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Abstract Photoacoustic imaging is a rapidly growing imaging technique which
combines the best of optical and ultrasound imaging. For the clinical translation
of photoacoustic imaging, a lot of steps are being taken and different parameters
are being continuously improved. Improvement in image reconstruction, denoising
and improvement of resolution are important especially for photoacoustic images
obtained from low energy lasers like pulsed laser diodes and light emitting diodes.
Machine learning and artificial intelligence can help in the process significantly.
Particularly deep learning based models using convolutional neural networks can
aid in the image improvement in a very short duration. In this chapter we will be
discussing the basics of neural networks and how they can be used for improving
photoacoustic imaging.Wewill also discuss few examples of deep learning networks
put to use for image reconstruction, image denoising, and improving image resolution
in photoacoustic imaging. We will also discuss further the possibilities with deep
learning in the photoacoustic imaging arena.

1 Introduction

1.1 Photoacoustic Imaging

Photoacoustic (PA) imaging is a hybrid imaging technique which has gained impor-
tance in the last several years [1–4]. It is based on the photoacoustic effect discovered
by Alexander Graham Bell in 1881 [5]. He observed that light energy absorbed by a
material results in an acoustic signal. He demonstrated this with an apparatus called
photophone which he designed. Almost after a century, it started gaining importance
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as we discovered that it can be used for the purpose of imaging. The major advantage
of photoacoustic imaging is that it combines the best features of two different imaging
modalities: the contrast of optical imaging and the resolution of ultrasound imaging
[1, 6]. Photoacoustic imaging is based on the principle that when a pulsed laser light
(pulse width in the range of nanoseconds) falls on a sample, if the sample absorbs the
light at the particular wavelength then it undergoes a small increase in temperature
in the order of milli kelvin (mK). Following the heating, there occurs thermoelastic
expansion of the sample, which leads to the generation of the pressure waves. The
pressure waves can be detected as photoacoustic waves by ultrasound transducers.
The sound waves captured by the transducers are then reconstructed to form images
known as photoacoustic images [7, 8]. Contrast agents are very important for pho-
toacoustic imaging because when a sample is irradiated with a particular wavelength
of light, only if the contrast agent absorbs light at that wavelength, detectable pho-
toacoustic waves will be emitted from the sample [9–11]. The imaging wavelength is
usually in the visible and the near-infra red (NIR) region of the optical spectrum, very
recently the second NIR window is being explored for PA imaging [12]. Therefore,
availability of contrast agents in thesewavelength regions is very critical for PA imag-
ing. Fortunately, there are some intrinsic contrast agents like blood (hemoglobin),
melanin, lipids, etc. present in the human body which provides great contrast in the
visible and near infrared spectrum [13–16]. However, the contrast from these are only
sufficient and suitable for imaging certain body parts and for certain applications.
Therefore, for imaging other organs and for different applications, the use of extrin-
sic contrast agents becomes inevitable. Some of the most commonly used extrinsic
contrast agents are organic dyes, inorganic dyes, nanoparticles, nanomaterials, etc.
Constant research is being done to develop highly efficient photoacoustic contrast
agents [17–25]. Different forms of photoacoustic imaging are available like pho-
toacoustic microscopy, tomography, endoscopy etc. [16, 26–32]. The applications
of photoacoustic imaging ranges from cellular level imaging to systems imaging.
Photoacoustic imaging can be used for obtaining both structural and functional data
from the sample. Some of the most explored applications of photoacoustic imaging
includes sentinel lymph node imaging, brain imaging, blood vasculature imaging,
tumor imaging and monitoring, oxygen saturation monitoring etc. [33–44].

The PA wave equation is given by

(∇2 − v−2
s ∂2/∂t2)p(�r, t) = −(β/CP)∂H (�r, t)/∂t

Here vs refers to acoustic speed, p(�r, t) refers to the acoustic pressure at location
r and time t, β refers to the thermal expansion coefficient, CP refers to the specific
heat constant at constant pressure, and H denotes the heating function which can be
described as the thermal energy converted per unit volume and per unit time. The left-
hand side of this equation describes the wave propagation, whereas the right-hand
side represents the source term.

Traditionally, large and bulkyNd:YAGor dye based lasers are used as illumination
source for photoacoustic imaging. They often need an optical table for housing them
and are non-portable. Even the smallest misalignment will alter the results greatly
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[45]. Very recently portable, mobile Nd:YAG laser with optical parametric oscillator
for tuning different wavelengths has been commercially available from opotek [37].
The biggest advantage of using these lasers is the high laser energy, which in turn
translates to higher penetration and high-resolution images. The catch with this laser
is that it is very difficult to combine the light to the ultrasound transducer, which
makes the clinical use of these lasers very limited. However, in recent times compact,
lightweight lasers are starting to be used for imaging like the pulsed laser diode (PLD)
and the light emitting diodes (LED) [46, 47]. The pulsed laser diode is very small
often palm size, and very light weight which makes it easily portable to use. It can
also be integrated with the ultrasound transducer much easily than the OPO laser.
The frequency of these lasers is very high therefore, they can provide large number
of frames in a short period of time. The problem with this laser is that the pulse
energy is very low and will often need averaging over multiple frames to obtain a
high-resolution image. LEDs are similar to the PLDs but with lesser energy. The
frequency of the LEDs is also very high. Multiple LEDs are placed in an array to
generate light for imaging. But, even with an array of LEDs the pulse energy of
the system is very low [48, 49]. The system requires a lot of averaging to obtain an
acceptable photoacoustic image. One major disadvantage with these systems is that
they are usually singlewavelength and cannot be tuned. Therefore, cannot be used for
spectroscopic studies like the Nd:YAG laser. However, in the last few years, multiple
commercial systems have been developed for real-time photoacoustic imaging using
different types of lasers like the Nd:YAG, PLD, LEDs etc. Ongoing research is being
done on how to improve the resolution of images from the low energy laser sources
like PLD, LEDs etc.

1.2 Photoacoustic Image Acquisition and Reconstruction

Asmuch as the light plays a crucial role in photoacoustic imaging, equally important
are the ultrasound transducers. The signal form the sample can be acquired using
ultrasound transducer [50, 51]. There are many ways in which an ultrasound trans-
ducer is used for photoacoustic imaging, a single element transducer can be used for
signal acquisition or a raster scan be performed to obtain a 2D or 3-D image or it can
be rotated around the sample to obtain a cross-sectional image. However, it can be
very time consuming to scan a big area. In order to complete scanning in a very short
time multiple transducers can be combined to make an array of transducers to obtain
images [33, 52, 53]. When using commercial systems, linear array, concave array
and convex array-based transducers are also available for data acquisition. These
transducers are supported by the data acquisition cards (DAQ) for image acquisition.
Once the data is acquired using the ultrasound transducers, it goes through the recon-
struction process to form the final image. Different types of reconstruction methods,
such as filtered back-projection, Fourier transform, alternative algorithm, time rever-
sal, inversion of the linear Radon transform, and delay and sum beamforming, have
been developed under different assumptions and approximation for ultrasound and
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photoacoustic imaging [54–59]. The issue with these image reconstruction methods
is that these methods assumes that the wave propagation is through a homogenous
media, but in reality, that is often not the case. Another issue with using these image
reconstruction methodologies is that these methods often generates artifacts like
reflection artifact, etc. and cannot remove these artifacts. Post-processing of images
is often used to remove some of the artifacts from the reconstructed images. How-
ever, the existing reconstruction and post-processing techniques are not sufficient
to improve the quality of the images. There is a great need to improve the imaging
resolution, reduce noise and remove artifacts of the photoacoustic images for clinical
translation. Continuous research is required and being done on how to improve the
image resolution from the perspective of reconstruction and post-processing.

Among the various image reconstruction methods, the delay-and-sum beamform-
ing method is the most widely used algorithm for the reconstruction of both PA and
US images. This algorithm works by summing the corresponding US signals while
adjusting their time delays in accordance to the distance between the detectors and
the sample. However, it has few drawbacks like low resolution, low contrast, and
strong side lobes which results in artifact generation. Matrone et al. proposed a mod-
ification to the DAS algorithm leading to a novel beamforming algorithm, called the
delay-multiply-and-sum (DMAS) beamformer, in order to help in overcoming the
limitations of DAS in ultrasound imaging. The DMAS provides the high contrast and
enhanced image quality, it also helps in obtaining narrow main lobes, and weaker
side lobes in comparison to DAS. Owing to these advantages, several researchers
extended the ultrasound DMAS algorithm to PA imaging also. Park et al. introduced
a DMAS-based synthetic aperture focusing technique to PA microscopy. Alshaya
et al. demonstrated the DMAS based PA imaging can be useful when using a lin-
ear array transducer also and additionally they introduced a subgroup of DMAS
method to improve the signal to noise ratio (SNR) and the speed of image process-
ing. To improve the quality of the image obtained from DMAS algorithm even more,
Mozaffarzadeh et al. proposed using a double-stage DMAS operation, a minimum
variance beamforming algorithm, or modified coherence factor [60–62]. In spite of
all these advances, it has been difficult to use DMAS for image reconstruction clini-
cally because of the heavy computation complexity involved in the incorporation of
this algorithm to a clinical PA imaging system.

Another commonly used reconstruction technique for photoacoustic imaging is
the back-projection (BP) method. This reconstruction technique and its derivatives
like the filtered back projection (FBP) are one of the major reconstruction algo-
rithms used for the photoacoustic computed tomography (PACT) specifically. This
algorithm makes use of fact that the pressure propagating from an acoustic source
reach the detectors at different time delays, which depends on a myriad of factors
like the speed of sound, the distance between the source and the detectors, etc. The
BP algorithm requires large number of signals collected from various view angles
as its input. These signals can be collected by a single transducer or use an array of
transducers rotating around the sample. Both the methods have their own pros and
cons. This is a faster reconstruction technique, back-projection (BP) algorithms are
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capable of producing good images for common geometries (planar, spherical, cylin-
drical) in simulations and is also applied widely for volumetric image reconstruction
in PA imaging. Constant development of BP algorithms leads to improved image
quality, which has improved the possibilities with PA imaging and the capabilities of
PA imaging in the various biomedical applications. The formulas of back projection
techniques are implemented either in the spatio-temporal domain or in the Fourier
domain. The BP algorithms are constantly modified to improve the applications and
the image quality, one of the modifications is based on a closed-form inversion for-
mula. This modified algorithm was very successful in detection of the position and
shape of absorbing objects in turbid media.

Although filtered back-projection (FBP) reconstruction techniques has proven its
use in solving for time-dependent partial differential equations through Fourier spec-
tral methods, there are still many critical problems that needs addressing to further
improve the quality of FBP-reconstructed images [63, 64]. One of the shortcomings
of the conventional back-projection algorithm is that they are not exact in experimen-
tal setting and may lead to the generation of substantial artifacts in the reconstructed
image, such as the accentuation of fast variations in the image, which is accompanied
by negative optical-absorption values that otherwise have no physical interpretation
[59, 65]. The presence of the artifacts has not restricted the use of BP algorithms for
structural PA imaging, they do affect the quantification capacity, the image fidelity,
and the accurate use of themethod for functional andmolecular imaging applications.

Time reversal is another reconstruction method used in photoacoustic imaging. In
the typical time reversal imaging reconstruction method, the recorded pressure time
series are enforced in time reversed order as a Dirichlet boundary condition as the
position of detectors on the measurement surface [66–69]. If the array of detectors
is placed sparsely to collect the measurement rather instead of a continuous surface,
the time reversed boundary condition will be discontinuous. This can cause severe
blurring in the reconstructed images. To solve the problem, Treeby et al., improved
time reversal image reconstruction technique with the usage of interpolated sensor
data. In the course, the interaction can be avoided by interpolating the recorded data
onto a continuous rather than discretemeasurement surfacewithin the space grid used
for the reconstruction. The edges of the reconstructed image are considerably sharper,
and the magnitude has also been improved. After that, they used the enforced time
reversal boundary condition to trap artifacts in the final image, and by truncating the
data, or introducing an adaptive threshold boundary condition, this artifact trapping
can be mitigated to some extent.

1.3 Types of Artifact

Artifacts are one of the major problems in photoacoustic imaging. The presence of
artifacts limits the application of photoacoustic imaging from a clinical perspective
and hampers the clinical translation of the imaging modality greatly. Reflection arti-
fact is one of the most commonly observed artifacts in photoacoustic imaging [67,
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70, 71]. These reflections are not considered by traditional beamformers which use
a time-of-flight measurement to create images. Therefore, reflections appear as sig-
nals that are mapped to incorrect locations in the beamformed image. The acoustic
environment can also additionally introduce inconsistencies, like the speed of sound,
density, or attenuation variations, which makes the propagation of acoustic wave
very difficult to model. The reflection artifacts can become very confusing for clini-
cians during diagnosis and treatment monitoring using PA imaging. Until these are
corrected the possibility of clinical translation is very slim.

In order to minimize the effect of artifacts in photoacoustic imaging different
signal processing approaches have been implemented to enhance signal and image
quality. These signal processing techniques use singular value decomposition and
short-lag spatial coherence. But these techniques are not so efficient in the removal of
intense acoustic reflection artifacts.A technique called photoacoustic-guided focused
ultrasound (PAFUSion) was developed which differs from other traditional photoa-
coustic artifact reduction methodologies as it uses ultrasound to mimic wavefields
produced by photoacoustic sources in order to identify reflection artifacts for removal
[72, 73]. A slight modification of this approach was developed which uses plane
waves instead of focused waves, but the implementation was very similar. Both of
these methods make the assumption that acoustic reception pathways are identical,
which may not always be true. When performing simultaneous ultrasound and pho-
toacoustic imaging in real-time it is not always possible to have an exact overlay of
the image because of the motion induced artifact caused by the moving organs inside
the body especially organs like heart, abdominal cavity, blood vessels etc. Certain
reconstruction methods have been proposed to overcome these types of artifacts,
but the problem is they don’t account for the inter patient variability and sometimes
variability in the same patient when imaging different body parts (Fig. 1).

1.4 LED Based Photoacoustic Imaging

LED based photoacoustic system can play a very important role in the clinical trans-
lation of photoacoustic imaging. LEDs are less expensive compared to the traditional
lasers for photoacoustic imaging, they are very compact, and capable of imaging in
multiwavelength (e.g., 750, 810, 930, and 980 nm) [47–49]. The energy output from
the LED arrays is much lesser than the energy from powerful class-IV lasers, there-
fore these can be used for clinical applications easily. But they have very low energy
and usually produce low resolution images and are noisier. They also have higher
laser pulse width, which limits the spatial resolution of the images. In order to obtain
better images, signal averaging in the order of 1000s is required to obtain one image,
which increases the image acquisition time. But, in spite of all the shortcomings
LED based photoacoustic imaging has gained a lot of momentum with different
types of applications that are possible with the system [47–49, 75–77]. The LED
based photoacoustic imaging system from Cyberdyne INC (Tsukuba, Japan) can be
operated at multiple wavelengths in the visible and the near infrared region. It has a
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Fig. 1 Images of errors of different image reconstruction methods using a simple numerical phan-
tom consisting of tubes. a, b Images of the numerical phantoms. e Illustration of the sub-sampling
pattern. c, d Slice view of full and sub-sampled data respectively. f–k Slice views through the
reconstructions of the tube phantom by different methods and for full or sub-sampled data. f, i non
negative least squares (NNLS) of full data at different iterations. g, j NNLS of sub-sampled data at
different iterations. h, k total variation (TV) of sub-sampled data at different iterations. Reprinted
with permission from Ref. [74]

linear array transducer for image acquisition and a 128-channel data acquisition card.
The system comes with inbuilt image reconstruction algorithms based on delay and
sum model, the image further undergoes post-processing through various filters [48,
77–79]. Figure 2 shows the schematic and the photograph of the LED-photoacoustic
imaging system (PLED-PA). It has been demonstrated using this system that it can be
used for applications like blood vessel imaging, diagnosis of inflammatory arthritis,
detection of head and neck cancer, etc. It has also been used for functional imaging
of blood oxygen saturation.

With the current reconstruction techniques and post-processing methodologies in
photoacoustic imaging it is really difficult to generate artifact and noise free images
in shorter time, with lesser averaging andminimal post-processing. This is especially
more relevant to the low energy laser sources like the PLD, LED etc. [80, 81]. In
order to improve the image reconstruction and reduce noise in the images in a shorter
duration, artificial intelligence can be made use of, specifically deep learning using
convolution neural networks could be very useful for this purpose. In the rest of
the chapter we will focus on how to make use of deep learning for photoacoustic
imaging.
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Fig. 2 LED photoacoustic imaging system. A Schematic representation of the PA system using
LED array light source. B Photograph of PLED-PA probe associated with motorized stage. C
Whole imaging setup. D PLED-PA probe with imaging plane and illumination source are shown
schematically. LED array design is also shown in the inset—there were alternating rows of LEDs
with different wavelengths. Reprinted with permission from Ref. [47]

2 Machine Learning and Artificial Intelligence

In the year 1950, Alan Turing proposed a ‘Learning Machine’ that could learn
and become artificially intelligent. Research in neurology had shown that synapses
worked like a network firing electric impulses, based on this idea, the construction of
an electronic brain was suggested. Marvin Minsky and Dean Edmonds build the first
neural network machine in the year 1951, it was called the Stochastic Neural Ana-
log Reinforcement Calculator (SNARC) [82]. Starting from the 80s the golden age
of machine learning began, in that period many ground-breaking discoveries were
made but due to non-availability of the infrastructure for higher computing power
and speed, further developments were hindered. In the year of 1981, the government
of Japan funded a project with the goal to develop machines which could carry on
conversations, translate languages, interpret pictures and reason like human beings,
some of which are not realized even today. In 1997 IBMs computer ‘Deep Blue’ bet
the world chess champion, Garry Kasparov and in 2005 a robot from Stanford was
able to drive autonomously for 131 miles. There are countless other examples of the
success of deep learning approaches in numerous fields [83–88].

Artificial intelligence (AI) is a technology that aims to make machines which tries
to mimic human brain and the field has grown exponentially in the last few years and
continues to impact the world significantly. The applications of artificial intelligence
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and machine learning are plenty, almost across all fields with a profound impact on
improvement of human lives. Machine learning (ML) and deep learning (DL) has
played a very significant role in the improvement of healthcare industry at different
levels, right from diagnosis to patient monitoring. It is widely used in the areas of
image processing, image analysis, diagnostics, treatment planning and follow-up,
thus benefitting a large number of patients. It also helps the clinicians by reducing
their workload and helps in making quicker decisions in many cases. Its impact on
image processing and analysis especially are noteworthy.

Machine learning is a subset of AI which relies on pattern recognition and data
analytics. In ML it is tested to identify if a computer can learn on its own from
data without being programmed to perform different tasks. The iterative aspect of
machine learning is critical because as models are exposed to new data, they are able
to independently adapt. The system learns effectively from previous computations
to make predictions and decisions.

2.1 Neural Networks

Artificial intelligence and machine learning are not complete without mentioning
neural networks (NN). Neural networks are a set of algorithms, modeled inspired
and based on human neural system, which are designed to recognize patterns [84,
89–91]. They interpret sensory data through a kind of machine perception, labeling
or clustering raw input. Neural networks are capable of recognizing patterns from
various input formats such as images, sound, text, etc. The information from the
different types of inputs are translated into numerical values that can be understood
by themachine. Some of the key areas inwhich neural networks help are in clustering
and classification [88, 92–94].Whengroupof unlabeleddata is presented to the neural
networks, they are capable of grouping them according to the similarities between
them.When the neural network is presentedwith a group of labelled data for training,
they can classify data effectively. Neural networks are capable of extracting features
which are then provided to the clustering and classification algorithms.

Deep learning is a subset of machine learning and is a rapidly growing field
of research that targets to significantly enhance the performance of many pattern
recognition and machine learning applications. Deep learning makes use of neural
network designs for representing the nonlinear input to output map together with
optimization procedures for adjusting the weights of the network during the training
phase. In the last few years, deep learning-based algorithms were developed for
achieving highly accurate reconstruction of tomography images.



212 K. Sivasubramanian and L. Xing

2.2 Convolution Neural Network

The convolutional neural network (CNN), is a special neural network model that is
designed to predominantly work with two-dimensional image data. Among neural
networks, CNNs are primarily used for image recognition, images classification,
Objects detections, recognition faces etc. [88, 93, 95, 96]. As the name suggests CNN
derives its name from the convolutional layer and as it suggests this layer performs
the “convolution” operation. In CNN, convolution is classified as a linear operation
which involves the moving one or more convolution filters (with a set of assigned
weights) across the input image [89, 97, 98]. Each of the weight from the convolution
layer gets multiplied with the input data from the image on which it is scanned to
yield a matrix that is smaller than the input image. The convolution filter is always
chosen to be smaller than the input image data and element-wise multiplication
followed by summation (dot product) is carried on between the convolution filter
and the filter-sized patch of the input. The CNN always uses a filter smaller than the
input image because, this filter can be used multiple times on the input data, and it
can be moved across the entire input image at different times also. This can happen
with data overlap or without overlap (top to bottom and left to right). Each of the
convolution filter is designed in such a manner that they can detect a specific type of
feature from the input image. As the filter ismoved across the image it starts detecting
the specific feature it is supposed to [89, 99, 100]. For more efficient and high-quality
feature extraction, the filter can be passed through the input image multiple times.
The result that is obtained after the filter performs the function of feature extraction
is called the feature map, which is a two-dimensional array of the filtered input. Once
the feature map is generated, it is passed through a nonlinearity like ReLU. Many
numbers of convolution filters can be used on the same input image to extract and
identify different types of featuremaps. Themore the featuremaps for a given image,
more accurate is the performance of the neural networks.

All CNN consists of at least three different types of layers, an input layer, an
output layer and several hidden layers. Initial versions of CNNs were shallow (one
input and one output layer with a hidden layer). Deep learning networks is classified
as anything that has a minimum of three layers. In deep learning, each passing layer
trains on features that are generated as the output from the previous layers and as the
number of layers progresses, they are able to recognize more complex features which
is known as feature hierarchy. This feature of deep-learning enables the networks to
handle very large, high-dimensional data sets with a multitude of parameters. Some
of the most commonly used layers in a CNN are discussed below. After the input
layer, the very first layer of a CNN is the convolutional layer. The convolution layer
performs the convolution operation on the input data. Once the convolution layer
extracts the features to generate the featuremap, it is passed through aRectified linear
units (ReLu), which are activation functions. Leaky ReLus allow a small, non-zero
gradient when the unit is not active. Once the data passes through the ReLu, it goes
through the pooling layers. The pooling layers combines the outputs from the neuron
clusters at each layer into a single neuron in the next layer. Max Pooling is one of
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Fig. 3 Representation of a typical CNN, consisting of convolutional, pooling, and fully-connected
layers. Reprinted with permission from Ref. [89]

the examples of pooling layers, this layer chooses and uses the maximum value from
each cluster of neurons in the previous layer and sends only the maximum values
of the cluster to the next layer. Next, upsampling layers performs an upsampling
using nearest neighbor, linear, bi-linear and tri-linear interpolation. Finally, fully
connected layers connect every neuron of one layer to every other neuron in another
layer. Model of a traditional CNN is shown in Fig. 3.

Feature extraction is a highly time-consuming task and it can be very tedious to
perform especially by humans. Deep-learning networks can perform feature extrac-
tion with very minimal or without human intervention. This comes in very handy in
the medical community, especially in the field like radiology, where there are always
limited personnel to scan all the diagnostic images of a patient. This is specifi-
cally important because diagnosis from the images is very crucial for the treatment
planning and monitoring of a patient.

2.3 Learning by Neural Networks

There are two different ways in which neural networks learns, which are supervised
learning and unsupervised learning.

1. Supervised learning: Supervised learning is a machine learning method and is
widely used, in this method a large dataset is required with corresponding labels.
A supervised learning algorithm is trained using ground truth images which is
a set of labelled data. Therefore, the algorithm attempts to reproduce the label
and calculates a loss function that measures the error between the output from
the machine and the label. The algorithm then considers the error value, which
is then further factored to modify the internal adjustable parameters (weights),
to further minimize this error and improve the efficiency of the model. The
performance rate of anymachine learning algorithm is basedon its howaccurately
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it handles previously unseen data [101–105]. This can be evaluated with some
data that the algorithm has not been exposed during the training process. This
data is called test set. The algorithm is said to be more generalized if it is able
to predict closer to the ground truth on unseen data. In contrast, if an algorithm
can perform with accuracy on previously exposed data but perform very badly
on the new test data, it shows that the algorithm only tries to memorize known
solutions without any abstraction and does not generalize well. This problem is
called overfitting. Overfitting is one of the most frequently encountered problem
in machine learning and it can be avoided in many ways [106–108]. Some of
them are to either train the algorithm with more data or data augmentation or by
completely using a different neural network. Choosing a different neural network
works best when the current network cannot handle the complexity of the data.

2. Unsupervised learning: Unsupervised learning is a method in which the algo-
rithms train themselves automatically as they are trained on unlabeled data. In
thismethod each node in every layer of the network tries to learn the features auto-
matically by repeatedly trying to reconstruct the data from the input set, it tries
to minimize the variation between the guesses of the network and the probability
distribution of the input data itself [109–111]. Also, in this process, the neural
networks learn to identify similarities and relationships between certain relevant
features and optimal results. The networks try to find connections between fea-
ture signals and what it represents, whether it be a full reconstruction, or with
labeled data [112, 113]. A deep-learning network can first be trained on labeled
data can then be applied to unlabeled data as well. This way, it gives the network
access to much more input than just the machine-learning nets. The key to the
performance of any deep learning model is data, the greater the amount of data a
network trains on, the network’s probability of accuracy improves likewise. The
output layer of any deep-learning network is either a softmax or logistic layer,
the classifier assigns a probability to a specific outcome or label, this type of
network is predictive in nature. Neural network follows a corrective feedback
loop, that rewards the weights which support the correct guesses, and punishing
weights that leads to error. The network tests extensively which combination of
input is significant as it tries to reduce error.

Gradient descent is a very commonly used function for optimization. It further
adjusts the weights according to the error values obtained. The slope of a neural
networks depicts the relationship between the allotted weights and the error function.
As a neural network continues to learn, it gradually starts adjusting many weights
so that they can map signal to meaning more accurately [114–117]. The relationship
between each weight of the network and the error is a derivative, every weight of
a network is just one factor in whole deep network which involves multitude of
transforms; the signal of each weight passes through activations and gets summed
over several layers. The basic crux of a deep learning network is to constantly adjust
and modify its weights in response to the error calculated in each iteration. This
continues to happen until the error can’t be reduced anymore. The activation function
layer of a network determines the possible output from a given node, based on the
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input data [100, 118]. The activation function is set in the layer level and gets applied
to all neurons present in that layer. Every output node produces binary output (0 or
1) as the two possible outcomes, as it determines whether an input variable either
deserves a label or it does not.Neural networksworking on labeled data only produces
a binary output, as the input they receive is often continuous. That is, the signals that
the network receives as input will be over a range of values and include any number
of metrics, depending on the problem it is attempting to solve. The mechanism that is
used for the conversion of continuous signals into binary output is known as logistic
regression. It calculates the probability that a set of inputs match the label. For
continuous inputs to be expressed as probabilities, they must output positive results,
since there is no such thing as a negative probability.

(a) Training the network:The neural network starts by randomly initializingweights
to the model and calculates the output from the first image. The obtained output
image is compared with the ground truth with the help of a loss function. The
loss is then back propagated to update and modify the weights of the network.
This process is performed multiple times to optimize the performance of the
networks.

(b) Testing of the network: After training, a network, testingwill be done to evaluate
the networks performance. In the testing data no labels are used. The network
with the previously trainedweights is evaluated on newdata thatwas not encoun-
tered by the network previously. These weights determine the prediction of the
network.

The Cost functions minimum is searched and an easy way to find a minimum
is using gradient descent. Hence, the cost function needs to be differentiable. To
perform the adjustment of the weights that are calculated by the gradient descent, the
machine learning algorithm computes a gradient vector that, for each weight, which
gives an indication on the error amount would increase or decrease if the weight
were modified (increased or decreased) by a small amount. By updating the weights
step-by-step the cost functions minimum is approached.

The learning rate parameter is introduced to improve the working efficiency of
the algorithm. The learning rate is multiplied to the cost function, which thereby
decides the step size for each iteration. If for a given algorithm the learning rate is
chosen too low, then the algorithm takes a long time to converge to the minima, in
contrary if the learning rate is chosen too large, then there is a possibility for the
algorithm to overshoot the minima. In the state-of-the-art deep learning algorithms,
the learning rate is made flexible which adapts continuously [119]. A lot of work
has been done to optimize gradient descent algorithms in recent years [118]. One
state-of-the-art algorithm called Adam [120] that is based on adaptive estimates of
lower order moments, it is made with high computational efficiency and can deal
with large datasets with ease [120].
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2.4 Backpropagation

Backpropagation is a methodology in which the contribution of each neuron towards
error is calculated after the completion of processing of a batch of data. Using back-
propagation, after the calculation of loss function and propagation of the error back-
wards, the weight of the neurons can be modified. The recently developed networks
using back propagation are faster than earlier approaches, thus enabling the neural
networks to be used for solving problems which were previously unsolvable. Back-
propagation based algorithm is the most commonly used optimization approach in
neural networks [121]. Using backpropagation, the networks weights are continu-
ously adapted and thereby facilitating the network to learn the best parameters [121].
Back propagation-based algorithms are being used extensively in medical image
processing.

2.5 Improving the Networks Performance

As the applications of the neural networks keeps growing, it becomes very important
to constantly improve the performance of the network to optimize their functions
better and to improve their efficiency. Some of the ways in which the neural networks
performance be improved are as follows.

1. Batch computing: Batch computing is used to improve the computational per-
formance of a neural network. A group of data is consolidated and grouped to
form a batch which helps in improving the computational performance as most
of the libraries are optimized better for array computing [122].

2. DataAugmentation:Data augmentation is commonly used to increase the amount
of data on which the algorithms are being trained on. When there is an increase
in the amount of data on which the algorithms learn it leads to an increase in
prediction accuracy of the algorithm. Therefore, data augmentation can improve
an algorithms performance [123].

3. GPU Computing: GPU computing is a technique used to increase computational
speed of processing by using a graphics processing unit (GPU), this unit tradi-
tionally handles only computations for computer graphics but it can also be used
to compute tasks that are normally carried out using the central processing unit
(CPU). The GPU is usually designed with more cores than a CPU and are capa-
ble of processing far more graphical data per second than the handling capacity
of a CPU. Thus, if the data is transferred to the GPU instead of the CPU and
processed there, it can lead to a significant speedup of the computing time.
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2.6 Evaluation Indices

For the quantitative evaluation of a neural networks based on their performance on the
test set, some of the most commonly used evaluation parameters includes signal-to-
noise-ratio (SNR), peak-signal-to-noise-ratio (PSNR) and structural similarity index
(SSIM). These are calculated for each of the test set data for comparison.

SNR

Signal to noise ratio (SNR) can be defined as the ratio of peak signal intensity from the
sample to standard deviation of the background intensities represented in decibels.
It is based on absolute signal strength and noise statistics of a given image. SNR can
be mathematically represented as follows:

SNR = 20 log10(μI/σb)

where, μI and σb represent the peak signal amplitude of the target area and the
standard deviation of the background, respectively.

PSNR

The term peak signal-to-noise ratio (PSNR) can be defined as the ratio between the
maximum possible value of a signal in a given image and the power of distorting
noise which affects the image quality. Because a variety of signals have a very wide
dynamic range, (ratio between the largest and smallest possible values of a changeable
quantity) the PSNR is usually expressed in terms of the logarithmic decibel scale.

The mathematical representation of the PSNR is as follows:

PSNR = 20 log10

(
MAXf√
MSE

)

The PSNR is a conventional measurement of the image quality in decibels (dB)
based on the mean square differences between the estimated and reference images
as:

where the MSE (Mean Squared Error) is given by:

MSE = 1

mn

m−1∑
0

n−1∑
0

‖f (i, j) − g(i, j)‖2

Here, f represents the matrix data from the original image, g represents the matrix
data from the degraded image, m represents the numbers of rows of pixels of the
images and i represents the index of that row n represents the number of columns
of pixels of the image and j represents the index of that column and MAXf is the
maximum signal value that exists in the ground truth image.
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SSIM

The Structural Similarity Index (SSIM) metric that is used to quantify the image
quality degradation which can be caused due to the image processing tools like as
data compression or by loss due to data transmission. It is a reference metric which
requires two images from the same image capture namely the reference image and
the processed image. The processed image is usually the compressed version.

SSIMmeasures the perceived quality of a digital image; a higher SSIM (in a scale
of 1.0) indicates a better representation of an estimated image in terms of perception.

2.7 Training Data

Training data is very important for deep learning for photoacoustic imaging. Gen-
erating training data and ground truth images for training algorithms is very crucial
as this data determines the efficiency of the model. Also, the number of training
data available, the quality of the images and the variety of images in the training
data pool helps the neural network model to learn more effectively and be able to
handle any kind of images that it might come across in real-time scenario. For dif-
ferent imaging modalities the training data can be acquired in different ways. For
the most commonly used clinical imaging techniques like MRI, CT etc. there are
multiple open source libraries with thousands of data. We can choose the dataset
which is most appropriate for our application and train the neural network with the
dataset. However, in case of certain applications where relevant data set might not
be available online or for imaging modalities that are not so commonly used for
clinical imaging, training data needs to be custom generated. This can be done in
two ways, the first is to use different imaging systems to acquire high quality images
for the specific application, these types of images are more realistic, and it is easy
to get a good ground truth image. But it can be very expensive to acquire enough
number of training data to train model and it can also be very time consuming. The
other method to generate training data is through simulation models. Simulation is
a cost-effective way to generate images and the ideal case scenario can be obtained
through simulation images. We can also add any type of artifact on the image to help
the model to perform better for a specific application. Simulation images make good
training data, but the shortcoming with this method is that it can sometimes be very
far from reality that when the model comes across a real image, it may not be trained
to work on the image.

2.8 Neural Networks for Medical Imaging

Now that what neural networks are and what they do is clear let’s explore its applica-
tions especially in the field of medical imaging [93, 124–128]. Neural networks are
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starting to have a huge impact on different aspects of medical imaging like segmenta-
tion, detection, classification etc. especially in the field of radiology. Classification is
one of the most important tasks in radiology, it typically consists of predicting some
target class like a lesion category or condition in the patient from an image or region
of interest in a dataset [99, 104, 129, 130]. This task is used for a wide range of appli-
cations, right from determining the presence or absence of a disease to identifying
the type of malignancy. Deep learning is very frequently used for the segmentation
task which can be defined as the identification of pixels or voxels composing an
organ or structure of interest [88, 131, 132]. For a machine learning algorithm, it can
be considered as a pixel-level classification task, where the end goal is to determine
whether a given pixel belongs to the background or to a target class (e.g., prostate,
liver, lesions). For this, from image classification tasks, image masks can be used
to perform various quantitative analyses such as virtual surgery planning, radiation
therapy planning, or quantitative lesion follow-up. Detection is another common task
for the deep learning, it can be used to identify focal lesions such as lung nodules,
hepatic lesions, or colon polyps. This can be used as a screening technique before a
radiologist can take a look at it [105, 133]. Detection is a subset of the classification
task however, classification only aims to predict labels, detection tasks aim to predict
the location of potential lesions, often in the form of points, regions, or bounding
boxes of interest. All of the three tasks are extremely useful for diagnosis, treatment
planning of a disease condition. The labeling of the images varies based on the task
it performs. Classification of images requires image labeling. Detection of images
requires marking the region of interest, such as a boxplot. Segmentation of images
requires pixel-wise delineation of the desired object.

2.8.1 Deep Learning for Radiology

Among the various clinical imaging techniques, radiology is one place where deep
learning is being explore more extensively. Radiology is one of the most important
and widely used clinical imaging tool for diagnosis of many diseases and clinicians
depend on it every day. Therefore, using deep learning in radiology can have more
impact in the clinics than any other imaging technique [134–140]. In this section we
will see how deep learning has come to play in the hospitals.

CheXNeXt is a convolutional neural network that was developed by a team of
researchers at Stanford, it has the potential to concurrently detect up to 14 different
pathologies, including pneumonia, pleural effusion, pulmonary masses, and nodules
in frontal-view chest radiographs. The CheXNeXt CNN was trained and validated
internally on dataset of ChestX-ray8 images [141]. A set of 420 images were used
for training and kept for validation purpose including images of all the original
pathology labels. 3 board-certified cardiothoracic specialist radiologists voted on the
imageswhich served as reference standard. The performance of the CheXNeXt’s was
compared with the performance of 9 radiologists using the area under the receiver
operating characteristic curve (AUC) on the validation dataset. It was observed that
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the performance of CheXNeXt was similar to the level of radiologists on 11 dif-
ferent pathologies but was not able to the achieve performance level of radiologist
on 3 pathologies. The radiologists significantly higher performance on three dif-
ferent pathologies (cardiomegaly, emphysema, and hiatal hernia). CheXNeXt has
performed significantly better than radiologists in detecting atelectasis. For the other
10 pathologies there was no statistical significance in differences between radiol-
ogists and the CheXNeXt. For the radiologists, the average time to interpret the
validation set (420 images) was significantly longer than CheXNeXt. Radiologists
took about 240 min but the CheXNeXt took only 1.5 min. One of the drawbacks
in this study was that both the CNN and the radiologists were not given any patient
history. Another limitation is that all the data acquired for this studywas from a single
institution only. So, the performance of the algorithm may be biased and limited by
it. Figure 4 shows the performance of the algorithm for various disease models in
comparison to a doctor. Figure 5 shows the predictions of the algorithm for disease
conditions.

This is one example of how a CNN can aid the physicians in the field of radiology.
Similarly, different types of algorithms are attempting to solve different types of
problems in radiology.

2.8.2 Deep Learning for Ultrasound Imaging

Ultrasound imaging is a commonly used imaging technique in the clinics for patient
diagnosis. There are many different types of artifacts present in ultrasound imaging,
which needs efficient methods for artifact reduction or elimination. Deep learning is
being explored for image classification, segmentation and artifact removal problems
in ultrasound [142–145]. One such example of a classification problem of thyroid
nodules is discussed below.

In the ultrasound images, thyroid nodules appear very heterogeneous in nature
with unclear boundaries with various internal components, this makes it very diffi-
cult for physicians to discriminate between the benign thyroid nodules and malig-
nant ones. A study was proposed for the diagnosis of thyroid nodules using a hybrid
method. The model was developed using a combination of two different pre-trained
convolutional neural networks. The two CNNs have different convolutional layers
and fully connected layers. Initially, the two which are pretrained with the ImageNet
database are trained individually. After individual training the two neural networks,
the feature maps are learned by the trained convolutional filters, pooling and nor-
malization operations of the two CNNs. After this the two obtained feature maps
are fused and a softmax classifier is used to diagnose (classify) the thyroid nodules.
This method was validated on 15,000 ultrasound images obtained from two different
hospitals.

For CNN1 and CNN2, a single testing was performed on the training step. A
multi-view was adapted to improve the performance of the network. For the input
of the trained CNNs 256 views of the thyroid nodule images were cropped and was
sampled randomly and used. The output was the average of the result of 256 views.
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Fig. 4 ROC curves of radiologists and algorithm for each pathology on the validation set. Each
plot illustrates the ROC curve of the deep learning algorithm (purple) and practicing radiologists
(green) on the validation set, Individual radiologist (specificity, sensitivity) points are also plotted.
The ROC curve of the algorithm is generated by varying the discrimination threshold. Reprinted
with permission from Ref. [141]

The two fused pretrained CNN used the fused feature maps that was generated by the
two CNNs in multi-view testing as shown in Fig. 6. The softmax layer was trained
for thyroid nodule classification. To compare the performance of the CNNs a well-
established classification method called SVMwas also implemented. The SVMwith
radial basis function (RBF) kernel was used for experiments [146].

The accuracy of the classification algorithm was tested and represented graphi-
cally in Fig. 7; this graph compares the classification accuracy of different methods
used in this study. It can be noted from the results that CNN based methods outper-
form the various other methods significantly in the classification of thyroid nodules.
Especially, the combination of CNN1 and CNN2 achieved a classification accuracy
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Fig. 5 In the normal chest radiograph images (left), the pink arrows and circles highlight the loca-
tions of the abnormalities. a Frontal chest radiograph (left) demonstrates 2 upper-lobe pulmonary
masses in a patient with both right- and left-sided central venous catheter. The algorithm correctly
classified and localized both masses as indicated by the heat maps. b Frontal chest radiograph
demonstrates airspace opacity in the right lower lobe consistent with pneumonia. The algorithm
correctly classified and localized the abnormality. Reprinted with permission from Ref. [141]

as 83.02% ± 0.72%, sensitivity as 82.41% ± 1.35%, and specificity as 84.96% ±
1.85%. These demonstrate the potential clinical applications of this method.

Photoacoustic imaging is very similar to ultrasound imaging and the techniques
from ultrasound can be easily adapted for photoacoustic with minimal modifications.
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Fig. 6 An overview testing of CNNs. This CNN based approach first extract multiple nodule
patches to capture the wide range of nodule variability from 2D ultrasound images. The obtained
patches are then fed into the networks simultaneously to compute discriminative features. Finally,
a softmax is applied to label the input nodule. Reprinted with permission from Ref. [146]

Fig. 7 Box plots of
performance measures for
classifying between benign
and malignant thyroid
nodules. In each box plot, the
center red line is the median
and the edges of the box are
the 25th and 75th percentiles,
the whiskers extend to the
most extreme data points not
considered outliers, and
outliers are plotted
individually. Reprinted with
permission from Ref. [146]

2.8.3 Deep Learning for Photoacoustic Imaging

Photoacoustic imaging is not being used in clinics yet. It aspires to become a clinical
tool for diagnosis. Image quality and easy interpretability is very crucial for that to
happen. Improvement in reconstruction and post processing of images is just one part
of it. As evident from the other types of clinical imaging modalities, deep learning
can be used for the improvement of photoacoustic imaging for artifact removal and
reduction [74, 147–154]. One of the major limitations for using deep learning for
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photoacoustic imaging is that there are not much clinically recorded data for training
and validation of the neural networks. Therefore generating data through othermeans
is very important for using deep learning for photoacoustic imaging. Using data from
simulations is one possible solution for generating data for photoacoustic imaging.

3 Monte Carlo Simulation

With respect to photoacoustic imaging monte carlo simulations for light propaga-
tion can be used to generate training data. Using monte carlo simulations, the light
absorbance by the sample can be calculated [155–158]. The absorbance is usually
directly proportional to the photoacoustic signal intensity. Therefore, we can get
an idea of how the photoacoustic image will look like. In monte carlo simulation
a sample object (of desired shape and size) is simulated in medium like tissue or
water, with the properties of the tissue specified. The absorption coefficient and the
transmission coefficient of the sample and tissue are predetermined from literature
and the number of layers are also mentioned [157–161]. Photon packet is launched
from the light source and the movement of the photon is tracked as it propagates
through the tissue. It loses weight as it passes through each layer where it either gets
absorbed or transmitted. It loses weight as it moves across the tissue and some of the
photonsmight hit the sample of interest and can get reflected, transmitted or absorbed
[155, 162, 163]. To obtain a high-resolution image millions of photons are launched
from the light source simultaneously and at the end of it, the light absorbance by the
sample is calculated. This is reconstructed to form the absorbance map. These are
equivalent to the photoacoustic images that are obtained from the imaging systems.

While building a MC simulation model, a large number of photons are modelled
to propagate through the simulation medium (tissue). While passing through any
medium photons undergo either reflection or refraction or absorption or scattering or
a combination of these. The path that the photon takes is determined by the optical
properties of the medium such as refractive index (n), absorption coefficient (μa),
scattering coefficient (μs), and scattering anisotropy (g). Absorption coefficient (μa)
of a sample can be defined as the probability absorption by the photon in the medium
per unit (infinitesimal) path length. This physical quantity is measured by Beer’s law.
Similarly, scattering coefficient (μs) can be defined as the probability scattering of
light in a medium per unit (infinitesimal) path length. Scattering anisotropy (g) is
defined as the mean of the cosine of the scattering angle. In biological tissues, the
typical values for the various optical parameters are as follows, μa = ∼0.1 cm−1, μs

= ∼100 cm−1, g = 0.9, and n = 1.4. The flow chart for MC for an embedded sphere
as object is shown in Fig. 8.

The images generated from the monte carlo simulation of light propagation
through tissues can be used to train the neural networks. An example of absorbance
maps generated frommonte carlo simulation for a spherical object is shown in Fig. 9.
For training networks on artifact detection and correction, monte carlo simulations
can generate artifacts on the images as well. Many different types of artifacts can
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Fig. 8 Flow chart of Monte Carlo with embedded sphere (MCES). Reprinted with permission from
Ref. [164]

Fig. 9 e–h The absorbance maps of sphere at depth 0.5 cm for illumination angles 0°, 5°, 10°, and
15°. Reprinted with permission from Ref. [164]

be generated in the images to train the neural networks model appropriately. Images
from the simulation can also be used to test a neural network. The major advantage
of using monte carlo simulation for photoacoustic imaging is that a large amount of
training data can be obtained very easily, and the data can be customized based on
the problem.
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4 Applications of Deep Learning in Photoacoustic Imaging

There are two ways in which deep learning can be applied for photoacoustic imag-
ing. First, is during the image reconstruction process itself. When the traditional
photoacoustic reconstruction techniques are being used, deep learning algorithms
can be used on the raw data during reconstruction process to make the images better
by reducing artifacts. Second, as a post-processing step after image reconstruction.
In this case the traditionally reconstructed photoacoustic images are passed through
deep learning algorithms to reduce the artifacts. Examples of both of these methods
will be discussed in the following sections.

Photoacoustic signals collected at the boundary of a tissue surface and are most
often band limited. In a recent work, in an attempt to improve the bandwidth of the
photoacoustic signal detected from the sample, a deep neural network was proposed.
Using the neural network would help in improving the quantitative accuracy of the
reconstructed PA images. A least square-based deconvolutionmethodwhich involves
the Tikhonov regularization framework was used for comparison with the proposed
network. The proposed deep learning method was evaluated with numerical and
experimental data as well.

The network proposed contains five fully connected layers, out of the five, one
layer is the input layer and one other layer is the output layer. The rest of the three
layers are hidden layers. The architecture of this network very similar to that of the
decoder network. Three different numerical phantoms (different from the training
data) were used to evaluate the performance of the network: (a) a blood vessel
network is frequently used as PA numerical phantom for imaging blood vasculature,
(b) Derenzo phantom containing different sizes of circular distribution of pressure,
and (c) PAT phantom to simulate sharp edges. The bandwidth enhancement using
the proposed neural network can be evidently observed from the images as shown
in Fig. 10. Here, frequency response of the signal calculated using the proposed
neural networks was very similar to full bandwidth signal response. These results
indicate that the proposed method using neural networks are capable of enhancing
detectedPAsignal’s bandwidth [165]. This further improves the contrast recovery and
quality of reconstructed PA imageswithout increasing any computational complexity
significantly.

Another example of using deep learning is photoacoustic imaging for artifact
reduction is discussed here. In one of the recentworks, a novel techniquewith the help
of a deep learning neural network which are trained layer-by-layer to reconstruct 3D
photoacoustic images with high resolution was proposed. This network incorporates
the physical model into the reconstruction procedure to iteratively reduce artefacts
[74]. In this method aU-Net was used to post process data from direct reconstruction,
the limitation of using neural networks for post processing is that the result from the
neural networks are highly dependent on the quality of the initially reconstructed
photoacoustic image.TheU-Net is one of the commonly useddeepneural network for
image denoising, it is a state-of-the-art deep learning technique. The U-Net consists
of equal number of contracting and expansive layers. In this network, the number of
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Fig. 10 Numerical phantoms used for evaluation: a blood vessel network, f Derenzo phantom, and
k PATphantom.Reconstructed (backprojected) initial pressure imageswith 100 detectors usingb, g,
l full BW signal, c, h,m limited BW signal, d, i, n predicted signal from least square deconvolution
method, and e, j, o predicted signal from the proposed DNN. The SNR of the data is at 40 dB.
Reprinted with permission from Ref. [165]

feature channels is the same in the first and last layer, similarly, the number of feature
channels in the second layer is two times the first layer and the same is true for the
second-last layer. The resolution is being halved in of each contraction step and gets
doubled in each of the expansion step. Every single layer in the neural network has a
large number of feature channels, this aspect of it allows the propagation of context
information to higher resolution layers in the network. Because of this the network
assumes a symmetry and providing a U-shape architecture. For the down sampling,
the contracting layers of the network consists of unpadded convolutions which are
followed by rectified linear units and a pooling operation.Number of feature channels
gets doubled in each of the down sampling step [166]. The expansive layers consist of
up sampling feature map followed by an up-convolution where the number of feature
channels gets halved, each of this is followed by a rectified linear unit. Owing to the
high complexity of the photoacoustic forward operator, the training and computation
of the gradient information was separated. This network used data from a set of
segmented vessels from lung computed tomography scans for training and testing.
The network was then applied to in-vivo photoacoustic data measurement.

Use of directly reconstructed images on the neural networks to remove artifacts is
a valid approach in many applications, specifically if the goal is to achieve fast and
real-time reconstructions. This approach only needs an initial direct reconstruction
and one application of the trained network. In the case of a full-view data, this is
a promising approach, but it has been demonstrated that even with limited-view
images this technique performs very well. A comparison of DGD and U-Net for
simulated data is shown in Fig. 11 (top row). The final image is cleaned up and
many vessels are properly reconstructed although, some of the minor details are
missing in the image and could not be recovered from the initially reconstructed
data. The difference to the true target is also shown in Fig. 11 (bottom row). The
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Fig. 11 Comparison of reconstructions for a test image from the segmented CT data. Left: top and
bottom shows the result by applying U-Net to the initialization x0 and the difference to the phantom,
maximal value of difference is 0.6012. Middle: shows the result of the DGD after 5 iterations and
the difference to the phantom, maximal value of difference is 0.4081. Right bottom: difference
images as side projections for the results of DGD and U-Net. Reprinted with permission from Ref.
[74]

differences are most pronounced in the outer parts of the domain as a consequence
of the limited view geometry. In comparison the reconstruction by DGD has a much
smaller overall error, but this is especially true in the center of the domain. The
maximal error of the U-net reconstruction is 0.6012 (on the scale of [0, 1]) and of the
DGD reconstruction 0.4081 as can be observed form Fig. 12. In conclusion we can
say that the U-net architecture performs very well and is even capable of removing

Fig. 12 Illustration of the proposed network for PAT image reconstruction. In the first step, the FBP
algorithm is applied to the sparse data. In a second step, a deep CNN is applied to the intermediate
reconstruction which outputs an almost artefact-free image. Reprinted with permission from Ref.
[150]
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some limited-view artifacts but is ultimately limited by the information contained in
the initial reconstruction.

In another work, deep learning approach was used for photoacoustic imaging
from sparse data. In this approach, linear reconstruction algorithm was first applied
to the sparsely sampled data and the results were further applied to a CNN with
weights adjusted based on the training data set. Evaluation of the neural networks
is non-iterative process and it takes similar numerical effort as a traditional FBP
algorithm for photoacoustic imaging. This approach consists of two steps: In the
first step, a linear image reconstruction algorithm was applied to the photoacoustic
images, this method provides an approximate result of the original sample including
under-sampling artifacts. In the next step, a deep CNN is applied for mapping the
intermediate reconstruction to form an artifact-free end image.

The neural network is first trained using simulated ellipse shaped phantoms sam-
ples. 1000 pairs of images were generated and used for training. One part of the
training data includes pressure data without any noise and the second part of the data
random noise was introduced to the simulated pressure data. The neural network was
evaluated on similar simulated images of ellipse samples which was not introduced
to the network during training. The network performed well by eliminating all the
artifacts from the test images. The network was further tested on Shepp-Logan type
phantoms and as expected the network was not able to remove all the artifacts from
the image as it was not trained on this data [167]. Hence, additional CNNs were
trained on 1000 randomly generated ellipse phantoms and 1000 randomly generated
Shepp–Logan type phantoms. The newly retrained network was once again tested
on the Shepp-Logan type phantoms. It is evident from the images in Fig. 13 that
when the neural network is trained with appropriate and correct training data, the
performance of the neural networks improves significantly.

4.1 Deep Learning for LED Based Photoacoustic Imaging

As discussed earlier, the image quality of the LED based photoacoustic imaging
system is not great. To improve the image resolution, improve artifact removal and
reduce the averaging for these images would greatly help in the clinical use of this
system. Deep learning can be applied to the photoacoustic images fromLED systems
to improve the overall system efficiency. One of the recent works uses deep neural
networks-based performance improvement of the system for improving the quality of
the images and also to reduce the average scanning time (averaging) of LED-basedPA
images. The proposed architecture of the neural networks consists of two important
components; the first is a CNN which is used for the spatial feature extraction, and
the second one is the recurrent neural networks (RNN) to leverage the temporal
information from the PA images. RNN is a form of neural networks in which the
output of each step is fed as input to the next step. It varies from the traditional
neural networks in the sense that, in CNNs the input and output through different
steps are independent of each other. The most unique and important feature of the
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Fig. 13 Reconstruction results for a Shepp–Logan type phantom from data with 2% Gaussian
noise added. a FBP reconstruction; b reconstruction using TV minimization; c proposed CNN
using wrong training data without noise added; d proposed CNN using wrong training data with
noise added; e proposed CNN using appropriate training data without noise added; f proposed CNN
using appropriate training data with noise added. Reprinted with permission from Ref. [150]

RNN is the hidden state, which helps the network to remember the information about
a sequence. The neural networks are built based on the state-of-the-art algorithm of
densenet-based architecture which uses a series of skip-connections to enhance the
image content. For the RNN component, convolutional variant of short-long-term-
memory was used to make use of the temporal dependencies in a given PA image
sequence. Skip connections was introduced in the both the networks, CNN and RNN
for effective feature propagation and elimination of vanishing gradient.

Figure 14a shows the densenet-based CNN architecture. The neural network
accepts a low-quality PA image as input and as output generates high quality PA
image. The number of feature maps are shown in Fig. 14. The architecture of the
network consists of three dense blocks, where each dense block consists of two con-
volutional layers followed by a ReLU. One of the major advantages of using the
dense convolutional layer is that it utilizes all the generated features from previous
layers as inputs through skip connections. This enables the propagation of features
more effectively through the network which leads to the elimination of the vanishing
gradient problem. Finally, to obtain the output image, all the features from the dense
blocks are concatenated, a single convolution with one feature map is performed at
the end.

In order to train the network experimental study was done using the LED based
photoacoustic system and evaluate the performance. The experiment including
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Fig. 14 A schematic of the neural network. a The densenet-based CNN architecture to improve
the quality of a single PA image. b A schematic of ConvLSTM cell. In addition to current input
Xt, it exploits previous hidden and cell states to generate current states. c The architecture that inte-
grates CNN and ConvLSTM together to extract the spatial features and the temporal dependencies,
respectively. Reprinted with permission from Ref. [168]
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acquiring images from phantoms and also in vivo human fingers. For the phan-
tom experiments, PA signal was acquired for a time period of 11 s leading to the
generation of 11,000 frames of pre-beamformed signals. To obtain a noise free image
through averaging having a steady set up without any motion is critical. This is pos-
sible with phantoms whereas, maintaining a steady position for in-vivo imaging is
very challenging therefore was only done for 5 s. After data acquisition, PA sig-
nals were averaged over certain number of frames, followed by beamforming using
delay-and-sum technique, subsequently detecting the envelope to reconstruct the PA
image.

Two different types of phantoms were used in this study, wire and magnetic
nanoparticle phantoms because of their high optical absorption coefficients. For the
wire phantom, a total of 62 sets of PA data from 62 different image planes was
acquired, and each of the data set consists of a total of 11,000 frames. The phantom
was built with fives cylindrical tubes that are placed at multiple depths. The tubes
were varied in concentration and depth to perform a comprehensive evaluation of the
performance of the neural networks. This helps in evaluating the sensitivity of the sys-
tem at various depths. Tubes 1–3were of same concentration but placed in decreasing
depths. At the maximum depth along with tube 3, tubes 4 and 5 were placed with
decreasing concentrations. For the phantom experiment suing nanoparticle tubes, a
total of 10 sets of PA data was acquired from 10 different image planes.

For effective training of the neural networks, different qualities of input PA images
was used. As stated previously, greater the averaging, better is the image quality and
resolution. This aspect was made use of to obtain images of varying quality. The
averaging works well with phantom data as the three is not motion artifacts involved.
The number of frames to be averaged (N) was chosen from a range starting with very
low value and increased to the highest possible value (11,000).

Figure 15 depicts the photoacoustic images from the two different phantoms
and in-vivo human finger here. The performance of the various networks can be
clearly observed from the difference in the quality of images from the different
neural networks for all the different samples and at various depths. This work is an
example of how a neural network can be trained on very simple data that can be
easily acquired to improve the image quality and reduce the scanning time for image
acquisition.

5 Limitations of Deep Learning

Deep learning has been very successful in the recent times for a variety of applica-
tions. In spite of its success, there aremany limitations associatedwith the application
of the technique. Firstly, deep learning is not the best machine learning technique
for all the different types of data analysis problems. For various issues in which the
data is already well structured or if optimal features are well-defined, instead of deep
learning a lot of other simple machine learning methods like logistic regression, sup-
port vector machines, and random forests can be applied to solve it. It will be much
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Fig. 15 Qualitative comparison of ourmethodwith the simple averaging and CNN-only techniques
for a wire phantom, in vivo example. The in vivo data consists of proper digital arteries of three
fingers of a volunteer. Example effect of depth on the PA image quality on nanoparticles. Reprinted
with permission from Ref. [168]

easier to apply and are also usually more effective with such datasets. CNNs have
become very dominant in the field of computer vision, there are some limitations
there as well. One of the most significant limitation is that deep learning is a technol-
ogy that requires a large amount of data; for the network to learn the weights from
scratch for a large network requires a huge number of labeled examples to achieve
accurate classification. Deep learning scales very well with large datasets. Therefore,
computing resources, time needed for training a deep learning model is very high.
Also, obtaining so much of labelled training data is very difficult.

Transfer learning is receiving more research for moving to an effective way of
reducing the data requirements. In recent transfer learning approaches, it reuses
weights from networks trained on ImageNet (a labeled collection of low-resolution
2D color images). For most applications in radiology, higher-resolution volumet-
ric images are required, for which pretrained networks are not yet available. As a
result, creating a large labelled medical image library is really important step for
further progress in applying deep learning, which is not easy due to cost, privacy
etc. Also, with more future breakthroughs in deep learning, data requirements can
be significantly reduced for training of deep learning systems.
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6 Future Directions for Deep Learning

Deep learning models has shown expert-level or better performance at few tasks.
Deep learning algorithms are capable of extracting or identifying more features
than humans. Data availability and curation of data into repositories is becoming
more organized now for better handling and usage of data. This will further help in
developing better models for deep learning as there will be more availability of a
variety of training data including different scenarios. In the recent past there have
been approaches where they use data from one imaging modality to train a network
for better performance on another imaging modality. This will help in boosting the
performance of the neural networks as they train on better ground truth images. The
importance of deep learning will keep increasing in the days to come in the hospitals.

For photoacoustic imaging, deep learning will have a more important role to play.
Deep learning for photoacoustic is not much explored till now, so the potential of
it has fully not been understood. Some of the major areas in which deep learning
can be used for photoacoustic in general and LED based photoacoustic systems also
includes better and faster reconstruction algorithms, reduction of artifacts in images,
reduction in averaging to produce a high resolution image, decreasing the data acqui-
sition time, possibility of reducing the laser power used for image acquisition and
lesser exposure time. Further research in all the above-mentioned area will greatly
improve the performance of photoacoustic imaging system andmaymake the clinical
translation and utilization of photoacoustic for diagnosis and real-time monitoring
more feasible in the near future.

7 Conclusion

In this chapter we discussed the limitations of the current image reconstruction and
denoising techniques in photoacoustic imaging. The basic concepts ofmachine learn-
ing and artificial intelligence was established with a focus on deep learning. The
applications of deep learning in various medical imaging techniques was discussed.
Based on this, the use of deep learning in photoacoustic imaging was analysed espe-
cially for improvement in areas of image reconstruction, image denoising and image
resolution. Although, deep learning has a lot of potential applications for improv-
ing photoacoustic imaging, it comes with certain limitations, especially in terms of
training data. Upon overcoming the limitations, deep learning will definitely help in
clinical translation and utilization for various clinical applications in the near future.

Next section of this book will focus on preclinical imaging applications and early
clinical pilot studies using LED-based photoacoustics.
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