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Abstract The current standard photoacoustic (PA) imaging technology includes
two hardware requirements: high power pulsed laser for light illumination andmulti-
channel data acquisition device for PA signal recording. These requirements have
been limiting factors to democratize PA imaging because a laser is heavy, expensive
and includes hazardous risk, and most parallel data acquisition technology is avail-
able only in specialized research systems. The goal of this chapter is to provide an
overview of technologies that will enable safer and more accessible PA imaging, as
well as introduce the use of safe and fast light emitting diode (LED) light sources in
combination with clinical ultrasound machines. There are two limiting factors that
prevent achieving this. First, clinical ultrasound machines typically only provide
post-beamformed data based on an ultrasound delay function, which is not suitable
for PA reconstruction. Second, a PA image based on theLED light source suffers from
low signal-to-noise-ratio due to limited LED-power and requires a large number of
averaging. To resolve these challenges, an adaptive synthetic aperture beamforming
algorithm is applied to treat defocused data as a set of pre-beamformed data for PA
reconstruction. An approach based on deep convolutional neural network trains and
optimizes the network to enhance the SNR of low SNR images by guiding its feature
extraction at different layers of the architecture. We will review and discuss these
technologies that could be the key to advancing LED based PA imaging to become
more accessible and easier to translate into clinical applications.
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1 Introduction

Photoacoustic imaging is an emerging modality offering unique contrast of optical
absorption and imaging depth of ultrasound for a wide range of biomedical applica-
tions [1]. The clinical accessibility of photoacoustic (PA) imaging is limited because
of specific hardware requirements including high energy pulsed laser and channel
data acquisition system [2–5]. Most laser systems used for PA imaging provide high
pulse energy in themJ scalewith a low pulse repetition frequency (PRF) of 10–20Hz.
These laser systems are bulky, expensive, and unsafe, requiring eye protection, such
as laser glasses. Installation at a hospital would require a special room that meets the
laser safety requirements.

To democratize PA imaging toward broader clinical applications and its usage in
research, a light source that is compact, low-cost, and safe to use is desired. Light
emitting diode (LED) light sources have been considered as a viable alternative
[6, 7]. Compared to high power laser systems, the LED-based light source has the
advantage in terms of size, cost, and safety. Most importantly, the LED light source
is not classified as a laser, so laser safety regulations such as the light shield and laser
safety glasses are not required. The limitation of an LED light source is its low output
power. Series of LEDs can generate energy only in the range of µJ, while common
high-power pulsed laser used for PA imaging produce energy in the mJ range. Due to
the low power output, the received PA signal of an LED-based system suffers from
low signal-to-noise-ratio (SNR). Current technology aiming to improve the SNR
is based on acquiring multiple frames of PA signals, and subsequently perform an
averaging over them to minimize the noise. Though the pulse repetition frequency of
a LED-based system is much higher (in range of kHz) than the high-power laser, an
averaging over many frames, typically thousands, reduces the effective frame rate of
PA images. Furthermore, a large number of averaging frames require longer scanning
times, leading to potential motion artifacts in reconstructed PA images.

The other hardware challenge is the accessibility of data acquisition (DAQ)
devices used for PA imaging [8, 9]. Pre-beamformed channel data from acquisi-
tion devices are required to collect the raw PA signals because PA reconstruction
requires a delay function calculated based on the time-of-flight (TOF) from the light
source to the receiving probe element, while US beamforming considers the round
trip initiated from the transmitting and receiving probe element. Thus, the recon-
structed PA image with an ultrasound beamformer would be defocused due to the
incorrect delay function. Real-time channel data acquisition systems are only acces-
sible from limited research platforms. Most of them are not FDA approved, which
hinders the development of PA imaging in the clinical setting. Therefore, there is a
demand to implement PA imaging on more widely used clinical machines.

To broaden the impact of clinical PA imaging, this paper presents a vendor-
independent PA imaging system utilizing ultrasound post-beamformed data, which
is readily accessible in some clinical scanners. While a LED light source with low
energy output and high PRF is used to replace a conventional high energy laser,
a deep neural networks-based approach is presented to improve the quality of PA
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Fig. 1 The conventional photoacoustic imaging architecture and the new paradigm introduced in
this chapter using LED light source and clinical ultrasound machine

images as well as reduce the number of averaging frames in image reconstruction.
Figure 1 summarizes the process of PA image formation based on conventional archi-
tecture compared with the proposed paradigm incorporating a LED light source and
a clinical ultrasound machine.

In this chapter, we review two enabling technologies for a LED-based and PA
imaging system integrated with clinical ultrasound scanners; the image reconstruc-
tion approach using a post-beamformed RF data and the deep neural network-based
SNR enhancer.

2 Image Reconstruction from Post-beamformed RF Data

2.1 Problem Statement

The acquisition of channel information is crucial to form a PA image, since typical
clinical ultrasonicmachines only provide access to beamformed data with delay-and-
sum [2, 8]. Accessing pre-beamformed channel data needs customized hardware and
parallel beamforming software and is available for dedicated researchultrasoundplat-
forms, such as the Ultrasonix DAQ system [9]. In general, these systems are costly
with fixed data transfer rates that prohibit high frame rate, real-time imaging [10].
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More importantly, PA beamforming is not supported by most clinical ultrasound sys-
tems. Harrison et al. has suggested changing the speed of sound parameter of clinical
ultrasound systems [11]. Software access to alter the sound speed is not prevalent,
however, and the range for this change is restricted when available, making this
choice inadequate for reconstruction of PA images. In addition, the applicability of
this technique is restricted to linear arrays, because angled beams (e.g. as in curvilin-
ear arrays) changebeamformer geometry and the speedof sound.Thus, compensation
cannot be made by merely altering the sound velocity. In contrast, several clinical
and research ultrasound systems have post-beamformed radio frequency (RF) data
readily available. The objective in this section is to devise a PA image reconstruction
approach based on ultrasound RF data that the system has already beamformed. A
synthetic aperture-based beamforming algorithm, named Synthetic-aperture based
PhotoAcoustic RE-beamforming (SPARE), utilizes ultrasound post-beamformed RF
data as the pre-beamformed data for PA beamforming [12, 13]. When receive focus-
ing is applied in ultrasound beamforming, the focal point can be regarded as a virtual
element [14–16] to form a set of pre-beamformed data for PA beamforming. The
SPARE beamformer takes the ultrasound data as input and outputs a PA image with
the correct focal delay applied.

2.2 Technical Approach

2.2.1 Ultrasound Beamforming

The difference between ultrasound and PAbeamforming is the acoustic time-of-flight
(ToF) and related delay function. The delay function in delay-and-sum beamforming
is calculated from the distance between the receivers and the target in ultrasound
image reconstruction [17]. The acoustic wave is first transmitted from the ultrasound
transducer via a medium with a specific velocity, reflected at boundaries, and the
backscattered sound is received by the ultrasound transducer. The acousticToFduring
this process can be formulated as,

tU S(rF ) = 1

c
(|rT | + |rR|), (1)

where rF is the focus point originating from the ultrasound image coordinates, rT is
the vector from the transmit element to the focal point, rR is the vector from the focal
point to the receive element, and c is the speed of sound. Sequential beamforming
with dynamic focus or fixed focus is applied as a delay-and-sum algorithm in clinical
ultrasound systems. In dynamic focusing, the axial component, zF , of the focusing
point differswith depth, while a single fixed depth focus is used for the fixed focusing.

The acoustic TOF of PA signals is half of that of ultrasound, because the acoustic
wave is produced at the target by absorbing light energy, and the time to travel from the
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Fig. 2 Conventional PA imaging system (a) and proposed PA imaging system using clinical ultra-
sound scanners (b). Channel data is required for PA beamforming because ultrasound beamformed
data is defocused with the incorrect delay function, where the introduced approach treats this
information as pre-beamformed data for additional beamforming

optical transmission side negligible. Therefore, the acoustic TOF for photoacoustic
imaging is

tP A(rF ) = |rR|
c

. (2)

Considering the differences between Eqs. (1) and (2), when beamforming is
applied to the received PA signals based on Eq. (2), the beamformed RF signals
are defocused (Fig. 2).

2.2.2 Synthetic Aperture-Based Re-beamforming

In the SPARE beamforming, the beamformed RF data from the ultrasound scanner
is not considered as defocused useless data, but as pre-beamformed RF data for PA
beamforming. The additional delay-and-sum step is applied on the beamformed RF
data, and it is possible to reconstruct the new photoacoustically beamformed RF data.
The focus point in the axial direction is constant with depth when fixed focusing is
applied in the ultrasound beamforming process, suggesting that optimal focusing
has been implemented at the particular focal depth with defocused signals appearing
elsewhere. Initiating from the single focal depth, the defocused signals appear as
if they were transmitted from the focal point (i.e. a virtual element as illustrated in
Fig. 3b). In this sense, the ultrasound post-beamformed RF data is considered as PA
pre-beamformed RF data. The TOF from the virtual element, when a fixed focus at
zF is applied, becomes
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Fig. 3 Illustration of channel data and the SPARE-beamforming process [55]. a In channel data,
the wave front of received RF signals expand corresponding to the depth (green line). The red lines
indicate fixed focus delay function. b When fixed receive focusing is applied, the delay function
is only optimized to the focus depth (red line). c As a result of fixed receive focusing, the focal
point can be regarded as a virtual point source, so that inverse and forward delay and sum can be
applied. d Similarly, dynamic focusing could be regarded as a specific case of that in which the
virtual element depth zF is the half distance of re-beamforming focal depth zR
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∣
∣ =

√
(xR)2 + (zR − zF )2, (4)

and r ′
F = rF − zF . xR and zR is the lateral and axial components of rR, respectively.

The dynamic receive delay function is applied in the positive axial direction when
zR ≥ zF , and negative dynamic focusing delay is applied when zR < zF . The
diagrams in Fig. 3b, c show the re-beamforming process of the SPARE-beamformer.
Post-beamforming processes such as envelope detection and scan conversion are
applied on the reconstructed data for the PA image display.

This theory applies to both fixed and dynamic focused beamformed ultrasound
RF data with difference being that in dynamic focusing, the round-trip between
the transmitter and the reflecting point in conventional ultrasound imaging must
be considered along with the location of the virtual point source. Thus, in SPARE
beamforming of dynamically focused data, the virtual point source depth, zF , is
considered to be dynamically varied by half of the photoacoustic beamforming focal
point depth, zR, as illustrated in Fig. 3d. Note that zR = 2zF is always true in this
special case.
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2.3 Simulation Evaluation

The concept validation was performed through the ultrasound simulation tool, Field
II [18]. A 128-element, 0.3 mm pitch, linear array transducer was assumed to be a
receiver, which matches the setup of the experiment presented in Sect. 2.4. The stan-
dard delay-and-sumPAbeamforming algorithmwas applied to the simulated channel
data in order to provide a ground-truth resolution value for this setup. Five-point tar-
gets were placed at depths of 10 mm to 50 mm with 10 mm intervals. To simulate
defocused data, delay-and-sum with dynamic receive focusing and an aperture size
of 4.8 mm was used to beamform the simulated channel data assuming ultrasound
delays. The simulation results are shown in Fig. 4. The ultrasound beamformed RF
data was defocused due to an incorrect delay function (Fig. 4b). The reconstructed
PA images are shown in Figs. 4c–d. The measured full width at half maximum
(FWHM) is shown in Table 1. The reconstructed point size was comparable to the
point reconstructed using a 9.6 mm aperture on the conventional PA beamforming.

Fig. 4 Simulation results. aChannel data.bUltrasound post-beamformedRF data. cReconstructed
PA image from channel data with an aperture size of 9.6 mm. d Reconstructed PA image through
SPARE beamforming

Table 1 FWHM of the simulated point targets for corresponding beamforming methods

FWHM (mm) Control using channel data SPARE-beamforming

10 mm depth 0.60 0.63

10 mm depth 1.02 0.99

10 mm depth 1.53 1.43

10 mm depth 1.94 1.91

10 mm depth 2.45 2.42
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2.4 Experimental Demonstration

The PA sensing system was employed for evaluating the LED-based PA imaging
performance; a near-infrared pulsed LED illumination system (CYBERDYNE INC,
Tsukuba, Japan) was used for PA signal generation. To collect the generated PA sig-
nals, a clinical ultrasound machine (Sonix Touch, Ultrasonix) with a 10 MHz linear
ultrasound probe (L14-5/38, Ultrasonix) was used to display and save the received
data. A line phantommadewith fishingwirewas imaged to evaluate the SNR and res-
olution performance. The ultrasound post-beamformedRFdatawith dynamic receive
focusingwas then saved. To validate the channel data recovery through inverse beam-
forming, the raw channel data was collected using a data acquisition device (DAQ).
Figure 5 shows the experimental results imaging the cross section of a line phantom
[19, 20]. The control data was reconstructed from channel data collected from the
DAQ. The SPARE result used the ultrasound post-beamformed data collected from
the ultrasound scanner as the input. The SPARE algorithm produced better imaging
contrast and SNR when comparing the inherent resolution of the two methods. By
quantifying the SNR change over the number of averaging, these twowere correlated
in a log-linear model for both with and without the use of channel data, depicted in
Fig. 5b. In result, the gradient of the SPARE method was larger than conventional
PA reconstruction from channel data, because the ultrasound beamformed data was
summed already across the aperture once even with incorrect focus, and the random

Fig. 5 Experiment results with LED light source imaging line phantom. a Comparison of control
using channel data from DAQ and SPARE results using ultrasound post-beamformed data. b SNR
analysis of both control and SPARE results. c Resolution analysis of SPARE results. Resolution
improvement was hindered at FWHM of 2 mm due to the aperture size [19, 20]
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Fig. 6 In vivo PA imaging
of human fingers using LED
light source. Experimental
configuration of ultrasound
and PA images of human
fingers are shown. PA images
were reconstructed using
channel data from a DAQ
device and beamformed RF
data with the SPARE
algorithm [19, 20]

noise can be suppressed in this process. The control result showed better spatial res-
olution compared to the SPARE result because the ultrasound beamformed data was
formed from a restricted aperture size (maximum 32 elements) due to restriction of
the ultrasound scanner, while the channel data could utilize the complete aperture
for reconstruction (Fig. 5c).

Human fingers were imaged using 850 nm LED bars for an in vivo experiment
(Fig. 6). The channel data was collected first, then the ultrasound beamformed data
was produced to compare standard and suggested solutions to beamforming. The
raw channel data was averaged 3000 times to maximize the imaging contrast. It was
verified that the SPARE approach could achieve comparable image quality to the
channel data.

2.5 Discussion

The introduced SPARE method would work for any structures that have high optical
absorption such as blood vessels that show strong contrast for near-infrared wave-
length light excitation. Reconstruction artifacts such as side lobe and grating lobe
could appear and influence non-point targets making the image quality of SPARE
image was worse than standard PA image using channel data. The algorithm could
also be incorporatedwith clinical ultrasoundmachines in real-time imaging schemes.
Theoretically, the SNR of two beamformers should be similar, and this discrepancy
could be attributed to the summation of axially distributed coherent information
twice, once for each beamforming step. When the SNR of the channel signals is
considerably low, the reconstructed image may contain a noise-related gradation
artifact as the number of summations differs for each focal point. Hence, beamform-
ing with the full aperture is more suitable in this high-noise situation. The image
quality improvement strategies (apodization, transmit gain compensation, etc.) are
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expected to have a comparable impact on the SPARE image enhancement. Apodiza-
tion improves the appearance of the reconstructed image, because it reduces the
sidelobes in the ultrasound beam.

The suggested technique is superior than the speed of sound adjustment approach
[11] and is applicable to steered beams (e.g. phased arrays) and to beam geometries
that vary from linear arrays (e.g. curvilinear arrays). As formulated in Eqs. (3) and
(4), the proposed beamformer applies a delay-and-sum assuming the PA signals are
received at the virtual element. Therefore, even if the ultrasound beam is angled, the
delay-and-sum algorithm is still applicable with the virtual element created by the
angled beam.

Suppression of ultrasound transmission may be regarded as another system
requirement. The ideal solution is to turn off the transmit events. However, if this
function is not available, an option is to lower the transmission energy voltage. The
use of an electrical circuit to regulate the timing of the laser transmission is another
strategy. Subtracting the images with and without laser excitation would highlight
the PA signals.

One system requirement for the SPARE beamformer is a high pulse repetition fre-
quency (PRF) laser system. In order tomaintain the frame rate, so that it is comparable
to that of ultrasound B-mode imaging, the PRF of the laser transmission should be
the same as the ultrasound transmission rate, in the range of at least several kHz. In
fact, a high PRF laser system, such as a LED, is idealistic. Based on the assump-
tion that the LED frame rate is 16,000 and the reception ultrasound has 128 lines of
acquisition, Fig. 7 summarizes the estimated frame rate and laser energy by varying
the number of averaging. Since SNR improvement under averaging is the square root
of the number of averaging, outputting 1 mJ and 5 mJ light source energy requires
25 and 625 times averaging, respectively. The highest frame rate available when the
DAQ unit is accessible is 625 and 25.6 frames per second, respectively. When a clin-
ical ultrasound scanner was used for data acquisition, the frame rate becomes 5 and
0.2 frames per second, respectively. Using clinical ultrasound machine, the highest
frame rate available is 125 without averaging.

The novelty of the SPARE algorithm suggested its potential for integration with
clinical ultrasound scanners to become real-time imaging systems [21]. Most real-
time photoacoustic imaging systems are currently based on open platform research
systems [9]. However, the option of using a clinical ultrasound system already with
FDA approval eases the transition of photoacoustic technology into the clinic. Poten-
tial applications include in vivo real-time photoacoustic visualization for brachyther-
apy monitoring [22–24], brain imaging [25–28], image-guided surgery [29, 30],
interventional photoacoustic tracking [31], multispectral interventional imaging [32,
33], and cardiac radiofrequency ablation monitoring [34].
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Fig. 7 Numerical estimation of frame rate using a LED system. Frame rate (a, d) and estimated
energy (b, e) by varying the number of averaging, and the relationship between frame rate and
estimated energy (c, f) are shown using a DAQ device (a–c), and using a clinical ultrasound system
(d–f) for data collection

3 SNR Enhancement with Convolutional Neural Network

3.1 Problem Statement

The most classic and conventional strategy to improve the SNR with a low-power
light source such as the LED-based scheme is averaging, obtaining multiple frames
(ten, hundreds, or a few thousand) of the same sample, then averaging them over.
When the noise has its distribution of o, , the noise distortion after the averaging of N
times is expressed as

σavg−N =
√
N

N
σ, (5)

and the SNR improvement is proportional to the number of frames used for averag-
ing. While using more frames to average earns an enhanced SNR, it decreases PA
imaging’s effective frame rate. Reduced frame rate makes it difficult to adapt this
technology tomoving objects, like the heart, and prone tomotion artifacts. The signal
processing approaches, such as adaptive denoising, empirical mode decomposition,
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wavelet transform or Wiener deconvolution could be used to tackle the limitation
of averaging [7, 35]. Coded excitation is a strategy that increases the SNR without
compromising the measurement time. In temporal encoding, the laser pulses are sent
with a special encoded pattern without the need for waiting the acoustic TOF. The PA
signals with an improved SNR are decoded from the received encoded RF signals.
Golay codes [36] and m-sequence family (such as preferred pairs of m-sequences
and Gold codes) [37, 38] have been proposed for temporal encoding. The limitation
of coded excitation is that it presents its benefit only if the pulse interval is shorter
than that of the acoustic TOF, thus ultra-high PRF lasers with hundreds kHz or sev-
eral MHz pulsing capabilities are required. Therefore, a more generalized approach
is needed to improve the SNR for the usage of LED light source.

A recently emerging approach based on deep convolutional neural networks is a
powerful alternative. Deep neural networks have been introduced to image classi-
fication [39, 40], image segmentation [41], image denoising [42] and image super-
resolution [43–46] and outperforms state-of-the-art signal processing approaches.
The published image enhancement techniques are based on stacked denoising auto-
encoder [42], densely connected convolutional net [46] or including perceptual loss
to enhance the spatial structure of images [44]. Neural networks have been applied
on PA imaging for image reconstruction [47–49] and removal of reflection artifacts
[50]. This section focuses on the usage of deep convolutional neural network to dif-
ferentiate the main signal from the background noise and to denoise a PA image with
a reduced number of averaging.

The introduced architecture consists of two key components; one is convolutional
neural networks (CNN) that extracts the spatial features, and the other one is recur-
rent neural networks (RNN) that leverages the temporal information in PA images.
The CNN is built upon a state-of-the-art dense net-based architecture [46] that uses
series of skip-connections to enhance the image content. Convolutional variant of
short-long-term-memory [51, 52] is used for the RNN to exploit the temporal depen-
dencies in a given PA image sequence. Skip-connections are integrated throughout
the networks, including both CNN and RNN components, to effectively propagate
features and eliminate vanishing gradients. While the full description of approaches
can be found in Refs. [53, 54], this section provides digest of them.

3.2 Deep Convolutional Neural Network

Adense net-basedCNNarchitecture to denoise PA images is introduced byAnas et al.
[46, 53, 54]. The PA image with a limited number of averaging is used as the input,
and the objective is to produce a high-quality PA image that provides an equivalent
SNR compared to a PA imagewith a considerably high number of averaging. Figure 8
shows the deep neural network architecture [46]. The network focusing on improving
the image quality of a single PA image is illustrated in Fig. 8a. The number of feature
maps in each convolutional layer is defined as ‘xx’ in ‘Conv xx’. The architecture
consists of three dense blocks, and each dense block is composed of two densely
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Fig. 8 A schematic of the introduced deep neural network-based approach (Reproduced from [53]).
a The dense net-based CNN architecture to improve the quality of PA image. The architecture
consists of three dense blocks, each dense block includes two 3 by 3 dense convolutional layers
followed by rectified linear units. b The architecture that integrates CNN and ConvLSTM together
to extract the spatial features and the temporal dependencies, respectively

connected convolutional layers and rectified linear units (ReLU). The benefit of
using the dense convolutional layer is elimination of the vanishing gradient problem
of deep networks [55] because all the features initially produced are inherited and
succeeded in the following layers. The output image is produced by convoluting the
feature map with all features from the concatenated dense blocks.

In addition to CNN, a recurrent neural network (RNN) [56, 57] is implemented
to mitigate the temporal dependencies in a specific sequence. While several variants
of RNN have been reported, and long-short-term-memory (LSTM) [51] showed the
most successful performance in different applications. ConvLSTM [52] is an exten-
sion of LSTM that uses the convolution operation to extract temporal features from
a series of 2D maps. The introduced architecture combining CNN and ConvLSTM
to improve the denoising performance is shown in Fig. 8b. The architecture takes as
inputs a series of PA images in different time points. It initially uses CNN to obtain
the spatial features and then subsequently utilizes ConvLSTM to exploit the temporal
dependencies. Two layers of ConvLSTM including skip connections are used for the
recurrent connection. At the end, all the features generated in the previous layers are
concatenated to compute the SNR improved PA image as the final output.

3.3 Experimental Demonstration

The concept was validated by training the network and assessing the SNR enhance-
ment with a point target and proved further with human fingers in vivo. Two sets of
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LEDbar-type illuminatorswere placed on both sides of a linear ultrasound transducer
array for the image setup. The LED’s pulse repetition frequency was set at 1 kHz
and PA data acquisition was synchronized with the LED excitation. PA images of the
point target from the wire phantom were used to train the neural networks, assuming
that those PA images with multiple point targets at different depths enable our net-
work to learn how to improve the quality of the point spread function. The trained
network with a point spread function can be applied to any arbitrary function of PA
target.

The number of averaging was used to control the reconstructed image quality to
produce input data consisting of low and high SNR target PA images for the training.
For low SNR inputs, lower values of N in the range of 200–11,000 was chosen,
with a step of 200. The averaging frame numbers in the sequence can be represented
as {Ns; 2Ns; 3Ns; …; N0} corresponding to time index {t1; t2; t3; …; tN0}, where
Ns was set to 200, and N0 was 11,000. For each chosen value of N, the large set
of 11,000 frames was split into several subsets, where each subset consists of N
frames of PA signals. For each subset of N frames data, the PA signals are averaged
first, followed by reconstruction to obtain one post-processed PA image. With the
collection of 11,000 frames for one phantom sample, the greatest possible quality PA
image can be achieved by reconstructing it from the averaged signal over all frames,
which is regarded as the ground truth target image. Note that for each experiment,
there is only one gold-standard target image that corresponds to more than one input
sequences. Mean square losses are used as a loss function between the predicted and
gold-standard target PA images. To minimize the loss function, TensorFlow library
(Google, Mountain View, CA) with Adam [58] optimization technique is used. The
quantitative assessment was performed with the independent test dataset. The peak-
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) were used as
evaluation indices that compare the output of our networks with the highest quality
target image [59].

The comparison of PSNRand SSIMof two techniques using deep neural networks
(CNN-only and RNN + CNN) for different averaging frame numbers is shown in
Fig. 9a, b. The solid line in the figure shows the mean value for each computing
method calculated from 30 test samples. The shaded region reflects the correspond-
ing standard deviation of each evaluation index. While both deep neural network
approaches outperform the SNR enhancement over averaging, the approach of RNN
+ CNN presented the highest performance among them. The improvements of RNN
+CNN in PSNRs of 5.9 dB and 2.9 dB was accomplished on average with respect to
averaging and CNN-only techniques, respectively. Figure 9c presents the amount of
frame rate enhancement two deep neural network approaches relative to averaging
to attain certain PSNA. The gain is calculated with respect to the frame number of
the averaging approach. For example, at a mean PSNR of 35.4 dB, the RNN+CNN,
CNN-only and averaging techniques need 1360, 3680 and 11,000 averaging frames,
respectively. When the averaging approach was treated as reference, the RNN +
CNN and CNN-only achieved gains in the frame rate of 8.1 and 3.0 times, respec-
tively. With the deep neural network approaches, the improved frame rate can be
achieved without compromising the SNR.
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Fig. 9 A comparison of PSNR and SSIM of our (RNN+CNN)method with those from the simple
averaging and CNN-only methods [53]. a PSNR versus averaging frame numbers. An improvement
at all the averaging frame numbers is seen for our method compared to the two other methods. A
higher improvement rate of the method is observed compared to the CNN-only method. b SSIM
versus averaging frame numbers. Unlike CNN-only method, the trend of improvement is observed
with the averaging frame numbers for our method. c Gain in frame rate versus mean PSNR

Figure 10 shows a qualitative comparison among all three comparative methods
for proper digital arteries of three fingers of a volunteer (anatomy is shown at bottom
in the figure). Three blood veins were noticeable for each finger, where enhanced
blood vessel detections were observed for the RNN + CNN approach (highlighted
by arrows). Note that the PA image averaged from the 5000 frames (high quality in
the figure) includes some remaining noises and artifacts due to the movement during
the scanning period.

Fig. 10 A comparison of our method with the averaging and CNN-only techniques for an in vivo
example [53]. Improvements are noticeable compared to those of other two methods in recovering
the blood vessels (marked by arrows)



198 H. K. Zhang

The GPU computation times are 15 and 4 ms for RNN + CNN and CNN-only
methods, respectively. The corresponding run-times in the CPU are 190 and 105 ms,
respectively.

3.4 Discussion

This section presented a deep neural networks approach to improve the quality of
PA images in real-time while simultaneously reducing the scanning period. Besides
using CNN to obtain the spatial features, RNN is used in the architecture to exploit
the temporal information in PA images. The network was trained using a sequence
of PA images from 32 phantom experiments. On the test from 30 samples, a gain
in the frame rate of 8.1 times is achieved with a mean PSNR of 35.4 dB compared
to the conventional averaging approach. A temporal PA sequence allows the neural
networks to learn the image and noise contents more effectively than a single image-
based CNN-only network does. In addition, for the CNN-only method, saturation in
both image quality indices is observed for higher averaging frame numbers (Fig. 9a,
b) indicating a decrease in the rate of improvement with a rise in the averaging frame
number, as opposed to the higher improvement rate for the CNN + RNN method.
Furthermore, the improved performance of the deep neural network approach was
demonstrated through an in vivo example (Fig. 10). The key benefit of the technique
is that it could improve the image quality from a reconstructed image with low
averaging frame number, thus eliminating the potential effect of the artifacts.

4 Conclusions and Future Directions

In this chapter, we reviewed a paradigm on PA imaging using LED light source
and image reconstruction with ultrasound post-beamformed RF data from a clini-
cal ultrasound system. SPARE-beamforming takes the post-beamformed data and
compensate the delay error by producing a PA image. Simulation and experimental
studies presented that this approach can achieve an equivalent resolution compared
to PA image generated from channel data. In addition, it was demonstrated that deep
neural networks have a potential to exploit the temporal information in PA images
for an improvement in image quality as well as a gain in the imaging frame rate.

Future directions along the line of this research include the exploration of develop-
ing beamforming algorithms utilizing more accessible data from clinical ultrasound
machine such as post-beamformed B-mode images. It was reported that if the PA
target is a point-like target, the post-beamformed B-mode image can be used as the
source for PA image recovery [60]. For the image quality enhancement based on
deep neural networks, more extensive in vivo evaluations are required to validate the
clinical translatability. Other training architectures that do not take the final B-mode
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image but pre-beamformed or post-beamformed RF data may enhance both SNR
and resolution of a PA image [61].
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