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Preface

Nature-inspired optimization algorithms have become very popular during the last
three decades for solving complex real-world problems. Nature-inspired opti-
mization methods are motivated by the behaviour and problem-solving skills of
living beings and have their origin in some or the other natural phenomenon. These
algorithms usually mimic natural processes like mutation, selection, foraging
behaviour of an organism, group movement, human intelligence or physical laws.
Ease of implementation, a parallel search mechanism facilitated by a population of
agents, non-dependence on nature of the objective function and ability to process
non-differentiable, discontinuous and non-convex functions have resulted in the
unprecedented popularity of nature-inspired techniques over other numerical
methods, for solving practical problems.

The electrical power systems are highly interconnected, geographically dis-
tributed over large areas, have complex dynamic constraints and possess
linear/nonlinear, static/dynamic and continuous/discrete variables. Hence,
nature-inspired algorithms are particularly suitable for solving the complex power
system optimization problems which are high dimensional, nonlinear, non-convex,
discontinuous and have a large number of equality and inequality constraints.

This book provides a compilation of a few popular algorithms and their appli-
cations to different types of problems of the power system domain. It contains nine
chapters. Chapters 1–2 deal with human intelligence-based teacher learner-based
optimization, Chaps. 3–6 focus on swarm intelligence, Chap. 7 deals with differ-
ential evolution, Chap. 8 presents a real-world application of the genetic algorithm,
and Chap. 9 reviews various optimization techniques.

The objective of dispatching generating units in an electrical power system is to
compute an optimal generation schedule to minimize the cost without violating the
operating limits. Earlier, this problem comprised mainly fossil fuel generating units.
Now, the system complexity increases due to the widespread involvement of a large
number of renewable distributed energy resources (DERs) which are random,
uncertain and introduce discrete variables in the objective function.
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Chapter 1 provides a metaheuristic technique inspired by the interaction between
teacher and students in the classroom named as teacher learner-based optimization
(TLBO), which is implemented for solving a complex static and dynamic economic
load dispatch problem with ramp rate limits, prohibited operating zones, valve point
loading as well as transmission losses. Chapter 2 presents the application of elitist
TLBO to solve the problem of optimal power flow during transmission network
congestion through active power rescheduling for the pool-based competitive
electricity market model. Chapter 3 presents the popular particle swarm optimiza-
tion (PSO) algorithm which has been implemented for determining optimal values
of parameters of proportional–integral–derivative (PID) controller for the load
frequency control (LFC) of single area power network. Levelized cost of energy
(LCOE) concept helps in establishing the economic viability of the system with
renewable energy sources over a long run and also helps in deciding a feasible tariff
for the hybrid renewable energy system (HRES). In Chap. 4, PSO is used to
determine LCOE for a hybrid energy system. Artificial bee colony
(ABC) optimization algorithm is a well-accepted swarm intelligence-based method.
It is applied for solving combined economic emission dispatch (CEED) of a hybrid
thermal solar PV system in Chap. 5. Grey wolf optimization (GWO) is a novel
swarm intelligence approach inspired by the hierarchical hunting mechanism of
grey wolves. Chapter 6 presents the solution to a multi-objective problem for a
microgrid in a dynamic environment using GWO. Microgrids are becoming popular
for power supply with renewable energy resources due to their adaptability and
ability to work independently. In Chap. 7, a mixed-integer differential evolution
(MIDE) algorithm with continuous and binary variables is used to solve static and
dynamic optimal scheduling for a microgrid. In Chap. 8, non-dominated sorting
genetic algorithm-II (NSGA-II) is used to solve multi-objective reactive power
management (MORPM) problem for minimization of active power losses,
improvement of voltage profile and minimization of the total capacity of reactive
power sources (RPS) in radial distribution systems (RDS). Short-term hydrothermal
scheduling (SHTS) problem deals with the scheduling of hydro and thermal gen-
erating units to fulfil required power demand. As the operating cost of the hydro
units is understandably almost negligible, the primary objective is the minimization
of fuel cost of thermal units while satisfying a large number of nonlinear
equality/inequality constraints associated with both hydro and thermal power
generating units. Chapter 9 attempts to present a state-of-the-art review of
nature-inspired algorithms applied for solving SHTS problems with different
dimensions and complexities.

This book is expected to be very useful to the researchers/academicians/UG and
PG students who wish to work and explore the applications of nature-inspired
algorithms in the power system or any other interdisciplinary area.
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Synopsis

Problems related to electrical power systems are usually very complex due to
massive dimensions, nonlinearity, non-convexity and discontinuity associated with
objective functions. Also, it has a large number of equality and inequality con-
straints, which give rise to a complex optimization problem which is difficult to
solve using classical numerical methods. Nature-inspired optimization algorithms
are found to be very effective as compared to traditional optimization methods due
to their ease of implementation, population-based parallel search mechanism,
non-dependence on the nature of the problem and ability to handle
non-differentiable, non-convex problems. The analytical model of nature-inspired
techniques mimics the natural happenings and intelligence of life forms. They are
mainly based on evolution, swarm intelligence, ecology, human intelligence and
physical science.

This book presents a wide range of optimization methods and their applications
to different electrical power system problems such as economic load dispatch,
demand supply management in microgrid, levelized pricing of energy, load fre-
quency control and congestion management, reactive power management in radial
distribution system.
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Chapter 1
Teaching-Learning-Based Optimization
for Static and Dynamic Load Dispatch

Kavita Sharma , Hari Mohan Dubey , and Manjaree Pandit

Abstract This chapter presents a population-based meta-heuristic called teaching-
learning-based optimization (TLBO) for the solution of economic scheduling of
power generators. The mathematical model of TLBO basically simulates the inter-
action of the teacher with students in a classroom during the optimization process.
To demonstrate the applicability and validity of TLBO, it has been implemented and
tested on two different types of complex constrained economic dispatch problems
that include test cases of distinct nature. To confirm the superiority and efficacy of
TLBO over the existing approaches in terms of optimal search behavior and robust-
ness, the outcomes of simulation results are also compared with other recent reported
methods.

Keywords Economic load dispatch · Ramp rate limits · Prohibited operating
zones · Teacher and learner phase

1 Introduction

Economic load dispatch (ELD) is one of the significant optimization issues of power
system operation with the objective to determine the best possible output from num-
ber of available power generating unit to fulfill the specified system demand at the
minimum operational cost, subjected to all associated operational limitations. It can
be either static economic dispatch (SELD) or dynamic economic dispatch (DELD).
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The idea behind SELD is to generate a dispatch solution for a specific time period,
whereas DELD refers to power dispatch by committed generators over the scheduled
time period. ELD problems are quite complex to solve because of its very bigger
dimension, a nonlinear objective function and variety of operational limitations. A
considerable saving in cost can be achieved if the scheduling of available power
generators is carried out optimally. Traditionally, the cost function is found to be
pricewise quadratic while constraints are linear in nature [1]. The complexity of the
problem rises significantly with the increase in power generators because of their
combinatorial nature. Also in large thermal plant with a high capacity turbine, which
makes the cost function non-smooth as well as non-convex in nature, here valve point
effects (VPL) in problem formation provide more accurate results. But the problem
with VPL effect, power balance and other operational constraints makes the problem
non-differentiable non-convex and multimodal which is difficult to solve due to the
presence of multiple local minima. Various efforts have been made to solve these
problems till date, with constraints ormultiple objectives, with the help of a variety of
mathematical programming [1, 2] or by nature-inspired meta-heuristic [3–14]. Due
ability to provide near global solution without any restriction of cost curve makes
the nature-inspired algorithm (NIA) more popular in the area of power system oper-
ation. Well-accepted meta-heuristic includes particle swarm algorithm (PSO) [3, 4],
bacterial foraging algorithm (BFA) [5], harmony search (HS) [6], biogeography-
based optimization (BBO) [7], artificial bee colony (ABC) [8], Krill Herd algorithm
(KHA) [9], differential evolution (DE) [10], chemical reaction optimization (CRO)
[11], greedy heuristic search (GSA) [12], backtracking search algorithm (BSA) [13],
CFA [14], etc. A detailed review of NIA for the solution of ELD problems can be
found in Ref. [15].

Although various methods for optimization have been proposed by various
researchers till date, the complication of the problem in hand needs to develop profi-
cient algorithms for finding the best dispatch solution. In this perspective, the aim of
this work is to present a new NIA for the solution of practical ELD problems, which
can offer a practical option over the existing techniques.

In this chapter, a new meta-heuristic inspired by the interaction between teacher
and students in the classroom called teacher–learner-based optimization is imple-
mented for the solution of complex SELD and DELD problem related to the
power system. The efficacy of the algorithm has been implemented, tested and
validated on two SELD problems and a DELD problem. The distinct operational
constraints include ramp rate limits, prohibited operating zones, VPL effect as well
as transmission loss.

Remaining chapter is organized in the followingmanner: Sect. 2 presents themath-
ematical formulation of problem. Section 3 presents a brief description of TLBO,
Sect. 4 provides simulation results, and finally, the important finding in terms of
concluding remark is presented in Sect. 5.
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2 Problem Statement

The DED problem is related to the minimization of objectives as total cost over the
specified time frame subjected to associated operational constraints.

Cost function of the practical power generating unit is represented as a summation
of both quadratic cost function and sinusoidal function.

Total cost corresponding to real power output is presented as follows:

F1 =
T∑

t=1

{
N∑

i=1

fi (Pi )

}
(1)

fi (Pi ) = [
ai P

2
i + bi Pi + ci

] + ∣∣ei × sin
(
fi × (

Pmin
i − Pi

))∣∣ (2)

Subjected to operational constraints:

N∑

i=1

Pi − (PD + PL) = 0 (3)

where

PL =
N∑

i=1

N∑

I=1

Pi BiIPI +
N∑

i=1

Bi0Pi + B00 (4)

Pmin
i ≤ Pi ≤ Pmax

i ; ∀i = 1, 2, 3 . . .N (5)

−RRLidown ≤ Pt
i − Pt−1

i ≤ RRLiup (6)

Here, Pt−1
i is the power output of i th unit at the prior hour,RRLiup andRRLidown

are the upper and lower ramp rate limits.

Pmin
i ≤ Pt

i ≤ P1
i

(7)

Here,Pk

i and P̄k

i represent the lower and upper limits of the kth prohibited
operation zone of the i th power generating unit.
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3 Teaching–Learning-Based Optimization

Teaching–learning is a process where individual tries to learn from others to improve
themselves. TLBO is a population-basedmeta-heuristic that simulates the interaction
of teacher with students in a classroom [16]. It simulates two basic modes of the
learning process. They are (a) with the help of teacher called teacher phase (b)
interaction with other students called the learner phase. In this algorithm, a group
of students are analogous to population size (N ), distinct subjects are analogous
to design variables (D), result of student represents fitness value of problem and
as teacher is the most educated person of society, and hence, the best solution is
represented by teacher. Its step-by-step process of implementation is depicted as
below.

Randomly initialize the population (X) within lower limits (Xmin
j ) and upper limits

(Xmax
j ) of search space as follows:

Xi j = X
min
j + R ∗ (

X
max
j − X

min
j

)
(8)

where random number ∈ (0, 1).
Step 1: Teacher Phase
The average result (Mg) of each subject in a class at generation g can be represented
as follows:

M
g = [

m
g
1,m

g
2, . . . ,m

g
D

]
(9)

The best solution of objective function among the population is termed as teacher
(XT ) because a teacher always tries to enhance average result of each subject (Mg)

through motivating and helping individual learner (Xi ) towards (XT ). Analytically,
it can be represented as follows:

X
g
i_new = X

g
i + R ∗ (

X
g
T − T f ∗ X

g
)

(10)

where T f is the teaching factor and it can be either 1 or 2. Its value is selected on a
random basis with equal probability as below:

T f = round{1 + R(0, 1) ∗ (2 − 1)} (11)

IfXg
i_new is found to be better, it is related toXg

i , otherwiseX
g
i remains unchanged.

Step 3: Learner Phase
Here, learner tries to improve their information by interaction with others. It can

be selected on random basis.

X
g
i_new = X

g
i + R ∗ (

X
g
i − X

g
r

)
if f (Xg

i ) < f
(
X

g
r

)
(12)

X
g
i_new = X

g
i + R ∗ (

X
g
r − X

g
i

)
i f f (Xg

i ) > f
(
X

g
r

)
(13)
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Its step-by-step process of implementation is depicted as below.

Step1: Initialize population randomly within upper and lower limits.
Step2: Evaluate population and arrange them on the basis of fitness value.
Step3:Modify thefitness value basedon the concept of teacher phase, i.e., learning
of learner by teacher.
Step4: Modify the fitness value based on the concept of learner phase, i.e., based
on the concept of mutual interaction.
Step5: Repeat above steps till the termination criterion is reached.

4 Description of Problems and Simulation Results

To analyze the efficacy of the TLBO algorithm for the solution of real-world opti-
mization, two dissimilar natures of ELD problems are taken here. Type one includes
two cases of SELD of problem with six and ten generating unit systems with diverse
cost curve, where optimal scheduling is carried out for specific time period, where
the second case is having a DELD problem with four generators where scheduling
period of thermal plants is 1 day or 24 h with 24 intervals of 1 h each.

Case 1: Six unit Problem with ramp rate limit, prohibited operating zones
and losses This system has six thermal generation units. All generators have pro-
hibited operating zones and ramp rate limits constraints [4]. Transmission loss is also
considered here for simulation analysis. The power demand considered is 1263MW.
The outcomes of simulation analysis in terms of power generation schedules are
tabulated in Table 1. While comparison with results with other methods for the same

Table 1 Comparison of results in terms of generation scheduling with different algorithms (Case
1)

O/P PSO-WPF
[4]

BBO [7] MABC/D/Cat
[8]

OKHA [9] CFA [14] TLBO

PG1 447.2547 447.3997 447.5032 447.3988 446.8623 447.0721

PG2 173.4092 173.2392 173.3177 173.2409 173.2990 173.1811

PG3 263.9369 263.3163 263.4631 263.3815 264.0771 263.9171

PG4 139.2500 138.0006 139.0650 138.9802 139.0329 139.0504

PG5 165.2494 165.4104 165.4735 165.3914 165.6988 165.5744

PG6 86.3095 87.07979 87.1355 87.0520 86.4471 86.6208

PL
(MW)

12.4100 12.446 12.9582 12.4448 12.4172 12.4159

Min.
Cost
($/hr)

15442.6601 15443.0963 15449.8995 15,443.063 15,442.6553 15442.6325
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test case is available in recent literature, it is clearly observed that TLBO can pro-
vide best power generation scheduling, in terms of minimum operational cost as
15442.6325 $/hr in comparison with PSO-WPF [4], BBO [7], MABC [8], OKHA
[9] and CFA [14]. The cost convergence curve obtained by TLBO algorithms is
illustrated in Fig. 1 which is found to be steady and stable. The statistical analyses
over the thirty repeated trails are tabulated in Table 2 in terms of generation cost
and standard deviation. With comparisons of results with other methods, here it is
clearly observed that even the average cost attained by TLBO is found to be superior
to others.
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Fig. 1 Cost convergence curve obtained by TLBO for Case 1 (six unit system)

Table 2 Statistical comparison of results with other meta-heuristics (Case 1)

Methods Generation Cost($/hr) S. D CPU time/iter
(s)Max. Min. Ave.

PSO [3] 15492 15450 15454 0.0002 14.89

GA [3] 15542 15459 15469 0.0570 41.58

PSO-WPF [4] 15442.6658 15442.6601 15442.6613 – 0.007686

ABF NM [5] – 15 443.8164 15 446.95383 2.58223 –

HHS [6] 15453 15449 15450 – 0.14

BBO [7] 15443.096 15443.096 15443.096 – 0.0325

MABC/D/Cat
[8]

15449.8995 15449.8995 15449.8995 6.04 × 10−8 –

OKHA [9] 15,443.916 15,443.075 15,443.327 – –

OGSA [12] 15443.06 15443.06 15443.06 000 –

CFA [14] 15,442.7002 15,442.6553 15,442.6735 0.0119 –

TLBO 15442.6701 15442.6325 15442.6552 0.0132 0.0273
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Case 2: Ten unit Problem with valve point loading effects and losses This test
system has ten generating units with valve point loading and transmission loss. For
analysis purpose, load demands for this system are considered as 2000 MW. The
fuel cost coefficient and B-loss coefficient data are adopted from ref [10]. The opti-
mum dispatch solution obtained by simulation using TLBO algorithm is presented
in Table 3, and statistical comparisons of results in terms of minimum cost, average
cost, maximum cost, standard deviation (SD) of cost and average computation time
with other reported methods are depicted in Table 4. While comparing results with
other recently reported methods as RCCRO [11], OGHS [12], BSA [13] and ADE-
MMS [10], it is clearly observed that TLBO can provide a better solution in terms of
minimum cost of 111496.6215 $/hr with minimum SD 0.00910. Also, the average
computation time over the 500 iterations is 4.25 s, considering the dimension and

Table 3 Comparison of results in terms of generation scheduling with different algorithms (Case
2)

O/P RCCRO [11] OGHS [12] BSA [13] ADE-MMS
[10]

TLBO

PG1 55 55 55 55.00000000 55

PG2 79.9999 80 80 80 80

PG3 106.922 106.9916 106.9295 106.93993334 106.9792

PG4 100.5426 100.5354 100.6028 100.57627031 100.6464

PG5 81.5216 81.445 81.499 81.50173667 81.5942

PG6 83.0528 83.067 83.0074 83.02088436 82.8198

PG7 299.9999 299.9998 300 300 300

PG8 339.9999 339.9999 340 340 340

PG9 469.9999 470 470 470 470

PG10 469.9999 469.9999 470 470 470

PL
(MW)

87.0387 87.03890848 87.0387 87.03882468 87.0396

Min.
Cost
($/hr)

111497.6319 111490 111497.6276 111497.630810 111496.62150281

Table 4 Statistical comparison of results (Case 2)

Methods Generation cost ($/hr) S. D Ave CPU
time (s)Max. Min. Ave.

ADE-MMS
[10]

111497.630814 111497.630810 111497.630810 0.000001 1.122402

OGHS [12] – 111490 – – –

BSA [13] 111497.6307 111497.6276 111497.6286 0.0008 4.29

TLBO 111496.6474 111496.6215 111496.6257 0.00910 4.25
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Fig. 2 Cost convergence curve obtained by TLBO for Case 2 (ten unit system)

complexity of the problem it seems to be obvious. The smooth cost convergence
curve for this case obtained by TLBO is shown in Fig. 2.

Case 3: Four units Problem with convex fuel cost characteristics A four unit
system is considered here for solution of DELD problem over the scheduled time
period of 24 h. The fuel cost is second-order polynomial and adopted as per Ref. [17].
The load profile over the 24 h is adopted as per the same reference. The transmission
loss is not considered here. The best cost obtained by TLBO is 647964.5608 $,
after the thirty repeated trials which is validated by the results of GAMS [17]. The
generation schedule corresponding to the best cost is tabulated in Table 5, and its
statistical results are listed in Table 6. The smooth cost convergence curve of this
DELD problem obtained by TLBO is presented in Fig. 3.

Effect of population
Change in population effects the performance of algorithm, i.e., high population
make the algorithm sluggish and incompetent on the other hand low population may
not be competent for searching a minima in case of multi model function. In most
of the literature, it is clearly stated that the optimum population size is selected on
the basis of problem dimension and its associated complexity. Table 7 demonstrates
the performance of algorithm for different population sizes for the above mentioned
three cases. After thirty careful trials, it was observed for SELD problems. Lower
population size of 50 performs better and also has lower computational time, whereas
for the DELD problem higher population size of 150 provides a better solution in
terms of fuel cost, however computational time is high. Considering the operational
constraints over the scheduled time period of 24 h, computational time of 140.6486 s
seems to be quite obvious.
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Solution quantity and Robustness
Considering the statistical results as tabulated in Tables 2, 4 and 6 for the abovemen-
tioned three cases, it was clearly observed that for Case 1, TLBO performs better
than all reported methods and almost comparable to recently reported method as
PSO-WPF [4], CFA [14].

Table 5 Generation scheduling of DELD problem (Case 3)

Hour Pg1 Pg2 Pg3 Pg4 Pd (MW)

1 166.212 112.0672 130.4793 101.2415 510

2 172.5983 116.6751 135.4191 105.3075 530

3 168.096 113.306 132.1407 102.4573 516

4 166.339 112.0283 130.2982 101.3345 510

5 167.6596 113.1721 131.8982 102.2701 515

6 176.8916 119.9658 139.0555 108.0871 544

7 200 145.7118 169.0255 131.2627 646

8 200 159.0694 183.6179 143.3127 686

9 200 184.7486 190 166.2514 741

10 200 181.1252 190 162.8748 734

11 200 188.4965 190 169.5035 748

12 200 194.775 190 175.225 760

13 200 191.5492 190 172.4508 754

14 200 163.7382 188.8212 147.4406 700

15 200 159.154 183.5212 143.3248 686

16 200 173.7207 190 156.2793 720

17 200 170.4435 190 153.5565 714

18 200 195.24 190 175.76 761

19 200 177.3771 190 159.6229 727

20 200 168.5705 190 155.4295 714

21 198.1548 138.573 160.0014 121.2708 618

22 189.8335 128.8503 149.1501 116.1661 584

23 187.8591 127.2281 147.8707 115.0421 578

24 177.0355 119.8052 139.0598 108.0995 544

Total Cost($) 140.6486

Table 6 Statistical results for four unit DELD problem (Case3)

Methods Generation cost ($) S. D Time/iteration (s)

Max. Min. Ave.

GAMS [17] – 6.4796 × 105 – – –

TLBO 647972.8985 647964.5608 647968.6976 3.1137 140.6486
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Fig. 3 Cost convergence curve obtained by TLBO for Case 3(four unit system)

Table 7 Effect of change in population size for different test cases

Test Case NP Max. Min. Ave. SD CPU time
(s)

Case 1 50 15442.6701 15442.6325 15442.6552 0.0132 4.0531

100 15442.6643 15442.6534 15442.65981 0.00529 10.5023

150 15442.6639 15442.657 15442.66249 0.00157 15.5786

Case 2 50 111496.6474 111496.6215 111496.6257 0.00910 4.25

100 111496.6313 111496.6200 111496.6226 0.00428 11.0541

150 111496.6387 111496.6196 111496.6247 0.00529 14.1288

Case 3 50 647986.215 647964.5642 647973.1839 9.3232 55.5426

100 647986.215 647965.5908 647972.2881 5.3599 110.7478

150 647972.8985 647964.5608 647968.6976 3.1137 140.6486

For Case 2, generation cost attained by TLBO is found to be superior to ADE-
MMS [10], OGHS [12] and BSA [13] in of terms maximum average and minimum
cost.

Because of randomness is involved in generating the initial population of any
heuristic search optimization techniques, single run of algorithm is not sufficient
to judge the best result. Therefore, many run with different population sizes were
carried out to analyze the consistency of the TLBO algorithm for all the three test
cases. The statistical results in terms of cost over the thirty repeated trials have been
tabulated in Table 7. Here, it was observed that the frequency of achieving optimum
cost is more as the standard deviation of cost was found to be low for all the test case.
Hence, we can say that TLBO is robust algorithm and has global minima searching
capability too.

Computational efficiency
Tables 2, 4 and 6 present best cost achieved by TLBO for six unit system with
RRL and POZ which is nonlinear and discontinuous in nature, ten unit system with



1 Teaching–Learning-Based Optimization for Static and Dynamic … 11

VPL effects which makes the system non-convex and multimodal and a four unit
system with convex fuel cost characteristics. The minimum cost achieved by TLBO
is 15442.6325 $/hr for Case 1, 111496.6215 $/hr for Case 2 and 647964.5608 $
for Case 3, respectively. The performance of TLBO is almost found to be better as
compared to reported results by other methods available in various recent literatures.
Also, the required computational time found is to be less; therefore, we can say that
TLBO is one of the computation efficient algorithms and has the global searching
capability.

5 Conclusion

TLBO is a population-based meta-heuristic algorithm inspired by the influence of
teacher knowledge on students in the classroom. Analytical model of optimization
basically mimics the impact of teacher and marks obtained by grasping power of
students. To investigate the potential of the algorithm, various realistic and nonlin-
ear characteristic constraints such as non-smooth convex cost function, VPL effect,
RRL, POZ, generator limit constraints were considered. The proposed algorithm is
simple and comparatively easy to implement. The algorithm was tested on the dif-
ferent standard cases, and the comparison of results is made with best-known results
reported by other methods in terms of cost, standard deviation and required com-
putational time. The solutions obtained by the TLBO algorithm were found to be
superior and also have smooth cost convergence characteristics. Considering all these
results obtained by simulation for ELD problems with different fuel cost characteris-
tics, dimensions, demands and coupled operational constraints, it can be concluded
that TLBO performs better in an efficient manner due to unique exploitation and
exploration capability.
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Chapter 2
Application of Elitist
Teacher–Learner-Based Optimization
Algorithm for Congestion Management

Rupali Parmar , Sulochana Wadhwani , and Manjaree Pandit

Abstract Computational intelligence (CI) is a sciencewhich provides computer, the
ability to learn fromdata or experimental observations.Nature-inspiredCI techniques
derive motivation from kind of natural processes for the development of algorithm.
Swarm intelligent methods are based on the individual and collective behavior of
swarm members which finally outcomes to global intelligent behavior. These tech-
niques work on the principle of exploration and exploitation. Usually, algorithms
involve specific parameters which are to be defined by the user. Efficiency of algo-
rithm depends on the tuning of parameters. Improper tuning generally traps the
algorithm into local optima. Teacher–learner-based optimization (TLBO) technique
does not involve any such parameter. Elitism further makes the algorithm turn toward
the global optima. This chapter presents a prototype based on the newly developed
elitist teacher–learner-based optimization (ETLBO) technique to solve the problem
of optimal power flow during network congestion by active power rescheduling.
Pool-based competitive electricity market model has been used. Validity of the pro-
posed method is tested for three different types of contingencies of modified IEEE
30 bus and IEEE 57 bus test systems. The results are compared with basic TLBO,
particle swarm optimization (PSO), random search method (RSM) and simulated
annealing (SA).
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1 Introduction

Conservation of synchronism in the operation of power systems becomes quite chal-
lenging in competitive electricity market. All the entities of the system operate for
their own benefit and profit, leading to dishonoring of operational constraints [1].

Congestion in transmission system is a state in which the scheduled power flow
crosses the secured power flow limits of the network [2]. Even a small amount of
congestion may lead the system to emergency state, cascading outages and even total
blackout in the system. In the open-access model, the independent system operator
(ISO), ensures the power flow in network to be in its operational limits and thus
maintains the security and reliability of the system.

Zonal pricing, load shedding, countertrade and rescheduling of generation are
some of the popular market-based methods to get rid of congestion. In market-based
methods, the hike in electricity prices due to mitigation of congestion is ultimately
borne by the consumers [3].

Popularly adopted congestion management (CM) schemes and mechanisms for
pricing for various market models are particularly addressed in references [4–8].

Overbye et al. [9] have sketched all operational phenomena of power systems,
types of contingencies and their effect on system’s security and stability. Author [10]
has derived AC power flow transfer distribution factor and developed a scheme to
allocate real power (MW) loading of transmission lines. Differential evolution algo-
rithm has been applied to reschedule MW generation at buses for managing conges-
tion in reference [11]. Active power rescheduling using lion optimization algorithm
has been manifested by Gope et al. [12] and by energy storage systems in [13].
Genetic algorithm (GA) is implemented for active and reactive power rescheduling
for managing congestion in [14].

Kohan et al. [15] have presented a multiobjective particle swarm optimization
(PSO) for active power rescheduling along with demand response program and PSO
for CM is presented by Sujatha and Kamraj [16] and Mahala and Kumar [17].

Rao et al. [18] have proposed teacher–learner-based optimization technique. It
is a metaheuristic population-based algorithm and derives its basic idea from the
learning process in a human group. Author has validated the algorithm on different
mathematical benchmark test functions as well as mechanical design problem.

Non-convex problem of economic load dispatch has been solved using TLBO
with quasi-oppositional approach [19]. TLBO for CM is proposed by Verma et al. in
reference [20]. Pool-based electricity market model is used for its implementation.
Results are also compared with techniques implemented earlier.

Concept of elitism and its effect on TLBO is discussed in reference [21]. Proposed
concept is tested on thirty-five standardmathematical benchmark test functions.With
elitism, the probability of moving toward global optima increases.

In the present work, ETLBO has been proposed to remove congestion from the
transmission system and thus reducing the re-dispatch cost of real power. Investiga-
tions are made on cases of contingency including (i) single line outage, (ii) increment
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in demand and (iii) variation in line power limits. Results are validated on modified
IEEE 30 bus and modified IEEE 57 bus test systems.

2 Problem Formulation

Mitigation of congestion is effectively achieved by varying the active power output
of generating units. Such variations, however, add to the total cost. This additional
cost, termed as congestion cost, is to be minimized. Function statement of cost is
given in Eq. (1) [16].

Congestion cost

CCc =
∑

j∈Ng

(
Ck�P+

g j + Dk�P−
g j

)
$/h (1)

whereCCc is the cumulative congestion cost incurred for shift inMWpower ($/h),Ck

and Dk are incremental and decremental price bids submitted byGENCOs ($/MWh).
�P+

g j and �P−
g j are positive and negative alteration in active power generation of

units (MW), respectively.
Equality and inequality constraints to be balanced are:

2.1 Equality Constraints

Pgk − Pdk =
Nb∑

j=1

∣∣Vj

∣∣|Vk |
∣∣Ykj

∣∣ cos
(
δk − δ j − θk j

); (2)

Qgk − Qdk =
Nb∑

j=1

∣∣Vj

∣∣|Vk |
∣∣Ykj

∣∣ sin
(
δk − δ j − θk j

); (3)

Pgk = Pc
gk + �P+

gk − �P−
gk; k = 1, 2, 3, . . . Ng (4)

Pdj = Pc
d j ; j = 1, 2, 3, . . . Nd (5)

Here, real and reactive power at bus k are denoted by Pgk and Qgk , respectively;
real and reactive power consumed at bus k are denoted by Pdk and Qdk , respectively;
bus voltage angles at bus j and bus k are denoted by δ j and δk , respectively; admittance
angle of line connected between bus k bus j is denoted by θk j ; number of total buses,
generator buses and load buses are denoted by Nb, Ng and Nd, respectively; Pc

gk
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and Pc
d j are initial scheduled transactions of real power generated and real power

consumed at bus k [22].

2.2 Inequality Constraints

Pmin
gk ≤ Pgk ≤ Pmax

gk ,∀k ∈ Ng (6)

Qmin
gk ≤ Qgk ≤ Qmax

gk ,∀k ∈ Ng (7)

Pgk − Pmin
gk ≤ �Pgk ≤ Pmax

gk − Pgk, (8)

Vmin
m ≤ Vm ≤ Vmax

m ,∀m ∈ Nl (9)

Pi j ≤ Pmax
i j , (10)

Here, upper bounds and lower bounds of associated variables are denoted by
superscripts min and max. Pij states real power flow in line between ith and jth bus
while, Pmax

i j is its real power rating. Nl defines number of load buses and Vm is the
magnitude of voltage associated with it.

2.3 Fitness Function

Often, the objective function serves as fitness function (FF). In the present research,
penalty approach [16] is followed, in which, inequality constraints behave as penalty
functions and are added to the main cost function to build up complete fitness
function.

Explicit fitness function for CM issue is presented as Eq. (11).

FF = TCc + α1 ×
cong∑

i=1

(
Pi j − Pmax

i j

)2 + α2 ×
VB∑

j=1

(
�Vj

)2 + α3 × (
�Pg

)2
(11)

where

�Vj =
{

(Vmin
j − Vj ); ifVj ≤ Vmin

j

(Vj − Vmax
j ); ifVj ≥ Vmax

j

�Pg =
{

(Pmin
g − Pg); ifPg ≤ Pmin

g

(Pg − Pmax
g ); ifPg ≥ Pmax

g
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Fitness function FF is supposed to be optimized to obtain minimum cost. cong
andVB represent the total number of congested lines in the network and total number
of buses with unacceptable bus voltage profile, respectively. α1, α2, α3 are penalty
factors. Numerical value of all three penalty factors is chosen as 10,000 [20]. Pos-
sibility of violations of inequality constraints is curbed by adding penalty terms to
actual cost function.

3 Frame of Elitist Teacher–Learner-Based Optimization
(ETLBO)

TLBOproposed byRao et al.mimics the process of learning in a group. The candidate
having the best performance is considered as a teacher for the rest of the group.
Except this one teacher, all others are said to be learners. Teacher tries to improve the
performance of learners. Also, the learners improve their performance by learning
from other co-learners [18].

In this algorithm, the number of learners in the group is analogous to the population
and the subjects taught are analogous to the design variables of the problem under
consideration. The performance of any learner corresponds to the fitness value of the
function involved. TLBO proceeds in the following two phases:

3.1 Teacher Phase

This segment of TLBO shows the influence of teacher in the learning process of
group members. Precisely, the teacher tries to improve the performance of the group
by enhancing the mean result of the group in the subject offered by him/her. Let the
population size of the group be ‘n’, i.e., there are total ‘n’ members in the group.
Also, let there be ‘m’ subjects taught to the group, i.e., there are ‘m’ design variables
in the formulated problem. Now, say at ith iteration, Mji is the mean result of the
group in any specific subject.

Performance of all the candidates in the group considering all the subjects is
evaluated. The best comprehensive performance is denoted as X total − kbest, i and the
candidate having this performance is denoted as kbest. As, kbest is the best solution,
it is referred as teacher.

The difference between the algebraic mean performance in any specific subject
and the performance of teacher in the same subject is given by

Difference_mean j,k,i = ri
(
X j,kbest,i − TF Mji

)
(12)

where

k = population size, k = 1, 2, 3 … n; j = number of subjects, k = 1, 2, 3 … m.
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Xj, kbest, i = best performance in subject j.
i = current iteration cycle.
TF = teaching factor, 1 or 2; ri = random number in the range [0, 1].

Important fact here is that TF is not to be given as input to the algorithm; rather
the algorithm chooses its random value using the equation

TF = round [1 + rand(0, 1){2 − 1}] (13)

Using the Difference_meanj, k, i, whole population is updated in the teacher phase
according to the following equation

X ′
j,k,i = X j,k,i + Differencemean j,k,i (14)

Each updated value is evaluated for its fitness and accepted only if it gives better
performance than the previous one [18]. All the updated values of design variables
are recorded and used as initial values for the next phase.

3.2 Learner Phase

In the latter segment of the algorithm, the exchange of knowledge takes place among
all the learners. Any learner improves its own performance by randomly interacting
with any other learner. A learner upgrades himself only if the other learner is better
than him.

Let the population size be ‘n’, the following explanation gives an idea about how
the algorithm proceeds in learner phase.

Two learners are selected randomly such as

X ′
total−A,i �= X ′

total−B,i (15)

Here, X ′
total-A, i = fitness value of solution A at the end of teacher phase.

X ′
total-B, i = fitness value of solution B at the end of teacher phase.

Updated value of candidate solution is evaluated as:

X ′′
j,A,i = X ′

j,A,i + ri
(
X ′

j,A,i − X ′
j,B,i

)
(16)

if, X ′
total-A, i > X ′

total-B, i and

X ′′
j,A,i = X ′

j,A,i + ri
(
X ′

j,B,i − X ′
j,A,i

)
(17)

if, X ′
total-B, i > X ′

total-A, i

Here, ‘ri’ is random number in the range (0, 1) and X ′′
j, A, i and X ′′

j, B, i are updated
values for candidate solutions ‘A’ and ‘B’.
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Fitness function is evaluated using the updated value and compared with the
previous one. Updated value is accepted only if it gives better performance. Process
is repeated till termination criterion is reached.

3.3 Elitism

Many a time, the existence of inferior solutions in the populations traps the algorithm
in local optima. Rao and Patel [21] incorporated the concept of elitism in TLBO.
Principle of elitism says that theworst solutions in each iterative phase are replaced by
elite solutions. Elitism increases the competence of TLBOby reducing diversification
and enhancing exploitation capability.

4 Elitist TLBO for Congestion Management

System database for the presented experimental work has been taken from [16] and
the outcome has been compared with the outcome of [16] and [20].

4.1 About Test Systems

Proposed study and its analysis have been carried out on one medium-sized and one
large-sized standard test system.

1. Medium-sized modified IEEE 30 bus system includes 06 generating units, 24
load buses and 41 transmission lines; the system has a base load of 283.4 MW
and 126.2 MVAR.

2. Large-sized modified IEEE 57 bus system includes 07 generating units, 50 load
buses and 80 transmission lines; the system has a base load of 1250.8 MW and
335.9 MVAR.

4.2 Line Outage Contingency: Case I

Contingency case of single line outage is simulated by the unavailability of trans-
mission line between bus 1 and bus 2 of modified IEEE 30 bus test system. Lines
1–7 and 7–8 become overloaded by 17.251 MW and 05.979 MW, respectively. Per-
centage congestion is 14% and 05%, respectively, with gross congestion of 09% and
15.843 MW of real power losses in network.
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Table 1 Active power flow (MW) during contingency and after CM: case I and II

CONT. CL Active
power in
line
(MW)

Secured power flow in line with CM (MW) Line
limit
(MW)

ETLBO TLBO
[20]

PSO
[16]

RSM
[16]

SA [16]

Case I 1–7 147.251 129.35 130 129.97 129.78 129.51 130

7–8 135.979 120.22 120.78 120.78 120.60 120.35 130

Case II 1–2 310.9 129.69 130 129.97 129.91 129.78 130

2–8 97.35 64.17 62.34 61.1 52.36 51.47 65

2–9 103.5 64.65 65 64.67 55.43 54.04 65

CL—congested lines; CONT—contingency

4.3 Sudden Increment in Demand with Single Line Outage:
Case II

Unexpected demand increment by 50% and unavailability of line 1–7 is simulated for
this contingency. During contingency state, lines 1–2, 2–8 and 2–9 experience over-
loading of 181 MW, 32.35 MW and 38.5 MW, respectively, with total overloading
of 251.75 MW. Network incurs 37.34 MW of real power losses.

4.4 Abrupt Line Power Limits Variation: Case III and IV

In third case study, the abrupt variation of line power limits of line 5–6 and 6–12 of
modified IEEE30 bus test system is simulated. These lines transmit power on reduced
limits of 175 MW and 35 MW in place of 200 MW and 50 MW, respectively. Thus,
lines get congested by 20.397 MW and 14.315 MW, respectively, with a total power
violation of 9.7%. Total real power losses with congestion are 27.338 MW.

Fourth case study deals with abrupt variation in line limit of line 2–3 from 85
to 20 MW. Power flow in this line is 38.19 MW, making the line experience an
overloading of 18.19 MW with power violation of almost 99%. Real power losses
in contingency state are 27.338 MW.

Table 1 gives the tabular view of Sects. 4.2 to 4.4. Results of interest are bold
faced.

4.5 Generation Rescheduling for CM

ETLBO algorithm is run for the problem for 120 independent trials on MATLAB
2009b platform and the best solution is suggested. 100 iteration cycles and initial
population of 50 are suitable for all contingency cases. Elite size of ‘7’ gives the
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best result in all cases. Mutation (random) is suggested to avoid duplicacy in the
population.

4.6 ETLBO for Solution of CM Problem: Mathematical
Procedure

Move 1: Read test system data, incremental and decremental bids for power
generating units and their operating limits.
Move 2: Create desired contingency in the system.
Move 3: RunNewton-Raphson (N-R) power flow [23]while balancing Eqs. (2–5).
Determine violation in load bus voltages and line limits.
Move 4: Randomly initiate the first set of solutions which is number of learners
in the group. Each subject of each learner denotes the power to be rescheduled at
each generating unit for congestion elimination.
Move 5: Run N-R power flow and evaluate fitness function using Eq. (17), for
each solution set. Identify and store the elite solutions.
Move 6: Update the solution sets in ‘teacher’ phase and then in ‘learner’ phase of
algorithm
Move 7: Check the feasibility of solutions and crop for limits if required
Move 8: Evaluate cost for the updated solution sets and thus determine the solution
with minimum cost.
Move 9: Identify the worst solutions, replace themwith elite solutions andmodify
for duplicacy.
Move 10: Stop, if termination criteria are reached, else re-follow algorithm from
step 6.

5 Numerical Results and Analysis

Line outage (I): After rescheduling the generation, no lines in the network
are found to be congested. Previously, overloaded lines 1–7 and 7–8 now have
a secured power flow of 129.35 and 120.22 MW. Additional cost incurred is
483.12 $/h. These lines transmit power at 99% and 67% loading, respectively,
after CM. Gross shift in generation is 23.45 MW. Total active power losses in
system, post CM are 11.24 MW. Cost incurred by ETLBO is most low when
observed. Tables 1, 2 and 5 and Fig. 1 show the findings pictorially.

Sudden increment in load with single line outage (II): Secured power flow
in the network is achieved by removing congestion in lines 1–2, 2–8 and 8–9.
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Table 2 Shift in active power generated by GENCOS for CM: case I and II

CONT Technique Shift in real power generated by GENCOS (MW) Overall
�Pg
(MW)

�Pg1 �Pg2 �Pg3 �Pg4 �Pg5 �Pg6

Case I ETLBO −9.52 12.99 −0.16 −0.022 0.011 0.35 23.450

TLBO
[20]

−8.5876 12.985 0.4598 0.7289 −0.009 0.3988 23.169

PSO [16] −8.6123 10.4059 3.0344 0.0170 0.8547 −0.012 22.936

RSM [16] −8.8086 2.6473 2.9537 3.0632 2.9136 2.9522 23.339

SA [16] −9.0763 3.1332 3.2345 2.9681 2.9540 2.4437 23.809

Case
II

ETLBO −9.520 76.9 0.06 42.83 23.06 16.93 168.38

TLBO
[20]

−8.587 76.33 1.000 52.34 13.33 17.496 168.09

PSO [16] NA NA NA NA NA NA 168.03

RSM [16] NA NA NA NA NA NA 164.55

SA [16] NA NA NA NA NA NA 164.53

NA—not available in referred literature; CONT—contingency

1 2 3 4 5 6
-10

-5

0

5

10

15

GENCO index

Sh
ift

 in
 a

ct
iv

e 
po

w
er

 (M
W

)

ETLBO
TLBO
PSO
RSM
SA

Fig. 1 Shift in active power (MW): case I

Power flow in lines is 129.7 MW, 64.17 MW and 64.65 MW, respectively. Gross
shift in active power generation is 168.38 MW. Cost involved in CM by ETLBO
is 5278 $/h, which is lowest among all techniques in referred literature. These
findings are also revealed in Tables 1, 2 and 5 and Fig. 2.
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Fig. 2 Shift in active power (MW): case II

Abrupt variation in line power limits (III): The transmission network becomes
free from congestion after CM. Formerly, congested lines 5–6 and 6–12 now
have a secured power flow of 153.09 MW and 30.62 MW and 82% and 87%
loading, respectively. System’s active power losses after CMare 12.11MW.Gross
rescheduling is computed as 142.32 MW. Congestion cost is 5909.75 $/h, which
is minimum among all the referred methods. Above facts can be clearly seen in
Tables 3, 4, 5 and Fig. 3.

Abrupt variation in line power limits (IV): Power flow in the network has been
successfully maintained within the secured operating limits of system with a CM
cost of 2881.62 $/h. It is lower than all other methods in referred literature. Power

Table 3 Active power flow (MW) during contingency and after CM: case III and IV

CONT. CL Active
power
in line
(MW)

Secured power flow in line with CM (MW) Line
limit
(MW)

ETLBO TLBO
[20]

PSO
[16]

RSM
[16]

SA [16]

Case III 5–6 195.971 153.09 174.914 141 148.4 146.6 175

6–12 49.351 30.62 35 34.67 35 34.84 35

Case IV 2–3 38.19 19.43 20 19.88 20 18.43 20

CL congested lines; CONT contingency
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Table 5 Comparison of cost for managing congestion for all contingencies

Study Cost for alleviating congestion ($/h)

ETLBO TLBO [20] PSO [16] RSM [16] SA [16]

Case I 483.129 494.66 538.95 716.25 719.861

Case II 5278.46 5299.4 5335.5 5988.05 6068.7

Case III 5909.75 5981.3 6951.9 7967.1 7114.3

Case IV 2881.32 2916.4 3117.6 3717.9 4072.9
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Fig. 3 Shift in active power (MW): case III

flow in congested line 2–3 is now 19.43 MW with 97% loading. System losses
after CM are 20.84 MW amount of rescheduling done is 70.98 MW. This data is
exhibited in Tables 3, 4, 5 and Fig. 4.

5.1 Convergence Analysis of ETLBO

It is studied that ETLBO performs in a stablemanner and the convergence behavior is
satisfactory and stable in considered cases of the proposedwork. The curves obtained
from experiments are shown in Figs. 5, 6, 7 and 8. All kinds of operational variations
are taken into consideration.
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Fig. 4 Shift in active power (MW): case IV
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Fig. 5 Cost convergence curve: case I

6 Conclusions

The presented work confirms the competence of newly developed ETLBO over
TLBO, PSO, RSM and SA for considered cases of CM during single line outage,
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Fig. 6 Cost convergence curve: case II
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Fig. 7 Cost convergence curve: case III

load increment and abrupt variation in line flow limits. Problem of congestion in
modified IEEE 30 bus system andmodified IEEE 57 bus test system is used to test the
performance of ETLBO technique. Pool-based competitive electricity market model
is considered. Superiority of ETLBO is confirmed in terms of cost, computational
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Fig. 8 Cost convergence curve: case IV

time and stability of convergence. When compared with basic TLBO, respective cost
reduction in tested four cases is 11.56, 0.39, 1.2 and 1.2%.

Acknowledgements The authors acknowledge the financial support provided by AICTE New
Delhi, India under the RPS research grant entitled “Addressing Power System Operational Chal-
lenges with Renewable Energy Resources Using Nature Inspired Optimization Techniques” sanc-
tioned vide File No. 8-36/RIFD/RPS/POLICY-1/2016-17 dated August 2, 2017. The facilities and
support provided by the Director and Management of M.I.T.S Gwalior, India for carrying out this
work are also sincerely acknowledged.

References

1. Lai LL (2001) Power system restructuring and deregulation, 1st edn. Wiley, New York
2. Christie RD, Wollenberg BF, Wangensteen I (2000) Transmission management in the

deregulated environment. P. IEEE 88(2):170–194
3. Shahidehpour M, Yamin H, Li Z (2002) Market operations in electric power systems. Wiley &

Sons, Chichester
4. Bompard E, Correia P, Gross G, Amelin M (2003) Congestion-management schemes: a

comparative analysis under a unified framework. IEEE Trans Power Syst 18(1):346–352
5. Faliana FD, Ilic M (1998) A mathematical framework for the analysis and management of

power transactions under open access. IEEE Trans Power Syst 13(2):681–687
6. Glavitsch H, Alvarado F (1998) Management of multiple congested conditions in unbundled

operation of a power system. IEEE Trans Power Syst 13(3):1013–1019
7. Pillay A, Karthikeyan SP, Kothari DP (2015) Congestion management in power systems—a

review. Electrical Power Energy Syst 70:83–90



2 Application of Elitist Teacher–Learner-Based … 29

8. Kumar A, Srivastava SC, Singh SN (2005) Congestion management in competitive power
market: a bibliographical survey. Electric Power Syst Res 76:153–164

9. Overbye TJ, Sauer PW, Marzinzik CM, Gross G (1995) A user-friendly simulation program
for teaching power system operations. IEEE Trans Power Syst 10(4):1725

10. Kumar A, Srivastava SC, AC power transfer distribution factors for allocating power
transactions in a deregulated market. IEEE Power Eng Rev, pp 42–43

11. RajathyR,KumarH (2012) Power flow tracing based congestionmanagement using differential
evolution in deregulated electricity market. Int J Electr Eng Inform 4(2):371–392

12. Gope S, Dawn S, Mitra R, Goswami AK, Tiwari PK (2019) Transmission congestion relief
with integration of photovoltaic power using lion optimization algorithm, soft computing for
problem solving. Adv Intell Syst Comput, vol 816. Springer, Singapore

13. Hemmati R, Saboori H, Jirdehi MA (2017) Stochastic planning and scheduling of energy
storage systems for congestion management in electric power systems including renewable
energy resources. Energy 133(C):380–387

14. Patil S, Asati N (2019) Congestion management using genetic algorithm. Int Res J Eng Appl
Sci 7(2)

15. Zaeim-KohanF,RazmiH,Doagou-MojarradH (2018)Multi-objective transmission congestion
management considering demand response programs and generation rescheduling. Appl Soft
Comput 70:169–181

16. Balaraman S, Kamaraj N (2011) Transmission congestion management using particle swarm
optimization. J Electr Syst 7(1):54–70

17. Mahala H, Kumar Y (2016) Novel PSO strategy for transmission congestion management.
Electr Electron Eng Int J (ELELIJ) 5(2):01–09

18. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel
method for constrained mechanical design optimization problems. Comput Aided Des
43:303–315

19. Prakash T, Singh VP, Singh SP, Mohanty SR (2017) Economic load dispatch problem: quasi-
oppositional self-learning TLBO algorithm. Energy Syst. https://doi.org/10.1007/s12667-017-
0230-3

20. Verma S, Saha S, Mukherjee V (2016) Optimal rescheduling of real power generation for
congestion management using teaching learning based optimization algorithm. J Electr Syst
Inform Technol. http://dx.doi.org/10.1016/j.jesit.2016.12.008

21. Rao Vivek Patel RV (2012) An elitist teaching-learning-based optimization algorithm for
solving complex constrained optimization problems. Int J Ind Eng Comput 3:535–560

22. Kothari DP, Dhillon JS (2011) Power system optimization. PHI, New Delhi
23. Saadat H (2002) Power system analysis. Tata McGraw Hill Ltd., New Delhi

https://doi.org/10.1007/s12667-017-0230-3
http://dx.doi.org/10.1016/j.jesit.2016.12.008


Chapter 3
PSO-Based Optimization of Levelized
Cost of Energy for Hybrid Renewable
Energy System

Poonam Singh , Manjaree Pandit , and Laxmi Srivastava

Abstract The chapter aims to optimize the levelized cost of energy (LCOE) for a
sample hybrid renewable energy system (HRES) consisting of power sources such as
solar photovoltaic, wind and diesel generators. The variation of life cycle cost of the
system reflected by the LCOE is computed for different generation capacity factors
for a time period of 24 h. The interest rate is taken as 10%, the capacity recovery
factor is assumed to be 0.1175 and the life span of the hybrid generating system is
considered to be 20 years. The optimal LCOE computed using a traditional solver is
compared with the particle swarm optimization technique.

Keywords Hybrid renewable energy system (HRES) · Levelized cost of energy
(LCOE) · Interior-point algorithm · Particle swarm optimization (PSO)

Nomenclature

CRF Capacity recovery factor
IC Initial capital cost (e/kW)
AE Annual operating expenses (e/kW)
AEP Annual energy production (kW)
i Interest rate (%)
n Operational life (years)
AC The annualized costs (insurance, other expenses) (e/kW/year)

P. Singh (B) · M. Pandit · L. Srivastava
Department of Electrical Engineering, Madhav Institute of Technology and Science, Gwalior,
Madhya Pradesh, India
e-mail: lodhi.poonam18@gmail.com

M. Pandit
e-mail: manjaree_p@hotmail.com

L. Srivastava
e-mail: srivastaval@hotmail.com

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2020
M. Pandit et al. (eds.), Nature Inspired Optimization for Electrical
Power System, Algorithms for Intelligent Systems,
https://doi.org/10.1007/978-981-15-4004-2_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4004-2_3&domain=pdf
http://orcid.org/0000-0002-1155-3474
http://orcid.org/0000-0002-3984-5161
http://orcid.org/0000-0002-5922-6835
mailto:lodhi.poonam18@gmail.com
mailto:manjaree_p@hotmail.com
mailto:srivastaval@hotmail.com
https://doi.org/10.1007/978-981-15-4004-2_3


32 P. Singh et al.

O&M Operation and maintenance cost (e/kW/year)
CF Net capacity factor
8760 Hours per year
NS1NS2 . . .NSN Number of solar power sources for different capacity
NW1NW2 . . .NWM Number of wind power sources for different capacity
ND1ND2 . . .NDP Number of DG power sources for different capacity
NSi t Number of solar units generating at hour ‘t’
CSi Capacity factor of solar ith unit
NW j t Number of wind power units generating at hour ‘t’
CW j Capacity factor of wind power ith unit
NDkt Number of DG units generating at hour ‘t’
CDk Capacity factor of DG ith unit
PD(t) Demand at hour ‘t’
PL(t) Losses at hour ‘t’

1 Introduction

In order to meet the rising demand of electric power along with economic consider-
ations governed by paying capacity of consumers and environmental issues, there is
a need to switch to renewable energy sources for remote area electrification in place
of traditional sources. Conventional sources are depleting while renewable energy
sources are non-exhaustible and can be found in abundance in our planet at particular
locations. Some of the promising renewable sources of power are solar, wind, tidal
and geothermal [1, 2]. The location plays a very important role in the availability
of renewable sources which differs as per location. In order to meet the demand
in an optimized way, the hybrid system of renewable energy sources can be used.
In India, the grid-tied installed PV capacity also saw a drastic increment of around
40% between the years 2017 and 2018 from 15.7 to 22.9 GW [3–5]. This major
achievement in the solar power industry is mainly due to two factors, viz. innovative
technologies that are able to reduce the manufacturing costs in the past years by
near about 100 times and several government schemes that are focused on providing
larger incentives for the power developers and consumers [6, 7].

The LCOE is used as a measure of comparison of different electricity generating
methods on a regular basis. The LCOE can also be related to the term as the average
minimum price at which electricity must be sold in order to break-even over the
lifetime of the project [3, 8]. The LCOE, in other words, can also be defined as the
cost that can be given or assigned to every energy producing unit by the system over a
predefined period, then this will be equal to the total life cycle cost (TLCC) including
depreciation, maintenance cost, etc., in addition to the operating cost which may be
negligible for renewable energy sources. The optimum design sizing is very impor-
tant for solar-wind power generation systems with battery banks [9, 10]. The optimal
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sizing using an efficient optimization method can help to guarantee the lowest invest-
ment with a reasonable and full use of HRES, so that the system can work optimally
with optimal configurations in terms of investment and reliability requirements for
the given/forecast power demand. In this chapter, a model HRES system consisting
of solar photovoltaic, wind and diesel generators have been selected for investiga-
tion. The energy output of renewable energy sources and load are dynamic in nature;
hence, for meeting load demand, a conventional diesel generator is also included in
this study. For the reduction of cost of energy to meet the pocket of consumers, opti-
mization is done by reducing LCOE using traditional technique and PSO technique.
Section 2 of the chapter describes the HRES and formulates LCOE; in Sect. 3, the
optimization problem is formulated with equality/inequality constraints and limits;
Sect. 4 discusses and summarizes the result and Sect. 5 concludes the chapter.

2 Problem Formulation

The combination of more than one renewable energy source even with the con-
ventional source of energy called to be HRES [11, 12]. HRES is advantageous for
reliability and cost to conventional source. Figure 1 shows the hybrid system of solar
PV power source, wind power source and DG.

This is an assessment of the economic lifetime energy cost and lifetime energy
production shown in Eqs. (1) and (2) and can be applied to essentially any energy
technology [8, 13, 14].

Computational of LCOE for HRES could be written as follows:

Fig. 1 PV-wind-diesel-based hybrid renewal energy system
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LCOE = Life cycle cost

Life time energy production

LCOE = (CRF ∗ IC) + AE

AEPnet
(1)

LCOE =
([

i(1+i)n

(1+i)n−1

]
∗ ICC + (AC + [O&M ∗ n])

)

8760 ∗ CFnet
(2)

3 Optimization of LCOE

The objective is to minimize LCOE of HRES which consisting of solar power units,
wind power units and DG units [8, 15].

Min LCOE(NS,NW,ND.G) (3)

Subject to

min
T∑
t=1

LCOE(NS1NS2 . . .NSN ,NW1NW2 . . .NWM ,ND1ND2 . . .NDP) (4)

3.1 Power Generation Equality/Inequality Constraint

The power generated from each source must be less than or equal to the maximum
capacity of the source as:

Pgen =
N∑
i=1

(NSi t ∗ CSi ) +
M∑
j=1

(
NW j t ∗ CW j

)

+
P∑

k=1

(NDkt ∗ CDk) − PD(t) − PL(t) (5)

Inequality constraints

0 ≤ NSi t ≤ NSN ∀i = 1, 2 . . . N (6)
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0 ≤ NW j t ≤ NSM ∀ j = 1, 2 . . .M (7)

0 ≤ NDkt ≤ NSP ∀k = 1, 2 . . . P (8)

4 Results and Discussion

4.1 Test Case Description

In this chapter, LCOE is computed for a HRES with 10 solar units each of 0.53 kW,
15 wind power units each of 1.5 kW and 5 DG units each of 2.5 kW. Losses are
assumed to be 5% of demand. It is assumed that the renewable units of the HRES are
operatingwith battery support to deliver the demand at all times. However, the battery
modeling is not included in this chapter for the sake of simplicity. Computation is
done on an hourly basis for 24 h’ time horizon. The load profile is presented in
Table 1, and the cost data for the HRES is given in Table 2. Capacity recovery factor,
interest rate, life span as 0.1175, 10% and 20 years for HRES, respectively.

4.2 Optimization of LCOE

Results of optimal generation allocation for the HRES with interior-point algorithm
using traditional solver ‘fmincon’ on MATLAB platform for one day are shown in
Table 3 for capacity factors of 0.3, 0.6 and 0.8 for solar, wind power and DG units,
respectively.

The results clearly indicate that the optimization is successful in minimizing
LCOE with the fulfillment of equality constraint given by (5).

Table 1 Load profile for time horizon of 24 h [16]

Load (kW) 20.30 17.50 16.80 14.00 16.80 18.90 24.50 27.30

Hours 1 2 3 4 5 6 7 8

Load (kW) 25.20 22.05 21.00 21.00 21.00 21.00 20.65 21.35

Hours 9 10 11 12 13 14 15 16

Load (kW) 27.30 31.50 34.30 34.30 31.50 32.20 28.00 21.70

Hours 17 18 19 20 21 22 23 24
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Table 2 Description of
HRES for computation of
LCOE [17]

Parameters Cost/units

Solar PV system

Initial investment cost (e/kW) 2832.00

Annual investment cost (e/kW) 333.00

M&O cost (e/kW/year) 56.70

Number of units 10

Wind power

Initial investment cost (e/kW) 5832.00

Annual investment cost (e/kW) 685.02

M&O cost (e/kW/year) 116.64

Number of units 15

DG system

Initial investment cost (e/kW) 148.00

Annual investment cost (e/kW) 70.01

M&O cost (e/kW/year) 6.4

Number of units 5

4.3 Effect of Capacity Factor on Optimal Value of LCOE

The effect of capacity factor on LCOE is analyzed by varying the capacity factor
from 0.2 to 1 for solar units, wind power units and DG units. The results are plotted
for the different combination cases in Figs. 2, 3, 4, 5 and 6. The LCOE is plotted
for different combinations of CF values of DG and wind units while the CF of solar
units is fixed at 0.2, 0.4, 0.6, 0.8 and 1.0, respectively, in Figs. 2, 3, 4, 5 and 6.

It is concluded from the results that the value of LCOE reduces as the capacity
factors increase. For each case, the LCOE is least when the CF is 1.

4.4 Convergence Characteristics of the Solver

For each of the above 25 cases analyzed, 125 runs were conducted. For each case
134–135 iterations were required for convergence. Table 3 convergence behavior
was obtained for each case. Figure 7 shows the convergence characteristic for CFs
= 0.3, CFw = 0.6 and CFd = 0.8. Similar curves were obtained for all other tested
cases.



3 PSO-Based Optimization of Levelized Cost of Energy for Hybrid … 37

Table 3 Optimal power schedule of HRES for a day

Hours PV power Wind power DG power Demand PL Violation

1 0.207 8.859 12.249 20.300 1.015 −0.00007

2 0.203 5.865 12.307 17.500 0.875 −0.00009

3 0.135 5.402 12.103 16.800 0.840 −0.00008

4 0.083 2.239 12.378 14.000 0.700 −0.00001

5 0.132 5.378 12.130 16.800 0.840 0.00019

6 0.081 7.507 12.257 18.900 0.945 0.00018

7 0.141 13.495 12.088 24.500 1.225 −0.00017

8 1.106 15.154 12.405 27.300 1.365 −0.00011

9 0.142 14.423 11.895 25.200 1.260 −0.00008

10 0.061 10.920 12.172 22.050 1.103 −0.00010

11 0.101 9.734 12.215 21.000 1.050 −0.00044

12 0.101 9.734 12.215 21.000 1.050 0.00000

13 0.100 9.734 12.217 21.000 1.050 0.00054

14 0.102 9.733 12.215 21.000 1.050 −0.00023

15 0.111 9.338 12.233 20.650 1.032 0.00004

16 0.072 10.131 12.215 21.350 1.067 −0.00010

17 1.106 15.212 12.347 27.300 1.365 −0.00009

18 2.148 18.701 12.226 31.500 1.575 0.00004

19 1.278 22.356 12.381 34.300 1.715 −0.00017

20 1.318 22.313 12.384 34.300 1.715 −0.00020

21 2.165 18.846 12.064 31.500 1.575 0.00016

22 1.693 20.012 12.105 32.200 1.610 −0.00009

23 1.597 16.042 11.760 28.000 1.400 0.00004

24 0.058 10.558 12.169 21.700 1.085 0.00010

4.5 Validation of Results Using Particle Swarm Optimization

The results of the traditional solver are compared with PSO which is a population-
based evolutionary technique. For computing the results for capacity factor 0.3, 0.6
and 0.8, the inertia constant 0.9–0.4 acceleration coefficient assumes to be 0.2 each,
population size 20 andmaximum no. of iteration be 100. Figure 8 shows convergence
characteristics for PSO of different population size.

The evolutionary technique like PSO employ random operators, therefore, every
time the algorithm is run gives slightly different results, hence, the practice is to com-
pute result after taking few numbers of trial. Here, 10 trials are conducted and stati-
cally analyze is performed for different population size keeping the other algorithm
variable fixed.
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Fig. 3 LCOE of HRES with variation of CF of wind and DG (CFs = 0.4)

The results are tabulated in Table 4 where it can be seen that most consistent
results are obtained for population size 20 and trial 10. The consistency results for
different population size are plotted in Fig. 9.

The results of traditional solver compare PSO algorithm in Table 5 and it is
observed that the both results are quite close, but the traditional solver performs
slightly better than PSO algorithm because PSO is random algorithmwhich performs
better for problem with discontinuous and non-differential objective function.
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5 Conclusion

The chapter makes an attempt to solve the optimal sizing and allocation of a hypo-
thetical HRES with the aim to optimize the LCOE. The LCOE concept helps in
establishing the economic viability of the system with renewable energy sources
over a long run. This exercise also helps for deciding a feasible tariff for the HRES.
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The optimal LCOE is computed using a traditional solver and the results are
compared and validated using an evolutionary algorithm. The effect of capacity factor
of the various generating units on the life cost is analyzed. The effect of population
size on the performance is studied for the along with the convergence property. The
results of both algorithms are found to be quite close. The study is expected to be
useful for the emerging HRES worldwide.
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Table 4 Optimal data LCOE for listed population size and trial = 10

Pop size Max value Min value Mean value SD

10 0.6673 0.2244 0.4789 0.0137

20 0.5822 0.2244 0.3820 0.0115

30 0.6516 0.2370 0.4479 0.0142

40 0.6743 0.2278 0.4325 0.0120

50 0.6743 0.2621 0.4569 0.0100
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Fig. 9 Consistency comparison of PSO for different population sizes (NP)
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Table 5 Comparison of
results of traditional solver
with PSO

Technique LCOE (e/kW)

PSO 0.2500

Traditional solver 0.2489
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Chapter 4
PSO-Based PID Controller Designing
for LFC of Single Area Electrical Power
Network

Nikhil Paliwal , Laxmi Srivastava , and Manjaree Pandit

Abstract In this chapter, particle swarm optimization (PSO) technique has been
implemented for determining optimal values of parameters of proportional–inte-
gral–derivative (PID) controller for the load frequency control (LFC) of single area
power network. In this chapter, in place of considering one or two criteria, all the
four performance indices—integral of time weighted squared error (ITSE), integral
of time weighted absolute error (ITAE), integral of square error (ISE) and integral
of absolute error (IAE)—have been considered as the objective functions for solving
LFC problem. The implemented technique has been validated with genetic algorithm
(GA) technique to show the effectiveness and applicability in tuning the PID con-
troller. The results show the effectiveness and applicability of the proposed technique
in terms of performance indices, undershoot, overshoot and settling time.

Keywords LFC · GA · PSO · Single area power network · PID controller · ITAE ·
ISE · IAE · ITSE

1 Introduction

Power system is dynamic, complex and large electrical network having many gener-
ators of different types, transformers, transmissions line and other electrical compo-
nents. In any power system, generators are located at suitable locations, while loads
are distributed through the network [1]. All the electrical loads including commercial
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and industrial perform satisfactorily when they operate at rated frequency and volt-
age. But, in modern power system, there is deviation in frequency whenever loading
patterns change. This deviation in frequency affects the operation and efficiency of
power system along with power quality [2]. Hence, to control frequency in the power
network, load frequency control (LFC) loop is used. LFC loop is designed to auto-
matically control or adjust the frequency of the power network. Themain role of load
frequency controller is to sustain the frequency of power system constant or within
the specified limits.

Whenever there is any unbalancing between demand and electric power genera-
tion, deviation in frequency takes place [3]. The generating unit tries to bring back
the frequency to the preset or scheduled value after disturbance with the help of real
power regulation [4].

For regulation of frequency in a specific area, LFC is responsible [5]. In recent
times, due to the increasing numbers of interconnected power networks, changing of
structure and occurrence of different types of disturbances, theLFC is becomingmore
and more significant [6]. The researchers are proposing miscellaneous approaches
for LFC of power network to maintain frequency of system at their specified values
under normal operating condition as well as during the load perturbations [7].

In [8], an elucidative review of literature on the LFC of power network has been
presented. It is the fact of observing that notably work is done by the researchers for
better LFC systems which is based on the neural network [9], fuzzy system theory
[10], modern control theory [11] and many more. These types of advanced methods
are however difficult to understand and requires familiarity of users to use mentioned
techniques and hence lessen their accountability and applicability. As other option,
a proportional–integral–derivative (PID) controller remains researcher’s favourable
choice due to its feasibility, easy implementation and also due to the appreciative
ratio between cost and performances. In addition to the above-mentioned points, it
also offers lower user skill requirements, simplified dynamic modelling and very
little development effort [7].

Several optimization techniques like differential evolution (DE), evolution pro-
gramming (EP), genetic algorithm (GA), evolution strategy (ES), particle swarm
optimization (PSO), artificial bee colony (ABC) algorithm, bacterial foraging opti-
mization (BFO) and simulated annealing (SA) have emerged in the past two decades.
Due to good prospective for global optimization and several other features, GA has
received importance in control system. However, GA has one of the main draw-
backs of premature convergence due to which its search capability and performance
reduced. As a solution to the above-mentioned drawback and problem, PSO is pro-
posed. PSOwas first introduced by Eberhart and Kennedy and it is one of the modern
heuristics algorithm.

In this chapter, PSO technique has been implemented for optimal designing of
PID controller for the LFC of single area power network, considering all the four
performance indices, namely integral of timeweighted squared error (ITSE), integral
of time weighted absolute error (ITAE), integral of square error (ISE) and integral of
absolute error (IAE) as objective functions, rather than considering only one or two
criteria.
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2 Problem Formulation

2.1 System Description

In large numbers, the various types of load are associated with the power network.
Due to the load change, turbine speed and hence frequency of power network is
altered. The required attribute of power network is to maintain frequency as constant
as possible.

A single area power network incorporates specifically a turbine, a governor and
the load with feedback speed regulator [12]. Block diagram of a single area power
network with implementation of PID controller is shown in Fig. 1.

The transfer function characterization of the blocks of a single area power network
is mentioned below in Eqs. 1–3, [13–15].

• Governor with dynamics:

GG(s) = 1

1 + sTG
(1)

• Turbine with dynamics:

GT(s) = 1

1 + sTT
(2)

• Load and machines dynamics:

GL(s) = 1

1 + sTP
(3)

Fig. 1 Single area power network with PID controller
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2.2 A Brief Introduction of PID Controller

A PID is a feedback control loop mechanism. The PID controller transfer function
representation is mentioned in Eq. 4.

Gc(s) = KP + KI

s
+ KDs (4)

where K I, KP and KD are the coefficients for the integral, proportional and derivative
terms, respectively.

2.3 Objective Function Formulation

In [15], the performance index which is considered as the objective function for LFC
of single area power network is ISE. In this chapter, in place of considering one or
two criteria, all the four performance indices, namely IAE, ISE, ITAE and ITSE, are
considered as the objective functions.

In this chapter, PSO techniques are implemented to minimize ISE, IAE, ITSE as
well as ITAE performance indices. To validate the results, GA is also implemented to
minimize ISE, IAE, ITSEaswell as ITAEperformance indices. The four performance
indices can be mathematically formulated as:

(i) ITSE = ∫ Tsim
0 (� f 2) · tdt

(ii) ITAE = ∫ Tsim
0 (� f ) · tdt

(iii) IAE = ∫ Tsim
0 (� f )dt

(iv) ISE = ∫ Tsim
0 (� f 2)dt

where frequency deviation in the network is denoted by � f and time range of
simulation is denoted by T sim.

In LFC problem, the limits of PID controller parameters are the constraints of
problem [16]. Therefore, considering problem constraints, the design problem for
load frequency controller can be designed as optimization problem and expressed
as:

Minimize J
Subject to

(i) KPmax ≥ KP ≥ KPmin

(ii) KImax ≥ KI ≥ KImin

(iii) KDmax ≥ KD ≥ KDmin

where J implies objective function and KPmax and KPmin, KImax and KImin, KDmax

and KDmin refer to the maximum and minimum values of PID controller parameters.
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3 Employed Optimization Techniques

In this chapter, two optimization techniques, namely PSO and GA, are employed for
LFC problem of single area electric power network.

3.1 GA

It is basically a probabilistic search heuristic algorithm very similar to natural
selection mechanics and the survival of fittest [7].

3.2 PSO

It is a stochastic optimization techniquewhich is based on the population and inspired
by fish schooling’s social behaviour as well as bird flocking’s social behaviour. PSO
is very much less susceptible to getting deceived on local optima unlike SA, GA,
etc. PSO is developed in multidimensional space through bird flocking simulation
[17]. The flowchart of the PSO algorithm is as shown in Fig. 2.

The PSO algorithm search for optimum value is created by the possible solutions
of the problem using a swarm or group. The possible solutions are called particles.
Each and every present position of particles is perceived by previously acquired
position and the information of the present velocity.

The velocities of particles in PSO algorithm are updated according to the Eq. 5.

V k+1
i = CF × [

V k
i + C1 × rand1 × (

pbesti − ski
) + C2 × rand2 × (

gbest − ski
)

(5)

where CF = 2∣
∣
∣2∅−√∅2−4∅

∣
∣
∣
,∅ = C1 + C2,∅ > 4.

4 Results and Discussions

In this chapter, in place of considering one or two criteria, all the four performance
indices, namely IAE, ISE, ITAE and ITSE, have been considered as the objective
functions for solving LFC problem of single area power network. A single area
thermal power plant is considered to implement PSO and GA techniques for LFC
problem. In MATLAB and Simulink environment, the system is developed which is
as shown in Fig. 3. The optimization algorithms, GA and PSO, are written distinctly
in .m file.
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Fig. 2 Flowchart of PSO Algorithm

Fig. 3 Simulink block diagram of LFC with PID
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The swarm size, self-adjustment, social adjustment and CF for PSO algorithm
are chosen as 10, 1.49, 1.49 and 0.73, respectively [17]. The maximum number of
iteration considered is 50.

The crossover fraction and stall generation limit of GA are considered as 0.650
and 125, respectively. The maximum number of iteration considered is 50.

The values of system parameters are taken from [14, 17, 18].
In this chapter, the performance analysis between an optimal PID controller based

on PSO and GA techniques is done. The performance analysis here is done in terms
of value of performance indices, settling time, undershoot and overshoot for 10%
change in load.

The result section is divided into four different cases. In the first case, performance
index IAE is objective function. In second case, performance index ISE is objec-
tive function. In third and fourth case, ITSE and ITAE are considered as objective
function, respectively.

4.1 Case 1: Objective Function—IAE

In this case, performance index IAE is objective function which is subjected to
minimization. The step response of the system for 10% load change using GA-PID
controller and PSO-PID is as shown in Figs. 4 and 5, respectively.

The performance index, overshoot, undershoot and settling time using GA-PID
are 0.050025, 0, −0.083766 and 5 s, respectively, for 10% change in load in the
system.

The performance index, overshoot, undershoot and settling time using PSO-PID
are 0.04999, 0, −0.081529 and 5 s, respectively, for 10% change in load in system.

The optimal value of KP, K I and KD, corresponding values of IAE, overshoot,
undershoot and settling time using GA-PID and PSO-PID are shown in Table 1 for
10% change in load, respectively.

Fig. 4 GA-PID-based step response for 10% load change (case 1)
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Fig. 5 PSO-PID-based step response for 10% load change (case 1)

Table 1 Comparison of GA-PID and PSO-PID for 10% load change (case 1)

KP KI KD IAE Overshoot Undershoot Settling
Time

GA-PID 1.9912 1.9990 0.3484 0.050025 0 -0.087366 5 Sec

PSO-PID 2.0000 2.0000 0.2865 0.04999 0 -0.081529 5 Sec

4.2 Case 2: Objective Function—ISE

In this case, performance index ISE is objective function which is subjected to min-
imization. The step response of the system for 10% load change using GA-PID
controller and PSO-PID is shown in Figs. 6 and 7, respectively.

The performance index, overshoot, undershoot and settling time using GA-PID
are 0.001318, 0.003342, −0.035966 and 12 s, respectively, for 10% change in load
in the system.

The performance index, overshoot, undershoot and settling time using PSO-PID
are 0.001272, 0.003602, −0.034932 and 12 s, respectively, for 10% change in load
in the system.

Fig. 6 GA-PID-based step response for 10% load change (case 2)
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Fig. 7 PSO-PID-based step response for 10% load change (case 2)

Table 2 Comparison of GA-PID and PSO-PID for 10% load change (case 2)

KP KI KD ISE Overshoot Undershoot Settling
Time

GA-PID 1.9970 1.9315 1.9374 0.001318 0.003342 -0.035966 12 Sec

PSO-PID 2.0000 2.0000 1.9990 0.001272 0.003602 -0.034932 12 Sec

The optimal value of KP, K I and KD, corresponding values of ISE, overshoot,
undershoot and settling time using GA-PID and PSO-PID are shown in Table 2 for
10% change in load, respectively.

4.3 Case 3: Objective Function-ITAE

In this case, performance index ITAE is objective function which is subjected to
minimization. The step response of the system for 10% load change using GA-PID
controller and PSO-PID is shown in Figs. 8 and 9, respectively.

Fig. 8 GA-PID-based step response for 10% load change (case 3)
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Fig. 9 PSO-PID-based step response for 10% load change (case 3)

Table 3 Comparison of GA-PID and PSO-PID for 10% load change (case 3)

KP KI KD ITAE Overshoot Undershoot Settling
Time

GA-PID 1.2544 2.0000 0.2679 0.01913 0.00027431 -0.097744 1.30 Sec

PSO-PID 1.2573 2.0000 0.2680 0.01913 0.0001744 -0.09769 1.28 Sec

The performance index, overshoot, undershoot and settling time using GA-PID
are 0.01913, 0.00027431, −0.097744 and 1.30 s, respectively, for 10% change in
load in the system.

The performance index, overshoot, undershoot and settling time using PSO-PID
are 0.01913, 0.0001744, −0.09769 and 1.28 s, respectively, for 10% change in load
in the system.

The optimal value of KP, K I and KD, corresponding values of ITAE, overshoot,
undershoot and settling time using GA-PID and PSO-PID are shown in Table 3 for
10% change in load, respectively.

4.4 Case 4: Objective Function-ITSE

In this case, performance index ITSE is the objective function which is subjected to
minimization. The step response of the system for 10% load change using GA-PID
controller and PSO-PID is shown in Figs. 10 and 11, respectively.

The performance index, overshoot, undershoot and settling time using GA-PID
are 0.0007085, 0, −0.074182 and 4.9 s, respectively, for 10% change in load in the
system.

The performance index, overshoot, undershoot and settling time using PSO-PID
are 0.0007047, 0, −0.074182 and 4.8 s, respectively, for 10% change in load in the
system.

The optimal value of KP, K I and KD, corresponding values of ITSE, overshoot,
undershoot and settling time using GA-PID and PSO-PID are shown in Table 4 for
10% change in load, respectively.
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Fig. 10 GA-PID-based step response for 10% load change (case 4)

Fig. 11 PSO-PID-based step response for 10% load change (case 4)

Table 4 Comparison of GA-PID and PSO-PID for 10% load change (case 4)

KP KI KD ITSE Overshoot Undershoot Settling
Time

GA-PID 1.9866 1.9992 0.4458 0.0007085 0 -0.074985 4.9 Sec

PSO-PID 2.0000 2.0000 0.4328 0.0007047 0 -0.074182 4.8 Sec

5 Conclusion

In this chapter, PSO and GA techniques are applied for designing of PID controller
for LFC problem in single area power network. In place of considering one or two
criteria, all the four performance indices, namely IAE, ISE, ITAE and ITSE, have
been considered as the objective functions for solving LFC problem.

The results are analysed and compared based on value of performance indices,
overshoot, undershoot and settling time of the step response of system.

From the results, it can be analysed and validated that the PSO technique-
based PID controller gives better performance considering all the four performance
indices, namely, ISE, IAE, ITSE and ITAE, as compared to GA technique-based PID
controller.
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Chapter 5
Combined Economic Emission Dispatch
of Hybrid Thermal PV System Using
Artificial Bee Colony Optimization

Salil Madhav Dubey , Hari Mohan Dubey , and Manjaree Pandit

Abstract Economical and reliable provision of electricity has been one of the most
significant research objectives since decades. With time, various economic load dis-
patch (ELD) techniques have emerged in power market. Apart from using these
methods, changes in the use of conventional source of energy and incorporating
non-conventional sources have emerged in recent years. Solar photovoltaic (PV)
generation helps reducing emissions and dependency on fossil fuels. This chapter
presents combined economic emission dispatch (CEED) of a hybrid thermal solar
PV system. Artificial bee colony (ABC) algorithm is used as optimization tool for
the scenario involving six thermal plants and thirteen solar plants. The effectiveness
of this method is compared and validated with other methods available in recent
literature.

Keywords Economic load dispatch · Economic emission dispatch · Artificial bee
colony algorithm · Solar PV system
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Min C Objective function
Fi (Pi ) Fuel cost (in $/h) for i-th power generating unit
Ei (Pi ) Emission (in kg/h) for i-th power generating unit
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Pi Power generated by i-th source
PL Power loss
Pd Power demand at that instant
kr Penalty cost factor underestimation
Pi min, Pi max Minimum and maximum power limits for i-th thermal generating

source, respectively
ui , li Upper and lower bound of the solution space of objective function
rand (0,1) A random number ∈ (0,1)
xk Randomly selected food source
ϕmi Random number ∈ (−1,1)
Pm Probability function
ai , bi , ci Fuel cost coefficients of i-th generating unit
αi,βi,γi Emission coefficients of i-th generating unit
Prated Rated output of a solar plant (MW)
Tref Reference temperature (25 °C in this case)
Tamb Ambient temperature of solar plant
μ Temperature coefficient of solar plant (–0.47%)
Gi Incident solar radiation (W/m2) at i-th hour
C j Cost per unit for j-th solar plant
Psch j Scheduled power for j-th solar plant
kp Penalty cost factor for overestimation
fm(xm) Objective function value of xm
fit(xm) Fitness of xm
xm Initial food sources
vmi Neighbor food source
xmn New solution

1 Introduction

In twenty-first century, electricity has been an integral part of our lives. As per Global
Energy & CO2 Status (GECO) Report by International Energy Agency (IEA), high
demand of electricity has increased the power demand by 4% or 900 TWh in 2018.
This increasing demand was mostly met by thermal plants using coal or gas as major
firing fuel. These thermal plants emit CO2 which has reached up to 13 GT. In 2018,
India’s power demand increased by around 65TWhor by 5.4% than previous year. To
meet it efficiently, it is important that other than conventional sources of electricity,
non-conventional sources like solar, wind, biomass and others should be encouraged.
Solar is, however, mostly popular and easy to use option for harnessing renewable
sources of energy. National Solar Mission aims to produce 100 GW of India’s total
power demand by 2022. Solar energy units also help in reducing carbon credits by
producing less emissions. Therefore, incorporating solar PV units with thermal units
can be an economical as well as environment-friendly option for power companies.
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However, the distribution of load over the generating sources for an efficient and
economical production is a main concern of power producing companies. Thus, ELD
is a crucial step for efficient operation of power industry. The objective function
of practical ELD problem is quite complex due to nonlinearity, multimodel and
discontinuity associatedwith it. Due to this fact, its solutionwith traditional approach
is not possible.

Considering Kyoto protocol of green energy policy, objective function for emis-
sion reduction is also combined with ELD. When the generating sources aim to
produce energy with both minimum fuel costs and minimum emission levels simul-
taneously, the optimal solution problemwill become a combined economic and emis-
sion dispatch (CEED) problem. As a solution for these types of problems, nature-
inspired algorithms (NIAs) have become more popular among researchers since last
decade because of the capability to provide near global minima solution for any
type of complex optimization problem. The detailed review of NIA for solution of
economic/emission dispatch problems can be found in [1, 2].

Nowadays, integration of renewable energy resources like wind, PV system,
biomass, etc., has become more popular in order to reduce operational cost and
emission [2–7]. Integration of uncertain renewable energy resources with conven-
tional power plants complicates the objective function. For solution of these types
of problems, a robust optimization approach is required.

In this chapter, artificial bee colony (ABC), inspired by foraging behavior of
honey bees, is utilized for CEED solution of a hybrid thermal PV system. In solar
PV generation, the output is variable as it depends on irradiance. Therefore, a proba-
bilistic model is used for photovoltaic (PV) generation which takes into account the
overestimation and underestimation cost factors [4].

Themain objective of this chapter is to analyze the impact of renewable integration
on operational fossil fuel cost and emission. This chapter is organized as follows:
Problem formulation of this system is given in Sect. 2, theworking of the optimization
method is described in Sect. 3, results and discussion after using this model are
explained in Sect. 4, and the conclusions drawn are compiled in Sect. 5.

2 Problem Formulation

2.1 Objective Function

The objective function for combined economic emission dispatch for a conventional
thermal plant is given as [3]:

MinC =
6∑

i=1

(w × Fi (Pi ) + (1 − w) × ppf × Ei (Pi )) (1)
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ppf is given as

ppf = ai × P2
i max + bi × Pi max + ci

αi × P2
i max + βi × Pi max + γi

(2)

Fi (Pi ) = ai × P2
i + bi × Pi + ci

(
$/h

)
(3)

Ei (Pi ) = αi × P2
i + βi × Pi + γi (kg/h) (4)

The power generated by solar plants is given by [4]:

Ps j = Prated{1 + (Tamb − Tref) × μ} × (Gi/1000)(MW) (5)

After considering the overestimation and underestimation of solar cost, the total
solar cost of operation becomes

13∑

j=1

Ps j × C j +
13∑

j=1

kp × (Ps j − Psch j ) +
13∑

j=1

kr × (Psch j − Ps j ) (6)

MinC =
6∑

i=1

(w × Fi (Pi ) + (1 − w) × ppf × Ei (Pi )) +
13∑

j=1

Ps j × C j

+
13∑

j=1

kp × (Ps j − Psch j ) +
13∑

j=1

kr × (Psch j − Ps j ) (7)

2.2 Equality Constraint

6∑

i=1

Pi − PL − Pd −
13∑

j=1

Ps j = 0 (8)

2.3 Inequality Constraint

Pi min ≤ Pi ≤ Pi max (9)
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3 Artificial Bee Colony Optimization

Artificial bee colony (ABC)optimization is swarm intelligence-basednature-inspired
algorithm. It is based on the intelligent foraging behavior of honey bees proposed
by Karaboga [8]. ABC algorithm is basically a population-based search in which
locations called ‘food sources’ are modified by artificial bees from time to time. The
bee’s aim is to select the food sources with high amount of nectar and finally settle
down at the location with the highest amount of nectar. There are three types of bees
depending on their respective jobs in the swarm, namely employed bees, on-looker
bees and scout bees. It is assumed that the number of employed bees is equal to
the number of food sources (locations). The employed bees first calculate the nectar
amount of the sources (fitness values) and then perform the waggle dance to transfer
this information to the hive. On-looker bees identify and choose the high nectar food
sources after observing the waggle dance pattern. After analyzing all locations and
going through multiple iterations, some food sources are abandoned when they fail
to converge to a point and do not improve in specified number of ‘trail limit.’ Then,
the employed bees become scout bees and search for another food source in order to
increase accuracy of the algorithm.

The analytical model of ABC algorithm is described as below:

Step 1: The initial food sources are randomly selected within upper and lower
limit as

xm = li + rand(0, 1) × (ui − li ) (10)

where ui and li are the upper and lower bound of the solution space of objective
function, rand (0, 1) is a random number within the range [0, 1].
Step 2: The neighbor food source vmi is determined and calculated as

vmi = xmi + φmi (xmi − xki ) (11)

The fitness value is calculated by using (12) and (13), and then, greedy selection
is applied between xm and vm.

fit(xm) = 1

( fm(xm))
, fm(xm) > 0 (12)

fit(xm) = 1 + | fm(xm)|, fm(xm) < 0 (13)

where f m (xm) is the objective function value of xm.
Step 3: The quantity of a food source is evaluated by its probability (Pm) and the
probability of all food sources. Pm is determined as

Pm = fit(xm)∑
fit(xm)

(14)
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where fit(xm) is the fitness of xm. On-looker bees search the neighborhoods of
food source according to the expression.

vmi = xmi + φmi (xmi − xki ) (15)

Step 4: The new solutions are randomly searched by the scout bees. The new
solution xm will be discovered by the scout bees by using the expression.

xm = li + rand(0, 1) × (ui − li ) (16)

4 Results and Discussion

4.1 Description of Test Cases

Case 1 This test system contains six thermal power units; its fuel cost, minimum
and maximum power limits and emission coefficients are adapted from [3] and listed
in Table 1.

Case 2 It is a hybrid test case having six thermal units similar to Case 1 and thirteen
solar PV unit system. The required data of the solar PV units are adapted from [4]
and also listed in Table 2 and Fig. 1. Table 2 gives data of power ratings and unit
price for solar plants, and Fig. 1 represents solar radiance and temperature over 24 h
of a particular day.

These systems were analyzed for six different load demand.

Table 1 Data for thermal units

Units a
($/MW2h)

b
($/MWh)

c ($/h) Pmin
(MW)

Pmax
(MW)

α

(kg/MW2h)
β

(kg/MWh)
γ

(kg/h)

1 0.15247 38.539 756.790 10 125 0.00419 0.32767 13.859

2 0.10587 46.159 451.320 10 150 0.00419 0.32767 13.859

3 0.02803 40.396 1049.99 35 250 0.00683 −0.54551 40.266

4 0.03546 38.305 1243.53 35 210 0.00683 −0.54551 40.266

5 0.02111 36.327 1658.56 135 325 0.00461 −0.51116 42.895

6 0.01799 38.270 1356.65 125 315 0.00461 −0.51116 42.895
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Fig. 1 Solar radiance and temperature data for solar PV units

4.2 Simulation Results

ABC is implemented for solution of ELD, EED and CEED as objective function
for above two cases in MATLAB R2013a environment. The parameter used for
simulation was considered as colony size: 50, limit: 100 and maximum number of
iteration of 200 as stopping criteria. For each test case, ABC algorithm was run for
30 times for statistical analysis.

The optimal generation scheduling for Case 1 is for best cost solution, best emis-
sion solution and combined economic emission dispatch for different load demands
are listed in Tables 3, 5 and 6, respectively. The statistical comparisons of results
obtained by ABC are compared with the most recently reported methods such as

Table 3 Optimal generation scheduling obtained by ABC for ELD (Case 1)

O/P PD:1150 MW PD:1201 MW PD:1235 MW PD:1190 MW PD:1251 MW PD:1263 MW

P1 47.2767 56.1376 70.0711 51.9191 76.6280 81.5457

P2 32.1012 44.8624 64.9289 38.7872 74.3720 81.4543

P3 224.0408 250.0000 250.0000 249.2937 250.0000 250.0000

P4 206.5813 210.0000 210.0000 210.0000 210.0000 210.0000

P5 325.0000 325.0000 325.0000 325.0000 325.0000 325.0000

P6 315.0000 315.0000 315.0000 315.0000 315.0000 315.0000

TC 58,029.9316 60,779.2170 62,743.8311 60,174.4908 63,718.3422 64,470.2200

ES 1250.3462 1343.1350 1370.8751 1333.6995 1385.6598 1397.4752

Total Cost (TC) in $/h, Emission (ES) in kg/h



5 Combined Economic Emission Dispatch of Hybrid Thermal PV System … 63

quadratic constraint programming (QCP) [3], genetic algorithm (GA) [3] and parti-
cle swarm optimization (PSO) [3] and are tabulated in Table 4. Here, it is observed
that the optimum results in terms of minimum cost obtained by ABC are found to be
lower than all previously reported methods.

The smooth cost convergence curve obtained byABC algorithm for distinct power
demand is presented in Fig. 2.

Similarly, for hybrid thermal PV system as in Case 2, best cost solution, best emis-
sion solution and combined economic emission dispatch for different load demands
are listed in Tables 7, 8 and 9.

After the comparisonof results for thermal system (Case1)with hybrid thermalPV
system (Case 2), it is clearly observed that significant reduction in total operational
cost and emission can be achieved by integration of PV system. Considering the
optimal generation schedule obtained using ABC as listed in Tables 3, 5, 6 and

Table 4 Statistical comparison of results (ELD Case 1)

Method ABC QCP [4] GA [4] PSO [4]

PD: 1150 MW

Min Cost ($/h) 58,029.9316 60.438 × 103 61.434 × 103 60.335 × 103

Emission (kg/h) 1250.3462 1245.8 1130.5 1130.8

SD 0.00 NA NA NA

PD: 1201 MW

Min Cost ($/h) 60,779.2170 63.909 × 103 63.883 × 103 62.270 × 103

Emission (kg/h) 1343.1350 1304.6 1237.4 1238.7

SD 0.00 NA NA NA

PD: 1235 MW

Min Cost ($/h) 62,743.8311 64.280 × 103 65.461 × 103 64.508 × 103

Emission (kg/h) 1370.8751 1334.8 1260.3 1245.8

SD 0.00 NA NA NA

PD: 1190 MW

Min Cost ($/h) 60,174.4908 63.566 × 103 63.626 × 103 61.367 × 103

Emission (kg/h) 1333.6995 1280.5 1245.7 1219.2

SD 0.00 NA NA NA

PD: 1251 MW

Min Cost ($/h) 63,718.3422 66.000 × 103 66.000 × 103 65.349 × 103

Emission (kg/h) 1385.6598 1363.9 1302.6 1301.8

SD 0.00 NA NA NA

PD: 1263 MW

Min Cost ($/h) 64,470.2200 68.180 × 103 67.043 × 103 66.919 × 103

Emission (kg/h) 1397.4752 1338.0 1332.6 1332.6

SD 0.00 NA NA NA
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Fig. 2 Cost convergence curve for ELD obtained by ABC algorithm (Case 1)

Table 5 Optimal generation scheduling obtained by ABC for EED (Case 1)

O/P PD:1150 MW PD:1201 MW PD:1235 MW PD:1190 MW PD:1251 MW PD:1263 MW

P1 124.9546 124.9624 124.8797 124.8983 124.9611 124.9936

P2 145.8948 147.9542 150.0000 149.7836 149.9058 149.9992

P3 179.8940 172.8499 195.7672 186.8872 188.1472 195.9449

P4 187.0779 192.5855 197.4114 182.3255 175.2457 198.1936

P5 255.2884 288.7442 281.1173 283.1060 265.7937 299.5235

P6 256.8903 273.9037 285.8243 262.9994 285.9465 294.3453

TC 60,949.7171 63,453.5339 65,227.7514 62,974.3908 62,967.1920 66,595.7756

ES 1040.1455 1141.2559 1208.3131 1116.8091 1117.5838 1268.8282

Table 6 CEED solutions obtained by ABC algorithm (Case 1)

O/P PD:1150 MW PD:1201 MW PD:1235 MW PD:1190 MW PD:1251 MW PD:1263 MW

P1 124.9988 124.9825 125 124.9827 124.99 125

P2 130.9449 150 150 150 149.3567 150

P3 178.1171 190.9985 197.5969 190.7457 195.3109 202.2525

P4 180.2342 188.1318 193.1487 177.7272 199.5561 199.2559

P5 268.4053 270.9961 287.8487 274.3882 288.4889 291.7856

P6 267.2998 275.891 281.4033 272.1561 293.2975 294.7037
∑

P 1150.0001 1200.9999 1234.9976 1189.9999 1251.0001 1262.9977

Th.
C

60,502.0131 63,542.7922 65,219.8169 62,978.8756 65,995.3138 66,617.0333

PPF 74.16 74.16 74.16 74.16 83.77 83.77

ES 1045.951 1137.8531 1208.2652 1116.2762 1242.8422 1268.5089

Thermal cost (Th. C) in $/h, price penalty factor (PPF)
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Tables 7, 8 and 9, it is clearly observed that all the operational constraints are fully
satisfied.

Table 7 Optimal generation scheduling for ELD obtained by ABC (Case 2)

O/P PD:1150 MW PD:1201 MW PD:1235 MW PD:1190 MW PD:1251 MW PD:1263 MW

P1 29.2126 26.5713 27.0916 27.1928 32.1476 34.4316

P2 10.0000 10.0000 10.0000 10.0000 10.3129 13.6023

P3 125.7806 111.4133 114.2436 114.7942 141.7456 154.1699

P4 128.9097 117.5529 119.7901 120.2254 141.5296 151.3506

P5 263.3820 244.3051 248.0631 248.7943 284.5805 301.0776

P6 255.0695 232.6840 237.0938 237.9518 279.9444 299.3025

TS 812.3543 742.5266 756.2823 758.9584 890.2605 953.9345

SS 337.6457 458.4734 478.7177 431.0416 360.7395 309.0655

FC 41,260.2801 37,975.2279 38,617.9188 38,743.2057 44,991.7518 48,092.1040

SC 62.3315 84.6370 88.3742 79.5729 66.5947 57.0554

TC 41,322.6116 38,059.8649 38,706.293 38,822.7786 45,058.3465 48,149.1594

ES 648.2185 544.5864 564.0036 567.8381 778.3028 891.6221

Thermal Share (TS) in MW, Solar Share (SS) in MW, Fuel Cost (FC) in $/h, Solar Cost (SC) in $/h

Table 8 Optimal generation scheduling for EED obtained by ABC (Case 2)

O/P PD:1150 MW PD:1201 MW PD:1235 MW PD:1190 MW PD:1251 MW PD:1263 MW

P1 107.5481 85.7773 88.5040 89.0345 115.0621 124.9108

P2 107.5481 85.7773 88.5040 89.0345 115.0621 130.1043

P3 129.8999 116.5442 118.2170 118.5424 134.5096 141.9673

P4 129.8999 116.5442 118.2170 118.5424 134.5096 140.5491

P5 188.7292 168.9418 171.4202 171.9023 195.5586 204.5016

P6 188.7292 168.9418 171.4202 171.9023 195.5586 211.9016

TS 852.3543 742.5266 756.2823 758.9584 890.2605 953.9345

SS 337.6457 458.4734 478.7177 431.0416 360.7395 309.0655

FC 45,379.4121 39,435.2139 40,163.3805 40,305.5864 47,500.2194 51,119.8638

SC 62.3315 84.6370 88.3742 79.5729 66.5947 57.0554

TC 45,441.7436 39,519.8509 40,251.7547 40,385.1593 47,566.8141 51,176.9192

ES 585.6901 460.7387 475.2910 478.1586 633.4673 719.3105
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Table 9 CEED solutions obtained by ABC algorithm for thermal PV system (Case 2)

O/P PD:1150 MW PD:1201 MW PD:1235 MW PD:1190 MW PD:1251 MW PD:1263 MW

P1 76.7963 66.8135 68.78 69.1626 90.3991 99.8163

P2 76.0605 64.5959 66.8543 67.2937 91.5655 102.2532

P3 131.9177 122.116 124.0469 124.4225 142.1001 150.9211

P4 132.0922 122.4848 124.3774 124.7456 142.0758 150.7431

P5 198.4568 184.0622 186.8979 187.4495 212.6069 225.5754

P6 197.0308 182.4543 185.3258 185.8845 211.5131 224.6253
∑

P 812.3543 742.5267 756.2823 758.9584 890.2605 953.9344

PV
share

337.6457 458.4733 478.7177 431.0416 360.7395 309.0655

Th. C 42,273.2664 38,753.0045 39,439.6336 39,573.6053 46,401.6846 49,796.9395

PV
cost

62.3315 84.637 88.3742 79.5729 66.5947 57.0554

PPF 49.66 49.66 49.66 49.66 57.178 57.17

ES 545.4643 466.4741 481.3721 484.3082 641.627 729.0764

TC 42,335.5979 38,837.6415 39,528.0078 39,653.1782 46,468.2793 49,853.9949

5 Conclusion

In this chapter, an efficient ABC algorithm is implemented for optimal generation
scheduling of hybrid thermal PV system. Probabilistic modeling for solar PV is
incorporated for computing the solar power output.

By analyzing the results presented in tabular form as listed in above section,
various conclusions have been drawn, which are given below.

In Case 1, with increase in load demand, the fuel cost for thermal units also
increases. From Table 4, it can be observed that the fuel cost for operation of thermal
plants is lowest when ABC algorithm is used for ELD. Thus, ABC proves to be more
economical than QCP, GA and PSO. There is a saving of 4–5% in fuel costs in Case
1 for ABC as compared to other algorithms.

Comparing results of Case 2 with Case 1, it is evident that incorporating solar
PV units with thermal units is found to be more economical than using only thermal
units. Here, it is clearly observed by Fig. 3 that the highest solar share is achieved
when the global radiation is maximum among 24 h.
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1150 1201 1235 1190 1251 1263
Solar Share 337.6457 458.4734 478.7177 431.0416 360.7395 309.0655
Thermal Share 852.3543 742.5266 756.2823 758.9584 890.2605 953.9345
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Chapter 6
Dynamic Scheduling of Energy
Resources in Microgrid Using Grey Wolf
Optimization

Salil Madhav Dubey , Hari Mohan Dubey , and Manjaree Pandit

Abstract Continuous and sustainable electricity is one of the major concerns in this
modern world. This has led to the implementation of microgrid (MG) in order to
establish an independent, efficient and cost-effective power supply system. The gen-
eration in MG can be conventional or non-conventional but due to increasing power
demand, high fuel prices, scarcity of fossil fuels and degrading environment, there
is a growing demand of using renewable energy sources (RS) for power generation.
Solar PV units play an indispensable part in producing clean energy and coping with
this modern-day power demand challenges. Grey wolf optimization (GWO), which
is a metaheuristic technique inspired by the hierarchical hunting mechanism of grey
wolves, is used in this chapter for solving a multi-objective problem in a dynamic
environment of a microgrid. Dynamic dispatch is a more practical way which aims
to provide an optimum solution in a scheduling horizon over twenty-four hours a
day. A hybrid system comprising six conventional thermal plants and a solar farm
containing thirteen solar PV units are discussed in this chapter. The performance
and effectiveness of GWO are compared and validated with other two well-proven
methods ABC and DE.
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Nomenclature

ai , bi , ci Fuel cost coefficients of i-th generating unit
Pi Output power in MW of i-th generating unit
αi , βi , γi Emission coefficients of i-th generating unit
Prated Rated output of a solar plant
T ref Reference temperature taken (25 °C in this case)
T amb Ambient temperature of solar plant
μ Temperature coefficient of solar plant (–0.50% in this case)
St Incident solar radiation (W/m2) at t-th hour
PL Power loss
URi , DRi Up rate and down rate of ith generating unit, respectively
A,C Coefficient vectors
X (t) Position vector of the prey
X Position vector of a grey wolf
r1, r2 Random vectors ∈[0, 1]
X1,X2,X3 Best position of alpha (α), beta (β) and delta (δ), respectively
X (t + 1) Final position

1 Introduction

Sustainable, renewable, efficient and economical energy systems are the need of
the hour for meeting the power demand of increased population. Implementation of
microgrid (MG) has gained popularity as a solution to this increased power demand.
However,MGhas its own challenges for economic operations.Uncertainty in the out-
put of renewable energy sources (RES), energy storage (ES) capacity management,
optimization of MG operation with real-time electricity price in market, minimizing
operational cost and emissions are some challenges faced when MG is incorporated
in the power system [1]. Solutions to these problems like dynamic scheduling of MG
using NSGA-II algorithm [2], use of approximate dynamic programming and deep
recurrent neural network learning in MG energy management [3], short term gener-
ation scheduling [4], scheduling in a CHP-based MG for economic power sharing
[5], etc., have evolved to fulfil the interests of all stakeholders in power market.

In recent years, a lot of researchers have been focusing on the operation of MG.
Optimal scheduling has always been one of the most important functions in mini-
mizing the net cost of MG [6]. Dynamic optimal scheduling is a good option for MG
operation because it considers the lowest cost in scheduling as well as coordinates
among different distribution generations (DERs) over many periods.

In India, more than 70% conventional sources of energy are thermal plants which
use coal as major fuel. Burning of coal produces harmful gases which degrade our air
quality. Also, the price of fuel used is increasing day by day. Under these conditions,
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sharing of demand by DERs is not only governed by the units’ capability of mini-
mizing the total fuel cost of system generation but also the capability of satisfying
the emission requirements. Many optimization algorithms have been used for solv-
ing this problem of minimizing fuel cost and emissions. Metaheuristic optimization
techniques have gained popularity within last two decades for solution of complex
optimization problem. Grey wolf optimization (GWO) [7] is a recently developed
metaheuristic technique which is inspired by the hierarchal arrangement in hunting
mechanism of grey wolfs.

In this chapter, GWO is used for dynamic scheduling of energy resources con-
sidering environmental constraints. Remaining chapters are organized as follows:
Problem formulation of this system is given in Sect. 2, the working of the optimiza-
tion method is described in Sect. 3, results and discussion after using this model are
explained in Sect. 4 and the conclusions drawn are compiled in Sect. 5.

2 Problem Formulation

The fuel costs of the conventional generators in a dynamic environment of 24 hwhich
is a convex polynomial can be mathematically expressed as (in $/h) [10]:

F(P) =
24∑

t=1

6∑

i=1

{
ai × P2

i (t) + bi × Pi (t) + ci
}

(1)

Similarly, emission dispatch function (in Kg/h) is also a convex polynomial and
can be written as [10]:

E(P) =
24∑

t=1

6∑

i=1

{
αi × P2

i (t) + βi × Pi (t) + γi
}

(2)

Thus, the multi-objective economic emission dispatch problem can be mathemat-
ically stated as [10]:

C(P) =
24∑

t=1

6∑

i=1

[{
ai P

2
i (t) + bi Pi (t) + ci

} + ppf × {
αi × P2

i (t) + βi × Pi (t) + γi
}]

(3)

where ppf is price penalty factor which is given by

ppf =
{
ai P2

imax(t) + bi Pimax(t) + ci
}

αi × P2
i (t) + βi × Pi (t) + γi

(4)
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The power generated by each solar PV unit (in MW) at t-th hour in a solar farm
is given by [11]:

Pgs = Prated

{
1 + μ(Tamb − Tref) × St

1000

}
(5)

Cost of operation for the solar farm for 24 h is given as:

24∑

t=1

13∑

j=1

Pgs × C j (6)

The multi-objective cost function of the hybrid system becomes [11]:

C(P) =
24∑

t=1

[
w ×

(
6∑

i=1

{
ai P

2
i (t) + bi Pi (t) + ci

}
)

+ ppf × (1 − w)

×
(

6∑

i=1

{
αi × P2

i (t) + βi × Pi (t) + γi
}
)

+
13∑

j=1

Pgs × C j

⎤

⎦ (7)

2.1 Inequality Constraints

The power generated by the conventional thermal plants as well as the RS (Solar PV
farm) must lie between maximum and minimum limits. Mathematically,

Pmin
i ≤ Pi ≤ Pmax

i (8)

Pmin
gs ≤ Pgs ≤ Pmax

gs (9)

The ramp rate limits for thermal unit power generation are considered in this
problem. The power generation of thermal units is constrained by the ramp rate
limits as follows:

Pt
i − Pt−1

i ≤ URi (10)

Pt−1
i − Pt

i ≤ DRi (11)
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2.2 Equality Constraints

The power generated at any instant of time by all the thermal plants and the RS (Solar
PV farm) should satisfy the total desired load of the system which is mathematically
described as:

PLoad =
6∑

i=
Pi +

13∑

j=1

Pgs + PL (12)

3 Grey Wolf Optimization

Grey wolf optimization (GWO) is belonging to the family of swarm intelligence [7].
Its analytical model mimics the intelligent, self-organized group behaviour of grey
wolves for hunting prey in nature. Grey wolves live in a group of 5–15 members.
They follow a proper hierarchy with four types of member represented as Alpha,
Beta, Delta and Omega. The social hierarchy of grey wolves is illustrated in Fig. 1.
Systematic organization and discipline are their main strength.

Group leader is male/female represented by Alpha. He or She is only the deci-
sion maker for hunting, walking and selection of place for sleeping. Beta wolf has
second place in social hierarchy and helps group leader in decision making. Delta
is the subordinates of alpha and beta but they dominate over omega. Delta has four
subgroups: Scouts, Sentinels, Hunters and Caretakers. Scouts are responsible for
watching boundary territory and warning the group members in case of any danger.
Sentinels are responsible for the protection of group members. Hunters help alpha
and beta in hunting and also responsible for arranging the food for the group mem-
bers. Weak and wounded member are taken care by caretakers. Omega plays the role
of scapegoat in the group and they generally eat at last only.

On the basis of above-disciplined group behaviour, the analytical model of GWO
is described by three phases during hunting which are described as below.

(a) Entrapment of prey

Fig. 1 Social hierarchy of
grey wolves in nature
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In its first phase, model is based upon assumption that grey wolves update their
position one with respect to other in n-dimensional search space as below [7].

D = |C × XP(t) − X (t)| (13)

X (t + 1) = XP(t) − A × D (14)

A = 2ar1 − a (15)

C = 2r2 (16)

a = 2 − (t)

(
2

T

)
(17)

The value ‘a’ is linearly decreased from 2 to 0 over the course of iterations and
Fig. 2 illustrates this phase

(b) Hunting of Prey

In order to simulate self-organized and group behaviour of grey wolves, alpha, beta
and gamma are considered as three best solutions. Alpha is assumed to be closest
to the best solution followed by the solution of beta and gamma. Therefore, during
optimization process, first three solutions are considered as the best and remainders
are considered as omega. The position is updated with respect to the position of

Fig. 2 Entrapment of prey phase
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omega. The position of omega (ω) will vary as per the current best position in
algorithm. The final position is defined with respect to position of alpha, beta and
delta in search space as below.

Dα = |C1.Xα − X |, Dβ = ∣∣C2.Xβ − X
∣∣, Dδ = |C3.Xδ − X | (18)

X1 = Xα(t) − A1 × Dα,X2 = Xβ(t) − A2 × Dβ,X3 = Xδ(t) − A3 × Dδ (19)

X (t + 1) = 1

3
× (X1 + X2 + X3) (20)

(c) Attacking the Prey

In the last stage, grey wolf attacks the prey. In the analytical model, it can be realized
by shrinking value of “a” from 2 to 0 as iteration progresses and hence A reduces.
The last stage in hunting is attacking the prey when the prey has stopped. This
can be achieved mathematically by reducing the value of a gradually from 2 to 0,
consequently, A is varied randomly in range [−1, 1].

4 Results and Discussion

The main objective of this chapter is to find the impact of renewable integration on
operating cost of fuel and quantity of emissions released, which is discussed in two
cases. First case involving only thermal units and second case is a hybrid arrangement
of thermal plants with solar PV integration.

4.1 Description of Test Cases

Case 1 This test system contains six thermal power units; its fuel cost, minimum
and maximum power limits and emission coefficients which are adapted from [10]
and listed in Table 1.

Case 2 It is a hybrid test case having six thermal units similar to Case 1 and a solar
PV farm comprising of 13 PV units. The required data of the solar PV farm are
adapted from [11] and illustrated in Fig. 3 and listed in Table 2. Figure 4 provides
the data of temperature (°C) and solar radiation (W/m2) of PV on a single day for
24 h. Table 2 gives data of rated power and per unit cost of thirteen PV units in the
solar farm.
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Table 1 Data related to six conventional thermal power plants

Unit 1 2 3 4 5 6

ai ($/MW2h) 0.007 0.0095 0.009 0.009 0.008 0.0075

bi ($/MWh) 7 10 8 11 10.5 12

ci
(
$/h

)
240 200 220 200 220 190

Pmin 100 50 80 50 50 50

Pmax 500 200 300 150 200 120

αi (Kg/MW2h) 0.00419 0.00419 0.00683 0.00683 0.00461 0.00461

βi (Kg/MWh) 0.32767 0.32767 -0.54551 -0.54551 -0.51116 -0.51116

γi (Kg/h) 13.8593 13.8593 40.2669 40.2669 42.8955 42.8955

UR (MW/h) 80 50 65 50 50 50

DR(MW/h) 120 90 100 90 90 90

Fig. 3 Solar PV data of temperature (°C) and radiation (W/m2)

4.2 Simulation Results

GWO is implemented for solution of ELD, EED and CEED problem in MATLAB
R2013a environment. For each case, GWO algorithm was run for 30 times and best
results are tabulated in Tables 3, 4, 5, 6 and 7.

The performance of GWO with recent methods like artificial bee colony (ABC)
[8] and differential evolution (DE) [9] is given in Table 3. Table 4 tabulates the
optimum scheduling of the six thermal units for CEED. The parameters considered
in implementing the algorithms are given in Table 5. Here, it is observed that the
optimum results in terms of minimum cost and least emissions obtained by GWO
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Fig. 4 Statistical and
computational comparison of
Case 1

Table 3 Comparison of cost
and emissions for different
algorithms (Case 1)

Method used Thermal cost ($/h) Total emission (Kg/h)

Economic load dispatch

GWO 308039.0700 34101.0440

ABC 309591.6145 33901.0262

DE 308078.0118 33297.0680

Economic emission dispatch

GWO 316174.2286 25577.1096

ABC 316172.2100 25579.5970

DE 316172.5736 25606.2910

Combined economic emission dispatch

GWO 313504.6600 26594.1923

ABC 309361.6796 32703.8763

DE 309569.9413 33492.4277

are lowest as compared to the results obtained by simulation using ABC [8] and DE
[9]. The statistical comparison in Fig. 4 illustrates that though the average CPU time
in computation is more for GWO than ABC and DE, the standard deviation obtained
in results by GWO is lowest than the other two methods.

The optimal solution in terms of cost and emission for hybrid thermal–PV system
is listed in Table 6. By comparing results, it can be observed that the total cost for
hybrid system is found to be lowest for GWO as compared to other two metaheuris-
tic methods for all three objective functions taken into consideration. The optimal
generation scheduled for CEED obtained using GWO is tabulated in Table 7. Here,
it is observed that all associated operational constraints (8)–(11) are fully satisfied.
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Table 4 Optimum generation schedule (CEED) obtained by GWO (Case 1)

Hour P1 P2 P3 P4 P5 P6 Load
(MW)

1 259.5374 149.3329 125.9369 109.1559 195.7285 115.3084 955

2 208.8734 123.3427 147.2819 148.8409 196.8753 116.7858 942

3 181.6658 155.7335 200.0944 131.9412 168.2502 115.3149 953

4 224.8678 102.1668 145.7005 143.4121 197.0021 116.8507 930

5 236.0181 138.2135 163.1357 105.9371 173.6471 118.0485 935

6 252.2066 120.3990 197.5179 148.2297 146.3651 98.2817 963

7 277.2475 125.9615 145.4991 148.2154 176.7064 115.3701 989

8 266.3530 148.9245 199.5718 122.3128 170.4414 115.3965 1023

9 310.7137 194.4492 153.4075 149.3816 199.5837 118.4643 1126

10 281.0990 198.1337 204.9100 148.3168 199.5668 117.9737 1150

11 350.3692 166.2672 219.3761 146.1391 198.8513 119.9971 1201

12 335.4002 175.6566 260.9748 149.5477 197.1420 116.2786 1235

13 369.6719 170.7951 187.6973 147.0773 197.3182 117.4401 1190

14 348.9233 198.5079 238.5792 148.1412 197.9208 118.9275 1251

15 404.2717 196.3962 237.2358 113.5441 192.9023 118.6499 1263

16 354.7831 198.6413 242.3785 146.6850 190.4917 117.0203 1250

17 394.5981 157.5716 203.4344 149.6969 198.7658 116.9333 1221

18 319.0318 197.9201 260.4055 109.1597 197.6255 117.8574 1202

19 389.6461 159.2299 219.9534 122.7978 149.4363 117.9365 1159

20 307.3071 134.1719 221.9858 147.3151 164.8292 116.3909 1092

21 242.0499 160.1049 176.4222 149.5229 177.4241 117.4760 1023

22 243.2312 106.4994 171.2364 145.3539 198.5802 119.0989 984

23 189.3753 153.2756 215.8568 148.1036 150.9817 117.4069 975

24 227.2540 166.6708 147.5936 148.4603 167.8862 102.1351 960

Table 5 Parameters used for different algorithms

Optimization Population size
(PS)

Food number Limit Max cycle F1 F2 CR

GWO 100 – – 100 – – –

ABC 100 PS/2 100 100 – – –

DE 150 – – 100 0.2 0.2 0.8

5 Conclusion

This chapter focuses on using recently evolved nature-inspired technique named as
grey wolf optimization (GWO) for solution of a hybrid thermal–PV system working
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Table 6 Comparison of cost and emissions for different algorithms (Case 2)

Algorithms Thermal cost ($/h) PV cost ($/h) Total cost ($/h) Total emission (Kg/h)

Economic load dispatch

GWO 268606.9160 856.4677 269463.3836 24453.7943

ABC 269214.9327 856.4677 270071.4004 24015.6247

DE 269492.3920 856.4677 270348.8597 24049.3635

Economic emission dispatch

GWO 269135.3267 856.4677 269991.7944 23677.4826

ABC 269648.7819 856.4677 270505.2496 23756.6617

DE 269647.1498 856.4677 270503.6175 23759.0086

Combined economic emission dispatch

GWO 269007.5291 856.4677 269955.7506 23939.7894

ABC 269451.6499 856.4677 270308.1176 23801.7434

DE 269648.1603 856.4677 270504.6279 23758.5261

as power producers in a microgrid in island mode. After analysing the illustrations
above, it can be concluded that GWOprovides better results as compared to two other
well-proven optimization techniques which are ABC and DE. In dynamic environ-
ment, the GWO algorithm converged in an efficient manner for solution of environ-
mental/economic dispatch problem in dynamic environment without violating any
constraint.

In Case 1, GWO optimizes the minimal cost (ELD) and gives least emissions
(EED) as compared to ABC and DE. In Case 2, the microgrid using thermal–PV
units as DERs have lesser cost of operation, lower fuel cost and lesser emissions
than in Case 1. Thus, using renewable sources of energy will economically and
ecologically make the existing microgrid more efficient.

Microgrid using the proposed hybrid thermal–PV system implementing GWO
as optimization methodology will be an economic and efficient way to solve the
modern-day multi-objective power scheduling problems.
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Table 7 Optimum generation schedule (CEED) obtained by GWO (Case 2)

Hour P1 P2 P3 P4 P5 P6 PV output
(MW)

1 291.6677 128.3787 226.496 96.4727 122.8774 89.1075 0

2 308.716 128.2172 200.563 102.6369 122.6878 79.1791 0

3 333.0985 117.9031 209.3775 95.4665 114.0431 83.1113 0

4 301.2931 127.0684 201.1006 83.5105 137.4587 79.5687 0

5 310.3517 137.8202 183.8572 94.0479 125.8481 80.7345 2.34036

6 287.9521 137.5316 198.416 103.5973 111.5374 80.1922 43.7734

7 285.7395 112.1214 168.3167 98.5323 131.7926 83.1021 109.39544

8 236.4054 77.2908 167.7723 95.6519 127.8353 87.0601 230.98416

9 288.7889 106.2189 183.7551 97.3922 146.7348 79.0691 224.04096

10 200.9361 111.4404 198.5657 91.0967 132.4942 81.8701 333.59678

11 213.1547 124.5768 200.5624 97.1991 86.8663 94.0807 384.5600

12 242.4135 117.6926 168.4934 99.1394 113.769 86.0081 407.4840

13 261.721 118.4019 150.4681 93.4949 112.4729 81.2012 372.24 00

14 272.2764 109.4945 205.7171 93.4321 143.2713 75.9931 350.81552

15 313.3497 129.3932 209.7549 99.4467 126.4515 84.041 300.56312

16 324.11 114.4542 194.7587 113.0236 137.8464 96.7515 269.0556

17 348.7288 138.4968 199.6722 109.6982 163.7378 99.0271 161.63906

18 358.7244 184.5096 237.4808 105.422 142.4219 84.4759 88.96536

19 437.3826 125.3974 207.0658 107.7161 185.8632 79.4819 16.0930

20 366.19 140.0392 243.4533 96.4065 149.4269 96.4841 0

21 361.6952 139.283 217.7123 111.0116 101.233 92.0649 0

22 324.2422 133.4168 191.4634 115.4422 134.5866 84.8488 0

23 333.5948 120.1099 219.0381 74.4675 148.1716 79.6181 0

24 304.34 124.8371 202.8644 99.884 134.9458 93.1287 0
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Chapter 7
Mixed-Integer Differential Evolution
Algorithm for Optimal Static/Dynamic
Scheduling of a Microgrid with Mixed
Generation

Sunita Shukla and Manjaree Pandit

Abstract The objective of dispatching generating units in electrical power supply
system is to compute anoptimal generation schedule tominimize the costwithout vio-
lating the operating limits. Earlier, this problemcomprisedmainly of fossil fuel gener-
ating units. Now, the system complexity increases due to the widespread involvement
of large number of renewable distributed energy resources (DERs) which are ran-
dom, uncertain and introduce discrete variables in the objective function. This chapter
presents a static and dynamic optimal scheduling model for a microgrid comprising
of diesel generators (DG), microturbine (Mt), wind turbine and solar photovoltaic
(PV) plant. A mixed-integer differential evolution (MIDE) algorithm with continu-
ous as well as binary variables is used to solve the optimal dispatch problem with
various equality, inequality and binding dynamic constraints. The developed model
is tested on a modified five DERmicrogrid, and its performance is validated by using
binary PSO and existing results from the literature.

Keywords Mixed-integer differential evolution · Optimal scheduling · Wind–solar
microgrid · Uncertainty costs

1 Introduction

Restructuring of the electrical power network has led to major changes in the opera-
tional policies of the power industry. The inception of microgrids (MG) has enabled
the penetration of distributed energy resources (DERs) into the already existing grid
powered by the conventional fossil fuel-based generating units. Microgrid also helps
to enhance the interconnection of storage systems and flexible loads to effectively
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operate as a separate electrical utility or as an integral part of the grid. Inclusion
of RES through MGs in the dispatch schedule can help mitigate the undesirable
intermittent and uncertain behavioral characteristic resulting in a more resilient and
reliable power system network.

Several optimization tools and methods have been developed to formulate the
dispatch problem using microgrids. In [1], energy investment and management opti-
mization were performed for an individual site MG comprising of fuel cell, recipro-
cating engine,microturbinewith solar, thermal, PVand storagemixusingDER-CAM
(distributed energy resource customer adoptionmodel) of Berkeley laboratory, USA.
In [2], a study to improve technology and policy variables for MGs is made, and a
DER-CAM cost optimization model is developed that emphasizes the use of optimal
PV plant and storage units only as supplements to gas generators. In [3], the opti-
mal scheduling and management of a sample 14-bus radial MG which has 4-DERs
with utility grid-connected mode is tested and validated using DE algorithm. An
islanded MG model with DG/Mt/WT/PV, battery and converters is simulated using
a multicross learning-based differential evolution algorithm to optimally schedule
the units in [4]. In [5], an environmental economic dispatch MG model is evaluated
under the island, grid-connected and energy exchange modes using an attraction and
repulsion-basedmodified imperialist competitive algorithm. Optimal scheduling of a
PV/WT/energy storage coordinated (DG)MGmodel is solved using hybrid harmony
search and DE algorithm with adaptive parameters, improved mutation and compe-
tition operators in [6], while a semi-Markov model is employed in [7] to coordinate
PV units with fossil fuel units and energy storage. In [8], an improved artificial bee
colony algorithm-based model for cost optimization and energy management of a
microgrid problem has been proposed.

At present, due to the mixing of continuous and discrete variable-based DERs
in the MG scheduling and dispatch problems, most MG systems are being config-
ured as DC or hybrid AC/DC models and solved using real time [9, 10] or mixed
integer/binary-based [11–13] optimization tools.

This chapter proposes a mixed-integer differential evolution algorithm (MIDE) to
solve the optimal scheduling and dispatch problem for awind–solar–dieselmicrogrid
comprising of continuous and discrete variables. MIDE has been applied for two
test cases, (i) single objective (SO) minimization in a static environment and (ii)
two-objective optimization under dynamic conditions. The results are verified using
binary PSO and [3].

2 Problem Formulation for Microgrid with Mixed
Generation

Theobjective of theMGoptimal scheduling problem is to optimize operating cost and
other conflicting objectives such as emission, loss and wind penalty and reserve cost
such that complex nonlinear continuous/discrete operational constraints are satisfied.
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The cost minimization objective function can be formulated for a dynamic/static
scheduling problem as follows takingNg generators for a time T with k time intervals
(
∑

k = 24). Here, CT is the total cost of generation; Pk
Gi is the power generated, and

Ci
(
Pk
Gi

)
is the cost function of the i-th generating unit calculated for k-th time interval

where k is fixed under static conditions.

MinCT =
Ng∑

i=1

T∑

k=1

Ci
(
Pk
Gi

)
(1)

Subject to the following constraints.

2.1 Generating Unit Limits

Pk
Gi,min ≤ Pk

Gi ≤ Pk
Gi,max (2)

where Pk
Gi,min and Pk

Gi,max are the minimum and the maximum generation limits of
the i-th unit.

2.2 Supply and Load Balance Constraint

Ng∑

i=1

(
Pk
Gi

) = Pk
D + Pk

L (3)

Pk
L =

Ng∑

i=1

Ng∑

j=1

Pk
Gi Bi j P

k
Gj +

n∑

i=1

B0i P
k
Gi + B00 (4)

where Pk
D is the total load demand; Pk

L is the power system loss at the k-th time, and
Bi j,B0i , B00 are the power transmission loss coefficients.

2.3 Generator Ramp Rate Limits

Pk
Gi − Pk−1

Gi ≤ Rup,i (5)
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Pk−1
Gi − Pk

Gi ≤ Rdown,i (6)

where Rup,i and Rdown,i are the maximum ramp up and down rates per hour for the
i-th unit, respectively.

2.4 Formulation of Total Cost Function
for the Wind–PV–Diesel Microgrid

The total cost function in (1) is the sum of fuel cost, wind power (WP) cost and the
PV power costs. The fuel cost function, FCi

(
Pk
Gi

)
, can be formulated as a quadratic

equation using the cost coefficients, ai , bi , ci .

Ng∑

i=1

T∑

k=1

FCi
(
Pk
Gi

) =
Ng∑

i=1

T∑

k=1

ai + bi P
k
Gi + ci

(
Pk
Gi )

2
)$

h
(7)

Cost for generating wind power WC can be calculated as follows [14]:

WC = directcost + penaltycost + reservecost (8)

where for the i-th WP unit the directcost = di × wi ; where di is the direct cost
coefficient; penaltycost accounts for the wind curtailment; reservecost is a wind
forecast error penalty associated with overestimation of WP; vu is the wind curtail-
ment penalty coefficient, and vov is the cost coefficient due to overestimation of wind
power. The penalty and reserve costs can be calculated as follows using the Weibul
probability distribution function (pdf) fW (w) of WP random variable w.

Penalty Cost = vu

wr,∫

ws

(w − wi ) fW (w)dw and

Reserve Cost = vov

ws∫

wr

(wi − w) fW (w)dw

Weibul pdf is used to portray the uncertain wind power random variable by trans-
forming the wind speed random variable into continuous and discrete distributions
based on regions defined by Eqs. (9)–(11). The detailed solution is available in [15].

w = 0 for v〈vin and v〉vr (9)

w = wr × v − vin
vr − vin

for vin ≤ v ≤ vr (10)
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w = wr for vr ≤ v ≤ vo (11)

where wr is the rated WP, vin, vr and vo are the cut-in, rated and cut-out wind speeds,
c and ks are the Weibul scale and shape factors at a particular location; both are
dimensionless.

PV unit generating cost PVcost for the i-th solar unit which is generating power
Pk
gs,i at k-th time instant can be computed usingUk

s,i the binary variable representing
on–off status, ambient and reference temperatures tamb & tref, temperature coefficient
of the solar panel tcoeff, incident solar radiation S(k), per unit PVcost, PVrate and
rated PV power Pr using (12) and (13) as

Ns∑

i=1

T∑

k=1

PVcost
(
Pk
gs,i

) = Pk
gs,i ×Uk

s,i × PVratei (12)

Pk
gs,i = Pr × (1 + (tamb − tref) × tcoeff) × (S(k) ÷ 1000) (13)

2.5 SO and Two-Objective Optimization Functions

The objective function for SO cost optimization can be achieved by substituting
Eqs. (7), (8) and (12) in Eq. (1) as:

Ng∑

i=1

T∑

k=1

Ci
(
Pk
Gi

) =
Ng∑

i=1

T∑

k=1

FCi
(
Pk
Gi

) + WC +
Ns∑

i=1

T∑

k=1

PVcost
(
Pk
gs,i

)
(14)

For the simultaneous optimization of two objectives (cost and emission), for opti-
mal scheduling of wind–solar–diesel MG, price penalty factor (PPF) approach is
used to create an aggregated function. The PPF converts emission into cost and the
two objectives into a SO one. Emission is expressed using coefficients, αi , βi , γi as:

Ng∑

i=1

T∑

k=1

Ei
(
Pk
Gi

) = αi + βPk
Gi + γi (P

k
Gi )

2 kg

h
(15)

Min

⎡

⎣
Ng∑

i=1

T∑

k=1

Ci
(
Pk
Gi

) + PPF ×
Ng∑

i=1

T∑

k=1

Ei
(
Pk
Gi

)
⎤

⎦ (16)
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3 Mixed-Integer Differential Evolution (MIDE)

Differential evolution (DE) method was proposed by Storn and Price [16] and is
amongst the most powerful optimizing methods for continuous variables. However,
original DE needs to be modified to accommodate discrete variables. In this chapter,
a simple update mechanism is employed for representing PV output which is discrete
in nature.

The problem dimension D consists of C number of continuous variables and B
number of binary variables such that D = C + B. The decision variable is generated
randomly between the corresponding lower/upper limits, which are 0–1 for the dis-
crete variables. Out of the five mutation strategies available in classical DE, the one
with the best statistical performance for the problem is selected after preliminary
studies. For the present problem, the mutant vector Z was generated using DE/best/1
as follows:

Zi (k + 1) = xi,best(k) + fm
[
xi,r2(k) − xi,r3(k)

]
(17)

In (17), Strategy II: DE/best/1 means global best solution, one difference term
and binomial crossover; i = 1,2,…, NP is the population index of the individual, k
is the iteration count; x is the target vector; r1 and r2 are mutually different integers,
and fm is the mutation factor varying between 0 and 2.

Crossover operator is used for increasing the population diversity of the perturbed
parameter vector to help generate a trial vector, Yi j , replacing certain parameters of
the target vector. Index j represents the problem dimension D, CR is crossover rate,
rand is a uniform random number in range [0 1].

Yi j (k + 1) =
{
Zi j (k + 1) if (rand( j)) ≤ CRor ( j = rand int(i))
xi j(k) if (rand( j)) ≤ CRor ( j �= rand int(i))

where ∀ j = [1, 2 . . .C] (18)

Yi j (k + 1) =
{
1 randb > 0.5
0 otherwise

where ∀ j = [C + 1, . . . D] and b ∈ B. (19)

To ascertain inclusion of trial vector in the next generation population, a greedy
selection is performed using the given criterion

xi (k + 1) =
{
Yi (k + 1) if ( f (Yi (k + 1))) < f (xi (k))
xi (k) otherwise

(20)
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4 Results and Discussion

This section presents the solution of optimal wind–solar–diesel microgrid scheduling
problem for SO as well as two-objective problem with continuous and discrete deci-
sion variables. The presence of PV generators introduces binary variables, and hence,
an MIDE algorithm is proposed for solving this mixed-integer nonlinear optimiza-
tion problem. The developed approach is tested for different operating conditions and
validated using binary PSO and [3]. Simulations were carried out using MATLAB
2013 on a1.6 GHz, core i3 processor with 8 GB RAM.

4.1 Description of the Modified Microgrid Test System

The microgrid with four DERs and utility [3] is modified by replacing utility grid by
an equivalent DG, oneDG by awind turbine and onemicroturbine by a PV plant. The
modified data of the 5-DER test system is given in Tables 1, 2, 3 and 4. B-coefficients
in Eq. (4) are also taken from [3]. The solar data are taken from [17].

Table 1 Cost, emission coefficients and capacity limits for DERs

Bus no. 1 2 6 11

DER capacity (kW) 500 (DG1) 200 (WT) 80 (Mt) 100 (DG2)

ai 10.193 – 0.5768 1.18

bi 105.18 60.28 57.783 65.34

ci 62.56 – 133.09 44.0

αi 26.55 – 3.0358 19.38

βi 16.1836 – 57.3403 176.6946

γi 7.0508 – 311.5728 821.6573

Pgimax 500 200 80 100

Pgimin 0.00 0.00 16 20

UR 200 70 30 40

DR 150 70 30 40

Heat rate (kJ/kWh) 10,314 0 11,373 10,581

Table 2 Wind speed data for
DER-2

Rated
capacity
(kW)

Cut-in speed
(miles/h)

Cut-out
speed
(miles/h)

Rated speed
(miles/h)

200 5 25 15



90 S. Shukla and M. Pandit

Table 3 Data for the PV
plant (DER-5)

Rated capacity
(kW)

PVrate ($/h) Tref (°C) Tcoeff (% °C)

30 0.24 25 −0.005

Table 4 Solar radiation for 24-h period for PV plant (DER-5)

Hour 1 2 3 4 5 6 7 8

S (W/m2) 0 0 0 0 5.4 101 253.7 541.2

Tamb (°C) 30 29 28 28 28 29 29 31

Hour 9 10 11 12 13 14 15 16

S (W/m2) 530.4 793.9 1078 1125.6 1013 848.2 726.7 654

Tamb (°C) 33 34 35 36 37 37 37 38

Hour 17 18 19 20 21 22 23 24

S (W/m2) 38 37 35 34 34 33 32 32

Tamb (°C) 392.9 215.1 38.5 0 0 0 0 0

4.2 Setting of the Optimal Parameters of MIDE

To select the optimal combination of population size (NP) and number of iterations
(NI), tests were conducted for a load of 350 kW by varying population from 50 to
250 and the iteration count from 100 to 300. The performance is compared in Table 5
using statistical metrics computed out of 25 trial runs for each combination of NP and
NI. It can be seen from Table 5 that as NP and NI are increased, and the consistency
of the algorithm improves with reductions inmean, maximum and standard deviation
(SD) values. However, the computational time is observed to increase in an obvious
manner. Though theSD is observed to improve continuouslywith the increment inNP
as well as NI, but in order to strike a balance between time and consistency, NP= 150
and NI= 300 (shown bold) are selected as optimal settings for conducting all further
studies in this chapter. Increasing the two values beyond the tested settings resulted
in unduly large CPU times with no significant improvement in standard deviation
values. The mutation and crossover rates are both set at 0.5. The consistency of
MIDE for cost optimization is compared in Fig. 1. The costs are quite consistent for
all values of NP > 50. The convergence characteristic for different population sizes
is shown in Fig. 2 which also shows a stable convergence of the MIDE algorithm for
all the settings.

4.3 SO Optimal Static Scheduling of Microgrid Using MIDE

The static SO optimal schedule of all DERs has been computed for different loading
conditions and tabulated in Table 6. DER-5 is a PVplantwhich has a binary status and
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Table 5 Performance of MIDE with changing population and iteration count for load 350 kW

NP Iteration (NI) Mean cost Maximum cost St. Deviation CPU time

50 100 130.00 626.2781 76.12 107.94

150 63.38 243.62 15.69 158.80

200 56.30 78.93 4.87 211.32

250 57.02 74.23 4.90 267.33

300 56.29 70.14 5.41 316.88

100 100 68.56 176.70 19.29 215.10

150 59.32 101.95 8.28 334.56

200 53.32 74.12 4.06 428.45

250 50.89 67.14 2.06 536.91

300 52.00 59.38 2.25 627.49

150 100 55.98 79.51 5.94 308.69

150 55.82 69.63 3.88 527.2

200 51.91 62.71 2.01 674.24

250 51.90 58.77 2.27 845.91

300 50.99 58.07 1.73 1029.38

200 100 54.11 60.89 3.05 474.17

150 52.28 62.12 2.89 634.7

200 50.90 54.70 1.26 917.59

250 50.18 57.20 2.29 1114.56

300 50.66 60.22 2.10 1341.23

250 100 54.40 64.49 3.22 669.77

150 51.75 61.44 2.52 872.50

200 51.00 61.30 2.06 1438.16

250 49.88 54.34 1.56 1810.72

300 49.44 52.55 1.58 1979.43

contributes its full capacity as given by Eq. (13). The proposed MIDE algorithm has
computed the optimal DER schedule for minimum operating cost for eight different
intervals as shown in Table 6. The nonlinear inequality and equality constraints
given by Eqs. (2) and (3) are satisfied for all load cases of themixed-integer nonlinear
optimization problem.The corresponding values of all objectives, fuel cost, emission,
wind cost, PVcost and loss are also computed for the optimal cost solution. Due to
space limitations, similar results for SO optimization of each of these other objectives
using MIDE are not given here.
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Fig. 2 Comparison of convergence characteristic of MIDE for different population sizes

4.4 SO Optimal Dynamic Scheduling of Wind–PV–Diesel
Microgrid

The SO dynamic economic dispatch model was tested for a time horizon of 24 h for
optimizing the cost given by Eq. (14). Hourly variation of the schedules and costs
of the various DERs are shown in Figs. 3 and 4, respectively. From Fig. 3, it can be
deduced that DER-2, i.e., WP contributes more than other DERs throughout the day.
Participation of the microturbine and DG2 is almost constant over the day; however,
DG1 share fluctuates throughout the day. Due to dependence on solar radiation,
the PV contribution is limited to a few hours only. Figure 4 shows the variation of
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Fig. 3 Hourly variation of
the optimal DER schedules
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operating cost of DERs. Though the total capacity of renewable generation by PV
and wind units is small as compared to the fuel-based DRs and Mt, their effect in
reducing the total cost can be clearly observed. In the dynamic dispatch problem,
additional constraints given by Eqs. (5) and (6) are imposed on the DER schedules.

4.5 Two-Objective Dynamic Optimal Scheduling
of Wind–PV–Diesel Microgrid

After testing the performance of theMIDE for SOstatic scheduling problem, themore
complicated two-objective case given by Eq. (16) was solved for dynamic operating
conditions, which are closer to the practical MG operation. The optimal schedule of
each hour is constrained by the previous optimal schedule as specified by ramp rate
limits given by Eqs. (5) and (6). These additional dynamic constraints add further
complexity to theMG scheduling problem. However, the proposedMIDEwas found
to produce a stable convergence for the tested cases. Table 7 gives the complete solu-
tion obtained by MIDE algorithm for the two-objective dynamic dispatch problem.
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The solution satisfies the ramp up/down limits along with other continuous/discrete
constraints.

5 Comparison and Validation of Results

In Table 8, the cost optimization results ofMIDE (NP= 150, NI= 300) are compared
with DE [3] (NP = 60, NI = 1500) for three loading conditions. MIDE algorithm is
seen to produce comparable results with the DE of [3] with lesser number of function
evaluations. In Table 9, optimal dynamic schedule and dispatch results of proposed
MIDE algorithm have been compared with Binary PSO (BPSO) for three loading
conditions of the modified microgrid system. In BPSO, NP = 5000, NI = 100. The
results obtained byMIDE algorithm are found to be comparable to both classical DE
and BPSO while fully satisfying all the constraints.

Table 8 Comparison of MIDE with conventional DE

Method Load
(kW)

Fuel cost ($/h) DG1
(kW)

DG2
(kW)

Mt1
(kW)

DG3
(kW)

Mt2
(kW)

DE 169 23.97 0.00 63.20 80.00 20.30 6.30

248 29.38 0.00 110.10 80.00 29.10 30.00

338 35.90 0.00 166.30 80.00 64.30 30.00

MIDE 169 23.98 0.00 61.63 79.43 22.85 6.00

248 29.36 0.00 94.77 79.21 46.71 29.27

338 35.96 0.00 150.26 80.00 86.33 28.24

Parameters: MIDE: NP = 150, NI = 300 and DE: NP = 60, NI = 1500

Table 9 Comparison of the BPSO and MIBDE cost objective functions for the modified MG

Method Load
(kW)

Fuel cost
($/h)

DG1
(kW)

WP (kW) Mt (kW) DG2
(kW)

PV (kW)

BPSO 308 29.82 94.76 69.14 50.66 79.82 15.75

350 34.71 110.76 80.72 49.66 88.86 22.75

460 46.20 138.96 188.88 26.29 88.89 21.64

MIBDE 308 29.34 1.55 180.38 77.19 39.96 15.75

350 34.24 52.40 99.99 80.00 97.71 22.75

460 44.50 131.59 163.51 80.00 67.40 21.64

Parameter description: NP = 5000; D = 5; alpha = 10,000,000; NI = 100; trial = 25
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6 Conclusion

The optimal scheduling of a wind–PV–diesel microgrid is presented for
static/dynamic operation as well as for single/two-objective formulation. Due to
the binary status of the solar PV output, the wind–PV–diesel MG scheduling and
dispatch problem becomes a mixed-integer nonlinear problem comprising of con-
tinuous as well as discrete variables. Hence, a mixed-integer differential evolution
algorithm is proposed for solving the problem that has complexities in the form of
probabilistic and discrete terms in the objective function. The MIDE algorithm has a
very simple formulation, and it is found to produce stable convergence, consistent and
optimal results while satisfying complex nonlinear constraints. The results of MIDE
are validated and found to be comparable with published results. The performance
of MIDE is observed to be superior to the binary version of the PSO.
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Chapter 8
NSGA-II Based Reactive Power
Management in Radial Distribution
System Integrated with DGs

Himmat Singh and Laxmi Srivastava

Abstract This chapter presents Non-dominated Sorting Genetic Algorithm-II
(NSGA-II), a swarm intelligence-based optimization technique, to solve Multi-
Objective Reactive Power Management (MORPM) problem for minimization of
active power losses, improvement of voltage profile, andminimization of total capac-
ity of Reactive Power Sources (RPS) in Radial Distribution Systems (RDS). In an
RDS having Distributed Generators (DGs), reactive powermanagement problem can
be solved by regulating reactive powers of DGs and of the reactive power compen-
sation devices like FACTS devices, capacitor banks, etc. Efficacy of the proposed
NSGA-II has been established by solving MORPM problem in IEEE 33-bus RDS
penetrated with DGs and RPS units and by comparing the multi-objective reac-
tive power management results with those obtained using multi-objective dragonfly
algorithm, multi-objective differential evolution algorithm, and modified differential
evolution algorithm.

Keywords Active power loss minimization · Non-dominated Sorting Genetic
Algorithm-II · Total capacity of reactive power source units

1 Introduction

Integration of distributed generators (DGs) using has become essential in the present-
day power systems to meet out the ongoing rapid social/economic growths and envi-
ronmental challenges and to assure higher reliability of service and quality power.
Hence, penetration of distributed generators in power system is increasing day-by-
day. Distributed generators are located close to the load and hence are capable of
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delivering energy with high efficiency. Distributed generation consists of the gener-
ators based on renewable energy sources like wind turbines, biomass, solar energy,
mini- and micro-hydroelectric plants, combustion turbines, fuel cells, etc. The use
of alternative sources of energy reduces the dependency on scarce and perishable
fossil fuels. Moreover, integration of distributed generation and consumption in a
particular area increases the reliability and quality of power supply.

The DG technologies appear to be appealing, but it is an utmost important to ana-
lyze the impact of integrating them in a power network [1, 2]. To reduce active power
loss, cost of transmission, and distribution of power and to improve system stability/
total voltage variations, etc., in a power system, distributed generators are placed
on customer side or in distribution side of the network [3–6]. Various objectives
of Reactive Power Management (RPM) can be achieved by optimizing the settings
of generators’ voltages/ reactive power, tap-settings of regulating transformers and
settings of reactive power sources like FACTS devices, capacitor banks, etc [5, 6].

In a radial distribution system (RDS), DGs have significant effect on distribution
of reactive power [5]. Hence, reactive power management or reactive power opti-
mization in a RDS integrated with DGs is very important to make sure economic
operation of the RDS without violation of operating limits and also to supply quality
power to its customers.

As can be observed in literature review for reactive power management in the dis-
tribution system havingDGs, a number of optimizationmethods have been proposed.
Earlier, RPM problem was modeled as a single-objective constrained optimization
problem (SORPM) and various Single-Objective Optimization (SOO) algorithms
were employed to solve RPM problem [4]. Later on, two or more objective functions
were handled simultaneously andRPMproblemwas formulated as aMulti-Objective
Optimization (MOO) problem to achieve efficiently various objectives of the RPM
problem [5–9].

Earlier, multi-objective RPM (MORPM) problem was transformed into a SOO
problem using fuzzy approach weighted summethod [5, 7]. These methods simplify
the MORPM problem significantly, but provide only one best solution for the MOO
problem and do not provide other options to the decision maker [8]. Also, it does not
reflect exactly the association among different constituent objectives.

Subsequently, some efficient multi-objective optimization techniques were
employed to resolveMORPM problem handling multiple objectives simultaneously.
Generally, the various objectives involved inMORPMare conflicting in nature, hence
making it impossible to attain a solution that is able to optimize the involved objec-
tives simultaneously. In place of providing one optimal solution, the MOO methods
provide several non-dominated solutions [8–10].

This chapter proposes Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
for solving MORPM problem for radial distribution system (RDS) penetrated with
DGs and reactive power source (RPS) units. The objective functions for theMORPM
problem are minimization of active power loss, total capacity of RPS units, and total
voltage variations, while decision or control variables are reactive power output
of DGs and reactive power injected from the RPS units connected in the RDS.
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Efficiency of NSGA-II is confirmed by solving MORPM problem using NSGA-II,
multi-objective differential evolution (MODE) algorithm, multi-objective dragonfly
(MOD) algorithm, and modified DE (MDE) algorithm in IEEE 33-bus RDS [11]
having DGs and RPS units. The integrated DGs in the RDS are capable to deliver
both the real and reactive powers.

2 Multi-Objective Reactive Power Management

Objectives of RPM in radial distribution systems having DGs are the active power
loss minimization, total voltage variations minimization, and total capacity of the
RPS units minimization, subject to various inequality and equality constraints [8, 9]:

2.1 Objective Functions of RPM Problem

Active Power Loss Minimization:
Active power loss PL is the sum of active power loss occurring in different lines nl
of the RDS and is expressed as

f1 = PL =
nl∑

k=1

Gk
[
V 2
i + V 2

j − 2ViVj cos θi j
]

(1)

where Gk is conductance of any line k; Vi∠θi and Vj∠θ j are the voltages at terminal
buses i and j of kth line, respectively. θ ij = θ i−θ j.

Minimization of Total Voltage Variations:
Total voltage variations TVV is minimized for improving the voltage profile of a dis-
tribution network and it can be accomplished byminimization of voltage magnitudes
|Vi | variations at various load (PQ) buses from reference voltage V ref

i (1.0 pu). This
objective function can be calculated as:

f2 = T VV =
LB∑

i=1

∣∣Vi − V ref
i

∣∣ (2)

where LB denotes the number of load buses in the distribution system.

Minimization of Total Capacity of RPS Units:
Total capacity of RPS units is minimized to reduce the expenditure on RPS units.
Total capacity of the RPS units, TCRPS, is determined as



104 H. Singh and L. Srivastava

f3 = TCRPS =
NQ∑

i=1

QRPSi (3)

where QRPSi is the actual quantity of reactive power required from ith RPS unit and
NQ is the total count of RPS units.

Equality and Inequality Constraints
Equality constraints considered in MORPM problem are power flow equations [21],
expressed as:

{
Pgi + PDGi − Pli = Vi

∑Nbus
j=1 Vj

(
Gk cos θi j + Bk sin θi j

)

Qgi + QDGi + QRPSi − Qli = Vi
∑Nbus

j=1 Vj
(
Gk sin θi j + Bk cos θi j

) (4)

where Pg, PDG, and Pl represent the active power output of the generators, the DG,
and the load connected at bus i. Qg, QDG, QRPSi, and Ql are reactive power output of
the generators, the DG, the RPS unit, and the load connected at bus i. Bk stands for
susceptance of line k in the distribution system having Nbus number of buses.

• Constraints for Buses and Feeder transmission capacity

To ascertain the quality power supply, voltage magnitude at any bus i is required to
be inside the specified maximum and minimum limits. Mathematically,

Vmin
i ≤ Vi ≤ Vmax

i , i = 1, 2, . . .LB (5)

whereVmax
i and Vmin

i represent the maximum andminimum voltage limits, respec-
tively. Also, the power flows through a distribution feeder should not exceed its
specified thermal limit, expressed as:

Sk ≤ Smax
k , k = 1, 2, . . . , nl (6)

where Smax
k denotes the thermal limit of line k.

• Generators and RPS units Constraints

The constraints for the generators and the RPS units consist of the limits on the
reactive power outputs of DGs and of the connected RPS units and can be written as
[9]:

Qmin
DGi ≤ QDGi ≤ Qmin

DGi i = 1, 2, . . . ,NDG (7)

Qmin
RPSi ≤ QRPSi ≤ Qmax

RPSi i = 1, 2, . . . ,NQ (8)
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Here, NDG stands for the quantity of RPS units. The MORPM problem may
be expressed as (9), subject to various inequality constraints h(x, u) and equality
constraints g(x, u) and the decision variables’ bounds as well

Minimize F = [ f1 f2 f3] (9)

Subject to

h(x, u) ≤ 0 (10)

g(x, u) = 0 (11)

and
Variable bounds

ub j ≥ u j ≥ lb j j = 1, 2, . . . , n (12)

Here, ubj and lbj are lower and upper bounds of jth control variable, respectively,
and n is the number of decision variables. Various objectives of MORPM problem
may be written as

f1 = PL(x, u), f2 = TVV (x, u), and f3 = TCRPS(x, u)

Here, x, the dependent variables can be written as

xT = [V1 . . . , VLB, S1, . . . , Snl] (13)

and the control or independent variables u may be written as

uT = [
QDG1, QDG2, . . . QDGNDG, QRPS1, QRPS2, . . . QRPSNQ

]
(14)

NSGA-II is applied for solving this combinatorial and nonlinear MORPM problem.
Once the Pareto-optimal solutions are attained, the preferred solution is extracted
out of these solutions using fuzzy membership function-based approach [12–14].

3 Non-dominated Sorting Genetic Algorithm-II
for MORPM

Non-dominated Sorting Genetic Algorithm-II is one of the most efficient multi-
objective optimization algorithms, proposed by Deb et al. [14, 15]. This algorithm
is a fast and elitist version of non-dominated Sorting Genetic Algorithm, which is
an evolutionary approach to find the optimal solutions for complex multi-objective
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optimization problems. Computational steps for NSGA-II to solveMORPMproblem
can be summarized in following steps:

i. Read the data of radial distribution system.
ii. Set maximum iterations (ITMAX).
iii. Generate an initial population of NP, Xi (i = 1, 2,…, NP) inside control

variables’ upper and lower bounds.
iv. Set iteration IT =1.
v. For every individual, run Backward–Forward Sweep Power Flow (BFSPF)

program [16] to calculate f 1, f 2, and f 3 using (1), (2), and (3).
vi. Calculate extended objective functions F1, F2, and F3 using the objective

functions f 1,, f 2, f 3 and penalty factor (PF) as per constraints’ violations as:

F1 = f1 + PF

F2 = f2 + PF

F3 = f3 + PF

vii. Sort out the population using non-dominated sorting.
viii. Apply selection, crossover, and mutation to obtain new solutions.
ix. The generation of size 2NP is formed by the parents and the off springs.
x. Merge the old set of solutions and newly created solutions to create population

of size 2NP.
xi. A new generation of size NP is obtained by elitist sorting.
xii. If IT < ITMAX, put IT = IT+1 and move to step v, otherwise move step xiii.
xiii. Stop. Find out the preferred solution from the Pareto-optimal solutions NP

obtained in step xv.
xiv. Select the decision variables setting as per the preferred solution.

This decision variables setting will offer the minimum values of various objective
functions for a given operating condition of the RDS.

4 Results and Discussion

To demonstrate the efficacy of NSGA-II, RPM problem has been solved in IEEE
33-bus systems integrated with DGs and RPS units optimally at different locations
[11]. Performance of NSGA-II algorithm has been evaluated by applying NSGA-
II [12–15], MODE [9, 6], MODA [17], and MDE algorithm [7] for the MORPM
problem and comparing the results obtained for the three cases of both the radial
distribution systems as:
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Case 1: Minimization of PL and TVV

Case 2: Minimization of PL and TCRPS

Case 3: Minimization of PL, TVV, and TCRPS.

To validate the Pareto-fronts obtained using the developed NSGA-II and other
EC/SI algorithms, a Reference Pareto-optimal front (POF) is generated by converting
the MORPM problem to a SORPM problem and applying any SOO algorithm like
GA, DE, or so on. In this chapter, modified DE algorithm [7] has been applied for
attaining the Reference Pareto-front. The conversion of the MORPM problem into
single-objective RPM problem has been done by the weighted combination of the
normalized objective functions PLN, TVVN, and TCRPSN as given below:

MinimizeW × PLN + (1 − W ) × T VVN in Case1 (15)

MinimizeW × PLN + (1 − W ) × TCRPSN in Case2 (16)

MinimizeW1 × PLN + W2 × TVVN + W3 × TCRPSN in Case3 (17)

whereW,W1,W2, andW3 are weighing factors. The weighing factorW is rand [0,1],
a random number distributed uniformly between 0 and 1. In (17), W1, W2, and W3

are calculated by using 0.33, 0.33 and 0.34 times respectively the random number
between 0 and 1.

MORPM problem is solved to find out the optimal settings of reactive power
outputs of DGs and the shunt RPS units in the RDS. In all the three cases of the radial
distribution system, the upper and lower voltage magnitude limits at all the load or
PQ buses are 1.05 and 0.95 pu, respectively. In addition to the voltage constraints
on load buses, line flow (feeder capacity) constraints are also imposed on MORPM
problem. All the algorithms were implemented in MATLAB R2017a on Core i7 PC
with 2.9 GHz, and 4 GB of RAM.

IEEE 33-bus RDS considered for MORPM problem is penetrated with three dis-
tributed generators of rating 794.8 kW, 1069 kW, and 1029 kW at bus nos. 13, 24
and 30, respectively [11]. In addition, this RDS contains three RPS at bus nos. 8,
18, and 30 [11] as depicted in Fig. 1. Active power loss values without DGs and
without the RPS units are 210.98 and 72.83 kW, while total voltage variations values
are 1.8044 pu and 0.6340 pu, respectively. Decision variables limits, i.e., lower and
upper limits of the reactive power outputs of the DGs and RPS units are shown in
Table 1.

With three DGs and three RPS units in IEEE 33-bus RDS, there are six decision
variables. The proposed MOD algorithm has been applied to find out the best values
of reactive power outputs of the three DGs and those of the reactive powers injected
by the three RPS units integrated into the RDS for the three cases of MORPM. The
best results achieved and provided here are for the population size NP equal to 40,
number of iterations is equal to 500, crossover probability pc = 0.9, and mutation
probability is pm = 0.17.
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Fig. 1 Single-line diagram of IEEE 33-bus RDS [14]

Table 1 Decision variables
limits

Parameter Values (kVAR)

Qmin
DG13/Q

min
DG24/Q

min
DG30 0.0

Qmax
DG13 400

Qmax
DG24/Q

max
DG30 600

Qmin
RPS8/Q

min
RPS18/Q

min
RPS30 0.0

Qmax
RPS8/Q

max
RPS18 450

Qmax
RPS30 600

4.1 Case1: Minimization of PL and TVV

NSGA-II, MODE, MOD, and MDE algorithms have been employed for solving
MORPM problem in IEEE 33-RDS with the objectives of minimizing PL and TVV .
The POFs obtained using theMOO algorithms are compared with the reference POF
obtained using MDE algorithm [7] in Fig. 2. This can be noted from Fig. 2, the POF

Fig. 2 Pareto optimal fronts
for PL and TVV
minimization (Case 1)
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Table 2 Decision variable setting for preferred solution (Case 1)

Decision variables Method

NSGA-II MODE MOD MDE

QDG13 183.6601 196.8164 170.4849 163.6554

QDG24 503.0211 499.2734 480.0627 498.5274

QDG30 454.8102 403.1273 497.3783 501.2134

QRPS8 290.8213 287.6012 294.2970 299.9996

QRPS18 111.0904 101.7925 115.9758 118.1273

QRPS30 525.6614 571.8772 489.7839 479.6386

PL 11.10199 11.0968 11.09589 11.07851

TVV 0.077479 0.078552 0.078894 0.078323

TCRPS 927.5731 961.2709 900.0567 897.7655

obtained using MOD algorithm is closest to the reference POF in comparison to
those obtained using other MOO algorithms.

The preferred solutions as obtained using various algorithms along with TCRPS

are given in Table 2. From Table 2, this is clear that the developed NSGA-II gives
the minimum PL as 11.10,199 kW and minimum TVV as 0.077479 pu which are
close to those obtained in reference POF. It can be noted from Table II, that in case of
MOD algorithm, the total capacity requirement of RPS units is the least. Thus, with
the least total capacity of RPS units, the MOD algorithm provides minimum values
of PL and good voltage profile. This demonstrates the superiority of the developed
MOD algorithm.

4.2 Case 2: Minimization of PL and TCRPS

In this case, various algorithms as mentioned in Case1 were applied for minimiza-
tion of PL and TCRPS. The reference POF and POFs achieved from various MOO
algorithms are compared in Fig. 3. This can be noted in Fig. 3, the POF achieved
using the proposed NSGA-II algorithm is closest to reference POF. The preferred
solutions as obtained from various algorithms are compared in Table 3.

With the optimum setting of decision variables obtained in various MOO tech-
niques, the TVV was calculated and also given in Table 3. From Table 3, it is clearly
observed that NSGA-II algorithm gives the minimum PL as 11.5635 kW and mini-
mum TCRPS as 518.8817 kVAR which are close to those of Reference Pareto. Also,
in case of MOD algorithm, the TVV value is least.
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Fig. 3 Pareto optimal fronts
for PL and TCRPS
minimization (Case 2)
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Table 3 Decision variable setting for preferred solution (Case 2)

Decision variables Method

NSGA-II MODE MODA MDE

QDG13 262.0402 266.2196 259.9947 259.9537

QDG24 519.0511 521.8735 480.2185 539.3594

QDG30 549.3313 546.9307 529.0573 550.0102

QRPS8 119.8303 103.3851 149.3667 100.3041

QRPS18 100.6313 100.2589 100.0100 100.0301

QRPS30 298.4201 308.6711 307.9197 315.7524

PL 11.5635 11.5980 11.5626 11.5393

TCRPS 518.8817 517.3151 519.4815 516.0866

TVV 0.126146 0.128141 0.124384 0.128183

4.3 Case 3: Minimization of PL, TVV, and TCRPS

Three objective functions considered in this case were minimization of PL, TVV,

and TCRPS. With these objective functions, NSGA-II, MODE, MOD, and MDE
algorithms were applied to solve MORPM problem. The POFs attained using these
algorithms are compared in Fig. 4. As can be seen fromFig. 4, the POFobtained using
NSGA-II is very close to reference POF. The preferred solutions using various algo-
rithms are compared in Table 4, which shows that the NSGA-II gives the minimum
values of PL as 11.37487 kW, TVV as 0.087124 pu, and TCRPS as 659.9941 kVAR,
which are close to those of reference Pareto.
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Fig. 4 Pareto optimal fronts for PL, TVV and TCRPS minimization (Case 3)

Table 4 Decision variable setting for preferred solution (Case 3)

Decision variables Method

NSGA-II MODE MODA MDE

QDG13 290.8231 299.2393 279.2644 287.7976

QDG24 526.095 459.8671 364.7793 535.6955

QDG30 546.1467 497.9784 541.5244 549.9988

QRPS8 100.4428 152.1297 132.8907 100.0101

QRPS18 100.0421 103.3977 104.2023 100.0003

QRPS30 459.5092 383.5961 392.8250 358.7841

PL 11.37487 11.50513 11.46121 11.38162

TVV 0.087124 0.100523 0.103244 0.107213

TCRPS 659.9941 639.1235 629.9180 558.7945

5 Conclusion

In this chapter, Non-dominated Sorting Genetic Algorithm-II has been proposed for
solvingMORPMproblem in radial distribution system integrated with DGs and RPS
units. For solving MORPM problem, the multiple objectives considered were active
power loss minimization, voltage profile improvement, and minimization of the total
capacity ofRPSunits.NSGA-II has been successfully employed for solvingMORPM
problem in IEEE 33-bus radial distribution systems penetrated with three DGs and
three RPS units. Performance of NSGA-II is evaluated by comparing the obtained
results with those offered by other MOO algorithms including MOD, MODE, and
MDE algorithms. Comparison of the results clearly establishes the superiority of
NSGA-II in terms of computational efficiency and solution quality and validates its
potential for solving MORPM problem.
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Chapter 9
Short-Term Hydrothermal Scheduling
Using Bio-inspired Computing: A Review

Khushboo Sharma , Hari Mohan Dubey , and Manjaree Pandit

Abstract Short-term hydrothermal scheduling (SHTS) problem comprises of
scheduling together several hydro and thermal generation units such that objectives
such as cost, emission, etc., can be optimized. Normally, the objective of SHTS is to
minimize the fuel cost of the thermal units over a certain time of period while satisfy-
ing different operating constraints associated with thermal and hydro systems. Due
to complex, nonlinear, multimodal and/or discontinuous nature of objective func-
tion, various bio-inspired optimization methods have been proposed to obtain the
optimal dispatch solution for the hydrothermal systems of different dimensions and
complexity levels. This chapter attempts to present a detailed review of the numerous
bio-inspired optimization algorithms employed over the last two decades to solve
the short-term SHT scheduling problem.

Keywords Short-term hydrothermal scheduling · Bio-inspired optimization ·
Operational constraints · Non-convex objective functions

Nomenclature

Fmt Cost of generation of mth thermal plant at ‘t’
Ps
mt Power generation of mth thermal unit at time ‘t’

am, bm, cm, em, fm Fuel cost coefficients of mth unit
Ns Number of thermal power generation units
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Pload(t) Total load demand at time ‘t’
Ps
mt , P

h
nt Power generation of thermal and hydro units at time

‘t’
Ploss(t) Total transmission losses of the system at time ‘t’
C1n,C2n,C3n,C4n,C5n,C6n Coefficients of n hydro unit
Vnth, Qnth Volume and discharge of nth hydro unit at time ‘t’
Ph

(n,min), P
h
(n,max) Min. and max. power generation values of nth hydro

unit
Ps

(m,min), P
s
(m,max) Min. andmax. power generation values ofmth thermal

unit
V h

(m,min), V
h
(m,max) Min. andmax. values of reservoir volumeofmth hydro

plant
Qh

(m,min), Q
h
(m,max) Min. and max. values of water discharge ofmth hydro

plant
V h
m0, V

h
m24 Reservoir volume of mth hydro unit at time zero and

twenty-four
V h

(m,min), V
h
(m,end) Initial and final reservoir volume of mth hydro unit

HP Hydro plants
TP Thermal Plant

1 Introduction

The rising global demand of electrical power leads to the commissioning and con-
struction of large number of power plants with different kinds of generating units.
Their coordinated operation and scheduling poses a challenge before the power sys-
tem operators due to complex characteristics and constraints. The SHTS problem
mainly deals with the scheduling of hydro and thermal generating units to ful-
fill required power demand while satisfying a large number of nonlinear equal-
ity/inequality constraints. The operating cost of the hydro units is understandably
almost negligible; hence, the primary aim of SHTS problem is minimization of fuel
cost of thermal units in such a way that all operating constraints such as maintaining
power and water balance, adherence to generation min-max limits, reservoir stor-
age constraints, etc., are fully satisfied. Furthermore, valve-point loading (VPL) of
thermal units and transmission lossesmakes the SHTS problem non-convex and non-
linear [1, 2]. The SHTS is seeking attention of the researchers from the last several
years. Initially, various classical mathematical methods, namely nonlinear program-
ming (NLP) [3, 4], linear programming (LP) [5], decomposition techniques (DT)
[6, 7], dynamic programming (DP) [8] and Lagrange multiplier (LMP) [9, 10], have
been introduced to obtain a better solution for the SHTS problems. However, conven-
tional optimizationmethods which are usually analytical in nature are unable to solve
complex problems. Hence, SHTS problem has been frequently solved using different
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heuristic and metaheuristic algorithms due to their flexible and versatile characteris-
tics in dealing with non-convex, nonlinear, discontinuous and multimodal problems.
Bio-inspired algorithms are mainly inspired by natural processes, and these may be
classified into four categories. Evolution based, which employs operators such as
reproduction, mutation, recombination and selection which are derived from evolu-
tion in nature. The examples of this class are genetic algorithm (GA) [11], differential
evolution (DE) [12], evolutionary programming (EP) [13], etc. Second category can
be algorithms which employ ecological processes in nature dealing with species
and their distribution. Some of the algorithms based on ecology are cuckoo search
algorithm (CSA) [14], flower pollination algorithm (FPA) [15]. The third class of
algorithms is inspired by the physical processes existing or being followed in nature,
for example gravitational search algorithm (GSA) [16] and lightening search algo-
rithm. The fourth class is swarm intelligence-based algorithms, which are perhaps
the most popular class and include a large number of algorithms which represents the
collective behavior of social insects and animals such as particle swarm optimization
(PSO) [17], artificial bee colony (ABC) [18]. A detailed classification of bio-inspired
algorithms can be found in Ref [19]. Also, optimization methods applied for solving
SHTS problem is given in [20]. This reference includes the brief description about
heuristic and classical methods applied to solve SHTS problems.

In this chapter, the main idea is to present state-of-the art review of bio-inspired
algorithms to solve a SHTS problem. This chapter discusses the formulation of SHTS
problemwith many different complexity constraints like ramp rate limit (RRL), VPL
and prohibited discharge zone (PDZ), transmission losses. Also, the application of
briefly described bio-inspired solution algorithms for SHTS problems of different
dimensions is presented. The chapter organization is as follows: Sect. 2 gives the
formulation of various objectives and constraints of the SHTS problem, and Sect. 3
presents an overview of various bio-inspired algorithms and compiles and tabulates
the application of these algorithms for solving SHTS problems of different levels of
complexities and dimensions.

2 Formulation of SHTS Problem

The idea behind theSHTSproblem is to obtain hydro and thermal generator schedules
such that the load demand is met while all operating limits and equality/inequality
constraints are fulfilled while optimizing the fuel cost of thermal units.

2.1 Objective Function

The objective function given below by (1) [21–30] is a quadratic equation which
represents the total fuel cost of thermal units at a given time ‘t’:
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Fmt
(
Ps
mt

) = am
(
Ps
mt

)2 + bm P
s
mt + cm (1)

The actual fuel cost function is obtainedwhen theVPLeffect of thermal generating
units is included by introducing a sinusoidal term in the function as given by [23–37]:

Fmt
(
Ps
mt

) = am
(
Ps
mt

)2 + bm P
s
mt + cm + ∣∣em sin

(
fm

(
Ps
m,min − Ps

mt

))∣∣ (2)

For the dynamic scheduling, the fuel cost to be minimized is computed over a
time period T consisting of small intervals of time ‘t’ as [26, 27, 30, 38]:

Fmt
(
Ps
mt

) =
24∑

t=1

Ns∑

m=1

{
am

(
Ps
mt

)2 + bm P
s
mt + cm + ∣∣em sin

(
fm

(
Ps
m,min − Ps

mt

))∣∣
}

(3)

2.2 Operational Constraints

There are following constraints and limits of thermal and hydro generating units
which must be satisfied while the objective functions are minimized.

Power Balance: The power balance equality constraint [21, 23–31, 33–36, 38–42]
states that the total power generated by hydro and thermal plants must be equal to
the demand and transmission losses at each time given as:

Pload(t) =
Ns∑

m=1

Ps
mt +

Nh∑

n=1

Ph
nt − Ploss(t) (4)

The transmission losses in the system are expressed by using B-coefficients as
[24–28, 34, 36]:

Ploss(t) =
Ns+Nh∑

u=1

Ns+Nh∑

v=1

Put BuvPvt +
Ns+Nh∑

u=1

B0u P
h
ut − B00 (5)

The hydro power output is found by using a quadratic equation of reservoir volume
and water discharge [21–46]:

Ph
nt = C1n

(
V h
nt

)2 + C2n
(
Qh

nt

)2 + C3n
(
V h
nt Q

h
nt

) + C4n
(
V h
nt

) + C5n
(
Qh

nt

) + C6n (6)

Power Generation Limitations: The generation limits of hydro and thermal units
are expressed by [21–38, 40–43, 46]:
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Ph
n,min ≤ Ph

nt ≤ Ph
n,max; n = 1, 2, . . . , Nh

Ps
m,min ≤ Ps

mt ≤ Ps
m,max; m = 1, 2, . . . , Ns (7)

Reservoir Storage Volume [21, 24–36, 38–46].

V h
n,min ≤ V h

nt ≤ V h
n,max; n = 1, 2, . . . , Nh (8)

Water Discharge Limitation [23, 25, 28, 31, 34, 46]:

Qh
m,min ≤ Qh

mt ≤ Qh(L ,1)
m

Qh(U,n−1)
n ≤ Qh

nt ≤ Qh(L ,n)
n ; n = 1, 2, . . . , Nh

Qh(U,n)
n ≤ Qh

nt ≤ Qh
n,max (9)

Water Balance [22, 23, 25–29, 31–36, 38, 39, 42]:

V h
nt = V h

n(t−1) + I hnt − Qh
nt − Shnt +

∑

n∈Rn
up

(
Qh

n(t−τn)
+ Shn(t−τn)

)
(10)

The reservoir volume at initial and final level is represented as [22, 24–29, 31, 33,
35, 37, 39–42, 44–46]:

V h
n0 = V h

n,min

V h
n24 = V h

n,end (11)

3 Bio-Inspired Algorithm and Their Application

3.1 Genetic Algorithm (GA)

This is a population-based evolutionary algorithm which was proposed in 1989 [11]
by Goldberg. This search technique employs operators like inheritance, mutation,
selection, crossover, elitism tomodel the biological evolution process. This algorithm
mainly deals with the genes which combine and make strings of chromosomes.
The population of GA is generated by the chromosomes. The genes present in the
chromosomes give all the required information related to the encoding which is done
for the input variables of the problem depending on level of accuracy desired. The
GAworks on the principal of ‘survival of the fittest.’ The idea is to carry themembers
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of the population which have a better fitness to the next generation while the ones
with lower fitness are dropped from the mating pool.

To solve SHTS problems, GA uses the following steps: (i) initialization of popu-
lation, (ii) compute the fitness function, (iii) selection operation, (iv) crossover and
mutation. GA modeling framework and solution technique for SHTS is employed in
[39]. GA is also used to solve the convex SHTS problems [21]. RCGA-AFSA [31]
is a hybrid of real-coded GA and artificial fish swarm algorithm which combines the
global search capability of RCGA and local search capability of AFSA to speed up
convergence and improve the search ability (Table 1).

3.2 Particle Swarm Optimization (PSO)

The PSO is the most popular and widely used swarm intelligence-based algorithm
proposed by Kennedy and Eberhart in 1995 [17] applied for solving complex prac-
tical problems across all engineering domains. PSO gets inspiration from the group
foraging behavior of swarm of birds. In order to find best solution, particles fly ran-
domly in search space. These particles then update positions following their own
experience and neighbor’s experience; in this manner, best solution can be found.
PSO is a stochastic method, and it is very useful for the solution of continuous prob-
lems. It has been applied over a wide range of real-world problems. Implementation
of PSO is simple, and it is insensitive in case of design variables scaling.

It has three selection parameters: (i) size of population (ii) constriction factor and
(iii) acceleration factors.

PSO methods were employed for solution of SHTS problem in [22, 32] to pro-
vide near-optimal solutions with high efficiency and consistency. An improved PSO
(IPSO) algorithm [43, 44] and modified adaptive PSO (MAPSO) [23] are also pro-
posed for solving SHTS problem. IPSOmakes convergence speed faster by reducing
search space margin. TheMAPSO [23] algorithmwas found to handle discontinuous
and non-convex problems efficiently.

The SHTS problem has also been solved by a modified version of dynamic neigh-
borhood learning-based PSO (MDNLPSO) [24] which provided global search and
exploration. Couple-based PSO (CPSO) for SHTS is employed in [25]; CPSO aims
at overcoming the premature convergence problems.

3.3 Differential Evolution (DE)

The DE proposed by Storn and Price in 1997 [12] is the second most popular evolu-
tionary algorithm which employs mutation of the initial randomly generated popu-
lation to produce a mutant vector. There are five mutation strategies proposed which
modify the target vector/best individual by adding vector difference of two random
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individuals. The mutation factor controls the magnitude of mutation. After initial-
ization and mutation, the population undergoes crossover of randomly chosen indi-
viduals based on a crossover factor to generate the trial vector. A greedy selection
between target and trial vector is carried out to select the population pool for the
next generation. In DE, the mutation takes place by adding weights to the vectors. It
has three user-controlled parameters: (i) size of population, (ii) control parameter of
crossover and(iii) amplification factor of difference vector.

DE carried out parameter study of hydrothermal system [33]; an improved DE
for solving SHTS problems is introduced [34], to minimize the objective function.
Also, to make DE more effective to solve SHTS problems with non-convex fuel
function, it is hybridized with sequential quadratic programming (DE-SQP) [35]. In
addition, a modified hybrid differential evolution with cascaded reservoirs (MHDE)
is employed [40, 41], such that it does not need the penalty function and obtain
optimal solution.

3.4 Evolutionary Programming (EP)

Evolutionary programming (EP) [13] is inspired by the evolution pattern of biological
systems; many novel simulated evolutionary algorithms for the optimization have
been developed rapidly in recent years. It has five selection parameters: (i) size of
population (ii) rate of mutation (iii) rate of crossover (iv) size of tournament and (v)
strategy parameter.

Evolutionary programming algorithm not only has a high convergence rate but
also preserves the diversity of the population so as to get away from local optima. For
the optimization of functions, evolutionary programming follows the following steps:
(i) initialization, (ii) mutation operation, (iii) selection operation and (iv) determine
whether termination condition is satisfied or not.

QEA is an evolutionary algorithm which is probabilistic and is based upon the
quantum calculus so that the search becomes better and robust. Clonal real-coded
QEA (CRQEA) having Cauchy mutation for SHTS is introduced in [26]. Real-
coded rule in CRQEA is used for global optimization. In CRQEA, early convergence
is avoided by clonal operator and Cauchy mutation. Therefore, CRQEA provides
an effective approach to solve problem. SHTS using differential real-coded QEA
(DRQEA) is introduced in [27].

A fast evolutionary programming technique for SHTS is introduced in [45]; it
solves the problem with high convergence speed.

3.5 Artificial Bee Colony (ABC) Algorithm

The ABC is a swarm intelligence-based optimization technique proposed by
Karaboga in 2005 [18] which is inspired by the way honeybees search for nectar. It
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has three selection parameters; (i) size of swarm (ii) number of onlooker, employed
and scout bees and (iii) limit.

ABC is found to be more effective to solve complex engineering problems. Also,
it has high convergence capability. There are three phases in this algorithm: the
employed bee phase, where exploration is carried out, followed by the onlooker bee
phase where the solutions found by employed bees are exploited, and the third phase
is the scout bee phase in which new solutions replace the older ones which are not
found to be stagnant for a predefined number of generations. Employed bees search
the food sources, after that the employed bees circulate information about location
of food sources with the onlookers, and finally the onlookers select the promising
food sources by utilizing the information collected by employed bees.

In this manner, the better food sources move to the next generation through the
employed/onlooker bee mechanism. A few employed bees are translated in to scouts
that discard the available sources of food and then find out new sources of food. In
this algorithm, there is two halves of the swarm in which employed bees come under
first half and onlooker bees comes under second half. Employed bees are same in
number as that of onlooker bees which further equals to number of food sources.

An ABC is employed in [36] to solve SHTS problem. Also, an adaptive chaotic
ABC algorithm (ACABC) is employed in [28].Moreover, chaotic searching behavior
of bees is introduced for the avoidance of local optimum solution, whereas adaptive
mechanism is used to avoid premature convergence of ABC in SHTS problem.

3.6 Gravitational Search Algorithm (GSA)

The GSA [16] is a bio-inspired technique which is based on law of gravity and
mass interactions existing in nature. In GSA, natural objects represent optimization
solutions and the mass of the objects represents the fitness of the solutions or their
performance; i.e., the objects with heavy mass lead to good solutions and the objects
with lower masses lead to the generation of poor solutions. According to the law of
gravitational force, all the objects attract the other objects which lead to the global
attraction of objects toward the object with heavier mass. It has four selection param-
eters: (i) size of population (ii) gravitational constant (iii) specified constant and (iv)
threshold value constant. GSA performance is superior to solve nonlinear functions.
GSA method uses the following steps to solve SHTS problems: (i) initialization,
(ii) evaluation of fitness of agents, (iii) calculation of gravitational constant, (iv)
update gravitational mass and inertial mass, (v) total force calculation (vi) velocity
and acceleration calculation, (vii) update agents’ positions, (viii) check solution’s
feasibility.

SHTS problem were solved using GSA in [46]. A hybridized GSA was intro-
duced in [37] to solve SHTS problems, which includes certain equality, inequality
constraints.
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3.7 Cuckoo Search Algorithm (CSA)

The CSA is a bio-inspired optimization technique proposed by Yang and De in 2009
[14]. This algorithm is based on the parasitism behavior of the cuckoo birds which
follow the practice (obligate brood parasitism) of putting their eggs in the nests of
other birds for hatching. When used for solving optimization problem, each nest
represents one solution. This algorithm has two user-defined tuning parameters: (i)
size of population (ii) probability. The search process of CSA follows three well-
defined rules which are: (i) at any one time, each cuckoo lays randomly selects one
nest and lays one egg, (ii) the nest with better quality moves on to the next generation;
the quality of the nest (solution) is defined by the quality of eggs and (iii) the cuckoo
egg has a probability of being present in the host nests which are available. There
are fixed number of host nests, and the host bird either builds a new nest or throws
the alien cuckoo egg out of the nest to start a fresh.

The CSA has been proposed for solving the SHTS problem with cascaded
hydropower plants [42] and has proved efficient by employing different probability
distributions for generating new solutions.

3.8 Teaching-Learning-Based Optimization (TLBO)

The TLBO algorithm proposed by R. V. Rao et al. in 2011 [47] is a unique optimiza-
tion technique based on the teaching–learning processes. It has no control parameters.
The learners represent the population, and the algorithm works on how the influence
and strength of teacher works to improve the quality of learners which is decided by
their grades. There are two phases in this algorithm; the teacher phase in which the
teachers transfers his knowledge to learners by sharing notes, etc., and the learner
phase in which the best learner assumes the role of a teacher and is permitted to share
his knowledge with other learners.

In TLBO, learners represent size of population, and distinct subjects are taken
as design variables for optimization. Fitness of solution is reflected by the learner’s
results; fittest solution is identified as a teacher. Parameters which are used to solve
the objective function are design variables, and best obtained solution is considered
as the objective function’s best value in the optimization problem.

The SHTS problem is attempted using TLBO in [29], and an effective methodol-
ogy for SHTS using improved TLBO algorithm (ITLBO) is employed in [30]. The
comparison of performance of TLBO and ITLBO has been carried out with other
algorithms, and the effectiveness of TLBO-based methods has been depicted [30].
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3.9 Flower Pollination Algorithm (FPA)

The FPA is a nature-inspired optimization algorithmwhich is based on the pollination
process of flowering plants in nature. This algorithm is proposed by Xin-She-Yang in
2012 [15]. There are two control parameters: (i) size of population and (ii) switching
probability. The reproduction in flowers is done by the pollination process through
the transfer of pollen by the pollinators such as insects, birds, bats and other animals.
The pollination process can be biotic or abiotic. Most of the pollination processes
are biotic which involves pollination through insects and animals. The other kind of
pollination is abiotic which does not need pollinator. Wind, diffusion and grass lead
to the pollination process in this case.

Pollination can also be classified as cross-pollination and self-pollination. In case
of cross-pollination, the pollens from the flowers of different plants are involved.
These plants may be far away from each other; hence, this leads to the global explo-
ration. In case of self-pollination, the pollens involved either come from the same
flower or from the different flowers of same plant.

Improved FPA for SHTS (IFPA) is employed in [38]; in IFPA, a scaling factor
is introduced to control the pollination process. In the improved FPA, the solution
quality is improved by introducing an intensive exploitation phase. IFPAconvergence
characteristics are good when compared with other algorithms.

4 Conclusion

The chapter attempts to present a review of the bio-inspired algorithms used for solv-
ing the SHTS problem. The objective function of SHTS problems is non-convex, dis-
continuous and multimodal in nature. Moreover, the equality/inequality constraints
involved are complex, with time dependant binding limits on variables.

Various bio-inspired optimization approaches have been applied for the solution
of SHTS problem with different complexity levels. This chapter critically reviews
different bio-inspired optimization, and their basic principle and advantage were
discussed.

It is clearly observed that from table listed above, a large number of research
work related to DE and PSO has been done. However, nowadays, other bio-inspired
algorithms are also gaining popularity due to less number of control parameters and
due to their global search capability.

In this review chapter, various bio-inspired algorithms are compared in various
respects such as RRL, VPL, PDZ, transmission losses.

The chapter presents the formulation of the SHTS problems and classifies the
reviewed literature on the basis of (i) the applied bio-inspired algorithm, (ii) level of
complexity decided by the nature of objective function (convex/non-convex, continu-
ous/discontinuous, with/without VPL, PDZ, etc., (iii) constraints mapped (inclusion
of ramp rate limits, transmission losses, etc) and (iv) problem dimension given by
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the number of hydro and thermal power units. The review is expected to be useful to
scholars and researchers interested in carrying out further research and investigations
in this area.
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