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Abstract Light-emitting diodes (LED) based photoacoustic imaging (PAI) systems
have drastically reduced the installation and operational cost of the modality. How-
ever, the LED-based PAI systems not only inherit the problems of optical and acous-
tic attenuations encountered by PAI but also suffers from low signal-to-noise ratio
(SNR) and relatively lower imaging depths. This necessitates the use of compu-
tational signal and image analysis methodologies which can alleviate the associ-
ated problems. In this chapter, we outline different classes of signal domain and
image domain processing algorithms aimed at improving SNR and enhancing visual
image quality in LED-based PAI The image processing approaches discussed herein
encompass pre-processing and noise reduction techniques, morphological and scale-
space based image segmentation, and deformable (active contour) models. Finally,
we provide a preview into a state-of-the-art multimodal ultrasound-photoacoustic
image quality improvement framework, which can effectively enhance the quantita-
tive imaging performance of PAI systems. The authors firmly believe that innovative
signal processing methods will accelerate the adoption of LED-based PAI systems
for radiological applications in the near future.

1 Introduction

Photoacoustic imaging (PAI) emerged in the early 2000s as a novel non-invasive and
non-ionizing imaging method, harnessing the advantages of optical and ultrasound
imaging modalities to provide high-contrast characteristic responses of functional
and molecular attributes without sacrificing resolution (for depths of millimeters to
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centimeters) in highly optically scattering biological tissues. In PAI, acoustic waves
are generated by the absorption of short-pulsed electromagnetic waves, followed
by detection of generated acoustic waves using sensors, €.g., piezoelectric detectors,
hydrophones, micro-machined detectors. The term photoacoustic (also optoacoustic)
imaging is synonymous with the modalities where one uses visible or near-infrared
light pulses for illumination while using electromagnetic waves in the radiofrequency
or microwave range is referred to as thermo-acoustic imaging. The research efforts
in PAI have been directed towards the development of new hardware components
and inversion methodologies allowing an increase in imaging speed, depth, and
resolution, as well as on investigating potential biomedical applications. Further,
the unique capabilities of the recently developed small animal imaging systems and
volumetric scanners have opened up the unexplored domain of post-reconstruction
image analysis. Despite these advantages and massive growth in PAI modalities, it
is still operational mostly in research fields and for preclinical studies due to high-
cost associated with the instrumentation and so-called limited-view effects, offering
sub-optimal imaging performance and limited quantification capabilities. Significant
limitations yet remain in terms of inadequate penetration depth and lack of high-
resolution anatomical layout of whole cross-sectional areas, thereby encumbering
its application in the clinical domain.

With the emergence of the light-emitting diode (LED)-based PAI modalities, the
operational cost of the imaging system drastically reduced, and the instrumenta-
tion becomes compact and portable while maintaining the imaging depth of nearly
40 mm with significant improvisation in resolution as well. Being cost-effective
and more stable compared to the standard optical parametric oscillator (OPO)-based
systems, the LED-based systems have made PAI technology more accessible and
open to new application domains. Recently several early clinical studies using PAI
have been reported, e.g., gastrointestinal imaging [1], brain resection guidance [2],
rheumatoid arthritis imaging [3]. Further, it is the capability of real-time monitoring
of disease biomarkers that makes it an impeccable tool for longitudinal supervision
of circulating tumour cells, heparin, lithium [4]. However, this probing modality,
especially LED-PAI is still characterized by low signal to noise ratio (SNR) and
lower image saliency when compared to several other clinically adopted imaging
modalities. Therefore, enhancing the SNR in both signal and image domain, as well
as the use of image enhancement techniques and pre-processing of PA images is of
significant interest to obtain clinically relevant information and characterize different
tissue types based on their morphological and functional attributes. In this context,
this chapter aims to provide the use of signal and image analysis in conjunction with
imaging and post-processing techniques to improve the quality of PA images and
enable optimized workflows for biological, pre-clinical and clinical imaging.

This chapter will illustrate relevant signal analysis techniques and is organized
with the following sections. Section 2 introduces a generalized PAI system where dif-
ferent aspects of the imaging instrumentation are highlighted with a precise descrip-
tion, followed by discussion of different signal processing techniques, e.g., ensem-
ble empirical mode decomposition, wavelet-based denoising, Wiener deconvolution
using the channel impulse response and principal component analysis to increase the
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SNR of the acquired acoustic signals prior to reconstruction, in Sect. 3. Section 4
entails image analytics, intends to implement at different stages in post-processing,
ranging from noise removal to segmentation of different biological features. Var-
ious techniques, to significantly increase the SNR of PA images, are discussed
while maintaining a great deal in both spatial domain and frequency domain pro-
cessing techniques. Besides, segmentation of different biological structures, based
on their structural and functional properties, can be achieved through numerous
approaches e.g. morphological processing, feature-based segmentation, cluster tech-
niques, deformable objects. This entire section describes various image analysis
methods to comprehend PA image analysis further and helps to ascertain problem-
specific processing methodologies in the application domain. Additionally, Sect. 5
covers advanced solutions to improve image quality by rectifying various PAI param-
eters such as optical and acoustic inaccuracies, generated sue to practical limitations
and approximations in PAI modality. In this context, different experimental and algo-
rithmic approaches are discussed with the help of recent findings in PA research. In
summary, this chapter provides a holistic approach of performing LED-based PA sig-
nal and image processing at various stages starting from acoustic signal acquisition
to post-reconstruction of PA images through the different computational algorithms
with prospective dimensions of probable research areas to improve the efficacy of
PA imaging system in clinical settings.

2 Block Diagram of Imaging and Signal Acquisition

A generalized schematic of a PAl system is shown in Fig. 1. Generally, a nano-second
pulse duration light source (in Fig. 1, we show a laser diode-based PAI system) with
a repetition rate from 10 Hz to several kHz and wavelength in the range of visible to
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Fig. 1 Schematic block diagram of a generalized laser-diode based PAI system
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NIR is used to irradiate the sample under observation. Importantly, it is also empirical
to keep the laser energy exposure within the maximum permissible limit following
the guideline by ANSI standard.! Due to the thermoelastic effect, the absorbing
tissue compartments will produce characteristic acoustic responses which are further
acquired using an ultrasound transducer unit. An ultrasound transducer unit, working
in the range of several MHz, can be placed adjacent to the sample body to capture
these PA signals and converts them into their corresponding electrical signal levels
to transfer it to the data acquisition unit which is directly connected and controlled
with the host PC for post-processing, reconstruction and storage of the signal and
image data for further offline processing if required.

Prior to acquisition by data acquisition system, these PA signals are amplified due
to their low order of amplitude and filtered to reduce the effect of noises, usually com-
bines electronic noise, system thermal noise and most importantly the measurement
noise that arises due to the highly scattering tissue media for which the acoustic waves
undergo multiple attenuation event before acquisition using ultrasound transducers
[5]. These noises are capable of deteriorating the signal strength and eventually the
quality of PA images. Therefore, a significant amount of signal processing both at
the hardware level and software platform needs to be carried out to mitigate this
challenge. These techniques are discussed in the following sections.

3 Signal Domain Processing of PA Acquisitions

In most cost-effective PA imaging systems, researchers are using low energy PLD
or LED which in turn significantly reduces signal strength, hence affecting SNR and
quality of reconstructed images. Such imaging set-ups need significant improvement
in signal processing to enhance the SNR so that it would eventually produce consid-
erably good quality PA images after reconstruction. With recent scientific deductions
and technological advancement, several researchers have targeted this problem from
a different perspective. Zhu et al. introduced a low-noise preamplifier in the LED-
PAI signal acquisition path to increase the sensitivity of PA reception, followed by a
two-steps signal averaging: 64 times by data acquisition unit and 6 times by host PC,
thus combining 384 times averaging which significantly improves the SNR with a
square root factor of the total averaging times [6]. They also established such an SNR
improvement strategy through the phantom model experiment and in vivo imaging
of vasculature on a human finger. However, such a technique can also lead to los-
ing high-frequency information that stems from the small and subtle structures in
LED-PAL

Among other signal enhancement techniques, several conventional approaches
include ensemble empirical mode decomposition (EEMD), wavelet-based denoising,
Wiener deconvolution using the channel impulse response, and principle component
analysis (PCA) of received PA signals [5]. EEMD is a time-space analysis technique

! ANSI-American National Standards Institute
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that relies on shifting an ensemble noisy (white noise) data, followed by averaging
out the noisy counterpart with a sufficient number of trials [7]. In this mechanism, the
added white noise provides a uniform reference frame in time-frequency space. The
advantage over the classical empirical mode decomposition technique is that EEMD
scales can be easily separated without any a priori knowledge. However, challenges
arise while specifying an appropriate criterion for PA image reconstruction based on
intrinsic mode function.

In the case of wavelet-based denoising, although the acoustic signal can be tracked-
out from the background noise with significant accuracy, it is empirical to optimize
the thresholding parameter to suppress undesired noise and preserve signal details
optimally. Moreover, wavelet-based denoising requires prior knowledge about the
signal and noisy environment as the choice of wavelet function and threshold neces-
sitate the characteristics knowledge of the signal and noise. One way to overcome
such difficulty is to make the process parametric and adaptive [8, 9]. They introduced
polynomial thresholding operators which are parameterized according to the signal
environment to obtain both soft and hard thresholding operators. Such methodology
not only enables increased degrees of freedom to preserve signal details optimally
in a noisy environment but also adaptively approach towards the optimal parame-
ter value with least-square based optimization of polynomial coefficients. However,
such a heuristic analogy for optimally finding the threshold values is cumbersome
in LED-PAI imaging modality, thereby increasing the computational burden of the
overall denoising process.

Another category of methods that follow a deconvolution based strategies to
restore signal content and suppress noisy counterpart. Wiener deconvolution plays
a vital role in reducing noise by equalizing phase and amplitude characteristics of
the transducer response function [10]. Such a technique can greatly diminish both
the noisy and signal degradation part with an accurate assumption of the transducer
impulse response, failing to which it may bring additional signal artifacts and inter-
pretation of signal becomes difficult in those scenarios. The algorithm is hugely influ-
enced by the accurate estimation of correlation function between signal and noise
which firmly controls the SNR of the output. In case, where the prior knowledge
about the transducer response function and noisy power are unknown, researchers
undergo a probabilistic measure of the response function using Bayesian or maximum
a posteriori estimation-based approach, which on the other hand, increases the com-
putational cost of the signal recovery mechanism. In the PCA mechanism, although
the algorithm searches for principal components distributed along the perpendicular
directions, often, it shows insignificant results due to its baseline assumption that the
ratio of PA energy to the total energy of detected signals is more than 75%, which is
not always the case [5].

Recently, researchers are exploring adaptive filtering mechanism, which does not
require any prior knowledge of the signal and noise parameters, which could yield
significant noise reduction. The ground assumption of such methodology stems from
the fact that signal and noise are uncorrelated in consecutive time points, which can
be satisfied with the general physics of the LED-PAI signal generation [11, 12].
Moreover, such techniques also attract the eye corner due to its fewer computations
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and reduced sensitivity to tuning parameters. One such technique where the SNR can
be significantly increased is an adaptive noise canceller (ANC). Although, in ANC,
there is a specific need to define a reference signal that significantly correlates with
the noise which is hard to deduce in a real-time environment. This challenge can
be adjusted in another form of ANC—adaptive line enhancer (ALE), in which the
reference signal is prepared by providing a de-correlation delay to the noisy signal
[13]. The reference signal consists of a delayed version of the primary (input) signal,
instead of being derived separately. The delay is provided to de-correlate the noise
signal so that the adaptive filter (used as a linear prediction filter) cannot predict the
noise signal while easily predicting the signal of interest. Thus, the output contains
only the signal of interests which is again subtracted from the desired signal, and
the error signal is thereafter used to adapt the filter weights to minimize the error.
It adaptively filters the delayed version of the input signal in accordance with the
least mean square (LMS) adaptation algorithm. The time-domain computation of the
ALE can be summarized as follows.

x(n) = pa(n) + noi(n) €))
r(n) = x(n —d) )
L1
y) =) wi(n)r(n —k) 3)
=
e(n) = x(n) — y(n) )
wem + 1) =wi(m) + pwem)x(n —k — d) (5)

where, x (n) is the primary input signal corresponding to the individual sensor element
of ultrasound (US) transducer array, consists of PA signal component [pa(n)] and
wideband noise component [roi (n)]. The reference input signal r (n) is the delayed
version of the primary input signal by a delaying factor d. The output y(n) of the
adaptive filter represents the best estimate of the desired response and e(n) is the
error signal at each iteration. wy(n) represents the adaptive filter weights, and L
represents the adaptive filter length. The filter is selected as a linear combination of
the past values of the reference input. Three parameters determine the performance
of the LMS-ALE algorithm for a given application [14]. These parameters are ALE
adaptive filter length (L), the de-correlation delay (d), and the LMS convergence
parameter (u). The performance of the LMS-ALE includes: adaptation rate, excess
mean squared error (EMSE) and frequency resolution.

The convergence of the mean square error (MSE) towards its minimum value
is commonly used performance measurement in adaptive systems. The MSE of the
LMS-ALE converges geometrically with a time constant ;. as:
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where, Anin is the minimum eigenvalue of the input vector autocorrelation matrix.
Because 7, is inversely proportional to u, a large 7,5, (slow convergence) corre-
sponds to small p. The EMSE £, resulting from the LMS algorithm noisy estimate
of the MSE gradient is approximately given by:
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where, 1., is the average eigenvalue of the input vector autocorrelation matrix. EMSE
can be calibrated by choosing the values of ; and L. Smaller values of i and L reduce
the EMSE while larger values increase the EMSE. The frequency resolution of the
ALE is given by:

s

fres - L (8)
where, f; is the sampling frequency. Clearly, f,., can be controlled by L. However,
there is a design trade-off between the EMSE and the speed of convergence. Larger
values of p results in faster convergence at the cost of steady-state performance.
Further, improper selection of u might lead to the convergence speed unnecessary
slower, introducing more EMSE in steady-state. In practice, one can choose larger
W at the beginning for faster convergence and then change to smaller u for a bet-
ter steady-state response. Again, there is an optimum filter length L for each case,
because larger L results in higher algorithm noise while smaller L implies the poor
filter characteristics. As the noise component of the delayed signal is rejected and
the phase difference of the desired signal is readjusted, they cancel each other at the
summing point and produce a minimum error signal that is mainly composed of the
noise component of the input signal.

Moreover, researchers have proposed signal domain analysis to retrieve the acous-
tic properties of the object to be reconstructed from characteristic features of the
detected PA signal prior to image reconstruction. In the proposed method, the sig-
nals are transformed into a Hilbert domain to facilitate analysis while retaining the
critical signal features that originate from absorption at the boundary. The spatial
and the acoustic propagation properties are strongly correlated with the PA signal
alteration, and the size of an object governs the time of flight of the PA signal from the
object to the detections. The relationship between object shape and signal acquisition
delay exists partly because the smaller speed of sound (SoS) within the object will
delay the arrival of the signal and vice versa. A simplistic low dimensional model
as predicted by Lutzweiler et al. can forecast the corresponding time of arrival given
the known phantom shape or the SoS (Fig. 2) [15]. Based on a similar assumption,
the inverse problem of obtaining the unknown acoustic parameters can be solved
from the extracted signal features. Lutzweiler et al. implemented the signal domain
approach for the segmentation of PA images by addressing the heterogeneous optical
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Fig. 2 Signal domain analysis of PA (optoacoustic) signal a At the absorbing boundary (black
cross) of the numerical phantom huge signals will be detected at detector locations [(1) and (2)]
with a tangential integration arc (dashed black line). Opposite detectors provide partially redundant
information and, consequently information on the SoS. Accordingly, boundary signals (white cross)
with direct (1”) and indirect (3) propagation provide information on the location of a reflecting
boundary (white dashed line). b The corresponding sinogram with signal features corresponding to
those in the image domain in (a). ¢ The workflow of the proposed algorithm: Instead of performing
reconstructions (red) with a heuristically assumed SoS map, signal domain analysis (green) is
performed prior to reconstruction. Unipolar signals H are generated from the measured bipolar
signals S by applying a Hilbert transformation with respect to the time variable. The optimized SoS
parameters are obtained by retrieving characteristic features in the signals via maximizing the low
dimensional functional f depending on acoustic parameters m through TOF and on the signals H
Subsequently, only a single reconstruction process with an optimized SoS map has to be performed.
Conversely, for image domain methods (pale blue) the computationally expensive reconstruction
procedure has to be performed multiple times as part of the optimization process. Adapted with
permission from [15]
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and acoustic properties of the tomographic reconstruction. Later in this chapter we
will discuss about the use of image analytics in improving the visual quality.

4 Image Processing Applications

Post image reconstruction, the PA images need to be further processed in both spatial
and transform domain for better visual perception of subtle features within the object
and in advance level to classify/cluster different regions based on the morphological
and functional attributes of the image. Several approaches that need to be performed in
this domain starting with pre-processing, object recognition and segmentation based
on morphological attributes and feature-based methodologies, including clustering
of various regions within the object to image super-resolution techniques which are
detailed in the following sub-sections.

4.1 Pre-processing and Noise Removal

Pre-processing in image domain majorly targets intensity enhancement of LED-PAI
images and filtering of noises through spatio-frequency domain techniques. Although
the implementation of pre-processing steps is subjective, indeed it is essential to read-
just the dynamic scale of intensity and contrast for better understanding and percep-
tion of PA images, further helping in figuring out the significant regions or structures
within the sample of interest. Generally, the dynamic range of reconstructed grayscale
PA images is of low contrast, the histogram of which is concentrated within a nar-
row range of gray intensities. Therefore, a substantial normalization in the grayscale
range needs to performed to increase the dynamic range of intensities and even-
tually enhance the contrast at both global and local scale. Although the intensity
transformations—gamma, logarithmic, exponential functions play a crucial role in
the intensity rescaling process, it is quite evident that the exact transformation that
would possibly provide better-enhanced result is modality dependent.

Let f(x, y) denotes a reconstructed PA image, while f(x, y, t) corresponds to
the successive time frames of PA images and g(x, y) is the intensity enhanced PA
image. Following the gamma transformation, the rule, s = cr” maps the input inten-
sity value r into output intensity s with the power-law factor y. This law works well
in general sense because most of the digital devices obey power-law distribution.
However, the exact selection of y is instrument-specific and depends on the image
reconstruction methodology as well. Another frequently used technique is the loga-
rithmic transformation function, s = clog(1l + r) that expands the intensity range of
dark pixels of the input image while narrowing down the intensity range of brighter
pixels of the input PA images. The opposite is true for the exponential transformation
function. It is quite apparent that these two intensity transformations are experiment
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specific and are used to highlight the significant area/region in a case specific man-
ner. More subjectively, the intensity transformations are quite limited in use and can
facilitate image details at a very crude level. Histogram equalization, on the other
hand, works at both global and local scale, stretching out the dynamic range of the
intensity gray scales. The transformation function for the histogram equalization, of
particular interest in image processing, at a global scale and can be written as,

s=Tr)=(L-1) / pr(w)do ©
0

where, p,(r) denotes the probability density function of input intensities, L is the
maximum gray level value and w is a dummy integration variable. In the discrete
domain, the above expression is reduced to,

k
s:T(r):(L_l)an fork=0,1,2,...(L—1) (10
=0

MN <
J

where, n; is the number of pixels having gray level r, and M N stands for the
total number of pixels in the input PA image. Although histogram processing at
a global scale increases the contrast level significantly, often, it turns out that several
subtle features in the imaging medium cannot be adequately distinguished from its
neighborhood background due to proximity in gray levels values between these two.
To mitigate this effect, researchers chose to implement local histogram processing
for contrast enhancement which works on relatively smaller regions (sub-image)
to implement histogram equalization technique. Similar to the global scale, local
histogram analysis stretch-out the intensity levels within the sub-image part, thereby
enhancing the subtle structural features at those locations.

For noise removal, PA image f(x, y) undergoes filtering operations based on
the PA imaging instrumentation and type of noises that hamper the image quality.
The filtering operations can be performed either in spatial or in frequency domain.
Depending on the nature of the associativity of noise (additive or convolutive), the
filtering domains are finalized. In general, for additive noises, one can go forward
with the spatial domain filtering, whereas for a convolutive type of noise it is advised
to carry out the filtering process in frequency or transform domain. Spatial filter-
ing operations are performed using the convolution operation using a filter kernel
function h(x, y), a generalized form of which is presented below,

a b
gy = f, N @h(x,y) =Y Y hs,nDfx—s,y—1) (1)

s=—at=—b

where ® denotes the convolution operation which is linear spatial filtering of an
image of size M x N with a kernel of size m x n and (x, y) are varied so that the
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origin of the kernel A (x, y) visits every pixel in f(x, y). In case of filtering based
on the correlation, only the negative sign in the above equation will be replaced by
a positive sign. Now, depending on the type of noise that corrupt the image content
or produce an artifact in the PA images, the filter kernel can be any of the types—
Low-pass filters: Gaussian, simple averaging, weighted averaging, median and High-
pass filters: first-order derivative, Sobel, Laplacian, Laplacian of Gaussian functions.
Details of these filtering kernels and related operations are described in [16, 17]. In
general, Gaussian smoothing operation can reduce the noisy effect which follows a
Gaussian distribution pattern, whereas simple averaging can reduce the blurry noise
globally, and median filtering reduces the effect of salt and pepper noise from input
reconstructed PA images. While the low-pass filters are working on the images to
reduce the effect of high frequency noises, high-pass filtering is performed to sustain
the edge and boundary information as well as to keep the subtle high-frequency
structures in PA images. A special category of filtering operation which reduces the
high frequency noises as well as restores the high-frequency edge information is
unsharp masking and high-boost filtering, expression of which is presented below,

gmusk(xvy)Zf(x’y)_f(x’y) (12)

gx,y) = f(x,y) +k.gnask(x,y) (13)

where, f(x,y) is a blurred version of the input image f(x,y) and for unsharp
masking k is kept at 1 whereas, k > 1 signifies high-boost filtering. However, the
above filters work globally irrespective of the changes in local statistical patterns, and
there is a class of filtering techniques through an adaptive approach which includes
adaptive noise removal filter, adaptive median filtering, etc. [16]. Apart from these
generalized filtering approaches, there is a special class of techniques that controls
the intensity values using fuzzy statistics, enabling the technique to regulate the
inexactness of gray levels with improved performance [18]. The fuzzy histogram
computation is based on associating the fuzziness with a frequency of occurrence of
gray levels k(i) by,

h(i) < h@D) + DY Wiy for k€ la,b] (14)
Xy

where, uj, ) is the fuzzy membership function. This is followed by the partitioning
of the histogram based on the local maxima and dynamic histogram equalization of
these sub-histograms. The modified intensity level corresponding to j-th intensity
level on the original image is given by,

J
h(k
y(j) = start; + range; Z % (15)

k=strat;
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Fig. 3 Generalized block diagram for implementation of the frequency domain filtering process

where (k) denotes histogram value at k-th intensity level of the fuzzy histogram and
M; specifies the whole population count within i-th partition of a fuzzy histogram. In
the last stage, the final image is obtained by normalization of image brightness level
to compensate for the difference in mean brightness level between input and output
images. Such a technique not only provides better contrast enhancement but also
efficiently preserves the mean image brightness level with reduced computational
cost and better efficiency.

On the other hand, frequency domain techniques are also essential in the scope
of denoising PA images as it can efficiently and significantly reduce the effect of
convolutive type of noises. Periodic noises or noises arrived due to specific frequency
bands can be reduced through the frequency domain filtering approach as well.
Moreover, such transform domain filtering can also be used to reduce the effect of
degradation sources that hinders the image details after reconstruction. The general
block diagram of the frequency domain filtering technique is depicted below in Fig. 3.

The input PA images are transformed into frequency domain counterpart, fol-
lowed by the implementation of filtering kernel and again bringing back the images
to a spatial domain at the end. Through this frequency domain approach, one can
become aware of the noise frequencies and their strength, which further enables fre-
quency selective filtering of the PA images. Several filtering kernels can significantly
reduce the noisy part, like Butterworth and Gaussian low- and high-pass filters, band-
pass, notch filtering kernels, homomorphic filtering etc. While transforming the input
image into its frequency domain counterpart, the noisy part in f(x, y) becomes in
multiplicative form, which can be further reduced by homomorphic filtering tech-
nique [16]. A more generalized form of homomorphic filtering which works on a
Gaussian high-pass filtering approach is given below,

D(u,v)\>
Hu,v)=(yg —yL)| 1 —exp —C< ) + 7L (16)

Dy

where, Dy is the cut-off frequency, D(u, v) is the distance between coordinates
(u, v) and the center frequency at (0, 0). ¢ advocates the steepness of the slope of
the filter function. yy and y; are the high and low-frequency gains. This transfer
function simultaneously compresses the dynamic range of intensities and enhances
the contrast, thereby preserving the high-frequency edge information while reducing
the noisy components. Another form of such filter is given in [17] which has the
transfer function,
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1 A
1 + exp{—a(D(u,v) — Do)}

H(u,v) = a7

where, the high frequency and low-frequency gains are manipulated by following
rules,

1

——+ A 18
1 4+ explaDy] + (18)

yg=1+A and y. =

Although preprocessing of PA images in spatial and frequency domains signif-
icantly improve the image quality and enhances the contrast level, the selection
of proper filter function is purely subjective, and the parametrization of filtering
attributes is PAI model specific. Therefore, it is of more significant importance while
choosing the filter function and optimizing its parameters either through heuristic
approaches or iterative solutions which can further help in reducing the artifacts and
noisy components in PA reconstructed images.

4.2 Segmentation of Objects in PA Images

Post-reconstruction image analysis is an integral part of PAI as it aids in understand-
ing different sub-regions through the processing of different morphological features.
In case of functional imaging, it also helps to reduce artefacts and noise that unnec-
essary hampers functional parameters. Being a challenging task due to relatively low
intrinsic contrast of background structures and increased complexity due to limited
view problems of LED-PAI, various researchers have worked on the segmentation
of objects in PA images through the implementation of different algorithms that are
detailed in the following sections.

4.2.1 Morphological Processing

Classical approaches in image processing for edge detection and segmentation of
objects with different shapes and sizes can be implemented to segment out any object
of interest in PA images. In this context, classical Sobel operators (works on approx-
imating the gradient of image intensity function), Canny edge detector (implements
a feature synthesis step from fine to coarse-scale) and even combination of morpho-
logical opening and closing operators (through a specific size of structuring element)
can help in identifying the object edge/boundary. However, the parameterization of
these kernel operators is specific to the LED-PAI system as the contrast resolution
between object and background varies significantly, and intra-object intensity distri-
bution is modality dependent. Another mechanism driven by anisotropic diffusion
can estimate the object boundary in PA images through the successful formulation of
a scale-space adaptive smoothing function [19]. The operation works on successive
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smoothing of the original PA image I(x, y) with a Gaussian kernel G(x, y : t) of
variance ¢ (scale-space parameter), thereby producing a successive number of more
and more blurred images [20]. Such anisotropic diffusion can be modelled as,

I(x,y,0) = Io(x,y) * G(x, y; 1) 19)

with the initial condition I (x, y, 0) = Iy(x, y), the original image. Mathematically,
the AD equation can be written as,

I, =div(c(x,y,t)VI) =c(x,y,t)Al +Vc - VI (20)

For a constant c(x, y, t), the above diffusion equation becomes isotropic as given
by,

I, = cAl @21)

Perona and Malik have shown that the simplest estimate of the edge positions
providing excellent results are given by the gradient of the brightness function [19].
So, the conduction coefficient can be written as,

cx, y, 1) =g(IVI(x, y, 0l (22)

The Gaussian kernel, used in smoothing operation, blurs the intra-region details
while the edge information remains intact. A 2D network structure of 8 neighboring
nodes is considered for diffusion conduction. Due to low intrinsic contrast stemming
from the background structures on PA modality, often this anisotropic diffusion
filtering can be used to create a rough prediction of the object boundary which
can be further utilized as seed contour for active contour technique (described later
in chapter) for actual localization and segmentation of the object boundary under
observation.

In another work, researchers show that low-level structures in images can be seg-
mented through a multi-scale approach, facilitating integrated detection of edges and
regions without restrictive models of geometry or homogeneity [20]. Here, a vector
field is created from the neighborhood of a pixel while heuristically determining its
size and spatial scale by a homogeneity parameter, followed by integrating the scale
into a nonlinear transform which makes structure explicit in transformed domain.
The overall computation of scale-space parameters is made adaptive from pixel to
pixel basis. While such methodology can identify structures at low-resolution and
intensity levels without any smoothing at even coarse scales, another technique that
serves as a boundary segmentation through the utilization of color and textural infor-
mation of images to track changes in directions, creating a vector flow [21]. Such an
edge-flow method detects boundaries when there are two opposite directions of flow
at a given location in a stable state. However, it depends strongly on color information
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and requires a user-defined scale to be input as a control parameter. However, recon-
structed PA images lack color information and edge-flow map has to be extracted
solely from edge and textural information.

Recently, Mandal et al. have developed a new segmentation method by integrat-
ing multiscale edge-flow, scale-space diffusion and morphological image processing
[22]. As mentioned earlier, this method draws inspiration from edge-flow methods
but circumvents the lacking color information by using a modified subspace sam-
pling method for edge detection and iteratively strengthens edge strengths across
scales. This methodology reduces the parameters that need to be defined to achieve
a segmented boundary between imaged biological tissue and acoustical coupling
medium by integrating anisotropic diffusion and scale-space dependent morpholog-
ical processing, followed by a curve fitting to link the detected boundary points. The
edge flow algorithm defines a vector field, such that the vector flow is always directed
towards the boundary on both its sides, in which the relative directional differences
are considered for computing gradient vector. The gradient vector strengthens the
edge locations and tracks the direction of the flow along x and y directions. The search
function looks for sharp changes from positive to negative signs of flow directions
and whenever it encounters such changes, the pixel is labelled as an edge point. The
primary deciding factor behind the edge strength is the magnitude of change of direc-
tion for the flow vector, which is reflected as edge intensity in the final edge map. The
vector field is generated explicitly from fine to coarse scales, whereas the multiscale
vector conduction is implicitly from coarse to finer scales. The algorithm essentially
localizes the edges in the finer scales. The method achieves it by preserving only the
edges that exist in several scales and suppressing features that disappear rapidly with
an increment of scales.

Often in LED-PAI imaging, noisy background is present in reconstructed images
due to low SNR, limited view, and shortcomings of inversion methodologies. Addi-
tionally, signals originate from the impurities or inhomogeneities within the coupling
medium. Such noises are often strong enough to be detected by edge detection algo-
rithm as true edges. Thus, the use of an anisotropic diffusion process is useful to
further clean up the image, where it smoothens the image without suppressing the
edges. Thereafter non-linear morphological processing is done on the binary (dif-
fused) edge mask. Mandal et al. took a sub-pixel sampling approach (0.5 px), ren-
dering the operation is redundant beyond the second scale level [22]. Further in PA
images, the formation of smaller edge clusters and open contours is quite apparent.
Thus, getting an ideal segmentation using edge linker seems to perform poorly. The
proposed method first generates the centroids for edge clusters and then tries to fit on
a geometric pattern (deformable ellipse) iteratively through a set of parametric oper-
ations. The method is self-deterministic and requires minimal human intervention.
Thus, the algorithm is expected to help automate LED-based PA image segmentation,
with important significance towards enabling quantitative imaging applications.
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4.2.2 Clustering Through Statistical Learning

Pattern recognition and statistical learning procedures play an essential role in seg-
mentation through clustering of different tissue structures in LED-PAI based on
their intensity profiles which are directly associated with the wavelength-specific
absorption of optical radiation, followed by characteristic emission of acoustic waves.
Depending on the constituents at vascular and cellular levels, various structures and
regions can be segmented through structural and functional attributes in PA images
using machine learning-based approaches. Guzméan-Cabrera et al. shown a segmen-
tation technique, performed using an entropy-based analysis, for identification and
localization of the tumor area based on different textural features [23]. The local
entropy within a window M, x N can be computed as,

L1
E(Q) = — Z P;log(P;) where P; =
i—0

L (23)
Mk X Nk

where, €2, is the local region within which the probability of grayscale i is P; with
number of pixels having the grayscale i is n;. The whole contrast image is then con-
verted to a texture-based image, in which the bottom texture represents a background
mask. This is used as the contrast mask to create the top-level textures, thus obtaining
the segmentation of different classes of objects with region-based quantification of
tumor areas.

In another research, Raumonen and Tarveinen worked on developing a vessel seg-
mentation algorithm following a probabilistic framework in which a new image voxel
is classified as a vessel if the classification parameters are monotonically decreased
[24]. The procedure follows an iterative approach by uniformly sweeping over the
parameter space, resulting in an image where the intensity is replaced with confidence
or reliability value of how likely the voxel is from a vessel. The framework is initiated
with the smoothing of PA images, followed by clustering and vessel segmentation
of clusters and finally filling gaps in the segmented image. A small ball-supported
kernel is convolved with the reconstructed PA images to smooth-out the noisy parts,
followed by a threshold filtering. Clustering is approached using a region growing
procedure in which the vessel structures are labelled as connected components. A
large starting intensity and a large neighbor intensity leads the voxels to be classified
as a vessel with high reliability, and decreasing these values increases the number
of voxels classified as vessel but with less reliability. Post-clustering, each vessel
network is segmented into smaller segments without bifurcations and finally filling
the gaps in vessel-segmented data and potential breakpoints of vessels are identified
and filled based on a threshold length of the gap and threshold angle between the tip
directions.

Furthermore, statistical learning procedures have shown to perform significantly
well in this context [25], showing a new dimension in LED-PAI research towards
automatic segmentation and characterization of pathological structures. Different
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learning techniques, comprising supervised, unsupervised and even deep neural net-
works, can be implemented for segmentation and classification of breast cancer,
which substantially improves the segmentation accuracy at the cost of computational
expenses. In a nutshell, Bayesian decision theory quantifies the tradeoffs between
various classification decisions using probability theory. Considering a two-class
problem with n features having feature space, X = [X;, X5 ... X1, the Bayes’
theorem forms the relationship,

P(w; ;
pl@i/x) = %(;‘/”) (24)

where, p(wi/x) is termed as posterior, P(w;) is prior, p(x/w;) likelihood, P(x) is
evidence. Based on the various statistical and morphological features, the decision
can be made as,

P(w)p(x/w) > P(wy)p(x/w,) for class] else class2 25)

At a bit higher level, support vector machine (SVM), which is a highly non-linear
statistical learning network, works on maximizing the distance between the classes
and separating hyper-plane. Considering a two-class problem in which the region of
interest belongs to a particular class and all other areas are comprising another class
in PA images, let {X;, X, . .. .Xy} be our data set and let y; be the class label of x;.

Now,

(a) The decision boundary should be as far away from the data of both classes as
possible. Distance between the origin and the line W7 X = k is,

k
Distance = —— (26)
Wi
And we have to maximize m where m = m .
(b) For this the linear Lagrangian objective function is
1 7 T
J(W,a):zw W—Zai{yi(wo—i—w X)—l} 27

(c) Differentiating this with respectto w and o, w canbe recovered asw = Y _ o;y;X;.
(d) Now for testing a new data z, compute (WTZ + b), and classify z as class 1 if
the sum is positive, and class 2 otherwise.

Although the algorithm is well capable of segmenting the region of interest, the
training procedure requires prior knowledge and annotation of the region of interest
to work in a supervised manner. In contrast to this, K-means clustering approach is
purely unsupervised and works relatively fast in clustering various regions as per their
different statistical and image-based feature sets. For a 2-class clustering problem,
initially two points are taken randomly as cluster centers. The main advantages of
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K-mean clustering are its simplicity and computational speed. The disadvantage of
this technique is that it does not give the same result due to random initialization. It
minimizes the intracluster variances but does not ensure that the result has a global
minimum of variance. After the initialization of the center for each class, each sample
is assigned to its nearest cluster. To find nearest cluster one can use different distance
measures e.g. Euclidian, city-block, Mahalanobis distances etc. the simplest one to
use the Euclidian distance with the following form,

n

D i —y) (28)

i=1

d(x;, ) =

where x; and y; are the coordinates of ‘i’th sample, and n is the total number of
samples. The new cluster center is obtained by,

1
Ci = — Xi (29)
Pk

where, p, is the number of the points in kth cluster and ¢ is the kth cluster. In order to
include the degree of belongingness, fuzzy c-means (FCM) based approach is more
accurate over the K-means clustering process. FCM contrasts K-means clustering
with the fact that in FCM each data point in the feature set has a degree of belonging
to a cluster rather than belonging entirely to a cluster. Let us define a sample set of
n data samples that we wish to classify into ¢ classes as X = {xy, X2, X3, ... .., Xn}
where each x; is an m-dimensional vector of m elements or features. The membership
value of kth data point belonging to ith class is denoted as i with the constraint
that,

D mk=1vk=12....n and 0 <) py<n (30)
1=1 k=1

The objective function is,

I, vy =Dy uh(di)’ 31)

k=1 i=1

where b is the index of fuzziness and dji is the Euclidean distance measure between
the kth sample xi and ith cluster center v; . Hence, dix is given by (23),

172

(xig = vy)’ (32)
1

dix = lIxx — vill =

m

]



Multiscale Signal Processing Methods for Improving Image ... 151

Minimization of the objective function with respect to | and v leads to the
following equations. The ith cluster center is calculated by,

Sk W - Xk
Vi = k=1 Mik

i = (33)
Zﬂ:1 ”“?k

1/ dy)¥ Y

S (1/dg)
Now to find the optimum partition matrix p, an iterative optimization algorithm

is used. The step-by-step procedure is given below,

And membership values are, pLix =

(a) Initialization of the partition matrix p(0) randomly.

(b) Thendor=0,1,2,.....

(c) Calculation of c cluster centre vectors Vi(r) using p©

(d) Updating the partition matrix pw® using the cluster center values, if
Jn @D — p® HF < & where ¢ is the tolerance level and |-||r is Frobenius
distance, stop; otherwise setr = r + 1 and return to step 2.

After obtaining the optimized partition matrix, depending upon the highest
membership value, the data points are assigned to that particular class.

In more recent work, Zhang et al. have demonstrated the deep-learning procedures
to segment out tumor area in breast PA images [25]. The area of deep learning is
becoming very broad with the recent advancement in artificial intelligence-based
approaches through mathematical formulations which is beyond the scope of this
chapter. In short, deep learning is a powerful technique that not only reduces the
labor in manually computing various features and curse of feature dimensionality
but also provides a powerful and robust mechanism of creating any decision. Zhang
et al. have shown different deep learning networks like AlexNet and GoogleNet
for PA images and established their efficacy in segmenting the breast tumor area
[25]. Furthermore, the final contour selection was implemented using a dynamic
programming architecture: active contour model which is elaborated in the next
section.

4.2.3 Deformable Segmentation

Segmentation of the region of interest through deformable objects plays a significant
role in PAI as it is indeed necessary to locate a region / area from the background
in-homogeneous reflection model. An example of such deformable object formation
is through designing an active contour (AC) algorithm which can regulate the bound-
ary based on various parameters such as energy, entropy, class levels etc. AC can
be modeled using geodesic and level set methods. Here, we focus on such an algo-
rithm designed using an improved snake-based AC method which works on a greedy
approach [13]. The idea is to fit an energy-minimizing spline along the boundary,
characterized by different internal and external image forces. The goal is to reach for
a curve where the weighted sum of internal and external energy will be minimum.
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The basic equation can be formulated as,

1
Evnate = / (B (v(5)) + Eoxs (v(s)))ds (34)
0

where, the position of snake is represented by a planar curve v(s) = (x(s), y(s)), Ein
is the internal energy force, used to smooth the boundary during deformation. E,,;
represents the external energies, pushing the snake towards the desired object. Seed
contour for the initial labeling can be identified through various segmentation tech-
niques discussed earlier in this chapter. Coordinates of seed contour is transformed
into polar form (p, 8). The contour is now represented with a set of such discrete
polar coordinates v; = (p;, 6;) fori =0,1,2,....,(n — 1); where 9; =i x 0,. For
example, quantization step size for angel 6 is 6, = 1" (n = 360) and for p is p, = 1
pixel. The energy function of this model is given by,

n—1
E = Z (aEcont(Vi) + bEcurv(Vi) + CEimage(Vi) + dEgrow(Vi)) (35)
i=0
According to Fig. 4, for each point v; fori = 0, 1,2, ...., (n — 1), the energies

at the points 2; = {vl. , Vi, vl.+ } are calculated and v; are moved to the point with
the minimum energy among these three where v;” and v;' are the two discrete points
adjacent to v; at the radial direction. This operation is performed iteratively until the
number of moved contour points is sufficiently small or the iteration time exceeds a
predefined threshold. The energy functions are: E.,,, is the internal continuity spline
energy that helps to maintain the contour to be continuous, E,,, is the internal curva-
ture energy for smoothing the periphery, E,qg. is external image force that depends
on the image intensity points and Eg,,, represents the external grow energy that
helps to expand the contour from the center towards the boundary. Mathematically
they can be represented as [26, 27],

Fig. 4 Representation of
active contour (snake) in a
polar coordinate system
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Econt (v;) = |d = |vj = viei|[ + |6 = |oj = pi-a|| (vj € ) (36)
where,d = Y M=l and p = Y- o=l

Ear(vj) = Vi = 2vj +visa [+ [oins — 20, + o |© (vje ) (B7)

1 1
Eimage(v;) = ® Zl(pj +r % ps,0;) — z Zl(pj —rxps,0;) (v €K)

r=1 r=1
(38)
eifv-:v-*and‘l_.—l_ o |<T
E row ) — J i Vj origin 39
sron (7)) {O else (39
where, I,, = o > I1(v) and Loigin = o . (%)
vie W, vie Wy

W, and Wy are two k X k (e.g., k = 3) sub-blocks with center points at v; and the
centroid of the contour respectively. The energy will decrease at v;" if both the sub-
blocks are of the same intensity approximately, resulting in an outward movement
of the contour. This movement stops while the sub-blocks have different intensities.
Threshold T determines the range up to which the change in intensity is allowed. e
is a negative constant, small value of which will limit the algorithm for more shape
restrictions where large value of e also nullifies the effect of image energy for which
the contour can exceed the actual boundary.

5 Reconstructed PA Image Quality Improvement Using
a Multimodal Framework

Biological tissues show significant depth-dependent optical fluence loss and acous-
tic attenuations. Correcting for the optical and acoustic variations are critical for
delivering a quantitative imaging performance [28, 29]. Several techniques have
been proposed for alleviating this problem including the use of exogenous contrast
agents and computing differences in the spatial characteristics of the absorption
coefficient over length scales [30, 31], using multiple optical sources together with
non-iterative reconstruction and use of context encoding within a machine learning
framework [32]. Most of the applied methods use a model of light transport equation
considering a homogeneous medium [33]. Furthermore, for characterizing hetero-
geneous medium, the use of intrinsic (segmented) priors [34], and extrinsic priors
obtained by combining PA with diffused optical tomography [35], acousto-optical
imaging [36] and other imaging modalities have been investigated. However, these
methods require additional computational resources and often hardware support for
multimodal imaging. On the other hand, most current state-of-the-art PA imaging



154

K. Basak and S. Mandal
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systems come equipped with hybrid ultrasound imaging capabilities. Thus, there is
an increased interest in employing the co-registered US image to improve the per-
formance of quantitative PA imaging [37, 38]. Additionally, the use of integrated
PA-US imaging can further be utilized for the correction of small SoS changes.
Mandal et al. aimed to correct for the optical and acoustic inaccuracies in PA imag-
ing using extrinsic imaging priors obtained through segmentation of concurrently
acquired high-frequency US images [38]. The US prior is used to create a local-
ized fluence map and apply the correct SoS during advanced beamforming. Figure 5
depicts the process diagram. The method outlined by [38] shows that the use of mul-
timodal priors can significantly improve the quantification of PA signals, and further
computer vision methods can be employed to obtain the performance enhancement.
Related publications by Naser et al. [39] have further shown that combining finite-
element-based local fluence correction (LFC) with SNR regularization can estimate
oxygen saturation (SO,) in tissue accurately. Though a detailed discussion on tissue
oxygenation measurement is beyond the scope of the chapter, the readers should
reconcile to the fact that a quantitative measurement is only possible by producing
an accurate estimate of tissue absorption profile. The B-mode ultrasound images
provided a mean for surface segmentation and an initiation point for building the
FEM mesh, which was employed by both research groups.

The PA signal received from a high-frequency linear array system is often not suit-
able for proper segmentation of anatomical structures. Therefore, the co-registered
B-mode US signal is used as a reference frame to segment skin boundaries and
delineated organ structure as well as tumor masses. The segmented prior informa-
tion from the US is then used for iteratively correcting the PA images. A two-step
approach is used to generate the US priors: (1) the skin line is detected using graph
cuts [40, 41], and (2) internal structures were detected using active contour models
(Fig. 5) [27, 42]. The lazy snapping method based on graph cuts separates coarse and
fine-scale processing and enhances object specification and boundary detection even
in low contrast conditions. The satisfactory low SNR performance of the method
with suitable convergence speed makes it an ideal choice for skin line detection in
PA-US images. Earlier in this chapter, we have described active contour methods
in sufficient detail. Modified AC segmentation methods have been used extensively
for visual quality enhancement in PA images. The methods performed efficiently
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for whole-body tomographic images, as well as for 2D linear array geometries.
The majority of commercial LED-PAI systems utilize linear array geometry for sig-
nal acquisition; thus, the outlined methods are translatable to such instrumentations
without many changes.

The algorithmic workflow consists of acquiring the PA signal and beamforming
using the delay and sum algorithm. An automatic SoS estimation is implemented
based on prior temperature information [42]. The images are spectrally unmixed
using 10 optical wavelengths for finding out the tissue oxygenation profile. The US
images are individually segmented and superimposed on the PA image. A deformable
active contour segmentation (snakes) model is used for the segmentation of US
images. The segmented tissue boundary is considered as the starting point for the
model, followed by an iterative segmentation of the tumor region using multiscale
edge detectors.

The (segmented) prior information from the US image is used to delineate the
tumor mass and improve the fidelity of the optical fluence and multiparametric SoS
fitting. Based on the segmented US mask (Fig. 6a), the process can accurately model
the decay of light fluence used. The fluence field, thus created, is used to compen-
sate for the depth-dependent decrease in the PA signal (Fig. 6b—d). Additionally,
given the prior information about the tissue/coupling medium background, a two-
compartment model for SoS calibration can be implemented and fit two different
SoS for the object and the background. In summary, the multimodal segmentation
framework is helpful in addressing both the optical attenuation as well as the acous-
tic attenuation, providing an improved visual image quality and a more quantitative

Normalized PA Signal (a.u)

Fig.6 Fluence correction improves CNR performance and quantitative information of PA images, a
segmented ultrasound image, b reference MRI image for validation, ¢ co-registered PA-US image, d
fluence field map generated FEM method with US prior information, e PA image without correction,
and f PA image after correction. Adapted in parts from [38]
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imaging performance in vivo. The advanced multimodal methodologies can be inte-
grated with crucial image processing techniques and imaging physics to achieve
better LED-PAI imaging performance. Interestingly, the small form factor, as well
as the ease of handling LED-based illumination arrays, can make it a modality of
choice for exploring for such multimodal imaging, especially as we enter the realms
of radiological imaging.

6 Summary

The last couple of decades have seen rapid developments in the field of biomedical
PA imaging with the evolution of state-of-the-art small animal imaging scanners and
experimental clinical hand-held platforms. The technology has graduated from the
engineering laboratories to commercial products for pre-clinical imaging, and further
into biomedical/translational imaging platforms. So far, the focus of development in
PA imaging was primarily focused on hardware improvements and solving complex
inverse problems. More recently, researchers have shown the applicability of image
analysis to the current state-of-the-art PA imaging instrumentation. Post reconstruc-
tion signal and image processing methods are increasingly becoming practical tools
for improving the visual image quality of PA imaging. The imaging physics—image
analysis corroboration, as illustrated in this chapter, has led to the development of
new methods for quantitative inversion and parameter self-calibration, resolution
enhancement, and accurate mapping of fluence and acoustic heterogeneities. LED-
based PA systems are in a nascent state itself, and these developments in PA signal
processing will accelerate the growth and clinical adoption of LED-PAI. However,
several additional challenges (e.g., low SNR, reduced imaging depths, errors in mul-
timodal image registration due to high signal averaging requirement) exist in the
application of intelligent image processing techniques in LED-PAI images. In the
future, these advancements will be helpful in enabling quantitative molecular and
oncological imaging using multispectral LED-PAI imaging [43, 44]. This opens
up the possibility of a plethora of new developments, including the development
of machine learning (ML) based algorithms for parameter estimation and image
enhancement. ML-based algorithms can vastly be useful for improved reconstruc-
tion, identification, and segmentation of organs and vascular structures [45]. Finally,
the relatively lower cost, accessibility, and low-profile form factor of LED-based PA
system is bound to accelerate its use in computational PA imaging and encourage
further development in signal and image processing methodologies.
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