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Abstract Averaging is a fundamental necessity for deep photoacoustic (PA)
imaging when using low-energy pulsed laser sources or LED’s. Intrinsic (breath-
ing, heartbeat…) or extrinsic (freehand probe guidance) tissue motion, however,
leads to phase cancellation of the averaged PA signal when the axial displacement
of tissue becomes larger than half the acoustic wavelength at the probe’s centre fre-
quency. Motion-compensated averaging (DCA) is a solution to this problem, and
allows the detection of deep structures that are else not visible. In a combined PA
and echo-ultrasound (US) system, tissue motion can be quantified in US images that
are interleaved with PA images. In this chapter, we exemplarily illustrate the power
of this technique when trying to image the optical absorption inside the carotid artery,
using a fully integrated PA/US system based on a handheld clinical probe containing
a miniaturised laser source. The key components of DCA are discussed and exem-
plified on volunteer data, and the influence of various parameters on image contrast
is investigated. We demonstrate that DCA enables freehand PA detection of blood
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vessels at a depth of 1.5 cm using only 2 mJ pulse energy, and give some guidelines
for image interpretation.

1 Introduction

One of the promising application areas of photoacoustic (PA) imaging is its integra-
tion with clinical handheld ultrasonography [1, 2], to complement classical B-mode
and colour flow imaging, and more recently elastography [3] and speed-of-sound
imaging [4–8], with new valuable diagnostic information in a single multi-modal
handheld system. For such a system being flexible and widely affordable, the pulsed
light source is preferably integrated in the handheld probe itself. For this purpose,
various groups and companies have developed light emitting diode (LED) and laser
diode (LD) based miniaturised light sources [9–17]. So far, these systems have in
common that the pulse energy is very low, compared to the more commonly used—
but bulky and expensive—external solid-state lasers. For deep PA imaging where
SNR becomes an important issue due to optical attenuation, the low pulse energy
can partially be compensated for by increasing the pulse repetition frequency (prf)
together with more extensive averaging. Laser safety regulations, however, limit the
average irradiated power per unit area, so that—for a given total averaging time—the
SNR (which is proportional to the square-root of the number of pulses) decreases
with increasing prf due to the linearly decreasingmaximumpermissible pulse energy.
Put differently, the lower the pulse energy, the longer the averaging time required to
achieve a target SNR. This makes averaging substantially more important for low
energy PA systems than for the ones using high-energy solid-state lasers.

Especially for deep imaging where longer averaging times are required than for
superficial imaging, averaging becomes more challenging owing to tissue motion.
On one hand, motion of tissue relative to the probe aperture occurs due to involuntary
probe motion. On the other hand, the tissue exhibits intrinsic motion even when the
probe is static, due to pulsating arteries, the beating heart or breathing, among others.
With the 7.5–15 MHz centre frequencies that are typically used for high-resolution
US imaging of a few cm depth range, the displacement magnitude of intrinsic tissue
motion can easily exceed half an US wavelength. As a result, conventional averaging
leads to phase cancellation of the PA signals, limiting the maximum averaging time
up to which an SNR improvement is possible.

A solution to this problem is motion-compensated averaging, or—as previously
named—displacement-compensated averaging (DCA) [18–21]. This technique takes
benefit of the interleaved acquisition of pulse-echo data with PA data, which allows
to estimate the tissue motion by tracking anatomical details in US images, and—sub-
sequently—to motion-compensate PA images before averaging. DCA has originally
been proposed for reducing clutter noise in PA imaging, along with other clutter-
reduction techniques [22–27]. Clutter consists of PA echoes and out-of-plane PA
signals, and it is a prominent noise source especially in reflection-mode PA imaging
where it cannot be temporally separated from “real” direct in-plane PA signals [28,
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29]. Since clutter is a systematic noise, it cannot be removed by conventional aver-
aging, and thus poses an ultimate limit to imaging depth. DCA takes benefit of the
fact that, upon tissue deformation, clutter behaves differently than the “real” signals,
as the apparent reconstructed location of clutter does not coincide with the actual
source location (else it would be “real” signal). Due to this different behaviour, clut-
ter tends to decorrelate along a motion-compensated PA image sequence, thus the
clutter intensity level can be reduced by averaging. In solid-state laser PA imaging
where clutter is more prominent that thermal noise, we have demonstrated that DCA
substantially improves contrast and imaging depth.

In low-pulse-energy deep PA imaging where thermal noise is more prominent
than clutter, the main benefit of DCA is that the motion compensation allows for
more extensive averaging and thus improved SNR by reducing the effect of phase
cancellation. In an ideal case where the tracking is perfectly accurate and no out-
of-plane motion occurs, at least the same SNR can be achieved as if tissue motion
would be absent. In a more realistic scenario, however, decorrelation of US echoes
and out-of-planemotion results in tracking and compensation errors. In addition, out-
of-planemotion leads to decorrelation of PA image features so that phase cancellation
can occur even with accurate motion compensation. For this reason, the optimum
SNR is obtained in a trade-off between averaging time, tracking errors and out-of-
plane motion. Depending on intrinsic tissue displacement magnitude and complexity
of tissue structures (slipping boundaries and architectural anisotropy leading to 3D
motion field), the sweet spot in this trade-off limits the achievable SNR. A further
limitation to averaging time stems from the necessity of real-time feedback: the
effective frame rate is given by the averaging time constant. Above a couple of
seconds, the lag between freehand probe guidance and the effect on the DCA result
makes it difficult for an operator to choose a probe placement that optimises the DCA
result.

Along these lines, this chapter is dedicated to the elaboration of the various com-
ponents and features of DCA and the investigation of their influence, exemplified on
a specific implementation for an LD-based fully integrated handheld PA/US probe.
In Sect. 2, we focus on the design of themain component of DCA, namely themotion
tracking of US images. The tracking algorithm needs to be fast as well as robust,
and its specific implementation is dictated by limitations of the specific acquisition
system. In Sect. 3, we detail the experimental setup and processing steps, including a
novel way of how to overlay the PA signal with the US image. In Sect. 4 we illustrate
the various steps in the DCA processing in volunteer results, with a focus on the
role of various parameters that influence its performance. To make the benefit of
DCA most evident, we focus on the detection of the carotid artery which shows a
large intrinsic pulsatile motion making it especially difficult to image. In addition
we give more general experience on how to interpret DCA images, especially on
how to identify real PA signal (as opposed to clutter) based on the US image. Our
results demonstrate that detection of the carotid artery and other blood vessels at a
depth of 1.5 cm is feasible using only 2 mJ pulse energy (80 Hz prf, 2.5 s averaging
time), and they confirm that DCA is essential for achieving this imaging depth, not
only by allowing effective averaging but also via its clutter-reducing effect. These
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results are especially important for LED-based PA imaging where the pulse energy
is substantially lower.

2 DCA Prerequisites

2.1 US Image Quality

The motion tracking accuracy is crucial to the achievable DCA outcome. Tracking
errors can stem on one hand from noise in the US images, on the other hand from
imperfections of the tracking algorithm. First, we put a focus on the US image noise.
Apart from thermal noise, US images contain clutter noise the same as PA images do.
Clutter noise consists of system-related artifacts (such as side-lobes, grating lobes
due to below-Nyquist sampling of the element-to-element pitch…) but also of tissue-
related noise caused by higher-order echoes (multiply scattered US), which cannot
be distinguished from the first-order echoes that make up a “clean” US image. Since
the echogenicity (echo strength) of tissue varies on a large dynamic range (tens of
dB), low echogenicity areas are easily dominated by clutter spreading from high
echogenicity areas. The same as in PA, clutter noise in US tends to decorrelate with
tissue deformation, leading to wrong detection of the echo shift in regions where
clutter dominates. For this reason, a key point of attention in DCA is the optimisation
of US image quality in terms of signal-to-clutter ratio (SCR).

In a classical line-by-line scan (LLS), US power is transmitted into a narrow
collimated or slightly focused beam at a time, and the probe receives a dynamically
focused signal (conventionally using delay-and-sum) from inside that beam. The
time trace of the signal forms one image “line”, and multiple lines are obtained when
scanning the tissue with the beam and together form an image. With the advances
of hardware development of the past decade, plane-wave (PW) (or ultrafast) US
imaging has become popular [30], where a single plane US pulse is transmitted
into the tissue and signals are digitized simultaneously on all elements on receive,
allowing for the reconstruction of a large field-of-view (FoV) image in a single shot.
While PW imaging has a great speed advantage over LLS, the big disadvantage is
the much higher clutter noise level, making this type of image unsuitable for motion
tracking. Figure 1a, b show an LLS and a PW image of the same region around the
carotid artery, demonstrating the substantial difference in contrast. Especially note
the increased apparent echogenicity inside the carotid in Fig. 1b.

The increased clutter noise in PW imaging as compared to LLS consists of diffuse
2nd order echoes. In the LLS, the US power is transmitted into a narrow beam. The
1st order echoes are generated only inside that beam, but 2nd order scattering leads
to echoes that propagate back to the probe also from outside the beam. This is
illustrated in Fig. 1c which shows an image when irradiating only one beam but
reconstructing a large tissue area around the beam. The intensity follows the actual
beam profile only near the transducer aperture (upper part of the image) and echoes
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Fig. 1 a Line-by-line scan of tissue around carotid artery (c: carotid lumen; th: thyroid gland; m:
muscle). b Plane-wave image of same area. c Image when irradiating a single line but reconstructing
the full image area. The beam profile and the event horizon are indicated by white and red dashed
lines, respectively. d Result of coherent plane-wave compounding. All images are displayed in the
same dB scale covering 60 dB. Note that c was not taken at the exactly same position as a, b, d.
These images were produced using a Vantage 64 LE research US system (Verasonics Inc. WA)

are reconstructed also outside the actual beam where echo intensity is dominated
by 2nd and higher order echoes. These echoes are confined by an “event horizon”
that marks the first possible arrival of an echo (of any order) at the different probe
elements. In a line-by-line scan, the receive part is focused into the same area as the
transmitted beam, i.e. only pixels inside that area are reconstructed. Therefore, the
out-of-beam 2nd order echoes are less sensitively detected than the in-focus 1st order
echoes. The sensitivity ratio determines the SCR in the image line. In a PW image,
where a broad unfocused US pulse is transmitted into a large tissue region at once,
2nd order echoes are detected from inside the receiving beam area that originate from
the irradiated tissue outside the receive area. Therefore, the relative contribution of
2nd order echoes is much higher than in a LLS.

An alternative to PW imaging for improving US quality is coherent plane wave
compounding (PWC) [31]. In this technique, PW images are acquired with a variety
of different PW transmit (Tx) angles. For each angle an image is reconstructed, and all
images are coherently averaged (i.e. before envelope detection). The result is shown
in Fig. 1d, an image that looks practically identical to the line-by-line scan in terms of
contrast and spatial resolution. The observed SCR improvement can be understood
from two perspectives: first, diffuse 2nd and higher order echoes decorrelate with
varying Tx angle, so that averaging reduces the intensity of such echoes due to phase
cancellation; second, coherent averaging of images obtained with different Tx angles
corresponds to synthetic Tx focusing, similar to the (coherent) delay-and-sum (DAS)
beamforming that synthetically focuses the transducer on receive (Rx). In that view,
the Tx angle range in PWC is equivalent to the angular aperture in a LLS. For this
equivalence to hold, the angle spacing should be chosen sufficiently small so that
a hypothetical superposition of the plane pulses (with appropriate relative delays)
could indeed result in a single focused or collimated beamwithin the size of the probe
aperture. Then the SCR is similar or even better than the one of LLS. With a larger
angle step, the hypothetical superposition would result in multiple parallel beams,
the larger the step the more beams. This results in reduced SCR, equivalent to an
increased clutter level that results from 2nd order echoes that couple from adjacent
Tx beams into a Rx beam.
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PWC is referred to as “ultrafast imaging” [30], referring to the fact that a full
image can be reconstructed from a single or few PW acquisitions. One has, however,
to keep in mind that to achieve an identical spatial resolution (identical angular
aperture of Tx focusing) as well as an identical SCR (this was followed in Fig. 1),
LLS and PWC require the same number of acquisitions (taking into account that
dynamic Tx focusing can be achieved in a line-by-line scan by retrospective Tx
beamforming [32]). A disadvantage of PWC compared to LLS can be the larger
amount of data that needs to be transferred and processed, as for each angle, data are
required for all probe elements and each pixel must be reconstructed. In LLS only
the elements corresponding to a certain line need be active on receive and only the
pixels inside the corresponding Tx beam area need to be reconstructed. A different
practical difference between the two techniques is the different way in which motion
affects the final image. In LLS, abrupt motion shows up as a relative shift of different
parts of the image, and—in retrospective Tx beamforming—degrades SCR around
the line that was acquired during the motion due to phase cancellation. In PWC, the
phase cancellation due to motion equally degrades the SCR in the whole image, but
the degradation is weaker than in LLS. Depending on the specific application, one or
the other technique can be more advantageous. Ultimately, the system at hand will
determine what type of data can be acquired (e.g. the specific system presented in
this chapter only allows interleaved acquisition of PWC data with PA).

2.2 Motion Tracking Algorithm

Previously we proposed Loupas’ phase correlation (LPC) [33] for estimating the
tissue motion field based on quantifying the resulting phase shift of US echoes.
Assuming that the array probes bandwidth (BW ) is smaller than the centre fre-
quency f0 (this is typically the case for standard clinical US probes), it is practical to
model a beamformed (e.g. using DAS) radio-frequency (RF) signal s(z) (where z is
the axial dimension) as the product of a “slowly” (given by BW ) varying complex
envelope S(z)with a “quickly” (given by f0) oscillating complex exponential carrier:

s(z) = S(z) · exp(2π i f0 · 2z/c) = S(z) · exp(2π i z/�) with � = c/2 f0 (1)

where c is the speed of sound. Note that Eq. 1 contains a factor 2 in the complex
exponent that accounts for the two-way propagation in echo US. Assuming that no
lateral nor out-of-plane motion occurs, and that the gradient of the motion along the
axial direction z is small, image lines acquired before (sn) and after (sn+1) a motion
step are identical apart from a z–dependent shift �zn,n+1(z) and can therefore be
modelled as:

sn+1
(
z + �zn,n+1(z)

) = sn(z) (2)
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If, in addition,�z is smaller than half the oscillation period�,�z can be estimated
from the point-wise Hermitian product Cn,n+1 between sn and sn+1:

Cn,n+1(z) = sn(z) · [sn+1(z)
]∗ = sn+1

(
z + �zn,n+1(z)

) · [
sn+1(z)

]∗

= Sn+1
(
z + �zn,n+1(z)

) · S∗
n+1(z) · exp(2π i(z + �zn,n+1(z)

)
/�

) · exp(−2π i z/�)

∼= Sn+1(z)
2 · exp(2π i�zn,n+1(z)/�

)
(3)

→ �z
∧

n,n+1(z) = arg
{
Cn,n+1(z)

}
/2π · � (4)

For the last step of Eq. 3, one uses the assumption that S(z) varies “slowly”
compared to � and �z and thus can be assumed constant over the distance �z.
Since the pre-factor to the complex exponential in Eq. 3 is thus real, �z can be
estimated based on the phase angle of C . Even though we assumed purely axial
motion, LPC is not limited to axial motion: by acquiring US images with two (or
more) different view directions through Tx and/or Rx beamsteering, a 2D-vector (or
3D for 2D arrays) field can be obtained.

Now, let’s have a closer look at the various assumptions that were involved in the
derivation of Eq. 4:

No lateral motion: Accepting some error, it can be slackened, saying that lateral
motion has to be below the lateral resolution of the image. In case this assumption
is not fulfilled, lateral motion causes decorrelation of S resulting in tracking errors.
Such errors can be reduced by reducing the lateral resolution (e.g. by lateral spatial
low-pass filtering [34]), but at the cost of lateral resolution of the motion field.

No out-of-plane motion: Out-of-plane motion can lead to decorrelation of S without
any possible remedy. Therefore, this condition is crucial for any motion tracking
algorithm to work. Also, out-of-plane motion can decorrelate the PA signal, making
DCA useless. Therefore, real-time display of US images during DCA is a very
important feedback for probe guidance, to help minimise out-of-plane motion.

Small axial gradient of motion field: The envelope S is the result of the interfer-
ence (destructive and constructive) of echoes generated by reflectors that cannot be
resolved by the axial impulse response (given by the BW ) of the system. If the dis-
placement magnitude changes by about 0.5� within the length of the axial impulse
response, then the changing relative position of reflectors results in a changing inter-
ference of the echoes (destructive turns to constructive and vice versa) and thus to
full decorrelation of S. Even for smaller gradients, partial decorrelation occurs [34].

Slowly varying envelope: The shorter the axial impulse response (the larger the BW ),
the more the complex envelope can vary with the displacement, and the pre-factor
in the last line of Eq. 3 deviates from a real number so that the relation between
the phase angle and the displacement magnitude becomes inaccurate. Even for a
broadband signal, it is possible to enforce a narrower BW and thus a more slowly
varying envelope by bandpass filtering. The increased length of the axial impulse
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response, however, leads in turn to more decorrelation of S according to the previous
paragraph. For this reason, the correlation length together with the axial gradient of
the motion field determine a minimum decorrelation rate.

The net effect when the above conditions are only partially fulfilled is thus decor-
relation of S, which in turn results in tracking noise. To reduce tracking noise, one
employs a convolution of C with a typically 2D window function (or 3D for matrix
arrays) before calculating the phase angle. Similar to the axial impulse response
length, an increasing axial length of this tracking window induces errors when the
gradient of the motion field is not zero. The choice of the tracking window length
thus deserves attention, and depends on the application.

The main limitation of LPC is that the displacement magnitude has to be smaller
than 0.5� (0.075 mm at 5 MHz) to avoid phase aliasing. One could argue that it is
possible to enforce this condition by properly choosing f0 via bandpass filtering. In
practise however, this approach is limited by the bandwidth of the system. A way
to track large tissue displacements is to make sure the condition is fulfilled between
successive US acquisitions, and accumulate the motion field over time [34]. With
externally induced tissue motion, the motion between successive US acquisitions
can be controlled to be sufficiently small. In carotid imaging, however, the intrinsic
pulsatile motion of the artery wall can easily lead to a total displacement on the order
of several � in a fraction of a second. In such a case, one can in principle choose the
framerate fast enough to capture sufficiently small motion intervals. Depending on
the US system at hand, however, such a high frame rate may not be possible, either
due to limited data transfer speed and/or due to limited processing speed. With the
system used for this exemplary study, the frame rate was limited by the transfer and
processing speed to about 10 fps. This made a type of tracking algorithm necessary
that is capable of accommodating displacement magnitudes of several � length.

In the US elastography literature, block-matching (BM) is often used for tracking
large displacementmagnitudes [35–37]: the similarity of image patches of successive
images is quantified using a similarity measure (e.g. cross-correlation) for a variety
of test displacements (“search approach”), resulting in a map of the value of the
similarity measure. The displacement is then estimated as the one that optimises the
similaritymeasure. In comparison to theBMtechniques, LPChas several advantages:
(i) it is fast because it is based on a point-wise calculation whereas BM requires a
time-consuming search approach; (ii) it is more robust because it can accurately
determine phase shift even in low SNR situations where BM fails when the noise
modifies the amplitude distribution (“peak-hopping”) [38]; and (iii) it directly gives
an accurate continuous-valued result of displacement magnitude, whereas an error-
prone interpolation is required in BM to determine fractional displacements from
the discrete search area. To avoid the interpolation, some authors have proposed to
combine BM with LPC (BM-LPC) [39, 40], where BM is used for a rough estimate
of the displacement and LPC is used for fine-tuning.

For the system proposed in this chapter we designed a different approach that is
more robust and faster than BM-LPC: similar to some BM techniques, this approach
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makes use of the envelope of the complex RF-mode image, but instead of BM it con-
sequently employs the LPC concept for improved speed and accuracy. As mentioned
above, the limitation to the use of LPC is the limited bandwidth of the RF signal,
so that the low frequencies that would be required for detecting large displacements
are not available. The envelope, on the other hand, can have far lower spatial fre-
quencies, but also a much larger fractional bandwidth so that the prerequisite for
LPC is not fulfilled. To solve this problem, we bandpass-filter the envelope, to obtain
synthetic RF data to which LPC can be readily applied. For each motion step n, the
bandpass-filtered envelope at the bandpass frequency k, un,k , is defined as:

un,k = Kk ∗ (|sn|2
)

(5)

Note that the envelope is defined here as the squared absolute value of the RF
signal. The reasoning behind this definition as opposed to the absolute value itself
is as follows: the absolute value can have sharp edges at the locations where adja-
cent echoes interfere to zero amplitude. These edges contain artificially high spatial
frequencies above the actual spatial resolution given by the probe bandwidth. The
squared absolute value, on the other hand, contains only truly resolvable spatial vari-
ations. It is moreover reasonable in a physics sense, as it corresponds to an actual
physical quantity, i.e. energy density, whereas the absolute value itself doesn’t.

The filtering and tracking are done in a multi-stage approach: In a first stage, the
bandpass centre frequency is chosen sufficiently small so that the largest experienced
displacement magnitude is smaller than half the wavelength �k of the k th bandpass
filter. LPC of successive frames un,k and un+1,k results in a first displacement estimate
�z
∧

n,n+1,k , albeit at a low spatial resolution. To increase the spatial resolution, this
displacement estimate is then used to motion-compensate the frames un,k+1 and
un+1,k+1 at the next higher bandpass frequency. After motion compensation, the
residual displacement is ideally smaller than�k+1 so that LPC can be appliedwithout
phase aliasing on this stage, resulting in an estimate of the residual displacement.
This estimate is added to�z

∧

n,n+1,k resulting in a refined estimate of the displacement,
�z
∧

n,n+1,k+1. This procedure is repeated for all chosen filter stages. In the end, a final
residual displacement estimate can be obtained from LPC of the motion corrected
RF signals sn and sn+1.

3 Combined Handheld PA and US System

3.1 Acquisition System

For illustration of its benefit for low energy handheld PA imaging, we exemplarily
show results of the implementation ofDCAon a system thatwas developedwithin the
H2020 project Cvent. The goal of Cvent is an improved diagnosis of plaque vulner-
ability using PA detection of blood clots inside carotid plaque. The system contains
a fully integrated hand-held probe, based on a pre-existing commercial linear-array
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probe (7.5 MHz centre frequency, 5 MHz bandwidth, 0.245 mm element pitch) that
was re-engineered to contain a built-in multi-wavelength diode laser source for PA
imaging. Figure 2 shows a picture of the probe. Probes with various combinations
of optical wavelengths in the near infrared were produced. The results presented in
the next section were obtained using a single wavelength at 808 nm, irradiating the
skin alongside the linear array through an elongated area of 1.5 cm2 with pulses of
60 ns duration and 2 mJ pulse energy. An average pulse repetition rate of 80 Hz was
used in this study, resulting in 100 mW/cm2 time average irradiance well below the
safety limit of 330 mW/cm2 according to IEC 60825-1. The probe is connected to
a commercial portable ultrasound system (MyLab™ One, Esaote Europe B.V., NL)
for data acquisition. The limited on-board memory of the system allows to acquire
a maximum of 9 PW data frames (for US imaging), each covering a depth range of
10 mm, and 10 PA data frames covering a depth range of 20 mm. After filling the
on-board memory, the data (a “burst”) is transferred via USB to a PC, where pro-
cessing is performed on graphical processing units (GPU). For the presented results,
an Acer Aspire E 15 laptop (Intel core i7-6500U, 2.5 GHz) was used with a built in
NVIDIA GeForce 940 MX graphics card. With this PC, the over-all speed (trans-
fer and processing) allowed for processing 8 bursts per second, allowing real-time
imaging.

Fig. 2 Handheld PA/US
probe containing the
integrated diode laser source.
The laser light exits the probe
through the glass window
alongside the acoustic lens
(arrowhead) covering the
linear array transducer
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3.2 Image Reconstruction

Both the US and the PA images were reconstructed using conventional DAS algo-
rithms. The carotid artery of the volunteer was located at a depth of 10–15 mm
and had about 5 mm diameter, and thus could be easily covered by the 20 mm
depth range of the PA acquisitions. The US acquisitions, however, only cover a
range of 10 mm. For visual inspection of potential echo clutter in the PA images,
the US images must show the tissue located between the probe and the carotid.
This allows identifying PA signal as real signal or clutter based on the absence
or presence of strong echoes at roughly half the depth. At the same time, the US
images must also contain the carotid to allow motion tracking of the tissue at the
location where DCA is most important. An US depth range covering superficial
and deep tissue is also desired by the clinicians as it helps interpretation of the
anatomical context during freehand probe guidance. A 20 mm US depth range
was therefore achieved via the spatial distribution and superposition of the 9 US
patches (Fig. 3a). The distribution was done in a way that PWC with 7 different
angles (−3° to 3° in 1° steps) was achieved in an area covering the upper part of the
carotid, where US image quality was most important for motion tracking. The areas
above and below the artery as well as at the lateral edges of the image contained less
angles, resulting in reduced image quality. This was regarded acceptable as these
regions were only needed for identification of the anatomy. For the demonstration of
imaging depth using DCA, however, our desire was to achieve the maximum possi-
ble motion tracking accuracy resulting in maximum possible contrast-to-noise ratio
(CNR) given the system limitations. For this purpose, we designed an additional
mode where all 9 US acquisitions were placed on top of the location of the carotid

Fig. 3 Arrangement of the 9 US patches (indicated by solid rectangles and lines) acquired with
various different angles for plane-wave compounding, covering an extended depth range (a) and a
reduced depth range (b). The full image area is denoted by a dashed rectangle, and the upper edge
of the carotid lumen is indicated by solid arcs
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artery (Fig. 3b) so that PWC could be performed using 9 (−4° to 4° in 1° steps)
instead of only 7 angles, as we noticed that the extra angles resulted in a visible
reduction of the tracking noise.

Both the US and the PA images were reconstructed in complex RF-mode with a
pixel resolution of 0.15mm (laterally) by 0.083mm (axially). The 10 PA acquisitions
of each burst were averaged before image reconstruction to reduce numerical cost.
This could be done without motion compensation, as tissue motion during a burst
was negligible.

3.3 DCA Details

Motion tracking was performed as described in Sect. 2. The bandpass convolution
kernels were implemented as a truncated sinc functionmultipliedwith an exponential
carrier

Kk(z) = sin(πkz)

πkz
e2π ikz(−1 < kz < 1) (6)

for k corresponding to virtual centre frequencies [0.25, 0.5, 1.0]MHz. The local aver-
aging of the complex correlation prior to determining the phase angle was imple-
mented as a successive convolution in lateral and axial direction, with hamming
windows with length 1/k corresponding to [3.0, 1.5, 0.75] mm. For the last stage,
the tracking of the actual RF signal, the local averaging was implemented the same
way but with a window length of 1.5 mm.

Motion compensation was performed via interpolation of the complex envelope
of the complex RF-mode images (the IQ-data), followed by a phase correction to
account for deviations of the continuous-valued displacement map from the discrete
pixel grid. The reason is that the axial grid required for interpolation of the IQ-data can
be sampled with the resolution given by the probe bandwidth, whereas interpolation
of RF-data would require a higher resolution given by the (larger) centre frequency
and, thus, increased computing time for image reconstruction.

Apart from the tracking and motion compensation algorithm, an important detail
of a DCA implementation is what motion information is extracted from the US
images and how this information is used for motion compensation: motion tracking
can either be performedbetween successiveUS images or relative to afixed reference.
When determining displacement relative to a fixed reference, the disadvantage is that
the increasing decorrelation of echoes with time (e.g. due to out-of-plane motion)
leads to increasing displacement quantification errors. The advantage is that, for
any displacement, such errors are only made once. When determining displacement
between successive US frames, the quantification errors are on average smaller, but
when accumulating displacement maps over larger time intervals, errors accumu-
late. Depending on the statistics of echo correlation/decorrelation, the accumulated
errors can become larger than the errors of a large but single tracking step. Motion
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compensation can either be performed in a forward or in a backward way. In forward
compensation, one option is to compensate the DCA result of time step n − 1 for
the displacement from US frame (n − 1) to frame n, and update with the PA frame
from time step n. This implementation is computationally efficient because only one
motion compensation is required per time step, but it is only applicable if a moving
average with exponential weights is desired/acceptable. Alternatively, a number of
past PA frames from time steps (n − m) to (n − 1) can be compensated for the dis-
placement between US frames (n − m) to (n − 1) and the US frame at step n, and
averaged with the PA frame at step n using arbitrary averaging weights. The disad-
vantage of this approach is that it is computationally more expensive as m motion
compensation operations are required at each time step. In forward compensation,
tissue motion is visually preserved in the DCA result, which can be considered an
advantage. In backward compensation, on the other hand, PA frames from time step
n are compensated for the displacement between US frame n and the US frame at
a constant time step n0 < n. Averaging can be performed with arbitrary averaging
weights, even though only one motion compensation operation is required per time
step. This combination of flexibility and computational efficiency is a big advantage
of backward in comparison to forward compensation. In addition, backward com-
pensation of US images in parallel to PA can serve as a useful feedback for assessing
tracking quality: a static backward-compensatedUS image indicates perfect tracking.

Given the rather low framerate of the Cvent system, it turned out that a combi-
nation of fixed reference motion tracking and backward compensation worked best
for imaging down to the depth of the carotid artery. For visual feedback on tracking
accuracy, DCA was applied not only to PA but also to US images. The US images
were thus not only backward compensated, but also averaged over time. In addi-
tion to allowing a coarse assessment of tracking accuracy based on the absence of
motion in the back-compensated image, averaging ofmotion-compensated RF-mode
US images provides additional feedback as small tracking errors show up as phase
cancellation artifacts.

A moving average with exponential weights w(n) was used to define the DCA
result Pdca(n) because this could be efficiently implemented in a recursive way:

w(n) = 1
∑∞

n′=0 e
−n′/T e

−n/T (7)

Pdca(n) =
n∑

n′=−∞
w

(
n − n′)P

(
n′) = w(0)P(n) + (1 − w(0))Pdca(n − 1) (8)

Thereby, P(n) is the nth motion-compensated frame (either PA or US). For PA,
a time constant T of 20 bursts (i.e. w decreases to 1/e over 20 bursts) is used in
practise, corresponding to a 2.5 s average delay between acquisition and display, but
we will also show the influence of different time constants in the next section. For
US feedback on tracking quality, a shorter time constant of 5 bursts was used, as this



60 M. Jaeger et al.

was sufficient to reveal phase cancellation due to tracking errors but provided a more
immediate feedback (0.6 s) which was helpful for adjusting probe guidance.

3.4 Image Display

The software of the Cvent system was programmed to display two different images
side-by-side: on the left, image 1 displays a “high quality” (HQ) US image, to help
guide the radiologist within the anatomical context when looking for plaque. This US
image is not motion-compensated nor averaged. Standard US image post-processing
was implemented (envelope detection, logarithmic compression, speckle filtering)
to match, as far as feasible (given the limited amount of data), standard B-mode US
image quality. On the right, image 2 provides an overlay of the DCA PA image with
the DCA US image. Again, envelope detection and logarithmic compression was
used for the PA image, but no speckle filtering. Depth-gain compensation (TGC)
was applied to both to US and PA, to reduce intensity variations caused by optical
and ultrasound attenuation.

Combining PA and US data in a single image has the advantage that the PA signal
can be identified within the anatomical context given by the echo texture in US.
Various different ways of combining PA and US data are possible. One way would
be to simply blend the colour maps of the twomodalities.When using clinical probes
this is, however, not a good approach: the limited bandwidth of clinical probes cuts
off low spatial frequencies of PA signals. High spatial frequency detail in PA images
is mainly found as sparsely distributed small blood vessels and surfaces of larger
blood vessels or tissue interfaces (e.g. between fat and muscle). Large areas of the
PA image thus do not contain useful information, and simply blending colour maps
would unnecessarily tone the US image in these areas. A simple and popular way of
combining PA and US data is thus by displaying PA data in colour scale only where
PA intensity exceeds a certain threshold which is chosen above the expected noise
intensity level. The disadvantage of this technique is that noise not only consists of
thermal noise but also contains clutter noise. The latter can vary, depending on the
imaging location but also depending on variations in the light coupling efficiency, so
that the threshold needs to be adapted in an unpredictable way.

To avoid this problem,we have chosen a different approach based on the coherence
factor (CF) concept. Conventionally, the CF quantifies the coherence of an US or
PA signal across the probe aperture, as the squared coherent sum (phase preserved)
normalised to the incoherent sum (of the intensity, no phase information) of the
signal (after applying the same time delays as in conventional DAS). A perfectly
coherent signal yields the largest CF value, whereas a perfectly incoherent signal
yields a comparably small value due to phase cancellation in the coherent sum. We
adapted this concept to measure the coherence along the sequence of bursts, per pixel
in the reconstructed (after DAS) and motion-compensated PA images. Clutter and
noise decorrelate along the burst sequence, thus being “incoherent”, whereas true PA
signal is correlated and thus shows a higher “coherence”. We therefore defined the
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CF as:

CF(x, z, n) =
[∑n′=n

n′=−∞ w
(
n − n′)P

(
x, z, n′)

]2

∑n′=n
n′=−∞ w(n − n′)

∑n′=n
n′=−∞ w(n − n′)[P(x, z, n′)]2

(8)

The sum in the numerator equals the conventional DCA result, whereas the sum in
the denominator is an incoherent version of DCA. For perfectly correlated PA signal,
this CF becomes one, independent of themagnitude of the PA signal, whereas it takes
on small values in noise- or clutter-dominated areas. TheCFprovides amore practical
way of identifying “real” PA signal than thresholding the PA intensity because it does
not depend on the PA signal magnitude but only on the coherence. We use this CF
for the combined PA/US display in the following way: first, the intensity (squared
envelope) of the PA image is logarithmically compressed and the result is coded into
an RGB colour map. Then, the colour channels are multiplied with the CF in each
pixel. This approach opens up the freedom to code the intensity of PA signals as
colour hue alone, whereas the colour brightness is determined by the “coherence”.
This allows to distinguish different signal intensity levels based on hue while the
brightness emphasizes “real” signal independent of signal intensity. For the results
shown in the next section, a “blackbody” colour map was chosen. In a last step,
the PA colour image is blended with the grayscale US DCA image, using (1-CF) as
spatially dependent transparency value, after multiplying the US grayscale by 0.5
to provide better colour contrast between PA and US. To make the effect of the CF
on the final image more pronounced and independent of depth-dependent optical
attenuation, the CF is logarithmically compressed to a range of 7.5 dB, starting from
−5 dB and including a TGC of 3.5 dB/cm.

4 Results

This section presents results of detecting blood vessels at the depth of the carotid
artery in a healthy volunteer. In a first part, the influence of the various steps of the sig-
nal processing are illustratedon a single example data set. In a secondpart, various dif-
ferent imaging examples are shown, to underline the reproducibility of the achieved
imaging depth and to provide some recommendations on image interpretation.

4.1 Illustration of Processing Steps

Figure 4a shows right away the final side-by-side display of the “conventional” HQ
B-mode US image and the PA/US overlay. For this and following results, the limited
US depth range configuration was used to achieve maximum tracking accuracy. The
HQ B-mode US image on the left reveals anatomical detail of the tissue surrounding
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Fig. 4 a Side-by-side display of B-mode US (left) and PA/US overlay (right). The US image shows
a transversal section through the left carotid artery (C: carotid lumen; J: internal jugular vein; v:
small vessel; th: thyroid gland and e: muscle epimysia). The overlay of PA (blackbody colour scale)
with US (grayscale) shows strong PA signal at the upper surface of the carotid lumen (arrowhead),
around the jugular vein and around the small vessel. The lateral extension of the carotid lumen
signal is limited by the receive angular aperture, indicated by dashed lines. b For comparison, when
averaging without motion compensation, the carotid signal is missing. Intensity display ranges
were: 50 dB for US (5 dB/cm TGC), 25 dB for PA (12.5 dB/cm TGC)

the carotid artery, including the carotid lumen, thyroid gland, small vessels and
muscle epimysia. The PA/US overlay clearly shows PA signal emanating from the
upper surface of the carotid lumen. The appearance of this signal is typical for
PA imaging using conventional clinical US probes: only the lumen surface is seen
because the limited BW suppresses low spatial frequencies of optical absorption (the
light penetration depth itself is few mm), and the signal is laterally limited due to
the limited probe aperture: from the cylindrical transient generated by the vessel
lumen, only the part that propagates within the sector indicated by lines is detected
by the probe. Apart from the carotid lumen, PA signal is observed at small vessels
that are indicated in the US image. Note that the signal intensity is similar in spite
of the substantially different vessel sizes. This is expected, as the signal amplitude is
proportional to the absorption contrast at the vessel boundaries, which is similar as
all vessels are situated at roughly the same depth. The averaging time constant was 20
bursts, corresponding to 2.5 s. Figure 4b shows the PA/US overlay when averaging
the PA signal over the same 20 bursts but without prior motion compensation. As
a consequence of phase cancellation, the carotid signal is not discernible from the
background noise. The results in Fig. 4 thus clearly demonstrate that DCA is a
requirement for deep imaging, especially in low energy PA imaging where long
averaging times are required. Apart from enabling the detection of the carotid signal,
a comparison of the PA results reveals a reduced background noise level inside and
around the carotid lumen in Fig. 4a compared to Fig. 4b. This indicates that part of
the noise was systematic noise that persisted in Fig. 4b but was reduced in Fig. 4a
due to the motion correction. Such noise can be explained by clutter stemming from
reverberations within the superficial tissue layers, of PA transients that are generated
in or just below the skin where laser fluence is largest.
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Fig. 5 Axial displacement field detected at maximum carotid motion, based on multi-stage
bandpass-filtered envelope tracking: a stage 1 at 0.25 MHz bandpass centre frequency; b stage
2 at 0.5 MHz; c stage 3 at 1.0 MHz. d Phase correction at 7.5 MHz smoothens the result of stage 3.
The colour scale spans ± 0.25 mm, where white and black indicate motion towards and away from
the transducer, respectively

Figure 5 illustrates the multi-stage motion tracking process, exemplified on the
axial displacement map detected at the peak of the carotid wall motion. A set of three
envelope bandpass stages was chosen at bandpass centre frequencies (0.25, 0.5 and
1.0 MHz). In a first step, the 0.25 MHz are used for tracking. Figure 5a shows the
resulting displacement map. Note that displacement values are available only within
the region of interest (RoI) that is covered by the US image. The 0.25 MHz were
chosen so as to provide the most robust motion-compensation of the US images (by
visual inspection). This displacement map, however, has very low spatial resolution,
so that short-scale variations of displacement magnitude are missed. As a result, only
the upwardmotion of the upper carotidwall is captured because the upper carotidwall
gives the strongest echo within the spatial resolution. This leads to an overestimation
of the displacement magnitude in a large area outside the vessel lumen. To avoid
such errors, the displacement map is refined in a second step, by phase-tracking the
0.5 MHz-filtered US envelope, resulting in Fig. 5b. As a result of the refinement,
this displacement map shows an improved spatial resolution, so that it is able to
capture also the downwards motion of the lower carotid wall. At the same time the
displacementmagnitude is decreased above the upper carotidwall because theweaker
echoes from the tissue overlying the carotid can now be spatially separated from the
strong carotid wall echo, resulting in more accurate estimation of the displacement
magnitude in this area. The displacement map is further refined in the third tracking
stage based on the 1.0MHz-filtered envelope (Fig. 5c).While the spatial resolution is
again markedly improved, the spatial distribution shows an increased level of bumpy
short-scale spatial variations. In a last step (Fig. 5d), the displacement map is refined
based on phase tracking the RF-mode US images as opposed to the bandpass filtered
envelope. After this phase correction, the spatial distribution has become smooth
over a large area, as one would expect from a real displacement field. The difference
between Fig. 5d and c underlines the earlier made statement that RF phase tracking
is more robust than envelope tracking: the increased noise in Fig. 5c can be assigned
to decorrelation of the envelope due to a changing interference of echoes. Only few
small areas can be identified in Fig. 5d with unrealistic sharp discontinuities that
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result from phase aliasing. Comparison to the HQ US image in Fig. 4 reveals that
these areas are found in regions of low echogenicity, mainly inside the hypoechoic
carotid lumen. This is expected, as such low echogenic areas can be dominated by
higher order echoes that move differently than 1st order echoes.

With the chosen backward compensation, the DCAPA image is static and thus the
overlay with US also requires a static US image. Therefore, motion compensation is
applied to US the sameway as to PA. As alreadymentioned, themotion compensated
US image provides a useful real-time feedback on tracking quality, as tracking errors
can be identified based on residual motion. In addition, when averaging the motion-
compensated US images, even small errors can become visible when they lead to
phase cancellation. This is illustrated in Fig. 6: phase cancellation shows up as fluc-
tuating small areas where echo intensity is transiently reduced. Based on the visual
assessment of residual echo motion and phase cancellation areas, freehand probe
motion can be adapted in real-time to minimise the frequency of tracking errors, to
provide an optimum data set to which DCA can be most successfully applied.

Apart from choosing between forward or backward motion compensation, one
main decision to be made when implementing DCA is between accumulative and
fixed-reference motion tracking. As already mentioned, both approaches can have
advantages and disadvantages. For our system we use fixed-reference tracking
because accumulative tracking turned out to be less robust. This is illustrated in
Fig. 7: accumulative and fixed-reference tracking led to similar contrast-to-noise
ratio (CNR), but accumulative tracking resulted in an increasingly distorted DCA
image already after 34 bursts (4 s averaging time) due to accumulation of tracking

Fig. 6 Illustration of using the DCA US image for real-time tracking quality feedback. This figure
shows the US image underlying the PA/US overlay, but without the PA data. a Perfect tracking
results in an US image that is static and shows a stable intensity distribution. b With less-than-
perfect tracking, the image may still look static, but small tracking errors result in small fluctuating
areas of decreased intensity due to phase cancellation (arrows). 50 dB (5 dB/cm TGC)
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Fig. 7 DCA result for accumulative (a) and fixed reference tracking (b), at burst number 14, 24,
34, 50 (left to right). 20× averaging time constant, 25 dB intensity range (12.5 dB/cm TGC).
Whereas contrast is similar between the two techniques, accumulative tracking leads to geometrical
distortions, best visible at the lower edge of the image or at the curvature of the carotid signal
(arrowhead)

errors. In comparison, fixed-reference tracking is limited in tracking accuracy, but
no error accumulation occurs so that the DCA result remains robust over time.

A further decision to be taken is between coherent averaging (of motion-
compensated RF-mode PA images) and incoherent averaging (of the motion-
compensated PA envelope). Incoherent averaging can have the advantage that
tracking inaccuracies cannot lead to phase cancellation as in coherent averaging.
On the downside, incoherent averaging is less efficient in terms of noise reduction:
the convergence rate of averaging the square of a Gaussian distributed random num-
ber is weaker than when averaging the random number itself. In addition, averaging
the square converges to a positive number instead of zero, which adds a disturbing
bias to the signal intensity distribution. This is illustrated in Fig. 8, where the DCA
results using the two different techniques can be compared. Note that both images
are displayed in identical dB scales. Within the first cm depth range where SNR is
large, the colour hue of strong PA signals is coded in the same colour in both images.
In areas where the signal is dominated by noise, the colour reveals an increased
intensity level in Fig. 8b compared to Fig. 8a due to the biased convergence limit.
Due to the TGC, the colour indicates larger intensity values with increasing depth.
Since the SNR of e.g. the carotid signal is quite small, the positive average noise
adds an offset so that the carotid signals colour hue indicates a higher intensity in
8b than in 8a. Note that the CNR is visibly decreased, e.g. around the jugular vein,
as the noisy background achieves the same colour hue as the signal from the jugular
vein. We decided for coherent DCA because it has an over-all improved CNR (better
convergence property, not markedly sensitive to phase cancellation errors) compared
to incoherent DCA.
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Fig. 8 Coherent (a) and incoherent (b) DCA. 25 dB intensity range (12.5 dB/cm TGC). Note the
similar intensity level of superficial and deep PA signals (empty arrowheads), but due to the positive
value of the average square noise (full arrowheads) incoherent DCA has reduced CNR compared
to coherent DCA. 25 dB intensity range

Finally, an important parameter for DCA is the averaging time constant. All PA
DCA results shown so far were based on a time constant of 20 bursts. The time
constant has to be chosen in a trade-off between SCR and real-time feedback. For
comparison of SCR, Fig. 9 shows DCA results for various different constants, i.e.
10, 20, 40 and 80 bursts, corresponding—for an 8 Hz burst rate—to 1.25, 2.5, 5
and 10 s averaging time, respectively. As one can see, SCR markedly increases
from 10 to 20, but converges above 40 bursts. The reason for this convergence as
opposed to a continuous increase is that part of the noise consists of persistent clutter.
Even though part of clutter can be reduced due to the carotid motion, this reduction
is limited: since the carotid displacement magnitude is limited and the motion is
periodic, only a limited number of statistically independent clutter realisations can
be averaged regardless of how long the averaging time is chosen. Even though SCR
slightly improved from 20 to 40 bursts, we considered 5 s a too long averaging time
regarding real-time feedback. Therefore, we decided for a time constant of 20 bursts

Fig. 9 Influence of averaging time onDCA constrast: a 10×; b 20×; c 40×; d 80×. 25 dB intensity
range (12.5 dB/cm TGC). CNR converges between (b) and (c)
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corresponding to 2.5 s, which at the same time provides close-to-maximum SCR
with a still acceptable delay between acquisition and display.

The last step in the DCA processing chain is the combination of the PA with the
US image. The way this is done has an important influence on the visibility and
interpretation of the PA signal. As mentioned earlier, we decided for an overlay of
the two images based on the DCA coherence factor (CF), as the CF provides an
amplitude-independent measure of the significance of a PA signal. The way the CF
is used for that purpose is illustrated in Fig. 10. The first step is the choice of the
base colour map that defines the colour hue for displaying the PA signal intensity.
We decided for a “blackbody” colour map because it resulted in the visually most
pleasant blend with the grayscale of the US image. The blackbody colour map starts
with black for zero signal intensity, over red and yellow, to white for the highest
intensity. Therefore, not only the colour hue depends on signal intensity but also the
colour brightness. Alternatively, one could choose a colour map that codes signal
intensity entirely in colour hue. As a step into this direction, we also show results for

Fig. 10 Illustration of the use of the DCA coherence factor (CF) for colour-coding PA data and for
the PA/US overlay, departing from two different base colour maps, blackbody (top) andmodified jet
(bottom): a PA data without CF fading. b Fading of PA colour map using CF. c Overlay of faded PA
colour map with US grayscale map using (1-CF) as transparency value. To improve visibility of the
PA signal, the US colour values were multiplied with 0.5 before overlay. The signals from carotid
lumen (C), jugular vein (J) and the small vessel (v) maintain their colour value with CF fading.
Some medium intensity features (e.g. solid circles) keep their colour hue but are attenuated by CF
fading. The low intensity background (blue in modified jet map) becomes black by CF fading, apart
from some pixels (e.g. dotted circle)
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a modified “jet” colour map. The original jet colour map starts from dark blue over
bright blue, etc. to bright red and dark red. To reduce brightness variation, this map
was truncated to range from bright blue to bright red. Figure 10 exemplarily shows
results for both the blackbody and themodified jetmap. Figure 10a shows the result of
coding the PA intensity into the respective colour map. Assuming that only coherent
signal (coherent in the sense that we defined earlier) is “real” and worth displaying,
theCF is then used to highlight “coherent” and supress “incoherent” signal, by coding
the CF into the colour brightness value. The result is shown in Fig. 10b. In both colour
maps, some features retain the original colour hue and brightness. In the lower half
of the image, these are notably the features that can be assigned (based on the US
image) to jugular vein, carotid, and a small vessel. Relative to these, the brightness
of the background is reduced. In case of the blackbody colour map, it is difficult to
determine in the CF-faded image alone whether the darkness is due to a dark value
in the original colour map or due to the CF fading. In the modified jet colour map,
on the other hand, it is clear that mostly areas that were initially blue (low intensity)
were set to black by CF fading. Some areas that were initially green (intermediate
intensity), however, were set to black, too, and some features that were initially blue
(low intensity) remain so in the CF-faded image, demonstrating that the CF provides
complementary information to signal intensity. In a last step, the CF is used to set
the local transparency value in the overlay of the PA onto the grayscale US image
(Fig. 10c): in pixels where the CF is high, transparency is set low, so that the pixel
colour is determined by the PA signal, whereas transparency is set high in pixels
where the CF is low, to show the anatomical context in areas where the PA signal
can be assumed not to contain valuable information.

4.2 Further Results

The remainder of this section is dedicated to showing and discussing further results
and provide experience on how to interpret images.

Asmentioned before, the limited bandwidth of the clinical probe acts like a spatial
bandpass filter that allows to detect only rapid spatial variations of optical absorption,
e.g. only the surface of large blood vessels. In addition, the limited aperture size
allows only part of the surface to be seen, i.e. the part from which the PA transient
propagates into the probe aperture. This leads to the typical arclet-shaped appearance
of the PA signal emerging from the carotid lumen. In case of a 1D array like the one
we are using in this study, the limited aperture of the probe has a further implication
not discussed so far: to provide a well-defined imaging plane, the array aperture is by
design focused in elevation (the dimension perpendicular to the imaging plane). For
that reason, a main requirement for detecting the carotid signal is that the imaging
plane has to be perpendicular to the lumen surface. By that the transients emanating
from the lumen surface and hitting the transducer have propagated parallel to the
imaging plane and are detected with maximum elevation sensitivity. With increasing
deviation from a perpendicular orientation, the same transients arrive at an increasing
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elevation and sensitivity rapidly decreases. For reasons that are yet unclear (but will
be discussed in the next section) it can be difficult to detect the carotid signal in a
transverse section even with perfectly perpendicular orientation. The chance to at
least partially detect the carotid is higher in a longitudinal section: then the carotid
signal appears as a line (Fig. 11a) that covers a larger number of pixels and thus
provides a richer statistics for identification of this signal. It makes it also more
practical to adjust the probe orientation: by only slightly tilting or moving the probe,
the angle between imaging plane and lumen surface changes rapidly due to the
surface curvature, thus it is possible to optimise the sensitivity without substantially
changing the imaging plane position. For a transversal section, optimising the angle
between imaging plane and lumen surface requires a search over a large probe tilt
angle range, and the location of the section area within the lumen changes together
with the tilt angle, so that two probe orientation parameters need be simultaneously
optimised for detecting a desired location.

In our experience, it is much easier to catch the signal emanating from the internal
jugular vein (and from smaller vessels) than from the carotid itself. This is illustrated
in Fig. 11b–d where the signal from the internal jugular vein can be clearly identified
even when it is located near the lower edge of the image. Note that, in Fig. 11c, the
carotid lumen is visible on US at the same depth as the jugular vein (but no PA signal
is detected due to the difficulties mentioned before). These results therefore further
underline the ability of the presented system to detect optical absorption in the blood
at the depth of the carotid artery.

Fig. 11 Further results demonstrating imaging depth. a longitudinal section of left carotid artery;
b–d transversal sections of right internal jugular vein. In c and d the jugular vein appears flattened
due to compression of the tissue (C: carotid lumen; J: jugular vein lumen). In all images, the lateral
extent of the PA signal is indicated by brackets. Intensity range: 50 dB for US (5 dB/cm TGC),
25 dB for PA (12.5 dB/cm TGC)
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So far, all results were based on a limited RoI US image. As mentioned in the
previous section, the US RoI depth range was limited to 1 cm in order to achieve
maximum angle coverage for PWC and thus maximum tracking quality within the
hardware limitations of the available system. Apart from showing the anatomical
context of PA signal and serving for motion tracking, however, the US image is
needed for identification of PA reflection artifacts based on the presence of echogenic
structures seen in US. For this purpose, the US image needs to show structures that
are located at half the depth of the PA signal of interest. Therefore, we implemented
a software version where a larger depth range is shown on the US image, at the cost
of giving up on angle coverage and thus on tracking quality and DCA performance.
Figure 12 shows some results using this software, to illustrate how the US image
can be used for evaluating the authenticity of PA signal: in Fig. 12a (as already in
Fig. 4) PA signal is visible which can anatomically be related to the surface of the
left carotid lumen. At half its depth, no reflecting structure is seen on US (dashed
line). These two observations together give confidence that the PA signal is actually
from the lumen, not a reflection artifact. In Fig. 12b, the left internal jugular vein is
seen on US. It appears as a line because it is fully collapsed due to the static pressure
exerted by the probe. Next to the jugular vein, a small vessel is visible. PA signal is
visible inside the jugular vein as well as in the small vessel. The authenticity of the

Fig. 12 a–d Evaluation of authenticity of PA signal is based on US in two ways: by the correspon-
dence of location of PA signal to anatomical features (indicated by solid white lines or brackets;
C: carotid lumen, J: internal jugular vein, v: vessel, e: epimysium), and by the absence of strongly
reflecting structures on US image at half the depth of the PA signal (indicated by straight dashed
lines and dashed circumscribed areas. Intensity range: 40 dB for US (5 dB/cm TGC), 25 dB for PA
(12.5 dB/cm TGC)
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PA signal is again suggested by the correspondence of the PA signal to the anatomy
seen onUS, together with the fact that no reflectors are seen in US at half the depth. In
Fig. 12c, PA signal is visible at the location of a vessel seen on US. At half the depth,
a structure is visible on US which might cause a reflection artifact at the depth of the
PA signal. However, one would then expect further artifacts with similar or higher
intensity in near vicinity corresponding to other andmore intense structures visible in
the US image at similar depth. Moreover, based on the fact that the same PA signal is
often found at the location of this vessel (as in Fig. 4), one can safely assume that this
is real signal. Apart from blood vessels, epimysia often exhibit a distinct PA signal as
in Fig. 12d. Again, the authenticity is confirmed by the anatomical correspondence
and by the absence of a reflector at half the depth. The horizontal stripes of high PA
signal intensity that have been present in all images shown so far can partially be
interpreted as echo artifacts: they do not show anatomical correspondence with the
US image, but can be interpreted as reverberations between skin surface (outside the
RoI shown in the US images) and the muscle surface and horizontal muscle layers
(visible on US).

5 Discussion and Conclusion

The results presented in this chapter demonstrate that DCA is a key requirement for
deep PA imaging using low energy (LED or LD based) PA systems, and we have
shown that this technique allows detecting the PA signal of the carotid artery using
a compact fully-integrated PA/US probe in a freehand approach.

The results show the known limitations of using a clinical linear array probe for
PA imaging, namely that the limited probe bandwidth and aperture allow only to
detect sharp boundaries, e.g. at the upper (and sometimes lower) edge of a vessel
lumen. Moreover, sensitivity depends on the relative orientation angle between the
PA signal sources and the imaging plane. This certainly puts limits to how much
can be interpreted from PA images, and—in the worst case—renders quantitative
interpretation of PA signal amplitude impossible. To solve this problem, one approach
has been to use concave arrays that are better matched to e.g. the neck or breast
geometry to increase angle coverage [41, 42], and a large bandwidth (more) suitable
to capture a tomographic section. Such a system has, however, the disadvantage of
providing a less well defined imaging plane: the size of the elevation focus which
defines the thickness of the imaged tissue slice depends on the acoustic wavelength in
relation to the transducer element size. Below a certain frequency limit, the focusing
capability is lost, and if these frequencies are not suppressed by the transducer’s
frequency response (or by the successive signal filtering), signals from anywhere
in the 3D tissue sample are projected onto the same 2D image. This becomes a
problem in PA when signals from below the skin surface but outside the imaging
plane are orders of magnitude stronger than the signals coming from deep inside
tissue due to the large difference in laser fluence. Therefore, the lowest detected
frequency at the same time defines the minimum imaging plane thickness. If the
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wish is to detect the inside of the lumen of the carotid artery, for example, the
imaging plane thickness would implicitly have to be larger than the diameter of the
artery, i.e. around 10 mm. This would preclude such a system from the combination
with conventional US images where a much better elevational resolution is desired
(typically below 1 mm). A way to avoid the ambiguity of the PA imaging plane is
to use a 2D array [43] for Rx beamsteering in azimuth and elevation. To achieve a
sufficient tomographic coverage, however, the aperture size of such an array must
be large in both dimensions, so that it becomes again impractical for an integration
with standard handheld US.

We therefore foresee that, while a dedicated broadband and curved array can have
specific clinical applications, a conventional clinical probe can have advantages in
applications where the limited bandwidth is not a substantial problem and where PA
can add important diagnostic information to conventional US: if, for example, the
goal is to quantify blood oxygen saturation (SO2) in small vessels, reconstructing the
inside of the vessel lumen is not required (SO2 can be regarded to be uniform across
the lumen) and quantitative absolute values of PA signal amplitude are not required
(SO2 can be determined from relative variations of PA signal amplitude as function of
optical wavelength [44]). In the Cvent project, the goal is to detect blood clots inside
plaque. In the previous sectionwementioned that detecting the signal from the carotid
lumen requires a high level of experience in probeguidance as thedetection sensitivity
depends on a perpendicular orientation of the imaging plane relative to the lumen
surface. This is, however, less of a problem when detecting blood clots: the optical
absorption by clots is distributed non-uniformly inside plaque so that we expect it to
act like a collection of small independent absorbing centres [45]. Figure 12 illustrates
in a phantom the expected difference of the PA signal inside plaque compared to the
signal from a healthy artery. For this purpose, a uniformly absorbing but acoustically
transparent cylinder was embedded inside a background medium that is acoustically
scattering. In one position, the cylinder contains a small echogenic volume in which
graphite powderwasmixed,mimickingplaque containing blood clots.When imaging
the phantom in a “healthy” area (Fig. 13a), it looks similar as in a healthy volunteer:
the cylinder appears as hypoechoic area onUS, and the transversal section shows a PA
signal in the shape of an arclet at the upper surface of this area, and the longitudinal
section shows a line-shaped signal. When imaging at the position of the “plaque”
(Fig. 13b), the plaque appears as a collection of diffuse PA speckle. This diffuse type
of signal can be detected independent of the orientation of the imaging plane because
it acts like a collection of independent and isotropically radiating sources.

In our study we made the interesting observation that detecting the PA signal
from the carotid artery is substantially more difficult than the one from adjacent
small vessels or from the internal jugular vein at the same depth. The 808 nm optical
wavelength used for this study is very near the isosbestic point of the optical attenu-
ation spectra of oxy- and deoxyhaemoglobin, so the absorption contrast is expected
to be identical for carotid and other vessels. A possible explanation for the observed
difference in signal intensity may, however, be found in the different morphology
of the carotid artery wall compared to surrounding vessels: it contains a substan-
tially thicker muscle cell layer (tunica media) that is perfused by capillaries (vasa
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Fig. 13 Phantom mimicking a healthy carotid artery (a) and an artery containing plaque with
haemorrhage (b). C: “healthy carotid” signal; p: “plaque” signal. Note that the apparent PA signal
at the lower edge of the “carotid” lumen are echo artifacts, caused by an impedance mismatch
between the background and the cylinder medium

vasorum). The depth profile of optical absorption in haemoglobin may thus resemble
more a staircase than a single-step function, so that the optical contrast is blurred
towards low spatial frequencies that may be less well detected. At the same time,
the intensity of the light reaching the lumen interior is reduced by the thicker tunica
media.

The most important component of DCA is the tracking algorithm. The goal of the
presented study was to demonstrate that sufficient imaging depth could be achieved
to detect the PA signal from blood vessels at the depth of the carotid artery. For
this purpose, we relayed on an easily implementable, robust and real-time capable
ad-hoc algorithmic solution. The advantage of the chosen algorithm compared to
the commonly used block-matching (BM) technique is the lower numerical cost:
Fig. 4 indicates that the peak displacement magnitude of the carotid wall motion was
roughly 0.25 mm, corresponding to 2.5 wavelengths (0.1 mm) of the oscillations of
the RF-mode image at the 7.5 MHz centre frequency. A BM technique would thus
require at least 5 test displacements (2.5 in positive and in negative axial direction)
but preferably more, to retrieve the optimum value of the block-matching criterion
(e.g. correlation coefficient) with sufficient resolution. In comparison, only three fil-
ter stages were needed in our approach. At each stage, the displacement is directly
estimated from the correlation phase (thus not requiring a search approach), andmul-
tiple filter stages are only used for refining the spatial resolution of the displacement
map. A displacement map with slightly reduced quality could even be obtained with
only two stages.

Even though the chosen tracking algorithm was sufficient for the demonstration
of imaging depth in the presented volunteer results, it has potential for improvement:
so far, we used only axial motion tracking and compensation, as it is the axial motion
that leads to phase cancellation of the average PA signal if not accounted for. Lateral
motion, on the other hand, can laterally blur the average PA image, thus the SNR of
theDCA result can be further improved by lateral motion tracking and compensation.
As previously mentioned, a 2D displacement vector field can be obtained for this
purpose by acquiring twoUS images with different view directions (via Tx and/or Rx
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beamsteering). One-dimensional tracking of these images along the respective view
direction results in projections of the displacement vector onto the different direc-
tions, and the displacement vector field can be reconstructed from these projections.
An advantage of this approach is that it is substantially faster than a BM approach
that requires a 2D search area. A disadvantage is the reduced lateral resolution if
Rx beamsteering is used (as the full Rx angular aperture must be split into different
view directions), or the increased data size if Tx beamsteering is used (due to the
larger number of acquisitions). The envelope-based LPC technique proposed in this
chapter is a practical alternative which combines the advantage of BM (full resolu-
tion without increasing data size) with one-dimensional tracking (low computational
cost): phase tracking of the bandpass-filtered squared envelope can be applied to
the lateral dimension equally well as to the axial dimension. This directly results
in the lateral component of the displacement field with only a factor 2 increase in
computational cost. This approach is very similar to spatial quadrature [46], where
tracking is based on the complex RF signal and a lateral oscillation is achieved via
Rx apodisation. Apart from increasing the dimensionality of the displacement field,
multi-dimensional motion tracking has been shown to improve the accuracy of each
dimension over a single-dimensional tracking [35]. Further ideas for improvement
are found in literature on US strain imaging [36, 47–49].

As previously mentioned, the accuracy of the motion tracking relies on the US
image quality. In the presented results, the US image quality was good in the sense
that the intensity level of higher-order echo clutter was lower than the intensity
of first-order echoes in most of the image area. Preliminary experience from an
ongoing clinical study, however, reveal that motion tracking is more difficult in a
large part of cases. Anatomy and acoustic properties of the neck vary substantially
between subjects. Fat in and between the musculature above the artery can lead
to reverberations of ultrasound that obscure the artery lumen so that the detected
displacement is determined by the motion of the superficial tissue from where the
reverberations originate, rather than by the actual artery wall motion. Similarly,
calcifications inside plaque lead to reverberations that obscure the lower artery wall,
such that the tracking result at the lower wall is determined by themotion of the upper
wall. To enable reliable results independent of anatomy, the tracking algorithm thus
must be able to (better) discriminate between superposing first- and higher-order
echoes. This might be achieved via identification of different statistical features of
theRF signal, via the differentmotion speed using a blind signal separation technique,
via deep learning, or via a combination of these.

The presented results were obtained with an LD-based system providing 2 mJ
pulse energy, using an average prf of 80 Hz and an averaging time constant of 2.5 s.
As previously mentioned, the resulting average irradiance at the skin surface was a
factor 3 below the safety limit (for 808 nm).With a faster data transfer and processing
speed, the prf could thus have been increased by a factor 3 up to 240 Hz. Maintaining
the 2.5 s averaging time constant, this would have led to a factor 1.7 increase in SNR
(amplitude). By irradiating the skin on two sides of the linear probe instead of only
one, the total increase in SNR would augment to a factor of 3.5. This indicates that
identical results as the presented ones could have been achieved with—by a factor of
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3.5—reduced pulse energy, i.e. only 0.7 mJ. This is a promising result, as it suggests
that imaging the carotid artery is within the reach of the performance of LED-based
systems.
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