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Abstract In photoacoustic computed tomography (PACT), advanced model based
iterative image reconstruction (MoBIIR) offers several advantages over analytical
methods such as back-projection, time reversal, Fourier transform, delay and sum
algorithms. However, MoBIIR also shows some disadvantages such as requirement
of large storage memory, higher matrix computation time and necessity of selecting
optimum parameters for the right solution. When using model based reconstruction
methods for high resolution photoacoustic and ultrasound tomography, large matrix
computation time is an important concern. In this chapter, we will discuss about
filtered back-projection, time reversal methods, F-K migration and a specific model
based iterative photoacoustic image reconstruction scheme where the direct non-
symmetric photoacoustic system matrix of form Hx = z (where H is m by n matrix
and m > n) has been analyzed in detail using Least Squared Conjugate Gradient
(LSCG) method where the computation of theHTH and thereafter regularization are
explicitly avoided. Apart from this, a unique pseudo-dynamical systems approach
based iterative algorithm is also discussed to demonstrate the insensitivity of tikhonov
type physical regularization (λ), which is used frequently in normal equation of form
HTHx = HTz. However, to implement the algorithms, the photoacoustic equation
is usually discretized over the spatial and temporal domain to form spatial-temporal
interpolated model photoacoustic system matrix (H ), where the data structure for
sparsity is considered for accelerating the computation and hence the reconstruction.
Finally, the applications of algorithms in photoacoustic imaging modality are shown.
The computational requirements of different reconstruction strategies suitable for
handheld photoacoustic imaging are also analyzed and discussed in detail.
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1 Introduction

Parameter recovery based on information carried by radiation has been the essential
methodology employed in the development of many valuable tools for medical diag-
nostic imaging. Examples are the well known X-ray computer assisted tomography
(CAT),magnetic resonance imaging (MRI), ultrasonic imaging (USI), positron emis-
sion tomography (PET), etc. Each of the abovemodalities possess certain advantages
and some unavoidable disadvantages. For example, the ultrasound based imaging
is affordable and uses non-ionizing radiation, but provides images with low soft-
tissue contrast and probe-dependent spatial resolution, which does not give useful
functional information (for example, the metabolic state of an organ being imaged),
especiallywhen the required resolution is below 200–500mu.Our observation shows
that contrast plays a vital role in enhancing the resolution. The MRI provides good
quality images which can also give functional information with the administration of
external contrast agents, but is prohibitively expensive. To this collection of imaging
techniques, photoacoustic computed tomography (PACT) is a recent addition which
uses the physics of near infrared (NIR) light for enhancing contrast and principle of
ultrasound for improving high resolution in tissue. In PACT, a pulsed light is used for
excitation of certain tissue substances and as a result of light absorption, ultrasound
signals generation occur in the tissue substances through thermo-elastic phenomena.
The process of generating ultrasound with light-matter interaction and use of those
light induced ultrasound signals around the object for reconstructing the absorption
image of tissue substances altogether is known as photoacoustic computed tomogra-
phy (PACT). Near-infrared and ultrasound radiation are non-ionizing and therefore
both can be repeatedly employed without harm to the patient.

Photoacoustic phenomena generates a pressure gradient locallywithin tissue in the
ultrasound frequency regime, by theprocesses of optical absorption and thermoelastic
expansion [2, 3]. The physics of photoacoustic wave propagation can be used to map
the spatial distribution of light absorption in tissue substances (Fig. 1). Photoacoustic
imaging shows clinical level potential in providingdeep-tissue high resolution images
with optical spectroscopic contrast (Fig. 1). This new imaging modality has several
potential clinical applications in cancers [2–5], inflammatory arthritis [6], diabetes,
metabolic rate estimation in healthy as well in disease affected patients. This is also
proven clinically (Fig. 1) through the efforts of a number of researchers around the
globe [1–4, 7]. Usually, light with nanosecond (ns) pulse widths illuminates the
tissue sample. Ultrasound is produced by the PA effect following absorption of light
by tissue substances such as hemoglobin. The pressure waves propagates from high
gradient location to low gradient area and the propagated wave can be detected at
the tissue surface using ultrasound detectors.

The partial differential equation that models the photoacoustic wave propaga-
tion through the acoustically homogeneous medium due to nanosecond pulsed laser
irradiance can be described [8, 9] as
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Fig. 1 Photoacoustic computed tomographic image and ultrasound image in human subject. Com-
paring the resolution and what wee see in photoacoustic and ultrasound image under rheumatoid
arthritis disease in human finger joints. Reproduced with permission from [1]
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where A(r) is the absorbed thermal energy density generated at position r and time
t due to nanosecond pulsed laser irradiance. I(t) is temporal pulsed laser profile.
Cp is the isobaric specific heat of the medium, β is the isobaric volume expansion
coefficient, and c is the acoustic speed. Now if the pulsewidth of the nanosecond laser
is much shorter than the stress relaxation time of the tissue like medium then we can
write the temporal pulse laser profile I(t) with stress confinement condition [8, 9] as
δ(t). The forward solution of above pressure wave equation can be obtained by the
use of Green’s function approach [8, 9] with absorbed energy (A(r)) distribution as;
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The above equation is the pressure propagation equation where the propagation is
estimated by spatial-temporal correlated impulse response function δ(t − |r − r′|/c).
The pressure p(r, t) is an integrated pressure over a circle (in 2D) of radius R = ct
with a spatial sample width dr′. The equation shows that the contribution of the
pressure at time t at detector location (r) is only from a circular strep of width dr

′

at a radial distance ct=‖ r′ − r ‖. Here r
′
is an arbitrary point in the space where

pressure build up occurs due to the photoacoustic effect. Both analytical and model
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based iterative image reconstruction (MoBIIR) have been developed for solving and
modeling Eq.2 for knowing the initial energy deposition at the site of the tissue sub-
stances. To reconstruct the map of total absorbed energy, we will discuss frequently
used filtered back-projection and time reversal methods. In addition to the above
mentioned algorithms, we will discuss in details about Fourier transform assisted
F-K Migration based reconstruction, variants of model based iterative methods such
as a specific model based iterative photoacoustic (PA) image reconstruction scheme
where the direct non-symmetric PA system matrix of form Hx = z (where H is m
by n matrix and m > n) has been analysed in detail using Least Squared Conjugate
Gradient (LSCG) method where the computation of theHTH and thereafter regular-
ization are explicitly avoided. Apart from this, an unique pseudo-dynamical systems
approach based iterative algorithm is also discussed to demonstrate the insensitiv-
ity of tikhonov type physical regularization (λ), frequently used in normal equation
of form HTHx = HTz. The following sections describe various methods in more
details.

2 Analytic Equation Based Algorithms

2.1 Filtered BackProjection Based PACT Imaging

Notable among the algorithms used for solving Eq.2 are the analytic algorithms
based on filtered backprojection (BP) [3, 10] in the time-domain, which assume that
the measured data is a Radon Transform of the object function. The algorithms are
easy to apply for planar, cylindrical and spherical geometries [11]. A drawback of
this method is that it requires a full-view of object with a high number of projections,
and does not provide quantitative solution.

Following are the steps to reconstruct the source image using the back projection
algorithm in photoacoustic tomography. The original photoacoustic source, recorded
signal and their amplitude,time graph and reconstruction with backprojection are
presented conceptually in Fig. 2a–c

1. Start recording photoacoustic signals when t = 0.0 by using ultrasound detector,
as shown in Fig. 2a

2. Filter the signal as per the interest and then extract the time of flight details from
the signal, as shown in Fig. 2b

3. Drawing a circle by taking a detector position as its center and its time of flight
data as the radius(calculated using c = speed of sound), as shown in Fig. 2c

4. Repeating this for each detectors, as shown in Fig. 2c.

Backprojection or filtered backprojection is widely used in qualitative photoa-
coustic image reconstruction due to its simplistic approach, ease of implementation
and speed suitable for quasi real time PA imaging. Downside of this method is that
it does not provide quantitative information.
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Fig. 2 Backprojection’s conceptual presentation through visual graphs

2.2 Time Reversal Based PACT Imaging

In Time reversal (TR) approach, image reconstruction is performed by numerically
propagating the recorded data in reversed temporal order back into the domain [12,
13]. When t = 0 is arrived, the initial pressure distribution is recovered. The advan-
tages of the algorithm are that it can be applied to arbitrarily shaped measurement
surfaces, and has generally been described to be the least sensitive PA algorithm to
restrictions [12]. The method is also gaining its popularity due to the availability of
a free third party MATLAB toolbox, which performs the time reversal image recon-
struction using k-space methods [12]. The drawback of the TR approach lies in the
requirement for the time-reversed waves to traverse the entire domain from detector
coordinates which may entail unnecessary computations in regions which hold little
interest. In cases when the propagation model assumes acoustic homogeneity while
the measurement domain has unknown variations in density and speed-of-sound,
image artifacts can result from the phenomenon of artefact trapping [14]. TRmethod
needs large number projections to obtain high resolution images [12]. Time reversal
conceptual presentation is shown in Fig. 3.

Figure3a represents source and the array detector location, Fig. 3b shows recorded
signal’s amplitude at linear detector array as per the arrival time at their correspond
detectors’ spatial locations. Figure3c–e shows reversed temporal order back into the
spatial domain at three different time samples.

2.3 F-K Migration Based PACT Imaging

Fourier transform can be used to migrate the wave field as per the amplitude and
phase. Originally, migration technique is developed based on the reflecting source
modelwhich assumes that all the field scatterers generate secondary acoustic sources.
The main aim of migration is to reconstruct the secondary source position. Under the
plane wave model, the scattering source estimation problem can be made suitable
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Fig. 3 Time reversal’s conceptual presentation. a Represent source and the array detector location
in space, b recorded signal’s amplitude at linear detector array as per the arrival time at their
correspond detector locations, c–e shows reversed temporal order back into the spatial domain at
three different times

for plane wave imaging by a spatial transformation (F-K) of the hyperbolic traces
present in the raw data. To produce an image of the scatterers, all the hyperbolas must
be migrated back to their apexes. However, the advantage of migration technique is
that it improves focusing by use of amplitude and phase rectifications where the
correction is done for the effects of spreading of ray paths as the waves propagate.
This technique has been used as a basic tool in geophysics since the 1950s [15].

F-K migration takes back the recorded US signal to that time at which the wave
emerges out of the secondary source. It was first developed by Stolt in 1978 for B scan
seismic imaging [15]. Later, it was developed for plane wave ultrasound imaging by
Garcia in 2014 [16]. This algorithm is limited by the assumption of constant wave
velocity [16]. However, its fastest computation time makes it suitable for real-time
ultrasound imaging and same is true for photoacoustic imaging because both imaging
modality uses raw ultrasound data. The assumption to neglect the downward going
waves exactly matches with the PACT. Whereas, in plane wave ultrasound imaging
we have to fit the travel time with the exploding reflector model as shown in Fig. 4.

In plane wave imaging, all the transducer elements emit the ultrasound at the same
time to generate a plane wave. The plane wave proceeds towards the transducer and
interacts with the reflector surface. After the interaction, the reflector(at S(sx, sz), see
Fig. 4) becomes the secondary source and starts to emit radially outwards. usually
the reflected signal is recorded by the linear transducer. The travel time of the wave,
varying with the detector position(x), is given below:
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Fig. 4 x-z plane, where linear transducer is placed on the x axis and reflector in x-z plane. The
arrows represents the direction of propagation

• For exploding reflector model:

ˆt(x) = 1

ĉ

√
(ŝx − x)2 + (ŝz − z)2 (3)

• For plane wave ultrasound imaging:

t(x) = 1

c

(
sz +

√
(sx − x)2 + (sz − z)2

)
(4)

• For plane wave photoacoustic imaging:

t(x) = 1

c

√
(sx − x)2 + (sz − z)2 (5)

In order to use F-K migration in PWI we need to fit its travel time equation with
the exploding reflector model. However, doing so is an unachievable task. Due to the
dependency of wave amplitude with distance, most of the its energy is located at the
apex of the hyperbola. By equating the 0th–2nd order derivative of the Eqs. 3, 4 and
5 we can find out approximate fitting parameters. It yields ĉ = c√

2
and ŝz = √

2sz
for plane wave ultrasound imaging [15] and ĉ = c and ŝz = sz for photoacoustic
imaging.

Lets assume that �(x, z, t) is the scalar wavefield that is a solution to

∇2� − 1

c

∂2

∂t2
� = 0 (6)

We know the scalar wavefield at z = 0, time t. We need to know the scalar wave-
field at distance z at time t = 0 i.e. �(x, z, t = 0) (see Fig. 4).
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The Fourier transform of �(x, z, t) in the (kx, f ) spectrum is defined in the fol-
lowing way:

�(x, z, t) =
∫ ∞∫

−∞
φ(kx, z, f )e

2πι(kxx−ft)dkxdf (7)

Now substituting Eqs. (7) in (6) we get

∇2

[ ∫ ∞∫

−∞
φ(kx, z, f )e

2πι(kxx−ft)dkxdf

]

−1

c

∂2

∂t2

[ ∫ ∞∫

−∞
φ(kx, z, f )e

2πι(kxx−ft)dkxdf

]
= 0 (8)

These derivatives can easily be taken inside the integral and can be evaluated to
get

∫ ∞∫

−∞

[
∂2φ(kx, z, f )

∂z2
+ 4π2

[ f

c2
− k2x

]
φ(kx, z, f )

]
e2πι(kx−ft)dkxdf = 0 (9)

The left hand side of Eq. (9) is the Fourier transform of the terms in the square
bracket in Eq. (9). Now since its right hand side is equal to zero, the function will
also be equal to zero.

∂2

∂z2
φ(z) + 4π2k2z φ(z) = 0 (10)

where,

k2z = f 2

v
− k2x (11)

Nowwe have formulated the problem in the (kx, f ) domain i.e. is a Fourier domain
of (x, t). The boundary condition is now the Fourier transform of�(x, z = 0, t) over
(x, t) i.e. φ(kx, z = 0, f ). Since, Eq. (10) is a second order differential equation, its
unique general solution can be written as

φ(kx, z, f ) = A(kx, f )e
2πιkzz + B(kx, f )e

−2πιkzz (12)

where A(kx, f ),B(kx, f ) are to be determined from the boundary condition. It is
important to note that in Eq. (12) the two terms can be interpreted as the upgoing
(B(kx, f )e−2πιkzz) and downgoing(A(kx, f )e2πιkzz) wavefield (Fig. 5).
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Fig. 5 Various steps for implementing F-K migration and photoacoustic image reconstruction
strategies

Since, we only have one boundary condition, i.e. φ(kx, z = 0, f ), in order to solve
the problem we have to assume a limited model which assumes waves propagating
in one direction only. This means that

A(kx, f ) = 0, B(kx, f ) = φ(kx, z = 0, f ) (13)

Substituting (13) in (12) we get

φ(kx, z, f ) = φ(kx, z = 0, f )e−2πιkzz (14)

Substituting (13) solution in (7) we get

�(x, z, t) =
∫ ∞∫

−∞
φ(kx, z = 0, f )e2πι(kxx−kzz−ft)dkxdf (15)
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Now migrating (15) from time t to t = 0 we get our migrated solution

�(x, z, t = 0) =
∫ ∞∫

−∞
φ(kx, z = 0, f )e2πι(kxx−kzz)dkxdf (16)

This solution has a disadvantage that it is not an inverse Fourier transform of
function φ(kz, z = 0, f ). Stolt in 1978 suggested a change of variable from (kx, f ) to
(kx, f (kz)) to make the migrated solution an inverse fourier transform of φ(kx, z =
0, f (kz)). The variable change is defined by Eq. (11) which then can be solved for f
as:

f = c ×
√
k2x + k2z (17)

=⇒ df = ckz√
k2x + k2z

dkz (18)

Now substituting (17) and (18) in (16) we get

�(x, z, t = 0) =
∫ ∞∫

−∞

ckz√
k2x + k2z

φ(kx, z = 0, f (kz))e
2πι(kxx−kzz)dkxdkz (19)

We have seen that the new FFT-based F-K migration determines the wavefield
at the time of start that is t = 0. Advantage of the F-K migration is that it uses
few mapping and FFT techniques which makes it faster for real time imaging. The
reconstructed images with backprojection (Fig. 6a), time reversal (Fig. 6b) and F-K
migration (Fig. 6c) are compared visually and also based on the computation time.
For computation we have used a PC with Intel(R) Core(TM) i7-6700 CPU @ 3.40
GHz, DDR4 RAM: 32 GB. The computation time for reconstructing images using
BP is 2.6 s, TR is 99.3 s and for F-K migration it is 1.14 s.

Fig. 6 Comparing the reconstruction methods through visual perception and computed time
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3 Model Based Iterative Image Reconstruction Algorithms

Due to constant demand for quantitative and high resolution photoacoustic imag-
ing, model based algorithms are gaining importance. In model based iterative image
reconstruction (MoBIIR) methods, algebraic and matrix methods within an iterative
framework are used to minimize the residue between the model-generated data and
measured data. To implement the MoBIIR algorithms, first we shall discretize Eq.2
and formulate forward model in such a way that it serves to model PA wave propa-
gation [17–22] and relate the spatially discretized initial pressure distribution to the
acquired signals. Such an approach lends itself to application of algebraic and matrix
methods within an iterative framework, for image reconstruction. Now by shifting
r

′
, in Eq.2, we find a new t and then corresponding integrated pressure at a new

radial distance. So a spatial and temporal (spacetime) matrix H can be formed by
shifting the position r

′
(i, j) over the discretized space for a series of sample time tk

and then estimate the boundary pressure (zrd ,tk ) at detector location rd . The deposited
energy A(r) can be expressed over a discretized spatial domain (� ∈ R 2, r,r

′ ∈ �)
as A(i, j). Spatially correlated temporal impulse term for a sampled time, tk over
space ri,j can be written as h(tk − |r ′ − ri,j|/ci,j) 	 δ(t − |r′ − r|/c). The boundary
pressure estimation forward problem can be formulated (assumed η = β

Cp

∂
∂t ) from

Eq.2 over discretized spatial-temporal domain as,

zp(rd , tk) = η
∑
i,j

{ ∫

R=ct

1

ci,j tk
× h(tk − |rd − r

′
i,j|/ci,j)dr

′}
A(i, j) (20)

Algorithm 1 : Algorithm for estimating forward model matrix H and boundary
pressure (zp)
for

all detector positions rd
for

all pixels (i, j) over the discretized image domain xlA
calculate the time of flight tk = ‖ (ri,j - rd )/ci,j‖
Calculate interpolation coefficient pk at neighboring time points of tk
Estimate H (tk , l)= coefficient of pk/(tk cl) ∀ l;
Integrate the pressure over constant sampled time points tk with corresponding coefficient

pk as;
zd ,tk= zd ,tk+

pk
(tk cl )

× xlA
end for

end for

A series of constant time samples (tk = k/fs, where k = 1 . . .m) are considered
and h(t) is evaluated over space (ri,j ↔ rl) to form the propagation system matrix
H . The simplified form of pressure propagation equation can be written with system
matrix H and initial pressure vector xlA ( with β =1, Cp=1) as;
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zp(rd , tk) = η
∑
l,k

H (tk , r
l)xlA (21)

where the initial pressure vector (xlA) is formed from energy absorptionmatrixA(i, j).
The propagation system matrix H is formed with h(t) and its interpolated value
around the sampled time tk . The forward photoacoustic projection integral is com-
puted as shown in Algorithm 1.

The PA forward problem (Eq.21) with system matrix H can be written in matrix
multiplication form as;

zp = HxA (22)

where zp is measurement vector (zp ∈ R
m), H is the system matrix (H ∈ Mm×n(R)

wherem > n) which model the propagation of PA signal and the vector xA (xA ∈ R
n)

represents initial pressure rise. A photoacoustic reconstruction algorithm is used to
solve the PA inversion problem, that is to recover an image of the initial pressure
rise distribution xA inside the tissue from zp, the noisy PA signals measured at tis-
sue boundary. The photoacoustic pressure zp at boundary is obtained by integrating
pressure over a constant sampled time points with linear interpolated coefficients.

The solution is obtainedwithminimizing the residuebetween themodel-generated
(HxA) data and measured data (zp) by iterations. The minimization function [17–22]
for iterative method can be written as;

χ = argmin
χ

‖ zp − HxA ‖2 +λ ‖ xA ‖2 (23)

where λ is a regularization parameter to stabilize the ill-condition of the system
matrix in normal equation. The minimization equation (Eq.23) with Gauss-Newton
scheme lands to the normal equation [21, 22] required to be solved is then of the
form;

[HTH + Iλ]xA = HTzp (24)

The normal equation for photoacoustic inverse problem can be solved with variant
of regularization schemes. The simplest regularization selection method is L-Curve
method where a series of regularization set is formed and the best one which mini-
mizes the residue is chosen. However, Dean-Ben et al. [21] has used a least squares
QR (LSQR) based regularized reconstructionmethodwhere the direct solution vector
from full view data is used as regularization and shown an added advantage of being
highly efficient. Inversion of limited-view data is stabilized using Tikhonov or Total
Variation regularization [17, 19–23] which require explicit selection of an optimal
regularization parameter. Recently, Shaw et al. [22] presented a regularization opti-
mization scheme based on LS-QR decomposition which shows good performance
and computational efficiency with reconstruction time of 444.9 s.
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In order to achieve high accuracy with flexibility in using limited-view data, H
should be a highly discretized large systemmatrix. Further, thematrixH is transposed
to form a square matrix [HTH + Iλ] and the inverse is computationally expensive,
requiring large memory storage. HTH is often dense even when H is sparse [24].
Further, if H is ill-conditioned then the HTH is more ill-conditioned since its con-
dition number is the square of the condition number —{κ(H )}2 [24, 25]. One of
the challenging issues of iterative PA imaging is to balance the trade-off between
the computational efficiency of the reconstruction algorithms and the resolution of
reconstructed images.

To avoid the regularization selection and explicit formulation of HTH , non-
symmetric system matrix equation (Eq.22) can be solved by least squared CGS
method. The steps for solving the non-symmetric PA system matrix are shown in
Algorithm 2.

Algorithm2 : Solving non-symmetricmatrix equationHxA = zp using regularization
free LSCGS scheme.

Input: H and zp
Initialize:
x0A ⇐ 0

s0 ⇐ zp − Hx0A
r0 ⇐ f 0 = HT s0

q0 ⇐ Hf 0

Compute for output: xkA
For each iteration “k” the Least Squared Conjugate Gradient (LSCG) algorithm becomes as;;

α = ‖rk−1‖22
‖qk−1‖22

xkA ⇐ xk−1
A + αf k−1

sk ⇐ sk−1 − αqk−1

rk ⇐ HT sk−1

β ⇐ ‖rk‖22
‖rk−1‖22

f k ⇐ rk + βf k−1

qk ⇐ Hf k

It can be noticed that the inverse Algorithm 2 explicitly avoids calculation of
HTH . The main aim of the algorithm is to estimate the residual zp − Hx and then
multiply it by HT rather than subtracting HTHxA from HTzp. The algorithm 2 uses
few simple vector multiplications and additions which helps to execute it faster due
to use of the sparsity property of H and HT .
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3.1 Symmetry Conjugate Gradient Search (CGS) and Least
Square Conjugate Gradient Search (LSCGS) Based
Reconstruction

It is clear from several studies [17, 19–23] that symmetric normal equation is com-
monly used to model the photoacoustic reconstruction strategies and it is consid-
ered as a starting platform for adding various type of regularization and improv-
ing the reconstruction thereafter. Main goal of the inverse problem is to compute
the eigenvalues of normal equation HTHx=HTzp or in other suitable mathematical
form. Symmetric CG algorithm can be applied to the normal equation either from
[HTH + Iλ]xA = HTzp explicitly or simply extending it through applying vector
multiplications on HT and H in succession. By applying vector multiplication on
HT andH in succession, we can avoid formulatingmatrixHTH which will generally
be dense even whenH is sparse. Formulating the normal equation (HTH ) from data
structure assisted formulated sparse rectangular matrix (H orHT ) does not solve the
problem where the condition number of HTH is the square of the condition number
ofH and, it loses the sparsity which increase the required storage memory forHTH .
However, conjugate gradient algorithms use thematrix andmatrix-vector multiplica-
tions only. So it is not mandatory to form thematrixHTH which leads to cancellation
or loss of sparsity. Due to serious amplification of the spectral condition number (as
it is squared), it introduces error in eigenvalues. The idea of least-squares CG was
originally proposed by Hestenes and Stiefel [26] and, later it came to be known as
CGLS which involves vector computing terms of the form HT (Hx − HTzp) instead
of HTHx − HTzp. The difference between the two methods is entirely the rounding
error, which is important in practical problems where sparsity of the large matrix
need to be preserved for fast computing.

However, in the non-symmetric case, as it is shown in algorithm 2, all previous
search directions are used in order to calculate a new approximation and the rate of
convergence is determined by the Krylov sequence Hr0, H 2r0 and for symmetric
CGS method, the rate of convergence is determined by (HTH )Hr0,(HTH )2Hr0, . . .
as it would have been the case if the normal equations had been used. Here r is the
residue.

3.2 Pseudo-dynamical Systems Approach for PACT Imaging

A regularization-insensitive route to computing the parameter updates using the
normal equations (Eq.21) is to introduce an artificial time variable [23, 27–29]. Such
pseudo-dynamical systems, typically in the form of ordinary differential equations
(ODE-s), may then be integrated and the updated parameter vector is recovered
once when either a pseudo steady-state is reached or a suitable stopping rule is
applied to the evolving parameter profile (the latter being necessary if the measured
data is limited and noisy). Indeed, it has been shown [23, 28–30] that the well
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knownLandweber iterations correspond to an explicit Euler time discretization of the
pseudo-time ODE-s for the Gauss-Newton’s updates (Eq. 21) and appear to exhibit
a self-regularization character depending upon the pseudo time step. This is also
desirable in view of the fact that the addition of the regularization term alters the
minimization problem which we are trying to solve. Moreover, if one adopts an
explicit pseudo-time integration scheme for the ODE-s, an explicit inversion of the
discretized (linear case) operator in the normal equation for PA can be avoided. This
is the best feature of this method which has several advantages when dealing with
singularity and rank deficiency issues.

Here, we will develop a concept of solving the optimized normal equation for
photoacoustic problem as it was said in previous paragraph. The normal form ofmin-
imized photoacoustic equation can be further simplified with a notion of A = HTH
and b = HTzp. The optimized system of linear or non-linear equation (Eq.21) of
many physical, biological, and economic processes can be expressed in a general-
ized form as,

Ax = b (25)

where A ∈ R
N×N is a state companion matrix (for PAT, A = HTH + λI ), b ∈ R

N×m

(b = HTzp in our case) is the constant force matrix and x ∈ R
N×1 is the unknown

solutionvector (x). Since etA and etAμ0 are solutions of ordinary differential equations,
it is natural to consider methods based on numerical integration. For an example, in
a simple case, we solve a homogeneous matrix differential equation such as Ax =
0 with an introduced fictitious time at steady state as ẋ(t) = Ax(t) describing the
evolution of the system on pseudo time. With an initial condition x(t = 0) = x0, the
solution would be of form etAx0. The solution of Eq.25 can be obtained without
inverting the square matrix A. In principle, the solution is obtained from x(t) = etAx0
and can be formally defined by the convergent power series as,

etAx0 = Ix0 + tAx0 + t2A2x0
2! + · · · + · · · (26)

Generally, A is large, dense and non-sparse (in some cases, partially sparse A is
observed) due to formulation of normal equation from the sparse matrix with its own
transpose form. In particular the system of ordinary differential equation arises from
the spatial discretization of a partial differential equation. Typically eA is dense even
ifA is sparse, wewould like to compute this in an iterative way. The iterativemethods
are used for sparse matrix problems where only matrix vector products are needed.
A powerful class of methods that are applicable to many problems are the Krylov
spacemethods [31, 32], inwhich approximations to the solution are obtained from the
Krylov spaces spanned by the vectors {x0,Ax0,A2x0, . . . ,Amx0} for some ‘m’ that is
typically small compared to the dimension ofA. The Lanczosmethod [33] for solving
symmetric eigenvalue problems is of this form and for non-symmetric matrices the
Arnoldi iteration [33] can be used. In this method the eigenvalues of a large matrix
are approximated by the eigenvalues of a Hessenberg matrix of dimension ‘m’.
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Now, we will show how to form a pseudo-dynamic time integral equation of
minimized system Eq.26 of formAx + b = 0. The steady state equation ofAx + b =
0 (obtained from Eq.26) with a fictitious time can be written as time derivative form,

ẋ(t) = Ax(t) + b(t). (27)

Multiplying by factor of e−At throughout and integrating, we obtain

e−At ẋ(t) − e−AtAx(t) = e−Atb(t) (28)

e−At ẋ(t) − Ae−Atx(t) = e−Atb(t)

d(e−Atx)

dt
= e−Atb(t) (29)

Now integrating the above equations in [t, t + �t ] with initial boundary condition
x(t) = x∗, we obtained the pseudo-dynamic time integration equation for updating
the solution vector with f (s) = A(x∗)x∗ − b as,

x(t + �t) = eA�tx∗ +
t+�t∫

t

eA(t+�t−s)f (s)ds (30)

which converges to x̂ as t → ∞. Note that we have assumed A is square and positive
definite. Following the concept of local linearization [29], the linearization point t =
t∗ (such that x∗ := x(t)∗) could be chosen anywhere in the closed interval [t, t + �t]
without affecting the formal error order. While choosing t = t∗ yields the explicit
phase space linearization (PSL) [29], t = t∗ results in the implicit locally transversal
linearization (LTL) [34]. Denoting hd = tk+1 − tk to be the time step and xk := x(tk),
the explicit PSL map corresponding to the continuous update Eq.30 is written as:

xk+1 = eA(tk+1−tk )xk +
t+�t∫

t

eA(tk+1−s)f (s)ds (31)

An explicit strategy for obtaining the parameter updates via a semi-analytical inte-
gration of the pseudo-dynamic linear equation is proposed in this chapter. Despite the
ill-posedness of the inverse problem associatedwith photoacoustic computed tomog-
raphy, adoption of the first derivative update scheme combined with the pseudo-time
integration appears amuted sensitivity to the regularization parameterwhich includes
the pseudo-time step size for integration (Fig. 7).

A digital numerical phantom with two holo circular shape photoacoustic emitting
sources is considered to be embedded in a surrounding medium of size 20 × 20mm
and themedium is discretizedwith 100× 100 square gridswhere the size of eachpixel
is 20.0µm. The initial pressure rise is assumed to be 1 kPa to the both local shapes
and 0 kPa pressure for the background medium. The speed of sound (c = 1500m/s)
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Fig. 7 Reconstructedwith forwardmodel generated datawhichwere detectedwith a line detector of
128 sensors placed at y = 14.5mm. Original image is shown in (a), noisy signal is shown in (b). The
reconstruction are carried out by c BP method, d L-Curve method with regularization (0.001), e L-
Curve method without (near zero, 0.000001) regularization, f LSCGS method, g pseudo dynamic
approach with Tikhonov type physical regularization (0.001), h pseudo dynamic approach with
negligible (near zero, 0.000001) Tikhonov type physical regularization
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is taken to be uniform all over the simulated domain. Numerically generated data
with 128 detectors and data are corrupted with 40% random noise.

For computation we have used a PC with Intel(R) Core(TM) i7-6700 CPU @
3.40 GHz, DDR4 RAM: 32 GB. The computation time was found to be 0.3 s for
BP, more than 8000.3 s for pseudo dynamic system approach, 51.8 s for L-Curve
method with regularization, 128s for L-Curve method without regularization, and
1.5 s for LSCGS method. Selection of time step in pseudo dynamic system is one of
the drawback where computation time depends on the time step size. As the time step
size reduces, the computation time increases due to increase of iteration for smooth
solutions.

4 Numerical Phantom Experiment

Phantoms (physical or numerical) are of paramount importance to evaluate the per-
formance of reconstructed photoacoustic tomographic image either in experiment
or in simulation model. The test objects were developed with the aim of providing
known ground truths with complexity approaching the level of the context in which
the imaging and reconstruction is intended for. For all cases, a numerical phantom
with rectangular shape and circular shape photoacoustic emitting source is designed
and simulations are performed.

A digital numerical phantom with rectangular shape and circular shape photoa-
coustic emitting source were considered to be embedded in a surrounding medium
of size 30 × 30mm and the medium is discretized with 2048 × 2048 square grids
where the size of each pixel is 14.6µm. The initial pressure rise is assumed to be
1 kPa to the both local shapes and 0 kPa pressure for the background medium. The
speed of sound (c = 1500m/s) is taken to be uniform all over the simulated domain.
Figure8 shows simulated phantom, detector orientation and the pressure variation
over the domain. We have considered almost discrete helical shape detector array
orientation for getting very low number of linearly dependent algebraic equations in
the measurement sets. Numerically generated data are corrupted with 40% random
noise.

The image is reconstructed with full view where total number of projection is
12 and total number of detectors in the measurement is 384. Measurement data
expands around 0◦–360◦ of phantom surface. The images are reconstructed with (a)
TR method, (b) BP method, (c) L-Curve method, (d) proposed LSCGS method and
their corresponding images are shown in Fig. 9.

The image is reconstructed with half view where total number of projection
is 6 and total number of detectors in the measurement is 192. Measurement data
expands around 0◦–180◦ of phantom surface. The images are reconstructed with (a)
TR method, (b) BP method, (c) L-Curve method, (d) proposed LSCGS method and
their corresponding images are shown in Fig. 10.
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Fig. 8 Photoacoustic experimental set up for side illumination and the experimentation with ultra-
sound array detector

Fig. 9 Reconstructed with forward model generated 12 projections (half view, 384 detectors) data
expands around 0◦–180◦ of phantom surface. The reconstruction are carried out by a TR method,
b BP method, c L-Curve method, d proposed LSCGS method

Fig. 10 Reconstructed with forward model generated 6 projections (half view, 192 detectors) data
expands around 0◦–180◦ of phantom surface. The reconstruction are carried out by a TR method,
b BP method, c L-Curve method, d proposed LSCGS method
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5 Discussion and Conclusions

Here we have shown several reconstruction schemes where the motivation was to
develop or implement a suitable algorithm for real time handheld photoacoustic
imaging. Analytic equation based reconstruction strategies are quite simple, fast and
provide reasonably acceptable results though it faces challenging drawbacks due
to quantification which can be addressed with well defined reference and standard-
ization. Model based iterative reconstruction algorithm that permits to solve a non-
symmetric matrix (H ∈ Mm×n(R) where m > n) without explicit formation of HTH
and regularization can be used to obtain the photoacoustic solution of large system
matrix. It is shown that this procedure is computationally simple and gives reasonably
good results in terms of computation and resolution. It achieves low computation time
by explicitly avoiding the computation of HTH and regularization. A major advan-
tage of the proposed method is that it takes less memory compared to the normal
equation and is fast in execution compared to the time reversal methods, but slower
than backprojection. Computation time and memory requirement for conventional
image reconstruction methods and certain new inversion algorithms were studied in
detail using numerical phantoms. The computation details have been shown for both
limited view data and full view data when a considerable Gaussian random noise
is added to simulated boundary measurements. The resolution of non-symmetric
system matrix inversion with LSCGS method can be further improved with suitable
interpolation scheme which may introduce larger computation time and this needs
further investigation. A new class of reconstruction strategy with pseudo-dynamic
scheme has been discussed using normal equation where we showed the way to avoid
direct inversion of the system matrix and makes it tikhonov type regularization free.

The total reconstruction computation time with 220 × 220 grid points, 80 MSPS
sampling rate for back projection is 2.46 s and it used 3 GB memory, time reversal
took 1405.4 s and used 2.8 GB memory, L-Curve based normal equation method
took 6510.6 s and used 59.8 GB memory, non-symmetric matrix inversion took 7.4 s
and used 4.5 GB memory, when half view data is considered. When full view data
is considered the computation time with back projection is 4.22 s and it used 3 GB
memory, time reversal took 1411.4 s and used 2.9GBmemory, L-Curve based normal
equation method took 4588.6 s and used 59.9 GB memory, non-symmetric matrix
inversion took 17.2 s and used 5.3 GB memory. The computer used has Processor:
Xenon(R) CPU @2.67 MHz, 60 GB RAM).

The most formidable difficulty in crossing over to a full-blown 3D problem is
the disproportionate increase in the parameter vector dimension (a typical tenfold
increase) compared to the data dimension where one cannot expect an increase
beyond two to three folds [35]. Thus, if 3D iterative image reconstruction algo-
rithms are used, they would require implementation on highly parallelized process-
ing architectures as in graphics processing units (GPUs) [36]. However, considering
resolution and computation time, real time imaging may be possible with F-Kmigra-
tion based reconstruction both for 2D and 3D imaging, provided some calibration is
performed for gathering quantitative information. Getting quantitative information
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fromF-Kmigrationmethod is still a debatable subject. However, combination of F-K
migration and accelerated model based imaging may solve the purpose, where F-K
migration will provide real time imaging capability and accelerated model method
will quantify the parameters.
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