repeated game refers to the situation where all agents can
take actions repeatedly based on the same state for multiple iterations. The overall
utility of each agent is the summation of the discounted utility for each iteration
of the game. Due to the repeated actions of all agent, the cheating and betraying
during the interactions can cause penalty or revenge from other agents in future
iterations. Thus, the repeated game avoids the malicious behaviors of the agents
and generally improve the total utilities for all agents.

11 Multi-Agent Reinforcement Learning 337

• Stochastic Game: The stochastic game (or Markov game) can be regarded as the
MDP with multiple agents or the repeated game with multiple states. The game
models the iterated interactions of multiple agents in general scenarios, where for
each iteration, each agent is at different states and tries to gain high utility based
on the observation and predication of other agents.

In the chapter, based on the fundamental reinforcement learning for single agent,
we focus more on the relations between agents, seeking equilibrium scenarios where
each agent is able to achieve high and stable utilities.

11.2 Optimization and Equilibrium

As each agent aims to maximize its own utility, multi-agent reinforcement learning
can be considered as solving optimization problem for each agent. Suppose there
are m agents, X = X1 ×X2×, . . . ,×Xm refers to the policy space of all agents and
u = (u1(x), . . . , um(x)) represents the lists of utility profile of all agents with policy
profile x, where x ∈ X . Accordingly, each agent i, ∀i ∈ {1, 2, . . . ,m}, requires
to maximize its own utility considering on the behaviors of others. For multi-agent
reinforcement learning, the task is generally solving multiple optimization problems
simultaneously or sequentially so as to make sure each agent is able to get high
utility.

As utility of each agent can be affected by the policies of all other agents,
it is required to seek a stable policy profile for all agents so that no agents
are willing to deviate from the current policy for higher utilities. Therefore, the
equilibrium concept in multi-agent reinforcement learning is put forward. For
better understanding and analysis, without loss of generality, we introduce different
equilibrium concepts based on an intuitive chicken dare game. The chicken dare
game is a static game scenario related with the interactions between two agents.
Both agents are able to choose “chicken” (short as “C”) or “dare” (short as “D”) as
its action independently with each other. Based on different actions of both agents,
the utilities are shown in Fig. 11.1. When both agents choose “D,” both dare and
receive lowest utility 0. When one agent chooses “D” and the other chooses “C,”
the one who dares receives largest utility 7 while the one who chickens still gets
relatively low utility 3. When both agents choose “C,” both agents chicken and can
get relatively high rewards 5.

Fig. 11.1 Chicken dare game

338 H. Zhang and S. Zhang

11.2.1 Nash Equilibrium

Following the chicken dare game (Rapoport and Chammah 1966) in Fig. 11.1, we
set the rule that both agents are required to make actions simultaneously. When both
agents choose “C,” each of them would like to switch to “D” to gain higher utility
based on the assumption that its opponent will not change its action. When both
agents switch their actions to “D,” both of them will receive 0 utility and would
definitely switch the actions back to “C” for higher utility. Nevertheless, when one
agent chooses the action “C” while the other “D,” assuming the component would
not switch its action, each agent cannot switch actions anymore to gain higher utility.
Therefore, we call the scenarios when one agent chooses “C” and the other agent
chooses “D” as Nash equilibrium (Nash et al. 1950), which are formally defined as
follows.

Definition 11.1 Let (X , u) denotes the static scenario with m agents. X = X1 ×
X2×, . . . ,×Xm refers to the policy space of all agents and u = (u1(x), . . . , um(x))

is the utility profile of all agents with policy profile x, where x ∈ X . Let xi be a
policy of agent i, x−i be the policies of other agents except for agent i. The policy
x∗ ∈ X is able to achieve the Nash equilibrium if ∀i, xi ∈ Xi ,

ui(x
∗
i , x∗−i) ≥ ui(xi, x∗−i). (11.1)

Pure Strategy Nash Equilibrium

As shown in the definition, in the static scenario of multi-agent reinforcement
learning, each agent is required to determine one action at each timestamp. When
the actions of the other agents are fixed and each agent cannot deviate its current
action for higher utility, all agents achieve the pure strategy Nash equilibrium. In
the chicken dare game, there exist two pure strategy Nash equilibrium solutions,
where one agent behaves chicken and the other behaves dare. The pure strategy
Nash equilibrium may not always exists, as the pure action of each agent may let
the other agents deviate from its current behavior.

Mixed Strategy Nash Equilibrium

Moreover, each agent can set up a policy, where each action is chosen with
probabilities at each timestamp. The policies of the agents bring in randomness
and uncertainty for the interactions. Thus, the agents can adjust their policies
considering its effect for other agents and the mixed strategy Nash equilibrium
always exists. Take the chicken dare game as an example, we suppose the probability
for agent 1 to behave chicken is p, then the probability to behave dare is 1 − p.
Therefore, in order to guarantee the policy of agent 1 will not cause bias on the

11 Multi-Agent Reinforcement Learning 339

Fig. 11.2 Nash equilibrium
in chicken dare game

decision making for agent 2. The following equation exists:

5p + 3(1 − p) = 6p + 0(1 − p). (11.2)

Thus, we get p = 0.75, and the policy for both agents are the same, namely to
choose action “C” with probability 0.75, and to choose action “D” with probability
0.25. With the policy, both agents achieve the Nash Equilibrium too, and the
expected utility for each agent is 4.5.

Based on the above, we further show the results in Fig. 11.2, where the X axis is
the utility of agent 1, and the Y axis is the utility of agent 2. Based on the relations
of both agents’ utilities in Fig. 11.1, the point A refers to the result when both agents
act as “C.” The point B denotes the result when agent 1 acts as “C” and agent 2 acts
as “D.” The point C represents the result when agent 1 acts as “D” and agent 2 acts
as “C.” The point D indicates the result when both agents act as “D.” Therefore,
whatever the policies of each agent, the result falls in the region ABDC. And point
B and point C are the pure strategy Nash Equilibrium with determined actions. The
middle point E of the line BC is the mixed strategy Nash Equilibrium. The total
utilities for both agents equals 9 for all Nash equilibrium solutions.

11.2.2 Correlated Equilibrium

In Nash equilibrium solution, the total utility of both agents is 9, which is less than
the maximum value 10. However, both agents are required to choose “C” at the same
time to achieve the maximum value 10, which is unstable in distributed fashion.
Therefore, correlation concept is put forwards among agents to further improve total
utility and guarantee the stability of the solution at the same time.

In the chicken dare game, we set the probability distribution for both agents to
choose “CC” (the first action is for agent 1 and the second action is for agent 2),
“CD,” “DC,” and “DD” as v. When both agents correlate with each other and set

340 H. Zhang and S. Zhang

v = [1/3, 1/3, 1/3, 0], the total utility for both agents are 9.3333, which is larger
than the Nash equilibrium solution. Moreover, when one agent choose “C,” as the
agent knows its component will follow the probability distribution in correlation,
its component will takes mixed strategy and choose “C” with probability 0.5 and
“D” with probability 0.5. Thus, if the agent continues to choose “C,” it can receive
the utility of 0.5 ∗ 5 + 0.5 ∗ 3 = 4. If the agent switches its action and assumes its
component fixes its current policy, it can receive the utility of 0.5 ∗ 6+ 0.5 ∗ 0 = 3,
which is less than 4. Similarly when the agent chooses “D,” its component will
follow the correlation and choose action “C” with probability 1. Therefore, the agent
cannot switch its action to “C” to gain higher utility. Accordingly, the probability
distribution v lets both agents achieve correlated equilibrium, with the definition as
follows.

Definition 11.2 Correlated equilibrium (Aumann 1987) can be achieved by any
probability distribution v satisfying,

∑
x−i∈X−i

v(x∗i , x−i)[ui(x
∗
i , x−i) − ui(xi, x−i)] � 0,∀xi ∈ Xi , (11.3)

where Xi is the policy space of the agent i and X−i denotes the policy space of all
the agents except agent i.

Therefore, as long as both agents follow the correlated probability distribution,
each agent cannot deviate with current policy for higher utility. We further depict
correlated equilibrium as point F in Fig. 11.3. Moreover, for all points in the region
ABC, as long as it satisfies relations in (11.3), it can be called correlated equilibrium
solutions.

Fig. 11.3 Correlated
equilibrium in chicken dare
game

11 Multi-Agent Reinforcement Learning 341

11.2.3 Stackelberg Equilibrium

Apart from the simultaneous scenarios, both agents may also take actions sequen-
tially. In sequential scenarios, the agents are divided into leaders and followers,
where the leaders act first and the followers act correspondingly (Bjorn and Vuong
1985). Accordingly, the first-mover advantage exists, where the leaders are able to
predict the corresponding reactions of followers and take actions for high utilities.
In the chicken dare game, if we assume the agent 1 as leader and agent 2 as follower,
the agent 1 can choose action “D,” since when agent 1 choose “D,” the agent 2 will
definitely choose “C” for higher utility. Thus, the utility for the agent 1 can achieve
the maximum value 6 for itself and both agents achieve the stackelberg equilibrium
(Zhang et al. 2018), which can be defined as follows.

Definition 11.3 Let ((X ,), (g, f)) be the general sequential scenario with
m leaders and n followers. X = X1 × X2×, . . . ,×Xm and 	 = 	1 ×
	2×, . . . ,×	n are the policy space of all leaders and all followers, respectively.
g = (g1(x), . . . , gm(x)) is the utility function of leaders for x ∈ X , and
f = (f1(π), . . . , fn(π)) is the utility function of followers for π ∈ 	. Let xi

be the policy of leader i, x−i be policies of all leaders except for leader i, πj be the
policy of follower j , and π−j be policies of all other followers except for leader j .
The policies of x∗ ∈ X and π∗ ∈ 	 can achieve the stackelberg equilibrium of the
multi-leader multi-follower scenario if ∀i,∀j xi ∈ Xi , πj ∈ 	j ,

gi

(
x∗i , x∗−i ,π

∗) ≥ gi

(
xi, x∗−i ,π

∗) ≥ gi

(
xi, x−i ,π

∗), (11.4)

fj

(
x,π∗

j ,π
∗−j

) ≥ fj

(
x,πj ,π

∗−j

)
. (11.5)

11.3 Competition and Cooperation

In the last section, we take an example of chicken dare static game to introduce
the optimization and equilibrium concepts. Moreover, the relation among multiple
agents varies for different applications. In this section, we will further analyze
the competitive and cooperative relations among multiple agents in distributed
fashion. Without specific explanation, we consider the scenario where there are m

agents, X = X1 × X2×, . . . ,×Xm refers to the policy space of all agents and
u = (u1(x), . . . , um(x)) is the utility profile of all agents with policy profile x,
where x ∈ X .

342 H. Zhang and S. Zhang

11.3.1 Cooperation

When multiple agents cooperate with each other, in most times, the total utilities
will be higher than the utilities of all agents without cooperation. Moreover, in
distributed network, each agent only considers its own utility. Accordingly, in
order to include the agent in the cooperated coalition, the agent is required to
receive higher utility compared with its non-cooperated behaviors. The optimization
problem for agent i, ∀i ∈ {1, 2, . . . ,m} can be formulated as following:

maxxi

∑k=m
k=1 uk(xk|x−k),

s.t. ui(x
∗
i |x∗−i) ≥ ui(xi |x∗−i).

(11.6)

11.3.2 Zero-Sum Game

Zero-sum game (VINCENT 1974) is frequently adopted in multiple applications.
For simplicity, we suppose there are two agents, and each agent can choose to take
action “A” or “B.” The utility function is shown in Fig. 11.4, where we can observe
the total utility for each situation equal to zero. Accordingly, for general zero-sum
problem, each agent is required to maximize its own utility based on the prediction
that its utility is minimized by its opponents at the same time. The optimization
problem for agent i, ∀i ∈ {1, 2, . . . ,m} can be summarized as follows:

maxxi minx−i ui . (11.7)

In Littman (1994), the authors analyze a simplified football competition and
model it as a zero-sum game. Generally, in the game, there are two agents, each
agent tries to maximize its own utility while minimize the utility of its component.
Thus, for the agent i, its optimization problem can be represented as

maxπi mina−i

∑
ai

Q(s, ai , a−i)πi , (11.8)

where πi is the strategy for the agent i and ai is the actual action of the agent i based
on the strategy πi . In the game, the agent i tries to maximize its value function, while
its component tries to minimize the value function by taking the action a−i .

Fig. 11.4 Zero-sum game

11 Multi-Agent Reinforcement Learning 343

11.3.3 Simultaneous Competition

Apart from the zero-sum game, there are many applications requiring general
simultaneous competition for multiple agents. In simultaneous competition, all
agents are required to take actions at the same time. The optimization problem for
agent i, ∀i ∈ {1, 2, . . . ,m} can be summarized as follows:

maxxi ui(xi|x−i). (11.9)

In Hu and Wellman (1998), the general Q-learning is put forward to solve the
competitions among multiple agents. The algorithm is illustrated in 1. Based on the
experience of interactions, each agent i maintains a Q table to instruct its policies
πi and update with the following function:

Qi(s, ai , a−i) = (1 − αi)Qi(s, ai , a−i)+ αi

[
ri + γπi(s

′)Qi

(
s′, a′i , a′−i

)
π−i (s

′)
]
.

(11.10)

In the multi-agent scenarios, as the update of Q table requires the policies of the
other agents π−i , the agent i is also required to maintain an estimated Q table for
all other agents. According to the prediction of other agents’ policies π−i , the agent
i aims to set up the policy πi so that (πi,π−i) achieves the mixed strategy Nash
equilibrium.

Algorithm 1 Multi-agent general Q learning
Set initial values for Q table Qi(s, ai , a−i) = 1, ∀i ∈ {1, 2, . . . , m}.
for episode = 1 to M do

Set initial state s = S0.
for step = 1 to T do

Each agent i chooses action ai based on πi(s), which is a mixed Nash equilibrium strategy
based on Q values of all agents.
Observe experience (s, ai , a−i , ri , s

′) and apply it to update Qi value
Update the state s = s′.

end for
end for

Except for the basic Q learning, other deep reinforcement learning approaches
can also be explored considering the interactions among agents. The multi-agent
deep deterministic policy gradient (MADDPG) (Lowe et al. 2017), developed from
the single-agent deep deterministic policy gradient (DDPG) algorithm, provides
strategies for each agent in the simultaneous competition scenario. In MADDPG,
as shown in Algorithm 2, each agent is allocated with a den-centralized actor, which
suggests the agent to take actions. On the other side, the critic is centralized and
maintains the Q value related with action profile of all agents.

344 H. Zhang and S. Zhang

Algorithm 2 Multi-agent deep deterministic policy gradient (MADDPG)
for episode = 1 to M do

Set initial state s = S0.
for step = 1 to T do

Each agent i chooses action ai based on current policy πθi
.

The actions of all agents a = (a1, a2, . . . , am) are executed simultaneously.
Store (s, a, r, s′) in replay buffer M
Update the state s = s′.
for agent i = 1 to m do

Sample a batch of previous experience from replay buffer M.
Calculate the gradients and update the weights for both actor and critic network.

end for
end for

end for

Specifically, the gradient of the expected return for each actor i can be denoted
as

�θπ
i
J (πi) = E

[
�θπ

i
π i

(
oi |θπ

i

)
�aiQ

π
i

(
o1, . . . , om, a1, . . . , am|θQ

i

)]
, (11.11)

where o1, . . . , om is the observations of m agents, respectively. Parameterized by
θπ
i , π i is the deterministic policy for agent i satisfying ai = π i (oi).

Correspondingly, the loss function of the critic for the agent i is the TD-error of
the Q value, such as

Li = E

[(
Qπ

i

(
o1, . . . , om, a1, . . . , am|θQ

i

)

− ri − γQπ ′
i

(
o′1, . . . , o′m, a′1, . . . , a′m|θQ′

i

))2]
, (11.12)

where θ
Q′
i is the delayed parameter for Q prediction. π ′ refers to the target policies

with delayed parameters θπ ′
i .

11.3.4 Sequential Competition

For some applications, different types of agents may have different priorities when
take actions. Thus, the agents in competition take actions sequentially and the agents
act first will have first-mover advantage. Generally we suppose ((X ,), (g, f))

as the general sequential scenario with m leaders and n followers. X = X1 ×
X2×, . . . ,×Xm and 	 = 	1 × 	2×, . . . ,×	n are the policy space of all leaders
and all followers, respectively. g = (g1(x), . . . , gm(x)) is the utility function
of leaders for x ∈ X , and f = (f1(π), . . . , fn(π)) is the utility function of

11 Multi-Agent Reinforcement Learning 345

followers for π ∈ 	. Accordingly, the optimization problem for follower j ,
∀j ∈ {1, 2, . . . , n} is

max fj (πj |π−j , x). (11.13)

The optimization problem for leader i, ∀i ∈ {1, 2, . . . ,m} can be depicted as

max gi(xi |x−i ,π),

s.t. πj = arg max fj (πj |π−j , x), ∀j ∈ {1, 2, . . . , n}. (11.14)

11.4 Game Theoretical Framework

Based on the analysis on the relationships of multiple agents, we summarize a
general game theoretical framework in Fig. 11.5. In the framework, we suppose
it is an iterative scenario where all the agents are able to take actions during
each time interval. Within the same time interval, we further classify the agents
into multiple levels. The agents at top level act first. Based on the observation
of the actions in top levels, the agents in lower levels behave correspondingly.
Moreover, within each level, there are multiple agents take actions simultaneously.
Accordingly, the stackelberg equilibrium is expected between each two levels and
the Nash equilibrium or correlated equilibrium is expected for all agents within one
level.

The game theoretical framework can be regarded as a general structure to
deal with all kinds of multi-agent reinforcement learning problems. For further
tests and evaluations, various multi-agent platforms have been put forward. For
example, AlphaStar is the platform for simulating the behaviors of multiple agents
in StarCraft video game. Multi-agent connected autonomous driving (MACAD)
platform (Palanisamy 2019) is provided for learning and adapting the driving
environment. Google research football (Kurach et al. 2019) is the platform to

Fig. 11.5 Game theoretical framework

346 H. Zhang and S. Zhang

simulate football games for multiple autonomous agents. Based on the multi-agent
platforms in different kinds of scenarios, detailed game theoretical framework
for multi-agent reinforcement learning can be proposed and analyzed for optimal
strategies.

References

Aumann RJ (1987) Correlated equilibrium as an expression of Bayesian rationality. Econometrica
J Econ Soc 55:1–18

Bjorn PA, Vuong QH (1985) Econometric modeling of a stackelberg game with an application to
labor force participation. Working Papers no. 577, California Institute of Technology, Division
of the Humanities and Social Sciences. https://ideas.repec.org/p/clt/sswopa/577.html

Fudenberg D, Tirole J (1991) Game theory, 1991. Cambridge, Mass. 393(12):80
Hu J, Wellman MP (1998) Multiagent reinforcement learning: theoretical framework and an

algorithm. In: International conference on robotics and automation (ICRA)
Kurach K, Raichuk A, Stańczyk P, Zając M, Bachem O, Espeholt L, Riquelme C, Vincent D,

Michalski M, Bousquet O, Gelly S (2019) Google research football: a novel reinforcement
learning environment. Preprint. arXiv:1907.11180

Littman ML (1994) Markov games as a framework for multi-agent reinforcement learning. In:
Proceedings of the international conference on machine learning (ICML), pp 157–163. https://
doi.org/10.1016/b978-1-55860-335-6.50027-1

Lowe R, Wu Y, Tamar A, Harb J, Abbeel OP, Mordatch I (2017) Multi-agent actor-critic for mixed
cooperative-competitive environments. In: Advances in neural information processing systems

Nash JF, et al (1950) Equilibrium points in n-person games. Proc Natl Acad Sci 36(1):48–49
Palanisamy P (2019) Multi-agent connected autonomous driving using deep reinforcement learn-

ing. Preprint. arXiv:1911.04175
Rapoport A, Chammah AM (1966) The game of chicken. Am Behav Sci 10(3):10–28
Vincent P (1974) Learning the optimal strategy in a zero-sum game. Econometrica 42(5):885–891
Zhang H, Khairy S, Cai LX, Han Z (2018) Resource allocation in unlicensed long term evolution

HetNets. Springer, Berlin

https://ideas.repec.org/p/clt/sswopa/577.html
https://doi.org/10.1016/b978-1-55860-335-6.50027-1
https://doi.org/10.1016/b978-1-55860-335-6.50027-1

Chapter 12
Parallel Computing

Huaqing Zhang and Tianyang Yu

Abstract Due to the low sample efficiency of reinforcement learning, parallel
computing is an efficient solution to speed up the training process and improve
the performance. In this chapter, we introduce the framework applying parallel
computation in reinforcement learning. Based on different scenarios, we firstly
analyze the synchronous and asynchronous communication and elaborate parallel
communication in different network typologies. Taking the advantage of parallel
computing, classic distributed reinforcement learning algorithms are depicted and
compared, followed by summaries of fundamental components in the distributed
computing architecture.

Keywords Distributed computing · Asynchronous advantage actor-critic ·
Hybrid GPU/CPU A3C · Importance weighted actor-learner architecture
(IMPALA) · Scalable efficient deep-RL (SEED) · Distributed proximal policy
optimization (DPPO) · Ape-X · Retrace-actor (Reactor) · Recurrent replay
distributed DQN (R2D2)

12.1 Introduction

In deep reinforcement learning, large amounts of data is required for model training.
Take OpenAI Five (OpenAI et al. 2019) as an example, batches of around two mil-
lion frames are applied for training every 2 s, so as to let the agents learn and behave
smartly in the Dota game. Moreover, from the optimization perspective, large batch
size can reduce variance especially for policy gradient methods. However, due to the
sequential interactions between the agent and the environment, the reinforcement
learning algorithm suffers from the low sample efficiency, result in the unsatisfied

H. Zhang (�)
Google LLC, Mountain View, CA, USA

T. Yu
Nanchang University, Nanchang, China

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_12

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_12&domain=pdf
https://doi.org/10.1007/978-981-15-4095-0_12

348 H. Zhang and T. Yu

training performance and slow convergence speed. Parallel computing, referring to
the simultaneous computation on separated but independent tasks, is implemented
as an efficient solution. Generally, the parallelization can be considered from the
following two perspectives:

• Parallel Computation: Data computation is the core procedure to perform
feature engineering, modeling learning, and performance evaluations. The com-
putation is taken over by computing unit, which can be combined and extended
to different scales. Within each level, the performance of computation can be
regarded into two perspectives. One is focusing multiple computing units on
one task. The other is to map multiple computing units to multiple tasks and
apply computation in parallel fashion. Compared with the above computation
strategies, with increasing number of computing units applied on one task, the
efficiency to finish the task increases but soon converges due to some bottleneck
processes. In deep reinforcement learning, when the computing resources are
sufficiently provided, in order to further improve the efficiency, it is beneficial to
separate the task into multiple independent sub-tasks, each allocated to efficient
amounts of computing resources.

• Parallel Transmission: When sufficient computing resources are provided, how
to manage the data transmission between the computing resources may become
the bottleneck to solve the problem. Generally different data transmission
network typologies are put forward for different applications to avoid the
transmission redundancy, to balance the transmission loads and to reduce the
transmission delay. In parallel computing, as there are multiple processes or
threads finishing different tasks at the same time, it is challenging to manage the
data traffic and guarantee the transmission efficiency in the network with limited
communication bandwidth.

In a supervised setting, one simple way to speed up the learning is to process
many different input samples as once. However, in deep reinforcement learning, this
is not possible because we have to let the agent and environment interact with each
other sequentially to obtain all required information. What we should follow in deep
reinforcement learning instead is to apply parallelization on different trajectories or
batches when updating weights in deep policy and value network. In this chapter, we
analyze the parallelization of deep reinforcement learning in the perspective of data
computation and data transmission. We further enumerate significant distributed
computing algorithms and show the general distributed computing architecture to
be applied for large-scale deep reinforcement learning problems.

12.2 Synchronization and Asynchronization

In parallel computing, most of the common data transmission methods apply star
topology, which is composed of one master node and multiple slave nodes. The
master node generally manages the data information for the problem. It applies

12 Parallel Computing 349

data distribution and collection with each slave node. Based on the accumulated
data, the general network parameters are learnt and updated. Each slave node, on
the other hand, receives the allocated data from the master node, performs data
computation and submits its computing results back to the master node. As there
are multiple slave nodes working at the same time, under the management of the
master node, the data computation can be done in parallel to finish a large-scale
problem in cooperation.

The star topology is widely considered in solving deep reinforcement learning
applications. The parallel version of the actor-critic method, for example, usually
adopts one master node and multiple slave nodes. Each slave node maintains a deep
policy network, which has the same structure as all other slave nodes and the master
node. Therefore, the slave nodes can be initialized by copying the weights of the
policy network from their master node. Then it can independently interact with the
environment for exploration. After several rounds of interactions, the slave node
communicates with the master node and sends the information related with the
weights of networks. The information can be single-step exploration experience,
trajectory exploration experience, buffered exploration experiences with priority
information, computed gradients of the network parameters, etc., based on different
detailed architecture. Accumulating the feedback and experience from each slave
node, the master node can update network parameters and further announce its
updated weights to slave nodes for their next round of explorations.

The star topology clearly separates the tasks and accelerates the policy learning
with the parallel computing among slave nodes. However, with different compu-
tation power, each slave node may explore and collect experience with different
time schedules. Then how to determine the pattern for data communication varies
for different problems and system architectures, which generally is classified into
synchronous communication and asynchronous communication.

The synchronous communication pattern is shown in Fig. 12.1, where the red bar
is the time applied for data communication among the nodes and the blue bar is the
time for computation within the node. It is noticed that the time for communication
falls into the same time intervals for all slave nodes. For the master node, it has
same time intervals to communicate with all slave nodes. However, for the slave
nodes, the ones computing faster have to wait until all other slower ones finish the

Fig. 12.1 Synchronization

350 H. Zhang and T. Yu

Fig. 12.2 Asychronization

computation within the round. Thus, synchronous communication is more organized
for the master node to collect and analyze the computation results from the slave
nodes, but there are lots of computing resources wasted on slave nodes due to the
waiting for synchronization.

In order to avoid the waiting time for slave node and improve the efficiency
to apply computing resources, asynchronous communication is put forward cor-
respondingly. As depicted in Fig. 12.2, each slave node is able to submit the
information to the master node as long as it finishes the training task within one
round, and the master node collects the information and synchronizes with the slave
node whenever the slave node finishes. Accordingly, the data communication to
different slave nodes is performed within different time intervals. The master node
may require communication with different slave nodes from time to time, but the
computing resource are fully adopted for model training for each slave node.

12.3 Parallel Communication and Networking

The star topology is a centralized way to apply parallel computation, where the
master node is able to manage and maintain the system to guarantee that all
distributed tasks are well-organized. On the other side, the master node is also the
weakness part of the system. In order to guarantee high performance, the master
node is required to be much more efficient on information processing compared
with the slave nodes. Secondly, the data transmission bandwidth towards the master
node also requires to be sufficient so as to avoid delay for the data computation for
all slave nodes. Moreover, the robustness of the system is highly dependent on the
master node. Whatever issues causing the breakdown event on the master node, the
whole system stops working even though the computing resources on slave nodes
are available and sufficient.

Accordingly, for many application with demanding requirements on robustness
and large-scale parallel computing power, a general distributed data computation
and communication structure is necessary. We assume there are multiple inde-
pendent processes, each of which maintains its own deep reinforcement learning
network and communicates with others frequently from data synchronization.

12 Parallel Computing 351

Fig. 12.3 Tree-structured communication

As each process requires to exchange the information with all other processes,
when the number of processes increasing, the communication cost exponentially
increases. In order to reduce the redundant communication and achieve efficiency
on information synchronization, inter-process communication (IPC) are referred
with message passing interfaces (MPI). Generally MPI provides basic interfaces
for message sending, broadcasting, and receiving for each process. Based on the
standard, different communication structures are further provided to improve the
communication efficiency. The following takes some communication structures as
examples for insights.

• Tree-Structured Communication: Assume there are N processors in the
system. When a process would like to broadcast its information to all other
N − 1 processors, it can follow a tree-structure as shown in Fig. 12.3. In the
tree-structured communication, the processor first communicates with its m − 1
neighboring processes. Then in the next iterations, all neighbors receiving the
information will further communicate to m − 1 new different processors in
parallel to expand to all other processors. Accordingly, with increasing parallel
communication, it takes $logm N% iterations to broadcast the information to all
processors and the information sender processor only requires to send (m −
1)$logm N% times. Compared with the method to send its information to all other
processors, the tree-structured communication reduces the sending times for each
processor but increases the iterations to apply parallel communication.

• Butterfly Communication: When all N processors need to broadcast their
information to all other processors simultaneously, each processor can follow
the tree-structured communication and formulate the butterfly communication
structure. In butterfly communication, as shown in Fig. 12.4, each processor first
sends its information to its neighbors, who will further accumulate and forward
the information to all other processors. As each node can collect and accumulate
the information before transmitting to all other processors, the efficiency is
further improved in distributed fashion. In general, it takes $logm N% iterations
to broadcast the information to all processors and each processor only requires
to send (m− 1)$logm N% times. Moreover, whenever there is a node breakdown
in the middle of communication, all other nodes are still able to continue and let
the information synchronized on all other processors.

352 H. Zhang and T. Yu

Fig. 12.4 Butterfly communication

Based on different communication structures, the parallel computation and trans-
mission for reinforcement learning algorithm can be widely diverse and flexible.
For different applications, the system architecture can be different to improve the
parallelization and efficiency. In the next section, we will further summarize the
general distributed computing architecture in deep reinforcement learning.

12.4 Distributed Reinforcement Learning Algorithms

12.4.1 Asynchronous Advantage Actor-Critic

Asynchronous advantage actor-critic (A3C) (Mnih et al. 2016) is the distributed
algorithm derived from the advantage actor-critic (A2C) method. As shown in
Fig. 12.5, there are multiple actor-learners interacting with separated but identical
environments by applying A2C algorithm. Each actor-learner maintains a policy
network and a value network to make smart actions. For the initialization and
synchronization of the network parameters for all actor-learners, a parameter server
is established, supporting asynchronous communications with all actor-learners.

From the perspective of each actor-learner, we elaborate the learning algorithm
in Algorithm 1. For each learning episode, each actor-learner initially obtains
the network parameters from the parameter server asynchronously. Based on the
synchronized policy network, the actor-learner chooses actions and interacts with
the environment for at most tmax steps. The explored experience is collected to
train the policy and value network, generating the accumulated gradients θ. and
dθv, respectively. After Tmax steps of exploration, the actor-learner reports the
accumulated gradients to the parameter server and updates the general network
parameters θ and θv asynchronously.

12 Parallel Computing 353

Algorithm 1 Asynchronous advantage actor-critic (Actor-Learner)
Hyperparameters: Total number of steps Tmax . Maximum steps for each episode tmax .
Initialize step counter t = 1.
while T ≤ Tmax do

Reset gradients: dθ = 0 and dθv = 0.
Sync with parameter server to obtain network parameters θ ′ = θ and θ ′v = θv .
tstart = t

Set starting state St for the episode
while Reach terminal state or t − tstart == tmax do

Choose action at based on policy π(St |θ ′)
Act in the environment and receive rewards Rt and next state St+1
t = t + 1, T = T + 1

end while
if Reach terminal state then

R = 0
else

R = V (St |θ ′v)
end if
for i = t − 1, t − 2, . . . , tstart do

Update discounted rewards R = Ri + γR

Accumulate gradients wrt θ ′, dθ = dθ + ∇θ ′ log π(Si |θ ′)(R − V (Si |θ ′v))
Accumulate gradients wrt θ ′v , dθv = dθv + ∂(R − V (Si |θ ′v))2/∂θ ′v

end for
Asynchronously update θ with dθ and θv with dθv .

end while

Fig. 12.5 A3C architecture

354 H. Zhang and T. Yu

12.4.2 Hybrid GPU/CPU A3C

In order to better leverage the GPU’s computational power and improve the compu-
tation efficiency, A3C architecture is further optimized to the hybrid GPU/CPU A3C
(GA3C) (Babaeizadeh et al. 2017). As depicted in Fig. 12.6, from the environments
or simulators to the learning model, there exist components of agent, predictor, and
trainer. The functionality for each component is shown as follows.

• Agent: There are multiple agents interacting with their simulated environments,
respectively. Each agent does not need to maintain a policy network for decision
making. Instead, based on the current state St , the agent pushes one request
to the prediction queue and lets the predictor assist to choose actions from the
general policy network. After the action At is taken and the reward Rt and next
state St+1 are provided from the environment, the agent submits the experience
(St , At , Rt , St+1) to the training queue for the model training.

• Predictor: The predictor collects the requests from the agent in the prediction
queue, batches the requests, and sends to the general policy network for model
inference. The batched input data for model inference takes the advantage of
the parallel computation in GPU, improving the computation efficiency of the
learning model. Based on the number of requests, multiple predictors with
multiple prediction queues are supported to balance the trade-off of computation
latency and computation efficiency.

• Trainer: Receiving the experiences from multiple agents, the trainer collects
the data from the training queue, batches the training data, and sends to
the general policy and value network for model training. The batched model
training improves the computation efficiency with GPU and moreover reduces
the variance and fluctuations in model training.

Fig. 12.6 GA3C architecture

12 Parallel Computing 355

12.4.3 Distributed Proximal Policy Optimization

Distributed Proximal Policy Optimization (DPPO) is a distributed version of the
PPO algorithm. As depicted in Fig. 12.7, the algorithm includes the chief as the
parameter server and workers the same as actor-learners in A3C. It distributes data
collection and gradient calculation over multiple workers, which greatly reduces the
learning time. Periodically, the chief updates parameters after averaging gradients
passed by workers, and then passes the latest parameters to workers synchronously.

The pseudocode of the DPPO algorithm is provided in Algorithms 2, 3, and 4,
corresponding to one chief and two different workers. Workers can be one of the
two versions of PPO algorithm: PPO-Penalty and PPO-Clip. This section provides
the corresponding two DPPO algorithms: DPPO-Penalty and DPPO-Clip. The only
difference is the way in which the workers calculate the gradients, while the chief
part is the same, as shown in the pseudocode.

The chief collects gradients from workers and update parameters. As shown in
Algorithm 2, during each iteration, the chief waits for at least (W − D) gradients
from workers and updates with the averaged gradients. The latest parameters are
returned to workers to continue the sampling and gradients-calculation process.
At each iteration, M and B sub-iterations are performed on actor and critic,
respectively.

Workers collect data samples and calculate gradients, then pass the gradients to
the chief. Algorithms 3 and 4 have a similar process, except for the methods of
calculating the policy gradient. At each iteration, the worker first collects a bunch
of data Dk , calculates Ĝt and Ât , stores πθ as πold, and then performs M and B

sub-iterations on actor and critic, respectively.
In DPPO-Clip, the parameter λ is also shared across workers, but its updates

are determined based on local average KL divergence. Other statistical values for

Fig. 12.7 DPPO architecture

356 H. Zhang and T. Yu

Algorithm 2 DPPO (chief)
Hyperparameters: the number of workers W , threshold for numbers of gradients available
workers D, the number of sub-iterations M,B

Input: initial global policy parameters θ , initial global value function parameters φ

for k = 0, 1, 2, . . . do
for m ∈ {1, . . . ,M} do

Wait until at least W−D gradients wrt. θ are available average gradients and update global
θ

end for
for b ∈ {1, . . . , B} do

Wait until at least W−D gradients wrt. φ are available average gradients and update global
φ

end for
end for

normalization in data collection are also recommended to be shared among workers,
like means and standard deviations of observations, rewards, and advantages. An
additional penalty term is also adopted in DPPO-Clip when the KL divergence
exceeds the valid change. Early stopping is also used during each sub-iteration on
the actor to improve stability.

12.4.4 IMPALA and SEED

Based on the advantage actor-critic (A2C) learning algorithm, the Importance
Weighted Actor-Learner Architecture (IMPALA) (Espeholt et al. 2018) applies the
trajectory experiences of the agents as the communication information for dis-
tributed computation. As shown in Fig. 12.8, the IMPALA architecture is composed
of actors and learners, with the detailed introductions as follows.

• Actor: Within each actor, a replicated policy network interacts with a simulated
environment and stores the experience into the buffer. After certain number of
interactions, each actor sends the trajectory of stored experiences to the learners
and receive the updates of policy network parameters from the learners in a
synchronized fashion.

• Learner: When interacting with the actor, the learner receives the trajectory
experiences of the actors and applies it for model training. The value approxi-
mation at state ST is defined as the n-step V-trace target, as follows:

Target = V (ST) +∑T+n−1
t=T γ t−T

(
�t−1

i=T ci

)
δtV , (12.1)

where δtV = ρt (Rt + γV (St+1) − V (St)) is the temporal difference. ρt =
min(ρ̄, π(St)

μ(St)
). ci = min(c̄, π(Si)

μ(Si)
). π is the learner policy, which is averagely

several updates ahead of the actor’s policy μ.

12 Parallel Computing 357

Algorithm 3 DPPO (PPO-Penalty worker)
Hyperparameters: KL penalty coefficient λ, adaptive parameters a = 1.5, b = 2, the number
of sub-iterations M,B

Input: initial local policy parameters θ , initial local value function parameters φ

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {τi} by running policy πθ in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

Store partial trajectory information
πold ← πθ

for m ∈ {1, . . . ,M} do

JPPO(θ) =
T∑

t=1

πθ (At |St)

πold(At |St)
Ât − λKL[πold|πθ] − ξ max(0, KL[πold|πθ] − 2KLtarget)

2

if KL[πold|πθ] > 4KLtarget then
break and continue with next outer iteration k + 1

end if
Compute ∇θ JPPO

send gradient wrt. θ to chief
wait until gradient accepted or dropped; update parameters

end for
for b ∈ {1, . . . , B} do

LBL(φ) = −∑T
t=1(Ĝt − Vφ(St))

2

Compute ∇φLBL

send gradient wrt. φ to chief
wait until gradient accepted or dropped; update parameters

end for
Compute d = Êt [KL[πold(·|St), πθ (·|St)]]
if d < dtarget/a then

λ ← λ/b

else if d > dtarget × a then
λ ← λ× b

end if
end for

Moreover, there can be multiple learners, separated as worker learners and
master learner. Each learner interacts with different actors and finishes model
training independently. Periodically, all worker learners communicate with the
master learner with learning gradients and the master announces the update of
the network parameters synchronously.

The Scalable, Efficient, Deep-RL (SEED) architecture (Espeholt et al. 2019) is
closely related with the IMPALA. The key difference is that the inference policy
network is moved from the actor to the learner, which reduces the computation
requirement for the actor and decreases the communication latency. The detailed
SEED architecture is shown in Fig. 12.9. As each actor implements one or multiple

358 H. Zhang and T. Yu

Algorithm 4 DPPO (PPO-Clip worker)
Hyperparameters: clip factor ε, the number of sub-iterations M,B

Input: initial local policy parameters θ , initial local value function parameters φ

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {τi} by running policy πθ in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

Store partial trajectory information
πold ← πθ

for m ∈ {1, . . . ,M} do
Update the policy by maximizing the PPO-Clip objective:

JPPO(θ) = 1

|Dk |T
∑
τ∈Dk

T∑
t=0

min

(
πθ (At |St)

πold(At |St)
Ât , clip(

π(At |St)

πold(At |St)
, 1 − ε, 1 + ε)Ât

)

Compute ∇θ JPPO

send gradient wrt. θ to chief
wait until gradient accepted or dropped; update parameters

end for
for b ∈ {1, . . . , B} do

Fit value function by regression on mean-squared error:

LBL(φ) = − 1

|Dk |T
∑

τ∈Dk

T∑
t=0

(
Vφ(St)− Ĝt

)2

typically via some gradient descent algorithm
send gradient wrt. φ to chief
wait until gradient accepted or dropped; update parameters

end for
end for

Fig. 12.8 IMPALA architecture

12 Parallel Computing 359

Fig. 12.9 SEED architecture

environments only, all kinds of machines with weak computation power can be
regarded as the actor in the architecture. Based on the instructed actions from
the learner, the actor provides one-step feedback experience to the learner and
the experience is stored in the experience buffer within the learner. After several
iterations, the trajectory data is applied to model training, where V-trace target in
Eq. (12.1) is also applied as the value approximation.

12.4.5 Ape-X, Reactor, and R2D2

In distributed network, considering the multiple interactions between agents and
environments, it is scalable and beneficial to extend prioritized experience replay to
the architecture. Ape-X (Horgan et al. 2018) is the typical distributed architecture
including prioritized experience replay. As shown in Fig. 12.10, there exist multiple
independent actors. Within each actor, an agent interacting with an environment
with the guidance from the policy network. Based on the experience collected
from multiple actors, the learner train the network parameters and learn the optimal
policy. Most importantly, apart from the actor and learner, there exists a replay buffer
collecting the experience from actors, updating the priorities of each experience
entry and batching the prioritized ones to the learner for model training. The batched
prioritized experiences improve the computation efficiency and model learning
performance.

The algorithms from the perspective of each actor are elaborated in Algorithm 5.
Each actor initially synchronizes with the learner on network parameters. The
updated parameters then instruct the agent to interact with the environment.
Receiving the feedback from the environment, the actor calculates the priorities of
the explored experience and sends both the data and priority information to the
replay buffer.

360 H. Zhang and T. Yu

Fig. 12.10 Ape-X architecture

Algorithm 5 Ape-X (Actor)
Hyperparameters: Send to replay with batch size B in local buffer. Number of iterations T

Sync with learner to obtain latest network parameters θ0.
Get initial state S0 from environment.
for t = 0, 1, 2, . . . , T − 1 do

Choose action At based on policy π(St |θt)

Add experience (St , At , Rt , St+1) to the local buffer
if The local buffer reaches its size requirements B then

Get buffered data with batch size B

Calculate the priorities p of the buffered data.
Send the batched buffered data and its priorities to the replay

end if
Periodically sync and update the latest network parameters θt

end for

When the replay buffer collects certain amount of experiences from the actors,
the learner interacts with the replay buffer for learning. The algorithm from the
perspective of the learner is shown in Algorithm 6. For each episode of model
learning, the learner firstly samples prioritized batch of experience data from the
replay buffer. Each data entry is represented as (i, d), where i denotes the index of
the data and d is the detailed information of the experience including state, action,
reward, and next state. The batched data is employed to train network parameters
of the learner, which will periodically synchronize with network parameters of all
actors. After model training, the priorities of the sampled data are adjusted and
updated in replay buffer. Due to the limits of the replay buffer size, periodically, the
data with low priorities will be removed in replay buffer.

Following the general architecture, Ape-X DQN and Ape-X DPG are proposed
when the learning model follows the DQN and DPG algorithm, respectively. In
Ape-X DQN, the Q-network exists in the learner and all actors. The actions for the
actor are guided with the Q values from the network. In Ape-X DPG, both policy

12 Parallel Computing 361

Algorithm 6 Ape-X (Learner)
Hyperparameters: Number of learning episodes T .
Initialize the network parameters θ0.
for t = 1, 2, 3, . . . , T do

Sample a prioritized batch of data (i, d) from replay
Applying training with the batched data
Update network parameters to θt

Calculate the priorities p for batched data d

Update the priorities p for data with index i on replay
Periodically remove data with low priorities in replay

end for

network and value network exist in learner, while each actor only replicates the
policy network to instruct the actions.

Built upon the prioritized distributed replay, Retrace-Actor (Reactor) (Gruslys
et al. 2017) is further put forward based on the actor-critic architecture. Instead of
the single experience, the sequence of experiences are pushed into the buffer and
distributional Retrace(λ) algorithm is implemented to update the estimation of Q

values. In the perspective of the neural network, the LSTM network is added in both
policy and value network for better model learning.

Similarly, Recurrent Replay Distributed DQN (R2D2) (Kapturowski et al.
2018) applies fixed-length sequence of experiences in prioritized distributed replay.
Developed from the DQN, R2D2 implements LSTM layer in the network and train
the LSTM from replay with stored states.

12.4.6 Gorila

Implemented from the Deep Q-Network algorithm, general reinforcement learning
architecture (Gorila) (Nair et al. 2015) is depicted in Fig. 12.11. Synchronizing the
parameters of deep Q-network from the parameter server, the actors interact with the
environment based on the policy instructed by the deep Q-network. The experiences
received from the interactions are instantly forward to the replay buffer. The replay
buffer stores and maintains the collected experience from all actors. Fetching the
batched experience data from the replay buffer, the learner applies model learning
and calculates the gradients of the Q-network. Within the learner, there are one
learning Q-network and one target Q-network to calculate the TD-error. The
learning Q-network sync with the parameter sever for each step of learning, while
the target Q-network sync with the parameter server every N steps. Periodically,
the parameter server receives the gradients from the learner and updates the network
parameters for future explorations.

362 H. Zhang and T. Yu

Fig. 12.11 Gorila architecture

12.5 Distributed Computing Architecture

Based on the basic patterns and structures in parallel computing, in distributed
reinforcement learning, the large-scale parallel computing architecture can be
further explored and investigated. Generally, the system can be composed of the
following basic components:

• Environments: The environment is the component the agent interact with. In
large-scale parallel computing of deep reinforcement learning, the environment
can have multiple replicas which are mapped to different replicas of actors to gain
experience in parallel fashion. Moreover, in model-based reinforcement learning,
the model can also be regarded as simulated environment in the system to help
learning in parallelization.

• Actors: The actor concept in the system refers to the component directly
interacting with the environment. There can be multiple actors mapping to single
or multiple real or simulated environments, and each actor is able to make
actions independently with each other in the assigned environment. The action is
determined by its own or shared policy network or Q-network from the parameter
servers or its corresponding learners. With multiple actions applied sequentially
in the environment, trajectories are formed, which will be pushed into the replay
memory buffers or directly fed into the learners. As interactions between actor
and environment can be costly in time, the parallelization on actors can improve

12 Parallel Computing 363

the speed to generate experiences and contributes to the training performance for
learners.

• Replay Memory Buffers: The replay memory buffer is the component to collect
the planning trajectories from actors and provide to learners for policy learning
or Q learning. As the memory buffer requires to perform fast data writing,
shuffling, and data reading, the storage structure should also support in dynamic
and parallel fashion. Moreover, as most learners reply on the data in replay
memory buffer for training, it is recommended to allocate reply memory buffers
closely connected with learners, so as to guarantee the learning efficiency.

• Learners: The learners are the key component for deep reinforcement learning.
Based on different deep reinforcement learning algorithms, the structure for each
learner will be different. Normally, each learner maintains a policy network or Q-
network and trains the deep network weights based on the actors’ experience in
replay memory buffers. Before and after training, the learner will communicate
with parameter servers for synchronization on deep network weights or its learn-
ing gradients. Either synchronous or asynchronous communication approach can
be applied between multiple learners and parameter servers.

• Parameter Servers: The parameter server is the component to collect all
information from the learners and maintain the weights of policy network or
Q-network in general. The parameter server will periodically synchronize with
all learners for weight updates and assist all learners to start learning based
on the training results from other learners. Moreover, the parameter server can
instruct the actors for its interaction with the environments. In large-scale deep
reinforcement learning system, in order to guarantee robustness and efficiency
for data interactions from parameter servers to learners and actors, the parameter
severs can also be in different kinds of structures and the communication among
parameter servers can be centralized or distributed.

The general computing architecture is combined based on the above components.
As parallel computing is applicable within each component, the structure can be
flexible and easily adapted for the requirements from problems.

References

Babaeizadeh M, Frosio I, Tyree S, Clemons J, Kautz J (2017) Reinforcement learning through
asynchronous advantage actor-critic on a GPU. In: International conference on learning
representations

Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward T, Doron Y, Firoiu V, Harley T,
Dunning I, et al (2018) IMPALA: scalable distributed deep-RL with importance weighted actor-
learner architectures. Preprint. arXiv:180201561

Espeholt L, Marinier R, Stanczyk P, Wang K, Michalski M (2019) SEED RL: scalable and efficient
Deep-RL with accelerated central inference. Preprint. arXiv:191006591

Gruslys A, Dabney W, Azar MG, Piot B, Bellemare M, Munos R (2017) The reactor: a fast and
sample-efficient actor-critic agent for reinforcement learning. Preprint. arXiv:1704.04651

364 H. Zhang and T. Yu

Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, van Hasselt H, Silver D (2018)
Distributed prioritized experience replay. Preprint. arXiv:1803.00933

Kapturowski S, Ostrovski G, Quan J, Munos R, Dabney W (2019) Recurrent experience replay in
distributed reinforcement learning. In: International Conference on Learning Representations
(ICLR).

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K
(2016) Asynchronous methods for deep reinforcement learning. In: International conference
on machine learning (ICML), pp 1928–1937

Nair A, Srinivasan P, Blackwell S, Alcicek C, Fearon R, Maria AD, Panneershelvam V, Suleyman
M, Beattie C, Petersen S, Legg S, Mnih V, Kavukcuoglu K, Silver D (2015) Massively parallel
methods for deep reinforcement learning. Preprint. arXiv:1507.04296

OpenAI: Berner C, Brockman G, Chan B, Cheung V, Dębiak P, Dennison C, Farhi D, Fis-
cher Q, Hashme S, Hesse C, Józefowicz R, Gray S, Olsson C, Pachocki J, Petrov M,
de Oliveira Pinto HP, Raiman J, Salimans T, Schlatter J, Schneider J, Sidor S, Sutskever I, Tang
J, Wolski F, Zhang S (2019) Dota 2 with large scale deep reinforcement learning. Preprint.
arXiv:1912.06680

Part III
Applications

Zihan Ding
e-mail: zhding@mail.ustc.edu.cn

To help the readers deeply understand DRL and quickly apply those widely used
techniques in practice, the following chapters introduce five selected applications
or large-scale projects, including the learning to run challenge, image enhancement,
AlphaZero, robot learning in simulation, and multi-agent reinforcement learning
with Arena platform. The applications are selected to cover as much usage as pos-
sible, for helping the readers to understand the details and tricks of implementation
in different scenarios. Table 1 lists the applications along with the algorithms, type
of policy, action space, and observation, which we believe would be useful for you
to find the application that can be reused or extended to other applications.

The related codes with environment supports and algorithm implementations
are released in the following link: https://github.com/deep-reinforcement-learning-
book.

Table 1 Summary of application projects in the book

Applications Algorithms Action space Observation

Learning to run SAC Continuous Continuous

Image enhancement PPO Discrete Image features

AlphaZero Monte Carlo tree search Discrete Binary Chessboard matrix

Robot learning SAC Continuous Continuous

Multi-agent RL MADDPG, etc. Any Any

https://github.com/deep-reinforcement-learning-book
https://github.com/deep-reinforcement-learning-book

Chapter 13
Learning to Run

Zihan Ding and Hao Dong

Abstract In this chapter, we provide a practical project for readers to have
some hands-on experiences of deep reinforcement learning applications, in which
we adopt one challenge hosted by CrowdAI and NIPS (now NeurIPS) 2017:
Learning to Run. The environment has a 41-dimension state space and
18-dimension action space, both continuous, which is a moderately large-scale
environment for novices to gain some experiences. We provide a soft actor-critic
solution for the task, as well as some tricks applied for boosting performances.
The environment and code are available at https://github.com/deep-reinforcement-
learning-book/Chapter13-Learning-to-Run.

Keywords Learning to run · Deep reinforcement learning · Soft actor-critic ·
Parallel training

13.1 NIPS 2017 Challenge: Learning to Run

13.1.1 Introduction of the Environment

Learning to Run is a competition hosted by CrowdAI and NIPS 2017, which
attracts a lot of reinforcement learning researchers to participate in. In this task, the
participants are required to develop a controller to enable a physiological human
model to navigate a complex obstacle course as quickly as possible. It provides
a human musculoskeletal model and a physics-based simulation environment. To
model physics and biomechanics and navigate it with reinforcement learning agent,

Z. Ding (�)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

H. Dong
Peking University, Beijing, China
e-mail: hao.dong@pku.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_13

367

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_13&domain=pdf
https://github.com/deep-reinforcement-learning-book/Chapter13-Learning-to-Run
mailto:zhding@mail.ustc.edu.cn
mailto:hao.dong@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_13

368 Z. Ding and H. Dong

Fig. 13.1 Scene of NIPS 2017 Challenge: Learning to Run environment

the environment osim-rl based on OpenSim library is provided, where OpenSim is a
standard biomechanical physics environment for musculoskeletal simulations. The
environment scene containing the agent is shown in Fig. 13.1.

The environment incorporates a musculoskeletal model that includes body
segments for each leg, a pelvis segment, and a single segment to represent the
upper half of the body (trunk, head, arms). The segments are connected with joints
(e.g., knee and hip) and the motion of these joints is controlled by the excitation
of muscles. The muscles in the model have complex paths (e.g., muscles can
cross more than one joint and there are redundant muscles). The muscle actuators
themselves are also highly nonlinear. The agent operates in a 2D world. To make it
easier to understand and operate, the environment used in our project is simplified
compared with the original one used in the challenge, so there may be some slight
differences from the official documents of the competition. All components of the
skeleton model are shown as follows.

• The observation contains 41 values:

– position of the pelvis (rotation, x, y)
– velocity of the pelvis (rotation, x, y)
– rotation of each ankle, knee, and hip (6 values)
– angular velocity of each ankle, knee, and hip (6 values)
– position of the center of mass (2 values)
– velocity of the center of mass (2 values)
– positions (x, y) of head, pelvis, torso, left and right toes, left and right talus

(14 values)

13 Learning to Run 369

– strength of left and right psoas: value is 1.0 for difficulty level lower than 2 (a
parameter of environment, default), otherwise a random normal variable with
mean 1.0 and standard deviation 0.1 fixed for the entire simulation. (Note: in
our simplified environment, these strength values are all set to be 0.0)

– next obstacle: x-distance from the pelvis, y-position of the center relative
to the ground, radius. (Note: in our simplified environment there are not
obstacles, so these values are all set to be 0.0)

• The action contains 18 scalar values for representing the actuation of 18 muscles
(9 per leg):

– hamstrings,
– biceps femoris,
– gluteus maximus,
– iliopsoas,
– rectus femoris,
– vastus,
– gastrocnemius,
– soleus,
– tibialis anterior.

• The reward function:

– The reward is computed as a change in position of the pelvis along the x-axis
minus the penalty for the use of ligaments.

• Other details:

– The “done” signal indicates if the move was the last step of the environment.
This happens if either 1000 iterations were reached or the pelvis height is
below 0.65 m.

As we can see from the above environment descriptions, the environment in the
competition is a quite complicated task with both high-dimensional observation
space and action space, compared with other games in OpenAI Gym1 or DeepMind
Control Suite.2 Therefore, some specific techniques are required for solving the
task with a good performance, as well as a relatively short period of training. We
will introduce those specific methods and parallel training framework applied for
solving the task. Since we provide a duplicate of the game environment and the
solutions in the repository3 together with the book, we also recommend the readers
to take a hands-on practice with the project.

1OpenAI Gym website: https://gym.openai.com/.
2DeepMind Control Suite environments: https://github.com/deepmind/dm_control.
3https://github.com/deep-reinforcement-learning-book.

https://gym.openai.com/
https://github.com/deepmind/dm_control
https://github.com/deep-reinforcement-learning-book

370 Z. Ding and H. Dong

13.1.2 Installation

The environment can be installed with following commands according to the official
repository4:

1. Create a conda environment (named opensim-rl) with the OpenSim package.

conda create -n opensim-rl -c kidzik opensim python=3.6.1

2. Activate the conda environment we just created.
On Windows, run:

activate opensim-rl

On Linux/OSX, run:

source activate opensim-rl

You need to type in the above command every time you open a new terminal.
3. Install our Python reinforcement learning environment.

conda install -c conda-forge lapack git
pip install osim-rl

The challenges are hosted every year after 2017, though, the original Learning
to Run environment has been deprecated as the update of the environment
package. However, we still choose to employ the original environment of 2017
version for its simplicity here. We provide a repository for hosting the environment
of 2017 version in our project:

git clone
https://github.com/deep-reinforcement-learning-book/Chapter13
-Learning-to-Run.git

Our codes of the reinforcement learning algorithms and environment wrappers are
also provided in the above repository.

Through the above steps, we have completed the installation of the environment.
You can verify the success of the installation with the following comments.

python -c "import opensim"

If it runs smoothly, the installation is successful. Otherwise, solutions can be found
at: http://osim-rl.stanford.edu/docs/faq/

4https://github.com/stanfordnmbl/osim-rl.

http://osim-rl.stanford.edu/docs/faq/
https://github.com/stanfordnmbl/osim-rl

13 Learning to Run 371

To execute 200 iterations of the simulation with random rollout, we can enter the
Python interpreter and run the following (on Linux):

from osim.env import RunEnv # load package
env = RunEnv(visualize=True) # initialize environment
observation = env.reset(difficulty = 0) # reset the environment
for i in range(200): # rollout

observation, reward, done, info =
env.step(env.action_space.sample())

This environment is user-friendly as it has already been formalized as an OpenAI
Gym game, with a pre-defined reward function. Our task is to derive a function
which takes the current state observation (a 41 dimensional vector) and returns
the muscle excitation action (18 dimensional vector) in a way that maximizes the
reward. As mentioned previously, the reward function is defined as the change of
the x-axis of pelvis during each iteration minus the magnitude of the ligament
forces used in that iteration, which tries to encourage the agent to move forward
with minimal loss in its body.

13.2 Training an Agent to Run

In order to solve this task and obtain a great performance, a bunch of tricks are
needed in the implementation of the training framework, including:

• a parallel training framework for balancing CPU and GPU resources;
• reward scaling;
• exponential linear unit (ELU) activation function;
• layer normalization;
• action repetition;
• update repetition;
• observation normalization and action discretization can be useful but we do not

use it in our solution;
• data augmentation w.r.t. the symmetry of the agent’s legs is also helpful but we

do not use it in our solution.

We will introduce those methods one by one in the following sections. Note
that the last two tricks are also potentially useful according to the experiments and
reports of teams participated in the competition, but we do not apply them in our
solution as they are more of task-specific methods and less general to be applied in
other tasks. However, it is worth knowing that the observation normalization, action
discretization, and data augmentation can accelerate the learning process in general
cases.

A typical drawback of this environment is its slow simulation speed. It takes at
least dozens of seconds to finish the simulation of a single episode on a general

372 Z. Ding and H. Dong

CPU. In order to learn a policy efficiently, we need to parallelize the sampling and
training process.

13.2.1 Parallel Training

There are at least two reasons to conduct parallel training for this task. The first one
is the low simulation speed of the Learning to Run environment as described
above. It takes at least dozens of seconds to finish the simulation of a single episode.
The second one would be its high intrinsic complexity. Based on the experience
of the authors, the environment needs at least hundreds of CPU/GPU hours with
general model-free reinforcement learning algorithms like deep deterministic policy
gradient (DDPG) or soft actor-critic (SAC) to obtain a relatively good policy.
Therefore, a training framework with multiprocessing across multiple GPUs is
needed.

Due to the high complexity of the Learning to Run environment, the
training process needs to be implemented in a parallel and distributed manner with
multiple CPUs and GPUs. Moreover, the balance between CPUs and GPUs is also
critical for this task, as the sampling process through interaction with environments
is usually on CPUs and the back-propagation training process is usually on GPUs.
The overall training efficiency satisfies the buckets effect in practice. The parallel
training for balancing the CPUs and GPUs is also discussed in Chaps. 12 and 18.
Here we apply one of the solutions for this task.

As shown in Fig. 13.2, the training function in normal single-process deep
reinforcement learning is handled with a single process, which is usually not capable
of using the computational resources to the best, especially when there are multiple
CPUs and multiple GPUs.

Figure 13.3 shows a parallel framework for deploying off-policy deep reinforce-
ment learning algorithms on multiple CPUs and multiple GPUs, where a single
agent and single environment are wrapped into a “worker” to run with a single
process. Multiple workers may share the same GPU, because a single worker may
not be able to fully occupy the GPU memory. In this setting, the number of processes
and number of workers sharing the same GPU can be manually configured to ensure
a maximum usage of all computational resources in learning.

Our project provides a highly parallelized SAC algorithm following the above
framework for handling this task using multiprocessing and multiple-GPU compu-
tation. Because the memory for multiple processes are not shared across each other,

Fig. 13.2 Single-process
training in off-policy deep
reinforcement learning: only
one process for sampling and
policy training

13 Learning to Run 373

Fig. 13.3 A parallel training framework for off-policy deep reinforcement learning. Each worker
contains an agent for interaction with the environment, and the policy is trained on distributed
GPUs

specific modules are needed for handling the communication and parameter sharing
functions. In the code, the replay buffer is shared with multiprocessing
module within Python, and the networks and parameters updated during the training
process are shared with the PyTorch multiprocessing module on Linux
machine.

In practice, although we apply several workers with each containing an agent, the
networks within the agents are actually shared across workers, therefore only one set
of networks (for a single agent) are maintained actually. PyTorch nn.Module can
handle the case when multiple processes try to update the network parameters with
the shared memory. As Adam optimizer also has some statistical values maintained
during training, we also share those values across processes with the following
ShareParameters function:

def ShareParameters(adamoptim):
’’’ share parameters of Adam optimizers for multiprocessing ’’’
for group in adamoptim.param_groups:

for p in group[’params’]:
state = adamoptim.state[p]
initialize: have to initialize here, or else cannot

find
state[’step’] = 0
state[’exp_avg’] = torch.zeros_like(p.data)
state[’exp_avg_sq’] = torch.zeros_like(p.data)

share in memory
state[’exp_avg’].share_memory_()
state[’exp_avg_sq’].share_memory_()

374 Z. Ding and H. Dong

In the training function, we set the shared modules in the SAC algorithm as
follows, including the networks and optimizers:

sac_trainer.soft_q_net1.share_memory()
sac_trainer.soft_q_net2.share_memory()
sac_trainer.target_soft_q_net1.share_memory()
sac_trainer.target_soft_q_net2.share_memory()
sac_trainer.policy_net.share_memory()
ShareParameters(sac_trainer.soft_q_optimizer1)
ShareParameters(sac_trainer.soft_q_optimizer2)
ShareParameters(sac_trainer.policy_optimizer)
ShareParameters(sac_trainer.alpha_optimizer)

The share_memory() is an inherent function of networks inherited from
nn.Module in PyTorch. We can share the entropy factor as well, but not do it
here. The “forkserver” start method is used with Python 3 for CUDA subprocesses
as follows in our code:

torch.multiprocessing.set_start_method(’forkserver’, force=True)

The replay buffer can be shared with multiprocessing of Python:

from multiprocessing.managers import BaseManager

replay_buffer_size = 1e6
BaseManager.register(’ReplayBuffer’, ReplayBuffer)
manager = BaseManager()
manager.start()
replay_buffer = manager.ReplayBuffer(replay_buffer_size) # share

the replay buffer through manager

Run the following commands in the cloned file to start training (cannot work on
Windows 10 for parallel training due to the “forkserver” start method):

python sac_learn.py --train

We can also test the trained model with:

python sac_learn.py --test

13.2.2 Tricks

However, even with above well paralleled framework we still cannot achieve a
great performance in this task. Due to the complexity of the task and the non-
linearity of the deep learning models, local optimums and non-smooth or even
non-differentiable curvatures on the loss surface can trap the optimization process

13 Learning to Run 375

(for policy or value functions) easily. Fine-tuning strategy is usually needed in deep
reinforcement learning methods, especially for complicated tasks like Learning
to Run. So below we introduce some tricks we applied in our method for solving
this task in a more efficient and stable way:

• Reward scaling: reward scaling is just following the normal scaling routine,
which is dividing the reward values by the standard deviation of sampled batch
during training. Reward scaling is a common technique in reinforcement learning
to make the training process stable and therefore accelerate the convergence.
As reported in the follow-up paper of SAC algorithm (Haarnoja et al. 2018),
the maximum entropy reinforcement learning algorithms can be sensitive on
the scaling of reward function, which is different from other conventional
reinforcement learning algorithms. Therefore, the authors of SAC add a gradient-
based temperature tuning module for the entropy regularization term, which
significantly alleviates the difficulty of hyperparameter tuning in practice.

• The exponential linear unit (ELU) (Clevert et al. 2015) activation function is
used instead of rectified linear unit (ReLU) (Agarap 2018): to leverage the faster
learning and more generalized learning performance, we use ELU as activation
functions for the policy networks. The ELU function is defined as:

f (x) =
{

x, if x > 0

α exp(x − 1), if x ≤ 0
(13.1)

Comparison of ELU and ReLU is shown in Fig. 13.4. Compared with ReLU,
ELUs have negative values which allows them to push mean unit activations
closer to zero like batch normalization but with lower computational complexity.
The mean shifts toward zero speed up learning by bringing the normal gradient
closer to the unit natural gradient because of a reduced bias shift effect.

• Layer normalization: we also use layer normalization (Ba et al. 2016) for each
hidden layer in value networks and policy networks. Compared with batch
normalization, layer normalization computes the mean and variance used for
normalization from all of the summed inputs to the neurons in a layer on a single
training case. The individual adaptive bias and gain are given to each neuron, and
they are applied after the normalization but before the non-linearity. This method
will help with accelerating the training speed in practice.

• Action repetition: we use a common trick called action repetition (or called
frame-skipping) in our training process, to speed up the wall-clock training
time. Original paper of DQN applies both frame-skipping and pixel-wise max
operator for image-based learning on Atari 2600 Games. If we define the original
observation for a single frame is oi with i indicating its frame index, the inputs
in original DQN paper are stacked 4 frames after maximization over two con-
secutive non-skipped frames [max(oi−1, oi), max(oi+3, oi+4), max(oi+7, oi+8),

max(oi+11, oi+12)] with frame-skipping rate of 4 (actually 2, 3, or 4 for different
games). Actions are repeated for those skipped frames. The max is applied
pixel-wise on image observations and rewards are summed over all skipped

376 Z. Ding and H. Dong

Fig. 13.4 Comparison of ReLU and ELU activation functions. ELU is differentiable at zero

and non-skipped frames. The original frame-skipping scheme in DQN increases
the stochasticity as well as accelerating sampling. However, in our task, we
use a different setting without max operator and stacked frames: the action is
simply repeated over skipped frames, and all samples for each skipped and non-
skipped frame are stored in the replay buffer. We use an action repetition rate
of 3 in practice. This reduces the inference time of forwarding the policy during
interaction with the environment.

• Update repetition: we also use the trick of repeatedly updating the policy during
training with a smaller learning rate. So the policy is updated with a repetition
rate of 3 on the same batch of samples.

13.2.3 Learning Results

With above settings and tricks applied in SAC algorithm, the agent is able to learn
the skill of running in a human way for quite a long distance with 3 days of training
time on 4-GPUs and 56-CPUs machine, as shown in Fig. 13.5. The learning curve
is shown in Fig. 13.6, with both the original reward values and a moving-average
smoothed curve in an increasing manner. The vertical axis is the cumulative reward
in an episode, indicating the distance and gesture of running for the agent.

13 Learning to Run 377

Fig. 13.5 The final performance of the running agent in task Learning to Run

Fig. 13.6 The learning process of task Learning to Run

References

Agarap AF (2018) Deep learning using rectified linear units (ReLU). Preprint. arXiv:1803.08375
Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. Preprint. arXiv:1607.06450
Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by

exponential linear units (ELUs). Preprint. arXiv:1511.07289
Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J, Kumar V, Zhu H, Gupta A, Abbeel P,

et al (2018) Soft actor-critic algorithms and applications. Preprint. arXiv:181205905

Chapter 14
Robust Image Enhancement

Yanhua Huang

Abstract Deep generative models such as GAN and Unet have achieved significant
progress over classic methods in several computer vision tasks like super-resolution
and segmentation. However, such learning-based methods lack robustness and
interpretability, which limits their applications in real-world situations. In this
chapter, we discuss a robust way for image enhancement that can combine a
number of interpretable techniques through deep reinforcement learning. We first
present some background about image enhancement. Then we formulate the image
enhancement as a pipeline modeled by MDP. Finally, we show how to implement
an agent on this MDP with PPO algorithm. The experimental environment is
constructed by a real-world dataset that contains 5000 photographs with both the
raw images and adjusted versions by experts. Codes are available at: https://github.
com/deep-reinforcement-learning-book/Chapter14-Robust-Image-Enhancement.

Keywords Image processing · Image enhancement · Robust learning

14.1 Image Enhancement

Image enhancement belongs to image processing techniques. Its principal objective
is to make the processed images more suitable for the needs of various applications.
Typical image enhancement techniques contain denoising, deblurring, and bright-
ness improvement. Real-world images always need multiple image enhancement
techniques. Figure 14.1 shows an enhancement pipeline that consists of brightness
improvements and denoising. Professional photo editing software, such as Adobe
Photoshop, allows powerful image retouching but is not efficient and requires
expertise in photo editing for users. In large-scale situations like recommendation
systems, the subjective quality of images is vital for user experience, where an
automatic image enhancement method that satisfies effectiveness, robustness, and

Y. Huang (�)
Xiaohongshu Technology Co., Ltd., Shanghai, China

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_14

379

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_14&domain=pdf
https://github.com/deep-reinforcement-learning-book/Chapter14-Robust-Image-Enhancement
https://github.com/deep-reinforcement-learning-book/Chapter14-Robust-Image-Enhancement
https://doi.org/10.1007/978-981-15-4095-0_14

380 Y. Huang

Fig. 14.1 An example of image enhancement pipeline. The raw image in the left is underexposed
with JPEG compression noise

efficiency is needed. In particular, robustness is the most important condition,
especially in user-generated content platforms, e.g., Facebook and Twitter, even if
1% of enhancement results are bad it will hurt millions of users.

Unlike image classification or segmentation that has a unique ground truth, the
training data of image enhancement relies on human experts. As a result, no large-
scale public dataset for image enhancement is available. Classical methods are
mainly based on gamma correction and histogram equalization that enhance the
image with the help of prior expert knowledge. These methods do not require a
large amount of data either. Gamma correction takes advantage of nonlinearity in
human perception such as our capacity to perceive light and color (Poynton 2012).
Histogram equalization achieves the idea that allows areas of lower local contrast
to gain a higher contrast for better distribution on the pixel histogram, which is
useful when backgrounds and foregrounds are both bright or both dark such as X-
ray images. Although these methods are fast and simple, the lack of consideration
of contextual information limits their performance.

Recently, learning-based methods, which try to approximate the mapping from
the input image to the desired pixel values with CNN, have achieved great success
(Bychkovsky et al. 2011; Ulyanov et al. 2018; Kupyn et al. 2018; Wang et al.
2019). However, such methods are not without issues. First of all, it is hard to train
a comprehensive neural network that can handle multiple enhancement situations.
Besides, pixel-to-pixel mapping lacks robustness, e.g., it does not perform very well
when dealing with some detailed information such as hair and characters (Zhang
et al. 2019; Nataraj et al. 2019). Some researchers have proposed to apply deep
reinforcement learning to image enhancement by formulating the enhancement
procedure as a sequence of iterative decision-making problems to address the
challenges above (Yu et al. 2018; Park et al. 2018; Furuta et al. 2019). In this
chapter, we follow these methods and propose a new MDP formulation for image
enhancement. We demonstrate our approach on a dataset containing 5000 pairs of
images with code examples, for providing a quick hands-on learning process.

Before discussing the algorithm, we introduce two Python libraries Pillow (Clark
2015) and scikit-image (Van der Walt et al. 2014) that provide a number of friendly

14 Robust Image Enhancement 381

interfaces to implement image enhancement. One can install them directly from
PyPI as follows:

pip install Pillow
pip install scikit-image

Here is an example code for contrast adjustment by Pillow’s sub-module ImageEn-
hance.

from PIL import ImageEnhance

def adjust_contrast(image_rgb, contrast_factor):
"""Adjust contrast
Args:

image_rgb (PIL.Image): RGB image
contrast_factor (float): color balance factor range from 0

to 1.
Return:

PIL.Image object
"""
enhancer = ImageEnhance.Contrast(image_rgb)
return enhancer.enhance(contrast_factor)

14.2 Reinforcement Learning for Robust Processing

When applying reinforcement learning to image enhancement, one needs to first
consider how to construct an MDP in this domain. An idea that naturally emerges
is to consider processing pixels to be states and different image enhancement
technologies to be actions in the context of reinforcement learning. This formulation
provides a combination method of several controllable primary enhancers to achieve
robust and effective results. In this section, we discuss such a reinforcement
learning-based color enhancement method. For simplicity, we only take global
enhancement actions. Note that it is natural to adapt to general enhancement
algorithms by adding region proposal modules (Ren et al. 2015).

Suppose that the training dataset contains N pairs of RGB images {(li, hi)}Ni=1
where li is the low-quality raw image and hi is the high-quality retouched image. In
order to maintain the data distribution, the initial state S0 should be sampled from
{li}Ni=1 uniformly. In each step, the agent takes a predefined action such as contrast
adjustment with a certain factor and then applies it to the current state. Note that the
current state and selected action fully determine the transition, i.e., no environment
uncertainty exists. Following previous works (Park et al. 2018; Furuta et al. 2019),
we use the improvement on CIELAB color space as the transition reward function:

||L(h)− L(St)||22 − ||L(h) − L(St+1)||22 (14.1)

382 Y. Huang

where h is the corresponding high-quality image of S0 and L maps images from
RGB color space to CIELAB color space.

Another important thing is the terminal condition during learning and evaluation.
Unlike reinforcement learning applications on games where the terminal state can
be determined by the environment, agents in image enhancement need to decide an
exit time by themselves. Park et al. (2018) proposed a DQN-based agent that exits
when all predicted Q-values are negative. However, the overestimation problem
of function approximation in Q-learning might lead to less robust results during
inference. We address this issue by training an explicit policy and adding a “NO-
OP” action to represent the exit choice. Table 14.1 lists all predefined actions, where
the action with index 0 represents “NO-OP.”

Training a convolutional neural network from scratch needs a large amount
of retouched image pairs. Instead of using raw image states as observations, we
consider the activation of the last convolutional layer in ResNet50 pre-trained on
the ILSVRC classification dataset (Russakovsky et al. 2015), which is a significant
deep feature that improves many other visual recognition tasks (Ren et al. 2016;
Redmon et al. 2016). Inspired by previous work (Park et al. 2018; Lee et al. 2005),
we further consider the histogram information when constructing observations.
Specifically, we calculate the histogram statistics of the state in RGB color space
over ranges (0, 255), (0, 255), (0, 255), and CIELAB color space over ranges
(0, 100), (−60, 60), (−60, 60). These three features are concatenated as 2048 +
2000 dimensional observations. We select PPO (Schulman et al. 2017) as the policy
optimization algorithm. PPO is an actor-critic method that achieves significant
results on a number of tasks. The network consists of three parts: three-layers feature
extractor serving as a backbone, one-layer actor, and one-layer critic. All layers are
fully connected, where the outputs of the layers in feature extractor are 2048, 512,
and 128 units with ReLU activation, respectively.

Table 14.1 The action set
for global color enhancement

Index Description

0 No operation

1 Contrast ×0.95

2 Contrast ×1.05

3 Saturation ×0.95

4 Saturation ×1.05

5 Brightness ×0.95

6 Brightness ×1.05

7 Red and green ×0.95

8 Red and green ×1.05

9 Green and blue ×0.95

10 Green and blue ×1.05

11 Red and blue ×0.95

12 Red and blue ×1.05

14 Robust Image Enhancement 383

Table 14.2
Hyper-parameters of PPO for
image enhancement

Hyper-parameter Value

Optimizer Adam

Learning rate 1e−5

Clip norm 1.0

GAE λ 0.95

Episodes per iter 4

Optimization per iter 2

Max iter 10,000

Entropy factor 1e−2

Reward scale 0.1

Reward clip [−1, 1]

γ 0.95

We evaluated our method on the MIT-Adobe FiveK (Bychkovsky et al. 2011)
dataset including 5000 raw images, each with five retouched images produced by
different experts (A/B/C/D/E). Following previous work (Park et al. 2018; Wang
et al. 2019), we only use the retouched images by Expert C, which randomly
selected 4500 images for training and the rest 500 images for testing. The raw
images are DNG format while the retouched images are TIFF format. We convert
all of them to JPEG format with quality 100 and color space sRGB by Adobe
Lightroom. For efficient training, we resized images such that the maximal side
consists of 512 pixels for each image. Hyper-parameters are provided in Table 14.2.

From now on, we demonstrate how to implement the algorithm above. First of
all, we need to construct an environment object.

class Env(object):
"""Training env wrapper of image processing RL problem"""
def __init__(self, src, max_episode_length=20,

reward_scale=0.1):
"""
Args:

src (list[str, str]): list of raw and retouched path,
initial

state will sample from it uniformly
max_episode_length (int): max number of actions can be

taken
"""
self._src = src
self._backbone = backbone
self._preprocess = preprocess
self._rgb_state = None
self._lab_state = None
self._target_lab = None
self._current_diff = None
self._count = 0
self._max_episode_length = max_episode_length
self._reward_scale = reward_scale
self._info = dict()

384 Y. Huang

With the ResNet API from TensorFlow, we build the observation by function
_state_feature as follows:

backbone = tf.keras.applications.ResNet50(include_top=False,
pooling=’avg’)

preprocess = tf.keras.applications.resnet50.preprocess_input

def get_lab_hist(lab):
"""Get hist of lab image"""
lab = lab.reshape(-1, 3)
hist, _ = np.histogramdd(lab, bins=(10, 10, 10),

range=((0, 100), (-60, 60), (-60, 60)))
return hist.reshape(1, 1000) / 1000.0

def get_rgb_hist(lab):
"""Get hist of lab image"""
lab = lab.reshape(-1, 3)
hist, _ = np.histogramdd(lab, bins=(10, 10, 10),

range=((0, 255), (0, 255), (0, 255)))
return hist.reshape(1, 1000) / 1000.0

def _state_feature(self):
s = self._preprocess(self._rgb_state)
s = tf.expand_dims(s, axis=0)
context = self._backbone(s).numpy().astype(’float32’)
hist_rgb = get_rgb_hist(self._rgb_state).astype(’float32’)
hist_lab = get_lab_hist(self._lab_state).astype(’float32’)
return np.concatenate([context, hist_rgb, hist_lab], 1)

Then we define the transition function _transit following Table 14.2, and
implement reward function _reward with Eq. (14.1), to construct same interfaces
as OpenAI Gym (Brockman et al. 2016):

def step(self, action):
"""One step"""
self._count += 1
self._rgb_state = self._transit(action)
self._lab_state = rgb2lab(self._rgb_state)
reward = self._reward()
done = self._count >= self._max_episode_length or action == 0
return self._state_feature(), reward, done, self._info

def reset(self):
"""Reset"""
self._count = 0
raw, retouched = map(Image.open, random.choice(self._src))
self._rgb_state = np.asarray(raw)
self._lab_state = rgb2lab(self._rgb_state)
self._target_lab = rgb2lab(np.asarray(retouched))
self._current_diff = self._diff(self._lab_state)
self._info[’max_reward’] = self._current_diff
return self._state_feature()

14 Robust Image Enhancement 385

In contrast to the implementation in Sect. 5.10.6, we apply the PPO (Schulman
et al. 2017) algorithm in the discrete case. Note that we use LogSoftmax as the
activation function in the actor network, which provides better numerical stability
when calculating the surrogate objective. For the PPO agent, we first define its
initialization and act function:

class Agent(object):
"""PPO Agent"""
def __init__(self, feature, actor, critic, optimizer,

epsilon=0.1, gamma=0.95, c1=1.0, c2=1e-4,
gae_lambda=0.95):

"""
Args:

feature (tf.keras.Model): backbone of actor and critic
actor (tf.keras.Model): actor network
critic (tf.keras.Model): critic network
optimizer (tf.keras.optimizers.Optimizer): optimizer

for NNs
epsilon (float): epsilon in clip
gamma (float): reward discount
c1 (float): factor of value loss
c2 (float): factor of entropy

"""
self.feature, self.actor, self.critic = feature, actor,

critic
self.optimizer = optimizer

self._epsilon = epsilon
self.gamma = gamma
self._c1 = c1
self._c2 = c2
self.gae_lambda = gae_lambda

def act(self, state, greedy=False):
"""
Args:

state (numpy.array): 1 * 4048
greedy (bool): whether select action greedily

Returns:
action (int): selected action
logprob (float): log prob of the selected action
value (float): value of the current state

"""
feature = self.feature(state)
logprob = self.actor(feature)
if greedy:

action = tf.argmax(logprob[0]).numpy()
return action, 0, 0

else:
value = self.critic(feature)
logprob = logprob[0].numpy()

386 Y. Huang

action = np.random.choice(range(len(logprob)),
p=np.exp(logprob))

return action, logprob[action], value.numpy()[0, 0]

During sampling, we record the trajectories with the GAE (Schulman et al. 2015)
algorithm

def sample(self, env, sample_episodes, greedy=False):
""" Sample trajectories from given env
Args:

env: environment
sample_episodes (int): how many episodes will be sampled
greedy (bool): whether select action greedily

"""
trajectories = [] # s, a, r, logp
e_reward = 0
e_reward_max = 0
for _ in range(sample_episodes):

s = env.reset()
values = []
while True:

a, logp, v = self.act(s, greedy)
s_, r, done, info = env.step(a)
e_reward += r
values.append(v)
trajectories.append([s, a, r, logp, v])
s = s_
if done:

e_reward_max += info[’max_reward’]
break

episode_len = len(values)
gae = np.empty(episode_len)
reward = trajectories[-1][2]
gae[-1] = last_gae = reward - values[-1]
for i in range(1, episode_len):

reward = trajectories[-i - 1][2]
delta = reward + self.gamma * values[-i] - values[-i -

1]
gae[-i - 1] = last_gae = \

delta + self.gamma * self.gae_lambda * last_gae
for i in range(episode_len):

trajectories[-(episode_len - i)][2] = gae[i] + values[i]
e_reward /= sample_episodes
e_reward_max /= sample_episodes
return trajectories, e_reward, e_reward_max

Finally, the optimization part is provided as follows:

def _train_func(self, b_s, b_a, b_r, b_logp_old, b_v_old):
all_params = self.feature.trainable_weights + \

self.actor.trainable_weights + \
self.critic.trainable_weights

with tf.GradientTape() as tape:

14 Robust Image Enhancement 387

b_feature = self.feature(b_s)
b_logp, b_v = self.actor(b_feature), self.critic(b_feature)

entropy = -tf.reduce_mean(
tf.reduce_sum(b_logp * tf.exp(b_logp), axis=-1))

b_logp = tf.gather(b_logp, b_a, axis=-1, batch_dims=1)
adv = b_r - b_v_old
adv = (adv - tf.reduce_mean(adv)) /

(tf.math.reduce_std(adv) + 1e-8)

c_b_v = b_v_old + tf.clip_by_value(b_v - b_v_old,
-self._epsilon, self._epsilon)

vloss = 0.5 * tf.reduce_max(tf.stack(
[tf.pow(b_v - b_r, 2), tf.pow(c_b_v - b_r, 2)],

axis=1), axis=1)
vloss = tf.reduce_mean(vloss)

ratio = tf.exp(b_logp - b_logp_old)
clipped_ratio = tf.clip_by_value(

ratio, 1 - self._epsilon, 1 + self._epsilon)
pgloss = -tf.reduce_mean(tf.reduce_min(tf.stack(

[clipped_ratio * adv, ratio * adv], axis=1), axis=1))

total_loss = pgloss + self._c1 * vloss - self._c2 * entropy
grad = tape.gradient(total_loss, all_params)
self.optimizer.apply_gradients(zip(grad, all_params))
return entropy

def optimize(self, trajectories, opt_iter):
""" Optimize based on given trajectories """
b_s, b_a, b_r, b_logp_old, b_v_old = zip(*trajectories)
b_s = np.concatenate(b_s, 0)
b_a = np.expand_dims(np.array(b_a, np.int64), 1)
b_r = np.expand_dims(np.array(b_r, np.float32), 1)
b_logp_old = np.expand_dims(np.array(b_logp_old, np.float32),

1)
b_v_old = np.expand_dims(np.array(b_v_old, np.float32), 1)
b_s, b_a, b_r, b_logp_old, b_v_old = map(

tf.convert_to_tensor, [b_s, b_a, b_r, b_logp_old, b_v_old])
for _ in range(opt_iter):

entropy = self._train_func(b_s, b_a, b_r, b_logp_old,
b_v_old)

return entropy.numpy()

where the value loss clipping and advantage normalization are followed by Dhariwal
et al. (2017). Figure 14.2 shows an example result.

388 Y. Huang

Fig. 14.2 An example result of global enhancement on the MIT-Adobe FiveK dataset. The global
brightness is increased while some areas like sky in the upper right corner need local enhancement

References

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016)
OpenAI gym. Preprint. arXiv:160601540

Bychkovsky V, Paris S, Chan E, Durand F (2011) Learning photographic global tonal adjustment
with a database of input/output image pairs. In: Conference on computer vision and pattern
recognition 2011. IEEE, Piscataway, pp 97–104

Clark A (2015) Pillow (PIL fork) documentation. https://github.com/python-pillow/Pillow
Dhariwal P, Hesse C, Klimov O, Nichol A, Plappert M, Radford A, Schulman J, Sidor S, Wu Y,

Zhokhov P (2017) OpenAI baselines. GitHub, GitHub repository
Furuta R, Inoue N, Yamasaki T (2019) Fully convolutional network with multi-step reinforcement

learning for image processing. In: Proceedings of the AAAI conference on artificial intelli-
gence, vol 33, pp 3598–3605

Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J (2018) DeblurGAN: Blind motion
deblurring using conditional adversarial networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 8183–8192

Lee S, Xin J, Westland S (2005) Evaluation of image similarity by histogram intersection. Color
research & application: endorsed by inter-society color council, the colour group (Great
Britain), Canadian society for color, color science association of Japan, Dutch society for
the study of color, the Swedish colour centre foundation, colour society of Australia, centre.
Français de la Couleur 30(4):265–274

Nataraj L, Mohammed TM, Manjunath B, Chandrasekaran S, Flenner A, Bappy JH, Roy-
Chowdhury AK (2019) Detecting GAN generated fake images using co-occurrence matrices. J
Electron Imaging 2019:532-1

Park J, Lee JY, Yoo D, So Kweon I (2018) Distort-and-recover: color enhancement using deep
reinforcement learning. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 5928–5936

Poynton C (2012) Digital video and HD: algorithms and interfaces. Elsevier, Amsterdam
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object

detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 779–788

Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with
region proposal networks. In: Advances in neural information processing systems, pp 91–99

Ren S, He K, Girshick R, Zhang X, Sun J (2016) Object detection networks on convolutional
feature maps. IEEE Trans Pattern Anal Mach Intell 39(7):1476–1481

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M (2015) ImageNet large scale visual recognition challenge. Int J Comput Vision
115(3):211–252

https://github.com/python-pillow/Pillow

14 Robust Image Enhancement 389

Schulman J, Moritz P, Levine S, Jordan M, Abbeel P (2015) High-dimensional continuous control
using generalized advantage estimation. Preprint. arXiv:150602438

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization
algorithms. Preprint. arXiv:170706347

Ulyanov D, Vedaldi A, Lempitsky V (2018) Deep image prior. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 9446–9454

Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E,
Yu T (2014) Scikit-image: image processing in python. PeerJ 2:e453

Wang R, Zhang Q, Fu CW, Shen X, Zheng WS, Jia J (2019) Underexposed photo enhancement
using deep illumination estimation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 6849–6857

Yu K, Dong C, Lin L, Change Loy C (2018) Crafting a toolchain for image restoration by deep
reinforcement learning. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 2443–2452

Zhang S, Zhen A, Stevenson RL (2019) GAN based image deblurring using dark channel prior.
Preprint. arXiv:190300107

Chapter 15
AlphaZero

Hongming Zhang and Tianyang Yu

Abstract In this chapter, we introduce combinatorial games such as chess and Go
and take Gomoku as an example to introduce the AlphaZero algorithm, a general
algorithm that has achieved superhuman performance in many challenging games.
This chapter is divided into three parts: the first part introduces the concept of
combinatorial games, the second part introduces the family of algorithms known as
Monte Carlo Tree Search, and the third part takes Gomoku as the game environment
to demonstrate the details of the AlphaZero algorithm, which combines Monte Carlo
Tree Search and deep reinforcement learning from self-play.

Keywords AlphaZero · Monte Carlo Tree Search · Upper confidence bounds for
trees · Self-play · Deep reinforcement learning · Deep neural network

15.1 Introduction

The AlphaZero (Silver et al. 2018, 2017a) algorithm is a generalized version of
the AlphaGo Zero (Silver et al. 2017b) algorithm, which has achieved superhuman
performance in the game of Go. Different from the initial AlphaGo (Silver et al.
2016) series such as AlphaGo Fan (defeated Fan Hui), AlphaGo Lee (defeated
Lee Sedol), and AlphaGo Master (defeated Jie Ke), the AlphaZero algorithm is
based solely on reinforcement learning from games via self-play (play against
itself). It starts with random plays and without supervised learning from human
expert games. There are two key parts in AlphaZero: (1) Monte Carlo Tree Search
is used in self-play to collect data; (2) a deep neural network is used to learn
from the data and predict the move selections and state values in Monte Carlo

H. Zhang (�)
Peking University, Beijing, China
e-mail: zhanghongming@pku.edu.cn

T. Yu
Nanchang University, Nanchang, China

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_15

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_15&domain=pdf
mailto:zhanghongming@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_15

392 H. Zhang and T. Yu

Tree Search. This general algorithm is suitable not only for the game of Go,
but it also defeated world champion programs in the games of chess and shogi,
which indicates its generality. In this chapter, we first introduce the concept of
combinatorial games (including Go, chess, Gomoku, etc.) and implement the free-
style Gomoku as an example, then explain the concrete steps in Monte Carlo Tree
Search, and finally take Gomoku as the game environment to demonstrate the
details of the AlphaZero algorithm. To help the readers’ understanding, we provide
the implementation of Gomoku game and the AlphaZero algorithm in the link:
https://github.com/deep-reinforcement-learning-book/Chapter15-AlphaZero.

15.2 Combinatorial Games

Combinatorial game theory (CGT) (Albert et al. 2007) is a branch of research
in mathematics and theoretical computer science that typically studies sequential
games with perfect information. These types of games usually have the following
characteristics:

• The game contains two players (Go, chess). One player’s games (Sudoku,
Solitaire) can also be regarded as combinatorial games that played between the
game designer and the player. Games with more players are not considered
combinatorial due to the social aspect of coalitions that may arise during
play (Browne et al. 2012).

• The game does not contain any chance factors that will influence the outcome of
the game such as a dice, etc.

• The game offers perfect information (Muthoo 1996), which means each player is
perfectly informed of all the events that have previously occurred.

• The players perform actions in a turn-based manner, and the action space and
state space are both finite.

• The game ends with finite time steps, results are divided into win and loss, and
some games have a draw.

Many of the combinatorial games (Albert et al. 2007) including single-player
games like Sudoku and Solitaire, two-player games like Hex, Go, and chess are clas-
sical problems for computer scientists to solve. Since IBM’s DEEP BLUE (Camp-
bell et al. 2002; Hsu 1999) beat grandmaster Gary Kasparov on chess, Go has
become the standard yardstick for AI. Besides, there are also many other games
like Othello, Amazons, Khet, Shogi, Chinese Checkers, Connect Four, Gomoku,
etc., attracting people to find solutions with computing machines.

We take Gomoku as an example of combinatorial games and show some details
about the code of Gomoku. Gomoku is also called “Gobang” or “five-in-a-row.” It
begins with an empty board and ends with a row of five stones (in a horizontal,
vertical, or diagonal line) that indicates one player wins, or otherwise a draw. There

https://github.com/deep-reinforcement-learning-book/Chapter15-AlphaZero

15 AlphaZero 393

Fig. 15.1 A sequence of Gomoku gaming process on a 3 × 3 board. The “b” is shorten for “the
black player” and the “w” is shorten for “the white player.” (b, 5) means the black player puts the
stone at the position 5. The black player wins the game in the end

are various sets of rules and most variations are based on either free-style Gomoku or
standard Gomoku. Free-style Gomoku simply requires a row of five or more stones
for a win. Standard Gomoku requires a row of exactly five stones for a win: rows of
six or more, called overlines, do not count. In this game, we choose the free-style
Gomoku as a demonstration.

We further simplify the board to have a size of 3 × 3 as an example for
demonstration here. A row of three stones indicates winning (we may call it “three-
in-a-row”). A sequence of game steps on this board are shown in Fig. 15.1.

The red numbers on the board are used for indexing different possible positions
on the board, which can be used to represent the choice for each move. White
and black circles are the game stones of two players. The gaming process can
be represented as a sequence: ((b, 5), (w, 4), (b, 1), (w, 7), (b, 9)), where the “b”
stands for “the black player” and the “w” stands for “the white player”. The black
player has a row of three stones in the end which means he wins the game, as
shown in the last board state in Fig. 15.1. Recall the definition we mentioned
before, this simplified Gomoku (or “three-in-a-row”) satisfies all characteristics of
combinatorial games: the game contains two players; the game does not contain any
chance factors; the game offers perfect information; the players perform actions in
a turn-based manner; the game ends with finite time steps.

Here, we implement the free-style Gomoku as an example:

• Define the game as Board class with the rule of the game implemented as
some functions. Though we illustrated the rule of Gomoku with a simplified
version before, we can define a standard five-in-a-row by passing the n_in_row
variable with value 5.

class Board(object):
’’’
board for the game
’’’
def __init__(self, width, height, n_in_row): ... #

Initialization function
def move_to_location(self, move): ... # Transfer move

denotation
def location_to_move(self, location): ... # Transfer move

denotation
def do_move(self, move): ... # Update each move and exchange

the current player

394 H. Zhang and T. Yu

def has_a_winner(self): ... # The rule of Gomoku, to judge if
someone wins

def current_state(self): ... # Generate board states as
inputs of the network

...

• Each action on the board is denoted by a number like pictured in Fig. 15.1.
This way makes it more convenient to build tree nodes in MCTS. But it is
inconvenient to identify whether there is a row of five stones. So, we define the
transition functions between coordinates and numbers. Coordinates are used to
judge whether a player has a row of five stones, and numbers are used to build
tree nodes in MCTS.

def move_to_location(self, move):
’’’
Transfer number to coordinate
3*3 board’s moves like:
6 7 8
3 4 5
0 1 2
and move 5’s location is (1,2)
’’’
h = move // self.width
w = move % self.width
return [h, w]

def location_to_move(self, location):
’’’
Transfer coordinate to number
’’’
if len(location) != 2:

return -1
h = location[0]
w = location[1]
move = h * self.width + w
if move not in range(self.width * self.height):

return -1
return move

• To find out if a player wins, a function is needed to judge if there is a line of five
stones in a row or in a column or in a diagonal. The functionhas_a_winner()
is shown:

def has_a_winner(self):
’’’
Judge if there’s a 5-in-a-row, and which player if so
’’’
width = self.width
height = self.height

15 AlphaZero 395

states = self.states
n = self.n_in_row

moved = list(set(range(width * height)) -
set(self.availables))

Moves have been played
if len(moved) < self.n_in_row + 2:

Too few moves to get 5-in-a-row
return False, -1

for m in moved:
h, w = self.move_to_location(m)
player = states[m]

if (w in range(width - n + 1) and
len(set(states.get(i, -1) for i in range(m, m +

n))) == 1):
Judge if there’s a 5-in-a-row in a line
return True, player

if (h in range(height - n + 1) and
len(set(states.get(i, -1) for i in range(m, m + n

* width, width))) == 1):
Judge if there’s a 5-in-a-row in a column
return True, player

if (w in range(width - n + 1) and h in range(height - n
+ 1) and

len(set(states.get(i, -1) for i in range(m, m + n

* (width + 1), width + 1))) == 1):
Judge if there’s a 5-in-a-row in a top right

diagonal
return True, player

if (w in range(n - 1, width) and h in range(height - n
+ 1) and

len(set(states.get(i, -1) for i in range(m, m + n

* (width - 1), width - 1))) == 1):
Judge if there’s a 5-in-a-row in a top left

diagonal
return True, player

return False, -1

15.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) (Browne et al. 2012) is a method for finding
optimal decisions in a given domain by taking random samples in the decision space
and building a search tree according to the results. This method started a revolution

396 H. Zhang and T. Yu

Fig. 15.2 A tree structure

Fig. 15.3 A node with the state that a black stone on the board at the position 5. The action can
be represented as (b, 5) with Action = 5 by the black player. N = 0 means the visit count of this
node is 0. W means the total rewards, Q means the average reward, P means the probability of
taking the Action = 5. As the node has not been visited, these values are initialized with 0

in the fields of games and planning problems and pushed the performance such as
computer Go to ever high levels.

Monte Carlo Tree Search includes two parts, the tree and the search methods.
The tree is a kind of data structure (Fig. 15.2), it contains nodes connected by edges.
Some important concepts include the root node, the parent and the child, the leaf
node, etc. The node at the top of the tree is called the root node; the node above the
current node is its parent, and the node below the current node is its child; a node that
does not have child node is called a leaf node. Usually, besides the state and actions,
the node in MCTS contains information about the visit count and average reward.
In the AlphaZero algorithm, the tree also contains the probability distribution of the
action for each state.

In the AlphaZero algorithm, each node contains the following information that is
used to design search methods. (The node is illustrated in Fig. 15.3.)

• Action: action that is taken and reaches this node.
• N : the node’s visit count. Initial value is zero, means the node has not been

visited.
• W : the node’s total reward which is used to calculate the average reward. Its

initial value is zero.

15 AlphaZero 397

• Q: the node’s average reward which indicates the state value of the node. Its
initial value is zero.

• P : the probability of taking the Action. It is the output by the policy network
with the input of its parent node’s state.

Before we go ahead, we have to mention an important aspect. Because the game
is played by two players, there are two perspectives in a tree and the information
at a node is either from the perspective of the black player or the perspective of the
white player. For example, in Fig. 15.3, this node has a black stone on the board,
so it should be the white player’s turn to play the next move at this node. However,
the information at this node is from the perspective of its parent node, which is the
black player. It is the parent node that expands its child nodes and chooses an action
to reach one of these child nodes, so the Action, N , W , Q, P at this node are all
used by the black player. The black player takes Action = 5 to reach this node, and
the information at the present time is N = 0, W = 0, Q = 0, P = 0. It is very
important to have a clear understanding of the perspective of each node; otherwise,
it will be confusing when we do the backup step in MCTS.

With the tree, the search methods aim to explore the decision space and estimate
the state-action value function Qπ(s, a) of the root node by some heuristic methods.
Exploring from the root node to leaf nodes, obtaining the average reward of
each action over multiple explorations, and finding the optimal trajectory in the
tree. The action-value function without a discount factor can be expressed as
follows (Couetoux et al. 2011):

Qπ(s, a)

= Eπ

[
T−1∑
h=0

P(Sh+1|Sh,Ah)R(Sh+1|Sh,Ah)|S0 = s,A0 = a,Ah = π(Sh)

]
.

(15.1)

Qπ(s, a) denotes the value function, i.e., the expected reward gathered when
executing action a in state s and following policy π for all subsequent actions until
arriving at a terminal state.

Usually, there are four steps in each tree search iteration: select, expand, simulate,
backup (all these steps are conducted in the tree search, which indicates there is not
a real move on the board).

• Select: actions are selected from the root node by a particular policy until
reaching a leaf node.

• Expand: child nodes are added to the current leaf node.
• Simulate: a policy such as a random policy is used to simulate the process of

playing stones until the end of the game to get a result: win, loss, or draw. Reward
is given from the game and usually +1 for a win, −1 for a loss, 0 for a draw.

• Backup: the simulating result is backpropagated to update the information at each
node that is selected in this iteration.

398 H. Zhang and T. Yu

The most commonly used tree search algorithm is the Upper Confidence Bound
in Tree (UCT) (Kocsis and Szepesvári 2006), which handles the exploration versus
exploitation trade-off well. The Upper Confidence Bound (UCB) (Auer et al. 2002)
(discussed in Chap. 2 Sect. 2.2.2) algorithm is a classical strategy to solve the multi-
armed bandit problem, in which the agent has to choose among various gambling
machines at each time step to maximize its payoffs. UCB chooses the next action at
time t by the following policy:

At = arg max
a

[
Qt(a)+ c

√
ln t

Nt (a)

]
. (15.2)

Qt(a) is the estimated action value which determines the exploitation. The square-
root term determines the exploration. Nt(a) is the number of times action a has
been selected till time t and c is a positive real number that determines how much
exploration needs to be done. There are some variations in the family of UCB
algorithms, like UCB1, UCB1-NORMAL, UCB1-TUNED, and UCB2 (Auer et al.
2002).

UCT is the version that implements UCB1 in the Tree. Each time, a child node
with the largest UCT value is selected which is defined as follows:

UCT = Xj + Cp

√
2 ln n

nj

. (15.3)

Here, n is the number of visits to the current node, nj is the number of visits to its
child node j , and Cp > 0 is a constant that controls the exploration based on specific
problems. The average reward term Xj encourages the exploitation of higher-reward

actions, while the square-root term
√

2 ln n
nj

encourages the exploration of less-visited

actions.
UCT algorithm addresses the exploration versus exploitation trade-off in each

state of the tree search space and has revolutionized quite a few large-scale RL
problems such as board game Hex, Go, and real-time games like Atari. Levente
Kocsis and Csaba Szepesv́ari (Kocsis and Szepesvári 2006) proved that: Consider a
finite-horizon MDP with rewards scaled to lie in the interval [0, 1]. Let the horizon
of the MDP be D, and the number of actions per state be K . Consider algorithm
UCT such that the bias terms of UCB1 are multiplied by D. Then the bias of the
estimated expected payoff, Xn, is O(

log n
n

). Further, the failure probability at the root
converges to zero at a polynomial rate as the number of episodes grows to infinity.
It indicates that, as the number of explored samples increases, the UCT algorithm
can guarantee the tree search converges to the optimal solution.

In the AlphaZero algorithm, the step of simulate is discarded and the deep neural
network is used to output the result directly. So, there are three key steps as follows,
and the process is pictured in Fig. 15.4.

15 AlphaZero 399

F
ig

.1
5.

4
M

C
T

S
in

th
e

A
lp

ha
Z

er
o

al
go

ri
th

m
.

E
ac

h
ti

m
e

be
fo

re
a

st
on

e
is

pl
ac

ed
on

th
e

re
al

bo
ar

d,
M

C
T

S
w

il
l

be
re

pe
at

ed
fo

r
m

an
y

ti
m

es
.

It
fir

st
se

le
ct

s
ac

ti
on

s
fr

om
th

e
ro

ot
no

de
an

d
re

ac
he

s
a

le
af

no
de

,t
he

n
th

e
le

af
no

de
is

ex
pa

nd
ed

an
d

ev
al

ua
te

d,
fin

al
ly

th
e

ba
ck

up
st

ep
is

ta
ke

n
to

up
da

te
no

de
s’

in
fo

rm
at

io
n

400 H. Zhang and T. Yu

• Select: actions are selected from the root node by a particular policy until
reaching a leaf node.

• Expand and evaluate: child nodes are added to the current leaf node. The
probability of each action and the value of the state are evaluated directly by
the policy network and the value network. A threshold value is usually applied to
judge if the node is supposed to be expanded, for saving the computing resources
without losing the effectiveness of the algorithm. In our implementation, we
ignore this threshold and expand the node as long as it reaches a leaf node.

• Backup: each time after expanding and evaluating, the result is backpropagated
to update the information at the nodes that are selected in the current iteration. If
the leaf node is not the terminal of the game, the result cannot be given by the
game and it is output by the deep neural network; otherwise, it is given by the
game directly.

In the step of select, the action is selected by the formula a = arg maxa(Q(s, a)+
U(s, a)). Q(s, a) = W

N
encourages the exploitation of higher-reward actions.

U(s, a) = cpuctP (s, a)

√∑
b N(s,b)

1+N(s,a)
encourages the exploration of less-visited

actions, cpuct is a parameter determining the exploration scale, which is 5 in the
AlphaZero algorithm.

In the step of expand and evaluate, the policy network outputs a probability
p(s, a) for each action, the value network outputs a value v indicating the state
value for the current state s. The p(s, a) is used to calculate U(s, a) in the step

of select, U(s, a) = cpuctP (s, a)

√∑
b N(s,b)

1+N(s,a)
. The v is used to calculate W in the

step of backup, W(s, a) = W(s, a) + v. The probabilities and values output by the
neural networks may not be accurate at the beginning, but they will be more accurate
gradually during the training process.

In the step of backup, information at each selected node is updated, N(s, a) =
N(s, a) + 1,W(s, a) = W(s, a) + v,Q(s, a) = W(s,a)

N(s,a)
.

Some core code is shown as follows:

• The process of Monte Carlo Tree Search is defined as a MCTS class, it contains
the whole tree and the tree search function _playout():

class MCTS(object):
’’’
An implementation of Monte Carlo Tree Search.
’’’
def __init__(self, policy_value_fn,action_fc,evaluation_fc,

is_selfplay,c_puct, n_playout): ... # Init function
def _playout(self, state): ... # The process of tree search

15 AlphaZero 401

• The node in the tree is defined as a TreeNode class with above steps: select,
expand and evaluate, backup.

class TreeNode(object):
’’’
A node in the tree.
Each node keeps track of its own value Q, prior

probability P, and
its visit-count-adjusted prior score u.
’’’
def __init__(self, parent, prior_p): ... # Init function
def select(self, c_puct): ... # Choose action
def expand(self, action_priors, add_noise): ...# Expand

the node, evaluate each action and state
def update(self, move): ... # Update node after expanding

and evaluating
...

• The function select() corresponds to the step of select:

def select(self, c_puct):
’’’
Select an action among children that gives maximum action

value Q plus bonus u(P).
Return: A tuple of (action, next_node)
’’’
return max(self._children.items(),

key=lambda act_node: act_node[1].get_value(c_puct))

• The function expand() here corresponds to the step of expand and evaluate.
Besides, we add some Dirichlet noises at the nodes for random exploration:

def expand(self, action_priors, add_noise):
’’’
Expand tree by creating new children.
action_priors: a list of tuples of actions and their prior

probability
according to the policy function.

’’’
if add_noise:

action_priors = list(action_priors)
length = len(action_priors)
dirichlet_noise = np.random.dirichlet(0.3 *

np.ones(length))
for i in range(length):

if action_priors[i][0] not in self._children:
self._children[action_priors[i][0]] =

TreeNode(self,

402 H. Zhang and T. Yu

0.75 * action_priors[i][1] + 0.25 *
dirichlet_noise[i])

else:
for action, prob in action_priors:

if action not in self._children:
self._children[action] = TreeNode(self, prob)

• The function update_recursive() corresponds to the step of backup:

def update_recursive(self, leaf_value):
’’’
Like a call to update(), but applied recursively for all

ancestors.
’’’
If it is not root, this node’s parent should be updated

first.
if self._parent:

self._parent.update_recursive(-leaf_value)
Every step for recursive update.
We should change the perspective by the way of taking

the opposite value
self.update(leaf_value)

def update(self, leaf_value):
’’’
Update node values from leaf evaluation.
leaf_value: the value of subtree evaluation from the

current player’s
perspective.

’’’
self._n_visits += 1
update visit count
self._Q += 1.0 * (leaf_value - self._Q) / self._n_visits
Update Q, a running average of values for all visits.
there is just: (v-Q)/(n+1)+Q =

(v-Q+(n+1)*Q)/(n+1)=(v+n*Q)/(n+1)

• The tree search function _playout() in the class MCTS executes the three
steps iteratively: select, expand and evaluate, backup.

def _playout(self, state):
’’’
Run a single MCTS from the root to the leaf, get a value at
the leaf and propagate it back through its parents.
’’’
node = self._root
Select
while(1):

15 AlphaZero 403

if node.is_leaf():
break

action, node = node.select(self._c_puct)
state.do_move(action)

Evaluate and expand
action_probs, leaf_value =

self._policy_value_fn(state,self._action_fc,self._evaluation_fc)
end, winner = state.game_end()
if not end:

node.expand(action_probs,add_noise=self._is_selfplay)
else:

if winner == -1: # draw
leaf_value = 0.0

else:
leaf_value = (

1.0 if winner == state.get_current_player() else -1.0
)

Backup
node.update_recursive(-leaf_value)

15.4 AlphaZero: A General Algorithm for Board Games

Generally, the AlphaZero algorithm is suitable for all kinds of combinatorial games,
such as Go, chess, Shogi, and so on. Here, we take Gomoku with the free-style
rule described in Sect. 15.2 as an example, to introduce the details of the AlphaZero
algorithm. Gomoku is a turn-based game with simple rules, which is suitable for
demonstration as the game itself is not the focus. We further simplify the game
board to have size 3 × 3 as an example, and a row of three stones indicates winning
as we mentioned before. In addition, it is necessary to mention that the AlphaZero
algorithm generalizes the AlphaGo Zero algorithm, so the two algorithms are very
similar. In our implementation, we compare both methods.

We will demonstrate the details of the AlphaZero algorithm in this section for
better understanding. The whole algorithm can be split into two parts: (1) self-
play process using Monte Carlo Tree Search for data collection; (2) the deep neural
network for training. The schematic is shown in Fig. 15.5.

First, we execute the self-play process with MCTS for collecting data. In order to
demonstrate the tree search to the end of the game with relatively short paragraphs,
we assume the game begins from the state as shown in Fig. 15.6 (normally, the game
is started from an empty board). It is the white player’s turn to play a stone now.

We build a tree from this node and start the MCTS process following the three
steps: select, expand and evaluate, backup. Now, there is only one node in the tree.
This node is a root node since it is at the top of the tree, and it is also a leaf node
as it does not have child node. It means we have reached a leaf node and the step of
select is done. So, the node needs to be expanded, it turns to the second step: expand
and evaluate. In Fig. 15.7, the node is expanded, and the probability of each action
is given by the policy network, with the input of the current board state.

404 H. Zhang and T. Yu

Fig. 15.5 Algorithm schematic. In the AlphaZero algorithm, a cycle is formed among MCTS, the
data, and the network. MCTS is used to generate data, the data is used to improve the precision of
the network, the more accurate network is used in MCTS to generate higher quality data

Fig. 15.6 Board state. The size of the board is 3 × 3. In this state, it is the white player’s turn to
play

Fig. 15.7 Expand and evaluate at the root node. All the available actions are expanded, and the
probabilities π(a|s) are given by the network

The last step is backup. As it is a root node now, we do not need to backup W

and Q (used to judge if we should go to this node) and only need to update the visit
count N . N = 0 is changed to N = 1, and the tree search iteration has been finished
once.

15 AlphaZero 405

Fig. 15.8 Select at the root node. The white player selects Action = 2 (w, 2) and reaches a leaf
node. In this node, it is the black player’s turn to play

At each time we execute a tree search iteration, we will begin from the root
node. So, the second tree search process also starts from the root node. This time,
the root node has child nodes, which means it is not a leaf node. The action is
selected by the formula a = arg maxa(Q(s, a)+U(s, a)), Q(s, a) = W

N
, U(s, a) =

cpuctP (s, a)

√∑
b N(s,b)

1+N(s,a)
. Here, the action chosen by the white player is 2 (w, 2), and

it reaches a new node. This new node is a leaf node and it is the black player’s turn
at this node (Fig. 15.8).

We expand and evaluate this leaf node. It is the same as the first time: the node
is expanded, and the probability of each action is given by the policy network
(Fig. 15.9).

Then, it is time to backup. Now there are two nodes; we first update the current
node and then the preceding node. Both of them follow the same rules for updating
in the backup step: N(s, a) = N(s, a) + 1,W(s, a) = W(s, a) + v(s),Q(s, a) =
W(s,a)
N(s,a)

. It should be noted that there are two perspectives in the tree: black and
white. We should be careful about the perspectives and always update the value
in the current player’s perspective. For example, in Fig. 15.10, the value from the
value network is v(s) = −0.1, it is from the perspective of the black player. When
updating the information that belongs to the white player, it needs to be reversed,
i.e., v(s) = 0.1. So, we get N = 1,W = 0.1,Q = 0.1.

Then we return to its parent node. Like in the first tree search process, as the
current state is a root node, we do not need to backup W and Q here and only need
to update the visit time N . So, let N = 2 and we have done another tree search as
shown in Fig. 15.11.

The third tree search process also starts from the root node. With the formula
a = arg maxa(Q(s, a)+U(s, a)) and the current information in the tree, the action
chosen by the white player is 2 (w, 2), and the black player chooses the action

406 H. Zhang and T. Yu

F
ig

.1
5.

9
E

xp
an

d
an

d
ev

al
ua

te
at

th
e

ne
w

no
de

.A
ll

th
e

av
ai

la
bl

e
ac

tio
ns

ar
e

ex
pa

nd
ed

,a
nd

th
e

pr
ob

ab
il

it
ie

s
π
(a
|s)

ar
e

gi
ve

n
by

th
e

ne
tw

or
k

15 AlphaZero 407

F
ig

.1
5.

10
B

ac
ku

p
at

th
e

ne
w

no
de

.T
he

in
fo

rm
at

io
n

at
th

e
cu

rr
en

t
no

de
is

up
da

te
d

an
d

Q
sh

ou
ld

be
up

da
te

d
in

th
e

w
hi

te
pl

ay
er

’s
pe

rs
pe

ct
iv

e:
N

=
1,

W
=

0.
1,

Q
=

0.
1

408 H. Zhang and T. Yu

Fig. 15.11 Backup at the root node. N is updated to 2, W and Q are not needed to update

Fig. 15.12 Expand and evaluate at the terminal node. Since the game is end at this node, no node
will be expanded and the reward can be obtained from the game directly. So, the policy network
and the value network are not used here

9 (b, 9). As shown in Fig. 15.12, the select step leads to a new node that is the end
of the game. This time, for the step of expand and evaluate, the node will not be
expanded and the value v can be obtained from the game directly. So, the value
network is not used to evaluate the state and the policy network is not used to output
the probability of each action.

15 AlphaZero 409

Then, it is time to backup and there are three nodes in the trajectory. As we
mentioned before, the nodes are updated recursively from the leaf node to the root
node, N(s, a) = N(s, a) + 1,W(s, a) = W(s, a) + v(s),Q(s, a) = W(s,a)

N(s,a)
.

Moreover, the perspective of each node should also be switched, which means
vwhite = −vblack. In this game, the black player chooses 9 (b, 9) and reaches a
new node. Now it is the white player’s turn to choose an action, but unluckily the
game is over and the white player loses the game. So the reward = −1 is from
the perspective of the white player, that is to say vwhite = −1. When we update the
information at this node, as we mentioned before, these information is used by the
black player to choose Action = 9 to reach this node, so the value for this node
should be vblack = −vwhite = 1, and other information is based on it, N = 1,
W = 1, Q = 1. The information at other nodes are updated in the same way.

After the backup step, the renewed tree is shown in Fig. 15.13. The root node has
been visited three times and the information at each visited node is updated.

We have demonstrated three times MCTS above. After the tree search is
conducted 400 times as shown in Fig. 15.14 (in the AlphaGo Zero algorithm, the
number is 1600; in the AlphaZero algorithm, the number is 800), the tree has grown
much larger and the estimated values are more accurate.

After the MCTS, a stone can be placed on the real board now. The action is
chosen by calculating the probability related to the visit count rather than the outputs

of the policy network: π(a|s) = N(s,a)1/τ

N(s)1/τ−1
= N(s,a)1/τ∑

b N(s,b)1/τ , where τ → 0 is a

Fig. 15.13 The tree after the backup step. In the process of the third MCTS, the backup step
updates the information of the three visited nodes recursively. Be careful, because two players are
in a single tree and vwhite = −vblack , the information should be updated from the right perspective

410 H. Zhang and T. Yu

Fig. 15.14 The whole tree after searching 400 times. As the first MCTS process is started from
the step of expand and evaluate and it does not select a child node, the sum of the visit counts of
its child nodes is 400 and the root node’s visit count is 401

Fig. 15.15 Play a move on the board. After searching 400 times, an action is selected according

to π(a|s) = N(s,a)1/τ∑
b N(s,b)1/τ . Here, the white player selects 9 (w, 9)

temperature parameter, b ∈ A denotes the available action at state s. Here, the
selected action is 9 (w, 9) as shown in Fig. 15.15.

The temperature parameter is used to control the exploration. If τ = 1, it
selects moves proportionally to their visit counts in MCTS, this means a high-level
exploration and ensures a diverse set of positions are encountered. If τ → 0, it
means a low exploration and selects the move with maximum visit count. In the
AlphaZero and AlphaGo Zero algorithm, when they perform the self-play process

15 AlphaZero 411

to collect data, the temperature is set to τ = 1 for the first 30 moves (12 moves in
our implementation), and τ → 0 for the remainder of the game. When playing a
real game with an opponent, the temperature is set to τ → 0 all the time.

The white stone has been put at the position 9 (w, 9) on the board, so the root
node in the tree will be changed to the child node and MCTS will go on from this
new root node. Other sibling nodes and its parent node will be discarded to prune
the tree and save memory (Fig. 15.16).

When the game is over on the game board, we get the data and the result
(Fig. 15.17).

Fig. 15.16 The new root node. The nodes that under the new root node will be maintained, and
other nodes will be discarded

Fig. 15.17 The game data. All states in the game will be saved and labeled with probabilities
π(a|s) and value v(s)

412 H. Zhang and T. Yu

Fig. 15.18 Data with labels. The probability of the action is according to π(a|s) = N(s,a)1/τ∑
b N(s,b)1/τ ,

and the value v(s) is from the result of the game: +1 for a win, −1 for a loss, 0 for a draw

The probability for each action is: π(a|s) = N(s,a)1/τ∑
b N(s,b)1/τ ,τ = 1. Be careful that

the probabilities here are related to visit counts; this is the key point that combines
the MCTS self-play and policy network training. As the result of this game is a
draw, the labels for the value network here are 0 for all these data (Fig. 15.18).

Now, the data is available by the self-play process using Monte Carlo Tree
Search, the next part is to apply the deep neural network for data training. In
the training process, the data is first transformed into some feature planes. Each
feature plane composes binary values indicating the presence of the player’s stones,
with one set of planes for the current player and another set of planes for the
opponent’s stones. These planes are concatenated together in order with history
features included. Then, we augment the data in the same way as in the AlphaGo
Zero algorithm: Since the rules of Go and Gomoku are both invariant to rotation
and reflection, the data are augmented by rotation and reflection before training.
And during the MCTS, board positions are randomly rotated or reflected before
being evaluated by the neural network, which can average different biases. However,
in the AlphaZero algorithm, the trick is not used since some games’ rules are not
invariant to rotation and reflection. With more and more sampled data collected, the
network is trained to be more accurate for estimation.

We use ResNet (He et al. 2016) as the network structure (Fig. 15.19) which is
the same as the AlphaGo Zero algorithm. The network’s inputs are the game states,
the outputs are the probabilities of actions and the values of the states. The network
can be denoted as (p, v) = fθ (s) and the data is (s,πππ, r). The loss function l

combines the cross-entropy losses over the actions’ probability distribution, mean-
squared error over the state value, and the L2 weight regularization over the
parameters. The concrete formula is l = (r − v)2 − πππT logp + c||θ ||2, where c

is a parameter controlling the level of regularization.
There are some details about the timing of updating the model. In the AlphaGo

Zero algorithm, the new model will play with the current best model for 400 games;
if the new one wins by a margin of 55%, it becomes a better model. By contrast,
in the version of the AlphaZero algorithm, it does not play against previous models
and the parameters are updated continuously. These are alternative approaches with

15 AlphaZero 413

Fig. 15.19 Network structure. The structure is the same with the AlphaGo Zero algorithm.
ResNet is used as the backbone and two heads output the probability distribution and state value
separately

different performances, and we implement our code in the AlphaGo Zero’s manner
in this project to make the training process more stable. Besides, if you want to
train it faster, you can collect data in a parallel way using multi-process and do the
tree search process asynchronously as the original paper does. In the parallel way
(Fig. 15.20), there are many processes executing at the same time: the parameters
of the neural network are trained with the latest self-play data, the new self-play
data are generated from the best model, the latest model is continually evaluated (in
AlphaGo Zero), all these components are executed simultaneously.

Then, with a stream of new data saved in a buffer and with this neural network to
learn a more accurate policy head and value head, we will get a powerful Gomoku
AI after iterating the MCTS and network training for sufficient times.

We finally trained a Gomoku model in a parallel way with the free-style rule
(a row of five or more stones for a win) on a 11 × 11 board. Some specific
parameters are presented in Table 15.1. A model on a 15 × 15 board is also trained
successfully with the same parameters, which indicates the generality and stability
of the AlphaZero algorithm.

414 H. Zhang and T. Yu

Fig. 15.20 Parallel training structure

Table 15.1 Comparison of parameters

Parameters setting Gomoku AlphaGo Zero AlphaZero

cpuct 5 5 5

MCTS times 400 1600 800

Residual blocks 19 19/39 19/39

Batch size 512 2048 4096

Learning rate 0.001 Annealed Annealed

Optimizer Adam SGD with momentum SGD with momentum

Dirichlet noise 0.3 0.03 0.03

Weight of noise 0.25 0.25 0.25

τ = 1 for the first n moves 12 30 30

References

Albert M, Nowakowski R, Wolfe D (2007) Lessons in play: an introduction to combinatorial game
theory. CRC Press, Boca Raton

Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem.
Mach Learn 47(2–3):235–256

Browne CB, Powley E, Whitehouse D, Lucas SM, Colton S (2012) A survey of Monte Carlo tree
search methods. IEEE Trans Comput Intell Ai Games 4(1):1–43

Campbell M, Hoane Jr AJ, Hsu FH (2002) Deep blue. Artif. Intell. 134(1–2):57–83
Couetoux A, Milone M, Brendel M, Doghmen H, Sebag M, Teytaud O (2011) Continuous rapid

action value estimates. In: Asian conference on machine learning, pp 19–31
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings

of the IEEE conference on computer vision and pattern recognition, pp 770–778
Hsu Fh (1999) IBM’s deep blue chess grandmaster chips. IEEE Micro 19(2):70–81
Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo planning. In: European conference on

machine learning. Springer, Berlin, pp 282–293
Muthoo RBA (1996) A course in game theory by Martin J. Osborne; Ariel Rubinstein. Economica

63(249):164–165
Osborne MJ, Rubinstein A (1994) A course in game theory. MIT press

15 AlphaZero 415

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J,
Antonoglou I, Panneershelvam V, Lanctot M, et al (2016) Mastering the game of go with deep
neural networks and tree search. Nature 529:484

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D,
Graepel T, et al (2017a) Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. Preprint. arXiv:171201815

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai
M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D
(2017b) Mastering the game of go without human knowledge. Nature 550(7676):354

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D,
Graepel T, et al (2018) A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362(6419):1140–1144

Chapter 16
Robot Learning in Simulation

Zihan Ding and Hao Dong

Abstract This chapter introduces a hands-on project for robot learning in sim-
ulation, including the process of setting up a task with a robot arm for objects
grasping in CoppeliaSim and the deep reinforcement learning solution with soft
actor-critic algorithm. The effects of different reward functions are also shown in
the experimental sections, which testifies the importance of auxiliary dense rewards
for solving a hard-to-explore task like the robot grasping ones. Brief discussions on
robot learning applications, sim-to-real transfer, other robot learning projects and
simulators are also provided at the end of this chapter.

Keywords Robot learning · Deep reinforcement learning · Simulation · Dense
reward · Parallel training · Soft actor-critic · Domain randomization

Deep reinforcement learning methods have many potential real-world application
scenarios, and robotic control is one of the most exciting areas. Although deep
reinforcement learning methods have already been able to solve most of the
simple games like in OpenAI Gym as described in previous Chaps. 4, 5, and 6,
at present, we may not expect that the deep reinforcement learning methods can
be applied in robotics control as a completely alternative approach of traditional
control methods with inverse kinematics or proportional-integral-derivative (PID)
controller. However, deep reinforcement learning algorithms can be applied in some
specific situations or as a combinatorial approach with traditional control methods,
especially for highly complicated systems or dexterous manipulations (Akkaya et al.
2019; Andrychowicz et al. 2018).

Z. Ding (�)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

H. Dong
Peking University, Beijing, China
e-mail: hao.dong@pku.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_16

417

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_16&domain=pdf
mailto:zhding@mail.ustc.edu.cn
mailto:hao.dong@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_16

418 Z. Ding and H. Dong

Fig. 16.1 The scene of a
robotic hand for solving the
Rubik’s cube. Figure is
adapted from Akkaya et al.
(2019)

In most cases, the dynamic process of robotic control can be approximated
with Markov process well, which makes it an ideal experimental site for deep
reinforcement learning, in both simulation and real world. Moreover, the great
potential of deep reinforcement learning for robotic control in the real world
drives high-tech companies like DeepMind and OpenAI to dedicate in this research
area. Recently, OpenAI even solved the Rubik’s cube with a single five-fingered
humanoid robotic hand (Akkaya et al. 2019), using automatic domain randomization
technique for sim-to-real transfer, as shown in Fig. 16.1. Other companies also start
to investigate the usage of robotic arms in the distribution process of warehouse
logistics, even through directly training the robot in real world (Korenkevych et al.
2019).

However, due to the sample inefficiency and the safety issues when applying
deep reinforcement learning algorithms in the real world, one can find it hard to train
the reinforcement learning policy directly in the real world for complicated robotic
systems or for dexterous manipulations (Akkaya et al. 2019). Training in simulation
and transferring the policy into real-world applications later on or leveraging human
expert demonstrations are potential approaches for satisfying the computational and
safety requirements in robot learning tasks. The simulators for robots have been
widely developed for decades, including, DART, CoppeliaSim (previously called
V-REP for version 3.6.2 and before) (Rohmer et al. 2013), MuJoCo, Gazebo, etc.,
which will be discussed in the last section of this chapter. Most of these simulators
have Python counterparts for the convenience of applying reinforcement learning
control policies and other numerical operations.

Learning in simulation is meaningful for at least two aspects. First, the simu-
lated environments can be used as the testbed for proposed learning methods or
frameworks (including but not limited to reinforcement learning area), especially
for large-scale real-world applications, e.g. robotic learning tasks. Learning in
simulation serves as a verification process for new methods before being applied
in real-world scenarios. Second, learning in simulation is an indispensable step for
achieving the real-world tasks via the sim-to-real transfer approach, to reduce the
time consumption and mechanical loss.

16 Robot Learning in Simulation 419

In this chapter, we will introduce the process of applying deep reinforcement
learning algorithms on a simple robotic object-grasping task in simulation using
CoppeliaSim (V-REP) simulator and its Python wrapper: PyRep (James et al.
2019a). We also release the code of task descriptions and deep reinforcement
learning algorithms for the project described in this chapter,1 for the convenience
of learning and understanding.

Since there is already another application working on large-scale high-
dimensional continuous control as in Chap. 13, the robot learning task in this
chapter will focus more on different aspects of applying deep reinforcement learning
methods in practice, including how to build up an environment for achieving a
certain task with reinforcement learning, how to design the reward function for
assisting reinforcement learning and achieving the final goal of the task in the end,
etc, to provide the readers a better understanding of applying reinforcement learning
not only in training but also in the designing of learning environments.

16.1 Robotics Simulation

The first step we need to do is to set up an environment containing: a robotic
arm and the objects it interacts with in simulation, which is supposed to follow
realistic physical dynamics. However, here we need to emphasize that, a realistic
simulation does not mean the policy learned in simulation can be directly applied in
real world with good performance. The “realistic” evaluation can be achieved in a
variety of specific forms, but only one of it could match the exact real-world setting.
For example, the lighting conditions can give different kinds of shadow effects on
the objects, all looking realistic, but one of them matches the real case and slight
differences in the appearance may lead to significantly different actions in reality,
due to the sensitivity of deep neural networks. To solve this kind of problem in
the simulation-to-reality transfer process, a variety of methods including domain
randomization (Andrychowicz et al. 2018) or dynamics randomization (Peng et al.
2018) are applied, which will be discussed later in this chapter.

There are several simulators for robotics, including CoppeliaSim (V-REP),
MuJoCo, Unity, and so on. Original CoppeliaSim (V-REP) software using common
interfaces of C++ and Lua languages, only partial functions are implemented
with Python. However, it is better to use Python interfaces for the convenience
of applying reinforcement learning algorithms. Luckily, we have PyRep package
developed for bringing CoppeliaSim (V-REP) to deep robot learning. In this project,
we choose to use CoppeliaSim (V-REP), with its package PyRep using the Python
interfaces.

1Code link:https://github.com/deep-reinforcement-learning-book/Chapter16-Robot-Learning-in-
Simulation.

https://github.com/deep-reinforcement-learning-book/Chapter16-Robot-Learning-in-Simulation
https://github.com/deep-reinforcement-learning-book/Chapter16-Robot-Learning-in-Simulation

420 Z. Ding and H. Dong

We will demonstrate a basic process of setting up a robot learning task in this
section.

16.1.1 Install CoppeliaSim and PyRep

The CoppeliaSim (V-REP) software can be downloaded from its official website,2

and we need the version of CoppeliaSim (V-REP) to be 3.6.2 (which can be found
at the website3) to be compatible with the PyRep during the period of writing this
book. It can be installed directly through unzipping the downloaded file. Note that a
version of CoppeliaSim (V-REP) higher than 3.6.2 may not be compatible with the
other modules in this project.

After installing CoppeliaSim (V-REP), we can install a forked stable ver-
sion of PyRep with the following steps on the repository website (https://
github.com/deep-reinforcement-learning-book/PyRep):

git clone
https://github.com/deep-reinforcement-learning-book/PyRep.git

pip3 install -r requirements.txt
python3 setup.py install --user
change the path to the installation path of VREP on your local

machine
export VREP_ROOT=EDIT/ME/PATH/TO/V-REP/INSTALL/DIR
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$VREP_ROOT
export QT_QPA_PLATFORM_PLUGIN_PATH=$VREP_ROOT
source ~/.bashrc

Remember to change the path of V-REP in the above script of VREP_ROOT.

16.1.2 Git Clone Our Project

Our project for deep reinforcement learning on robotics learning tasks can be
downloaded here:

git clone https://github.com/deep-reinforcement-learning-book/
Chapter16-Robot-Learning-in-Simulation.git

It contains the robotic parts (arms, grippers) and other objects we needed, built-
up scenes for robot grasping tasks, deep reinforcement learning algorithms for
training an agent-control policy, etc. The robot grasping scene built in this project is

2http://www.coppeliarobotics.com.
3http://www.coppeliarobotics.com/previousVersions.

https://github.com/deep-reinforcement-learning-book/PyRep
http://www.coppeliarobotics.com
http://www.coppeliarobotics.com/previousVersions

16 Robot Learning in Simulation 421

Fig. 16.2 The scene of
Grasping task in
CoppeliaSim (V-REP)

visualized in Fig. 16.2. We will demonstrate how to construct such a scene with the
basic components in the following several sections.

16.1.3 Assemble the Robot

We use the robotic arm named Rethink Sawyer with a gripper at its end, and the
gripper we use in this example is the BraxterGripper. Official PyRep package
provides a variety of robot arms and grippers, which can be used to assemble and
build the task scenes you want. Here we assemble the gripper onto the robot arm as
an example, as shown in Fig. 16.3.

In our git folder, we drag the ./hands/BaxterGripper.ttm and
./arms/Sawyer.ttm into a new scene opened in CoppeliaSim (V-REP). We
choose the gripper and Ctrl+Left Click (on Mouse) the end joint of Sawyer (i.e.,
Sawyer_wrist_connector, which is a force sensor in CoppeliaSim (V-REP)
and could be used for connecting different objects), then click assemble button
as in Fig. 16.4. There are different types of connector provided in CoppeliaSim
(V-REP), here the force sensor is only one of them with broken potentials when the
true forces applied on the joints are larger than the threshold. Another thing is, we
should not use “group/merge” here, in order to control the gripper separately from
the robot arm. More details about how to connect and combine multiple bodies
can be referred to the website of CoppeliaSim (V-REP). After we finish the above
process, the scene hierarchy will be the same as displayed in Fig. 16.5.

422 Z. Ding and H. Dong

Fig. 16.3 The end of Sawyer arm (left) and the assembled BaxterGripper (right)

Fig. 16.4 The “assemble” button in CoppeliaSim (V-REP)

Set Up the Learning Environment
A pre-built environment is provided in ./scenes/sawyer_reacher_rl.ttt
with CoppeliaSim (V-REP), as shown in Fig. 16.2. In order to build such a scene, we
need to add some other objects in the current scene, which only contains the robot
arm and a gripper at present.

First, we add a target object with Add -> Primitive shape ->
Cuboid, resize its shape as we want and rename it as “target.” We need to double
click the icon prior to the “target,” and choose Common -> Renderable to
make the object visible for the vision sensor.

After those steps, we need to add a vision sensor for providing us a customized
view of the scene. This vision sensor can keep capturing images of the view
during the simulation process, which is necessary if we use image-based control
(otherwise not necessary). We can get images as the return of a simulation step
only if we enable such a vision sensor in the scene. In order to set such a
scene, click Add -> Vision sensor -> perspective type, and then
right click the mouse on the scene, choose Add -> Floating view. Then
first click the Vision_sensor we just create, and right click the mouse on the
opened floating view, choose View -> associate view with selected
vision sensor. We manually set the position and rotation of the added vision
sensor, and get the scene after setting up as in Fig. 16.6.

16 Robot Learning in Simulation 423

Fig. 16.5 The hierarchy of the task scene in CoppeliaSim (V-REP), with all physical models
including the Sawyer robot arm. The red arrow indicates the inverse kinematics chain for end-
position control mode. The black fonts represent the objects visible in the scene, while the gray
fonts indicate the virtual objects that are not visible

Then, we drag in an object table.ttt from ./objects in the project folder.
We manually set the position of the robot arm with gripper and the target cuboid on
the surface of the table as in Fig. 16.7 by clicking the button of Object/item
shift.

Above is the setup process of the environment scene, which provides us
the visible entities in the task. The dynamics of those entities will follow the
simulated rules of the physical simulator. Apart from that, we also need to define

424 Z. Ding and H. Dong

Fig. 16.6 Set the vision
sensor in CoppeliaSim
(V-REP). The graph above is
for setting the position of the
camera; the graph below with
a small window on the upper
right corner is from the
camera placed. The camera
can provide image
observation for each time step
if being called by the
image-based control policy

Fig. 16.7 Manually change
the position of the object in
CoppeliaSim (V-REP)

16 Robot Learning in Simulation 425

the control process and reward functions of the environment, which generally
includes the constraints of object movement (for locomotion tasks mainly), the
starting and ending procedures for an episode during training, initialization con-
ditions, the observation formats, and so on. In our git folder, we provide the file
sawyer_grasp_env_boundingbox.py for achieving these functions in the
built scene, and it is written with APIs close to the OpenAI Gym environments,
for the convenience of applying reinforcement learning algorithms to control it
later. The scene we built above is static itself, and the control script provides the
functions to define the dynamics (apart from those defined in the physical simulator)
for it. For the robot grasping task here, we use the control mechanism of forward
kinematics (control by joints velocity directly) for the robotic arm, and we also have
another scene with inverse kinematics control (control by the end position of robotic
arm) with different configurations. Inverse kinematics usually requires to solve the
inverse Jacobian matrix of the function describing the relationship of joint angles
and end position of the robot arm, which is supported by PyRep as well. More
details about inverse kinematics settings are beyond the scope of this book. The
scripts in our provided example code for defining the dynamics and controlling the
robot support both of the controlling mechanisms.

Note In practice, when you are trying to build your own robotic models or to
assemble different parts for other customized robotic arms, you need to be careful of
the order and dependency relationships of different modules on the robotic arm. This
is concerned with some requirements on the dynamic and static parts when building
a model in CoppeliaSim (V-REP) (e.g., the Sawyer_tip for inverse kinematics is
a static component). More details are provided at website.4

After setting up the environment scene in CoppeliaSim (V-REP), we need to
write a control script with PyRep package for defining the dynamics and reward
function of the environment. The code for defining the environment is provided in
our repository. We will introduce the functions and modules in the project with the
following sections.

Modules in Environment Script
Import the necessary packages and set global variables needed afterward:

from os.path import dirname, join, abspath
from pyrep import PyRep
from pyrep.robots.arms.sawyer import Sawyer
from pyrep.robots.end_effectors.baxter_gripper import

BaxterGripper
from pyrep.objects.proximity_sensor import ProximitySensor
from pyrep.objects.vision_sensor import VisionSensor
from pyrep.objects.shape import Shape
from pyrep.objects.dummy import Dummy
from pyrep.const import JointType, JointMode

4http://www.coppeliarobotics.com/helpFiles/en/designingDynamicSimulations.htm.

http://www.coppeliarobotics.com/helpFiles/en/designingDynamicSimulations.htm

426 Z. Ding and H. Dong

import numpy as np
import matplotlib.pyplot as plt
import math

POS_MIN, POS_MAX = [0.1, -0.3, 1.], [0.45, 0.3, 1.] # valid
position range of target object

The overall structure of the class defining the environment of robot grasping task
is shown below, and all functions defined in the class are shortened here, which will
be expanded later.

class GraspEnv(object):
’’’ Sawyer robot grasping a cuboid ’’’
def __init__(self, headless, control_mode=’joint_velocity’):

’’’
parameters:
:headless: bool, if True, no visualization, else with

visualization.
:control mode: str, ’end_position’ or ’joint_velocity’.
’’’
...

def _get_state(self):
’’’
Return state containing arm joint angles/velocities &

target position.
’’’
...

def _is_holding(self):
’’’
Return the state of holding the target or not, return

bool.
’’’
...

def _move(self, action, bounding_offset=0.15,
step_factor=0.2, max_itr=20, max_error=0.05,
rotation_norm =5.):
’’’
Move the tip according to the action with inverse

kinematics for ’end_position’ control mode. Inverse
kinematics mode control is achieved through setting
the tip target instead of using .solve_ik(), because
sometimes the .solve_ik() does not function correctly.

Mode: close-loop proportional control, using inverse
kinematics.

parameters:
:bounding_offset: offset of bounding box outside the valid

target position range, as valid and safe range of
action

16 Robot Learning in Simulation 427

:step_factor: small step factor multiplied on the
difference of current and desired positions, i.e.
proportional factor

:max_itr: maximum moving iterations
:max_error: upper bound of distance error for movement at

each call
:rotation_norm: factor for normalization of rotation

values, since the actions are of the same scale for
each dimension

’’’
...

def reinit(self):
’’’
Reinitialize the environment, e.g. when the gripper is

broken during exploration.
’’’
...

def reset(self, random_target=False):
’’’
Reset the gripper position and the target position.
’’’
...

def step(self, action):
’’’
Move the robot arm according to the action.
If control_mode==’joint_velocity’, action is 7 dim of

joint velocity values + 1 dim rotation of gripper;
if control_mode==’end_position’, action is 3 dim of tip

(end of robot arm) position values + 1 dim rotation of
gripper;

’’’
...

def shutdown(self):
’’’ Close the simulator ’’’
...

The first step is to initialize the environment, including setting the public
variables, launching and setting up the scene, setting the proxy variables for the
counterparts in the scene, which is defined as the __init__() function as
follows.

def __init__(self, headless, control_mode=’joint_velocity’):
’’’
parameters:
:headless: bool, if True, no visualization, else with

visualization.
:control mode: str, ’end_position’ or ’joint_velocity’.
’’’
set public variables

428 Z. Ding and H. Dong

self.headless = headless # if headless is True, no
visualization

self.reward_offset = 10.0 # reward value of grasping the
object

self.reward_range = self.reward_offset # reward range
self.penalty_offset = 1. # penalty value for undesired

cases
self.fall_down_offset = 0.1 # distance for judging the

target object fall off the table
self.metadata=[] # gym env argument
self.control_mode = control_mode # the control mode of

robotic arm: ’end_position’ or ’joint_velocity’

The second part of the __init__() function is to launch and set up the scene,
and set the proxy variables for the counterparts in the scene:

self.pr = PyRep() # call the PyRep
if control_mode == ’end_position’: # the control mode with

all joints in inverse kinematics mode
SCENE_FILE = join(dirname(abspath(__file__)),

’./scenes/sawyer_reacher_rl_new_ik.ttt’) # scene
with joints controlled by ik (inverse kinematics)

elif control_mode == ’joint_velocity’: # the control mode
with all joints in force/torch mode for forward
kinematics
SCENE_FILE = join(dirname(abspath(__file__)),

’./scenes/sawyer_reacher_rl_new.ttt’) # scene with
joints controlled by forward kinematics

self.pr.launch(SCENE_FILE, headless=headless) # launch the
scene, headless means no visualization

self.pr.start() # start the scene
self.agent = Sawyer() # get the robot arm in the scene
self.gripper = BaxterGripper() # get the gripper in the

scene
self.gripper_left_pad = Shape(’BaxterGripper_leftPad’) #

the left pad on the gripper finger
self.proximity_sensor =

ProximitySensor(’BaxterGripper_attachProxSensor’) #
need the name of the sensor here

self.vision_sensor = VisionSensor(’Vision_sensor’) # need
the name of the sensor here

self.table = Shape(’diningTable’) # the table in the scene
for checking collision

if control_mode == ’end_position’: # control the robot arm
by the position of its end using inverse kinematics
self.agent.set_control_loop_enabled(True) # if false,

inverse kinematics won’t work
self.action_space = np.zeros(4) # 3 DOF end position

control + 1 DOF rotation of gripper
elif control_mode == ’joint_velocity’: # control the robot

arm by directly setting velocity values on each joint,
using forward kinematics
self.agent.set_control_loop_enabled(False)

16 Robot Learning in Simulation 429

self.action_space = np.zeros(7) # 7 DOF velocity
control, no need for extra control of end rotation,
the 7th joint controls it.

else:
raise NotImplementedError

self.observation_space = np.zeros(17) # scalar positions
and scalar velocities of 7 joints + 3-dimensional
position of the target

self.agent.set_motor_locked_at_zero_velocity(True)
self.target = Shape(’target’) # get the target object
self.agent_ee_tip = self.agent.get_tip() # a part of robot

as the end of inverse kinematics chain for controlling
self.tip_target = Dummy(’Sawyer_target’) # the target

point of the tip (end of the robot arm) to move towards
self.tip_pos = self.agent_ee_tip.get_position() # tip

x,y,z position

The third part of the __init__() function is to set a proper initial robot
gesture or tip position:

if control_mode == ’end_position’:
initial_pos = [0.3, 0.1, 0.9]
self.tip_target.set_position(initial_pos) # set target position
one big step for rotation setting is enough, with

reset_dynamics=True, set the rotation instantaneously
self.tip_target.set_orientation([0,np.pi,np.pi/2],

reset_dynamics=True) # first two dimensions along x and y
axis make gripper face downwards

self.initial_tip_positions = self.initial_target_positions =
initial_pos

elif control_mode == ’joint_velocity’:
self.initial_joint_positions = [0.0, -1.4, 0.7, 2.5, 3.0, -0.5,

4.1] # a proper initial gesture
self.agent.set_joint_positions(self.initial_joint_positions)

self.pr.step()

A function to get the observed state is as follows, including the joint positions and
velocities, and the 3-dimensional position of the target object, totally 17 dimensions.

def _get_state(self):
’’’
Return state containing arm joint positions/velocities &

target position.
’’’
return np.array(self.agent.get_joint_positions() + # list,

dim=7
self.agent.get_joint_velocities() + # list, dim=7
self.target.get_position()) # list, dim=3

A function to determine whether the object is grasped by the gripper is defined as
_is_holding(), which applies the collision detection on the pad of the gripper
and the proximity sensor for determining if the object is within the gripper.

430 Z. Ding and H. Dong

def _is_holding(self):
’’’
Return the state of holding the target or not, return

bool.
’’’
Note that the collision check is not always accurate,
for continuous collision frames, maybe only the first

4-5 frames of collision can be detected.
pad_collide_object =

self.gripper_left_pad.check_collision(self.target)
if pad_collide_object and

self.proximity_sensor.is_detected(self.target)==True:
return True

else:
return False

A function for moving the end effector of the robot arm in inverse kinematics
mode operation within a valid range (“bounding box”) is provided as _move(). A
tip is applied in PyRep at the end of the robot arm for achieving the end effector
control with inverse kinematics through setting up the tip position and orientation.
By calling the pr.step() function, the inverse kinematics for controlling robot
joint movements will be solved automatically within PyRep. Due to the inaccuracy
of the single big-step control, here we decompose the transition movement of the
action into small steps and take a feedback control loop with maximum iteration
and maximum tolerated error to conduct the small-step actions.

def _move(self, action, bounding_offset=0.15, step_factor=0.2,

max_itr=20, max_error=0.05, rotation_norm =5.):

’’’
Move the end effector on robot arm according to the action with

inverse kinematics for ’end_position’ control mode.

Inverse kinematics mode control is achieved through setting the tip

target instead of using .solve_ik(), because sometimes the

.solve_ik() does not function correctly.

Mode: a close-loop proportional control, using inverse kinematics.

--

parameters:
:bounding_offset: offset of a bounding box outside the valid target

position range, as valid and safe range for restricting the

potential action

:step_factor: small step factor mulitplied on the difference of

current and desired position, i.e. proportional factor

:max_itr: maximum moving iterations

:max_error: upper bound of distance error for movement at each call
:rotation_norm: factor for normalization of rotation values, since the

actions are of the same scale for each dimension

’’’

pos=self.gripper.get_position()

check whether state+action will be within of the bounding box, if

so, move normally; otherwise the action is not conducted.

i.e. x_min < x < x_max and y_min < y < y_max and z > z_min

16 Robot Learning in Simulation 431

if pos[0]+action[0]>POS_MIN[0]-bounding_offset and

pos[0]+action[0]<POS_MAX[0]+bounding_offset \

and pos[1]+action[1] > POS_MIN[1]-bounding_offset and

pos[1]+action[1] < POS_MAX[1]+2*bounding_offset \
and pos[2]+action[2] > POS_MIN[2]-2*bounding_offset: # larger

offset in z axis

there is a mismatch between the object set_orientation() and

get_orientation():

the (x,y,z) in set_orientation() will be (y,x,-z) in

get_orientation().

ori_z=-self.agent_ee_tip.get_orientation()[2] # the minus is
because the mismatch between the set_orientation() and

get_orientation()

target_pos =

np.array(self.agent_ee_tip.get_position())+np.array(action[:3])

diff=1 # intialization

itr=0

while np.sum(np.abs(diff))>max_error and itr<max_itr:

itr+=1
set pos in small step

cur_pos = self.agent_ee_tip.get_position()

diff=target_pos-cur_pos # difference of current and target

position, close-loop control

pos = cur_pos+step_factor*diff # step small step according to

current difference, to prevent that ik cannot be solved

self.tip_target.set_position(pos.tolist())

self.pr.step() # every time when setting target tip, need to
call simulation step to achieve it

one big step for z-rotation is enough, but small error still

exists due to the ik solver

ori_z+=rotation_norm*action[3] # normalize the rotation values,

because usually the same action range is used in policy for

both rotation and position
self.tip_target.set_orientation([0, np.pi, ori_z]) # make gripper

face downwards and rotate ori_z along z axis

self.pr.step() # simulation step

else:

print("Potential Movement Out of the Bounding Box!")

pass # no action if potentially moving out of the bounding box

A function for re-initializing the scene is provided.

def reinit(self):
’’’
Reinitialize the environment, e.g. when the gripper is

broken during exploration.
’’’
self.shutdown() # shutdown the original env first
self.__init__(self.headless) # initialize with the same

headless mode

432 Z. Ding and H. Dong

A function to reset the target and the robot arm in the scene is as following.

def reset(self, random_target=False):
’’’
Reset the gripper position and the target position.
’’’
set target object
if random_target: # randomize

pos = list(np.random.uniform(POS_MIN, POS_MAX)) # sample from
uniform dist. in valid range

self.target.set_position(pos) # random position
else: # non-randomize

self.target.set_position(self.initial_target_positions) # fixed
position

self.target.set_orientation([0,0,0])
self.pr.step()

set end position to be initialized
if self.control_mode == ’end_position’: # JointMode.IK

self.agent.set_control_loop_enabled(True) # ik mode
self.tip_target.set_position(self.initial_tip_positions) #

cannot set joint positions directly due to ik mode or
force/torch mode is on

self.pr.step()
prevent the stuck cases. as using ik for moving, stucking can

make ik unsolvable therefore not reset correctly, so
some random actions are taken when the desired position is

not reached.
itr=0
max_itr=10
while np.sum(np.abs(np.array(self.agent_ee_tip.get_position()-

np.array(self.initial_tip_positions))))>0.1 and itr<max_itr:
itr+=1
self.step(np.random.uniform(-0.2,0.2,4)) # take random

actions for preventing the stuck cases
self.pr.step()

elif self.control_mode == ’joint_velocity’: # JointMode.FORCE
self.agent.set_joint_positions(self.initial_joint_positions)
self.pr.step()

set collidable, for collision detection
self.gripper_left_pad.set_collidable(True) # set the pad on the

gripper to be collidable, so as to check collision
self.target.set_collidable(True)
open the gripper if it’s not fully open
if np.sum(self.gripper.get_open_amount())<1.5:

self.gripper.actuate(1, velocity=0.5)
self.pr.step()

return self._get_state() # return current state of the environment

The step() function of the environment usually applied in other environ-
ments (OpenAI Gym, etc) with an action as input is as follows. If the robot
is controlled with end_position mode using inverse kinematics, it needs to

16 Robot Learning in Simulation 433

call the _move() function defined previously to conduct the action; if the robot
is controlled with joint_velocity mode using forward kinematics, the joint
positions can be set directly.

def step(self, action):
’’’
Move the robot arm according to the action.
If control_mode==’joint_velocity’, action is 7 dim of

joint velocity values + 1 dim rotation of gripper;
if control_mode==’end_position’, action is 3 dim of tip

(end of robot arm) position values + 1 dim rotation of
gripper;

’’’
initialization
done=False # episode finishes
reward=0
hold_flag=False # holding the object or not
if self.control_mode == ’end_position’:

if action is None or action.shape[0]!=4: # check if
action is valid
print(’No actions or wrong action dimensions!’)
action = list(np.random.uniform(-0.1, 0.1, 4)) #

random
self._move(action)

elif self.control_mode == ’joint_velocity’:
if action is None or action.shape[0]!=7: # check if

action is valid
print(’No actions or wrong action dimensions!’)
action = list(np.random.uniform(-0.1, 0.1, 7)) #

random
self.agent.set_joint_target_velocities(action) #

Execute action on arm
self.pr.step()

else:
raise NotImplementedError

Apart from moving the robot arm, the reward function, absorbing state, done,
and other information like the flag for object holding state are also needed to be
handled in the step() function, which is provided as follows. The reward for
successfully grasping the object is given by a positive offset value, while the penalty
for the object to be pushed off the table is a negative offset of the same value,
which forms a sparse reward and is potentially very hard to learn for the agent.
So we add distance penalty from the end effector to the target object for assisting
learning, as well as the penalty for the collision between the gripper and the table
to avoid gripper damage, which forms a dense reward. However, we need to know
that the dense reward can potentially have divergence with the final goal of the
task, which is to let the robot grasp the target object. Since the distance penalty
is proportional to the distance between the gripper and the object center, it will

434 Z. Ding and H. Dong

promote the gripper to be as close to the object center as possible, which may not
even be a proper gesture to grasp the object. More discussions about the divergence
between the reward function and the goal of the reinforcement learning task are
provided in Chap. 18. Because of that, we also augment the reward function with an
offset displacement of the target position above the target object rather than at the
center of the object, as discussed in later sections.

ax, ay, az = self.gripper.get_position()
if math.isnan(ax): # capture the broken gripper cases

during exploration
print(’Gripper position is nan.’)
self.reinit()
done=True

tx, ty, tz = self.target.get_position()
sqr_distance = (ax - tx) ** 2 + (ay - ty) ** 2 + (az - tz)

** 2 # squared distance between the gripper and the
target object

close the gripper if it’s close enough to the object and
the object is detected with the proximity sensor

if sqr_distance<0.1 and
self.proximity_sensor.is_detected(self.target)== True:
make sure the gripper is open before grasping
self.gripper.actuate(1, velocity=0.5)
self.pr.step()
self.gripper.actuate(0, velocity=0.5) # if done, close

the hand, 0 for close and 1 for open; velocity 0.5
ensures the gripper to close with in one frame

self.pr.step() # Step the physics simulation

if self._is_holding():
reward += self.reward_offset # extra reward for

grasping the object
done=True
hold_flag = True

else:
self.gripper.actuate(1, velocity=0.5)
self.pr.step()

elif np.sum(self.gripper.get_open_amount())<1.5: # if
gripper is closed (not fully open) due to collision or
others, open it; get_open_amount() return list of
gripper joint values
self.gripper.actuate(1, velocity=0.5)
self.pr.step()

else:
pass

the base reward is negative distance to target
reward -= np.sqrt(sqr_distance)

case when the object fall off the table

16 Robot Learning in Simulation 435

if tz <
self.initial_target_positions[2]-self.fall_down_offset:
done = True
reward = -self.reward_offset

Penalty for collision with the table
if self.gripper_left_pad.check_collision(self.table):

reward -= self.penalty_offset
#print(’Penalize collision with table.’)

if math.isnan(reward): # capture the cases of numerical
problem
reward = 0.

return self._get_state(), reward, done, {’finished’:
hold_flag}

The function for closing the environment is relatively simple.

def shutdown(self):
’’’ Close the simulator ’’’
self.pr.stop()
self.pr.shutdown()

In the following experiments, we only use the very primary settings of the above
grasping task: the initial position of the target object is fixed; the initialization of
the robot joint positions is properly chosen to prevent more complicated gestures of
robot; the robot is controlled with forward kinematics mode with joint velocities;
and the robot is controlled with numerical states including joint positions, joint
velocities, and target positions as observations. But the readers are free to play
around with more complicated settings like using inverse kinematics mode for
controlling the end position of the robot, using visual-based control from raw images
or combining it with partial numerical states, using less information as observations,
or setting the tasks to be harder and more complicated, etc.

In the project file, the environment of Sawyer grasping task can be tested with:

python sawyer_grasp_env_boundingbox.py

16.2 Reinforcement Learning for Robotics Tasks

The above robot learning environment based on forward kinematics control has
a 7-dimension continuous action space for joint velocities, and a 17-dimension
continuous state space, which is a relatively complicated environment compared
with examples in previous chapters like Chaps. 5 and 6. Moreover, the robot
simulation system is complicated as well, which makes the sampling process require

436 Z. Ding and H. Dong

considerable amounts of time. It is hard to train a relatively good policy using
a single-thread/process training framework within a short time. In practice, the
bottleneck for the speed of policy learning for the robot learning task mainly lies
in the simulation process in CoppeliaSim (V-REP), which makes the whole learning
process very inefficient if there is only one process for sampling. The paralleled
off-line training framework can improve the sampling speed for the task.

In this project, we use the paralleled soft actor-critic (SAC) algorithm, which
follows the same parallel framework as in the previous project of Chap. 13. The
detailed introduction of SAC algorithm is provided in Chap. 6 with both theories and
implementations, so here we only briefly describes the advantages of SAC algorithm
as a reason for our choice. As an off-policy learning algorithm, SAC with diagonal
Gaussian policies can handle high-dimensional continuous action spaces, and it is
more stable and less sensitive to hyperparameters than other algorithms like deep
deterministic policy gradient in training, especially with the adaptive learning of
the entropy factor (Haarnoja et al. 2018). It also leverages the soft Q-learning with
entropy regularization, which helps to boost explorations during training for hard
tasks like the robot grasping task here. Moreover, due to the off-policy learning
manner of SAC, it can be easily modified into a paralleled version in practice.

Even with the paralleled sampling processes, it can still be hard for the robot to
explore a good gesture for grasping the object with dense reward above, and even
harder for the sparse reward only. To further accelerating the learning process, we
augment the reward function with heuristics. First, as the target object is a cuboid
with its length longer than the gripper opening length, so the gripper can only
grasp the object with its direction vertical to the length direction, as well as facing
downwards. Therefore, we add an extra reward penalty as follows:

Augmented reward for orientation: better grasping gesture if the
gripper has vertical orientation to the target object.

Note: the frame of gripper has a difference of pi/2 in z
orientation as the frame of target.

desired_orientation = np.concatenate(([np.pi, 0],
[self.target.get_orientation()[2]])) # gripper vertical to
target in z and facing downwards,

rotation_penalty =
-np.sum(np.abs(np.array(self.agent_ee_tip.get_orientation())
-desired_orientation))

rotation_norm = 0.02
reward += rotation_norm*rotation_penalty

Secondly, as mentioned above, the negative distance between the gripper and the
object as part of the reward function may not lead to an optimal grasping gesture.
So the second augmentation on the reward function is an offset distance above the
center of the target object as the zero-penalty point, which modifies the distance
term to be:

16 Robot Learning in Simulation 437

offset=0.08 # augmented reward: offset of target position
above the target object

sqr_distance = (ax - tx) ** 2 + (ay - ty) ** 2 + (az -
(tz+offset)) ** 2 # squared distance between the
gripper and the target object

With above two augmentations in the reward function, the learning performance is
further improved compared with the original dense or sparse reward cases, as shown
in Fig. 16.8.

The reward engineering is one way of effectively combining prior knowledge
from humans for assisting learning in practice, which may be opposite to the
research pursuits. From the perspective of research, people may focus more on
reducing the amount of reward engineering and other human efforts in assisting
intelligent agent’s learning, and improve methods for achieving more intelligent
and automatic learning process. On the contrary, if the target is to achieve the task
in practice, some aids can be helpful. Apart from reward engineering, learning
from expert demonstrations is another way of effectively improve the learning
performances in practice, as detailed in Chap. 8.

Fig. 16.8 The learning performance of Sawyer robot grasping task with parallel training of SAC
algorithm, with different reward functions

438 Z. Ding and H. Dong

16.2.1 Parallel Training

The CoppeliaSim (V-REP) requires an individual process for each simulation
environment. Therefore, in order to speed up the sampling process, we have to set
up multi-processing instead of multi-threading for collecting samples in parallel. A
multi-processing version of SAC algorithm implemented with PyTorch is provided
in our code repository. The training and testing process can be started by simply run:

training
python sac_learn.py --train
testing
python sac_learn.py --test

In this code, the interaction process with the environment is achieved with
multiple processes, and each process contains one environment.

16.2.2 Learning Performance

We experimentally test the algorithm on the Sawyer grasping task, and a list of
hyperparameters during training is shown in Table 16.1. The learning performances
are shown in Fig. 16.8, with three different types of reward functions. The minus
ten reward in the sparse reward case in Fig. 16.8 is caused by the penalty of the
object falling off the table. Different reward functions will give different scales of
reward, which may not be a fair comparison purely from the learning curves by
reward. Therefore, in addition to the (smoothed) episode reward, we also display
the success rate of grasping during the learning process. As the training proceeds,
we can clearly see the success event is happening more and more frequently, which
indicates an improvement of grasping skills for the robot. The augmented reward

Table 16.1 Hyperparameters of SAC

Parameter Value

Optimizer Adam (Kingma and Ba 2014)

Learning rate 3·10−4

Reward discount (γ) 0.99

Number of workers 6

Hidden layers (policy) 4

Number of hidden units (policy) 512

Hidden layers (Q-network) 3

Number of hidden units (Q-network) 512

Batch size 128

Target entropy − Action dimension

Buffer size 1 · 106

16 Robot Learning in Simulation 439

Fig. 16.9 The Sawyer in
simulation is grasping the
object with deep
reinforcement learning policy
after training

function accelerates the learning process significantly compared with the original
dense reward, and the sparse reward makes it almost impossible to explore and learn
to grasp the object.

After thousands of episodes of training, the robot is already able to grasp the
target object with a fixed position, although in an inelegant gesture with not so high
success rate, as shown in Fig. 16.9. The overall learning process is conducted from
scratch without any demonstration or pre-training for this example.

16.2.3 Domain Randomization

When we apply the policy trained in simulation in reality, it is common to find
that the policy does not work in practice due to the differences between real-world
dynamics and the dynamic process we set in simulation. Domain randomization is a
method for improving the generalization ability of the policy when we try to transfer
the policy learned in simulation into real-world scenarios.

Domain randomization can be achieved through randomizing the physical
parameters in the environment, including the parameters for determining the
physical dynamics of the robotic arm, objects, and their interactions in the scene.
More specifically, randomizing the dynamic parameters is called dynamics ran-
domization (Peng et al. 2018), for example, the mass of the object, the friction
of the joints on robot arms, the friction between the object and the table, and so
on. Moreover, the color, light conditions, and textures can be randomized if using

440 Z. Ding and H. Dong

visual-based control, which learns the controlling agent according to the observed
images of the robot. For example, we can set the color of the object in PyRep with
following commands:

self.target.set_color(np.random.uniform(low=0, high=1,
size=3).tolist()) # set [r,g,b] 3 channel values of
the target object color

Other physical parameters in the simulation can be changed accordingly, which
is beyond the scope of this chapter. When training the agent, we can set these
parameters to be random for each episode or dozens of episodes during the whole
training process. Moreover, it is important to make sure that the randomization
ranges of dynamics parameters and other characteristics in simulation can cover
the real dynamic process in reality, so as to mitigate the reality gaps.

Domain randomization is only one potential approach for mitigating the reality
gap for sim-to-real transfer, and above visual feature randomization with PyRep in
CoppeliaSim is just a very simple example. A detailed description of other sim-to-
real methods is provided in Chap. 7.

16.2.4 Robot Learning Benchmark

In the above sections, we show how to build a simple scene for robot grasping
task and apply a reinforcement learning algorithm to solve it. Recently, James et al.
(2019b) proposes RLBench package (https://github.com/stepjam/RLBench) as a
large-scale benchmark and learning environment featuring 100 unique, hand-design
tasks, tailored to facilitate research in a number of vision-guided manipulation
research areas, not only in reinforcement learning, but also in imitation learning,
multi-task learning, geometric computer vision, and few-shot learning. As shown in
Fig. 16.10,5 RLBench is built on PyRep used in previous sections, and it contains
100 basic tasks for robotic manipulation including grasping, moving, stacking, and
other various manipulations, which are common to see in daily life. It also supports
customized task settings with a simple configuration process. Different learning
methods including reinforcement learning can be employed for solving these tasks.

The robotic grasping task in previous sections provides a typical framework for
robotic learning in simulation with CoppeliaSim (V-REP), which is also applicable
to RLBench package. They both contains at least three key components: (1) the task
scene built in CoppeliaSim (V-REP), (2) the scripts for defining the dynamics of
the environment, including reset() and step() functions, and (3) the scripts
providing a learning agent with algorithms like reinforcement learning. RLBench
follows this building framework but with a hierarchical structure for constructing
general tasks.

5Figure source: https://github.com/stepjam/RLBench.

https://github.com/stepjam/RLBench
https://github.com/stepjam/RLBench

16 Robot Learning in Simulation 441

Fig. 16.10 Tasks defined in RLBench for robot learning

Fig. 16.11 Robot learning tasks: (1) FetchPush environment in OpenAI Gym (left); (2) Goal-
reaching task with PyRep (middle); (3) SawyerLift task in RoboSuite (right)

The RLBench package can be installed with the following commands (if you have
already installed PyRep):

git clone https://github.com/stepjam/RLBench.git
pip3 install -r requirements.txt
python3 setup.py install --user

16.2.5 Other Simulators

Notice that there are a bunch of different simulation software for robot learning,
as shown in Fig. 16.11, including OpenAI Gym, CoppeliaSim (V-REP/PyRep)
(Rohmer et al. 2013; James et al. 2019a), MuJoCo (Todorov et al. 2012), Gazebo,
Bullet/PyBullet (Coumans et al. 2013; Coumans and Bai 2016), Webots (Michel
2004), Unity 3D, NVIDIA Isaac SDK, etc. These toolkits or platforms have different
characteristics for different applications in practice. For example, the OpenAI

442 Z. Ding and H. Dong

Gym robotics environment is a relatively simple environment for fast verification
of proposed methods, the CoppeliaSim and Unity 3D are both built on physics
simulators with relatively good rendering effects, and the MuJoCo has more realistic
and accurate physics engine, which can benefit the sim-to-real transfer, Isaac SDK
is a relatively new software (released in 2019) with strong supports in deep learning
algorithms and applications, as well as photo-realistic rendering based on Unity 3D,
etc.

References

Akkaya I, Andrychowicz M, Chociej M, Litwin M, McGrew B, Petron A, Paino A, Plappert M,
Powell G, Ribas R, et al. (2019) Solving Rubik’s cube with a robot hand. arXiv:191007113

Andrychowicz M, Baker B, Chociej M, Jozefowicz R, McGrew B, Pachocki J, Petron A, Plappert
M, Powell G, Ray A, et al. (2018) Learning dexterous in-hand manipulation. arXiv:180800177

Coumans E, Bai Y (2016) Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org

Coumans E, et al. (2013) Bullet physics library. Open source 15(49):5. bulletphysics.org
Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J, Kumar V, Zhu H, Gupta A, Abbeel P,

et al. (2018) Soft actor-critic algorithms and applications. arXiv:181205905
James S, Freese M, Davison AJ (2019a) PyRep: bringing V-REP to deep robot learning.

arXiv:190611176
James S, Ma Z, Arrojo DR, Davison AJ (2019b) RLBench: the robot learning benchmark and

learning environment. arXiv:190912271
Kingma D, Ba J (2014) Adam: a method for stochastic optimization. In: Proceedings of the

international conference on learning representations (ICLR)
Korenkevych D, Mahmood AR, Vasan G, Bergstra J (2019) Autoregressive policies for continuous

control deep reinforcement learning. arXiv:190311524
Michel O (2004) Cyberbotics Ltd. Webots™: professional mobile robot simulation. Int J Adv

Robot Syst 1(1):5
Peng XB, Andrychowicz M, Zaremba W, Abbeel P (2018) Sim-to-real transfer of robotic

control with dynamics randomization. In: 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, Piscataway, pp 1–8

Rohmer E, Singh SP, Freese M (2013) V-rep: a versatile and scalable robot simulation framework.
In: 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, Piscat-
away, pp 1321–1326

Todorov E, Erez T, Tassa Y (2012) MuJoCo: a physics engine for model-based control. In:
Proceedings of the International Conference on Intelligent Robots and Systems (IROS). IEEE,
Piscataway

http://pybullet.org
bulletphysics.org

Chapter 17
Arena Platform for Multi-Agent
Reinforcement Learning

Zihan Ding

Abstract In this chapter, we introduce a project named Arena for multi-agent
reinforcement learning research. The hands-on instructions are provided in this
chapter for building games with Arena toolkit, including a single agent game and a
simple two-agent game with different reward schemes. The reward scheme in Arena
is a way to specify the social structure among multiple agents, which contains social
relationships of non-learnable, isolated, competitive, collaborative, and mixed types.
Different reward schemes can be applied at the same time in a hierarchical structure
in one game scene, together with the individual-to-group structure for physical units,
to describe the complex relationships in multi-agent systems comprehensively.
Moreover, we also show the process of applying the baseline in Arena, which
provides several implemented multi-agent reinforcement learning algorithms as a
benchmark. Through this project, we want to provide the readers with a useful tool
for investigating multi-agent intelligence with customized game environments and
multi-agent reinforcement learning algorithms.

Keywords Multi-agent reinforcement learning · Learning environment ·
Toolkit · Competitive · Collaborative · Social relationship

In this chapter, we will introduce a powerful toolkit for multi-agent reinforcement
learning (MARL): Arena (Song et al. 2019). Arena is a general evaluation platform
for multi-agent intelligence based on Unity, with learning environments of diverse
logic and representations, as well as easy configurations on complex social tree
relationships between multiple agents. Arena also contains the implementation of
state-of-the-art deep multi-agent reinforcement learning algorithm baselines, which
can help the users to quickly testify the built-up environments. Generally, Arena
is a building toolkit for researchers to easily invent and build unexplored multi-
agent problems with customized game environments. The official website of Arena

Z. Ding (�)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_17

443

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_17&domain=pdf
mailto:zhding@mail.ustc.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_17

444 Z. Ding

is: https://sites.google.com/view/arena-unity/home. Arena focuses on first-person
or third-person action games, leveraging the fantastic rendering effects of Unity.
Recently published open-sourced project OpenSpiel (https://github.com/deepmind/
open_spiel) by DeepMind, focuses on multi-agent board or card games.

There are two major modules in Arena: (1). the Building Toolkit, which is used
to quickly build multi-agent environments with customized characteristics; (2). the
Baselines, for testing the built-up environments with MARL algorithms. We will
start by building the environments in Arena.

17.1 Intallation

Unity ML-agents toolkit is a prerequisite for Arena, which needs to be installed
before applying Arena. The complete process of installing Arena follows the official
website of Building Toolkit1 and Baseline.2

Note that if you are running on a remote server without a graphical user interface
(e.g., X-Server) or you cannot get access to the X-Server, you will need to set up
the virtual display following instructions in Sect. 17.3.1 or guidelines on the official
website of Arena.

After installation, we can find that in the Arena-BuildingToolkit/
Assets/ArenaSDK/GameSet/ file of Arena folder, there are dozens of built-in
games with both continuous and discrete action spaces. They are pre-designed as
examples for using Arena, you can read the scripts of all those games for better
understanding of how Arena works. All games and abstraction layers share one
Unity project. Each game is held in an independent folder, with the game’s name as
the folder name. The folder ArenaSDK holds all the abstraction layers and shared
code, assets, and utilities. Code style is kept as consistent as possible to the Unity
ML-agents toolkit.

17.2 Build Game with Arena

We will go through making a multi-agent game with the Arena Building Toolkit. It
will not require much coding work with many off-the-shelf assets and multi-agent
features managed by Arena. Before you start, we are expecting you to have some
basic knowledge about Unity. Therefore, you are recommended to finish the roll-a-
ball tutorial (https://learn.unity.com/project/roll-a-ball-tutorial) to learn all the basic
concepts of Unity.

1Building Toolkit: https://github.com/YuhangSong/Arena-BuildingToolkit.
2Baseline: https://github.com/YuhangSong/Arena-Baselines.

https://sites.google.com/view/arena-unity/home
https://github.com/deepmind/open_spiel
https://github.com/deepmind/open_spiel
https://learn.unity.com/project/roll-a-ball-tutorial
https://github.com/YuhangSong/Arena-BuildingToolkit
https://github.com/YuhangSong/Arena-Baselines

17 Arena Platform for Multi-Agent Reinforcement Learning 445

Fig. 17.1 Built-in games in Arena file

In order to use Arena, run Unity, choose open project, and select the cloned or
downloaded “Arena-BuildingToolkit” file. The opening process may take some time
for the first time.

We can see dozens of built-in games in the Arena folder, as shown in Fig. 17.1.
They are pre-designed as examples for using Arena, you can read the scripts of all
those games for better understanding of how Arena works. We will provide basic
instructions on building these games in the following sections.

17.2.1 Simple One-Player Game

We start by building a basic game environment with only one player in it:

• Create a folder to host your game. In this part, we create a folder named “1P” for
only one-player game.

• On the left-side “Hierarchy” window, we delete the original Main Camera and
Directional Light in it. Drag the prefab GlobalManager built in Arena folder
Assets/ArenaSDK/SharedPrefabs as shown in Fig. 17.2, to the left-side
“Hierarchy” window, as shown in Fig. 17.3. Note that the prefabs are useful and
shared components in Unity for using any built-in objects with a simple dragging
operation. GlobalManager in Arena manages the whole game, so all the other
components need to be attached under it.

• Next we need to place a playground for the agent to play on, we find the
prefabs in Arena called PlayGroundWithDeadWalls, and attach it to the child
called World of GlobalManager. The GlobalManager also has another child
TopDownCamera for providing an overall view of the game. This step is shown
in Fig. 17.4.

• Similar as above, we need to attach a BasicAgent from Arena prefabs and attach
it to the GlobalManager as shown in Fig. 17.5. So now we have one agent on the
playground in the scene, and we can manually drag the agent to a proper position,

446 Z. Ding

Fig. 17.2 The Arena built-in prefabs

Fig. 17.3 Drag the GlobalManager in Arena prefabs to the “Hierarchy” window of current game

Fig. 17.4 Choose a playground in Arena prefabs and attach it to the child of the GlobalManager

Fig. 17.5 Choose and attach a BasicAgent in Arena prefabs and attach it to the child of the
GlobalManager

17 Arena Platform for Multi-Agent Reinforcement Learning 447

Fig. 17.6 The scene with a single agent on the playground

Fig. 17.7 Configure the game settings of a single-player game

as in Fig. 17.6. The values of the x, y, and z coordinates of position and rotation
will be displayed on the Transform property of the agent.

• In order to make the game work normally, we also need to configure the
game parameters as shown in Fig. 17.7. Here we only need to change the
Living Condition Based On Child Nodes of the GlobalManager. The Living
Condition is chosen to be At Least Specific Number Living and the At Least
Specific Number Living value is set to be 1. As we only have one agent in
this game, the above settings ensure that whenever the number of agents under
GlobalManager is smaller than one, the game episode will end and restart. Now
we can press the Play button to play the game and operate the agent with keys
“W, A, S, D.” As on the edges of the playground are the “dead walls,” whenever
the agent touches it, it will die and the game will restart. There are lots of other
properties if you apply the BasicAgent, including different Actions Settings,
Reward Functions (for reinforcement learning), etc. You can play around with
them (only the Actions Settings are valid in this simple game) to get familiar
with Arena Building Toolkit.

448 Z. Ding

17.2.2 Simple Two-Player Game with Reward Scheme

In this section, we will introduce how to deploy more than one agent in the game
environment with a social tree.

• First, let us start from the above single-player game. If we choose the Global-
Manager or the BasicAgent, we will find that for both objects there is a script
called Arena Node (Script) as shown in Figs. 17.8 and 17.9, which is a basic
concept used to define the social relationships in Arena games. Descriptions
about Arena Node will be provided in this section.

• We choose BasicAgent built before and duplicate it by pressing Ctrl+C and
Ctrl+V in the left hierarchy window, as shown in Fig. 17.10. Now we have two
Arena Nodes under the Global Manager, therefore we need to set the Node ID
to be 1 instead of 0 for any one of the BasicAgents in order to discriminate them
(Fig. 17.11). The positions of the agents in the scene can be moved to a proper
position, so as to separate them because the two agents are initialized at the same
position after duplication.

Fig. 17.8 The Arena Node (Script) exists in GlobalManager

Fig. 17.9 The Arena Node (Script) exists in BasicAgent

Fig. 17.10 Duplicate the BasicAgent under the GlobalManager

17 Arena Platform for Multi-Agent Reinforcement Learning 449

Fig. 17.11 Change node ID to be different from each other when there are multiple nodes under
GlobalManager

Fig. 17.12 Set the reward scheme under GlobalManager

• Next we choose GlobalManager, Arena Node (Script), and we can set the
reward functions for the game, as shown in Fig. 17.12. We click the Is Reward
Ranking, which is a competitive reward function for agents under GlobalMan-
ager. We also choose Ranking Win Type to be Survive, which means the agent
died at the last place (surviving in the end) will get a positive reward. If you select
Depart, the reward will be given to the agent died in the first place. We also need
to unclick Is Reward Distance (which gives dense reward values according to

450 Z. Ding

the distance from the agent to the target) and Is Reward Time (which gives
reward values according to the living time of the agent). Above are different
reward schemes built in Arena, in a competitive and/or collaborative manner.
Different games will have different reward settings to represent different social
structures. You can play around with different reward settings for different games.
For example, if you want to set a dense reward according to the distance between
the agent and the target for a task like reaching the target, you need to click Is
Reward Distance, as well as dragging a target object to the Target blank to make
it work.

• We need to set the At Least Specific Number Living to be 2 under the Living
Condition Based On Child Nodes of GlobalManager, as shown in Fig. 17.13.
So that only when at least two agents are living, the game will continue;
otherwise the game will end and restart. Now we click the Play button, the
game should work normally. As long as one agent died, the game will end and
rewards/penalties will be given to agents as displayed in the Console, as shown
in Fig. 17.14.

• Next we will make the game more complex, we want to have two teams with
each containing two agents to compete with each other. So, first, we create an
empty object at the hierarchy window and name it “2 Player Team”. Then we
attach the Arena Node script to it, as shown in Fig. 17.15.

Fig. 17.13 Set the least number of living agents in GlobalManager

Fig. 17.14 The rewards given to each agent are displayed at the Console

17 Arena Platform for Multi-Agent Reinforcement Learning 451

Fig. 17.15 Attach the Arena Node script to the team object

• Now we drag the two previous BasicAgent to the new-built team object 2 Player
Team. Then we duplicate the 2 Player Team, change the Node ID of the second
team object to be 1 instead of 0. Now we have a structure of teams and agents
as shown in Fig. 17.16. If we click the Play button now, we shall see two teams
with two agents each in the scene as Fig. 17.17.

• As the At Least Specific Number Living of GlobalManager is set to be 2,
any team’s death will cause the game to end. Also as the At Least Specific
Number Living of 2 Player Team is 1 as default, only when both two agents
died at the same team will cause the team to die. We can also set the game
logic to be different, if we set the Living Condition of the 2 Player Team
to be All Living, then any agent died in a team will cause the team to die,
and therefore end the game. From above, you can see that with the social tree
structure like GlobalManager->Team->Agent, Arena can basically support any
kinds of social relationships with the Arena Node through defining the living
and reward schemes.

452 Z. Ding

Fig. 17.16 The hierarchy structure of two teams with two agents each under the GlobalManager
in Arena

Fig. 17.17 The game scene of two teams with two agents each during the play

17.2.3 Advanced Settings

Reward Scheme

To construct complex social tree relationship, there are five basic multi-agent reward
schemes (BMaRSs) in Arena that define different social paradigms at each node
in the social tree, including: non-learnable (NL), isolated (IS), competitive (CP),
collaborative (CL), competitive and collaborative mixed (CC). Specifically, each
BMaRS is a restriction applied to the reward function, so it corresponds to a batch of
reward functions that can lead to a specific social paradigm. For each BMaRS, Arena
provides multiple ready-to-use reward functions (sparse and dense), simplifying
the construction of games with complex social relationships. Apart from providing
reward functions, Arena also offers a verification option for customized reward

17 Arena Platform for Multi-Agent Reinforcement Learning 453

functions, so that one can make sure that the programmed reward functions lie in
one of the BMaRSs and produce a specific social paradigm. We will introduce these
five different reward schemes in detail.

First we need to give some preliminaries. We consider a Markov game as defined
in the basics of RL, consisting of multiple agents x ∈ X , a finite global state space
st ∈ S, a finite action space ax,t ∈ Ax for each agent x, and a bounded-step reward
space rx,t ∈ R for each agent x. For the environment, it consists of a transition
function g : S × {Ax : x ∈ X

}→ S, which is a stochastic (due to the stochasticity
of Unity simulator) function st+1 ∼ g

(
st+1|(st , {ax,t : x ∈ X)}), a reward function

for each agent fx : S × {Ax : x ∈ X
} → R, which is a deterministic function

rx,t+1 = fx

(
st , {ax,t : x ∈ X }), a joint reward function f = {fx : x ∈ X }, and

episode reward R
f
x = ∑T

t=1 rx,t for each agent x under the joint reward function
f . For the agent, Arena considers that it observes sx,t ∈ Sx , where Sx consists
of a part of the information from the global state space S. Therefore, there is a
policy πx : Sx → Ax , which is a stochastic function ax,t ∼ πx(sx,t). Besides,
Arena considers that agent x can take a policy πx from a set of policies �x . Arena
assumes that the random seed of all sampling operations is k, which is sampled from
the whole seed space K.

The definitions of different BMaRSs employ the basic concepts including agents
{x : x ∈ X }, policies {πx : �x}, agent rewards {Rf

x : x ∈ X }, and joint reward
functions F = {f : ·} on population X . The five different BMaRSs in Arena are
defined in the following way:

1. Non-learnable (NL) BMaRSs (FNL) are a set of joint reward functions f as
follows:

FNL = {f : ∀k ∈ K,∀x ∈ X ,∀πx ∈ �x, ∂R
f
x / ∂πx = 0

}
, (17.1)

where 0 is a zero matrix of the same size and shape as the parameter space that
defines πx . Intuitively, FNL means R

f
x for any agent x ∈ X is not optimizable

by improving its policy πx .
2. Isolated (IS) BMaRSs (F IS) are a set of joint reward functions f as follows:

F IS =
{

f : f /∈ FNL and ∀k ∈ K,∀x ∈ X ,∀x ′ ∈ X \ {x},

∀πx ∈ �x,∀πx ′ ∈ �x ′,
∂R

f
x

∂πx ′
= 0

}
, (17.2)

where “\” is the set difference. Intuitively,F IS means that the episode reward R
f
x

received by any agent x ∈ X is not related to any policy πx ′ taken by any other
agent x ′ ∈ X \ {x}. Reward functions fx in f of F IS are often called internal
reward functions in other multi-agent approaches (Hendtlass 2004; Jaderberg
et al. 2018; Bansal et al. 2018), meaning that apart from the reward functions

454 Z. Ding

applied at a population level (such as win/lost), which are too sparse to learn,
there are also reward functions directing the learning process towards receiving
the population-level rewards, yet are more frequently available, i.e., more dense
(Singh et al. 2009, 2010; Heess et al. 2017). F IS is especially practical when
the agent is a robot requiring continuous control of applying force on each of its
joints, which means basic motor skills (such as moving) need to be learned before
generating population-level intelligence. Therefore, Arena provides f in F IS of:
energy cost, punishment of applying a big force, encouragement of keeping a
steady velocity, and moving distance towards the target.

3. Competitive (CP) BMaRSs (FCP) are inspired by Cai and Daskalakis (2011)
and defined as

FCP =
{

f : f /∈ FNL ∪ F IS and ∀k ∈ K,∀x ∈ X ,

∀πx ∈ �x,∀πx ′ ∈ �x ′ ,
∂
∫
x ′∈X R

f

x ′dx ′

∂πx

= 0

}
, (17.3)

which intuitively means that for any agent x ∈ X , taking any possible policy
πx ∈ �x , the sum of the episode reward of all agents will not change. If the
episode length is 1, it expresses a classic multi-player zero-sum game (Cai and
Daskalakis 2011).

Useful examples of f within FCP are: (1) agents fight for a limited amount
of resources that are always exhausted at the end of the episode, and the agent
is rewarded for the amount of resources that it gained; and (2) fight till death,
and the reward is given based on the order of death (the reward can also be
based on the reversed order, so that the one departing the game first receives
the highest reward, such as in some poker games, the one who first discards all
cards wins). Rock, Paper, and Scissors in normal-form game (Myerson 2013) and
Cyclic Game in Balduzzi et al. (2019) are both special cases of FCP ;

4. Collaborative (CL) BMaRSs (FCL) are inspired by Cai and Daskalakis (2011)
and defined as

FCL =
{

f : f /∈ FNL ∪ F IS and ∀k ∈ K,∀x ∈ X ,

∀x ′ ∈ X \ {x},∀πx ∈ �x,∀πx ′ ∈ �x ′,
∂R

f

x ′

∂R
f
x

≥ 0

}
, (17.4)

which intuitively means that there is no conflict of interest (∂R
f

x ′ / ∂R
f
x < 0)

for any pair of agents (x ′, x). Besides, since f /∈ FNL ∪ F IS , there is at least
one pair of agents (x, x ′) that makes ∂R

f

x ′ / ∂R
f
x > 0. This indicates that this

pair of agents shares a common interest, so that improving R
f
x for agent x means

17 Arena Platform for Multi-Agent Reinforcement Learning 455

improving R
f

x ′ for agent x ′. The most common example of f within FCL is that
fx for all x ∈ X is identical, such as the moving distance of an object that can
be pushed forward by the joint effort of multiple agents, or the alive duration
of the population (as long as there is at least one agent alive in the population,
the population is alive). Therefore, Arena provides f in FCL: living time of the
team (both positive and negative, since some games require the team to survive
as long as possible, while other games require the team to depart as early as
possible, such as poker).

5. Competitive and Collaborative Mixed (CC) BMaRSs (FCC) are defined to be
any situation other than the above four ones.

FCC = {f : f /∈ FNL ∪ F IS ∪ FCP ∪ FCL
}
. (17.5)

First, the term ∂
∫
x ′∈X R

f

x ′dx ′ / ∂πx = 0 in (17.3) can be written as∫
x ′∈X ∂R

f

x ′ / ∂R
f
x dx ′ = 0 (proof is not provided here, which refers to

original paper), which makes an alternative (17.3). Considering FCP in this
alternative (17.3) and FCL in (17.5), an intuitive explanation of FCC is that
there exist circumstances when ∂R

f

x ′ / ∂R
f
x < 0, meaning that the agents are

competitive at this point. But the derivative of total interest
∫
x ′∈X ∂R

f

x ′ / ∂R
f
x dx ′

is not always 0, therefore, the total interest can be maximized with specific
policies, meaning that the agents are collaborative at this point.

Apart from providing several practical f in each BMaRS, Arena also provides
a verification option for each BMaRS, meaning that one can customize a f and
use this verification option to make sure that the programmed f lies in a specific
BMaRS.

The above contents provide the theory about how to use different kinds of reward
functions to define social relationships. Moreover, the reward functions should be
defined with respect to the categories of the above definitions to achieve the expected
social relationships in the population. In practice, the reward functions have some
specific formats like those we mentioned in previous sections. The Arena framework
usually defines the Collaborative and Competitive reward functions in the Arena
Node of GlobalManager, and the Isolated reward functions are defined in the
Arena Node of agents like BasicAgent.

Here is an example for understanding the social tree relationship using different
BMaRs for each Arena Node as shown in Fig. 17.18.3 The reward schemes are
assigned at each Arena Node to define the social relationships of its sub-nodes. The
graphical user interface (GUI) in Fig. 17.18a defines a tree structure in Fig. 17.18b,
representing a population of 4 agents. The tree structure can be easily reconfigured
through dragging, duplicating, or deleting in the GUI in Fig. 17.18a. In this example,

3Figure source: Song, Yuhang, et al. “Arena: A General Evaluation Platform and Building Toolkit
for Multi-Agent Intelligence.” arXiv preprint arXiv:1905.08085 (2019).

456 Z. Ding

Fig. 17.18 The social tree defined in Arena using different BMaRs for each Arena Node

Fig. 17.19 Common social paradigms defined in Arena framework

each agent has an agent-level BMaRS. The agent is a robot ant, so that the
agent-level BMaRSs are F IS , specifically, the option of ant-motion that directs
the learning towards basic motion skills such as moving forward, as shown in
Fig. 17.18c. Each two agents form a team (which is a set of agents or teams), and the
two agents have team-level BMaRSs. In this example, the two robot ants collaborate
with each other to push a box forward, as shown in Fig. 17.18d. Therefore, the
team-level BMaRSs are FCL, specifically, the moving distance of the box. On the
two teams, Arena has global-level BMaRSs. In this example, the two teams are set
to have a match regarding which team pushes its box to the target point first, as
shown in Fig. 17.18e. Therefore, the global-level BMaRSs are FCP , specifically,
the ranking of the box reaching the target. The final reward function applied to each
agent is a weighted sum of the above three BMaRSs at three levels. One can imagine
defining a social tree of more than three levels, where small teams form into bigger
teams, and BMaRSs are defined at each node to give more complex and structured
social problems. After defining the social tree and applying BMaRSs on each node,
the environment is ready for use with the abstraction layer handling everything else,
such as assigning viewports to each agent in the window, applying the team color,
displaying the agent ID, and generating a top-down view.

Moreover, we can easily extend the above framework to other common social
paradigms, as shown in Fig. 17.19.4

4Figure source: Song, Yuhang, et al. “Arena: A General Evaluation Platform and Building Toolkit
for Multi-Agent Intelligence.” arXiv preprint arXiv:1905.08085 (2019).

17 Arena Platform for Multi-Agent Reinforcement Learning 457

More Agent Prefabs

Apart from the previous BasicAgent, Arena has other more advanced agent prefabs
for the off-the-shelf usage, as shown in Fig. 17.20. The usage of other agents is
mostly like BasicAgent, through dragging and attaching it under the GlobalMan-
ager. The only difference lies in the action space, you need to change a correspond-
ing brain for controlling different agents. For example, the ArenaCrawlerAgent
in the agent prefabs looks like Fig. 17.21, which has continuous action space for
controlling the action values of joints. In order to use this agent properly, we need to
change the brain of ArenaCrawlerAgent to be ArenaCrawlerPlayerContinuous
(PlayerBrain) as shown in Fig. 17.22. Then the game can be exported and used for
training as general games.

17.2.4 Export Binary Game

After you have tested the game in Unity within the player mode, and make sure that
there is no problem in the game settings, you can export the game to be a stand-
alone binary file, and use it for training the MARL algorithms with Python scripts.
This section will show you how to export the game.

Fig. 17.20 Different agent
prefabs in Arena

Fig. 17.21 The
ArenaCrawlerAgent in the
scene

458 Z. Ding

Fig. 17.22 Change the brain for ArenaCrawlerAgent

Fig. 17.23 The original brain type in player mode

• First, we need to change the brain type from PlayerBrain to a corresponding
LearningBrain (of the same type), the PlayerBrain is used for controlling
the game agents with user keyboard operations and the LearningBrain is to
learn the controlling with learning algorithms. As shown in Fig. 17.23, for
this game, we change the GeneralPlayerDiscrete (PlayerBrain) to be the
GeneralLearnerDiscrete (LearningBrain) in Fig. 17.24. We also uncheck the
Debugging to reduce output information during training.

• To export the game, we choose File->Build Settings, and get a window like in
Fig. 17.25. We set the Target Platform and Architecture accordingly.

• We also need to click Player Settings to check the configurations, as shown in
Fig. 17.26. One thing to notice is that the Display Resolution Dialog needs to be
Disabled to work correctly. Then we go back to the previous window and click
Build. We can get the binary file of the game after building.

17 Arena Platform for Multi-Agent Reinforcement Learning 459

Fig. 17.24 Change the brain type to be LearningBrain to export the game for training

Fig. 17.25 Check the configurations when building the game

460 Z. Ding

Fig. 17.26 The window of configuring export of the game

17.3 MARL Training

With the exported stand-alone games built with Arena, we can set up the training
process for investigating diverse problems in multi-agent reinforcement learning
(MARL).

Before training, we need to first set up the system. As MARL generally requires
large amounts of computation, we usually need a server to handle the training
process. The basic settings of Arena environments follow the Sect. 17.1 at the
beginning of this chapter. If you cannot use the X-Server properly on the server,
you can follow the following subsection to setup virtual display; otherwise, just
jump to the training sections.

17 Arena Platform for Multi-Agent Reinforcement Learning 461

17.3.1 Setup X-Server

The basic settings of using virtual display are as follows:

Install Xorg
sudo apt-get update
sudo apt-get install -y xserver-xorg mesa-utils
sudo nvidia-xconfig -a --use-display-device=None

--virtual=1280x1024

Get the BusID information
nvidia-xconfig --query-gpu-info

Add the BusID information to your /etc/X11/xorg.conf file
sudo sed -i ’s/ BoardName "GeForce GTX TITAN X"/ BoardName

"GeForce GTX TITAN X"\n BusID "0:30:0"/g’ /etc/X11/xorg.conf

Remove the Section "Files" from the /etc/X11/xorg.conf file
And remove two lines that contain Section "Files" and

EndSection
sudo vim /etc/X11/xorg.conf

Download and install the latest Nvidia driver for ubuntu
Please refer to

http://download.nvidia.com/XFree86/Linux-#x86_64/latest.txt
wget http://download.nvidia.com/XFree86/Linux-x86_64/390.87/

NVIDIA-Linux-x86_64-390.87.run
sudo /bin/bash ./NVIDIA-Linux-x86_64-390.87.run --accept-license

--no-questions --ui=none

Disable Nouveau as it will clash with the Nvidia driver
sudo echo ’blacklist nouveau’ | sudo tee -a

/etc/modprobe.d/blacklist.conf
sudo echo ’options nouveau modeset=0’ | sudo tee -a

/etc/modprobe.d/blacklist.conf
sudo echo options nouveau modeset=0 | sudo tee -a

/etc/modprobe.d/nouveau-kms.conf
sudo update-initramfs -u

sudo reboot now

Kill Xorg using one of the following three ways (different ways may work on
different Linux versions):

approach 1: run following and then run the output of this
command

ps aux | grep -ie Xorg | awk ’{print "sudo kill -9 " $2}’
approach 2: run following
sudo killall Xorg
approach 3: run following
sudo init 3

462 Z. Ding

Start vitual display with:

sudo ls
sudo /usr/bin/X :0 &

You should see the virtual display starts successfully with the output as follows:

X.Org X Server 1.19.5
Release Date: 2017-10-12
X Protocol Version 11, Revision 0
Build Operating System: Linux 4.4.0-97-generic x86_64 Ubuntu
Current Operating System: Linux W5 4.13.0-46-generic #51-Ubuntu

SMP Tue Jun 12 12:36:29 UTC 2018 x86_64
Kernel command line:

BOOT_IMAGE=/boot/vmlinuz-4.13.0-46-generic.efi.signed
root=UUID=5fdb5e18-f8ee-4762-a53b-e58d2b663df1 ro quiet
splash nomodeset acpi=noirq thermal.off=1 vt.handoff=7

Build Date: 15 October 2017 05:51:19PM
xorg-server 2:1.19.5-0ubuntu2 (For technical support please see

http://www.ubuntu.com/support)
Current version of pixman: 0.34.0

Before reporting problems, check http://wiki.x.org
to make sure that you have the latest version.

Markers: (--) probed, (**) from config file, (==) default
setting,
(++) from command line, (!!) notice, (II) informational,
(WW) warning, (EE) error, (NI) not implemented, (??) unknown.

(==) Log file: "/var/log/Xorg.0.log", Time: Fri Jun 14 01:18:40
2019

(==) Using config file: "/etc/X11/xorg.conf"
(==) Using system config directory "/usr/share/X11/xorg.conf.d"

If you are seeing errors, go back to “kill Xorg using one of following three way”
and try another way.

Before running “Arena-Baselines” in a new window, run following command to
attach a virtual display port to the window:

export DISPLAY=:0

17.3.2 Run Training

Create TMUX session (if the machine is a server you connect via SSH) and enter
virtual environment:

tmux new-session -s Arena
source activate Arena

17 Arena Platform for Multi-Agent Reinforcement Learning 463

Continuous Action Space

List of games with continuous action space in Arena:

• ArenaCrawler-Example-v2-Continuous
• ArenaCrawlerMove-2T1P-v1-Continuous
• ArenaCrawlerRush-2T1P-v1-Continuous
• ArenaCrawlerPush-2T1P-v1-Continuous
• ArenaWalkerMove-2T1P-v1-Continuous
• Crossroads-2T1P-v1-Continuous
• Crossroads-2T2P-v1-Continuous
• ArenaCrawlerPush-2T2P-v1-Continuous
• RunToGoal-2T1P-v1-Continuous
• Sumo-2T1P-v1-Continuous
• YouShallNotPass-Dense-2T1P-v1-Continuous

Run the training commands, replace GAME_NAME with above games
and choose proper num-processes (with num-mini-batch equivalent to num-
processes) according to your machine,:

tmux new-session -s Arena
CUDA_VISIBLE_DEVICES=0 python main.py --mode train --env-name

GAME_NAME --obs-type visual --num-frame-stack 4
--recurrent-brain --normalize-obs --trainer ppo --use-gae
--lr 3e-4 --value-loss-coef 0.5 --ppo-epoch 10
--num-processes 16 --num-steps 2048 --num-mini-batch 16
--use-linear-lr-decay --entropy-coef 0 --gamma 0.995 --tau
0.95 --num-env-steps 100000000
--reload-playing-agents-principle OpenAIFive --vis
--vis-interval 1 --log-interval 1 --num-eval-episodes 10
--arena-start-index 31969 --aux 0

Discrete Action Space

List of games with discrete action space in Arena:

• Crossroads-2T1P-v1-Discrete
• FighterNoTurn-2T1P-v1-Discrete
• FighterFull-2T1P-v1-Discrete
• Soccer-2T1P-v1-Discrete
• BlowBlow-2T1P-v1-Discrete
• Boomer-2T1P-v1-Discrete
• Gunner-2T1P-v1-Discrete
• Maze2x2Gunner-2T1P-v1-Discrete
• Maze3x3Gunner-2T1P-v1-Discrete
• Maze3x3Gunner-PenalizeTie-2T1P-v1-Discrete

464 Z. Ding

• Barrier4x4Gunner-2T1P-v1-Discrete
• Soccer-2T2P-v1-Discrete
• BlowBlow-2T2P-v1-Discrete
• BlowBlow-Dense-2T2P-v1-Discrete
• Tennis-2T1P-v1-Discrete
• Tank-FP-2T1P-v1-Discrete
• BlowBlow-Dense-2T1P-v1-Discrete

Run the training commands, replace GAME_NAME with above games
and choose proper num-processes (with num-mini-batch equivalent to num-
processes) according to your machine,:

CUDA_VISIBLE_DEVICES=0 python main.py --mode train --env-name
GAME_NAME --obs-type visual --num-frame-stack 4
--recurrent-brain --normalize-obs --trainer ppo --use-gae
--lr 2.5e-4 --value-loss-coef 0.5 --ppo-epoch 4
--num-processes 16 --num-steps 1024 --num-mini-batch 16
--use-linear-lr-decay --entropy-coef 0.01 --clip-param 0.1
--num-env-steps 100000000 --reload-playing-agents-principle
OpenAIFive --vis --vis-interval 1 --log-interval 1
--num-eval-episodes 10 --arena-start-index 31569 --aux 0

You can also change other MARL algorithms instead of the PPO above to test
the games you build.

17.3.3 Visualization

To visualize the learning curves for analyzing the training process with Tensorboard,
run:

source activate Arena && tensorboard --logdir ../results/ --port
8888

and visit http://localhost:4253 for visualization with tensorboard.

Acknowledgments We give special thanks to Yuhang Song, Prof. Zhenghua Xu, Prof. Thomas
Lukasiewicz, et al., for their great contributions in the Arena project.

References

Balduzzi D, Garnelo M, Bachrach Y, Czarnecki WM, Perolat J, Jaderberg M, Graepel T (2019)
Open-ended learning in symmetric zero-sum games. arXiv:190108106

Bansal T, Pachocki J, Sidor S, Sutskever I, Mordatch I (2018) Emergent complexity via multi-
agent competition. In: ICLR. In: International Conference on Learning Representations. https://
openreview.net/forum?id=Sy0GnUxCb

http://localhost:4253
https://openreview.net/forum?id=Sy0GnUxCb
https://openreview.net/forum?id=Sy0GnUxCb

17 Arena Platform for Multi-Agent Reinforcement Learning 465

Cai Y, Daskalakis C (2011) On minmax theorems for multiplayer games. In: Proceedings of the
twenty-second annual ACM-SIAM symposium on discrete algorithms. Society for Industrial
and Applied Mathematics, Philadelphia

Heess N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami S, Riedmiller
M, et al. (2017) Emergence of locomotion behaviours in rich environments. arXiv:170702286

Hendtlass T (2004) An introduction to collective intelligence. In: Applied intelligent systems.
Springer, Berlin,

Jaderberg M, Czarnecki WM, Dunning I, Marris L, Lever G, Castaneda AG, Beattie C, Rabinowitz
NC, Morcos AS, Ruderman A, et al. (2018) Human-level performance in first-person multi-
player games with population-based deep reinforcement learning. Computing Res Repository.
http://arxiv.org/abs/1807.01281

Myerson RB (2013) Game theory. Harvard University Press, Cambridge
Singh S, Lewis RL, Barto AG (2009) Where do rewards come from. In: Proceedings of the annual

conference of the cognitive science society
Singh S, Lewis RL, Barto AG, Sorg J (2010) Intrinsically motivated reinforcement learning: an

evolutionary perspective. IEEE Trans Auton Ment Dev 2(2):70–82
Song Y, Wang J, Lukasiewicz T, Xu Z, Xu M, Ding Z, Wu L (2019) Arena: a general evaluation

platform and building toolkit for multi-agent intelligence. arXiv:190508085

http://arxiv.org/abs/1807.01281

Chapter 18
Tricks of Implementation

Zihan Ding and Hao Dong

Abstract Previous chapters have provided the readers the main knowledge of
deep reinforcement learning, main categories of reinforcement learning algorithms
as well as their code implementations, and several practical projects for bet-
ter understanding deep reinforcement learning in practice. However, due to the
aforementioned challenges like low sample efficiency, instability, and so on, it
may still be hard for the novices to employ those algorithms well in their own
applications. So in this chapter, we summarize some common tricks and methods
in detail, either mathematically or empirically for deep reinforcement learning
applications in practice. The methods and tips are provided from both the stage
of algorithm implementation and the stage of training and debugging, to avoid the
readers from getting trapped in some practical dilemmas. These empirical tricks
can be significantly effective in some cases, but not always. This is due to the
complexity and sensitivity of deep reinforcement learning models, where sometimes
an ensemble of tricks needs to be applied. People can also refer to this chapter to
get some enlightenment of solutions when getting stuck on the projects.

Keywords Deep reinforcement learning · Application · Implementation ·
Reward engineering · Neural network · Normalization · Efficiency · Stability

Z. Ding (�)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

H. Dong
Peking University, Beijing, China
e-mail: hao.dong@pku.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_18

467

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_18&domain=pdf
mailto:zhding@mail.ustc.edu.cn
mailto:hao.dong@pku.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_18

468 Z. Ding and H. Dong

18.1 Overview: How to Apply Deep Reinforcement
Learning?

Deep learning is often referred to as a “black-box” method. However, it is not
actually “black-box,” but can sometimes still be unstable and provide unpredictable
results. In deep reinforcement learning, this problem is even worse as the basic
learning process of reinforcement learning requires the agent to learn in a dynamic
process with reward signals instead of labels. This is in contrast to supervised
learning. Rewards in reinforcement learning settings may also contain incomplete
or local information, and the agent needs to chase a changing goal when using
bootstrapping learning methods. Moreover, an algorithm with more than one deep
neural network is common in deep reinforcement learning, especially for more
advanced and recent proposed methods, which also makes deep reinforcement
learning algorithms unstable and potentially sensitive to hyperparameters. The
above problems make research or applications with deep reinforcement learning
hard to work in practice. Because of this, here we described some common tricks
and suggestions for implementing deep reinforcement learning.

First of all, you need to know whether a reinforcement learning algorithm
should be used for a certain problem or not, and it definitely does not work
for all tasks. We usually need to carefully consider if reinforcement learning is
suitable for solving a task. Generally, reinforcement learning works for sequential
decision-making problems, which can be estimated via a Markov decision process.
A prediction task with a labeled data set does not require reinforcement learning
algorithms, and a supervised-learning method can be more straightforward and
effective. Reinforcement learning tasks always contain at least two key components:
(1) the environment, which provides the dynamic process and reward signals and (2)
the agent, which is controlled by a policy learned with reinforcement learning. The
reinforcement learning algorithms implemented in previous chapters are used for
solving tasks like OpenAI Gym environments. In these experiments, you do not
need to care more about the environments as they are mostly already standardized
and normalized. However, the environments in some projects described in the
application chapters need to be defined manually, as well as applying reinforcement
learning algorithms for the agent to make it work.

Generally, there are several stages for applying deep reinforcement learning in
applications:

1. Toy-test stage: you should use the simple models including the reinforcement
learning algorithms with high confidence of the accuracy and correctness, to
explore the environments (even using random policy) if it is a new task, or
to testify the extensions you are going to apply on the final model step by
step, instead of applying the complicated models all at once. You can run these
experiments very quickly to see if there are any problems with the environment
or general model settings, or at least you can familiarize yourself with the tasks

18 Tricks of Implementation 469

you are going to handle, which could give you some useful intuitions afterward
and show you some corner cases for consideration.

2. Fast-configuration stage: you should take fast tests of model settings to evaluate
the potential of success. Visualize the learning process as much as possible if
there is any bug, and use statistical variables if you cannot get the underlying
relationships from the numbers directly. This step should start from the toy test in
the first stage and gradually increases the complexity of your new model. Every
attempt should be tested if you are not 100% certain about its effectiveness.

3. Deploy-training stage: after you have carefully configured the correctness of
the model, you can start deploying the training in a large scale. As deep
reinforcement learning usually needs a large number of samples to train for a long
time, you will always be encouraged to use parallel training, cloud computing,
etc., to speed up the large-scale training of the final model. Sometimes this stage
has to be mixed with the second stage and could potentially take a long time in
practice.

In the following sections the tricks of applying deep reinforcement learning will
be described in several parts.

18.2 Implementation

• Implement some fundamental reinforcement learning algorithms from
scratch. For a starter in the deep reinforcement learning area, it is a good
practice to implement some fundamental reinforcement learning algorithms
from scratch, debug it, and make it work finally. The Deep Q-Network is
worth implementing as it is the foundation of most value-based algorithms.
Policy gradient and actor-critic algorithms are good choice to start with for
continuous action space. This process will require you to understand each line
in the implemented reinforcement learning algorithms and provide you a rough
idea of reinforcement learning process. At the beginning, you do not need a
complicated large-scale task, but a relatively simple one with a fast learning
process, like those in OpenAI Gym environments. You should follow a common
structure as well as using one type of deep learning framework (i.e., TensorFlow,
PyTorch, etc.) when implementing those basic methods, and gradually scale
it up to more complicated tasks as well as more advanced techniques (e.g.,
prioritized experience replay, etc.). This will significantly accelerate the process
when you work on other projects with different deep reinforcement learning
algorithms later. If you meet some problems during the implementation process,
you can refer to others’ implementation (e.g., the tutorial reinforcement learning

470 Z. Ding and H. Dong

algorithms implementation1 provided together with the book) or search the
problem on the internet. Most of the problems are solved by others.

• Moderately implement the details in papers. After you get familiar with those
fundamental reinforcement learning algorithms, you can start to implement and
test some methods in the literature. Usually papers in the deep reinforcement
learning research area contain lots of implementation details, and sometimes they
are not even consistent across papers. So, when you implement those methods, do
not overfit to the details of the paper, but get a general understanding about why
the authors chose to apply the tricks in a specific situation. A typical example
is that, in most papers, the detailed structures of the neural networks used in the
experimental tests including even the dimensions and numbers of hidden layers,
values of each hyperparameter, etc., are provided in the body of the paper or the
supplementary materials. You do not need to strictly follow those details during
the implementation of your own version, and you may not even test the method
with exactly the same environment as the original paper does. For example, in
the original paper of the deep deterministic policy gradient algorithm, the authors
recommend to use the Ornstein–Uhlenbeck (OU) noise for exploration. However,
it is sometimes hard to say if the OU noise is better than the Gaussian noise in
practice, which depends on the specific tasks to a great extent. Another example is
that, in the work of AlphaStar by Vinyals et al. (2019), the vanilla TD(λ) method
is found to be better than the more advanced off-policy correction method V-trace
(Espeholt et al. 2018) in practice. Therefore, if those tricks are not general enough
to work well, it may not even be worth your effort on implementing them. Some
fine-tuning methods for a specific task may produce better results. However, as
mentioned above, understanding why the tricks can work for the cases by the
authors is more critical and meaningful. These suggestions are more useful when
you try to borrow an idea from a paper and apply it in your own method, because
sometimes it is not the main idea in the paper but a specific trick or operation
helps the most in your cases.

• Explore the environment if you are working on solving a specific task. You
should check the environment details including properties of the observation and
actions like dimension, value range, property of continuous or discrete value,
etc. You should normalize values like observations of environments if they are
unknown or within a large valid range. For example, if you are using tanh or
sigmoid as activation functions, large values of inputs will have the chance to
saturate the nodes in the first hidden layer, which can lead to a slow learning
process with small gradients at the beginning of training. Moreover, you should
choose good input features for reinforcement learning, which contain more useful
information for the environment. You can also use the agent with random actions
to explore the environment and visualize it to see if there are any corner cases.
This step is more important if the environment is built by yourself.

1https://github.com/tensorlayer/tensorlayer/tree/master/examples/reinforcement_learning.

https://github.com/tensorlayer/tensorlayer/tree/master/examples/reinforcement_learning

18 Tricks of Implementation 471

• Choose a proper output activation function for each network. You should
apply the proper output activation function for the actor network according to
the environment. For example, ReLU could work quite well for the hidden layer,
for both computation time and convergence performance; but may not be proper
for output action range with possible negative values. It is better to fit the output
range of policy with the action value range for the environment, like using tanh
activation as output layers for action value range of (−1, 1).

• Start with the toy example and gradually increase the complexity. You should
begin with the models or environments you are very clear about for tests, and
go step by step with new components instead of assembling all modules before
testing and debugging. Keep taking tests during implementation. You should
never expect a complicated model can be implemented once and work directly
unless you are an expert and lucky.

• Start with dense reward functions. The reward function can affect the convex-
ity of the optimization in the learning process, so a smooth and dense reward
function is always what you should try at the beginning stage. For example, in
the robotic reaching task defined in the application Chap. 16, we start the robot
learning with a dense reward, which is defined to be the negative distance from
the robot gripper to the target object. This will ensure a smooth hyperplane for the
value networks and policy networks to be optimized upon, and, therefore, speed
up the learning process significantly. The sparse reward can be defined to be a
simple binary value indicating whether the robot has reached the target object or
not, which is hard to explore and learn for the robot without leveraging additional
information.

• Choose proper network architectures. Although in deep learning it is common
to see a network with dozens of layers and billions of parameters, especially
in fields like computer vision (He et al. 2016) and natural language processing
(Jaderberg et al. 2015), in deep reinforcement learning generally a “deep”
network indicates its depth of more than five layers, and it is quite common to
see the networks in deep reinforcement learning algorithms with only 2–5 layers,
depending on the environment. Therefore, unless the environment is really in
a huge scale and you have hundreds or thousands of GPUs or TPUs, you are
not supposed to apply a network with ten layers or more in deep reinforcement
learning. This is not only limited by the training resources, but also related to
the instability and non-monotonic improvement of deep reinforcement learning
due to a lack of supervisory signals. The network can overfit the data set if
the network capacity is too large compared to the data in supervised learning,
while in deep reinforcement learning it may just converge slowly or even diverge
due to the strong correlations between the exploration and exploitation. For
choosing the size of the network, it usually depends on the state space and
action space. A discrete environment with dozens of state-action combinations
may be solved with a tabular method, or a single- or two-layer neural network.
More complicated cases like applications in Chaps. 13 and 16 with dozens of
continuous dimensions for states and actions may require more than three layers,

472 Z. Ding and H. Dong

but still on a small scale compared with gigantic networks in other deep learning
fields.

As for the structure of the networks, it is common to see plain multi-
layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent
neural networks (RNNs) in literature. Advanced and sophisticated network
structures are rarely applied unless there are specific requirements for fine-
tuning the models and other special cases. A low-dimensional vectorized input
can be handled with MLPs, and vision-based policy learning usually requires a
CNN backbone to extract information beforehand, either trained together with
reinforcement learning loss or pre-trained with other computer vision methods.
There are also cases when both vectorized low-dimensional inputs and image-
based high-dimensional inputs are used at the same time; a backbone for feature
extraction on high-dimensional inputs and concatenation with the rest low-
dimensional inputs are usually employed in practice. RNNs can be applied when
the environment is not fully observable or non-Markovian, where the optimal
action choice may depend on previous states other than the current state. The
above empirical instructions work for both the policy and the value networks
in practice. Sometimes the policy and the value may take different inputs as
states to form an asymmetric actor-critic structure, which can be applied when
the value network is only a guidance for the policy network during training and
not accessible anymore in action prediction.

• Get familiar with the properties of the reinforcement learning algorithm you
use. For example, the trust-region based methods like PPO or TRPO may need
large batch size to ensure safe improvement. For these trust-region methods, we
would expect a steady improvement in policy performance, instead of a sudden
dramatic decrease at some points on the learning curve. The reason for the trust-
region methods like TRPO to use a larger batch size is that it applies the conjugate
gradient to approximate the Fisher information matrix, with respect to current
sampled batch. This can be problematic when the batch is too small or biased,
which will end up with an inaccurate Fisher information matrix (or inverse Hes-
sian product) approximation and therefore a decrease in learning performances.
So, in practice, the batch size of algorithms TRPO and PPO should be enlarged
until the agent can learn with a steadily improved performance. Therefore, TRPO
sometimes cannot scale up to large-scale networks or deep CNNs and RNNs
well. DDPG is usually considered to be sensitive to hyperparameters although
it has been shown to be effective on tasks with continuous action space. The
sensitivity can be more significant when it is applied on large-scale or real-world
tasks (Mahmood et al. 2018). For example, although a thorough hyperparameter
searching process can provide an optimal performance on simulated toy tests
ultimately, learning in the real-world may not allow this kind of hyperparameter
searching due to the time and resources limitation, and, therefore, DDPG may
lead to a worse learning performance compared with other algorithms like TRPO
and SAC. Also, although DDPG algorithms are originally designed for tasks with
continuous-valued actions, it does not mean that it cannot work for discrete-
action cases. When you try to apply it on tasks with discrete-valued actions,

18 Tricks of Implementation 473

some additional tricks can be applied for solving this, like a sigmoid(tx) output
activation with a large t value can be added and then clipped for binary-valued
output with small truncated errors, or you can directly apply the Gumbel–Softmax
trick and change the deterministic output to be a categorical distribution. Other
algorithms can be processed similarly.

• Normalize the values. Generally, you should normalize the reward values with
rescaling but not shifting the mean, and standardize the prediction targets for
the value functions as well in the same manner. Reward scaling is conducted on
the sample batch for training. The reason for only taking the value scaling (e.g.,
divided by the standard deviation value) but no mean shifting (e.g., zero mean) is
that mean shifting may hurt the living will of the agent. This is actually related to
the signs of general reward values in the reward function and only holds for the
cases when you are using the “done” signals, which means you can take a mean
shifting when not using “done” signals for terminating the episode in advance.
Considering the agent is going through an episode with a “done=True” happened
before the maximum length of the episode. Then the reward values after this
“done” signal are actually zeros if we still pretend their existence. If these zero
values are generally higher than previous reward values (i.e., previous reward
values are generally negative), then the agent will tend to terminate the episode as
early as possible, to maximize its episode reward. Otherwise the agent will “live”
longer if its reward values are generally positive. If we take the mean shifting in
the reward values, it will break the living will described in the above scenarios,
which may not make the agent live longer even when reward values are generally
positive. So this could hurt the performance in training. Standardizing the target
value function is similar. For example, the average Q-value in some DQN-based
algorithms can keep increasing during learning in an unexpected mode, which is
caused by overestimation of Q-value with the maximized optimization formula.
A normalized target Q-value could alleviate the problem, as well as applying
tricks like double Q-learning.

• A tip of the discount factor. You can have a rough sense of the effective time
horizon for evaluating the single-step action choice according to the discount
factor γ : 1 + γ + γ 2 + · · · = 1/(1 − γ). For γ = 0.99, we usually neglect the
rewards after 100 time steps, and this can speed up the process when you set the
parameter.

• Done signal is true only for terminal states. There are some nuances in deep
reinforcement learning which are easy to ignore for novices, and the “done”
signal in episodic reinforcement learning is one of them. These nuances make
different implementations of even the same algorithms display totally different
performances in practice. The “done” signal is commonly applied in episodic
reinforcement learning when trying to finish the episodes, and it is a function of
the state of the environment, set to be true whenever the terminal state is reached
by the agent. Note that here the terminal state is defined to be a state indicating
the agent has finished the episode, either in success or failure cases, rather than
an arbitrary state when the time limit or maximal episode length is reached. It is
not trivial to require that the “done” signal is set to be true only when the state is

474 Z. Ding and H. Dong

a terminal state. For example, if the task is to manipulate the robot arm to reach a
specific point in the space, the “done” signal is supposed to be true only when the
robot has indeed reached the point, but not for the cases when a default maximal
length of episode is reached. To understand the differences, we need to know that
in reinforcement learning some environments are infinite and some are finite. But
in the sampling process, the algorithms usually handle the trajectories in a finite
length. Two common ways of achieving that are either setting a maximal episode
length or using the “done” signals as feedback from the environment to finish the
episode with a break in loops. When applying the “done” signal as a breakpoint
in sampling, it should not be set to be true when the episode is finished due to
the accomplishment of the maximal length, but only when the terminal state is
reached. If the robot finishes its trajectory somewhere else rather than the target
point with the done signal set to be true, it may negatively affect the learning
process. Specifically, take the example of PPO algorithm, cumulative rewards
starting from states St are used to estimate the value of states V (St), while a
terminal state has the value zero. If the “done” signal is true for a non-terminal
state, the state value is set to be zero although it should not be, it will confuse
the value network when estimating its previous states and therefore hinder the
learning process.

• Prevent numerical problem. For the division case, it is possible to have infinite
value as outcome without getting an error if not used properly. Two tricks can
alleviate these problems: the first solution is to use exponential scale for positive-
value cases like a/b = exp(log(a) − log(b)); another solution is to add small
value to the denominator if it is non-negative, like a/b ≈ a/(b + 10−6).

• Be aware of the divergence between reward functions and final objectives.
Reinforcement learning is usually applied on a specific task with a final goal, and
a reward function is usually manually designed to align with the goal and make
it easier for the reinforcement learning agent to learn. In this sense, the reward
function is usually a quantitative form of the goal, which also means they are
two different things. Divergence could happen in these cases. As a reinforcement
learning agent is able to overfit to the reward function you set for the task, you
may notice that the final policy provides a result different from what you expect,
for achieving the final goal. One of the most probable reasons for this is the
divergence of the reward function and the final objective. In most cases, the
reward function is easy to be chosen to bias towards the final task objective,
but it is not trivial to design a reward function consistent with the objective all
the time and for all corner cases. What you should do is to try to reduce this kind
of divergence, to make sure your reward function can smoothly help the agent to
achieve the true objective.

• Reward may not always be a good way of displaying learning performances
People usually display the reward values (with moving average or without)
through the learning process as representations of an algorithm’s capability.
However, as said in the tip above, there can be a divergence between the final goal
and the way you define the reward function, which makes it possible for a higher-
reward state to correspond with a worse case towards the final goal, or at least

18 Tricks of Implementation 475

Fig. 18.1 For the robot learning task FetchPush environment in OpenAI Gym, it may be better to
use the final distance from the object to the target position instead of the reward value to evaluate
the performance level of the learned policy, because it is the most straightforward representation of
the overall goal for the task. The reward function, however, may be engineered to have some other
factors like minimizing the distance of the gripper to the object

not explicitly displaying the relationship of the state with an optimal state. For
this reason, we always need to consider the possibility of this divergence when
applying reinforcement learning and displaying results. Therefore, it is common
to see in the literature (Fu et al. 2018) that sometimes the learning performances
are not evaluated and displayed with the smoothed episode reward (depending
on the design of reward function as well), but with more specific metric for
the task, like the final distance from the robotic gripper to the object for the
reaching manipulation or the distance from the object to the target for pushing
manipulations in robotic learning tasks as shown in Fig. 18.1. The distance to
the object, or whether or not the object is grasped, is the true evaluation metric
for the goal of task. Therefore, these can be used for displaying the learning
performances. This can be useful when there are indeed divergences between the
final goals and the manually designed reward functions, and even critical if you
are trying to compare different reward schemes.

• Non-Markovian cases. As introduced in previous chapters, most theoretical
results introduced in this book are dependent on the Markov process assumption
or Markov property of the state. The Markov property not only simplifies the
problem and derivations, but also makes the problems describable and solvable
with compact representation of solutions using iterative methods. However, in
practice, the Markov process assumption does not hold all the time. For example,
as shown in Fig. 18.2, the Pong game in the Gym environments does not satisfy
the Markov process assumption of the state for the agent to take optimal actions.
We need to keep in mind the Markov property is a property of the state, or
the environment, and therefore determined by the definition of the state. The

476 Z. Ding and H. Dong

Fig. 18.2 The Pong-v0 game
in Gym. The speed of the ball
cannot be captured in a single
frame, which makes the
problem to be
non-Markovian. Stacked
frames are used as
observations to solve it

difference of the non-Markov decision process and partially observed Markov
decision process (POMDP) is sometimes subtle. For example, if the state is
defined to contain both the position and the velocity (no acceleration as an
assumption) of the ball, but the observation contains the position only, then it
is POMDP instead of non-Markov process. However, the state in the Pong game
is usually assumed to be the static frame of each time step. The current state
containing the position of the ball does not provide all the information the agent
will need to make an optimal action choice, based on the fact that the velocity
and moving direction of the ball will also affect the optimal actions. So it is a
non-Markov environment in this sense. One way of providing the velocity and
moving direction information is to use the historical states, which violates the
Markov process. Therefore, in original paper of DQN (Mnih et al. 2015), stacked
frames are used for solving the task of Pong with an approximated MDP. On
the other hand, if we take the stacked frames as a single state all the time,
and assume that the stacked frames always contain complete information for
making the optimal action choice, then it still follows the Markov process
assumption actually. As in simulation all processes are discrete after all, rather
than a continuous sequence of time in the real-world, we can usually take this
kind of transformation to regard a non-Markov process as a Markov one. Apart
from using the stacked frames as in original DQN, the recurrent neural network
(RNN) (Heess et al. 2015) or more advanced long short-term memory (LSTM)
can be applied for control with memory of history, to solve non-Markovian
problems as well.

18 Tricks of Implementation 477

18.3 Training and Debugging

• Initialization matters. Deep reinforcement learning methods usually update
the policy either in on-policy manner, with samples for each episode, or using
a dynamic replay buffer, which contains various samples through time. This
makes deep reinforcement learning different from supervised learning, which
learns from a fixed data set and the order of learning samples will not matter
too much. However, in deep reinforcement learning, the initialization of policy
can affect the possible exploration range afterwards and determines the samples
sent into the buffer or directly used for updating, and, therefore, affect the overall
learning performances. Starting with a random policy can result in larger chances
to have more various samples, which is great at the beginning of the training
stage. But with the convergence and improvement of the policy, the explored
areas are restricted, which are close to the trajectories generated by current
policy. For the initialization of weight parameters, it is generally better to use
more advanced methods like Xavier initialization (Glorot and Bengio 2010)
or orthogonal initialization (Saxe et al. 2013), which can help with avoiding
vanishing or exploding gradients and provide more robust learning performances
in general deep learning cases.

• Add useful probes to the program. As deep learning deals with a large amount
of data, there could be some hidden operations we are not always aware of,
especially when we are not familiar with the model. The error reports may be
not designed for some of those mistakes. It could be dangerous to have these
kinds of underlying problems in the model. For example, in deep reinforcement
learning tasks you may only care about the reward functions, but you should
also visualize the value of loss functions to know about how good the value
functions are approximated, and the entropy of the stochastic policy to know the
exploration status. If there is a premature drop of the policy entropy, it basically
indicates the agent cannot explore more useful samples with current policy.
This can be alleviated through using entropy bonus or KL divergence penalty.
Algorithms like soft actor-critic (SAC) use adaptive entropy for solving this
problem automatically. For trust-region based methods, you will need indicators
to know the value of KL divergence of old and new policies, which tells you
if the model is working healthily. Sometimes you need to output the gradients
value in your network if it does not work. The gradient values for normal layers
should not be too large or all zeros, which could indicate either an abnormal
gradient or no gradient flow. Other useful indicators include update size in output
space and parameter space, and standard diagnostics for deep neural networks.
For above cases, Tensorboard2 module can be a powerful tool, which is originally
implemented for TensorFlow but also has support for PyTorch. It simplifies the

2Details of tensorboard: https://www.tensorflow.org/tensorboard.

https://www.tensorflow.org/tensorboard

478 Z. Ding and H. Dong

visualization process of variables and graphs in neural network methods, which
helps to achieve those probes in practice.

• Apply several random seeds and take an average to reduce randomness.
Deep reinforcement learning methods have typical properties of unstable training
processes, as described in Chap. 7. Even the random seeds can affect the learning
performances a lot. There are random seeds for Numpy, for TensorFlow or
PyTorch, for environments, and so on. When randomizing the seeds, all of those
seeds need to be randomized properly as a default setting. You can set fixed seeds
first to see if there are any differences along the sampled trajectories, and other
sources of randomness can exist if it still contains randomness. Fixed seeds can
be used for reproducing the learning process. Taking random seeds and averaging
the learning curves can reduce the chances of deriving wrong conclusions from
experimental comparisons due to the randomness of deep reinforcement learning.
Usually the larger number of the random seeds is taken, the more reliable the
results are, but at the same time with the increase of experimental time. An
empirical setting with three to five runs using different random seeds can have a
relatively solid result, but more is better.

• Balance the CPU and GPU resources to speed up training. This tip is actually
about finding and solving the bottlenecks of the speed in your training process.
The problem of better leveraging the computational resources on the limited
machines is more complicated in reinforcement learning than supervised learn-
ing. In supervised learning, the CPUs are usually used for data pre-processing,
reading and writing, while GPUs are conducting the forward inference and back-
propagation process. However, as in reinforcement learning the inference process
always contains interactions with the environment, the devices for gradients
calculation need to match with the ones handling the environment interaction
in computational capability, otherwise it is a waste of exploration or a waste of
exploitation. In reinforcement learning, the CPUs are usually used for sampling
through interactions with the environment, which can involve a large amount of
computation for some complicated simulation systems. The GPUs are used for
forward inference and backward updating with back-propagation. You should
check the occupancy of both CPU and GPU resources when deploying a large-
scale training process and prevent thread/process sleeping. This is important
especially when you distribute your program on a large-scale parallel computing
system. For the case of overusing the GPUs, more threads or processes for
sampling through interaction with environments can be employed. For the
overusing of CPUs, you can reduce the distributed sampling workers, or increase
the number of parallel updating workers, choose a larger update iteration number,
or increase the batch size for off-line updating, depending on the way in which
you manage the parallel threads/processes. Note that the above is only about
how to best leverage your computational resources, you also need to consider
the trade-off between exploration and exploitation, as well as different levels of
sample efficiency for various reinforcement learning tasks.

To solve the balancing problem between CPU and GPU resources, you will
usually need parallel computing with multi-threading or multi-processing for

18 Tricks of Implementation 479

both sampling and training to make full use of your available machines. The
design of parallel training framework for running both threads/processes for
sampling and threads/processes for updating the networks needs to be carefully
considered. Locks and pipes are usually needed in these kinds of framework
to make it work smoothly. Redundant processes can be created to save the
waiting time. It could be different for on-policy and off-policy learning, the
settings of off-policy training in parallel are usually more flexible than on-
policy ones, because you can update the policy whenever you want instead of
only at each final step of episodes. A typical usage of distributional training
with multiple GPUs with PyTorch framework is shown in Fig. 18.3.3 When
PyTorch is handling the multiple-GPU process, a model replication process and
a gathering process of inferred results are employed in the forward inference
process, and parallel gradients back-propagation with gradients reduction are
employed in the backward updating process. More details are discussed in
chapters of applications with deep reinforcement learning and provided code
examples in our repository.

• Visualization. Try to visualize the data if you cannot see the underlying
relationships from the numerical values directly. For example, sometimes if the
reward values are very shaky due to the unstable property of deep reinforcement
learning, then you may need to plot the running average of the values to see if
the agent is improving through training.

• Smooth the learning curves. The learning process of reinforcement learning can
be very unstable, as shown in Fig. 18.4. Directly giving conclusions from raw
learning curves is usually not reliable, as the unsmoothed learning curve shows
in the graph. We usually smooth the learning curves with moving averages, con-
volutional kernels, etc., using a proper window length. The increasing/decreasing
learning performance can be displayed more explicitly in this approach. This can
be critical when you are handling with a complicated reinforcement learning task
with a long period of training time and slow performance improvement.

• Understand exploration and exploitation From the Fig. 18.4, we can also see
that there is a plateau in the learning curve at the early stage of training. This
is actually not rare but a common case in the reinforcement learning training
process. This is because samples for reinforcement learning to learn from are not
pre-prepared like in supervised-learning settings, but explored with the policy
that the agent is applying. Therefore, whether or not current policy is able
to explore high-reward trajectories can be critical in reinforcement learning
training. This is the problem of exploration, and we need to make sure our
policy can gradually explore near-optimal trajectories. When the reinforcement
learning algorithms do not work on a specific task, you need to investigate
whether the agent has explored those good trajectories or not. If not, at least
there is the problem of current exploration strategy. However, if a current policy
is able to explore good trajectories, but it still does not converge to great

3Figure from PyTorch Forum.

480 Z. Ding and H. Dong

F
ig

.1
8.

3
T

he
fo

rw
ar

d
an

d
ba

ck
w

ar
d

pa
ss

es
of

to
rc

h.
nn

.D
at

aP
ar

al
le

l

18 Tricks of Implementation 481

Fig. 18.4 The smoothed and unsmoothed learning curves in reinforcement learning

actions, then it can be the problem of exploitation. This means the policy cannot
learn from good trajectories well. The problem of exploitation can be caused
by low sample efficiency, poor value function approximation, low learning
rate of value function, poor learning performance of policy networks, etc. The
learning curves in Fig. 18.4 show a healthy learning improvement: once the good
samples are explored (during the plateau), the learning performance will increase
dramatically (after the plateau) with the policy improved.

• Question the correctness of your algorithm implementations first. It is very
common to see the code implementation not work immediately after you finish
it, so be patient at debugging the code is important. The correctness of algorithm
implementation always takes precedence over the fine-tuned relatively good
results. So making sure the implementation is correct should be always before
fine-tuning the hyperparameters. This is actually just the procedure for reinforce-
ment learning applications mentioned at the beginning of this chapter: testing
on small-scale cases and making sure the method is implemented correctly,
then scaling it up to large-scale environments and fine-tuning with distributed
training process. The bad learning performances can be caused by lots of different
factors, the insufficient learning time, the poor choice of hyperparameters, the
unnormalized input data, etc., but the most common reason is the mistakes in
implementations.

In order to provide a more complete guidance for the readers to apply the
reinforcement learning algorithms in their projects, we also refer to some external
resources when writing up this chapter, including OpenAI Spinning Up,4 John

4OpenAI Spinning Up: https://spinningup.openai.com/en/latest/index.html.

https://spinningup.openai.com/en/latest/index.html

482 Z. Ding and H. Dong

Schulman’s slide,5 William Falcon’s blog,6 etc. We would recommend the readers
to refer to those well-summarized suggestions and experiences from researchers
to help with their own implementations and applications with deep reinforcement
learning as well. It is always helpful to look at other people’s previous works which
are similar to yours and adopt the experiences from them.

Moreover, the readers need to know that it is not useful to merely read through all
the empirical instructions in the above paragraphs without practice. So, we strongly
recommend the readers to implement some codes by hand and gain some practical
experience. Only in this way can those tricks help the most.

References

Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward T, Doron Y, Firoiu V, Harley T,
Dunning I, et al. (2018) IMPALA: Scalable distributed deep-RL with importance weighted
actor-learner architectures. arXiv:180201561

Fu J, Singh A, Ghosh D, Yang L, Levine S (2018) Variational inverse control with events: a general
framework for data-driven reward definition. In: Advances in neural information processing
systems, pp 8538–8547

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural
networks. In: Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pp 249–256

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings
of the IEEE conference on computer vision and pattern recognition (CVPR)

Heess N, Hunt JJ, Lillicrap TP, Silver D (2015) Memory-based control with recurrent neural
networks. arXiv:151204455

Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K (2015) Spatial transformer networks. In:
Proceedings of the Neural Information Processing Systems (Advances in neural information
processing systems) conference, pp 2017–2025

Mahmood AR, Korenkevych D, Vasan G, Ma W, Bergstra J (2018) Benchmarking reinforcement
learning algorithms on real-world robots. arXiv:1809.07731

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529–533

Saxe AM, McClelland JL, Ganguli S (2013) Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. arXiv:13126120

Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell
R, Ewalds T, Georgiev P, et al (2019) Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575(7782):350–354

5The Nuts and Bolts of Deep RL Research. John Schulman: http://joschu.net/docs/nuts-and-bolts.
pdf.
6Deep RL Hacks: https://github.com/williamFalcon/DeepRLHacks.

http://joschu.net/docs/nuts-and-bolts.pdf
http://joschu.net/docs/nuts-and-bolts.pdf
https://github.com/williamFalcon/DeepRLHacks

Part IV
Summary

Hao Dong
e-mail: hao.dong@pku.edu.cn

To help the readers compare and check different algorithms easier, we summarized
the papers for the algorithms we introduced, as listed in Chap. 19 and summarized
the pseudocode of all important algorithms in Chap. 20.

Chapter 19
Algorithm Table

Zihan Ding

Abstract In this chapter, we summarize the references of some important rein-
forcement learning algorithms introduced in the book as a table.

Keywords Reinforcement learning · Algorithm · On-policy · Off-policy ·
Action space

In this chapter, Table 19.1 containing the most popular reinforcement learning
algorithms is summarized, especially for those introduced in this book. We hope
this will help the readers to refer to the original papers.

Z. Ding (�)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_19

485

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_19&domain=pdf
mailto:zhding@mail.ustc.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_19

486 Z. Ding

Table 19.1 Reinforcement learning algorithms

RL

algorithms Policy Action space Year Paper Authors

Q-learning Off-policy Discrete 1992 Q-learning (Watkins
and Dayan 1992)

Cristopher
J.C.H Watkins
and Peter Dayan

SARSA On-policy Discrete 1994 Online Q-learning
using connectionist
systems (Rummery
and Niranjan 1994)

G.A. Rummery
and M. Niranjan

DQN Off-policy Discrete 2015 Human-level control
through deep
reinforcement
learning (Mnih et al.
2015)

Volodymyr
Mnih, et al.

Dueling
DQN

Off-policy Discrete 2015 Dueling network
architectures for deep
reinforcement
learning (Wang et al.
2015)

Ziyu Wang,
et al.

Double
DQN

Off-policy Discrete 2016 Deep reinforcement
learning with double
Q-learning
(Van Hasselt et al.
2016)

Hado van
Hasselt, et al.

Noisy DQN Off-policy Discrete 2017 Noisy networks for
exploration
(Fortunato et al.
2017)

Meire
Fortunato, et al.

Distributed
DQN

Off-policy Discrete 2017 A distributional
perspective on
reinforcement
learning (Bellemare
et al. 2017)

Marc G.
Bellemare, et al.

Actor-critic
(QAC)

On-policy Discrete or
continuous

2000 Actor-critic
algorithms (Konda
and Tsitsiklis 2000)

Vijay R. Konda
and John N.
Tsitsiklis

A3C On-policy Discrete or
continuous

2016 Asynchronous
methods for deep
reinforcement
learning (Mnih et al.
2016)

Volodymyr
Mnih, et al.

REINFORCE On-policy Discrete or
continuous

1988 On the use of
backpropagation in
associative
reinforcement
learning (Williams
1988)

Ronald J.
Williams

(continued)

19 Algorithm Table 487

Table 19.1 continued

RL

algorithms Policy Action space Year Paper Authors

DDPG Off-policy Continuous 2016 Continuous control
with deep
reinforcement
learning (Lillicrap
et al. 2015)

Timothy P.
Lillicrap, et al.

TD3 Off-policy Continuous 2018 Addressing function
approximation error
in actor-critic
methods (Fujimoto
et al. 2018)

Scott Fujimoto,
et al.

SAC Off-policy Discrete or
continuous

2018 Soft actor-critic
algorithms and
applications
(Haarnoja et al. 2018)

Tuomas
Haarnoja, et al.

TRPO On-policy Discrete or
continuous

2015 Trust region policy
optimization
(Schulman et al.
2015)

John Schulman,
et al.

PPO On-policy Discrete or
continuous

2017 Proximal policy
optimization
algorithms (Schulman
et al. 2017)

John Schulman,
et al.

DPPO On-policy Discrete or
continuous

2017 Emergence of
locomotion
behaviours in rich
environments (Heess
et al. 2017)

Nicolas Heess,
et al.

ACKTR On-policy Discrete or
continuous

2017 Scalable trust-region
method for deep
reinforcement
learning using
Kronecker-factored
approximation Wu
et al. (2017)

Yuhuai Wu,
et al.

CE method On-policy Discrete or
continuous

2004 The cross-entropy
method: A unified
approach to Monte
Carlo simulation,
randomized
optimization and
machine learning
(Rubinstein and
Kroese 2004)

R. Rubinstein
and D. Kroese

488 Z. Ding

References

Bellemare MG, Dabney W, Munos R (2017) A distributional perspective on reinforcement
learning. In: Proceedings of the 34th international conference on machine learning, vol 70,
pp 449–458. JMLR.org

Fortunato M, Azar MG, Piot B, Menick J, Osband I, Graves A, Mnih V, Munos R, Hassabis D,
Pietquin O, et al. (2017) Noisy networks for exploration. arXiv:170610295

Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic
methods. arXiv:180209477

Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J, Kumar V, Zhu H, Gupta A, Abbeel P,
et al. (2018) Soft actor-critic algorithms and applications. arXiv:181205905

Heess N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami S, Riedmiller
M, et al. (2017) Emergence of locomotion behaviours in rich environments. arXiv:170702286

Konda VR, Tsitsiklis JN (2000) Actor-critic algorithms. In: Advances in neural information
processing systems, pp 1008–1014

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous
control with deep reinforcement learning. arXiv:150902971

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529–533

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K
(2016) Asynchronous methods for deep reinforcement learning. In: International conference
on machine learning (ICML), pp 1928–1937

Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to monte carlo
simulation, randomized optimization and machine learning (Information science and statistics).
Springer, New York

Rummery GA, Niranjan M (1994) On-line Q-learning using connectionist systems, vol 37.
University of Cambridge, Department of Engineering Cambridge, Cambridge

Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust region policy optimization. In:
International conference on machine learning (ICML), pp 1889–1897

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization
algorithms. arXiv:170706347

Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double Q-learning. In:
Thirtieth AAAI conference on artificial intelligence

Wang Z, Schaul T, Hessel M, Van Hasselt H, Lanctot M, De Freitas N (2015) Dueling network
architectures for deep reinforcement learning. arXiv:151106581

Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8(3–4):279–292
Williams RJ (1988) On the use of backpropagation in associative reinforcement learning. In:

Proceedings of the IEEE international conference on neural networks, vol 1, San Diego, pp
263–270

Wu Y, Mansimov E, Grosse RB, Liao S, Ba J (2017) Scalable trust-region method for deep
reinforcement learning using Kronecker-factored approximation. In: Advances in neural
information processing systems, pp 5279–5288

JMLR.org

Chapter 20
Algorithm Cheatsheet

Zihan Ding

Abstract In this chapter, we summarized the algorithms introduced throughout
the book, which are categorized into four sections of deep learning, reinforcement
learning, deep reinforcement learning, and advanced deep reinforcement learning.
The pseudo-code is provided for each algorithm to facilitate the learning process of
readers.

Keywords Deep learning · Reinforcement learning · Pseudo-code · Algorithm

This chapter provides a summary of algorithms and key concepts in (deep)
reinforcement learning here. We also try to keep the mathematical notations and
terminology consistent with the rest of the book, which can be referred to the section
of mathematical notation at the beginning of the book and Chap. 2.

20.1 Deep Learning

20.1.1 Stochastic Gradient Descent

Algorithm 1 The training process of stochastic gradient descent (SGD)
Input: Parameters θ , learning rate α, number of training steps/iterations S

1: for i = 0 to S do
2: Compute L of a mini-batch;
3: Compute ∂L

∂θ
by back-propagation;

4: �θ ← −α ∗ ∂L
∂θ
;

5: θ ← θ + �θ; update the parameters
6: end for
7: return θ; return the trained parameters;

Z. Ding (�)
Imperial College London, London, UK
e-mail: zhding@mail.ustc.edu.cn

© Springer Nature Singapore Pte Ltd. 2020
H. Dong et al. (eds.), Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-15-4095-0_20

489

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4095-0_20&domain=pdf
mailto:zhding@mail.ustc.edu.cn
https://doi.org/10.1007/978-981-15-4095-0_20

490 Z. Ding

20.1.2 Adam Optimizer

Algorithm 2 The training process of Adam optimization
Input: parameters θ , learning rate α, number of training steps/iterations S, β1 = 0.9, β2 = 0.999,

ε = 10−8

1: m0 ← 0; initialize the first moment vector
2: v0 ← 0; initialize the second moment vector
3: for t = 1 to S do
4: ∂L

∂θ
; compute the gradient using a random mini-batch

5: mt ← β1 ∗ mt−1 + (1 − β1) ∗ ∂L
∂θ
; update the first moment

6: vt ← β2 ∗ vt−1 + (1 − β2) ∗ (∂L
∂θ

)2; update the second moment
7: m̂t ← mt

1−βt
1
; compute the running average of the first moment

8: v̂t ← vt

1−βt
2
; compute the running average of the second moment

9: �θ ← −α ∗ m̂t√
v̂t+ε

;
10: θ ← θ + �θ; update parameters
11: end for
12: return θ; return the trained parameters

20.2 Reinforcement Learning

20.2.1 Bandit

Stochastic Multi-Armed Bandit

Algorithm 3 Multi-armed bandit learning
Initialize K arms;
Number of time steps T ;
Each arm is associated with vi ∈ [0, 1]. The reward being returned is drawn i.i.d from vi

for t = 1, 2, . . . , T do
The agent selects At = i from the K arms.
The environment returns the reward vector Rt = (R1

t , R2
t , · · · , RK

t).

The agent observes reward Ri
t .

end for

20 Algorithm Cheatsheet 491

Adversarial Multi-Armed Bandit

Algorithm 4 Adversarial multi-armed bandit
Initialize K arms;
for t = 1, 2, . . . , T do

The agent selects It from the K arms.
The adversary selects a reward vector Rt = (R1

t , R2
t , . . . , RK

t) ∈ [0, 1]K
The agent observes reward R

It
t and maybe also observes the rest of the reward vector

depending on the specific problem set up.
end for

Algorithm 5 Hedge for adversarial multi-armed bandit
Initialize K arms;
Gi(0) for i = 1, 2, . . . , K;
for t = 1, 2, . . . , T do

The agent selects At = it from the distribution p(t), where

pi (t) = exp(ηGi(t − 1))∑K
j exp(ηGj (t − 1))

The agent observes reward vector gt .
Let Gi(t) = G(t − 1) + gi

t , ∀i ∈ [1,K].
end for

492 Z. Ding

20.2.2 Dynamic Programming (DP)

Policy Iteration

Algorithm 6 Policy iteration
Initialize V and π for all states
repeat

// Do policy evaluation
repeat

δ ← 0
for s ∈ S do

v ← V (s)

V (s) ←∑
r,s′ (r + γV (s′))P (r, s′ |s, π(s))

δ ← max(δ, |v − V (s)|)
end for

until δ is smaller than a positive threshold
// Do policy improvement
stable ← true

for s ∈ S do
a ← π(s)

π(s) ← arg maxa

∑
r,s′ (r + γV (s′))P (r, s′ |s, a)

if a �= π(s) then
stable ← f alse

end if
end for

until stable = true

return policy π

Value Iteration

Algorithm 7 Value iteration
Initialize V for all states
repeat

δ ← 0
for s ∈ S do

u ← V (s)

V (s) ← maxa

∑
r,s′ P (r, s′ |s, a)(r + γV (s′))

δ ← max(δ, |u − V (s)|)
end for

until δ is smaller than a positive threshold
Output greedily policy π(s) = arg maxa

∑
r,s′ P (r, s′|s, a)(r + γV (s′))

20 Algorithm Cheatsheet 493

20.2.3 Monte Carlo (MC)

MC Prediction

Algorithm 8 First-visit MC prediction
Input: Initialize policy π

Initialize V (s) for all states
Initialize a list of returns: Returns(s) for all states
repeat

Generate an episode under π : S0, A0, R0, S1, · · · , ST−1, AT−1, Rt

G ← 0
t ← T − 1
for t >= 0 do

G ← γG + Rt+1
if S0, S1, · · · , St−1 does not have St then

Returns(St).append(G)
V (St) ← mean(Returns(St))

end if
t ← t − 1

end for
until convergence

MC Control

Algorithm 9 MC exploring starts
1: Initialize π(s) for all states
2: Initialize Q(s, a) and Returns(s, a) for all state-action pairs
3: repeat
4: Randomly select S0 and A0 s.t. all state-action pairs’ probabilities are nonzero.
5: Generate an episode from S0, A0 under π : S0, A0, R0, S1, · · · , ST−1, AT−1, RT

6: G ← 0
7: t ← T − 1
8: for t >= 0 do
9: G ← γG + Rt+1

10: if S0, A0, S1, A1 · · · , St−1, At−1 does not have St , At then
11: Returns(St , At).append(G)
12: Q(St , At) ← mean(Returns(St , At)

13: π(St) ← arg maxa Q(St , a)

14: end if
15: t ← t − 1
16: end for
17: until convergence

494 Z. Ding

Temporal Different (TD)

Algorithm 10 TD(0) for state-value estimation
Input policy π

Initialize V (s) and step size α ∈ (0, 1]
for each episode do

Initialize S0
for Each step St in the current episode do

At ← π(St)

Rt+1, St+1 ← Env(St , At)

V (St) ← V (St)+ α[Rt+1 + γV (St+1)− V (St)]
end for

end for

TD(λ)

Algorithm 11 Semi-gradient TD(λ) for state-value
Input: policy π

Initialize a differentiable state function v, step size α and value function weight w
for each episode do

Initialize S0
z ← 0
for Each step St in the current episode do

Select At using policy that is based on π

Rt+1, St+1 ← Env(St , At)

z ← γλz +∇V (St ,wt)

δ ← Rt+1 + γV (St+1,wt)− V (St ,wt)

w ← w + αδz

end for
end for

Sarsa: On-Policy TD Control

Algorithm 12 Sarsa (on-policy TD control)
Initialize Q(s, a) for all state-action pairs.
for each episode do

Initialize S0
Select A0 using policy that is based on Q

for Each step St in the current episode do
Select At from St using policy that is based on Q

Rt+1, St+1 ← Env(St , At)

Select At+1 from St+1 using policy that is based on Q

Q(St , At) ← Q(St , At)+ α[Rt+1 + γQ(St+1, At+1)− Q(St , At)]
end for

end for

20 Algorithm Cheatsheet 495

N-Step Sarsa

Algorithm 13 n-step Sarsa
Initialize Q(s, a) for all state-action pairs.
Initialize step-size α ∈ (0, 1].
Determine a fixed policy π or use ε-greedy.
for each episode do

Initialize S0
Select A0 using π(S0, A)

T ← INTMAX (the length of an episode)
γ ← 0
for t ← 0, 1, 2, . . . until γ − T − 1 do

if t < T then
Rt+1, St+1 ← Env(St , At)

if St+1 is terminal then
T ← t + 1

else
Select At+1 using π(St , A)

end if
end if
τ ← t − n+ 1 (the time step to update. This is an n-step Sarsa, so we will only update the
estimate that is n + 1 steps ago and we will continue to do so until all the eligible states
have been updated.
if τ ≥ 0 then

G ←∑min(r+n,T)
i=τ+1 γ i−γ−1Ri

if γ + n < T then
G ← G + γ nQ(St+n,Aγ+n)

end if
Q(Sγ ,Aγ) ← Q(Sγ ,Aγ)+ α[G − Q(Sγ ,Aγ)]

end if
end for

end for

Q-Learning (Off-Policy TD Control)

Algorithm 14 Q-learning (off-policy TD control)
Initialize Q(s, a) for all state-action pairs and step size α ∈ (0, 1]
for each episode do

Initialize S0
for Each step St in the current episode do

Select At using policy that is based on Q

Rt+1, St+1 ← Env(St , At)

Q(St , At) ← Q(St , At)+ α[Rt+1 + γ maxa Q(St+1, a)− Q(St , At)]
end for

end for

496 Z. Ding

20.3 Deep Reinforcement Learning

Deep Q-Network (DQN) is an extension of Q-learning to high-dimensional cases
with deep neural network for value function approximation, employing a target
action-value network and a replay buffer for updating.

Key Ideas
• Neural networks for Q-value function approximation;
• Replay buffer for off-line updating;
• Target network and delayed update;
• Mean Square Error/Huber loss for minimizing the temporal-difference (TD)

error;

Algorithm 15 DQN
1: Hyperparameters: replay buffer capacity N , reward discount factor γ , delayed steps C for

target action-value function update, ε-greedy factor ε

2: Input: empty replay buffer D, initial parameters θ of action-value function Q

3: Initialize target action-value function Q̂ with parameter θ̂ ← θ

4: for episode = 0, 1, 2, ... do
5: Initialize environment and get observation O0
6: Initialize sequence S0 = {O0} and preprocess sequence φ0 = φ(S0)

7: for t = 0, 1, 2, . . . do
8: With probability ε select a random action At , otherwise select At =

arg maxa Q(φ(St), a; θ)

9: Execute action At and observe Ot+1 and reward Rt

10: If the episode has ended, set Dt = 1. Otherwise, set Dt = 0
11: Set St+1 = {St , At ,Ot+1} and preprocess φt+1 = φ(St+1)

12: Store transition (φt , At , Rt ,Dt , φt+1) in D
13: Sample random minibatch of transitions (φi , Ai, Ri ,Di, φ

′
i) from D

14: If Di = 0, set Yi = Ri + γ maxa′ Q̂(φ′
i , a

′; θ̂). Otherwise, set Yi = Ri

15: Perform a gradient descent step on (Yi − Q(φi,Ai; θ))2 with respect to θ

16: Synchronize the target Q̂ every C steps
17: If the episode has ended, break the loop
18: end for
19: end for

Double Deep Q-Network is a modified version of DQN for solving the
overestimation problem.

Key Ideas
• Double Q-networks in an embedded manner for target value estimation.

Change line 14 in DQN Algorithm 15 to be: Set Yj = Rj + γ (1 −
Dj)Q̂(φj+1, arg maxa′ Q(φj+1, a

′; θj); θ̂).
Dueling Deep Q-Network is a modified version of DQN with the action-value

function decomposed into one state-value function and one state-dependent action
advantage function.

20 Algorithm Cheatsheet 497

Key Ideas
• Factorize the action-value function Q to be value function V and advantage

function A.
Change the way of parameterization for action-value function Q (as well as its

target Q̂) in DQN as:

Q(s, a; θ, θv, θa) = V (s; θ, θv)+ (A(s, a; θ, θa)− max
a′

A(s, a′; θ, θa))

or,

Q(s, a; θ, θv, θa) = V (s; θ, θv) + (A(s, a; θ, θa) − 1

|A|A(s, a′; θ, θa))

REINFORCE is an algorithm using policy-based optimization and on-policy
update.

Algorithm 16 REINFORCE
1: Input: initial policy parameters θ

2: for k = 0, 1, 2, ... do
3: Initialize environment.
4: Collect set of trajectories Dk = {τi = {(St , At , Rt)|t = 0, 1, . . . , T }} by running policy

πk = π(θk) in the environment.
5: Compute cumulative return Gt

6: Estimate policy gradient as

gk = 1

|Dk |
∑

τ∈Dk

T∑
t=0

∇θ log πθ (At |St)|θk
Gt

7: Update the policy using gradient ascent,

θk+1 = θk + αkgk

8: end for

REINFORCE with Baseline/Vanilla Policy Gradient is another version of
REINFORCE with the policy gradient estimated with action advantage function
instead of the cumulative return.

498 Z. Ding

Algorithm 17 REINFORCE with baseline
Hyperparameters: step size ηθ , reward discount factor γ , number of time steps L, batch size
B, baseline value b

Input: initial policy parameters θ0
Initialize θ = θ0
for k = 1, 2, . . . , do

Run policy πθ for B trajectories, each one with L time steps, and collect {St,�, At,�, Rt,�}
Ât,� =∑L

�′=� γ �′−�Rt,� − b(St,�)

J (θ) = 1
B

∑B
t=1
∑L

�=0 log πθ (At,�|St,�)Ât,�

θ = θ + ηθ∇J (θ)

Update b(St,�) by {St,�, At,�, Rt,�}
end for
Return θ

Actor-Critic is modified from REINFORCE algorithm with value function
approximation.

Algorithm 18 Actor-Critic
Hyperparameters: step size ηθ and ηψ , reward discount factor γ

Input: initial policy parameters θ0, initial value function parameters ψ0
Initialize θ = θ0 and ψ = ψ0
for t = 0, 1, 2, . . . do

Run policy πθ for one step, collection {St , At , Rt , St+1}
Estimate advantages Ât = Rt + γV

πθ

ψ (St+1)− V
πθ

ψ (St)

J (θ) =∑t log πθ (At |St)Ât

J
V

πθ
ψ

(ψ) =∑t Â2
t

ψ = ψ + ηψ∇J
V

πθ
ψ

(ψ), θ = θ + ηθ∇J (θ)

end for
Return (θ, ψ)

Q-value Actor-Critic (QAC) is another version of actor-critic algorithm, as
a combination of value-based (e.g., Q-learning) and policy-based (e.g., REIN-
FORCE) optimization using on-policy update.

Key Ideas
• Combination of DQN and REINFORCE.

20 Algorithm Cheatsheet 499

Algorithm 19 QAC
1: Input: initial policy parameters θ , initial parameters ω of action-value function Q, discounted

factor γ

2: for k = 0, 1, 2, ... do
3: Initialize environment.
4: Collect set of trajectories Dk = {τi = {(St , At , Rt ,Dt)|t = 0, 1, . . . , T }} by running policy

πk = π(θk) in the environment.
5: Compute TD-error δt = Rt + γ maxa′ Qω(St+1, a

′)−Qω(St , At)

6: Estimate policy gradient as

gk = 1

|Dk |
∑

τ∈Dk

T∑
t=0

∇θ log πθ (At |St)|θk
Qω(St , At)

7: Update the policy using gradient ascent,

θk+1 = θk + αkgk

8: Update the action-value function with mean-squared error:

φk+1 = arg min
φ

1

|Dk |T
∑

τ∈Dk

T∑
t=0

δ2
t

via gradient descent algorithm.
9: end for

Advantage Actor-Critic (A2C) is a modified version of actor-critic algorithm,
which applies the trick of REINFORCE with baseline instead of vanilla REIN-
FORCE for policy optimization, also using on-policy update.

Key Ideas
• Combination of DQN and REINFORCE with baseline.

500 Z. Ding

Algorithm 20 A2C
Master:
Hyperparameters: step size ηψ and ηθ , set of workers W
Input: initial policy parameters θ0, initial value function parameters ψ0
Initialize θ = θ0 and ψ = ψ0
for k = 0, 1, 2, . . . do

(gψ , gθ) = 0
for worker in W do

(gψ , gθ) = (gψ, gθ)+ worker(V πθ

ψ , πθ)

end for
ψ = ψ − ηψgψ ; θ = θ + ηθgθ .

end for

Worker:
Hyperparameters: reward discount factor γ , the length of trajectory L

Input: value function V
πθ

ψ , policy πθ

Run policy πθ for L time steps, collection {St , At , Rt , St+1}
Estimate advantages Ât = Rt + γV

πθ

ψ (St+1)− V
πθ

ψ (St)

J (θ) =∑t log πθ (At |St)Ât

J
V

πθ
ψ

(ψ) =∑t Â2
t

(gψ , gθ) = (∇J
V

πθ
ψ

(ψ),∇J (θ))

Return (gψ , gθ)

Asynchronous Advantage Actor-Critic (A3C) is a modified version of A2C
with asynchronous gradient update for large-scale parallel computation.

Key Ideas
• Asynchronous updating of the policy.

Algorithm 21 A3C
Master:
Hyperparameters: step size ηψ and ηθ , current policy πθ , value function V

πθ

ψ

Input: gradients gψ , gθ

ψ = ψ − ηψgψ ; θ = θ + ηθgθ .
Return (V πθ

ψ , πθ)

Worker:
Hyperparameters: reward discount factor γ , the length of trajectory L

Input: value function V
πθ

ψ , policy πθ

(gθ , gψ) = (0, 0)

for k = 1, 2, . . . , do
(θ, ψ) = Master(gθ , gψ)

Run policy πθ for L time steps, collection {St , At , Rt , St+1}
Estimate advantages Ât = Rt + γV

πθ

ψ (St+1)− V
πθ

ψ (St)

J (θ) =∑t log πθ (At |St)Ât

J
V

πθ
ψ

(ψ) =∑t Â2
t

(gψ , gθ) = (∇J
V

πθ
ψ

(ψ),∇J (θ))

end for

20 Algorithm Cheatsheet 501

Deep Deterministic Policy Gradient (DDPG) is a combination of DQN and
QAC with deterministic policy, with off-policy update using a replay buffer.

Key Ideas
• Deterministic policy as an approximate Q-value maximizer over action space;
• Ornstein–Uhlenbeck/Gaussian noise for stochastic actions in exploration;
• Target networks and delayed update.

Algorithm 22 DDPG
Hyperparameters: soft update factor ρ, reward discount factor γ

Input empty replay buffer D, initialize parameters θQ of critic network Q(s, a|θQ) and
parameters θπ of actor network π(s|θπ), target network Q′ and π ′
Initialize target network Q′ and π ′ with weights θQ′ ← θQ, θπ ′ ← θπ

for episode = 1,M do
Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Selection action At = π(St |θπ)+Nt

Execute action At and observe reward Rt , and observe new state St+1
Store transion (St , At , Rt ,Dt , St+1) in D
Set Yi = Ri + γ (1 − Dt)Q

′(St+1, π
′(St+1|θπ ′

)|θQ′
)

Update critic by minimizing the loss:

L = 1

N

∑
i

(Yi −Q(Si, Ai |θQ))2

Update the actor policy using the sampled policy gradient:

∇θπ J ≈ 1

N

∑
i

∇aQ(s, a|θQ)|s=Si ,a=π(Si)∇θπ π(s|θπ)|Si

Update the target networks:
θQ′ ← ρθQ + (1 − ρ)θQ′

θπ ′ ← ρθπ + (1 − ρ)θπ ′

end for
end for

Twin Delayed DDPG (TD3) is a more advanced algorithm based on DDPG
with twin action-value networks and delayed updating for the policy and the target
networks.

Key Ideas
• Double Q-Learning;
• Delayed update for the target networks and the policy;
• Smoothing regularization for the target policy.

502 Z. Ding

Algorithm 23 TD3
1: Hyperparameters: soft update factor ρ, reward discount factor γ , clip factor c

2: Input: empty replay buffer D, initial parameters θ1, θ2 of critic networks Qθ1,Qθ2 , initial
parameters φ of actor network πφ

3: Initialize target networks θ̂1 ← θ1, θ̂2 ← θ2, φ̂ ← φ

4: for t = 1 to T do do
5: Select action with exploration noise At ∼ πφ(St)+ ε, ε ∼ N (0, σ)

6: Observe reward Rt and new state St+1
7: Store transition tuple (St , At , Rt ,Dt , St+1) in D
8: Sample mini-batch of N transitions (St , At , Rt ,Dt , St+1) from D
9: ãt+1 ← π

φ
′ (St+1)+ ε, ε ∼ clip(N (0, σ̃ ,−c, c))

10: y ← Rt + γ (1 − Dt) mini=1,2 Qθi
′ (St+1, ãt+1)

11: Update critics θi ← arg minθi
N−1∑(y − Qθi

(St , At))
2

12: if t mod d then
13: Update φ by the deterministic policy gradient:
14: ∇φJ (φ) = N−1∑∇aQθ1(St , At)|At=πφ(St)∇φπφ(St)

15: Update target networks:
16: θ̂i ← ρθi + (1 − ρ)θ̂i

17: φ̂ ← ρφ + (1 − ρ)φ̂

18: end if
19: end for

Soft Actor-Critic (SAC) is a more advanced algorithm based on DDPG using
an additional soft entropy term for boosting exploration.

Key Ideas
• Entropy regularization for boosting exploration;
• Double Q-Learning;
• Reparameterization trick for making stochastic policy differentiable and update

with deterministic policy gradient;
• Tanh Gaussian action distribution.

Algorithm 24 Soft actor-critic (SAC)
Hyperparameters: target entropy κ , step sizes λQ, λπ , λα , exponentially moving average
coefficient τ

Input: initial policy parameters θ , initial Q value function parameters φ1 and φ2
D = ∅; φ̃i = φi , for i = 1, 2
for k = 0, 1, 2, . . . do

for t = 0, 1, 2, . . . do
Sample At from πθ (·|St), collect (Rt , St+1)

D = D ∪ {St , At , Rt , St+1}
end for
Perform multiple step of gradients:

φi = φi − λQ∇JQ(φi) for i = 1, 2
θ = θ − λπ∇θ Jπ (θ)

α = α − λα∇J (α)

φ̃i = (1 − τ)φi + τ φ̃i for i = 1, 2
end for
Output θ , φ1, φ2

20 Algorithm Cheatsheet 503

Trust Region Policy Optimization (TRPO) is a trust-region algorithm using
the second-order gradient descent and on-policy update.

Key Ideas
• KL-divergence to keep new and old policies close in policy space;
• Second-order method with the constraint;
• Using the conjugate gradient to avoid the computation of inverse matrix.

Algorithm 25 TRPO
Hyperparameters: KL-divergence limit δ, backtracking coefficient α, maximum number of
backtracking steps K

Input: empty replay buffer Dk, initial policy parameters θ0, initial value function parameters φ0
for episode = 0, 1, 2, . . . do

Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

Estimate policy gradient as

ĝk = 1

|Dk |
∑

τ∈Dk

T∑
t=0

∇θ log πθ (At |St)|θk
Ât (20.1)

Use the conjugate gradient algorithm to compute

x̂k ≈ Ĥ−1
k ĝk (20.2)

where Ĥk is the Hessian of the sample average KL-divergence
Update the policy by backtracking line search with

θk+1 = θk + αj

√
2δ

x̂T
k Ĥkx̂k

x̂k (20.3)

where j ∈ {0, 1, 2, . . . K} is the smallest value which improves the sample loss and satisfies
the sample KL-divergence constraint
Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk |T
∑

τ∈Dk

T∑
t=0

(
Vφ(St)− Ĝt

)2
(20.4)

typically via some gradient descent algorithm
end for

Proximal Policy Optimization (PPO-Penalty) is a trust-region algorithm based
on TRPO using the first-order gradient, with the trust-region constraint achieved
with an adaptive penalty term.

504 Z. Ding

Key Ideas
• KL-divergence to keep new and old policies close in policy space;
• Transferring the constrained optimization problem into unconstrained one;
• First-order method to avoid the computation of Hessian Matrix;
• Adjusting the penalty coefficient adaptively.

Algorithm 26 PPO-Penalty
Hyperparameters: reward discount factor γ , KL penalty coefficient λ, adaptive parameters
a = 1.5, b = 2, the number of sub-iterations M,B

Input: initial policy parameters θ , initial value function parameters φ

for k = 0, 1, 2, . . . do
Run policy πθ for T time steps, collection {St , At , Rt }
Estimate advantages Ât =∑t ′>t γ t ′−tRt ′ − Vφ(St)

πold ← πθ

for m ∈ {1, . . . ,M} do
JPPO(θ) =∑T

t=1
πθ (At |St)
πold(At |St)

Ât − λÊt [DKL(πold(·|St)‖πθ (·|St))]
Update θ by a gradient method w.r.t JPPO(θ)

end for
for b ∈ {1, . . . , B} do

LBL(φ) = −∑T
t=1

(∑
t ′>t γ t ′−tRt ′ − Vφ(St)

)2

end for
Compute d = Êt [DKL(πold(·|St)‖πθ (·|St))]
if d < dtarget/a then

λ ← λ/b

else if d > dtarget × a then
λ ← λ× b

end if
end for

Proximal Policy Optimization (PPO-Clip) is a trust-region algorithm based on
TRPO using the first-order gradient, with the trust-region constraint achieved with
a clipping method on the gradients.

Key Ideas
• Replacing KL-divergence with clipping method in the objective function.

20 Algorithm Cheatsheet 505

Algorithm 27 PPO-Clip
Hyperparameters: clip factor ε, the number of sub-iterations M,B

Input: initial policy parameters θ , initial value function parameters φ

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {τi} by running policy πθk

in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

for m ∈ {1, . . . ,M} do

�t (θ
′) = πθ (At |St)

πθold(At |St)
(20.5)

Update the policy by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

1

|Dk |T
∑
τ∈Dk

T∑
t=0

min(�t (θ
′)Aπθold (St , At), (20.6)

clip(�t (θ
′), 1 − ε, 1 + ε)Aπθold (St , At)) (20.7)

typically via stochastic gradient ascent with Adam
end for
for b ∈ {1, . . . , B} do

Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk |T
∑

τ∈Dk

T∑
t=0

(
Vφ(St)− Ĝt

)2

typically via some gradient descent algorithm
end for

end for

Actor Critic using Kronecker-Factored Trust Region (ACKTR) is trust-
region on-policy algorithm using Kronecker-factored approximation for the second-
order natural gradient computation.

Key Ideas
• Second-order optimization with natural gradient;
• K-FAC approximation for natural gradient.

506 Z. Ding

Algorithm 28 ACKTR
1: Hyperparameters: learning rate ηmax , trust region radius δ

2: Input: empty replay buffer D, initial policy parameters θ0, initial value function parameters
φ0

3: for k = 0, 1, 2, . . . do
4: Collect set of trajectories Dk = {τi |i = 0, 1, . . .} by running policy πk = π(θk) in the

environment
5: Compute cumulative return Gt

6: Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

7: Estimate policy gradient as

ĝk = 1

|Dk |
∑

τ∈Dk

T∑
t=0

∇θ log πθ (At |St)|θk
Ât (20.8)

8: for l = 0, 1, 2, . . . do

vec(�θl
k) = vec(A−1

l ∇θ l
k
ĝkS

−1
l) (20.9)

where Al = E[ala
T
l], Sl = E[(∇sl ĝk)(∇sl ĝk)

T] (Al, Sl are calculated with running
average among episodes), al is the input activation vector and sl = Wlal with the weight
matrix Wl of lth layer, and vec(·) operation is used for transforming the matrix into
one-dimensional vector

9: end for
10: Update the policy by K-FAC approximated natural gradient as

θk+1 = θk + ηk�θk (20.10)

where ηk = min(ηmax,

√
2δ

θT
k

Ĥkθk
) and Ĥ l

k = Al ⊗ Sl for lth layer.

11: Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk |T
∑

τ∈Dk

T∑
t=0

(
Vφ(St)−Gt

)2
(20.11)

via Gauss-Newton second-order gradient descent algorithm (also uses K-FAC approxima-
tion)

12: end for

20 Algorithm Cheatsheet 507

20.4 Advanced Deep Reinforcement Learning

20.4.1 Imitation Learning

DAgger

Algorithm 29 DAgger
1: Initialize D ← ∅.
2: Initialize the policy π̂1 to any policy in policy set �.
3: for i = 1, 2, . . . , N do
4: πi ← βiπ

∗ + (1 − βi)π̂i .
5: Sample several T -step trajectories using πi .
6: Get dataset Di = {(s, π∗(s))} of visited states by πi and actions given by the expert.
7: Aggregate datasets: D ← D ∪Di . Train current policy π̂i+1 on D.
8: end for
9: Return policy π̂N+1.

20.4.2 Model-Based Reinforcement Learning

Dyna-Q

Algorithm 30 Dyna-Q
Initialize Q(s, a) and Model(s, a) for all s ∈ S and a ∈ A(s)

Do forever:
(a) S ← current (non-terminal) state
(b) A ← ε-greedy(S,Q)
(c) Execute action A; Observe resultant reward R, Get next state S′
(d) Q(S,A) ← Q(S,A)+ α

[
R + γ maxa Q(S′, a) − Q(S,A)

]
(e) Model(S,A) ← R, S′
(f) Repeat n times:

S ← random previously observed state
A ← random action previously taken in S

R, S′ ← Model(S,A) random action previously taken in S

Q(S,A) ← Q(S,A)+ α
[
R + γ maxa Q(S′, a) − Q(S,A)

]

508 Z. Ding

Simple Monte Carlo Search

Algorithm 31 Simple Monte Carlo search
Provided the model M and simulation policy π

for each action a ∈ A do
for each episode k ∈ {1, 2, . . . , K} do

Following the model M and simulation policy π , roll out in the environment started from
current state St

Record the trajectory as {St , a, Rk
t+1, S

k
t+1, A

k
t+1, R

k
t+2, . . . S

k
T }

end for

Evaluate actions by mean return. Q(St , a) = 1
K

K∑
k=1

Gk
t

end for
The learnt policy is to select current action with maximum Q value At = arg maxa∈A Q(St , a)

Monte Carlo Tree Search

Algorithm 32 Monte Carlo tree search
Provided the model M
Initialize simulation policy π

for each action a ∈ A do
for each episode k ∈ {1, 2, . . . , K} do

Following the model M and simulation policy π , roll out in the environment started from
current state St

Record the trajectory as {St , a, Rt+1, St+1, At+1, Rt+2, . . . ST }
Update the Q value of every (si , ai), i = t, . . . , T by mean return starting from (si , ai)

with At = a

Update the simulation policy π according to the current Q values
end for

end for
Output the action with maximum Q value at the current state, At = arg maxa∈A Q(St , a)

20 Algorithm Cheatsheet 509

Dyna-2

Algorithm 33 Dyna-2
function LEARNING

Initialize Fs and Fr

θ ← 0 # Initialize the weights of long-term memory
loop

s ← s0
θ ← 0 # Initialize the weights of short-term memory
z ← 0 # Initialize eligibility trace
SEARCH(s)
a ← π(s;Q) # Choose action based on polity related with Q

while s is not terminal do
Execute a, observe reward r and next state s′
(Fs ,Fr) ← UpdateModel(s, a, r, s′)
SEARCH(s′)
a′ ← π(s′;Q) # Choose action applied in the next state s′
δ ← r + Q(s′, a′)− Q(s, a) # Calculate TD-error
θ ← θ + α(s, a)δz # Update weights of long-term memory
z ← λz+ φ # Update eligibility trace
s ← s′, a ← a′

end while
end loop

end function

function SEARCH(s)
while time available do

z ← 0 # Clear eligibility trace
a ← pi(s;Q) # Choose action based on polity related with Q

while s is not terminal do
s′ ← Fs (s, a) # Sample transition
r ← Fr (s, a) # Sample reward
a′ ← π(s′;Q
δ ← r + Q(s′, a′)− Q(s, a) # Calculate TD-error
θ ← θ + α(s, a)δz # Update weights of short-term memory
z ← λz+ φ # Update eligibility trance in short-term memory
s ← s′, a ← a′

end while
end while

end function

510 Z. Ding

20.4.3 Hierarchical Reinforcement Learning

STRategic Attentive Write (STRAW)

Algorithm 34 Plans update in STRAW
if gt = 1 then

Compute attention parameter of action-plan ψA
t = f ψ(zt)

Apply attentive read: βt = read(At−1, ψA
t)

Compute intermediate representation εt = h(concat(βt , zt))

Compute attention parameter of commitment-plan ψc
t = f c(concat(ψA

t , εt))

Update At = ρ(At−1)+ write(f A(εt), ψ
A
t)

Update ct = Sigmoid(b + write(e, ψc
t))

else
Update At = ρ(At−1)

Update ct = ρ(ct−1)

end if

20.4.4 Multi-Agent Reinforcement Learning

Multi-Agent Q Learning

Algorithm 35 Multi-agent general Q learning
Set initial values for Q table Qi(s, ai , a−i) = 1, ∀i ∈ {1, 2, . . . , m}.
for episode = 1 to M do

Set initial state s = S0.
for step = 1 to T do

Each agent i chooses action ai based on πi(s), which is a mixed Nash equilibrium strategy
based on Q values of all agents.
Observe experience (s, ai , a−i , ri , s

′) and apply it to update Qi value
Update the state s = s′.

end for
end for

20 Algorithm Cheatsheet 511

Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

Algorithm 36 Multi-agent deep deterministic policy gradient (MADDPG)
for episode = 1 to M do

Set initial state s = S0.
for step = 1 to T do

Each agent i chooses action ai based on current policy πθi
.

The actions of all agents a = (a1, a2, . . . , am) are executed simultaneously.
Store (s, a, r, s′) in replay buffer M
Update the state s = s′.
for agent i = 1 to m do

Sample a batch of previous experience from replay buffer M.
Calculate the gradients and update the weights for both actor and critic network.

end for
end for

end for

20.4.5 Parallel Computing

Asynchronous Advantage Actor-Critic (A3C)

Algorithm 37 Asynchronous advantage actor-critic (Actor-Learner)
Hyperparameters: Total number of steps Tmax . Maximum steps for each episode tmax .
Initialize step counter t = 1.
while T ≤ Tmax do

Reset gradients: dθ = 0 and dθv = 0.
Sync with parameter server to obtain network parameters θ ′ = θ and θ ′v = θv .
tstart = t

Set starting state St for the episode
while Reach terminal state or t − tstart == tmax do

Choose action At based on policy π(St |θ ′)
Act in the environment and receive rewards Rt and next state St+1
t = t + 1, T = T + 1

end while
if Reach terminal state then

R = 0
else

R = V (St |θ ′v)
end if
for i = t − 1, t − 2, . . . , ts tart do

Update discounted rewards R = Ri + γR

Accumulate gradients wrt θ ′, dθ = dθ + ∇θ ′ log π(Si |θ ′)(R − V (Si |θ ′v))
Accumulate gradients wrt θ ′v , dθv = dθv + ∂(R − V (Si |θ ′v))2/∂θ ′v

end for
Asynchronously update θ with dθ and θv with dθv .

end while

512 Z. Ding

Distributed Proximal Policy Optimization

Algorithm 38 DPPO (chief)
Hyperparameters: the number of workers W , threshold for numbers of gradients available
workers D, the number of sub-iterations M,B

Input: initial global policy parameters θ , initial global value function parameters φ

for k = 0, 1, 2, . . . do
for m ∈ {1, . . . ,M} do

Wait until at least W−D gradients wrt. θ are available average gradients and update global
θ

end for
for b ∈ {1, . . . , B} do

Wait until at least W−D gradients wrt. φ are available average gradients and update global
φ

end for
end for

Algorithm 39 DPPO (PPO-Penalty worker)
Hyperparameters: KL penalty coefficient λ, adaptive parameters a = 1.5, b = 2, the number
of sub-iterations M,B

Input: initial local policy parameters θ , initial local value function parameters φ

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {τi} by running policy πθ in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

Store partial trajectory information
πold ← πθ

for m ∈ {1, . . . ,M} do

JPPO(θ) =
T∑

t=1

πθ (At |St)

πold(At |St)
Ât − λKL[πold |πθ] − ξ max(0, KL[πold |πθ] − 2KLtarget)

2

if KL[πold |πθ] > 4KLtarget then
break and continue with next outer iteration k + 1

end if
Compute ∇θ JPPO

send gradient wrt. θ to chief
wait until gradient accepted or dropped; update parameters

end for
for b ∈ {1, . . . , B} do

LBL(φ) = −∑T
t=1(Ĝt − Vφ(St))

2

Compute ∇φLBL

send gradient wrt. φ to chief
wait until gradient accepted or dropped; update parameters

end for
Compute d = Êt [KL[πold (·|St), πθ (·|St)]]
if d < dtarget /a then

λ ← λ/b

else if d > dtarget × a then
λ ← λ× b

end if
end for

20 Algorithm Cheatsheet 513

Algorithm 40 DPPO (PPO-Clip worker)
Hyperparameters: clip factor ε, the number of sub-iterations M,B

Input: initial local policy parameters θ , initial local value function parameters φ

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {τi} by running policy πθ in the environment
Compute rewards-to-go Ĝt

Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk

Store partial trajectory information
πold ← πθ

for m ∈ {1, . . . ,M} do
Update the policy by maximizing the PPO-Clip objective:

JPPO(θ) = 1

|Dk |T
∑
τ∈Dk

T∑
t=0

min

(
πθ (At |St)

πold (At |St)
Ât , clip(

π(At |St)

πold (At |St)
, 1 − ε, 1 + ε)Ât

)

Compute ∇θ JPPO

send gradient wrt. θ to chief
wait until gradient accepted or dropped; update parameters

end for
for b ∈ {1, . . . , B} do

Fit value function by regression on mean-squared error:

LBL(φ) = − 1

|Dk |T
∑

τ∈Dk

T∑
t=0

(
Vφ(St)− Ĝt

)2

typically via some gradient descent algorithm
send gradient wrt. φ to chief
wait until gradient accepted or dropped; update parameters

end for
end for

Ape-X

Algorithm 41 Ape-X (Actor)
Hyperparameters: Send to replay with batch size B in local buffer. Number of iterations T

Sync with learner to obtain latest network parameters θ0.
Get initial state S0 from environment.
for t = 0, 1, 2, . . . , T − 1 do

Choose action at based on policy π(St |θt)

Add experience (St , At , Rt , St+1) to the local buffer
if The local buffer reaches its size requirements B then

Get buffered data with batch size B

Calculate the priorities p of the buffered data.
Send the batched buffered data and its priorities to the replay

end if
Periodically sync and update the latest network parameters θt

end for

514 Z. Ding

Algorithm 42 Ape-X (Learner)
Hyperparameters: Number of learning episodes T .
Initialize the network parameters θ0.
for t = 1, 2, 3, . . . , T do

Sample a prioritized batch of data (i, d) from replay
Applying training with the batched data
Update network parameters to θt

Calculate the priorities p for batched data d

Update the priorities p for data with index i on replay
Periodically remove data with low priorities in replay

end for

	Foreword
	Preface
	Acknowledgements
	Contents
	Editors and Contributors
	About the Editors
	About the Authors

	Acronyms
	Mathematical Notation
	Fundamentals
	Deep Reinforcement Learning

	Introduction
	Artificial Intelligence
	Machine Learning
	Deep Learning
	Reinforcement Learning
	Deep Reinforcement Learning
	TensorLayer
	References

	Part I Fundamentals
	1 Introduction to Deep Learning
	1.1 Introduction
	1.2 Perceptron
	1.2.1 One Output
	1.2.2 Bias and Decision Boundary
	1.2.3 More Than One Output

	1.3 Multilayer Perceptron (MLP)
	1.4 Activation Functions
	1.5 Loss Functions
	1.5.1 Cross-Entropy Loss
	1.5.2 Lp Norm
	1.5.3 Mean Squared Error
	1.5.4 Mean Absolute Error

	1.6 Optimization
	1.6.1 Gradient Descent and Error Back-Propagation
	1.6.2 Stochastic Gradient Descent and Adaptive Learning Rate
	1.6.3 Hyper-Parameter Selection
	Cross-Validation

	1.7 Regularization
	1.7.1 Overfitting
	1.7.2 Weight Decay
	1.7.3 Dropout
	1.7.4 Batch Normalization
	1.7.5 Other Methods for Alleviating Overfitting

	1.8 Convolutional Neural Networks
	1.9 Recurrent Neural Networks
	1.10 Deep Learning Examples
	1.10.1 Tensor and Gradients
	1.10.2 Define a Model
	1.10.3 Customized Layers
	1.10.4 MLP: Image Classification on MNIST
	1.10.5 CNN: Image Classification on CIFAR10
	1.10.6 RNN and Seq2seq: Chatbot

	References

	2 Introduction to Reinforcement Learning
	2.1 Introduction
	2.2 Bandits
	2.2.1 Online Prediction and Online Learning
	2.2.2 Stochastic Multi-Armed Bandit
	2.2.3 Adversarial Multi-Armed Bandit
	2.2.4 Contextual Bandits

	2.3 Markov Decision Process
	2.3.1 Markov Process
	2.3.2 Markov Reward Process
	2.3.3 Markov Decision Process
	2.3.4 Bellman Equation and Optimality
	Bellman Equation
	Solutions of Bellman Equation
	Optimal Value Functions
	Bellman Optimality Equation

	2.3.5 Other Important Concepts
	Deterministic and Stochastic Policies
	Partially Observed Markov Decision Process

	2.3.6 Summary of Terminology in Reinforcement Learning

	2.4 Dynamic Programming
	2.4.1 Policy Iteration
	2.4.2 Value Iteration
	2.4.3 Other DPs: Asynchronous DP, Approximate DP, Real-Time DP

	2.5 Monte Carlo
	2.5.1 Monte Carlo Prediction
	2.5.2 Monte Carlo Control
	2.5.3 Incremental Monte Carlo

	2.6 Temporal Difference Learning
	2.6.1 TD Prediction
	TD(λ)

	2.6.2 Sarsa: On-Policy TD Control
	Convergence of Sarsa

	2.6.3 Q-Learning: Off-Policy TD Control
	Convergence of Q-Learning

	2.7 Policy Optimization
	2.7.1 Overview
	Recap of RL Skeleton

	2.7.2 Value-Based Optimization
	Value Function Approximation
	Gradient-Based Value Function Approximation
	Example: Deep Q-Network

	2.7.3 Policy-Based Optimization
	Gradient-Based Optimization
	Example: REINFORCE Algorithm
	Gradient-Free Optimization
	Example: Cross-Entropy (CE) Method

	2.7.4 Combination of Policy-Based and Value-Based Methods
	Compatible Function Approximation
	Other Methods

	References

	3 Taxonomy of Reinforcement Learning Algorithms
	3.1 Model-Based and Model-Free
	3.2 Value-Based and Policy-Based
	3.3 Monte Carlo and Temporal Difference
	3.4 On-Policy and Off-Policy
	References

	4 Deep Q-Networks
	4.1 Introduction
	4.2 Background
	4.3 Sarsa and Q-Learning
	4.4 Why Deep Learning: Value Function Approximation
	4.5 DQN
	4.6 Double DQN
	4.7 Dueling DQN
	4.8 Prioritized Experience Replay
	4.9 Other Improvements: Multi-Step Learning, Noisy Nets, and Distributional Reinforcement Learning
	4.10 DQN Examples
	4.10.1 Related Gym Environment
	4.10.2 DQN
	4.10.3 Double DQN
	4.10.4 Dueling DQN
	4.10.5 Prioritized Experience Replay
	4.10.6 Distributed DQN

	References

	5 Policy Gradient
	5.1 Introduction
	5.2 REINFORCE: Vanilla Policy Gradient
	5.3 Actor-Critic
	5.4 Generative Adversarial Networks and Actor-Critic
	5.5 Synchronous Advantage Actor-Critic (A2C)
	5.6 Asynchronous Advantage Actor-Critic (A3C)
	5.7 Trust Region Policy Optimization (TRPO)
	5.7.1 Natural Gradient

	5.8 Proximal Policy Optimization (PPO)
	5.9 Actor Critic Using Kronecker-Factored Trust Region (ACKTR)
	5.10 Policy Gradient Examples
	5.10.1 Related Gym Environments
	Discrete Action Space: Atari Pong Game and CartPole
	Pong
	CartPole
	Continuous Action Space: BipedalWalker-v2 and Pendulum-v0
	BipedalWalker-v2
	Pendulum-v0

	5.10.2 REINFORCE: Atari Pong Game and CartPole-v0
	Pong
	CartPole

	5.10.3 AC: CartPole-v0
	5.10.4 A3C: BipedalWalker-v2
	5.10.5 TRPO: Pendulum-v0
	5.10.6 PPO: Pendulum-v0

	References

	6 Combine Deep Q-Networks with Actor-Critic
	6.1 Introduction
	6.2 Deep Deterministic Policy Gradient (DDPG)
	6.3 Twin Delayed Deep Deterministic Policy Gradient (TD3)
	6.4 Soft Actor-Critic (SAC)
	6.4.1 Soft Policy Iteration
	6.4.2 SAC

	6.5 Examples
	6.5.1 Related Gym Environment
	6.5.2 DDPG: Pendulum-v0
	6.5.3 TD3: Pendulum-v0
	6.5.4 SAC: Pendulum-v0

	References

	Part II Research
	7 Challenges of Reinforcement Learning
	7.1 Sample Efficiency
	7.2 Learning Stability
	7.3 Catastrophic Interference
	7.4 Exploration
	7.5 Meta-Learning and Representation Learning
	7.6 Multi-Agent Reinforcement Learning
	7.7 Sim to Real
	7.8 Large-Scale Reinforcement Learning
	7.9 Others
	References

	8 Imitation Learning
	8.1 Introduction
	8.2 Behavioral Cloning: Supervised Learning Approach
	8.2.1 Challenges of BC
	8.2.2 Dataset Aggregation
	8.2.3 Variational Dropout
	8.2.4 Other Methods in BC

	8.3 Inverse Reinforcement Learning Approach
	8.3.1 Challenges of IRL
	8.3.2 Generative Adversarial Approach
	8.3.3 Generative Adversarial Network Guided Cost Learning (GAN-GCL)
	8.3.4 Adversarial Inverse Reinforcement Learning (AIRL)

	8.4 Imitation Learning from Observation (IfO)
	8.4.1 Model-Based
	8.4.2 Model-Free
	8.4.3 Challenges of IfO

	8.5 Probabilistic Methods
	8.6 IL as Initialization for RL
	8.7 Other Approaches of Leveraging Demonstrations in RL
	8.7.1 Feeding Demonstrations into Replay Buffer
	8.7.2 Normalized Actor-Critic
	8.7.3 Reward Shaping with Demonstrations

	8.8 Summary
	References

	9 Integrating Learning and Planning
	9.1 Introduction
	9.2 Model-Based Method
	9.3 Integrated Architectures
	9.4 Simulation-Based Search
	9.4.1 Simple Monte Carlo Search
	9.4.2 Monte Carlo Tree Search
	9.4.3 TD Search

	References

	10 Hierarchical Reinforcement Learning
	10.1 Introduction
	10.2 Options Framework
	10.2.1 STRategic Attentive Writer (STRAW)
	10.2.2 The Option-Critic Architecture

	10.3 Feudal Reinforcement Learning
	10.3.1 FeUdal Networks (FuNs)
	10.3.2 Off-policy Correction

	10.4 Other Works
	References

	11 Multi-Agent Reinforcement Learning
	11.1 Introduction
	11.2 Optimization and Equilibrium
	11.2.1 Nash Equilibrium
	Pure Strategy Nash Equilibrium
	Mixed Strategy Nash Equilibrium

	11.2.2 Correlated Equilibrium
	11.2.3 Stackelberg Equilibrium

	11.3 Competition and Cooperation
	11.3.1 Cooperation
	11.3.2 Zero-Sum Game
	11.3.3 Simultaneous Competition
	11.3.4 Sequential Competition

	11.4 Game Theoretical Framework
	References

	12 Parallel Computing
	12.1 Introduction
	12.2 Synchronization and Asynchronization
	12.3 Parallel Communication and Networking
	12.4 Distributed Reinforcement Learning Algorithms
	12.4.1 Asynchronous Advantage Actor-Critic
	12.4.2 Hybrid GPU/CPU A3C
	12.4.3 Distributed Proximal Policy Optimization
	12.4.4 IMPALA and SEED
	12.4.5 Ape-X, Reactor, and R2D2
	12.4.6 Gorila

	12.5 Distributed Computing Architecture
	References

	Part III Applications
	13 Learning to Run
	13.1 NIPS 2017 Challenge: Learning to Run
	13.1.1 Introduction of the Environment
	13.1.2 Installation

	13.2 Training an Agent to Run
	13.2.1 Parallel Training
	13.2.2 Tricks
	13.2.3 Learning Results

	References

	14 Robust Image Enhancement
	14.1 Image Enhancement
	14.2 Reinforcement Learning for Robust Processing
	References

	15 AlphaZero
	15.1 Introduction
	15.2 Combinatorial Games
	15.3 Monte Carlo Tree Search
	15.4 AlphaZero: A General Algorithm for Board Games
	References

	16 Robot Learning in Simulation
	16.1 Robotics Simulation
	16.1.1 Install CoppeliaSim and PyRep
	16.1.2 Git Clone Our Project
	16.1.3 Assemble the Robot

	16.2 Reinforcement Learning for Robotics Tasks
	16.2.1 Parallel Training
	16.2.2 Learning Performance
	16.2.3 Domain Randomization
	16.2.4 Robot Learning Benchmark
	16.2.5 Other Simulators

	References

	17 Arena Platform for Multi-Agent Reinforcement Learning
	17.1 Intallation
	17.2 Build Game with Arena
	17.2.1 Simple One-Player Game
	17.2.2 Simple Two-Player Game with Reward Scheme
	17.2.3 Advanced Settings
	Reward Scheme
	More Agent Prefabs

	17.2.4 Export Binary Game

	17.3 MARL Training
	17.3.1 Setup X-Server
	17.3.2 Run Training
	Continuous Action Space
	Discrete Action Space

	17.3.3 Visualization

	References

	18 Tricks of Implementation
	18.1 Overview: How to Apply Deep Reinforcement Learning?
	18.2 Implementation
	18.3 Training and Debugging
	References

	Part IV Summary
	19 Algorithm Table
	References

	20 Algorithm Cheatsheet
	20.1 Deep Learning
	20.1.1 Stochastic Gradient Descent
	20.1.2 Adam Optimizer

	20.2 Reinforcement Learning
	20.2.1 Bandit
	20.2.2 Dynamic Programming (DP)
	20.2.3 Monte Carlo (MC)

	20.3 Deep Reinforcement Learning
	20.4 Advanced Deep Reinforcement Learning
	20.4.1 Imitation Learning
	20.4.2 Model-Based Reinforcement Learning
	20.4.3 Hierarchical Reinforcement Learning
	20.4.4 Multi-Agent Reinforcement Learning
	20.4.5 Parallel Computing

