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Abstract Vasculature analysis is a fundamental aspect in the diagnosis, treatment,
outcome evaluation and follow-up of several diseases. The quantitative characteriza-
tion of the vascular network can be a powerfulmeans for earlier pathologies revealing
and for their monitoring. For this reason, non-invasive and quantitative methods for
the evaluation of blood vessels complexity is a very important issue. Many imaging
techniques can be used for visualizing blood vessels, but manymodalities are limited
by high costs, the need of exogenous contrast agents, the use of ionizing radiation,
a very limited acquisition depth, and/or long acquisition times. Photoacoustic imag-
ing has recently been the focus of much research and is now emerging in clinical
applications. This imaging modality combines the qualities of good contrast and the
spectral specificity of optical imaging and the high penetration depth and the spatial
resolution of acoustic imaging. The optical absorption properties of blood also make
it an endogenous contrast agent, allowing a completely non-invasive visualization
of blood vessels. Moreover, more recent LED-based photoacoustic imaging systems
are more affordable, safe and portable when compared to a laser-based systems.
In this chapter we will confront the issue of vessel extraction techniques and how
quantitative vascular parameters can be computed on 3D LED-based photoacoustic
images using an in vitro vessel phantom model.
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1 Introduction

Blood vessels play a fundamental role in the well-being of tissues, organs and organ
systems, by providing them with oxygen and nutrients and subsequently eliminating
waste products. Many diseases affect blood vessels and their attributes, such as
their number, size, or pattern [1]. For example, tumors typically induce the growth
of many vessel clusters with an abnormal tortuosity and smaller diameter, while
chronic inflammations induce neoangiogenesis [1, 2]. It is therefore evident how the
possibility of a non-invasive and quantitative evaluation of 3D vessel attributes is
essential for early diagnosis and the staging of various diseases [1].

Many imaging techniques can be used for visualizing vasculature structures. For
example, computed tomographic angiography (CTA) has an excellent spatial reso-
lution and it is very common in clinics. As a downside, however, it uses ionizing
radiations and iodinated contrast agents. Magnetic resonance angiography (MRA)
in spite of very good contrast and temporal resolutions and lack of ionizing radia-
tion, suffers from rapid extravasation of the contrast agent that affects the accuracy,
and is a very expensive imaging modality. Doppler ultrasound imaging (DU) has
much lower costs, large availability and it doesn’t use nephrotoxic contrast agents,
but it is operator-dependent, contrast agents typically have short duration and this
imaging technique is typically sensitive only to larger vessels and is not able to high-
light microvasculature. Also, a more recent technique, acoustic angiography, that
uses dual-frequencies ultrasound transducers for the minimization of background
[3] needs exogenous contrast agents and custom-made probes, while optical coher-
ence tomography angiography (OCTA) has a limited penetration depth and a longer
acquisition time [4, 5].

Photoacoustic imaging is an imagingmodality that has seen an exponential growth
over the last couple of decades. Using this technique, ultrasound signals are generated
from the interaction between a pulsed light source at a given wavelength and the
biological tissues that are irradiated. So, it is non-invasive and non-ionizing and it
combines the high spatial resolution and the penetration depth of ultrasound with
the high contrast and the spectral specificity of optical imaging [6, 7]. In particular,
the visualization of blood vessels is a main application of photoacoustic imaging, as
oxygenated and deoxygenated haemoglobin give forth a strong photoacoustic signal
at various wavelengths and therefore present an endogenous contrast agent for this
imaging modality [8, 9].

Typically, laser light sources are used for photoacoustic imaging, but these optical
systems are typically cumbersome, expensive, and they usually have fluctuations of
wavelength and power per pulse. Moreover, safety glasses or a shield is necessary
to protect the operator and/or patient from the irradiation of the light source. Much
recent research has focused on the use of different light sources, and in particular on
the use of pulse laser diodes. In fact, light emitting diodes (LEDs) are inexpensive,
compact, multi-wavelength and more stable. LED-based systems are therefore more
portable and an enclosure or protective glasses aren’t necessary [7]. However, due
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to the reduced energy the LED light source is able to emit compared to laser light
sources, these systems typically are limited to more superficial imaging applications.

In this chapter, we will present a proof of concept and feasibility study of using
3D LED-based photoacoustic images for the quantitative evaluation of the vascular
complexity network using a skeletonization approach and an in vitro phantommodel.
First of all, the numerous techniques for vessel extraction from images are presented
and summarized. Then, quantitative vascular parameters that are used to describe
vascular networks and that have been used in numerous studies are defined and
explained. Finally, we then present our approach for the phantom model definition,
image acquisition and processing steps, and validation results.

2 Blood Vessel Extraction Techniques

Many various methods have been introduced to automatically extract the vascular
network from medical images. The main differences between techniques are due
to pre-processing steps, computational time, accuracy, and the visual quality of the
obtained results [10].

Four main categories of blood vessel extraction techniques can be defined: pattern
recognition approaches, model-based approaches, vessel tracking approaches, and
machine learning approaches. It is also possible to combine the use of different
techniques together to improve the final results [11]. In this section, we will briefly
explore the fourmain categories of blood vessel extractionmethods and the numerous
methods that are included in each main category.

2.1 Pattern Recognition Techniques

Pattern recognition techniques are methods that are used for the automatic detection
and classification of various objects. In the specific application of vessel extrac-
tion, they detect vessel-like structures and features, and there are many different
approaches that can be classified within this main category, such as multi-scale,
skeleton-based, and ridge-based [12].

2.1.1 Multi-scale

Multi-scale approaches are based on extracting the vasculature at different levels
of resolution. The vessels with a larger diameter are extracted using images with a
lower resolution, since less detail is needed to correctly extract the vessel, whereas
the smaller vessels and microvasculature are extracted using images with a higher
resolution [12]. Instead of using images with an actual different resolution, multi-
scale methods found in literature can also be based on using kernels with different
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scales that enhance vessels with diameters of a certain dimension, such as the well-
known and applied Frangi filter [13].

2.1.2 Skeleton-Based

Skeleton-based vessel extraction techniques are employed to extract the blood vessel
centerlines and the entire vessel structure is created by connecting the vessel cen-
terlines. These kinds of techniques are based on first segmenting the vessels using
various approaches (such as thresholding), and the segmentation is then thinned using
a specific algorithm, such as themedial axis thinning algorithm [14]. The skeletoniza-
tion process is used to reduce the segmentation to aminimal representation that keeps
the morphology without redundancy.

Figure 1 shows some examples of skeletons obtained using various imaging
modalities.

2.1.3 Ridge-Based

Ridge-based vessel extraction techniques are based on the idea that grayscale image
can be seen as a 3D elevation map where intensity ridges approximate the skeleton
of objects that adopt a tubular shape [12]. In this way, ridge points are simply local
peaks in the direction of the maximal surface gradient and are invariant to affine
transformations.

Fig. 1 Examples of skeletons obtained with different imaging modalities. a Doppler ultra-
sound imaging, skeleton in red. b Optical coherence tomography angiography, skeleton in green.
c Contrast-enhance ultrasound imaging. d Photoacoustic imaging, skeleton in blue
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2.1.4 Region Growing

Region growing approaches are those based on segmenting the vessel network
through a region growing technique that segments images by analyzing neighboring
pixels and assigning them to specific objects based on their pixel value similarity
and spatial proximity [12]. A downfall to this kind of approach is that it is necessary
to provide some form of seed point from which to start the region growing analysis,
and these typically must be supplied by the user.

2.1.5 Differential Geometry-Based

Differential geometry-based vessel extraction methods consider the acquired images
as hypersurfaces and therefore extracts features, thanks to the crest lines and curva-
ture of the surface. The center lines of the vessels are therefore found as the crest
points of the hypersurface. In this way, a 3D surface can be described by two principal
curvatures (i.e., the eigen values of the Weingarten matrix) and their principal direc-
tions (i.e., the eigenvectors), which are their corresponding orthogonal directions
[12].

2.1.6 Matching Filters

Vessel extraction techniques based on matching filters are used to find objects of
interest by convolving the imagewithmultiplematchedfilters. The design of different
filters in order to detect vesselswith different orientation and size plays a fundamental
role with this type of approach, and the convolutional kernel size directly affects the
computational load of the method.

2.1.7 Mathematical Morphology

Methods based on mathematical morphology schemes rely on the use of morpholog-
ical operators to enhance vessel structures from the image. Morphological operators
are defined by applying specific structuring elements to the image, which define the
operator locality and can take on various geometries, such as a line, circle, square,
diamond, etc. The two main morphological operators are dilation and erosion, which
expands or shrinks objects, respectively. These operators can therefore be exploited
to enhance vessel structures and/or remove areas of the image that are not vessels.



118 K. M. Meiburger et al.

2.2 Model-Based Techniques

As their name implies, model-based techniques for vessel extraction apply explicit
models to extract the vasculature from the images. These methods can be divided
into four main different categories, which are briefly explored more in detail below.

2.2.1 Parametric Deformable Models

Parametric deformable models, often also known as snakes, are techniques that aim
to find object contours using parametric curves that deform under the influence of
internal and external forces. Internal forces are important for the smoothness of
the surface, while external ones attract it to the vessel boundary. The smoothness
constraint is the elasticity energy and makes the model more robust to the noise.
A downside of these models is that in order to start the process, the surface has to
be initialised and the model evolution depends on initial parameters that must be
fine-tuned by the user. Moreover, it is fundamental that the final model is robust to
its initialization. With recent implementations, it’s also possible to insert constraints
or a priori knowledge about geometry [12, 15]. These approaches are suitable for
complex architecture or variable vessels, but they are very time consuming.

2.2.2 Geometric Deformable Models

Geometric deformable models are based on the theory of curve evolution, and are
commonly known as level sets [12]. Level sets are based on the main concept that
propagating curves are represented as the zero-level set of a higher dimensional
function, which is typically given in the Eulerian coordinate system. This type of
approach has the following advantages: (1) it can handle complex interfaces that
present sharp corners and change its topology during the level set evolution; (2) the
curvature and normal to the curve, which are intrinsic properties of the propagating
front, can be easily extracted from the level set function; (3) it is easily extendable
to problems of higher dimensions, and is therefore not limited to 2D images.

2.2.3 Parametric Models

Parametric models (PM), not to be confused with parametric deformable models,
define parametrically the object of interest. In particular, for tubular objects, they
are described as a set of overlapping ellipsoids. In some applications, the model
of the vessel is circular. The estimation of parameters is done from the image, but
the elliptic PM approximates healthy vessels well but not pathological shapes and
bifurcations [12].
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2.2.4 Template Matching

This method attempts to recognize a structure, an a priori model or template, in
the image. This is a contextual top-down method. For the application of arterial
extraction, the template is a set of nodes connected in segments, that then is deformed
to fit the real structure. For the deformation, a stochastic process can be used [12].

2.3 Vessel Tracking Techniques

Vessel tracking approaches apply local operators on a focus known to be a vessel and
track it. They differ from pattern recognition approaches in that they do not apply
local operators to the entire image. So, starting from an initial point, these methods
detect vessel centerlines or boundaries by analyzing the pixels orthogonal to the
tracking direction [12].

2.4 Machine Learning

Machine learning is a subfield of artificial intelligence in which computers learn how
to solve a specific problem from experimental data.

These approaches can be divided in unsupervised and supervised:

• Unsupervised approaches try to find amodel that describes input images no having
prior knowledge about them. This technique doesn’t need the comparison with a
gold standard.

• Supervised approaches learn the model from a training set of labelled images and
then applies it to the input images. This technique has shown better performances,
and testing the trained network is typically very fast. On the other hand, training
the network typically requires a huge computational cost [11].

Recently, there has been a huge growth of the application of supervised machine
learning approaches under the form of neural networks and specifically convolu-
tional neural networks (CNNs) in the application of image processing. CNNs are
characterized by the presence of convolutional layers for feature extraction, pooling
layers for feature reduction and fully connected layers for classification [11].

3 Vessel Architecture Quantification

As discussed in the previous section, there are numerous methods that can be
exploited to extract the vessel network from images acquired using various imaging
modalities. All of thesemethods aim to extract the vessel network from the images, so
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that the vessels can further be classified and/or analyzed to gain important information
about the tissue or organ health status.

Many studies in literature are based on qualitative or semi-quantitative analyses of
the extracted vessel network, by either visually observing the enhanced or segmented
network or by manually selecting specific vessels to analyze with more quantitative
methods [1, 3, 16, 17].

In this chapter, and specifically in this section, we will go more into details
about how a quantitative analysis of the vessel network can be obtained and what
quantitative parameters can be computed from the skeleton of the vessel network.

As described previously, the skeleton of a vessel is a minimal representation of
the segmented vessels, which can be independent of the imaging modality used to
acquire the images. In fact, the main goal is to segment the vessels from the images
and once the segmentation is obtained using the desired technique, the skeleton of the
vessels can be obtained by applying, for example, the medial axis thinning algorithm
[14].Many techniques based on skeletonization have been used in literature to extract
the vessel network and then used to calculate quantitative parameters that can help
distinguish healthy from diseased tissue in numerous imaging modalities, such as
in CT images of the lung [18], ultrasound contrast-enhanced clinical images of the
thyroid to characterize thyroid nodules [19, 20], ultrasound contrast-enhanced images
of tumors in murine models [21], photoacoustic images of burn wounds in rats to
differentiate from healthy tissue [4], and optical coherence tomography angiography
(OCTA) images of clinical dermatological lesions for the automatic segmentation of
the lesion [22].

An important step before quantitative parameter calculation is the placement of a
specific region-of-interest (ROI) within which to calculate the parameters. This is to
help reduce the computational load, and is due to the fact that typically vasculature
is present not only in the area that is of interest (for example, outside of the tumor
or diseased tissue), and more importantly, due to the fact that these quantitative
parameters should not be considered using their absolute values, but in comparison
with the same parameters either at a different location or at a different time. So, the
relative comparison between the parameters gives a better evaluation rather than the
actual value by itself.

In all of the studies mentioned previously, the ROI is manually placed on the
desired areas, except for in the most recent study by Meiburger et al. [22] in which
the entire OCTA volume was analyzed by a sliding ROI. The quantitative vascular
parameters computed inside each ROI were then employed to automatically define
the lesion area. Subsequently, the ROI for the diseased zonewas automatically placed
in correspondence of the centroid of the defined lesion area and the healthy zone was
automatically placed in correspondence of the ROI that was found to be furthest
away from the considered diseased ROI.

In the next section we will go into more detail about what specific quantitative
parameters can be computed on the skeleton of the vessel network within the defined
ROI, which can be classified as either morphological or tortuosity parameters.
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3.1 Morphological Parameters

As the name implies,morphological parameters give an idea of themorphology of the
considered vessel network, taking into consideration their size, howmany vessels are
present, and how they are distributed between each other. The principal quantitative
morphological parameters that have been used in previous studies are:

• Number of trees (NT): defined as the number of vessel trees in which the skeleton
is decomposed

• Vascular density (VD): defined as the ratio between the number of skeleton voxels
and the total number of voxels of the considered ROI

• Number of branching nodes (NB): defines as the number of branching nodes that
are found in the vessel structure

• Mean radius (MR): mean radius of the segmented vessels of the structure.

While the first three parameters are consistently used in various studies, the mean
radius is a quantitative parameter that is sometimes excluded, due to the fact that it
the one that is most highly dependent on an accurate segmentation of the actual bor-
ders of the vessels. Thanks to the skeletonization process, a slightly oversegmented
or undersegmented vessels do not influence the first three quantitative parameters
(i.e., NT, VD, and NB). On the other hand, the mean radius is highly influenced by
an inaccurate segmentation, which is the reason why this parameter is sometimes
omitted in various studies.

3.2 Tortuosity Parameters

Tortuosity parameters are those parameters that analyze the path of the vessels and
how curved, tortuous or tightly coiled the vessel path may be. In order to calculate
these parameters, it is fundamental to first “isolate” a specific vessel to analyze and
then begin from one end point and arriving at the other end point, various quantitative
parameters can be calculated along the path, either by measuring angles, inflection
points, or simply path length.

Specifically, three main quantitative tortuosity parameters are typically calculated
to give an idea of the tortuosity of the considered vascular network:

• 2D distance metric (DM): defined as the ratio between the actual path length of
the considered vessel and the linear distance between the first and last endpoint
of the vessel

• Inflection count metric (ICM): defined as the 2D distance metric multiplied by
the number of inflection points found along the vessel path

• 3D sum of angles metric (SOAM): defined as the sum of all the angles that the
vessel has in space.
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Fig. 2 Graphical
representation of 2D distance
metric computation

The mathematical descriptions of these tortuosity parameters can be found in
previously published studies [1, 23].

Briefly, the DM gives a measure of the bidimensional tortuosity of the considered
vessel, since a straight line would give forth a value of 1, and as the vessel potentially
becomes more and more curved, the DM value will increase. Figure 2 shows a
graphical representation of how the DM is computed. The ICM adds to the DM as it
considers not only the overall curvature of the considered vessel, but also the number
of times the vessel changes direction in its path. Finally, the SOAM parameters are
helpful mostly in the case of tightly coiled vessels, which are not well-represented
by either the DM or ICM.

4 Phantom Design

In this section of the chapter, we will describe how a possible vascular phantom can
be designed to show the feasibility of evaluation the vascular complexity using a
skeletonization approach and 3D LED-based photoacoustic images.

In medical imaging, phantoms are samples with known geometry and compo-
sition that mimic biological tissues with their physical and chemical properties for
providing a realistic environment for clinical imaging applications. Stable and well
characterized phantoms are very useful for routine quality controls, training, cal-
ibration and for evaluating the performance of systems and algorithms. They can
be also used for the development of new applications before in vivo preclinical or
clinical studies. Moreover, phantoms allow to understand reproducibility in time and
among laboratories, to optimize signal to noise ratio, to compare detection limits and
accuracies of different systems and to examine maximum possible depth [24–27].

4.1 Model Design

In order to correctly evaluate vascular complexity, it is first necessary to design
a model that can represent in a simplified manner at least a section of a vascular
network. An example of a method that can be used to mimic a vascular network is
the creation of a 3D model which can then be printed using various materials.
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Fig. 3 3Dmodel designed for vascular complexity analysis. a Front view. b Lateral view. c Section
view

As a proof of concept, we designed a model using a computer aided design soft-
ware that had the following dimensions: 39.23 mm× 34.37 mm× 12.78 mm with a
wall thickness of 1 mm. The internal diameter of the designed vessels was equal to
1.5 mm. Figure 3 shows the designed model from a front view (a), lateral view (b)
and section view (c).

4.1.1 3D Printing

Once the model was designed, we then proceeded to use a 3D printer to print the
model. In this preliminary proof of concept study, we used the ProJet MJP 2500 Plus
with the VisiJet R Armor (M2G-CL) material, a tough, ABS-like clear plastic that
combines tensile strength and flexibility [28].

The ProJet MJP 2500 Plus is a 3D MultiJet printer that uses the inkjet printing
process. In particular, a piezo printhead deposits a plastic resin and a casting wax
material through the layer by layer technique.

Then the MJP EasyClean System is used to remove in a little time, the support
material from plastic parts using steam and EZ Rinse-C. It is composed of two
warmer units, one for bulk wax removal and one for fine wax removal. The support
material is separated by melting or dissolving. This is a non-contact method, so there
are less substrates or mask damages and contamination. Moreover, it permits a high
resolution and is inexpensive. Figure 4a shows an image acquired during the 3D
printing process and the final obtained model (Fig. 4b).

Fig. 4 Phantom manufacturing. a 3D printing process. b Final model. c Final phantom in agar
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4.2 Phantoms Realization

Once the 3D model is printed and all wax is removed, the vascular network phantom
must be filled with a liquid that can mimic blood, or at the very least absorb and
respond to the photoacoustic light impulse. Ideally, real blood or a biocompatible
contrast agent should be used. As what is reported here is a proof of concept idea to
show the feasibility of the approach, here we simply used a liquid ink that gave forth
a strong photoacoustic signal.

The final phantomwas then realized using agar,which is a jellying polysaccharide,
obtained from red algae and it is used to prepare transparent and neutral gels. Agar
powder dissolves at around 90–100 °C and it solidifies at 45 °C. The dose for 1 kg
of solution, is 7–10 g of powder.

The desired quantity of agar powder was weighed with a digital scale and then it
was put in a small pot with the corresponding quantity of water stirring at the same
time. The obtained solution was brought slowly to a boil with a burner continuing
to stir and at this point, the warm solution was poured in a container with the vessel
model. The phantom was left to cool down and after it solidified, it was pulled out
from the container. Figure 4c shows the final phantom filled with dye and inserted
in the solidified agar.

4.3 Acquisition Setup

In order to accurately assess vascular complexity, it is clear that a 3D volume of
the network must be acquired. It is therefore of fundamental importance to have the
phantom model fixed in the same spot and acquire 2D images at a given step size.
Some ultrasound systems have a mechanical motor and a corresponding software
that permits quick 3D acquisitions at a defined step size. On the other hand, if this is
not an option for the system that is used, it is still possible to use a specific setup that
guarantees the same position for the ultrasound probe as it runs along the phantom
and 2D images are manually acquired at each step.

In our first tests that are presented here, we used the second solution along with a
commercial LED-based photoacoustic and ultrasound imaging system (AcousticX,
Cyberdyne, INC, Tsukuba, Japan). So, for the image acquisition, the phantoms were
fixed to the base of a transparent container filled with water. The ultrasound probe
and photoacoustic LED light source arrays were secured to a metallic angle beam,
which in turn was fixed to a mobile support that could be moved along a binary in
response to a knob rotation. Figure 5 shows the imaging setup used.

The ultrasound probe and LEDs were put underwater near the phantom and lin-
ear scans were made moving the system with a defined step size. The step size is
what defines the resolution along the third dimension, so a smaller step size would
give forth a more accurate volume reconstruction of the vascular network and is
fundamental when considering microvasculature.
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Fig. 5 Imaging setup. a Entire imaging setup with metallic angle beam. b Zoom on ultrasound
probe and LED light sources

Due to the fact that here it was important mainly to show the feasibility of the
approach of using 3D LED-based photoacoustic images to evaluate vascular network
complexity, and that the phantom vessels had a large diameter compared tomicrovas-
culature, we chose to optimize processing time and used a large step size, equal to
1 mm. Considering the model that was designed, this gave forth a final volume that
consisted of 65 2D frames.

4.4 Device Settings

The device used for this feasibility study is the AcousticX, a LED-based photoa-
coustic imaging system (PLED-PAI) that is commercially available [29, 30].

The excitation source are light emitting diodes characterized by high density and
high power. Specifically, there are two LED arrays on either side of an ultrasound
probe and each array is composed of 4 rows of 36 single embedded LEDs. The
excitation wavelength is 850 nm. The dimensions of each array are 12.4mm (height),
86.5 mm (length) and 10.2 mm (width). The pulse width is variable and can be set
from 50 to 150 ns with steps of 5 ns. The pulse repetition rate can be 1, 2, 3 kHz or
4 kHz and it defines consequently the temporal resolution.

In order to reduce noise, it is also possible to control the frame averaging which
then influences the frame rate and temporal resolution. The possible frame rates are
30, 15, 10, 6, 3, 1.5, 0.6, 0.3, and 0.15 Hz [7].

For the acoustic part, there is a 128 channels ultrasound linear array transducer
with central frequency that can be set between 7 and 10 MHz that can pulse and
receive.

For the volume acquisition of the model, only the PA mode was used. The depth
was set to 3 cm and the frame rate was 6 Hz. The pulse repetition frequency was set
to 4 kHz with 640 frames averaging.
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5 Image Processing and Results

After image acquisition, it is then necessary to proceed to segment the images and
extract the skeleton of the vascular network in order to compute quantitative vascular
parameters that can give an idea of the complexity of the network. In this section
of the chapter we will present an example workflow that can be used to extract the
quantitative vascular parameters from the acquired images.

5.1 Segmentation and Skeletonization

Before the actual image segmentation, a few preprocessing steps often help in prepar-
ing the images and allowing a more accurate segmentation of the objects of interest,
which are, in our case, the phantom vessels containing the contrast dye.

Firstly, a 3D median filter was applied to the entire volume, using a 3 × 3 × 3
kernel and padding the volume by repeating border elements in amirroredway. Then,
a closing morphological operation was done using a disk-shaped structuring element
with a radius equal to 5 pixels. This step helped fill the vessels where mainly the
walls of the phantom were visible.

For the actual segmentation, the Otsu method [31] was used to find the global
threshold of each slice and then, the maximum among these was chosen to define a
unique threshold for all of the slices of the volume. The images were then segmented
using the found threshold, which in our case was equal to 0.43.

Then, a brief cleaning process was used to refine the obtained segmentation.
Specifically, each mask was processed by removing all the objects with area smaller
than 2% of the biggest object found in the mask. Subsequently, dilatation with a disk-
shaped structuring element with radius 3 and erosion with a disk-shaped structuring
element with radius 1 were then applied. Finally, any remaining holes in the objects
of the mask were then filled. Figure 6 shows a 3D representation of the original
photoacoustic images and the obtained segmentation.

For the skeletonization, an algorithm based on the medial axis extraction algo-
rithm by Lee et al. [14] that is implemented preserving the topology and the Euler

Fig. 6 3D representations. aOriginal photoacoustic image volume.bVolume aftermedian filtering.
c Segmented volume
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number was used. This procedure is done to specifically reduce the segmented binary
volume into a minimal representation of the vascular network while still preserving
morphology.

An algorithm was then implemented with the aim to correct the defects of the
skeletonization and to refine the final structure by removing the smallest branches.
In some areas of the obtained skeleton, there can be an accumulation of skeleton
voxels. In order to remove them, the branchpoints are identified and when, among
them, there are connected objectswith a value bigger than10pixels, they are removed.
Thereafter, the branches with a length smaller than a defined threshold are removed.

5.2 Parameter Calculation and Validation

As discussed in a previous section of this chapter, quantitative parameters that give
an idea of the morphology and tortuosity of the vascular network can be extracted
from the skeleton of the segmented vessels.

In the feasibility study presented here, a 3D computer-aided design (CAD) model
was specifically designed and was then printed. This allowed for not only real LED
photoacoustic image acquisition once the phantom was correctly filled with a dye,
but also the direct importation of the CADmodel in the same processing environment
(in our case, Matlab).

For validation purposes, the acquired images were also manually segmented so as
to give an idea if the automatic segmentation (and therefore the subsequent skeleton)
could be considered reliable or not. Then, the recall, precision, and Jaccard index
were calculated. These parameters are defined as follows:

Recall = T P

T P + FN
(1)

Precision = T P

T P + FP
(2)

Jaccard Index = T P

T P + FP + FN
(3)

where TP is a true positive, a pixel that was segmented in both the automatic and
manual masks; FN is a false negative, a pixel that was segmented only in the manual
mask; FP is a false positive, a pixel that was segmented only in the automatic mask.

Furthermore, thanks to the 3D model the quantitative vascular parameters were
able to be calculated using the experimental data with the 3D printed phantom and
LED photoacoustic image acquisition and also on the imported model using the
same skeletonization and vascular parameter computation processes. This type of
approach also allows a direct comparison of the quantitative vascular parameters
obtained using the various methods. Figure 7 shows different views of the 3D model
skeleton together with the automatic skeleton obtained using the acquired images.
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Fig. 7 aTopviewof skeletonof imported3Dmodel.b3Dskeletonviewof automatically segmented
volume

6 Feasibility Study Results

Table 1 shows the results of the comparison between the manual and the automatic
segmentation of the entire volume of the model. As can be seen, the recall parameter
is quite high, showing that when compared to a manual segmentation, the automatic
segmentation did not produce many false negatives. This means that the thresholding
technique was capable of accurately capturing the photoacoustic signal when it was
present within the image. On the other hand, however, the precision is only equal to
approximately 72%,meaning that there is a reasonably highnumber of false positives,
so the automatic algorithm was quite sensitive to noise and tended to oversegment
the acquired images.

As can be seen in Table 2, the quantitative vascular parameters thatwere calculated
corresponded quite well. In this table, the first column corresponds to the parameters

Table 1 Automatic segmentation validation results

Recall Precision Jaccard index

0.94±0.11 0.72±0.18 0.68±0.18

Table 2 Automatic quantitative vascular parameters validation results

Vascular parameter 3D model Automatic segmentation Manual segmentation

NT 1 6 6

VD 5.16 × 10−5 13.69 × 10−5 15.39 × 10−5

NB 9 57 77

DM 2.164 2.229 2.289

ICM 67.935 70.197 89.244

SOAM 0.041 0.241 0.545

MR (mm) 0.688±0.174 0.732±0.352 0.591±0.311
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computed using the directly imported 3D model, so it can be considered the ground
truth. The middle column shows the values computed using the automatic algorithm
and segmentation, whereas the last column displays the values obtained when using
the manual segmentation.

The biggest discrepancies can be seen within the SOAM tortuosity parameter
and the number of trees and number of branch nodes of the vascular network. It
is important to point out here how not only the automatic segmentation but also
the manual segmentation provided an overestimation of these parameters. This is
most likely due to the fact that, during the phantom manufacturing process, it was
seen that some parts of the phantom were not properly filled with the ink due to the
presence of remaining wax, resulting in no or less photoacoustic signals from those
points. At the same time, it is also important to underline how the 3D model was
imported into MATLAB with a very good spatial resolution, providing a perfectly
clean and rounded vessel mask. So, the acquired images were limited by a number of
various issues. Specifically, the obtained results were limited by (a) the high step size
and therefore low resolution between slices, (b) any small air bubble or imperfect
filling of the model with the dye, and (c) photoacoustic imaging artefacts which are
common especially when employing linear ultrasound probes for the photoacoustic
signal reception.

7 Conclusion

While the feasibility study presented here showed some limitations, mainly due to
phantom manufacturing and an imperfect wax removal technique, the results are
promising and merit a further investigation using even more complex vascular phan-
toms at first and then using in vivo images considering micro-vasculature to evaluate
the resolution limits of this approach. Overall, the proof of concept study shown here
in this chapter demonstrates the potential of evaluating vascular complexity using
3D LED-based photoacoustic images.
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