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Foreword

Medical imaging provides critical information about diseases and consequently
assists in selecting the right course of action and appropriate therapy. Sensitive
imaging techniques can help in early and accurate detection of deadly diseases,
resulting in timely intervention and reducing the burden of medication and surgery
at later stages. All imaging modalities aim to achieve these goals at an affordable
cost. Most commonly used clinical imaging modalities include ultrasound imaging,
X-ray computed tomography, magnetic resonance imaging, and positron emission
tomography. All these modalities are different in terms of the physics, contrast
offered, expense of installation and operation, and sensitivity for different appli-
cations. An ideal medical imaging system should be able to diagnose diseases with
high sensitivity and specificity at a cost that is affordable for all clinics around the
world.

Photoacoustic imaging is an emerging hybrid technology that offers rich optical
contrast and scalable ultrasonic resolution and imaging depth. This modality beats
the optical diffusion limit, which is the main barrier that hinders deep-tissue
imaging of any high-resolution optical techniques. It is also straightforward to
implement dual-mode photoacoustic and ultrasonic imaging in one single
point-of-care platform due to the shared ultrasonic detection. Image contrast of
photoacoustic imaging is based on either endogenous chromophores such as
hemoglobin or exogenous contrast agents with possibilities of molecular targeting.
Photoacoustic imaging with excellent functional and molecular imaging capabilities
is quite mature in research settings and has already shown great potential in myriads
of preclinical applications and early clinical trials. However, compared to scientific
developments, clinical translation of this technology is still in a premature stage.
While approximately 20 companies are active pursuing commercialization of
photoacoustic imaging, no product has been approved by the US FDA yet. One
of the limiting factors in photoacoustic imaging is the necessity of expensive and
bulky solid-state lasers for tissue illumination. It would be ideal to develop
affordable and miniaturized light sources that can enable point-of-care imaging
capabilities in a resource-limited setting. Tremendous advancements in solid-state
device technology have recently resulted in the development of high-power pulsed
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light emitting diodes (LED) for photoacoustic imaging. These diodes are affordable,
portable, and potentially eye/skin safe and hence hold great potential for clinical
translation.

This book is timely as its publication occurs in a period when photoacoustic
imaging is facing an exciting transition from the benchtop to bedside. It has been
assembled and edited by a young leading scientist in the field, Dr. Mithun Kuniyil
Ajith Singh, who is working in the intersection of research and business and is
immensely focused on clinical translation of LED-based photoacoustics. With
multiple chapters from the key leaders in the field, this book highlights the use of
LEDs in biomedical photoacoustic imaging. The 16 chapters cover the entire span
of fundamentals, principles, instrumentation, image reconstruction and data/image
processing methods, preclinical, and clinical applications of LED-based photoa-
coustic imaging. Apart from academic contributions, the chapter provides an
industry perspective on opportunities and challenges in clinical translation. This
opus will be undoubtedly of interest to experts in academia, industry, and medicine
interested in clinical translation of photoacoustic imaging.

Photoacoustics offers a rare combination of highly specific optical contrast and
spatial resolution and imaging depth of ultrasound (in centimeter scales), making it
one of the fastest growing medical imaging modalities of the decade. We all are
fortunate to work on this technology as it has an enormous potential for touching
and saving lives. Let us unite our efforts and work toward eradicating the most
challenging diseases and build a healthy and happy world together.

Lihong V. Wang, Ph.D.
Bren Professor of Medical Engineering
and Electrical Engineering California

Institute of Technology
Pasadena, CA, USA
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Fundamentals of Photoacoustic Imaging:
A Theoretical Tutorial

Mayanglambam Suheshkumar Singh, Souradip Paul, and Anjali Thomas

Abstract We report a study on theoretical aspects of the generation of initial pho-
toacoustic (PA) pressure waves and its propagation in a mechanical medium, with
detailed derivations of associated equations, which is the basis of all PA imaging
modalities (both microscopy and tomography). We consider the tissue sample for
imaging as a hydrostatic (PVT ) thermodynamic system. The phenomenon of the
generation of initial pressure wave, due to transient (∼ns) illumination by electro-
magnetic (EM) waves and subsequent rapid heating, is assumed as a thermody-
namic process. For the propagation of PA wave, tissue sample is considered as a bio-
mechanical system that supports the propagation of mechanical disturbances from
one point to another. The derived equations are in agreement with standard equations
that are commonly employed in PA imaging systems, therefore our assumptions of
considering the system as a hydrostatic thermodynamic system and PA effect as a
thermodynamic process are validated. This chapter will be of great value to the PA
imaging research community for an in-depth theoretical understanding of the subject.

1 Introduction

PA imaging modality stands as a promising imaging technology to address the long-
standing challenge of achieving microscopic (∼µm) resolution at depths beyond
optical transport mean free-path (∼1mm), in real time [1, 2]. Moreover, this imaging
technology—as a single imaging unit— can provide multiple structural, functional,
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and molecular information about tissues, non-invasively and non-destructively. It
is of great clinical interest and value [3–5] in diagnosis, staging, monitoring and
therapeutic treatments of various diseases in early stages [4]. Recently, this imag-
ing modality has been extended from clinical applications to biological applications
(more specifically, in molecular and cellular imaging at the sub-microscopic resolu-
tion but achievable penetration depth <1mm) [5–10].

PA imaging technology is rapidly growing since the last decade in laboratory
research studies (in late 1990s [5, 8, 11]). Meanwhile more than 100 research lab-
oratories around the globe are dedicated to the study of its biomedical and clinical
applications. This surge in interest over this short span of time can be attributed to its
potential and promising features of biomedical and clinical interest [5, 8]: (1) high
contrast and high spatial resolution obtainable from this imaging modality at high
penetration depths, not achievable with other conventional imaging modalities [con-
focal, two-photon, and optical coherence tomography (OCT)], (2) high scalability of
imaging, ranging from the individual cell to the entire body, (3) imaging—with mul-
tiple resolution levels of structural anatomy and tissue patho-physiology, (4) obtain-
able patho-physiological information, i.e., pathological stages of tissues through
measurement of functional parameters (Hb, HbO2, SO, and Total Hb), which control
physiological activities (metabolism, molecular and genetic activities), (5) it is non-
invasive, non-destructive and non-hazardous in nature. PA imagingmodality has been
exploited for various biological, pre-clinical, and clinical (oncology, ophthalmology,
dermatology, gastroenterology, cardiology and osteoarthritis) studies. Applications
of this imaging modality to diagnostic and therapeutic treatments–employing target
specific (light absorbing) contrast agents–were also reported [12, 13]. PA imaging
technology has also been employed to study recovery of acoustic property, tempera-
ture, bloodflowvelocity and elastic property of soft biological tissues [14–30].On the
other hand, with the advancement of computational reconstruction techniques, real
time imaging (frame rate ∼100Hz equivalent to ∼10µs) at microscopic spatial res-
olution (∼40µm) and reasonably high penetration depths (cm) has been achieved [1,
31]. So, it is evident that advances in thePA-imagingmodality havemostly found their
way into its experimental and technological aspects. But, the theoretical understand-
ing has mostly been limited to the establishment of mathematical models (which are
all 2nd order partial differential equations in someway or the other) for computational
reconstruction algorithms and their implementations (delay-and-sum, iterative finite
element method (FEM) [32], Green’s function or Born-approximation [33, 34] and
beam forming [31]). To the best of our knowledge, theoretical studies of the PA effect
and wave propagation with detailed accounts of derivations and associated physical
phenomena—are very few [30, 32, 35]. Even in these studies, the second order wave
equation hasmostly been derived from a set of first order partial differential equations
(PDEs) [33] without proper understanding of the associated physical phenomena and
assumptions. This is mandated for a thorough understanding of the subject and its
applicability to a greater extent. In this chapter, we report the detailed derivation of
the second order PDE that governs the generation and propagation of the initial PA
pressurewave inmechanicalmedium from the set of first order PDEs, with sequential
mathematical steps and the associated physical interpretations and assumptions.
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In our study, we consider the tissue sample as a hydrostatic (PVT ) thermody-
namic system in thermodynamic equilibrium, which is completely characterized by
macroscopic variables namely, temperature (T ), pressure (P), and volume (V ). In
the meantime, the phenomenon of the generation of initial pressure wave—due to
transient (∼ns) illumination by electromagnetic (EM)waves, and subsequent absorp-
tion and heating for a very short duration—is considered as a thermodynamic process
which is like a perturbation on the equilibrium state of the system. For the propagation
of PA-wave, tissue sample is considered as a bio-mechanical system that supports the
propagation ofmechanical disturbances fromone point to another thoughmechanical
interactions among constituent particles or molecules.

Rest of this chapter is organised as: Sect. 2 gives a detailed theory of the gen-
eration of PA wave and its propagation through a mechanical tissue medium. More
specifically, derivation of generation of initial PA pressure (P0)—due to transient illu-
mination by electromagnetic (EM) waves—is given in Sect. 2.1. Section2.2 gives an
elaborate account of derivation of the second order wave equation that governs the
propagation of PA wave in a bio-mechanical medium.

2 Theory of Photoacoustic Wave Generation
and Propagation

Photoacoustic imaging, which is broadly classified into photoacoustic microscopy
(PAM) and photoacoustic tomography (PAT), is fundamentally based on the PA
effect, which was propounded by Alexander Graham Bell in 1880 [36, 37]. The
discovery and its exploitation for biomedical and clinical applications have a deep
history. It was only in the late 1990s that PA effect was first exploited for studies in
biomedical imaging and its clinical applications.

PA effect is the generation of acoustic wave in a sample material due to the rapid
heating of the sample through transient illumination and absorption of short pulse
(ns) electromagnetic (EM) radiation. This light stimulated ultrasound wave is, gener-
ally, known as PA signal (denoted by P0). A mechanical medium (like tissue sample)
supports the propagation of PA wave which is dependent on the tissue physical prop-
erties (including thermodynamic, acoustic, and mechanical). From this sequence
of boundary measurements of time-resolved PA signal, the distributions of the ini-
tial pressure (P0) and its derivatives (including, optical absorption coefficient (μa),
acoustic velocity (vac), elastic coefficient (E), flow velocity, and Grueneisen param-
eter (�) are obtained using various computational techniques. In this way, from the
physics point of view, the entire process of PA imaging can be grouped into four dis-
tinctive stages: (i) Transient illumination of a specific region in the tissue sample with
short pulse of laser light or LED (pulse width of few ns). This stage is governed by
propagation of electromagnetic waves in a medium (more specifically, byMaxwell’s
equation of electromagnetic theory) and, hence characterized by the optical prop-
erties of the propagating medium, namely, optical absorption (μa), scattering (μs)
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coefficients, and refractive index (n). Detailed study of this stage is not studied in our
present chapter. It may be referred to somewhere in other research domain of diffuse
optical tomography (DOT) [38]. (ii) Generation of high-frequency acoustic signal
(of the order ofMHz–GHz). Due to intrinsic optical absorption coefficient (μa(�r)) of
the laser irradiating medium, deposited optical energy gets absorbed, which is then
converted into heat energy or thermal energy through the oscillational relaxation of
the constituent particles/molecules of the sample, thereby, inducing a localized rise
of temperature over the irradiated region. This temperature rise (�T (�r)) is depen-
dent on the optical absorption coefficient distribution μa(�r). Associated with rapid
heating, under the given physical constraint of short pulsed laser illumination with
duration being less than time scales of thermal and stress confinements, the irradi-
ated tissue undergoes thermoelastic expansion [39] and, subsequently, it induces a
transient rise in pressure. A thorough study, both from physical (thermodynamics)
and mathematical aspects, is given in Sect. 2.1. (iii) Isotropic propagation of the PA
wave in mechanical tissue medium. In the tissue sample, which is a viscoelastic
medium, optically stimulated mechanical PA wave propagates through back-and-
forth contraction and rarefaction of mechanically coupled constituent particles about
their respective thermal (mean) positions [23]. This propagation of mechanical PA
wave is characterized by acoustic property distribution in the medium, i.e., acoustic
velocity, impedance, absorption, and scattering. Mathematically, propagation of the
acoustic wave is governed by the second order wave equation, derivation of which
is addressed in Sect. 2.2, as a primary objective of our present article. (iv) Detection
of the PA-wave from the tissue boundary and image reconstruction, the PA signal is
picked-up by keeping a single transducer unit or an array of ultrasound transducer
elements around specimen boundary. Distribution of initial PA-pressure (P0) and its
derivative (including physical properties and patho-physiological information) are
reconstructed computationally. This stage is not studied here in this chapter and it
may be referred to [33, 40] for further study.

2.1 Generation of Photoacoustic Wave (Initial PA-Pressure)

One may explain the generation of initial PA pressure (P0), due to the transient light
illumination generation as a thermodynamic process. As mentioned above, in PA
imaging—both microscopy and tomography—a material sample of interest (over a
pre-specified region) is irradiated with an optical beam (laser source or LED) for
a very short duration (pulse width ∼few ns). Due to transient absorption of light
energy, a rapid change in kinetic energy (K .E.) and subsequently the internal energy
(U ) of constituent particles/molecules in the tissue materials over irradiated region
of interest takes place. Meanwhile, internal energy is directly related to the absolute
temperature (T ) (example, for ideal gas,U = P.E. + K .E. ≈ 3

2NκBT , where κB and
N are Boltzmann constant and number of molecules respectively. Here interaction
among constituent particles, i.e., potential energy (P.E.) is neglected, in compari-
son to kinetic energy (K .E.)). In other words, optical energy is converted to heat
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energy through change in kinetic energy of constituent particles/molecules of the
sample material [41] which results in thermal expansion. In this way, due to transient
optical illumination and subsequent transient optical absorption, the sample under-
goes a rapid heating and subsequent cooling, thereby, inducing rapid expansion and
contraction, which is thermoelastic expansion [41]. Thermodynamically, this can be
characterised by the change in volume (V ), pressure (P) and temperature (T ) pro-
vided by transient absorption of optical energy (say, optical fluence (ϕ)) [41]. In
other words, the system undergoes a thermodynamic process that is governed and
characterized by a set of thermodynamic equations (Maxwell’s equations of thermo-
dynamics) giving the relationship among the various macroscopic variables, such
as pressure (P), volume (V ), temperature (T ), entropy (S), number of particle (N ),
chemical potential (μ), and mass density (ρ) [42].

To a good approximation, for PA imaging in biomedical/clinical and biological
applications, one may neglect changes in entropy (S), number of particles (N ) and
hence, mass (m) in the tissue sample of interest. Under such conditions, the tissue
system can be considered as a hydrostatic (PVT ) thermodynamic system that is
completely characterized (in all of the aspects of chemical, mechanical and thermal
processes) by pressure, (P), volume (V ) and temperature (T ) [42]. In this process, a
system of tissue sample that is enclosed by an imaginary boundary of light irradiation
can be considered as the thermodynamic system while the remaining tissue material
as the surroundings, in the thermodynamic sense.

Let us consider a thermodynamic equation of state for hydrostatic system in ther-
modynamic equilibrium (in our case, arbitrarily chosen elementary volume element
(V ) in material sample) and it is expressed as:

V ≡ V (T ,P). (1)

Note that over these individual elemental volumes (V ) in of thermodynamic equilib-
rium, macroscopic variables (say, T and P) are average measures over the individual
volume elements, i.e., distribution of state variables are uniform over volume (V )
and hence, are considered independent of time (t) and space (�r). So, in Eq.1, T and
P are expressed without dependence on space and time.

Upon perturbation of thermodynamic equilibrium of the hydrostatic thermody-
namic system—that is induced by irradiation with electromagnetic waves (or optical
energy) for an infinitesimal period of time (∼ns)—differential change in volume
(�V ) from its equilibrium state (V ) can be derived, using Taylor expansion, as:

�V ≈ ∂V

∂T

∣
∣
∣
∣
P

�T + ∂V

∂P

∣
∣
∣
∣
T

�P,

⇒ �V

V
= 1

V

∂V

∂T

∣
∣
∣
∣
P

�T + 1

V

∂V

∂P

∣
∣
∣
∣
T

�P, V �= 0,

= β�T − κT�P, (2)
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where�P and�T are differential changes in pressure (P) and temperature (T ) from
their corresponding equilibrium values; �V

V is the fractional change in volume; β

(= 1
V

∂V
∂T

∣
∣
∣
P
) is the thermal coefficient of expansion (also called as volume expansibility)

and κT (=− 1
V

∂V
∂P

∣
∣
∣
T
) is the isothermal compressibility.

For acquiring PA-signal, data acquisition (DAQ) system of sampling frequency
(∼MHz) that corresponds to data acquisition period ∼µ s is typically employed.
Shortly, time scale for acquisition of PA-data (∼µs) is of the order of magnitudes
higher than that of volume expansion-contraction (∼ns). In other words, for a partic-
ular (time-resolved) measurement, acquired signals are averaged over several oscil-
latory volume expansion-contraction and thus, relative volume change (�V

V ) is negli-
gible. Under these physical conditions, in above Eq.2, one can neglect the fractional
volume change (�V

V ) in comparison to other two terms. Therefore, Eq.2 is reduced:

�P ≈ β

κT
�T , (3)

which shows that �P is practically large (∼106 Pa) for an infinitesimal temperature
change (�T ) that can be estimated from practical value of β (∼10−4 K−1) and κT
(∼10−10 Pa−1) for soft tissues [41].

From thermodynamic heat transfer relation (�Qdens = ρcV�T ), where derivation
is provided in Appendix 1 (Eq.33), that relates heat density (�Qdens) absorbed in
a thermodynamic system to (absolute) temperature rise (�T ) through specific heat
capacity at constant volume (cV ), we obtain:

�T = 1

ρcV
�Qdens, (4)

where cV (=CV /m) is the heat capacity per unit mass (called as specific heat capacity)
at constant volume and�Qdens = �Q/V is change in heat density at constant volume
[42].

Now, considering optical energy absorbed by thermodynamic system (which can
be expressed as (μaϕ)) is completely converted into heat energy—neglecting all
the non-thermal effects (including florescence, photo-luminescence, and chemical
reaction)—we can express the conservation of energy as:

�Qdens = μaϕ = Ae, (5)

where ϕ is the optical fluence that gives the measure of optical energy per unit time
of transient optical beam being incident on thermodynamic tissue sample; Ae (=μaϕ)
is the specific volumetric optical absorption which measures effective optical energy
absorbed by the system upon illumination.
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Using Eqs. 4 and 5 in Eq.3, we obtain:

�P = β

κT

1

ρcV
μaϕ = β

κT

1

ρcV
Ae. (6)

Considering residual pressure prior to transient optical illumination as reference
(whereby, �P is represented by P0), Eq. 6 can be rewritten as:

P0 = β

κT

1

ρcV
μaϕ, (7)

= β

κT

1

ρcV
Ae, (8)

= �μaϕ, (9)

which is what we call the initial pressure of PA-signal or the generation of PA-signal
that is induced by short laser pulse or LED illumination. � (= β

κT

1
ρcV

) is the constant
of proportionality which is known as Grueneisen parameter. All of the above three
equations (Eqs. 7–9) are commonly adopted in literature and imply that the strength
of initial PA pressure (P0) is dependent on the intensity of incident pulse optical
beam and it is characterized by tissue’s optical, thermal, and mechanical properties.
In PA imaging, it is a primary task to map distribution of P0 and subsequently, tissue
physical and bio-physical properties as obtainable from P0.

Again, from relationship of cV and cP (i.e., cV
cP

= 1
ρκT v2ac

, where derivation is pro-
vided in Appendix 2 (Eq.37)):

κTρcV = cP
v2ac

. (10)

Now, using Eq.10, we can re-write initial PA pressure (given in Eq.9) as:

P0 = βv2ac
cP

μaϕ. (11)

where, cP is the specific heat capacity at constant pressurewhileGruneisen parameter

(�) can also be re-written as � = β

κTρcV
= βv2ac

cP
.

We know that acoustic, thermal, and mechanical properties are dependent on
(absolute) temperature (T ) [40, 43]. For spatial and temporal distribution of incident
optical energy, one can express initial pressure rise (P0) in functional forms either:

P0(�r, t,T ) = β(�r,T )

κT (�r,T )

1

ρ(�r,T )cV (�r,T )
μa(�r)ϕ(�r, t) = �(�r,T )Ae(�r, t), (12)
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or,

P0(�r, t,T ) = β(�r,T )v2ac(�r,T )

cP(�r,T )
μa(�r)ϕ(�r, t) = �(�r,T )Ae(�r, t). (13)

The above two equations show that, for a given intensity of incident optical beam,
strength of initial pressure of PA signal is characterized spatial distribution of not
only physical properties of imaging (tissue) sample but also its temperature (T ).

2.2 Propagation of Photoacoustic Wave

Upon illumination of light absorbing tissue sample by an intense (coherent or incoher-
ent) light beam (ϕ(�r)) for a short duration (∼ns), as it is discussed above (Sect. 2.1), an
initial pressure rise (known as initial photoacoustic signal (P0(�r, t,T ))) is induced
over the light illuminated region. In other words, there exists an initial pressure
gradient or non-uniform distribution of pressure—which measures force per unit
volume—given by �∇P. This force, which is resulted from the variation in spatial
distribution of pressure, ( �∇P(�r, t,T )) is the pressure-gradient force acting on con-
stituent particles/molecules and directed from region of higher pressure to region of
lower pressure and it can be expressed as:

�Fpg = −�∇P, (14)

which is force density or force per unit volume. For the sake of mathematical sim-
plicity, we drop out argument dependence on space (�r), time (t), and temperature (T )
(say, Eq. 14).

Considering only the pressure-gradient force, while neglecting other forces
(including body forces (such as, gravitation and electromagnetic) and externally
applied forces), the net force density in the hydrostatic system under consideration
can be written as �Feff = �Fpg , i.e., �Feff = −�∇P. From Newton’s 2nd law of motion
(i.e., d�p

dt = �Feff), equation of motion of constituent particles with mass density (ρ)
can be expressed as:

d(ρ�v)
dt

= −�∇P,

i.e., �v dρ

dt
+ ρ

d�v
dt

= −�∇P. (15)

where �p (=ρ�v) is momentum density of thermodynamic hydrostatic system while �v
is velocity of constituent particles [40, 43]. In left hand side (Eq.15), 1st term and
2nd term govern flow of mass and acceleration of constituent particles, both of which
terms are induced by pressure gradient ( �∇P) following stimulation of thermodynamic
system with short-pulse optical beam.
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Again, from the conservation of mass, equation of continuity can be written as
[43]:

∂ρ

∂t
+ �∇.�J = 0,

i.e.,
∂ρ

∂t
+ �∇.(ρ�v) = 0, (16)

where �J = ρ�v is themass current densitywhich can also be considered asmomentum
density.

From continuum hypothesis, in association with assumption of local equilibrium
[42], we can deduce a general expression for time-derivative of mass density (ρ ≡
ρ(�r, t)) (detail derivation is accomplished in Appendix “Continuum Hypothesis and
Assumption of Local Equilibrium” (Eq.41)):

∂ρ

∂t
= ρ

[

κT
∂P

∂t
− β

∂T

∂t

]

, (17)

i.e., − �∇.(ρ�v) = ρ

[

κT
∂P

∂t
− β

∂T

∂t

]

, using Eq. 16, (18)

⇒
( �∇ρ

)

.�v + ρ �∇.�v = −ρ

[

κT
∂P

∂t
− β

∂T

∂t

]

. (19)

Taking partial derivative on both side of above equation (Eq.19) with respect to time
(t), we get:

[(

�∇ ∂ρ

∂t

)

.�v + ( �∇ρ).
∂�v
∂t

]

+
[

∂ρ

∂t
( �∇.�v) +

(

�∇.
∂�v
∂t

)

ρ

]

= −ρ

(

κT
∂2P

∂t2
− β

∂2T

∂t2

)

−∂ρ

∂t

(

κT
∂P

∂t
− β

∂T

∂t

)

,

(

�∇ ∂ρ

∂t

)

.�v + ( �∇ρ).
∂�v
∂t

+ ∂ρ

∂t
( �∇.�v) +

(

�∇.
∂�v
∂t

)

ρ = ρ

(

β
∂2T

∂t2
− κT

∂2P

∂t2

)

−ρ

(

κT
∂P

∂t
− β

∂T

∂t

)2

, using Eq. 17

say, LHS ≈ ρ

(

β
∂2T

∂t2
− κT

∂2P

∂t2

)

, (20)
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where higher degree term, ρ
(

κT
∂P
∂t − β ∂T

∂t

)2
, is neglected and LHS is written as:

LHS =
(

�∇ ∂ρ

∂t

)

.�v + ( �∇ρ).
∂�v
∂t

+ ∂ρ

∂t
( �∇.�v) +

(

�∇.
∂�v
∂t

)

ρ,

= −
[ �∇( �∇ρ.�v)

]

.�v − ( �∇ρ.�v)( �∇.�v) −
[ �∇(ρ �∇.�v)

]

.�v − ρ( �∇.�v)( �∇.�v)

+( �∇ρ).
∂�v
∂t

− ρ �∇.

( �∇P

ρ

)

+ ρ
[ �∇( �∇.�v)

]

.�v + ρ( �∇.�v)( �∇.�v)

−ρ �∇.
[

(�v.∇)�v] . (21)

where simplification of LHS is given in Appendix 4 (Eq.46). Now, using Eqs. 21 and
20 can be expressed as:

ρ

(

β
∂2T

∂t2
− κT

∂2P

∂t2

)

= −
[ �∇(( �∇ρ).�v)

]

.�v − (( �∇ρ).�v)( �∇.�v) −
[ �∇(ρ �∇.�v)

]

.�v

+( �∇ρ).
∂�v
∂t

− ρ �∇.

( �∇P

ρ

)

+ ρ
[ �∇( �∇.�v)

]

.�v

−ρ �∇.
[

(�v. �∇)�v
]

,

i.e.,
1

v2ac

∂2P

∂t2
− ρ �∇.

( �∇P

ρ

)

= ρβ
∂2T

∂t2
+

[ �∇(( �∇ρ).�v)
]

.�v + (( �∇ρ).�v)( �∇.�v)

+
[ �∇(ρ �∇.�v)

]

.�v − ( �∇ρ).
∂�v
∂t

−ρ
[ �∇( �∇.�v)

]

.�v + ρ �∇.
[

(�v. �∇)�v
]

. (22)

Speed of sound in a (fluid) medium is given by vac =
√

1
κSρ

≈
√

1
κTρ

[41] (see

Appendix 2 (Eqs. 35 and 36)).We consider two physical assumptions: (1)Mass density
fluctuation in tissue medium under external perturbation of short pule laser stimulation
is very small relative to ambient or equilibrium (mass) density (∼1000 kg/m3) [44].
(2) Velocity of constituent particles (∼1m/s [44]) under external perturbation is very
small when compared to the speed of sound (∼1500m/s for soft tissue) [44]. Under
these physical assumptions, in Eq.22, terms involving particle velocity (�v) and density
variation along direction of particle velocity can be neglected and subsequently, we
can obtain wave equation that governs the propagation of mechanical PA wave:

1

v2ac

∂2P

∂t2
− ρ �∇.

( �∇P

ρ

)

= ρβ
∂2T

∂t2
. (23)

which is a general wave equation that holds true for medium with variation in spatial
distribution of mass density (ρ), i.e., �∇ 1

ρ
�= 0.
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Again, from the heat transfer equation (�Qdens = ρcP�T that relates heat transfer
(�Q) in a thermodynamic system to temperature change (�T )), we obtain heating
function (H ) [42]:

H = lim
�t→0

�Qdens

�t
= lim

�t→0
ρcP

�T

�t
= ρcP

∂T

∂t
, (24)

which is defined as heat energy (Q) per unit time per unit volume, i.e., heat density
(Qdens) per unit time [40].

Combining Eqs. 23 and 24, wave equation can further be deduced:

1

v2ac

∂2P

∂t2
− ρ �∇.

( �∇P

ρ

)

= ρβ
∂

∂t

(
H

ρcP

)

= β

cP

∂H

∂t
, (25)

Equation25 can also be written—expressing P, H , and ρ in functional forms, i.e.,
P ≡ P (�r, t), H ≡ H (�r, t), and ρ ≡ ρ (�r)—in functional form as:

1

vac (�r)2
∂2P (�r, t)

∂t2
− ρ (�r) �∇.

( �∇P (�r, t)
ρ (�r)

)

= ρ (�r) β (�r) ∂

∂t

(
H (�r, t)
ρ (�r) cP

)

,

= β (�r)
cP (�r)

∂H (�r, t)
∂t

. (26)

Left hand side in Eq.25 or Eq.26 gives wave equation while right hand side represents
source term, i.e., differential change in heat density per unit time (or heating function)
with respect to time serves as source of PA-wave which is stimulated due to transient
illumination of optical beam.The equations are in consistentwith the PAwave equation
given in Refs. [32, 35]

Now, for homogeneous thermodynamic system, where spatial distribution of mass
density (ρ) is uniform ( �∇ρ or �∇ 1

ρ
≈ 0), Eq.25 becomes:

1

v2ac

∂2P

∂t2
− ∇2P = β

cP

∂H

∂t
, (27)

where ρ is spatial independent, i.e., ρ �= ρ (�r). In functional form, one may write:

1

v2ac (�r)
∂2P (�r, t)

∂t2
− ∇2P (�r, t) = β (�r)

cP (�r)
∂H (�r, t)

∂t
. (28)

Equations25 and 27 are in agreement with wave equations [32, 35] which are com-
monly employed (as standardPAwave equations) inPA imaging (in general) and recon-
struction algorithms (in particular), i.e., generally, distribution of mass density (ρ) is
assumed to be uniform or space independent over the entire region of interest for imag-
ing. Therefore, our hypothesis of considering PA imaging system as a hydrostatic ther-
modynamic system and PA effect as a hydrostatic thermodynamic process is validated.
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3 Conclusion

In this chapter, we provide a proper mathematical formulation and a clear understand-
ing of the underlying physical processes that are the basis of PA imaging modalities
(bothmicroscopy and tomography). Tissue sample is considered as a hydrostatic (PVT )
thermodynamic system and the phenomenon of the generation of initial pressure wave,
due to transient optical (∼ns) illumination and subsequent rapid heating, as a thermo-
dynamic process. We also describe the PA wave propagation, which is nothing but the
propagation of mechanical disturbances from one point to another through the vibra-
tion of constituent particles or molecules, in a bio-mechanical system (soft tissue).
Mathematical equations, derived under the physical assumptions made, are in agree-
ment with standard PA equations (initial PA-pressure and its subsequent propagation)
which are commonly employed in photoacoustic imaging (in general) and conven-
tional reconstruction algorithms (in particular). Therefore, our physical assumptions
and formulation of PA wave generation and its propagation stands validated. This arti-
cle will be beneficial to the PA-imaging community, for a thorough understanding of
the mechanism of PA wave generation and its propagation in the tissue medium.

Acknowledgements Authors acknowledge Dr. Joy Mitra and Tathagata Sarkar, School of Physics
(SoP), Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM),
Thiruvananthapuram, Kerala, India for the technical discussion extended to us.

Appendix 1: Thermodynamic Heat Transfer Equation

From the 1st law of thermodynamics [42], heat transfer to thermodynamic system is
given by:

�Q = �U + �W,

= �U + P�V, (29)

where �W (= P�V ) is (thermodynamic) work done by the thermodynamic system;
�U is change in internal energy; and �V is change in volume. On the other hand,
heat capacity at constant volume (i.e., �V = 0) is defined as:

CV = �Q

�T

∣
∣
∣
V

= �U

�T

∣
∣
∣
V
, for �V = 0,

i.e., �U = CV�T . (30)

Now, using Eq.30, we re-write Eq.29:

�Q

V
= �U

V
+ P

�V

V
, V �= 0. (31)
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Neglecting fractional change in volume (�V
V ), as it is done above Sect. 2.1 (Eq.3), we

can re-write Eq.31 as:

�U

V
≈ �Q

V
, (32)

⇒ CV�T

V
= �Q

V
, using Eq. 30,

i.e., �Qdens = ρcV�T , (33)

where cV is the heat capacity per unit mass (called as specific heat capacity) at constant
volume and Qdens = Q/V is the heat density [42].

Appendix 2: Relationship of Specific Heat Capacities at
Constant Volume and Pressure

Speed of sound (vac) with which particular mechanical waves is propagating in a
medium is characterized bymass density (ρ) and elastic coefficient (E) of the medium,
and it can be expressed as [42]:

vac =
√

ES

ρ
, (34)

where ES is isentropic bulk modulus (sometimes, it is also called as adiabatic bulk
modulus) and is related to isothermal compressibility (κT ) (also known as isothermal
bulk modulus) [42]:

ES

ET
= κT

κS
= CP

CV
= γ. (35)

For water, in room temperature (25–30 ◦C), isentropic compressibility (κS ) and
isothermal compressibility (κT ) are comparable, i.e., γ ≈ 1 [42]. In the human body,
water is the main fluid content [44], so that we assume κT ≈ κS . Using Eq.34 and
Eq.35, we get:

v2ac ≈ 1

κSρ
, (36)

and hence,

κT cV ρ = cP
v2ac

. (37)
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Appendix 3: Local Thermodynamic Properties

Equilibrium Thermodynamics

Considering mass density (ρ = m
V )—which is mass (m) averaged over volume (V ) of

thermodynamics system in equilibrium—to be hydrostatic thermodynamic parameter
being characterized by temperature (T ) and pressure (P), one can write equation of
state (under equilibrium) in functional form as:

ρ ≡ ρ(P,T ). (38)

Under quasi-static condition [42], differential change in ρ-while undergoing the
system (in general) and elemental volume (in particular) from one thermodynamic
equilibrium state to another equilibrium state of the system (in our case, due to pertur-
bation induced by transient illumination of short pulsed optical beam) can be deduced
as:

�ρ = ∂ρ

∂T

∣
∣
∣
∣
P

�T + ∂ρ

∂P

∣
∣
∣
∣
T

�P,

= ∂

∂T

(m

V

)
∣
∣
∣
∣
P

�T + ∂

∂P

(m

V

)
∣
∣
∣
∣
T

�P,

= − m

V 2

∂V

∂T

∣
∣
∣
∣
P

�T − m

V 2

∂V

∂P

∣
∣
∣
∣
T

�P,

= m

V
[κT�P − β�T ], (39)

Here, mass (m) of the hydrostatic thermodynamic system is assumed to be constant. β
and κT are volume expansibility and isothermal compressibility respectively and can
be expressed as:

β = 1

V

∂V

∂T

∣
∣
∣
∣
P

,

and, κT = − 1

V

∂V

∂P

∣
∣
∣
∣
T

.

Continuum Hypothesis and Assumption of Local Equilibrium

Although a physical thermodynamic system (like, fluid, semi-fluid, and gas, etc.) con-
sists of an infinite number of constituent atoms and/or molecules, statistical mechan-
ics proves that (at macroscopic scale) a thermodynamic system in equilibrium can
be explicitly described by a set of thermodynamic variables (such as pressure (P),



Fundamentals of Photoacoustic Imaging: A Theoretical Tutorial 17

volume (V ), temperature (T ), entropy (S), number of particle (N ), and chemical
potential (μ) which are generally called as macrostate variables). Shortly, in statistical
sense, any physical properties of interest of a thermodynamic system (in equilibrium)
are obtainable from measurements of the macroscopic variables. On the other hand,
thermodynamic equilibrium explicitly means that physical thermodynamic system
under consideration is equilibrium from chemical, mechanical, and thermal aspects.
In this way, measurements of thermodynamic macroscopic variables—averaged over
the system—give measurement of any (physical or chemical) properties of interest of
the system, i.e., any physical properties of interest is characterised by the macrostate
variables and thus can be expressed in terms of the variables. To extend this concept
of global equilibrium to any other thermodynamic systems, that are not in thermo-
dynamic equilibrium, one can adopt principle of local thermodynamic equilibrium
[45]. Specifically, in this local thermodynamic equilibrium, one can consider that
entire thermodynamic system is constituted by an infinite number of imaginary sub-
systems—that occupy an infinitesimally small volume relative to that of entire system
but contain a sufficiently large number of constituent particles/molecules for a valid
statistical formulation—such that one can assume thermodynamic equilibrium over
such individual sub-systems and thus, one can define [at any given time (t)] local
thermodynamic properties or macrostate variables that can be formulated with equi-
librium statistical physics. This means to say that, from aspects of thermodynamics,
local thermodynamic state variables can be characterized as functions of space (�r)
and time (t). Again, assumption of local equilibrium says that local thermodynamic
properties, defined for infinitesimal sub-systems, and their derivatives satisfy classical
thermodynamic relations (more specifically, Maxwell’s equations of thermodynam-
ics) which governs any physical process in thermodynamic equilibrium [45]. In this
way, continuum hypothesis [45] permits us to replace thermodynamic parameters by
corresponding thermodynamic fields as continuous functions of space and time (say,
P ≡ P(�r, t), V ≡ V (�r, t),T ≡ T (�r, t), S ≡ S(�r, t),N ≡ N (�r, t), andμ ≡ μ(�r, t)) and
follow thermodynamic equations of equilibrium.

Now, for an arbitrarily chosen (locally equilibrium) thermodynamic sub-system,
we can re-write Eq.39:

�ρ(�r, t) = ρ(�r, t)[κT�P(�r, t) − β�T (�r, t)]. (40)

Here, we consider thermodynamic sub-systems as hydrostatic (as it is discussed in
Sect. 2.1). Taking temporal change relative to �t in Eq.40, we obtain:

�ρ(�r, t)
�t

= ρ(�r, t)
[

κT
�P(�r, t)

�t
− β

�T (�r, t)
�t

]

,

⇒ lim
�t→0

�ρ(�r, t)
�t

= lim
�t→0

ρ(�r, t)
[

κT
�P(�r, t)

�t
− β

�T (�r, t)
�t

]

,

i.e.,
∂ρ(�r, t)

∂t
= ρ(�r, t)

[

κT
∂P(�r, t)

∂t
− β

∂T (�r, t)
∂t

]

. (41)
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Note that thermodynamic coefficients κT and β are, in principle, spatial and temporal
fields. However, in practical applications, dependence of these thermodynamic coeffi-
cients on space (�r) and time (t) are often neglected (as it is assumed in our case (Eq. 41)).
Equation41 implies that a thermodynamic system, which is perturbed from its ther-
modynamic equilibrium state by an external agency or disturbance (transient optical
irradiation, in our case of PA imaging), has a tendency to bring back to its thermody-
namic equilibrium state (which is stable) through transfer of thermodynamic physical
parameters (say, T (�r, t),P(�r, t), and V (�r, t) eventually resulted from transport of mass
density (ρ(�r, t))) from one point (�r, t) to another (in general) and one macroscopic ele-
ment (defined by (�r, t)) of local thermodynamic equilibrium to another (in particular).

Appendix 4: Identities of Vector and Scalar Quantities

For a given quantity (scalar or vector)—sayφ(x, y, z, t) or �A(x, y, z, t)—one can obtain
identities (from Taylor’s expansion) as [46],

�φ = ∂φ

∂t
�t + ∂φ

∂x
�x + ∂φ

∂y
�y + ∂φ

∂z
�z,

⇒ lim
�t→0

�φ

�t
= ∂φ

∂t
+ ∂φ

∂x

�x

�t
+ ∂φ

∂y

�y

�t
+ ∂φ

∂z

�z

�t
,

⇒ dφ

dt
= ∂φ

∂t
+ ∂φ

∂x

dx

dt
+ ∂φ

∂y

dy

dt
+ ∂φ

∂z

dz

dt
,

⇒ dφ

dt
= ∂φ

∂t
+ ∂φ

∂x
vx + ∂φ

∂y
vy + ∂φ

∂z
vz,

⇒ dφ

dt
= ∂φ

∂t
+ �v. �∇φ, (42)

where �v = vxî + vyĵ + vzk̂ is velocity of constituent particle with individual (velocity)

components vx = dx
dt ; vy = dy

dt ; and vz = dz
dt .

Similarly, for any vector quantity (say, �A), we get:

��A = ∂ �A
∂t

�t + ∂ �A
∂x

�x + ∂ �A
∂y

�y + ∂ �A
∂z

�z,

⇒ lim
�t→0

��A
�t

= ∂ �A
∂t

+ ∂ �A
∂x

�x

�t
+ ∂ �A

∂y

�y

�t
+ ∂ �A

∂z

�z

�t
,

⇒ d �A
dt

= ∂ �A
∂t

+ ∂ �A
∂x

dx

dt
+ ∂ �A

∂y

dy

dt
+ ∂ �A

∂z

dz

dt
,

⇒ d �A
dt

= ∂ �A
∂t

+
(

vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)

�A,

⇒ d �A
dt

= ∂ �A
∂t

+ (�v. �∇)�A. (43)
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Appendix 5: Simplification of LHS

Using above two identities (Eqs. 42 and 43) in Eq.15, we obtain:

�v
(

∂ρ

∂t
+ �v. �∇ρ

)

+ ρ

(
∂�v
∂t

+ (�v. �∇)�v
)

= −�∇P, (44)

⇒ �v
(

−�∇.(ρ�v) + �v. �∇ρ
)

+ ρ

(
∂�v
∂t

+ (�v. �∇)�v
)

= −�∇P, using Eq. 16

⇒ �v (−ρ(∇.�v)) + ρ

(
∂�v
∂t

+ (�v. �∇)�v
)

= −�∇P,

⇒ − ρ�v( �∇.�v) + ρ
∂�v
∂t

+ ρ(�v. �∇�v) = −�∇P,

⇒
[

− �∇P

ρ
+ �v( �∇.�v) − (�v. �∇)�v

]

= ∂�v
∂t

. (45)

Rewriting LHS in Eq.21, we obtain:

LHS =
(

�∇ ∂ρ

∂t

)

.�v + ( �∇ρ).
∂�v
∂t

+ ∂ρ

∂t
( �∇.�v) +

(

�∇.
∂�v
∂t

)

ρ,

=
(

�∇ ∂ρ

∂t

)

.�v + ( �∇ρ).
∂�v
∂t

+ ∂ρ

∂t
( �∇.�v) +

(

�∇.
∂�v
∂t

)

ρ,

=
[(

�∇ ∂ρ

∂t

)

.�v + ∂ρ
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High-Power Light Emitting Diodes;
An Alternative Excitation Source
for Photoacoustic Tomography

Thomas J. Allen

Abstract Photoacoustic tomography is a non-invasive imaging modality that is
based on laser-generated ultrasound andwhich canprovide high quality, 3D images of
soft biological tissue. Photoacoustic signals are typically generated usingQ-switched
lasers, which are relatively bulky and expensive; so far, this has hindered the transla-
tion of the technique from the laboratory into a clinical environment. An alternative
is to use light emitting diodes (LEDs) as excitation sources; these devices have the
advantage of being compact, inexpensive, and available in a wide range of wave-
lengths (visible and NIR), all of which makes them well suited to clinical applica-
tions. The main drawback of LEDs is their low pulse energy (a few µJ), which is
significantly below the tens of mJ provided by Q-switched lasers. However, a range
of studies have demonstrated the possibility of using LEDs to generate and detect
photoacoustic signals with a sufficient SNR for in-vivo imaging of the superficial
vasculature. This chapter reviews key developments in LED-based photoacoustic
imaging that have occurred over the past decade.

1 Introduction

Photoacoustic tomography is a relatively new biomedical imaging modality [1],
which is based on laser generated ultrasound. It is a hybrid modality which combines
the high contrast of optical imaging techniques with the high spatial resolution
(<100 µm) of ultrasound imaging. It offers the possibility of acquiring high-quality
3D images of the internal structure of soft biological tissues such as blood vessels.
The technique provides not only structural but also functional information through
methods such as spectroscopy [2], flow measurements [3, 4], or thermometry
[5]. Photoacoustic tomography has the potential to be used in a wide range of
clinical applications, such as imaging skin pathologies [6], cardiovascular disease
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[7, 8], oncology [9], abnormalities of the microcirculation (e.g. diabetes [10]), arthri-
tis [11] and other conditions. Photoacoustic signals are typically generated using
Q-switched Nd:YAG pumped OPO, Ti:Sapphire or dye laser systems as they provide
the necessary high pulse energies (mJ) and short pulse durations (ns) required for
photoacoustic tomography. However, these excitation sources suffer from a range
of limitations; they tend to be bulky, expensive, require water cooling and regular
maintenance (e.g. alignment), and have a low pulse repetition frequency (PRF)
(<200 Hz) which limits the achievable imaging speed. These practical limitations
have so far inhibited the translation of photoacoustic tomography from a laboratory
technique to one which can be easily implemented in a clinical environment. There
is therefore a need for novel excitation sources.

An alternative is to use semiconductor devices such as laser diodes [12–14] and
light emitting diodes (LEDs) [15–24], as they provide the means to overcome these
limitations; they are compact (on the sub-mm scale), relatively cheap (a single ele-
ment device costs a couple hundreds of USD or less), robust, have a high wall-plug
efficiency (>10%) and do not require regular maintenance. In addition, they are
available over a wide range of wavelengths (see Fig. 1), making them well suited
for spectroscopic applications. The main drawback of semiconductor devices is their
relatively low peak powers, compared to the mega Watts provided by Q-switched
lasers sources. For example, laser diodes can provide peak powers ranging from tens
of Watts for a single element device to tens of kWs for a stack or bar of laser diodes,
resulting in pulse energies ranging from tens ofµJ to a couple of mJs when operating
with pulse durations of tens of ns. The peak powers of LEDs are even lower, a few
Watts for a single device when driven in continuous wave (CW) mode. However, it
is possible to overdrive them with current pulses tens of times their nominal rating,
allowing for pulse energies on the order of a few µJ to be achieved when driven with

Fig. 1 Optical spectra for a range of commercially available LEDs [20]. (Figure adapted with
permission from [20])
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a short pulse duration (a couple of hundreds of ns or less). Also, their low pulse ener-
gies can to some extent be mitigated through strategies such as combining the output
of several devices, exploiting their high PRF to acquire and signal average many
signals over a relatively short period of time, and optimizing their pulse duration
[13, 25]. A significant advantage of LEDs over laser diodes is that they are cheaper,
with devices available for a few tens of USD.

The purpose of this book chapter is to provide a brief historical perspective of
the application of LEDs as excitation sources for photoacoustic imaging. Four key
areas of development will be described (Sect. 4); (1) the very possibility, through sin-
gle point measurements, of generating detectable photoacoustic signals with LEDs;
(2) the possibility of obtaining tomographic images from those measurements; (3)
some major achievements in spectroscopic photoacoustic imaging based on LEDs,
which open up applications such as measuring SO2 levels in a vessel; (4) the ability
of implementing novel excitation schemes for LED-based photoacoustic imaging.
These developments have been based on the widefield illumination of the sample,
which is required for photoacoustic tomography.

Before presenting the above, however, a brief introduction to photoacoustic
tomography will be given (Sect. 2) so as to equip the reader with the necessary
scientific background. This will cover the basic image formation principles of pho-
toacoustic imaging, including the source of contrast and insights into the factors and
mechanisms that limit imaging depth and resolution. Not only will this set the scene
for this chapter, it will also be a useful source of information for the remainder of
this book. In addition to the photoacoustic imaging technique itself, a brief overview
of high-power LEDs will be provided (Sect. 3). This section will cover, in a concise
manner, their operational principle and basic characteristics. It will also describe
the possibility of overdriving LEDs when operated in pulsed mode. The chapter
concludes with a summary and an outlook of potential developments that apply to
high-power LEDs in the context of photoacoustic imaging (Sect. 5).

2 Photoacoustic Tomography

In biomedical photoacoustic tomography, a tissue sample is typically illuminated by
a short nanosecond pulse of light, such that thewhole sample is floodedwith light (see
Fig. 2a). The light then undergoes multiple scattering within the tissue before being
absorbed by a chromophore, such as blood, melanin, water or lipids, which are the
major chromophores present in biological tissue. As the absorbed light is converted to
heat via vibrational and collisional relaxation, a small, localized temperature increase
(<0.1 K) is induced, resulting in a pressure increase (P0). This pressure then relaxes
into broadband (tens of MHz) acoustic waves, which propagate to the tissue surface
where they are recorded as A-lines by a single mechanically scanned ultrasound
detector or an array of ultrasound detectors. By measuring the time of arrival of
these waves and making the assumption that the speed of sound in biological tissue
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Fig. 2 Photoacoustic tomography; a Schematic representation; b photoacoustic image of the vas-
culature around the abdomen of a mouse [26] using a photoacoustic scanner based on a planar
geometry and a Q-switched Nd:YAG pumped OPO laser system with an incident fluence below
the safe maximum permissible limit for skin (<6 mJ/cm2). As well as the superficial vasculature,
several deeper lying organs can be visualised such as the spine (s), the kidneys (k, outlined with
yellow arrows), the spleen (sp) and the ribs (r). (Figure adapted with permission from [26])

is homogenous (e.g. 1485 m/s), it is then possible, using a reconstruction algorithm,
to form a photoacoustic image representing the absorbed optical energy distribution.

The reconstruction algorithm can be conceptually understood as follows. The
amplitude of a recorded signal at time t is given by the integral of the initial pressure
distribution (P0) that lies on the surface of a sphere centred on a detector with a
radius ct , where c is the speed of sound. If the pressure is measured at several points
over a line or surface, an image of the optical absorbed energy distribution can then
be obtained by back-projecting the detected pressure signals. This is illustrated in
Fig. 2a, where an array of detectors is used to measure the photoacoustic pressure
over a line. Each element of the array records a time series of the generated pho-
toacoustic signal. The photoacoustic signal is incident at the detectors with varying
time delays due to their different distances from the acoustic source. If the time series
are then back projected over a spherical surface, the photoacoustic signal present in
each individual time series will coherently interfere at the location of the acoustic
source, creating an image of the absorbed optical energy distribution. This type of
back-projection approach is equivalent to the delay-and-sum [27] algorithm used in
phased array US imaging and has been widely used for photoacoustic tomography
as it is relatively simple to implement and intuitive. However, it is non-optimal in
terms of accuracy and computational expense and therefore more advanced recon-
struction algorithms have been developed such as time-reversal [28], and Fast Fourier
Transform-based methods [29].

Figure 2b shows an example of a photoacoustic image of the microvasculature of
a mouse acquired with a Fabry–Perot sensor based photoacoustic scanner [30]. The
simultaneous high contrast and resolution of the blood vessels are clearly visible.
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The photoacoustic image represents a map of the initial pressure distribution (P0),
which is directly related to the heating produced by the absorption of light. Under
the assumption of instantaneous heating, which in practice requires that the duration
of the excitation pulse is significantly shorter than the time it takes for an acoustic
wave to travel through the heated region (a condition known as stress confinement),
the initial pressure distribution (P0) can be related to the absorbed optical energy
H(r) via the following equation:

P0 = �H(r) = �μa(r)�(r;μa, μs, g). (1)

Here, � is the Grüneisen coefficient, a measure of the conversion efficiency of
heat energy to pressure, and H(r) is the absorbed optical energy distribution, which
in turn is a product of the local absorption coefficient μa(r) and the optical fluence
�(r;μa, μs, g), whereμa(r) andμs(r) are the absorption and scattering coefficients
of the illuminated tissue volume, and g is the anistropy factor. Equation 1 implies
that P0 is dependent on the product of three terms, the Grüneisen parameter (�),
the absorption coefficient (μa(r)) and the fluence (�). The Grüneisen parameter is
typically assumed to only vary weakly for different tissues (although this may not
always be the case [31]), and therefore regarded as spatially invariant. Therefore,
the spatial variations in the optical properties of the tissue sample, absorption and
scattering, provide the main source of contrast. Absorption tends to dominate and
is usually the main source of contrast in photoacoustic imaging, which makes the
technique well suited to imaging anatomical features containing a high concentration
of chromophores. Haemoglobin is one of the dominant chromophores in biological
tissue, with an absorption coefficient at least one order of magnitude higher than
any other major endogenous chromophore in the 400–900 nmwavelength range (see
Fig. 3). This makes the technique an excellent fit to imaging the microvasculature.
Other endogenous chromophores have also been imaged, such as melanin, used to
visualise the retinal-pigmented epithelium [32] (RPE), or lipids, which can allow
assessing the lipid content of atherosclerotic plaques [7]. Photoacoustic imaging has
also been used to image genetically expressed reporters [33], as well as exogeneous
targeted contrast agents [34] for molecular imaging. These contrast agents include
organic dyes such as indocyanine green (ICG) and methylene blue, or nanoparticles,
which typically absorb in the visible and NIR range of the spectrum. In addition,
the unique spectral signature of these endogenous and exogenous chromophores can
potentially enable quantifying the concentration of a specific chromophore via spec-
troscopic techniques. For example, by acquiring photoacoustic images at multiple
wavelengths and knowing the spectral signatures of oxy- and deoxy-haemoglobin,
it is possible to determine blood SO2 by applying spectral inversion methods [2].

The imaging depth of photoacoustic tomography is fundamentally limited by the
effects of optical and acoustic attenuation. Although acoustic attenuation is signif-
icant for most soft tissues, optical attenuation is the dominant mechanism limiting
penetration depth. Optical attenuation determines how deep the excitation light can
penetrate into the biological tissue; this in turn is determined by the tissue’s absorp-
tion and scattering properties, which are wavelength dependent. Typically, in order
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Fig. 3 Absorption coefficient spectra of endogenous tissue chromophores (oxyhaemoglobin
(HbO2), deoxyhaemoglobin (HHb) [35], water [36], lipid(a) [37], lipid(b) [38], melanin [39],
collagen and elastin spectra [38])

to achieve a relatively large penetration depth (>5 mm), the emission wavelength
of the excitation source is selected in the near-infrared (NIR) parts of the spectrum
(600–900 nm) as here a transparency “window” exists due to the relatively low tissue
scattering and the low absorption coefficients of water and blood.

Spatial resolution in photoacoustic tomography is directly related to the bandwidth
of the recorded photoacoustic signal. In turn, the bandwidth is defined by the size
of the optical absorber and can be very broad, with a frequency content extending
to several tens of MHz, assuming the excitation pulse duration is selected to be
short enough to not bandlimit the signal. As the photoacoustic signal propagates
to the tissue surface, it suffers from frequency dependent acoustic attenuation in
biological tissue, which bandlimits the signal. This effect fundamentally constrains
the achievable spatial resolution, and is responsible for resolution decreasing with
depth. For example, at a depth of one cm or more, the resolution is typically limited
to the mm scale, for depths of several mm the resolution is typically on the order of a
few hundreds of µm, whereas at a depth of a couple of mm or less, spatial resolution
is limited to tens of µm. In addition to the above, resolution is also affected by other
factors such as the frequency response and element size of the ultrasound detector,
or the area over which the signals are recorded. These contributions are particularly
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relevant for shallow depths (<5 mm), as the detected signal is likely to be rather
broadband, making it challenging to achieve an optimal detection bandwidth and
spatial sampling requirements.

3 High-Power LEDs

An LED is a semiconductor device based on a p–n junction diode which can emit
light when an electrical current flows through it. In essence, a P–N junction diode is
formedbybringing twodoped semiconductormaterials in contact, anN-typematerial
with an abundance of mobile electrons and few holes and a P-type material with an
abundance of holes and fewmobile electrons.When the junction is forward biased, by
applying a voltage across the junction, holes (from the P-type material) and electrons
(from the N-type material) are injected across the junction, resulting in an abundance
of electrons and holes within the junction region. This high density of electrons and
holes promotes strong electron–hole radiative recombination, resulting in a large
number of photons being emitted. For LEDs, the radiative recombination process is
based on spontaneous emission, where the injected electrons in a high energy state
E2 spontaneously make a downward transition to a lower energy state E1 where they
recombine with the injected holes; the energy difference (hv = E2 − E1) is then
emitted as a photon. Spontaneous emission is random and photons may be emitted
in any direction.

3.1 Characteristics of High-Power LEDs

3.1.1 Emission Wavelength

The choice of materials for designing an LED is primarily dictated by the desired
emission wavelength, as the wavelength is determined by the energy bandgap
(Eg = E2 − E1) of the materials involved. Therefore, by carefully selecting the
semiconductor material, the emission wavelength of a high-power LED can be tai-
lored to nearly anywhere in the visible to NIR range. The NIR range can be accessed
using aluminum gallium arsenide (AlxGa1-xAs), whose emission wavelength can be
tuned over the 624–920 nm range by varying themole fraction (x) of aluminium (Al).
Aluminium gallium indium phosphide ((AlxGa1-x)0.5In0.5P) can be used to access the
570–650 nm range of the visible spectrum; by increasing the mole fraction (x) of
aluminium (Al), the emission wavelength is shifted from the longer to the shorter
wavelengths. The 440–550 nm part can be accessed using indium gallium nitride
(InGaN); as the content of indium (In) is increased, the emission wavelength shifts
from the shorter to the longer wavelengths. However, the growth of high-quality
InGaN becomes increasingly difficult with increasing indium content. As a result,
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Table 1 Specifications of a range of commercially available high-power LEDs operating in CW
mode

Model Wavelength
(nm)

Output
power
(W)

CW
current
rating
(A)

Emitting
area
(mm2)

Linewidth
(FWHM)
(nm)

Emission
angle (°)

Typical
lifetime
(h)

M455D3
(Thorlabs
Inc.)

455 1.445 1 1 × 1 18 80 >100,000

M530D3
(Thorlabs
Inc.)

530 0.48 1 1 × 1 35 80 >100,000

M625D2
(Thorlabs
Inc.)

625 0.92 1 1 × 1 17 80 >100,000

M850D3
(Thorlabs
Inc.)

850 1.6 1.5 1 × 1 30 150 >10,000

SST-90
(Luminus
Inc.)

623 4.2 6.3 9 19 100 >10,000

InGaN based devices are mainly used for ultraviolet (UV), blue and green LEDs, but
rarely for achieving longer wavelengths.

3.1.2 Linewidth

The linewidth of an LED is relatively broad, on the order of tens of nm, and typically
increases with the emission wavelength. For example, the linewidths of 455 nm and
850 nm devices are 18 nm and 30 nm, respectively (see Table 1, which shows the
characteristics of a range of commercially available high-power LEDs). InGaN based
devices show an exception to this behavior; they have a relatively broad linewidth
when the indium content is high (e.g. green LEDs have a linewidth of around 35–
39 nm). This can be attributed to the difficulties of growing the material, causing
a greater incidence of defects and imperfections. For comparison, the linewidths of
lasers commonly used for photoacoustic signal generation are on the order of a few
nm or less.

3.1.3 Emission Angle

High-power LEDs have large emission angles, typically in excess of 80° (FWHM),
as shown in Fig. 4. This, in combination with their relatively large (>1mm2) emitting
areas, makes the emitted light difficult to collimate or to efficiently couple into an
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Fig. 4 Typical spatial
radiation distribution for a
high-power LED (M850D3,
Thorlabs Inc.) [40]

optical fibre. For photoacoustic applications, this typically requires the device to be
placed in close proximity to the sample in order to achieve a relatively high fluence.

3.1.4 Output Power

High-power LEDs can provide an optical output up to a fewWatts when operated in
CWmode, depending on the emissionwavelength and the size of the emitting element
(see Table 1). The safe current rating is typically around 1 A or more, and is generally
limited by the thermal damage threshold of the device, as the current causes heating
within the substrate (junction temperature) due to Joule heating and non-radiative
recombination processes. To maximise both the performance and lifetime of LEDs,
they are typically mounted on a heat sink, removing some of the generated heat and,
thus, lowering the temperature at the junction. Photographs of high-power LEDs are
shown in Fig. 5, where Fig. 5a shows a device with a large emitting area (9 mm2)
and Fig. 5b shows a multi-wavelength device composed of 4 LED dies, each with a
smaller emitting area (1 mm2) and mounted on a metal-core printed circuit (MCPC)
board for efficient heat removal.

3.1.5 Overdriving LEDs

Although high-power LEDs are typically specified only for CW operation, they can
also be operated in pulsed mode. In pulsed mode, the amount of heat generated at
the junction of the device depends not only on the peak current used to drive it,
but also on its duty cycle. Therefore, if the duty cycle is kept low (e.g. <0.1%), it
is possible to drive an LED with current pulses several times higher than their CW
rating without the risk of exceeding the thermal damage threshold of the device. This
allows achieving significantly higher output peak powers than what can be obtained



32 T. J. Allen

Fig. 5 Photographs of high-power LEDs; a high-power LED (SST-90) [41] with an emitting area
of 9 mm2; b high-power multi-wavelength LED (LZ4-00MC00, LedEngin, Inc.), composed of 4
LED dies emitting at 452, 520, 520, and 618 nm, each with a 1 mm2 emitting area and mounted
on a metal-core printed circuit (MCPC) board. These devices are encapsulated in spherical glass
lenses

in CW mode. However, also in pulsed mode there is a limit as to how large the peak
current pulses can be, which is a consequence of following three factors. First, the
quantum efficiency of the device drops with increasing current. This is due to the fact
that some of the injected carriers (electron and holes) are able to pass through the
active region (junction) without recombining; the probability of this increases with
current density. Eventually, as the drive current increases, the active region saturates,
meaning that a further increase in injection current density does not increase the
carrier concentration in the active region and therefore the emitted light. This drop
in efficiency is illustrated in Fig. 6, which shows the output power of a pulsed high-
power LED as a function of drive current (continuous blue curve) when operating at
a duty cycle of 0.1%. It can be seen that the output power initially increases linearly,
before increasing at a slower rate due to the drop in quantum efficiency. Second,
operating an LED at excessively high drive currents can lead to faster ageing, as
the high current density briefly increases the junction temperature, which strains

Fig. 6 Output power of a
pulsed red LED
(LXHL-PD09, Philips
Lumileds) as a function of
drive current (blue
continuous curve) when
operating at a duty cycle of
0.1%. The CW rating of the
device is 1.4 A. (Data
replotted from [42])
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the crystal and causes defects within its lattice. This is an irreversible and gradual
process, resulting in a reduction of light emission. Third, an excessive amount of
current can cause the instantaneous failure of the device, such as the melting of the
bond wires which connect the anode of the die to the voltage supply [42].

As mentioned above, LED manufacturers typically only specify the safe opera-
tional range of their devices for CW operation; little data is available for pulse mode
operation, often leaving it to the user to empirically investigate the safe operational
range of these devices when overdriven with current pulses that exceed their nominal
rating. However, several studies [15, 16, 42, 43] have demonstrated the possibility of
overdriving LEDs with current pulses ten times their rated current, leading to pulse
energies of several µJ while operating a relatively low duty cycle (<0.1%), with no
noticeable damage to the device.

To operate LEDs in pulsedmode, specific drivers are required. Pulsed LEDdrivers
are most commonly composed of a capacitor, which is used as a storage element
that discharges through the LED when a fast-switching device is activated [42–44].
Figure 7 shows a schematic representation of a simple driver circuit, composed of
a capacitor C as a storage element and a fast-switching metal-oxide semiconductor
field-effect transistor (MOSFET) T as the switching device. When the transistor is
off, the capacitor charges to the voltage Vcc through the charging resistor r . When
the transistor is turned on, via a MOSFET driver triggered by a signal generator, the
capacitor discharges through the LED. It is also common practice to place a resistor
R in series with the LED to limit the maximum peak current (I = Vcc/R) to avoid
damage. To generate a quasi-squared pulse, the value of the capacitor is selected such
that its exponential discharge is slow compared to the time delay between switching
the transistor on and off. A current monitoring resistor with a low value (e.g. 0.01
�), when placed in series with the LED, can monitor the voltage drop across the

Fig. 7 Schematic of a typical LED driver for pulse operation mode. Vcc is the voltage provided
by the power supply, T is a transistor used to switch the LED on and off, C is the storage capacitor,
R is the limiting resistor, r is the charging resistor, D diode
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resistor, hence to estimate the current that flows through the device. To protect the
LED from potentially damaging negative transients due to the fast switching (ns rise
time) of relatively large currents (>1 A), a diode D is connected across the LED.
Generally, when designing LED driver circuits, it is important to keep any parasitic
component introduced by the circuit components or physical layout to a minimum.
For example, every inch of current carrying conductor adds approximately 20 nH of
inductance to the circuit; this is problematic as it contributes to the rise time of the
generated pulse.

4 Major Areas of Development in LED-Based
Photoacoustic Imaging

In the following, four key areas of development in LED-based photoacoustic imaging
will be discussed; single point measurements, tomography, spectroscopic imaging
and novel excitation schemes. The aim of this section is to inform the reader of the
major scientific achievements that have occurred, as well as provide an appreciation
of how this field has developed within the past decade.

4.1 Single Point Measurements

The very first study [15] reporting the use of LEDs as a potential excitation source
for the generation of photoacoustic signals for biomedical applications dates back to
2011. In this early experiment, a commercially available LED with an optical output
power of 250 mW when driven at its nominal current rating (1 A) and emitting at a
wavelength of 627 nm was used. The LED was overdriven by 40 times its nominal
current, providing pulse energies of 400 nJ for a pulse duration of 60 ns and a PRF of
200 Hz. To generate and detect a photoacoustic signal with such a low pulse energy, a
careful optimisation of the experimental setupwas required. Importantly, the pressure
amplitude of the generated photoacoustic signal was maximised by weakly focus-
ing the light via an optical lens onto a highly absorbing gelatine based phantom.
The generated photoacoustic signals were then detected using a focused ultrasound
detector and signal averaged 50,000 times to improve the SNR. This study demon-
strated, for the first time, the very possibility of generating photoacoustic signals
using an LED. However, it was based on an unrealistic tissue phantom and hence
did not yet show that LEDs could be used to generate photoacoustic signals in bio-
logical tissue. These initial limitations were overcome shortly afterwards via a study
[16] that demonstrated the feasibility of generating a photoacoustic signal in a tissue
mimicking phantom while illuminating a relatively large area (1 cm in diameter).
In this experiment, a red (623 nm) high-power LED (CBT-120 from Luminus) was
overdriven by 10 times its nominal current, providing pulse energies of 22 µJ for a
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Fig. 8 Single point measurements in a tissue mimicking phantom [16]: a Experimental setup,
composed of a single tube (0.58 mm in diameter) filled with human blood (35% hematocrit) and
immersed to a depth of 5 mm in a solution of intralipid, mimicking the scattering (µ’s = 1 mm−1)
properties of biological tissue. b Recorded time domain signal. A reflection of the photoacoustic
signal can be observed at t = 30 µs. This is caused by the mismatch in acoustic impedance at the
interface between the intralipid and the wall of the tank. (Figures adapted with permission from
[16])

pulse duration of 500 ns and a PRF of 200 Hz. The LED was used to illuminate the
phantom from one side (see Fig. 8a), with an incident beam of approximately 1 cm
in diameter. An ultrasound detector was placed on the opposite side of the LED to
capture the generated photoacoustic signals. The detector was a cylindrically focused
PZT detector (3.5 MHz, V383 Panametric) of focal length 33 mm, and was placed
such that the blood-filled tube was in its focus. The detected photoacoustic signal,
which is shown in Fig. 8b, was signal averaged 1000 times, leading to an SNR of
approximately 13.

4.2 Photoacoustic Tomography

Following on from these early single point measurements, it was subsequently inves-
tigated whether high-power LEDs were suitable excitation sources for photoacoustic
tomography of tissue mimicking phantoms [20]. To demonstrate this, a red (623 nm)
high-power LED (SST-90 from Luminus) was overdriven by 20 times its nominal
current, providing pulse energies of 9 µJ for a pulse duration of 200 ns, a PRF of
500 Hz. As shown in Fig. 9a, the LED was used to illuminate a tissue phantom com-
posed of three tubes filled with human blood and immersed in a solution of intralipid,
mimicking the scattering (µ′

s = 1 mm−1) properties of biological tissue. The beam
incident on the phantom was approximately 1 cm in diameter. The generated pho-
toacoustic signals were detected using a cylindrical focus 3.5 MHz PZT detector,
which was located on the opposite side of the LED, i.e. operating in forward mode.
The tubes were placed at the focus of the detector, whose focal length was 33 mm,
and perpendicular to the imaging plane. The tubes were fixed in a mount which was
rotated over a total range of 360 degrees in steps of 0.9° using a stepper motor. At
each step, a photoacoustic signal was recorded and signal averaged 5000 times. In
Fig. 9b, which shows the recorded time domain signals as a function of scan angle, it
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Fig. 9 Photoacoustic tomography of a tissue mimicking phantom [20]: a Experimental setup,
consisting of three 1.4 mm diameter tubes filled with human blood (35% hematocrit) and immersed
in a 1% solution of intralipid in order to mimicked the scattering (µ’s = 1 mm−1) properties of
biological tissue. b Recorded time domain signal. c Reconstructed photoacoustic image. (Figure
adapted with permission from [20])

can be seen that photoacoustic signals generated at depth of up to 1.5 cm are clearly
visible. Figure 9c shows the reconstructed photoacoustic image where all three tubes
are visible.

Around the same time, further studies [17–19, 21, 22] into the possibility of using
high-power LEDs for photoacoustic tomographywere carried out by PreXionCorpo-
ration. These experiments were based on the development of two LED arrays, emit-
ting at 850 nm, and placed on each side of an ultrasound linear array. Their aimwas to
a large extent to demonstrate that their custom-built source could generate detectable
photoacoustic signals in high absorbers such as a biopsy needle [17–19], or in a rel-
atively high concentration of ICG [21] injected in a young dead mouse. While these
studies where somewhat limited in that they were based on absorption coefficients
significantly higher that of the chromophores typically found in biological tissue,
they have led to the development of a commercial LED based photoacoustic imag-
ing system (AcousticX, initially developed by Prexion Corporation, Tokyo, Japan
and since been bought by Cyberdyne Inc., Tsukuba, Japan). The system is composed
of two LED bars, placed on each side of an ultrasound linear array. Each bar is com-
posed of 144 LEDs (4 columns of 36 elements) and measures 12.4 mm × 86.5 mm.
The pulse duration can be varied from 50 to 150 ns, and the PRF from 1 to 4 kHz. The
pulse energy for each of the bars can be up to 200µJ when operating at 4 kHz, a pulse
duration of 100 ns and emitting at 850 nm. The bars can be designed to accommodate
for a single wavelength or a combination of two wavelengths, and the wavelengths
can be selected from a wide range (e.g. 470, 520, 620, 660, 690, 750, 820, 850,
940 or 980 nm). This commercial system has recently been characterized [24, 45–
48], and its ability to acquire in-vivo images of the superficial microvasculature was
demonstrated. For example, one such study demonstrated the possibility of imaging
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Fig. 10 In-vivo photoacoustic imaging of a human wrist [24]: a Schematic of a human wrist,
indicating the regionbeing imaged,bphotoacoustic image (thewhite arrows indicating the presences
of blood vessels), c ultrasound image and d a combined image showing both the photoacoustic and
ultrasound image. (Figure adapted with permission from [24])

superficial blood vessels in a human wrist [24]. Figures 10 a, b shows respectively a
schematic of the area being imaged and the achieved photoacoustic image, visualising
a range of superficial blood vessels (indicated by arrows) with a depth penetration of
at least 5mm. The linear ultrasound array used to detect the photoacoustic signals can
also operate in standard pulse echo mode, allowing to acquire not only a photoacous-
tic image but also a co-registered ultrasound image. Figure 10c, d show respectively
the ultrasound images and the overlapping ultrasound and photoacoustic images.

4.3 Photoacoustic Spectroscopy

The fact that LEDs are available with a wide range of wavelengths (see Fig. 1) and
the ability of creating compact arrays of devices emitting at different wavelengths
make them well suited for photoacoustic spectroscopy applications. The ability of
acquiring spectroscopic data with multi-wavelength LEDs was demonstrated first in
a range of studies [16, 22, 49] based on generating photoacoustic signals in relatively
high absorbers immersed in water, then via a study generating photoacoustic signals
in a tissue mimicking phantom [20]. The latter was based on an LED composed of
four wavelengths (Fig. 11a) to generate and detect photoacoustic signals in tubes
(2.4 mm diameter) filled with human blood (35% haematocrit) immersed in a water
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Fig. 11 Photoacoustic spectroscopy using a multi-wavelength LED: a Schematic and photograph
of the device, composed of 12 LED dies emitting at 460, 523, 590, and 623 nm. b Schematic
of the experimental setup. c Absorption spectra of oxy- and deoxyhaemoglobin overlaid with the
photoacoustic spectra obtained from the blood-filled tube using the fourwavelength device. (Figures
adapted with permission from [20])

solution of intralipid. The experimental setup is shown in Fig. 11b. The phantomwas
illuminated sequentially by each of the four wavelengths. The peak amplitudes of
the detected photoacoustic signals were normalised to their respective pulse energies
and plotted as a function of wavelength alongside the absorption spectra of oxy-
and deoxy-haemoglobin (Fig. 11c), showing that the relative trend in the measured
photoacoustic spectra is broadly consistent with the absorption spectra of oxy- and
deoxy-haemoglobin.

A more recent study explored the feasibility of measuring blood oxygenation
levels in a superficial vessel of the index finger [45]. The experiment was conducted
with the LED-based photoacoustic imaging system developed by Cyberdyne Inc.;
this system is based on a pair of dual-wavelength LED bars that can emit at 690
and 850 nm. Photoacoustic images were acquired at both wavelengths and used to
compute the blood oxygenation level in the finger, which was then compared to
the oxygenation value obtained via a pulse oximeter, yielding a broad agreement.
These studies can be considered a significant step towards LED-based photoacoustic
spectroscopy.
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4.4 Novel Excitation Schemes

So far, most studies investigating LEDs as an excitation source for photoacous-
tic imaging had been based on conventional, pulsed excitation methods. However,
LEDs have the advantage over traditional excitation sources such as Q-switched
Nd:YAG lasers that they can be arbitrarily modulated, allowing for a range of exci-
tation schemes to be implemented, such as those that have been used with laser
diodes [50–52]. One such example [20] consisted in a scheme by which several
LEDs emitting at different wavelengths were first driven at once, so as to obtain a
photoacoustic signal with an improved SNR, and then each of them was driven sepa-
rately one after the other. The power spectrum of the photoacoustic signal generated
by all wavelengths simultaneously was used to design a filter that, when applied to
the sequentially acquired, individual wavelength signals, would improve the SNR of
those. The validity of this approach is based on the assumption that the temporal shape
of the photoacoustic signals generated at each individual wavelength are identical
to each other, which is reasonable when the light penetration depth is significantly
larger than the size of the absorber.

Another example is to use coded excitation schemes, which are based upon coded
binary sequences (e.g. pseudo-random codes). Coded excitation has been shown to
lead to an increased SNR compared to conventional single pulse excitation methods;
specifically, it has been shown that the SNR of the photoacoustic signal increase as
a function of

√
N , where N is the number of bits within the code. In addition, if

two different coded binary sequences are selected that have a very small correlation
between them, it is possible to interrogate the sample with LEDs emitting at two
different wavelengths simultaneously, by driving the LEDs with these sequences.
Besides improving SNR, this increases the acquisition speed of multi-wavelength
data compared to sequential excitation approaches. The reduction of acquisition
time was demonstrated experimentally [20], by showing that photoacoustic signals
can be acquired at two wavelengths simultaneously when using orthogonal codes
(so-called Golay codes) to drive two LEDs emitting at different wavelengths. In
general, photoacoustic signals obtained via coded schemesmust be decodedby taking
the cross-correlation between them and the input binary sequence(s), before being
suitable for further processing (e.g. tomographic reconstruction).

Although experimental studies on alternative, non-sequential excitation schemes
are still in their infancy, they illustrate the driving flexibility that high power LEDs
provide, and the potential this could bear for increasing SNR and, hence, the
suitability of LEDs for photoacoustic applications.

5 Summary and Outlook

In the above—following a brief introduction to photoacoustic tomography and
key characteristics of high-power LEDs—an overview of LED-based photoacoustic
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imaging has been given, covering four key areas of development, which are single
point measurements, tomography, spectroscopy and novel excitation schemes.

In summary, early studies were based on single point measurements and focused
on demonstrating the possibility of detecting photoacoustic signals generated by an
LED, first in a high absorber, then in a tissue mimicking phantom. This was achieved
by overdriving these devices by up to 40 times their rated current, and exploiting
their high PRF to acquire and signal average many signals over a short period of
time, in order to overcome the low peaks powers they provide. Following on from
these results, a range of studies have demonstrated the possibility of using LEDs as
an excitation source for widefield photoacoustic tomography. Experiments were first
conducted in phantoms based on high absorbers before moving to tissue mimick-
ing phantom and in-vivo studies. One example of the latter reported the ability of
imaging the microvasculature of the human wrist or finger with depth penetrations
of up to 5 mm [24]. The ability of using multi-wavelength LED arrays to acquire
spectroscopic data was also investigated. One such study reported that by acquiring
images at multiple wavelengths and employing spectroscopic processing techniques,
the blood oxygenation levels in a superficial vessel of the index finger could be mea-
sured [45]. All of the above was complemented by the implementation of novel
excitation schemes, taking advantage of the greater driving flexibility that LEDs
provide. The first such study provided a strategy to improve the SNR of photoacous-
tic signals when acquiring spectroscopic data. The second study demonstrated the
possibility to improve the acquisition speed of multi-wavelength imaging by using
Golay codes to drive the LEDs (as opposed to conventional sequential acquisition of
photoacoustic signals at multiple wavelengths).

Based on these results, and considering the characteristics of high-power LEDs
in terms of their emission wavelength, pulse energies, and driving flexibility, it
may well be concluded that these devices are suited to superficial vascular imag-
ing where pulse energy requirements are relatively modest. In addition, the compact
size of these devices as well as their low cost and reliability (they require practically
no maintenance) make them well suited to achieving the long-sought translation
of photoacoustic imaging from a laboratory technique to being deployable into a
clinical environment. Compact, hand-held LED based systems could be developed
for applications such as the imaging of arthritis, skin pathologies or oximetry type
measurements.

Looking to the future, it is reasonable to anticipate that advances in high-power
LED technology, which are mainly driven by the lighting industry, as well as novel
signal processing schemes will increase the practical utility of LEDs in the context
of photoacoustic imaging. Further progress may arise from the ability of optimising
the light delivery. For example, it may be possible to weakly collimate the light on
to the sample in order to avoid an excessively large illumination area. This would
result in an improvement in the SNR of the generated photoacoustic signal due to
the increase in fluence. It may also provide a greater flexibility in the design of
photoacoustic imaging systems, as the LED would no longer need to be placed
close to the tissue sample, which is currently required due to the large divergence
of emitted light. In addition, if sufficient focusing can be achieved these devices
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may also be suitable for imaging modalities such as photoacoustic endoscopy or
acoustic resolution photoacoustic microscopy [53], which require relatively modest
pulse energies. On the other hand, for optical resolution photoacoustic microscopy,
the use of LEDs is likely to be challenging, as it would be difficult to achieve the
necessary micron scale diffraction limited spot sizes [54, 55].

Image reconstruction and enhancement techniques which are suitable for LED-
based photoacoustic imaging are included in the next section of this book.
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Arno Humblet, Martin Frenz, and Peter Brands

Abstract Averaging is a fundamental necessity for deep photoacoustic (PA)
imaging when using low-energy pulsed laser sources or LED’s. Intrinsic (breath-
ing, heartbeat…) or extrinsic (freehand probe guidance) tissue motion, however,
leads to phase cancellation of the averaged PA signal when the axial displacement
of tissue becomes larger than half the acoustic wavelength at the probe’s centre fre-
quency. Motion-compensated averaging (DCA) is a solution to this problem, and
allows the detection of deep structures that are else not visible. In a combined PA
and echo-ultrasound (US) system, tissue motion can be quantified in US images that
are interleaved with PA images. In this chapter, we exemplarily illustrate the power
of this technique when trying to image the optical absorption inside the carotid artery,
using a fully integrated PA/US system based on a handheld clinical probe containing
a miniaturised laser source. The key components of DCA are discussed and exem-
plified on volunteer data, and the influence of various parameters on image contrast
is investigated. We demonstrate that DCA enables freehand PA detection of blood
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vessels at a depth of 1.5 cm using only 2 mJ pulse energy, and give some guidelines
for image interpretation.

1 Introduction

One of the promising application areas of photoacoustic (PA) imaging is its integra-
tion with clinical handheld ultrasonography [1, 2], to complement classical B-mode
and colour flow imaging, and more recently elastography [3] and speed-of-sound
imaging [4–8], with new valuable diagnostic information in a single multi-modal
handheld system. For such a system being flexible and widely affordable, the pulsed
light source is preferably integrated in the handheld probe itself. For this purpose,
various groups and companies have developed light emitting diode (LED) and laser
diode (LD) based miniaturised light sources [9–17]. So far, these systems have in
common that the pulse energy is very low, compared to the more commonly used—
but bulky and expensive—external solid-state lasers. For deep PA imaging where
SNR becomes an important issue due to optical attenuation, the low pulse energy
can partially be compensated for by increasing the pulse repetition frequency (prf)
together with more extensive averaging. Laser safety regulations, however, limit the
average irradiated power per unit area, so that—for a given total averaging time—the
SNR (which is proportional to the square-root of the number of pulses) decreases
with increasing prf due to the linearly decreasingmaximumpermissible pulse energy.
Put differently, the lower the pulse energy, the longer the averaging time required to
achieve a target SNR. This makes averaging substantially more important for low
energy PA systems than for the ones using high-energy solid-state lasers.

Especially for deep imaging where longer averaging times are required than for
superficial imaging, averaging becomes more challenging owing to tissue motion.
On one hand, motion of tissue relative to the probe aperture occurs due to involuntary
probe motion. On the other hand, the tissue exhibits intrinsic motion even when the
probe is static, due to pulsating arteries, the beating heart or breathing, among others.
With the 7.5–15 MHz centre frequencies that are typically used for high-resolution
US imaging of a few cm depth range, the displacement magnitude of intrinsic tissue
motion can easily exceed half an US wavelength. As a result, conventional averaging
leads to phase cancellation of the PA signals, limiting the maximum averaging time
up to which an SNR improvement is possible.

A solution to this problem is motion-compensated averaging, or—as previously
named—displacement-compensated averaging (DCA) [18–21]. This technique takes
benefit of the interleaved acquisition of pulse-echo data with PA data, which allows
to estimate the tissue motion by tracking anatomical details in US images, and—sub-
sequently—to motion-compensate PA images before averaging. DCA has originally
been proposed for reducing clutter noise in PA imaging, along with other clutter-
reduction techniques [22–27]. Clutter consists of PA echoes and out-of-plane PA
signals, and it is a prominent noise source especially in reflection-mode PA imaging
where it cannot be temporally separated from “real” direct in-plane PA signals [28,
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29]. Since clutter is a systematic noise, it cannot be removed by conventional aver-
aging, and thus poses an ultimate limit to imaging depth. DCA takes benefit of the
fact that, upon tissue deformation, clutter behaves differently than the “real” signals,
as the apparent reconstructed location of clutter does not coincide with the actual
source location (else it would be “real” signal). Due to this different behaviour, clut-
ter tends to decorrelate along a motion-compensated PA image sequence, thus the
clutter intensity level can be reduced by averaging. In solid-state laser PA imaging
where clutter is more prominent that thermal noise, we have demonstrated that DCA
substantially improves contrast and imaging depth.

In low-pulse-energy deep PA imaging where thermal noise is more prominent
than clutter, the main benefit of DCA is that the motion compensation allows for
more extensive averaging and thus improved SNR by reducing the effect of phase
cancellation. In an ideal case where the tracking is perfectly accurate and no out-
of-plane motion occurs, at least the same SNR can be achieved as if tissue motion
would be absent. In a more realistic scenario, however, decorrelation of US echoes
and out-of-planemotion results in tracking and compensation errors. In addition, out-
of-planemotion leads to decorrelation of PA image features so that phase cancellation
can occur even with accurate motion compensation. For this reason, the optimum
SNR is obtained in a trade-off between averaging time, tracking errors and out-of-
plane motion. Depending on intrinsic tissue displacement magnitude and complexity
of tissue structures (slipping boundaries and architectural anisotropy leading to 3D
motion field), the sweet spot in this trade-off limits the achievable SNR. A further
limitation to averaging time stems from the necessity of real-time feedback: the
effective frame rate is given by the averaging time constant. Above a couple of
seconds, the lag between freehand probe guidance and the effect on the DCA result
makes it difficult for an operator to choose a probe placement that optimises the DCA
result.

Along these lines, this chapter is dedicated to the elaboration of the various com-
ponents and features of DCA and the investigation of their influence, exemplified on
a specific implementation for an LD-based fully integrated handheld PA/US probe.
In Sect. 2, we focus on the design of themain component of DCA, namely themotion
tracking of US images. The tracking algorithm needs to be fast as well as robust,
and its specific implementation is dictated by limitations of the specific acquisition
system. In Sect. 3, we detail the experimental setup and processing steps, including a
novel way of how to overlay the PA signal with the US image. In Sect. 4 we illustrate
the various steps in the DCA processing in volunteer results, with a focus on the
role of various parameters that influence its performance. To make the benefit of
DCA most evident, we focus on the detection of the carotid artery which shows a
large intrinsic pulsatile motion making it especially difficult to image. In addition
we give more general experience on how to interpret DCA images, especially on
how to identify real PA signal (as opposed to clutter) based on the US image. Our
results demonstrate that detection of the carotid artery and other blood vessels at a
depth of 1.5 cm is feasible using only 2 mJ pulse energy (80 Hz prf, 2.5 s averaging
time), and they confirm that DCA is essential for achieving this imaging depth, not
only by allowing effective averaging but also via its clutter-reducing effect. These
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results are especially important for LED-based PA imaging where the pulse energy
is substantially lower.

2 DCA Prerequisites

2.1 US Image Quality

The motion tracking accuracy is crucial to the achievable DCA outcome. Tracking
errors can stem on one hand from noise in the US images, on the other hand from
imperfections of the tracking algorithm. First, we put a focus on the US image noise.
Apart from thermal noise, US images contain clutter noise the same as PA images do.
Clutter noise consists of system-related artifacts (such as side-lobes, grating lobes
due to below-Nyquist sampling of the element-to-element pitch…) but also of tissue-
related noise caused by higher-order echoes (multiply scattered US), which cannot
be distinguished from the first-order echoes that make up a “clean” US image. Since
the echogenicity (echo strength) of tissue varies on a large dynamic range (tens of
dB), low echogenicity areas are easily dominated by clutter spreading from high
echogenicity areas. The same as in PA, clutter noise in US tends to decorrelate with
tissue deformation, leading to wrong detection of the echo shift in regions where
clutter dominates. For this reason, a key point of attention in DCA is the optimisation
of US image quality in terms of signal-to-clutter ratio (SCR).

In a classical line-by-line scan (LLS), US power is transmitted into a narrow
collimated or slightly focused beam at a time, and the probe receives a dynamically
focused signal (conventionally using delay-and-sum) from inside that beam. The
time trace of the signal forms one image “line”, and multiple lines are obtained when
scanning the tissue with the beam and together form an image. With the advances
of hardware development of the past decade, plane-wave (PW) (or ultrafast) US
imaging has become popular [30], where a single plane US pulse is transmitted
into the tissue and signals are digitized simultaneously on all elements on receive,
allowing for the reconstruction of a large field-of-view (FoV) image in a single shot.
While PW imaging has a great speed advantage over LLS, the big disadvantage is
the much higher clutter noise level, making this type of image unsuitable for motion
tracking. Figure 1a, b show an LLS and a PW image of the same region around the
carotid artery, demonstrating the substantial difference in contrast. Especially note
the increased apparent echogenicity inside the carotid in Fig. 1b.

The increased clutter noise in PW imaging as compared to LLS consists of diffuse
2nd order echoes. In the LLS, the US power is transmitted into a narrow beam. The
1st order echoes are generated only inside that beam, but 2nd order scattering leads
to echoes that propagate back to the probe also from outside the beam. This is
illustrated in Fig. 1c which shows an image when irradiating only one beam but
reconstructing a large tissue area around the beam. The intensity follows the actual
beam profile only near the transducer aperture (upper part of the image) and echoes
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Fig. 1 a Line-by-line scan of tissue around carotid artery (c: carotid lumen; th: thyroid gland; m:
muscle). b Plane-wave image of same area. c Image when irradiating a single line but reconstructing
the full image area. The beam profile and the event horizon are indicated by white and red dashed
lines, respectively. d Result of coherent plane-wave compounding. All images are displayed in the
same dB scale covering 60 dB. Note that c was not taken at the exactly same position as a, b, d.
These images were produced using a Vantage 64 LE research US system (Verasonics Inc. WA)

are reconstructed also outside the actual beam where echo intensity is dominated
by 2nd and higher order echoes. These echoes are confined by an “event horizon”
that marks the first possible arrival of an echo (of any order) at the different probe
elements. In a line-by-line scan, the receive part is focused into the same area as the
transmitted beam, i.e. only pixels inside that area are reconstructed. Therefore, the
out-of-beam 2nd order echoes are less sensitively detected than the in-focus 1st order
echoes. The sensitivity ratio determines the SCR in the image line. In a PW image,
where a broad unfocused US pulse is transmitted into a large tissue region at once,
2nd order echoes are detected from inside the receiving beam area that originate from
the irradiated tissue outside the receive area. Therefore, the relative contribution of
2nd order echoes is much higher than in a LLS.

An alternative to PW imaging for improving US quality is coherent plane wave
compounding (PWC) [31]. In this technique, PW images are acquired with a variety
of different PW transmit (Tx) angles. For each angle an image is reconstructed, and all
images are coherently averaged (i.e. before envelope detection). The result is shown
in Fig. 1d, an image that looks practically identical to the line-by-line scan in terms of
contrast and spatial resolution. The observed SCR improvement can be understood
from two perspectives: first, diffuse 2nd and higher order echoes decorrelate with
varying Tx angle, so that averaging reduces the intensity of such echoes due to phase
cancellation; second, coherent averaging of images obtained with different Tx angles
corresponds to synthetic Tx focusing, similar to the (coherent) delay-and-sum (DAS)
beamforming that synthetically focuses the transducer on receive (Rx). In that view,
the Tx angle range in PWC is equivalent to the angular aperture in a LLS. For this
equivalence to hold, the angle spacing should be chosen sufficiently small so that
a hypothetical superposition of the plane pulses (with appropriate relative delays)
could indeed result in a single focused or collimated beamwithin the size of the probe
aperture. Then the SCR is similar or even better than the one of LLS. With a larger
angle step, the hypothetical superposition would result in multiple parallel beams,
the larger the step the more beams. This results in reduced SCR, equivalent to an
increased clutter level that results from 2nd order echoes that couple from adjacent
Tx beams into a Rx beam.
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PWC is referred to as “ultrafast imaging” [30], referring to the fact that a full
image can be reconstructed from a single or few PW acquisitions. One has, however,
to keep in mind that to achieve an identical spatial resolution (identical angular
aperture of Tx focusing) as well as an identical SCR (this was followed in Fig. 1),
LLS and PWC require the same number of acquisitions (taking into account that
dynamic Tx focusing can be achieved in a line-by-line scan by retrospective Tx
beamforming [32]). A disadvantage of PWC compared to LLS can be the larger
amount of data that needs to be transferred and processed, as for each angle, data are
required for all probe elements and each pixel must be reconstructed. In LLS only
the elements corresponding to a certain line need be active on receive and only the
pixels inside the corresponding Tx beam area need to be reconstructed. A different
practical difference between the two techniques is the different way in which motion
affects the final image. In LLS, abrupt motion shows up as a relative shift of different
parts of the image, and—in retrospective Tx beamforming—degrades SCR around
the line that was acquired during the motion due to phase cancellation. In PWC, the
phase cancellation due to motion equally degrades the SCR in the whole image, but
the degradation is weaker than in LLS. Depending on the specific application, one or
the other technique can be more advantageous. Ultimately, the system at hand will
determine what type of data can be acquired (e.g. the specific system presented in
this chapter only allows interleaved acquisition of PWC data with PA).

2.2 Motion Tracking Algorithm

Previously we proposed Loupas’ phase correlation (LPC) [33] for estimating the
tissue motion field based on quantifying the resulting phase shift of US echoes.
Assuming that the array probes bandwidth (BW ) is smaller than the centre fre-
quency f0 (this is typically the case for standard clinical US probes), it is practical to
model a beamformed (e.g. using DAS) radio-frequency (RF) signal s(z) (where z is
the axial dimension) as the product of a “slowly” (given by BW ) varying complex
envelope S(z)with a “quickly” (given by f0) oscillating complex exponential carrier:

s(z) = S(z) · exp(2π i f0 · 2z/c) = S(z) · exp(2π i z/�) with � = c/2 f0 (1)

where c is the speed of sound. Note that Eq. 1 contains a factor 2 in the complex
exponent that accounts for the two-way propagation in echo US. Assuming that no
lateral nor out-of-plane motion occurs, and that the gradient of the motion along the
axial direction z is small, image lines acquired before (sn) and after (sn+1) a motion
step are identical apart from a z–dependent shift �zn,n+1(z) and can therefore be
modelled as:

sn+1
(
z + �zn,n+1(z)

) = sn(z) (2)
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If, in addition,�z is smaller than half the oscillation period�,�z can be estimated
from the point-wise Hermitian product Cn,n+1 between sn and sn+1:

Cn,n+1(z) = sn(z) · [sn+1(z)
]∗ = sn+1

(
z + �zn,n+1(z)

) · [
sn+1(z)

]∗

= Sn+1
(
z + �zn,n+1(z)

) · S∗
n+1(z) · exp(2π i(z + �zn,n+1(z)

)
/�

) · exp(−2π i z/�)

∼= Sn+1(z)
2 · exp(2π i�zn,n+1(z)/�

)
(3)

→ �z
∧

n,n+1(z) = arg
{
Cn,n+1(z)

}
/2π · � (4)

For the last step of Eq. 3, one uses the assumption that S(z) varies “slowly”
compared to � and �z and thus can be assumed constant over the distance �z.
Since the pre-factor to the complex exponential in Eq. 3 is thus real, �z can be
estimated based on the phase angle of C . Even though we assumed purely axial
motion, LPC is not limited to axial motion: by acquiring US images with two (or
more) different view directions through Tx and/or Rx beamsteering, a 2D-vector (or
3D for 2D arrays) field can be obtained.

Now, let’s have a closer look at the various assumptions that were involved in the
derivation of Eq. 4:

No lateral motion: Accepting some error, it can be slackened, saying that lateral
motion has to be below the lateral resolution of the image. In case this assumption
is not fulfilled, lateral motion causes decorrelation of S resulting in tracking errors.
Such errors can be reduced by reducing the lateral resolution (e.g. by lateral spatial
low-pass filtering [34]), but at the cost of lateral resolution of the motion field.

No out-of-plane motion: Out-of-plane motion can lead to decorrelation of S without
any possible remedy. Therefore, this condition is crucial for any motion tracking
algorithm to work. Also, out-of-plane motion can decorrelate the PA signal, making
DCA useless. Therefore, real-time display of US images during DCA is a very
important feedback for probe guidance, to help minimise out-of-plane motion.

Small axial gradient of motion field: The envelope S is the result of the interfer-
ence (destructive and constructive) of echoes generated by reflectors that cannot be
resolved by the axial impulse response (given by the BW ) of the system. If the dis-
placement magnitude changes by about 0.5� within the length of the axial impulse
response, then the changing relative position of reflectors results in a changing inter-
ference of the echoes (destructive turns to constructive and vice versa) and thus to
full decorrelation of S. Even for smaller gradients, partial decorrelation occurs [34].

Slowly varying envelope: The shorter the axial impulse response (the larger the BW ),
the more the complex envelope can vary with the displacement, and the pre-factor
in the last line of Eq. 3 deviates from a real number so that the relation between
the phase angle and the displacement magnitude becomes inaccurate. Even for a
broadband signal, it is possible to enforce a narrower BW and thus a more slowly
varying envelope by bandpass filtering. The increased length of the axial impulse
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response, however, leads in turn to more decorrelation of S according to the previous
paragraph. For this reason, the correlation length together with the axial gradient of
the motion field determine a minimum decorrelation rate.

The net effect when the above conditions are only partially fulfilled is thus decor-
relation of S, which in turn results in tracking noise. To reduce tracking noise, one
employs a convolution of C with a typically 2D window function (or 3D for matrix
arrays) before calculating the phase angle. Similar to the axial impulse response
length, an increasing axial length of this tracking window induces errors when the
gradient of the motion field is not zero. The choice of the tracking window length
thus deserves attention, and depends on the application.

The main limitation of LPC is that the displacement magnitude has to be smaller
than 0.5� (0.075 mm at 5 MHz) to avoid phase aliasing. One could argue that it is
possible to enforce this condition by properly choosing f0 via bandpass filtering. In
practise however, this approach is limited by the bandwidth of the system. A way
to track large tissue displacements is to make sure the condition is fulfilled between
successive US acquisitions, and accumulate the motion field over time [34]. With
externally induced tissue motion, the motion between successive US acquisitions
can be controlled to be sufficiently small. In carotid imaging, however, the intrinsic
pulsatile motion of the artery wall can easily lead to a total displacement on the order
of several � in a fraction of a second. In such a case, one can in principle choose the
framerate fast enough to capture sufficiently small motion intervals. Depending on
the US system at hand, however, such a high frame rate may not be possible, either
due to limited data transfer speed and/or due to limited processing speed. With the
system used for this exemplary study, the frame rate was limited by the transfer and
processing speed to about 10 fps. This made a type of tracking algorithm necessary
that is capable of accommodating displacement magnitudes of several � length.

In the US elastography literature, block-matching (BM) is often used for tracking
large displacementmagnitudes [35–37]: the similarity of image patches of successive
images is quantified using a similarity measure (e.g. cross-correlation) for a variety
of test displacements (“search approach”), resulting in a map of the value of the
similarity measure. The displacement is then estimated as the one that optimises the
similaritymeasure. In comparison to theBMtechniques, LPChas several advantages:
(i) it is fast because it is based on a point-wise calculation whereas BM requires a
time-consuming search approach; (ii) it is more robust because it can accurately
determine phase shift even in low SNR situations where BM fails when the noise
modifies the amplitude distribution (“peak-hopping”) [38]; and (iii) it directly gives
an accurate continuous-valued result of displacement magnitude, whereas an error-
prone interpolation is required in BM to determine fractional displacements from
the discrete search area. To avoid the interpolation, some authors have proposed to
combine BM with LPC (BM-LPC) [39, 40], where BM is used for a rough estimate
of the displacement and LPC is used for fine-tuning.

For the system proposed in this chapter we designed a different approach that is
more robust and faster than BM-LPC: similar to some BM techniques, this approach
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makes use of the envelope of the complex RF-mode image, but instead of BM it con-
sequently employs the LPC concept for improved speed and accuracy. As mentioned
above, the limitation to the use of LPC is the limited bandwidth of the RF signal,
so that the low frequencies that would be required for detecting large displacements
are not available. The envelope, on the other hand, can have far lower spatial fre-
quencies, but also a much larger fractional bandwidth so that the prerequisite for
LPC is not fulfilled. To solve this problem, we bandpass-filter the envelope, to obtain
synthetic RF data to which LPC can be readily applied. For each motion step n, the
bandpass-filtered envelope at the bandpass frequency k, un,k , is defined as:

un,k = Kk ∗ (|sn|2
)

(5)

Note that the envelope is defined here as the squared absolute value of the RF
signal. The reasoning behind this definition as opposed to the absolute value itself
is as follows: the absolute value can have sharp edges at the locations where adja-
cent echoes interfere to zero amplitude. These edges contain artificially high spatial
frequencies above the actual spatial resolution given by the probe bandwidth. The
squared absolute value, on the other hand, contains only truly resolvable spatial vari-
ations. It is moreover reasonable in a physics sense, as it corresponds to an actual
physical quantity, i.e. energy density, whereas the absolute value itself doesn’t.

The filtering and tracking are done in a multi-stage approach: In a first stage, the
bandpass centre frequency is chosen sufficiently small so that the largest experienced
displacement magnitude is smaller than half the wavelength �k of the k th bandpass
filter. LPC of successive frames un,k and un+1,k results in a first displacement estimate
�z
∧

n,n+1,k , albeit at a low spatial resolution. To increase the spatial resolution, this
displacement estimate is then used to motion-compensate the frames un,k+1 and
un+1,k+1 at the next higher bandpass frequency. After motion compensation, the
residual displacement is ideally smaller than�k+1 so that LPC can be appliedwithout
phase aliasing on this stage, resulting in an estimate of the residual displacement.
This estimate is added to�z

∧

n,n+1,k resulting in a refined estimate of the displacement,
�z
∧

n,n+1,k+1. This procedure is repeated for all chosen filter stages. In the end, a final
residual displacement estimate can be obtained from LPC of the motion corrected
RF signals sn and sn+1.

3 Combined Handheld PA and US System

3.1 Acquisition System

For illustration of its benefit for low energy handheld PA imaging, we exemplarily
show results of the implementation ofDCAon a system thatwas developedwithin the
H2020 project Cvent. The goal of Cvent is an improved diagnosis of plaque vulner-
ability using PA detection of blood clots inside carotid plaque. The system contains
a fully integrated hand-held probe, based on a pre-existing commercial linear-array
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probe (7.5 MHz centre frequency, 5 MHz bandwidth, 0.245 mm element pitch) that
was re-engineered to contain a built-in multi-wavelength diode laser source for PA
imaging. Figure 2 shows a picture of the probe. Probes with various combinations
of optical wavelengths in the near infrared were produced. The results presented in
the next section were obtained using a single wavelength at 808 nm, irradiating the
skin alongside the linear array through an elongated area of 1.5 cm2 with pulses of
60 ns duration and 2 mJ pulse energy. An average pulse repetition rate of 80 Hz was
used in this study, resulting in 100 mW/cm2 time average irradiance well below the
safety limit of 330 mW/cm2 according to IEC 60825-1. The probe is connected to
a commercial portable ultrasound system (MyLab™ One, Esaote Europe B.V., NL)
for data acquisition. The limited on-board memory of the system allows to acquire
a maximum of 9 PW data frames (for US imaging), each covering a depth range of
10 mm, and 10 PA data frames covering a depth range of 20 mm. After filling the
on-board memory, the data (a “burst”) is transferred via USB to a PC, where pro-
cessing is performed on graphical processing units (GPU). For the presented results,
an Acer Aspire E 15 laptop (Intel core i7-6500U, 2.5 GHz) was used with a built in
NVIDIA GeForce 940 MX graphics card. With this PC, the over-all speed (trans-
fer and processing) allowed for processing 8 bursts per second, allowing real-time
imaging.

Fig. 2 Handheld PA/US
probe containing the
integrated diode laser source.
The laser light exits the probe
through the glass window
alongside the acoustic lens
(arrowhead) covering the
linear array transducer
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3.2 Image Reconstruction

Both the US and the PA images were reconstructed using conventional DAS algo-
rithms. The carotid artery of the volunteer was located at a depth of 10–15 mm
and had about 5 mm diameter, and thus could be easily covered by the 20 mm
depth range of the PA acquisitions. The US acquisitions, however, only cover a
range of 10 mm. For visual inspection of potential echo clutter in the PA images,
the US images must show the tissue located between the probe and the carotid.
This allows identifying PA signal as real signal or clutter based on the absence
or presence of strong echoes at roughly half the depth. At the same time, the US
images must also contain the carotid to allow motion tracking of the tissue at the
location where DCA is most important. An US depth range covering superficial
and deep tissue is also desired by the clinicians as it helps interpretation of the
anatomical context during freehand probe guidance. A 20 mm US depth range
was therefore achieved via the spatial distribution and superposition of the 9 US
patches (Fig. 3a). The distribution was done in a way that PWC with 7 different
angles (−3° to 3° in 1° steps) was achieved in an area covering the upper part of the
carotid, where US image quality was most important for motion tracking. The areas
above and below the artery as well as at the lateral edges of the image contained less
angles, resulting in reduced image quality. This was regarded acceptable as these
regions were only needed for identification of the anatomy. For the demonstration of
imaging depth using DCA, however, our desire was to achieve the maximum possi-
ble motion tracking accuracy resulting in maximum possible contrast-to-noise ratio
(CNR) given the system limitations. For this purpose, we designed an additional
mode where all 9 US acquisitions were placed on top of the location of the carotid

Fig. 3 Arrangement of the 9 US patches (indicated by solid rectangles and lines) acquired with
various different angles for plane-wave compounding, covering an extended depth range (a) and a
reduced depth range (b). The full image area is denoted by a dashed rectangle, and the upper edge
of the carotid lumen is indicated by solid arcs
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artery (Fig. 3b) so that PWC could be performed using 9 (−4° to 4° in 1° steps)
instead of only 7 angles, as we noticed that the extra angles resulted in a visible
reduction of the tracking noise.

Both the US and the PA images were reconstructed in complex RF-mode with a
pixel resolution of 0.15mm (laterally) by 0.083mm (axially). The 10 PA acquisitions
of each burst were averaged before image reconstruction to reduce numerical cost.
This could be done without motion compensation, as tissue motion during a burst
was negligible.

3.3 DCA Details

Motion tracking was performed as described in Sect. 2. The bandpass convolution
kernels were implemented as a truncated sinc functionmultipliedwith an exponential
carrier

Kk(z) = sin(πkz)

πkz
e2π ikz(−1 < kz < 1) (6)

for k corresponding to virtual centre frequencies [0.25, 0.5, 1.0]MHz. The local aver-
aging of the complex correlation prior to determining the phase angle was imple-
mented as a successive convolution in lateral and axial direction, with hamming
windows with length 1/k corresponding to [3.0, 1.5, 0.75] mm. For the last stage,
the tracking of the actual RF signal, the local averaging was implemented the same
way but with a window length of 1.5 mm.

Motion compensation was performed via interpolation of the complex envelope
of the complex RF-mode images (the IQ-data), followed by a phase correction to
account for deviations of the continuous-valued displacement map from the discrete
pixel grid. The reason is that the axial grid required for interpolation of the IQ-data can
be sampled with the resolution given by the probe bandwidth, whereas interpolation
of RF-data would require a higher resolution given by the (larger) centre frequency
and, thus, increased computing time for image reconstruction.

Apart from the tracking and motion compensation algorithm, an important detail
of a DCA implementation is what motion information is extracted from the US
images and how this information is used for motion compensation: motion tracking
can either be performedbetween successiveUS images or relative to afixed reference.
When determining displacement relative to a fixed reference, the disadvantage is that
the increasing decorrelation of echoes with time (e.g. due to out-of-plane motion)
leads to increasing displacement quantification errors. The advantage is that, for
any displacement, such errors are only made once. When determining displacement
between successive US frames, the quantification errors are on average smaller, but
when accumulating displacement maps over larger time intervals, errors accumu-
late. Depending on the statistics of echo correlation/decorrelation, the accumulated
errors can become larger than the errors of a large but single tracking step. Motion
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compensation can either be performed in a forward or in a backward way. In forward
compensation, one option is to compensate the DCA result of time step n − 1 for
the displacement from US frame (n − 1) to frame n, and update with the PA frame
from time step n. This implementation is computationally efficient because only one
motion compensation is required per time step, but it is only applicable if a moving
average with exponential weights is desired/acceptable. Alternatively, a number of
past PA frames from time steps (n − m) to (n − 1) can be compensated for the dis-
placement between US frames (n − m) to (n − 1) and the US frame at step n, and
averaged with the PA frame at step n using arbitrary averaging weights. The disad-
vantage of this approach is that it is computationally more expensive as m motion
compensation operations are required at each time step. In forward compensation,
tissue motion is visually preserved in the DCA result, which can be considered an
advantage. In backward compensation, on the other hand, PA frames from time step
n are compensated for the displacement between US frame n and the US frame at
a constant time step n0 < n. Averaging can be performed with arbitrary averaging
weights, even though only one motion compensation operation is required per time
step. This combination of flexibility and computational efficiency is a big advantage
of backward in comparison to forward compensation. In addition, backward com-
pensation of US images in parallel to PA can serve as a useful feedback for assessing
tracking quality: a static backward-compensatedUS image indicates perfect tracking.

Given the rather low framerate of the Cvent system, it turned out that a combi-
nation of fixed reference motion tracking and backward compensation worked best
for imaging down to the depth of the carotid artery. For visual feedback on tracking
accuracy, DCA was applied not only to PA but also to US images. The US images
were thus not only backward compensated, but also averaged over time. In addi-
tion to allowing a coarse assessment of tracking accuracy based on the absence of
motion in the back-compensated image, averaging ofmotion-compensated RF-mode
US images provides additional feedback as small tracking errors show up as phase
cancellation artifacts.

A moving average with exponential weights w(n) was used to define the DCA
result Pdca(n) because this could be efficiently implemented in a recursive way:

w(n) = 1
∑∞

n′=0 e
−n′/T e

−n/T (7)

Pdca(n) =
n∑

n′=−∞
w

(
n − n′)P

(
n′) = w(0)P(n) + (1 − w(0))Pdca(n − 1) (8)

Thereby, P(n) is the nth motion-compensated frame (either PA or US). For PA,
a time constant T of 20 bursts (i.e. w decreases to 1/e over 20 bursts) is used in
practise, corresponding to a 2.5 s average delay between acquisition and display, but
we will also show the influence of different time constants in the next section. For
US feedback on tracking quality, a shorter time constant of 5 bursts was used, as this
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was sufficient to reveal phase cancellation due to tracking errors but provided a more
immediate feedback (0.6 s) which was helpful for adjusting probe guidance.

3.4 Image Display

The software of the Cvent system was programmed to display two different images
side-by-side: on the left, image 1 displays a “high quality” (HQ) US image, to help
guide the radiologist within the anatomical context when looking for plaque. This US
image is not motion-compensated nor averaged. Standard US image post-processing
was implemented (envelope detection, logarithmic compression, speckle filtering)
to match, as far as feasible (given the limited amount of data), standard B-mode US
image quality. On the right, image 2 provides an overlay of the DCA PA image with
the DCA US image. Again, envelope detection and logarithmic compression was
used for the PA image, but no speckle filtering. Depth-gain compensation (TGC)
was applied to both to US and PA, to reduce intensity variations caused by optical
and ultrasound attenuation.

Combining PA and US data in a single image has the advantage that the PA signal
can be identified within the anatomical context given by the echo texture in US.
Various different ways of combining PA and US data are possible. One way would
be to simply blend the colour maps of the twomodalities.When using clinical probes
this is, however, not a good approach: the limited bandwidth of clinical probes cuts
off low spatial frequencies of PA signals. High spatial frequency detail in PA images
is mainly found as sparsely distributed small blood vessels and surfaces of larger
blood vessels or tissue interfaces (e.g. between fat and muscle). Large areas of the
PA image thus do not contain useful information, and simply blending colour maps
would unnecessarily tone the US image in these areas. A simple and popular way of
combining PA and US data is thus by displaying PA data in colour scale only where
PA intensity exceeds a certain threshold which is chosen above the expected noise
intensity level. The disadvantage of this technique is that noise not only consists of
thermal noise but also contains clutter noise. The latter can vary, depending on the
imaging location but also depending on variations in the light coupling efficiency, so
that the threshold needs to be adapted in an unpredictable way.

To avoid this problem,we have chosen a different approach based on the coherence
factor (CF) concept. Conventionally, the CF quantifies the coherence of an US or
PA signal across the probe aperture, as the squared coherent sum (phase preserved)
normalised to the incoherent sum (of the intensity, no phase information) of the
signal (after applying the same time delays as in conventional DAS). A perfectly
coherent signal yields the largest CF value, whereas a perfectly incoherent signal
yields a comparably small value due to phase cancellation in the coherent sum. We
adapted this concept to measure the coherence along the sequence of bursts, per pixel
in the reconstructed (after DAS) and motion-compensated PA images. Clutter and
noise decorrelate along the burst sequence, thus being “incoherent”, whereas true PA
signal is correlated and thus shows a higher “coherence”. We therefore defined the
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CF as:

CF(x, z, n) =
[∑n′=n

n′=−∞ w
(
n − n′)P

(
x, z, n′)

]2

∑n′=n
n′=−∞ w(n − n′)

∑n′=n
n′=−∞ w(n − n′)[P(x, z, n′)]2

(8)

The sum in the numerator equals the conventional DCA result, whereas the sum in
the denominator is an incoherent version of DCA. For perfectly correlated PA signal,
this CF becomes one, independent of themagnitude of the PA signal, whereas it takes
on small values in noise- or clutter-dominated areas. TheCFprovides amore practical
way of identifying “real” PA signal than thresholding the PA intensity because it does
not depend on the PA signal magnitude but only on the coherence. We use this CF
for the combined PA/US display in the following way: first, the intensity (squared
envelope) of the PA image is logarithmically compressed and the result is coded into
an RGB colour map. Then, the colour channels are multiplied with the CF in each
pixel. This approach opens up the freedom to code the intensity of PA signals as
colour hue alone, whereas the colour brightness is determined by the “coherence”.
This allows to distinguish different signal intensity levels based on hue while the
brightness emphasizes “real” signal independent of signal intensity. For the results
shown in the next section, a “blackbody” colour map was chosen. In a last step,
the PA colour image is blended with the grayscale US DCA image, using (1-CF) as
spatially dependent transparency value, after multiplying the US grayscale by 0.5
to provide better colour contrast between PA and US. To make the effect of the CF
on the final image more pronounced and independent of depth-dependent optical
attenuation, the CF is logarithmically compressed to a range of 7.5 dB, starting from
−5 dB and including a TGC of 3.5 dB/cm.

4 Results

This section presents results of detecting blood vessels at the depth of the carotid
artery in a healthy volunteer. In a first part, the influence of the various steps of the sig-
nal processing are illustratedon a single example data set. In a secondpart, various dif-
ferent imaging examples are shown, to underline the reproducibility of the achieved
imaging depth and to provide some recommendations on image interpretation.

4.1 Illustration of Processing Steps

Figure 4a shows right away the final side-by-side display of the “conventional” HQ
B-mode US image and the PA/US overlay. For this and following results, the limited
US depth range configuration was used to achieve maximum tracking accuracy. The
HQ B-mode US image on the left reveals anatomical detail of the tissue surrounding
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Fig. 4 a Side-by-side display of B-mode US (left) and PA/US overlay (right). The US image shows
a transversal section through the left carotid artery (C: carotid lumen; J: internal jugular vein; v:
small vessel; th: thyroid gland and e: muscle epimysia). The overlay of PA (blackbody colour scale)
with US (grayscale) shows strong PA signal at the upper surface of the carotid lumen (arrowhead),
around the jugular vein and around the small vessel. The lateral extension of the carotid lumen
signal is limited by the receive angular aperture, indicated by dashed lines. b For comparison, when
averaging without motion compensation, the carotid signal is missing. Intensity display ranges
were: 50 dB for US (5 dB/cm TGC), 25 dB for PA (12.5 dB/cm TGC)

the carotid artery, including the carotid lumen, thyroid gland, small vessels and
muscle epimysia. The PA/US overlay clearly shows PA signal emanating from the
upper surface of the carotid lumen. The appearance of this signal is typical for
PA imaging using conventional clinical US probes: only the lumen surface is seen
because the limited BW suppresses low spatial frequencies of optical absorption (the
light penetration depth itself is few mm), and the signal is laterally limited due to
the limited probe aperture: from the cylindrical transient generated by the vessel
lumen, only the part that propagates within the sector indicated by lines is detected
by the probe. Apart from the carotid lumen, PA signal is observed at small vessels
that are indicated in the US image. Note that the signal intensity is similar in spite
of the substantially different vessel sizes. This is expected, as the signal amplitude is
proportional to the absorption contrast at the vessel boundaries, which is similar as
all vessels are situated at roughly the same depth. The averaging time constant was 20
bursts, corresponding to 2.5 s. Figure 4b shows the PA/US overlay when averaging
the PA signal over the same 20 bursts but without prior motion compensation. As
a consequence of phase cancellation, the carotid signal is not discernible from the
background noise. The results in Fig. 4 thus clearly demonstrate that DCA is a
requirement for deep imaging, especially in low energy PA imaging where long
averaging times are required. Apart from enabling the detection of the carotid signal,
a comparison of the PA results reveals a reduced background noise level inside and
around the carotid lumen in Fig. 4a compared to Fig. 4b. This indicates that part of
the noise was systematic noise that persisted in Fig. 4b but was reduced in Fig. 4a
due to the motion correction. Such noise can be explained by clutter stemming from
reverberations within the superficial tissue layers, of PA transients that are generated
in or just below the skin where laser fluence is largest.



Deformation-Compensated Averaging for Deep-Tissue LED and Laser … 63

Fig. 5 Axial displacement field detected at maximum carotid motion, based on multi-stage
bandpass-filtered envelope tracking: a stage 1 at 0.25 MHz bandpass centre frequency; b stage
2 at 0.5 MHz; c stage 3 at 1.0 MHz. d Phase correction at 7.5 MHz smoothens the result of stage 3.
The colour scale spans ± 0.25 mm, where white and black indicate motion towards and away from
the transducer, respectively

Figure 5 illustrates the multi-stage motion tracking process, exemplified on the
axial displacement map detected at the peak of the carotid wall motion. A set of three
envelope bandpass stages was chosen at bandpass centre frequencies (0.25, 0.5 and
1.0 MHz). In a first step, the 0.25 MHz are used for tracking. Figure 5a shows the
resulting displacement map. Note that displacement values are available only within
the region of interest (RoI) that is covered by the US image. The 0.25 MHz were
chosen so as to provide the most robust motion-compensation of the US images (by
visual inspection). This displacement map, however, has very low spatial resolution,
so that short-scale variations of displacement magnitude are missed. As a result, only
the upwardmotion of the upper carotidwall is captured because the upper carotidwall
gives the strongest echo within the spatial resolution. This leads to an overestimation
of the displacement magnitude in a large area outside the vessel lumen. To avoid
such errors, the displacement map is refined in a second step, by phase-tracking the
0.5 MHz-filtered US envelope, resulting in Fig. 5b. As a result of the refinement,
this displacement map shows an improved spatial resolution, so that it is able to
capture also the downwards motion of the lower carotid wall. At the same time the
displacementmagnitude is decreased above the upper carotidwall because theweaker
echoes from the tissue overlying the carotid can now be spatially separated from the
strong carotid wall echo, resulting in more accurate estimation of the displacement
magnitude in this area. The displacement map is further refined in the third tracking
stage based on the 1.0MHz-filtered envelope (Fig. 5c).While the spatial resolution is
again markedly improved, the spatial distribution shows an increased level of bumpy
short-scale spatial variations. In a last step (Fig. 5d), the displacement map is refined
based on phase tracking the RF-mode US images as opposed to the bandpass filtered
envelope. After this phase correction, the spatial distribution has become smooth
over a large area, as one would expect from a real displacement field. The difference
between Fig. 5d and c underlines the earlier made statement that RF phase tracking
is more robust than envelope tracking: the increased noise in Fig. 5c can be assigned
to decorrelation of the envelope due to a changing interference of echoes. Only few
small areas can be identified in Fig. 5d with unrealistic sharp discontinuities that
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result from phase aliasing. Comparison to the HQ US image in Fig. 4 reveals that
these areas are found in regions of low echogenicity, mainly inside the hypoechoic
carotid lumen. This is expected, as such low echogenic areas can be dominated by
higher order echoes that move differently than 1st order echoes.

With the chosen backward compensation, the DCAPA image is static and thus the
overlay with US also requires a static US image. Therefore, motion compensation is
applied to US the sameway as to PA. As alreadymentioned, themotion compensated
US image provides a useful real-time feedback on tracking quality, as tracking errors
can be identified based on residual motion. In addition, when averaging the motion-
compensated US images, even small errors can become visible when they lead to
phase cancellation. This is illustrated in Fig. 6: phase cancellation shows up as fluc-
tuating small areas where echo intensity is transiently reduced. Based on the visual
assessment of residual echo motion and phase cancellation areas, freehand probe
motion can be adapted in real-time to minimise the frequency of tracking errors, to
provide an optimum data set to which DCA can be most successfully applied.

Apart from choosing between forward or backward motion compensation, one
main decision to be made when implementing DCA is between accumulative and
fixed-reference motion tracking. As already mentioned, both approaches can have
advantages and disadvantages. For our system we use fixed-reference tracking
because accumulative tracking turned out to be less robust. This is illustrated in
Fig. 7: accumulative and fixed-reference tracking led to similar contrast-to-noise
ratio (CNR), but accumulative tracking resulted in an increasingly distorted DCA
image already after 34 bursts (4 s averaging time) due to accumulation of tracking

Fig. 6 Illustration of using the DCA US image for real-time tracking quality feedback. This figure
shows the US image underlying the PA/US overlay, but without the PA data. a Perfect tracking
results in an US image that is static and shows a stable intensity distribution. b With less-than-
perfect tracking, the image may still look static, but small tracking errors result in small fluctuating
areas of decreased intensity due to phase cancellation (arrows). 50 dB (5 dB/cm TGC)



Deformation-Compensated Averaging for Deep-Tissue LED and Laser … 65

Fig. 7 DCA result for accumulative (a) and fixed reference tracking (b), at burst number 14, 24,
34, 50 (left to right). 20× averaging time constant, 25 dB intensity range (12.5 dB/cm TGC).
Whereas contrast is similar between the two techniques, accumulative tracking leads to geometrical
distortions, best visible at the lower edge of the image or at the curvature of the carotid signal
(arrowhead)

errors. In comparison, fixed-reference tracking is limited in tracking accuracy, but
no error accumulation occurs so that the DCA result remains robust over time.

A further decision to be taken is between coherent averaging (of motion-
compensated RF-mode PA images) and incoherent averaging (of the motion-
compensated PA envelope). Incoherent averaging can have the advantage that
tracking inaccuracies cannot lead to phase cancellation as in coherent averaging.
On the downside, incoherent averaging is less efficient in terms of noise reduction:
the convergence rate of averaging the square of a Gaussian distributed random num-
ber is weaker than when averaging the random number itself. In addition, averaging
the square converges to a positive number instead of zero, which adds a disturbing
bias to the signal intensity distribution. This is illustrated in Fig. 8, where the DCA
results using the two different techniques can be compared. Note that both images
are displayed in identical dB scales. Within the first cm depth range where SNR is
large, the colour hue of strong PA signals is coded in the same colour in both images.
In areas where the signal is dominated by noise, the colour reveals an increased
intensity level in Fig. 8b compared to Fig. 8a due to the biased convergence limit.
Due to the TGC, the colour indicates larger intensity values with increasing depth.
Since the SNR of e.g. the carotid signal is quite small, the positive average noise
adds an offset so that the carotid signals colour hue indicates a higher intensity in
8b than in 8a. Note that the CNR is visibly decreased, e.g. around the jugular vein,
as the noisy background achieves the same colour hue as the signal from the jugular
vein. We decided for coherent DCA because it has an over-all improved CNR (better
convergence property, not markedly sensitive to phase cancellation errors) compared
to incoherent DCA.
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Fig. 8 Coherent (a) and incoherent (b) DCA. 25 dB intensity range (12.5 dB/cm TGC). Note the
similar intensity level of superficial and deep PA signals (empty arrowheads), but due to the positive
value of the average square noise (full arrowheads) incoherent DCA has reduced CNR compared
to coherent DCA. 25 dB intensity range

Finally, an important parameter for DCA is the averaging time constant. All PA
DCA results shown so far were based on a time constant of 20 bursts. The time
constant has to be chosen in a trade-off between SCR and real-time feedback. For
comparison of SCR, Fig. 9 shows DCA results for various different constants, i.e.
10, 20, 40 and 80 bursts, corresponding—for an 8 Hz burst rate—to 1.25, 2.5, 5
and 10 s averaging time, respectively. As one can see, SCR markedly increases
from 10 to 20, but converges above 40 bursts. The reason for this convergence as
opposed to a continuous increase is that part of the noise consists of persistent clutter.
Even though part of clutter can be reduced due to the carotid motion, this reduction
is limited: since the carotid displacement magnitude is limited and the motion is
periodic, only a limited number of statistically independent clutter realisations can
be averaged regardless of how long the averaging time is chosen. Even though SCR
slightly improved from 20 to 40 bursts, we considered 5 s a too long averaging time
regarding real-time feedback. Therefore, we decided for a time constant of 20 bursts

Fig. 9 Influence of averaging time onDCA constrast: a 10×; b 20×; c 40×; d 80×. 25 dB intensity
range (12.5 dB/cm TGC). CNR converges between (b) and (c)
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corresponding to 2.5 s, which at the same time provides close-to-maximum SCR
with a still acceptable delay between acquisition and display.

The last step in the DCA processing chain is the combination of the PA with the
US image. The way this is done has an important influence on the visibility and
interpretation of the PA signal. As mentioned earlier, we decided for an overlay of
the two images based on the DCA coherence factor (CF), as the CF provides an
amplitude-independent measure of the significance of a PA signal. The way the CF
is used for that purpose is illustrated in Fig. 10. The first step is the choice of the
base colour map that defines the colour hue for displaying the PA signal intensity.
We decided for a “blackbody” colour map because it resulted in the visually most
pleasant blend with the grayscale of the US image. The blackbody colour map starts
with black for zero signal intensity, over red and yellow, to white for the highest
intensity. Therefore, not only the colour hue depends on signal intensity but also the
colour brightness. Alternatively, one could choose a colour map that codes signal
intensity entirely in colour hue. As a step into this direction, we also show results for

Fig. 10 Illustration of the use of the DCA coherence factor (CF) for colour-coding PA data and for
the PA/US overlay, departing from two different base colour maps, blackbody (top) andmodified jet
(bottom): a PA data without CF fading. b Fading of PA colour map using CF. c Overlay of faded PA
colour map with US grayscale map using (1-CF) as transparency value. To improve visibility of the
PA signal, the US colour values were multiplied with 0.5 before overlay. The signals from carotid
lumen (C), jugular vein (J) and the small vessel (v) maintain their colour value with CF fading.
Some medium intensity features (e.g. solid circles) keep their colour hue but are attenuated by CF
fading. The low intensity background (blue in modified jet map) becomes black by CF fading, apart
from some pixels (e.g. dotted circle)
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a modified “jet” colour map. The original jet colour map starts from dark blue over
bright blue, etc. to bright red and dark red. To reduce brightness variation, this map
was truncated to range from bright blue to bright red. Figure 10 exemplarily shows
results for both the blackbody and themodified jetmap. Figure 10a shows the result of
coding the PA intensity into the respective colour map. Assuming that only coherent
signal (coherent in the sense that we defined earlier) is “real” and worth displaying,
theCF is then used to highlight “coherent” and supress “incoherent” signal, by coding
the CF into the colour brightness value. The result is shown in Fig. 10b. In both colour
maps, some features retain the original colour hue and brightness. In the lower half
of the image, these are notably the features that can be assigned (based on the US
image) to jugular vein, carotid, and a small vessel. Relative to these, the brightness
of the background is reduced. In case of the blackbody colour map, it is difficult to
determine in the CF-faded image alone whether the darkness is due to a dark value
in the original colour map or due to the CF fading. In the modified jet colour map,
on the other hand, it is clear that mostly areas that were initially blue (low intensity)
were set to black by CF fading. Some areas that were initially green (intermediate
intensity), however, were set to black, too, and some features that were initially blue
(low intensity) remain so in the CF-faded image, demonstrating that the CF provides
complementary information to signal intensity. In a last step, the CF is used to set
the local transparency value in the overlay of the PA onto the grayscale US image
(Fig. 10c): in pixels where the CF is high, transparency is set low, so that the pixel
colour is determined by the PA signal, whereas transparency is set high in pixels
where the CF is low, to show the anatomical context in areas where the PA signal
can be assumed not to contain valuable information.

4.2 Further Results

The remainder of this section is dedicated to showing and discussing further results
and provide experience on how to interpret images.

Asmentioned before, the limited bandwidth of the clinical probe acts like a spatial
bandpass filter that allows to detect only rapid spatial variations of optical absorption,
e.g. only the surface of large blood vessels. In addition, the limited aperture size
allows only part of the surface to be seen, i.e. the part from which the PA transient
propagates into the probe aperture. This leads to the typical arclet-shaped appearance
of the PA signal emerging from the carotid lumen. In case of a 1D array like the one
we are using in this study, the limited aperture of the probe has a further implication
not discussed so far: to provide a well-defined imaging plane, the array aperture is by
design focused in elevation (the dimension perpendicular to the imaging plane). For
that reason, a main requirement for detecting the carotid signal is that the imaging
plane has to be perpendicular to the lumen surface. By that the transients emanating
from the lumen surface and hitting the transducer have propagated parallel to the
imaging plane and are detected with maximum elevation sensitivity. With increasing
deviation from a perpendicular orientation, the same transients arrive at an increasing
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elevation and sensitivity rapidly decreases. For reasons that are yet unclear (but will
be discussed in the next section) it can be difficult to detect the carotid signal in a
transverse section even with perfectly perpendicular orientation. The chance to at
least partially detect the carotid is higher in a longitudinal section: then the carotid
signal appears as a line (Fig. 11a) that covers a larger number of pixels and thus
provides a richer statistics for identification of this signal. It makes it also more
practical to adjust the probe orientation: by only slightly tilting or moving the probe,
the angle between imaging plane and lumen surface changes rapidly due to the
surface curvature, thus it is possible to optimise the sensitivity without substantially
changing the imaging plane position. For a transversal section, optimising the angle
between imaging plane and lumen surface requires a search over a large probe tilt
angle range, and the location of the section area within the lumen changes together
with the tilt angle, so that two probe orientation parameters need be simultaneously
optimised for detecting a desired location.

In our experience, it is much easier to catch the signal emanating from the internal
jugular vein (and from smaller vessels) than from the carotid itself. This is illustrated
in Fig. 11b–d where the signal from the internal jugular vein can be clearly identified
even when it is located near the lower edge of the image. Note that, in Fig. 11c, the
carotid lumen is visible on US at the same depth as the jugular vein (but no PA signal
is detected due to the difficulties mentioned before). These results therefore further
underline the ability of the presented system to detect optical absorption in the blood
at the depth of the carotid artery.

Fig. 11 Further results demonstrating imaging depth. a longitudinal section of left carotid artery;
b–d transversal sections of right internal jugular vein. In c and d the jugular vein appears flattened
due to compression of the tissue (C: carotid lumen; J: jugular vein lumen). In all images, the lateral
extent of the PA signal is indicated by brackets. Intensity range: 50 dB for US (5 dB/cm TGC),
25 dB for PA (12.5 dB/cm TGC)
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So far, all results were based on a limited RoI US image. As mentioned in the
previous section, the US RoI depth range was limited to 1 cm in order to achieve
maximum angle coverage for PWC and thus maximum tracking quality within the
hardware limitations of the available system. Apart from showing the anatomical
context of PA signal and serving for motion tracking, however, the US image is
needed for identification of PA reflection artifacts based on the presence of echogenic
structures seen in US. For this purpose, the US image needs to show structures that
are located at half the depth of the PA signal of interest. Therefore, we implemented
a software version where a larger depth range is shown on the US image, at the cost
of giving up on angle coverage and thus on tracking quality and DCA performance.
Figure 12 shows some results using this software, to illustrate how the US image
can be used for evaluating the authenticity of PA signal: in Fig. 12a (as already in
Fig. 4) PA signal is visible which can anatomically be related to the surface of the
left carotid lumen. At half its depth, no reflecting structure is seen on US (dashed
line). These two observations together give confidence that the PA signal is actually
from the lumen, not a reflection artifact. In Fig. 12b, the left internal jugular vein is
seen on US. It appears as a line because it is fully collapsed due to the static pressure
exerted by the probe. Next to the jugular vein, a small vessel is visible. PA signal is
visible inside the jugular vein as well as in the small vessel. The authenticity of the

Fig. 12 a–d Evaluation of authenticity of PA signal is based on US in two ways: by the correspon-
dence of location of PA signal to anatomical features (indicated by solid white lines or brackets;
C: carotid lumen, J: internal jugular vein, v: vessel, e: epimysium), and by the absence of strongly
reflecting structures on US image at half the depth of the PA signal (indicated by straight dashed
lines and dashed circumscribed areas. Intensity range: 40 dB for US (5 dB/cm TGC), 25 dB for PA
(12.5 dB/cm TGC)
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PA signal is again suggested by the correspondence of the PA signal to the anatomy
seen onUS, together with the fact that no reflectors are seen in US at half the depth. In
Fig. 12c, PA signal is visible at the location of a vessel seen on US. At half the depth,
a structure is visible on US which might cause a reflection artifact at the depth of the
PA signal. However, one would then expect further artifacts with similar or higher
intensity in near vicinity corresponding to other andmore intense structures visible in
the US image at similar depth. Moreover, based on the fact that the same PA signal is
often found at the location of this vessel (as in Fig. 4), one can safely assume that this
is real signal. Apart from blood vessels, epimysia often exhibit a distinct PA signal as
in Fig. 12d. Again, the authenticity is confirmed by the anatomical correspondence
and by the absence of a reflector at half the depth. The horizontal stripes of high PA
signal intensity that have been present in all images shown so far can partially be
interpreted as echo artifacts: they do not show anatomical correspondence with the
US image, but can be interpreted as reverberations between skin surface (outside the
RoI shown in the US images) and the muscle surface and horizontal muscle layers
(visible on US).

5 Discussion and Conclusion

The results presented in this chapter demonstrate that DCA is a key requirement for
deep PA imaging using low energy (LED or LD based) PA systems, and we have
shown that this technique allows detecting the PA signal of the carotid artery using
a compact fully-integrated PA/US probe in a freehand approach.

The results show the known limitations of using a clinical linear array probe for
PA imaging, namely that the limited probe bandwidth and aperture allow only to
detect sharp boundaries, e.g. at the upper (and sometimes lower) edge of a vessel
lumen. Moreover, sensitivity depends on the relative orientation angle between the
PA signal sources and the imaging plane. This certainly puts limits to how much
can be interpreted from PA images, and—in the worst case—renders quantitative
interpretation of PA signal amplitude impossible. To solve this problem, one approach
has been to use concave arrays that are better matched to e.g. the neck or breast
geometry to increase angle coverage [41, 42], and a large bandwidth (more) suitable
to capture a tomographic section. Such a system has, however, the disadvantage of
providing a less well defined imaging plane: the size of the elevation focus which
defines the thickness of the imaged tissue slice depends on the acoustic wavelength in
relation to the transducer element size. Below a certain frequency limit, the focusing
capability is lost, and if these frequencies are not suppressed by the transducer’s
frequency response (or by the successive signal filtering), signals from anywhere
in the 3D tissue sample are projected onto the same 2D image. This becomes a
problem in PA when signals from below the skin surface but outside the imaging
plane are orders of magnitude stronger than the signals coming from deep inside
tissue due to the large difference in laser fluence. Therefore, the lowest detected
frequency at the same time defines the minimum imaging plane thickness. If the
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wish is to detect the inside of the lumen of the carotid artery, for example, the
imaging plane thickness would implicitly have to be larger than the diameter of the
artery, i.e. around 10 mm. This would preclude such a system from the combination
with conventional US images where a much better elevational resolution is desired
(typically below 1 mm). A way to avoid the ambiguity of the PA imaging plane is
to use a 2D array [43] for Rx beamsteering in azimuth and elevation. To achieve a
sufficient tomographic coverage, however, the aperture size of such an array must
be large in both dimensions, so that it becomes again impractical for an integration
with standard handheld US.

We therefore foresee that, while a dedicated broadband and curved array can have
specific clinical applications, a conventional clinical probe can have advantages in
applications where the limited bandwidth is not a substantial problem and where PA
can add important diagnostic information to conventional US: if, for example, the
goal is to quantify blood oxygen saturation (SO2) in small vessels, reconstructing the
inside of the vessel lumen is not required (SO2 can be regarded to be uniform across
the lumen) and quantitative absolute values of PA signal amplitude are not required
(SO2 can be determined from relative variations of PA signal amplitude as function of
optical wavelength [44]). In the Cvent project, the goal is to detect blood clots inside
plaque. In the previous sectionwementioned that detecting the signal from the carotid
lumen requires a high level of experience in probeguidance as thedetection sensitivity
depends on a perpendicular orientation of the imaging plane relative to the lumen
surface. This is, however, less of a problem when detecting blood clots: the optical
absorption by clots is distributed non-uniformly inside plaque so that we expect it to
act like a collection of small independent absorbing centres [45]. Figure 12 illustrates
in a phantom the expected difference of the PA signal inside plaque compared to the
signal from a healthy artery. For this purpose, a uniformly absorbing but acoustically
transparent cylinder was embedded inside a background medium that is acoustically
scattering. In one position, the cylinder contains a small echogenic volume in which
graphite powderwasmixed,mimickingplaque containing blood clots.When imaging
the phantom in a “healthy” area (Fig. 13a), it looks similar as in a healthy volunteer:
the cylinder appears as hypoechoic area onUS, and the transversal section shows a PA
signal in the shape of an arclet at the upper surface of this area, and the longitudinal
section shows a line-shaped signal. When imaging at the position of the “plaque”
(Fig. 13b), the plaque appears as a collection of diffuse PA speckle. This diffuse type
of signal can be detected independent of the orientation of the imaging plane because
it acts like a collection of independent and isotropically radiating sources.

In our study we made the interesting observation that detecting the PA signal
from the carotid artery is substantially more difficult than the one from adjacent
small vessels or from the internal jugular vein at the same depth. The 808 nm optical
wavelength used for this study is very near the isosbestic point of the optical attenu-
ation spectra of oxy- and deoxyhaemoglobin, so the absorption contrast is expected
to be identical for carotid and other vessels. A possible explanation for the observed
difference in signal intensity may, however, be found in the different morphology
of the carotid artery wall compared to surrounding vessels: it contains a substan-
tially thicker muscle cell layer (tunica media) that is perfused by capillaries (vasa
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Fig. 13 Phantom mimicking a healthy carotid artery (a) and an artery containing plaque with
haemorrhage (b). C: “healthy carotid” signal; p: “plaque” signal. Note that the apparent PA signal
at the lower edge of the “carotid” lumen are echo artifacts, caused by an impedance mismatch
between the background and the cylinder medium

vasorum). The depth profile of optical absorption in haemoglobin may thus resemble
more a staircase than a single-step function, so that the optical contrast is blurred
towards low spatial frequencies that may be less well detected. At the same time,
the intensity of the light reaching the lumen interior is reduced by the thicker tunica
media.

The most important component of DCA is the tracking algorithm. The goal of the
presented study was to demonstrate that sufficient imaging depth could be achieved
to detect the PA signal from blood vessels at the depth of the carotid artery. For
this purpose, we relayed on an easily implementable, robust and real-time capable
ad-hoc algorithmic solution. The advantage of the chosen algorithm compared to
the commonly used block-matching (BM) technique is the lower numerical cost:
Fig. 4 indicates that the peak displacement magnitude of the carotid wall motion was
roughly 0.25 mm, corresponding to 2.5 wavelengths (0.1 mm) of the oscillations of
the RF-mode image at the 7.5 MHz centre frequency. A BM technique would thus
require at least 5 test displacements (2.5 in positive and in negative axial direction)
but preferably more, to retrieve the optimum value of the block-matching criterion
(e.g. correlation coefficient) with sufficient resolution. In comparison, only three fil-
ter stages were needed in our approach. At each stage, the displacement is directly
estimated from the correlation phase (thus not requiring a search approach), andmul-
tiple filter stages are only used for refining the spatial resolution of the displacement
map. A displacement map with slightly reduced quality could even be obtained with
only two stages.

Even though the chosen tracking algorithm was sufficient for the demonstration
of imaging depth in the presented volunteer results, it has potential for improvement:
so far, we used only axial motion tracking and compensation, as it is the axial motion
that leads to phase cancellation of the average PA signal if not accounted for. Lateral
motion, on the other hand, can laterally blur the average PA image, thus the SNR of
theDCA result can be further improved by lateral motion tracking and compensation.
As previously mentioned, a 2D displacement vector field can be obtained for this
purpose by acquiring twoUS images with different view directions (via Tx and/or Rx
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beamsteering). One-dimensional tracking of these images along the respective view
direction results in projections of the displacement vector onto the different direc-
tions, and the displacement vector field can be reconstructed from these projections.
An advantage of this approach is that it is substantially faster than a BM approach
that requires a 2D search area. A disadvantage is the reduced lateral resolution if
Rx beamsteering is used (as the full Rx angular aperture must be split into different
view directions), or the increased data size if Tx beamsteering is used (due to the
larger number of acquisitions). The envelope-based LPC technique proposed in this
chapter is a practical alternative which combines the advantage of BM (full resolu-
tion without increasing data size) with one-dimensional tracking (low computational
cost): phase tracking of the bandpass-filtered squared envelope can be applied to
the lateral dimension equally well as to the axial dimension. This directly results
in the lateral component of the displacement field with only a factor 2 increase in
computational cost. This approach is very similar to spatial quadrature [46], where
tracking is based on the complex RF signal and a lateral oscillation is achieved via
Rx apodisation. Apart from increasing the dimensionality of the displacement field,
multi-dimensional motion tracking has been shown to improve the accuracy of each
dimension over a single-dimensional tracking [35]. Further ideas for improvement
are found in literature on US strain imaging [36, 47–49].

As previously mentioned, the accuracy of the motion tracking relies on the US
image quality. In the presented results, the US image quality was good in the sense
that the intensity level of higher-order echo clutter was lower than the intensity
of first-order echoes in most of the image area. Preliminary experience from an
ongoing clinical study, however, reveal that motion tracking is more difficult in a
large part of cases. Anatomy and acoustic properties of the neck vary substantially
between subjects. Fat in and between the musculature above the artery can lead
to reverberations of ultrasound that obscure the artery lumen so that the detected
displacement is determined by the motion of the superficial tissue from where the
reverberations originate, rather than by the actual artery wall motion. Similarly,
calcifications inside plaque lead to reverberations that obscure the lower artery wall,
such that the tracking result at the lower wall is determined by themotion of the upper
wall. To enable reliable results independent of anatomy, the tracking algorithm thus
must be able to (better) discriminate between superposing first- and higher-order
echoes. This might be achieved via identification of different statistical features of
theRF signal, via the differentmotion speed using a blind signal separation technique,
via deep learning, or via a combination of these.

The presented results were obtained with an LD-based system providing 2 mJ
pulse energy, using an average prf of 80 Hz and an averaging time constant of 2.5 s.
As previously mentioned, the resulting average irradiance at the skin surface was a
factor 3 below the safety limit (for 808 nm).With a faster data transfer and processing
speed, the prf could thus have been increased by a factor 3 up to 240 Hz. Maintaining
the 2.5 s averaging time constant, this would have led to a factor 1.7 increase in SNR
(amplitude). By irradiating the skin on two sides of the linear probe instead of only
one, the total increase in SNR would augment to a factor of 3.5. This indicates that
identical results as the presented ones could have been achieved with—by a factor of
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3.5—reduced pulse energy, i.e. only 0.7 mJ. This is a promising result, as it suggests
that imaging the carotid artery is within the reach of the performance of LED-based
systems.
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Ultrasound Receive-Side Strategies
for Image Quality Enhancement
in Low-Energy Illumination Based
Photoacoustic Imaging

Sowmiya Chandramoorthi and Arun K. Thittai

Abstract PAT (Photoacoustic Tomography) is a hybrid noninvasive imagingmodal-
ity that provides functional cum structural information about the underlying tissue
medium. Conventional PAT employs bulky and expensive solid-state pulsed lasers
as an illumination source, however, Light Emitting Diodes (LED) and Pulsed Laser
Diodes (PLD) have been recently explored as a suitable alternative that are portable
and inexpensive. However, its depth of penetration is relatively lower than that of
solid-state lasers due to lower energy per pulse. Averaging of multiple frames is usu-
ally employed as a common practice in high PRF LED/PLD systems to improve the
PAT image SNR. Recently an approach of sub-pitch translation of ultrasound linear
arraywas demonstrated to contribute to improvement in SNR of PAT image, with just
fewer number of frame averaging. In this chapter, the variousmethods proposed in lit-
erature for improving the achievable image SNR in low energy LED/PLD based PAT
systems are described. Specifically, details of the simulation and experimental studies
conducted using sub-pitch translation approach are provided. Overall, this chapter
briefly summarizes the reports that demonstrate feasibility of achieving improve-
ment in image quality by employing novel methods at receive-side (ultrasound data
acquisition and beamforming) while using low energy sources of illumination in
PAT.

1 Introduction

Photoacoustic Tomography (PAT) is an emerging biomedical imaging modality that
combines contrast from pure optical imaging and spatial resolution from ultrasound
(US) imaging. In PAT, the tissue medium under investigation is illuminated with a
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short-pulsed laser beam,which causes increase in temperature of specific tissue chro-
mophores due to absorption of the incident electromagnetic energy. This absorption
causes heating resulting in thermal expansion of the absorber. This leads to the gener-
ation of ultrasonic waves [1, 2]. Typically, high energy solid state lasers, such as Nd:
YAG, are most widely used as excitation sources for PAT systems. These sources are
capable of delivering high energy of ~100 mJ that produces sufficient signal-to-noise
ratio (SNR) required for performing deep photoacoustic imaging [3–9]. However,
these lasers are bulky, expensive and have low pulse repetition rate (PRF) (<10 Hz),
which limits its utility for performing real-time photoacoustic imaging in clinical
environment and point-of-care applications. With this motivation in mind, several
researchers have explored the use of low-cost, low-energy pulsed light sources that
can emit pulses at high PRF in the order of kHz as a potential alternative.

Light Emitting Diode (LED) and Pulsed Laser Diode (PLD) are two kinds of
light sources that have been successfully demonstrated as an alternative to Nd: YAG
in recent years [10–16]. But the maximum achievable energy per pulse while using
LED/PLD as source is relatively lower than that of Nd: YAG and other solid state
sources. This directly affects its depth of penetration in the tissue medium, due
to lower signal strength of the ultrasound signal travelling from deep-seated opti-
cal absorbers. Modifications/improvisations to the illumination-side or ultrasound
receive side factors could potentially lead to improved signal-to-noise ratio (SNR).
In this chapter, the emphasis will be on the receive-side ultrasound data acquisi-
tion schemes and beamforming methods that can contribute to achieving improved
resolution, contrast and depth of penetration in LED/PLD based PAT systems.

Averaging of multiple frames is employed as a common practise to improve
SNR and to extend the achievable imaging depth by exploiting the high PRF of
LED/PLD laser sources. However, averaging over a large number of frames, typically
thousands, reduces the effective frame rate of the photoacoustic (PA) images. Further,
the improvement in SNR due to averaging process is only proportional to the square
root of the number of frames averaged.Hence recently, development of novelmethods
of US data acquisition and beamforming to compensate for low SNR while keeping
the number of frame averaging low in LED/PLD based PAT imaging system are
being explored widely. Some of the studies that employ standard signal processing
approaches includes usage of adaptive denoising [17], empiricalmodedecomposition
[18], wavelet transform [19], Wiener deconvolution [20], deep neural network [21],
filtered delay multiply and sum [22], double stage delay multiply and sum [23] or
short lag spatial coherence [24]. Most of them are software-based approaches that
are primarily focused on the beamforming algorithm or post processing in frequency
domain.Methods adapting correctivemeasures in hardware to improve image quality
in the context of LED/PLD PAT systems are quite few.

Most of the common PAT reconstruction techniques assume ideal conditions,
such as, (1) homogeneous sound speed, (2) full-angle view, (3) impulse excita-
tion, (4) wideband detection, (5) point detector measurement, (6) continuous sam-
pling, amongst others [1]. However, it is not practically feasible to satisfy all the
above-mentioned conditions. For example, inhomogeneous acoustic properties in
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the medium blurs an image reconstructed assuming uniformity, because the vari-
ations in speed of sound causes significant changes in the time of flight of sound
from the source to detectors. In addition, a finite-sized aperture with partial detection
view, finite-sized detector elements instead of a point detector and discontinuously
sampled array that causes gaps in collected raw RF data are typically employed.
The above violations cause degradation in practical spatial resolution obtained, as
compared to that predicted theoretically. Improvements in image quality by com-
pensating for each of these violations has been demonstrated using either software
or hardware based techniques [25–33].

However, methods to address violation due to spatial discrete sampling of the
transducer are very few in linear array PAT literature. Here, the use of a simple and
inexpensive way of increasing the discrete spatial sampling of the array is described.
This is done by employing a strategy of actuator-assisted translation of the linear
array transducer for acquiring data from sub-pitch locations. This method was found
to better track the discontinuities in optical absorption at sub-λ level resulting in an
overall improvement in image quality. This has been demonstrated through simula-
tion and experiments [34, 35]. In fact, this is the only work that has been reported on
the effect of increasing the discrete spatial sampling of the detector elements on the
achievable image quality in low energy PAT systems.

Further, due to the weak light absorption-to-ultrasound conversion efficiency for
LED and PLD sources, the recorded photoacoustic raw radiofrequency (RF) data has
lower ratio of signal content versus noise levels. The main sources of external noises
include laser induced electronic noise, jitter, EMI (electromagnetic interference) from
surrounding equipment, etc. These noise factors have pronounced detrimental effect
on the quality of the reconstructed PA images resulting in further lowering of the SNR
values. Here, it is demonstrated that by strategically employing a noise-reduction
filter on the raw data prior to reconstruction stage yields significant improvement in
SNR (~61%) compared to mere averaging in PLD-based PAT systems.

This chapter is organized in the following manner. In Sect. 2, a review of some
of the key image reconstruction/ ultrasound reception-side strategies proposed in
literature for improving the image quality of PAT systems has been summarized.
In Sect. 3, the sub-pitch translation approach as a methodology of improving the
resolution, contrast and depth of penetration for low-SNR PAT settings is described.
Further, results obtained from simulation and experiments conducted with varying
source/medium and receive side parameters is also reported. In Sect. 4, a frequency
domain filtering method to remove the effect of EMI from raw RF data is described.
The results obtained from employing the said method are summarized subsequently.
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2 Review of Image Enhancement Strategies for PAT
Systems

In this section, a review of the articles published in this context of achieving improved
image quality in PAT systems using ultrasound receive-side innovations is summa-
rized. Firstly, the methods reported on LED-PAUS system are discussed. Later, a few
relevant ultrasound hardware-based techniques reported using other sources in PAT
literature are also discussed.

2.1 LED-PAUS Imaging System

In this subsection, two such strategies reported to achieve improved PA image quality
while employing the commercially available LED-PAUS imaging system (Acous-
ticX, Cyberdyne Inc., Ibaraki, Japan) is presented. This scanner is capable of acquir-
ing interleaved PA and US B-mode images in real time. This system uses LED arrays
for PA excitation and a linear US transducer for ultrasonic excitation and detection.
For B-mode PA/US data acquisition, two LED arrays are positioned on either side of
the US probe as shown in Fig. 1. Each of these LED arrays consists of four rows of
36 1 mm× 1 mm LED elements. These LED arrays are capable of delivering a max-
imum optical energy of 200 μJ per pulse and can be driven with a repetition rate of
1–4 kHz with pulse duration of 30–150 ns. The ultrasound probe is a lead zirconate
titanate (PZT) 128-element linear array transducer having a pitch of 0.3 mm and
total length of 38.4 mm. The central frequency of the transducer is 7 MHz and the
measured −6 dB bandwidth is 75%. The ultrasound and photoacoustic modalities

Fig. 1 Commercial
LED-PAUS probe with two
LED arrays affixed on both
sides of the linear array
transducer (provided by
Cyberdyne, Inc.)
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have sampling rates of 20 and 40 MHz, respectively. This LED-PAUS system has
been tested for utility in several phantom as well as in vivo studies [15], [36–39].

2.1.1 Evaluation of DS-DMAS on LED-PAUS Imaging Dataset

Signal processing algorithms can improve SNR in photoacoustic data. Themost com-
mon beamforming algorithm in linear-array PAT is delay-and-sum (DAS). Delay-
multiply and Sum (DMAS) has been demonstrated to yield superior image quality
compared toDAS for linear-array PAT [22].However, it still suffers from low contrast
when noise is present in the dataset. In order to reduce the effects of off-axis signals
in reconstructed images, while retaining resolution, the DMAS is combined with
eigenspace minimum variance beamformer [40]. In this work reported by Mozaf-
farzadeh et al. [23] a Double Stage-DMAS (DS-DMAS) has been shown to further
improve image quality in comparison to DAS andDMASwhile using the LED-based
scanner.

The equation corresponding to the conventional DAS beamformer is as follows:

yDAS(k) =
M∑

i=1

xi (k − �i ) (1)

where, yDAS(k) is the output of beamformer, k is time index, M is the number of
array elements, and xi(k) and �i are detected signals and corresponding time delay
for detector i, respectively. One of the algorithms introduced to improve the DAS
beamformer performance is DMAS, which is written as follows

yDMAS(k) =
M−1∑

i=1

M∑

j=i+1

xi (k − �i )x j
(
k − � j

) =
M−1∑

i=1

M∑

j=i+1

xid(k)x jd(k) (2)

= [x1d(k)x2d(k) + x1d(k)x3d(k) + · · · + x1d(k)xMd(k)]
+[x2d(k)x3d(k) + x2d(k)x4d(k) + · · · + x2d(k)xMd(k)] + · · ·
+[

x(M−2)d(k)x(M−1)d(k) + x(M−2)d(k)xMd(k)
]

+[
x(M−1)d(k)xMd(k)

]
(3)

where, xid(k) and xjd(k) are delayed detected signals for element i and j(xi(k −
�i) and xj(k − �j)), respectively. This DMAS is a non-linear algorithm and uses a
correlation process to form a high contrast photoacoustic image, however, DMAS
is still insufficient when high level of imaging noise is present in the data. Hence,
another stage of correlation process inside the DMAS was suggested to suppress
noise and artifact unmitigated by the DMAS in a method named, Double Stage
Delay Multiply and Sum (DS-DMAS). The formula of DS-DMAS is as follows
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yDS−DMAS(k) =
M−2∑

i=1

M−1∑

j=i+1

xit (k)x jt (k) (4)

where, xit and xjt are the ith and jth term shown in [3]. This DS-DMAS beamformer
was evaluated on LED-PAUS imaging system experimentally using point targets, as
well as a hair and a rabbit eye. To illustrate the effect of this method, example results
obtained by the authors from hair phantom and point target phantom is shown in
Figs. 2 and 3, respectively.

This algorithm has been demonstrated to compensate for the low SNR of LED-
based systems and offer better lateral resolution of about 60% and 25% when com-
pared to DAS and DMAS, respectively. In addition, it results in higher contrast ratio

Fig. 2 a The microscopy image of a hair. Reconstructed photoacoustic images using the data
generated by the hair using (b) DAS, c DMAS, and dDS-DMAS algorithms. All images are shown
with a dynamic range of 40 dB (for better evaluation). 100 frames of the detected photoacoustic
signals were averaged to have a higher SNR. The arrow points to the target of imaging. The dashed
square shows the region that was used for contrast evaluation. DS-DMAS suppresses the sidelobes
about−38 dB and−23 dB, in comparison with DAS and DMAS, respectively. e and f are the lateral
and axial variations of the images, respectively. The arrows and circle show the level of sidelobes
where the superiority of DS-DMAS is proved. (reprinted with permission from [23])
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Fig. 3 Reconstructed photoacoustic images of the point-target phantom. DAS, DMAS, and DS-
DMAS were used for generating the first, second, and third columns of the images, respectively.
All images are shown with a dynamic range of 60 dB. The images obtained by averaging a 1 frame,
b 3 frames, c 10 frames, d 20 frames, e 50 frames, and f 100 frames of the detected photoacoustic
signals are shown. The background noise is suppressed (darker background) using a higher number
of frames. The dotted square is used for CR calculation. (reprinted with permission from [23])

of about 97%and 34% thanDAS andDMAS, respectively. Further, DS-DMASoffers
this using a smaller number of frames (only 2% of all the frames).

2.1.2 Deep Neural Network for LED-PAUS Imaging System

In the work by Anas et al. [21] a deep neural networks based image enhancement
approach to improve the quality as well as reduce the scanning time of LED-based
PA images has been reported. The proposed architecture uses convolutional neural
networks (CNN) to extract the spatial features and recurrent neural networks (RNN)
to leverage the temporal information in PA images. TheCNN is built upon a densenet-
based architecture that uses series of skip-connections to enhance the image content.
For the RNN component, a convolutional variant of short-long-term-memory is used
to exploit the temporal dependencies in a given PA image sequence.

Phantoms containing wire & magnetic nanoparticle target and in vivo human
fingers have been scanned using the LED-PAUS system. All of the experimentally
acquired data is divided into training, validation and test sets. The training set is used
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Fig. 4 Comparative performance of the simple averaging, CNN-only and RNN + CNN methods
in detection of point target objects with different concentrations. A successive decrease in signal
quality with a decrease in concentration of nanoparticle in tubes 3–5 is noticeable. In addition, the
improved performance of RNN + CNN method can be observed (marked by arrow) with respect
to the two other methods. (reprinted with permission from [21])

for optimizing the network parameters; the validation set, in contrast, is used to fix the
hyper-parameters of the architecture that mainly include number of dense blocks,
number of convolutional layers in each dense block and number of ConvLSTM
layers; and the test set is used to evaluate the proposed network. Results obtained
from optical contrast analysis on the nanoparticle phantom embedded with tubes
containing decreasing nanoparticle concentration from tube 3–5 (left to right) is
shown in Fig. 4. Comparison among three competing techniques namely; Averaging,
CNN only and RNN+ CNN for three different values of number of frames averaged
is shown. The PA images in this figure indicate a successive decrease in the image
quality with a decrease in the concentration of the optical absorber. A better recovery
of the target object for the proposed RNN + CNN method (shown by arrows) when
compared to the other two methods is observed.

2.2 Effect of Hardware-Based Improvisations Implemented
on Ultrasound Transducer for PAT Application

Some of the key hardware-based methods implemented on the ultrasound transducer
for PAT application includes usage of a negative acoustic lens reported in the work
by Manojit et al. [33], placing an acoustic reflector in the work by Bin Huang et al.
[41] and increasing array element density in curved array PAT by Dima et al. [42].
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2.2.1 Negative Acoustic Lens and Modified DAS

In the work byManojit et al. [33] an improvement in tangential resolution is achieved
by attaching an acoustic concave lens, made of acrylic in front of the flat detector
surface.

Briefly, in planar circular scanning geometry mode of PAT, for a given transducer
bandwidth, the aperture size of the detector affects the tangential resolution greatly
when the object of interest is near the detector surface. In the work by Manojit
et al. this issue of deteriorating tangential resolution was overcome by attaching an
acoustic concave lens, made of acrylic in front of the flat detector surface. Figure 5A
shows the photographs of the transducers with and without the negative cylindrical
lens. Figure 5B shows the reconstructed images of the needle with a flat detector
when the needle was placed at different distances from the scanning center.

From the results it is evident that, the tangential resolution is poor when the target
object is far from the scanning center and it is improved significantly with the use
of the negative lens. However, there are some practical challenges with this method.
Attaching the in-house made acoustic lens to the detector surface without the forma-
tion of any air bubbles was found to be difficult. Also, absorption of ultrasound signal
and the impedance mismatch between the negative lens and the acoustic coupling
medium (water/mineral oil) resulted in loss of signal. Manufacturing a custom-made
detector with curved piezo surface or a negative lens attached to the piezo surface
inside the transducer are very expensive. Hence the author later proposed a modified

Fig. 5 A: a Diagram showing how radial and tangential resolution is defined in planar circular
scanning configuration. b and c Photographs of the flat ultrasonic transducer and the ultrasonic
transducer glued to a negative cylindrical lens made of acrylic. The active area of the detector was
completely covered by the lens. Minor ticks of scale in b and c corresponds to 1 mm. d Step-
by-step schematic of how the negative cylindrical lens is made from an acrylic cylindrical rod.
B: Reconstructed TAT images, using the flat ultrasonic detector, of a needle (18 gauge, 1 mm in
diameter) inserted inside a pork fat base placed at a distance of a ~4 mm, b ~14 mm, c ~32 mm,
d ~50 mm, and e ~64 mm from the scanning center. Corresponding TAT images obtained with the
negative lens detector are shown in (f), (g), (h), (i), and (j), respectively. k Location of the needle
inside the scanner is shown (reprinted with permission from [33])
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DAS method to improve tangential resolution by removing point detector assump-
tion and accounting for the actual detector surface dimension during beamforming
[32, 43]. In conventional DAS, the backprojection term is given by,

b
(−→r0,t

) = 2p
(−→r0,t

) − 2ct
∂p

(−→r0,t
)

∂t
(5)

where, b
(−→r0 , t

)
is the backprojection term and p

(−→r0 , t
)
is the measured acoustic sig-

nals. In Eq. (5), large-aperture detectors are considered as a point detector, typically
at the center of the transducer surface. This introduces artifacts in the reconstructed
image. Hence a modified delay-and-sum reconstruction algorithm, where the entire
surface area of the detector is considered during backprojection was proposed. In
modified DAS, the recorded pressure signal at ro is represented as a surface integral
over the detector aperture given by,

p′(−→r0,t
) =

¨
p
(−→
r ′
0,t

)
W

(−→
r ′
0

)
d2−→r ′

0 (6)

This is achieved by considering many small segments on the detector from which
the recorded PA signal p′(−→r0 , t

)
is backprojected instead of a single center point of

the line. The results obtained from simulation is shown in Fig. 6.

Fig. 6 a–l Simulation results for point source phantoms. a Conventionally reconstructed PAT
images of 5-point targets. bReconstructed using modified delay-and-sum reconstruction algorithm.
c–g Zoomed in point targets 1–5 in (a). h–l Zoomed in point targets 1–5 in (b). m Comparison of
the tangential resolution and SNR between conventional and modified reconstruction algorithm as a
function of distances from the scanning center. n–s Simulation results for circular shaped numerical
phantom. n Conventionally reconstructed PAT images of two circles at different distances from
scanning center. o Reconstructed modified reconstruction algorithm. p and q Zoomed-in individual
circles in (n). r and s Zoomed in individual circles in (o). t Conventionally reconstructed PAT image
of N-shaped blood vessel numerical phantom. u Reconstructed using modified reconstruction. Red
arrow points to the places where improvements are clearly visible. (reprinted with permission from
[32])
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Fig. 7 A: Top view of the experimental setup. RB, reflected beam; RE, physical receiving ele-
ment; RE′, virtual receiving element. The commercial Philips array operated in B-mode to collect
photoacoustic signals, a 45-deg acoustic reflector (glass) formed a virtual array, and a laser illumi-
nated light orthogonally to the drawing from the top (not shown in the figure). B: PAT images of
a leaf skeleton phantom. a Photo of the phantom. b Image of the leaf skeleton phantom acquired
without the presence of the acoustic reflector. c Image of the phantom acquired with the presence
of the reflector, but reconstructed without incorporating data from the virtual array. d Image of the
phantom acquired with the presence of the acoustic reflector and reconstructed with data from the
virtual array incorporated (reprinted with permission from [41])

2.2.2 Acoustic Reflector

In the work by Huang et al. [41] a simple way of handling limited view problem of
linear array PAT with the use of a 45° acoustic reflector is proposed. The Fig. 7A
shows the experimental setup in a water tank in top view and Fig. 7B shows the
results obtained using proposed method on phantom consisting of a leaf skeleton
embedded in agar.

Figure 7B b) is an image acquiredwithout the presence of the reflector, and Fig. 7B
c) is an image acquired with the presence of the acoustic reflector, but reconstructed
without incorporating the virtual array. In both images, the major skeletons on the
lower-right side of the leaf were missing due to limited view. The images shown in
7B d) clearly indicate that by incorporating the virtual array, those missing skeletons
can be recovered, as indicated by the arrows.

2.2.3 Large Number of Detector Elements

In thework byDima et al. [42], improvements inPAT imagequalitywas demonstrated
by utilizing a densely-packed larger number of detector elements implemented on
Multispectral Optoacoustic Tomography (MSOT) having 64, 128 and 256 elements
on curved array transducers. This imaging study was done on phantoms and animals
imaged under similar conditions. Figure 8 shows the experimental results obtained
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Fig. 8 Top row shows experimental phantom reconstruction results from aMSOT64, bMSOT128,
and cMSOT256. For each image, negative values were set to zero and the remainder normalized to
1. Furthermore, images were segmented based on their local maxima. Details at the periphery and
the center, framed (4 × 4 mm2) and color-coded by array, were magnified for display at the bottom
left and right, respectively. Graphs below depict diagonal cross-sections of individual microspheres
(circled blue, red, and green) for d the periphery (numbered 1 to 3) and e the center (numbered 4
to 6). Individual cross-sections were artificially spaced to allow sufficient distance for comparison.
(reprinted with permission from [42])

from black polyethylene microsphere phantomwhile using the three different arrays.
The results demonstrated higher PA sensitivity for MSOT128 compared to MSOT64
and the highest sensitivity for MSOT256.

3 Sub-pitch Translation for Improving PAT Image Quality

Previous studies that attempted at increasing the array sampling density, did so by
manufacturing an array containing densely packed elements [30, 31]. However, man-
ufacturing a dense array transducer having smaller inter-element spacing and smaller
element width is complex and hence expensive. Such special types of transducers are
not a default in standard clinical US scanners that are currently in use. On the other
hand, usage of a conventional linear array transducer with a reasonable footprint that
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comes as a default in most standard US clinical scanners seem to be a more preferred
choice for PAT. A typical linear array is normally sampled by pitch distance that is
equal to λ, corresponding to the center frequency of that particular linear array. In
cases where the target dimension is much smaller thanλ, a regularλ-pitch transducer
may not be sufficient to reconstruct the actual target dimension andmay also result in
low SNR. For example, microvasculature comprises of small feed arteries, arterioles,
venules and capillaries. The arterioles typically range in diameter from about 5 to
100 μm [44] and small feed arteries immediately upstream from the arterioles have
typical diameter ranging between 100 and 400 μm [45].

In such scenarios a denser sampling of the array and acquisition of new raw
RF lines at sub-pitch locations may be crucial to provide better image contrast and
resolution in the reconstructed images. However, manufacturing a transducer with
“sub-λ” pitch, especially at higher frequencies (>10 MHz) is very expensive and
makes the system complex. Hence, there is a need for alternate inexpensive ways of
increasing discrete array sampling in PAT.

Recently, the possible improvements to image resolution, contrast and depth of
penetration in a PLD-based PAT system by employing an actuator-assisted sub-
pitch translation of the linear array transducer was investigated and reported [35].
This method was found to better track the discontinuities in optical absorption at
sub-λ level resulting in an overall improvement in image quality. This has been
demonstrated through simulation and experiments.

In the following section a detailed description of the theory and methodology
behind sub-pitch translation approach is given.

3.1 Theory and Methodology

3.1.1 Effect of Discrete Spatial Sampling on Image Quality: Theory

The image contrast and resolution improvement of PAT images (which is an ultra-
sound signal at receive) due to spatial sampling is majorly based on two factors:
Nyquist criterion and the PSF, respectively, which are described below in detail.

(i) Nyquist criterion (half wavelength rule):

In many imaging systems, it is not practically feasible to satisfy the Nyquist criterion
in the spatial domain. Particularly in ultrasound imaging, there is a challenge of
manufacturing physical array elements of the necessary size, which prevents the
system from adhering to the sampling rule even at the clinical ultrasound wavelength
corresponding to the center frequency of the array. This directly impacts PA signal
acquired using ultrasound array detectors.

The photoacoustic signal measured at the boundary is sampled in space with
a series of detector elements placed at discrete spatial positions and in time with
a temporal sampling frequency. According to the Nyquist criterion, to accurately
reconstruct the measured signal, the sampling frequency must be greater than at least
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twice the maximum frequency of the signal. In the spatial domain, if the incident
PA signal has a spatial frequency, k, then the bandlimited temporal frequency, ωt ,
should equal ck, where, c is the speed of ultrasound in the medium. To resolve all the
spatial information, the spatial sampling frequency ks should satisfy the condition
ks > 2 k and hence the signal must be sampled with a spatial sampling interval δs
< 1/2 k [46].

δs <
c

2ωt
(7)

δs <
λ

2
(8)

Therefore, if the spatial sampling period is less than λ/2, then aliasing related to
spatial discrete sampling can be significantly reduced contributing to improvement
in image quality. However, in a regular linear array the spatial sampling interval is
restricted to λ instead of the necessary λ/2.

(ii) PSF Versus Spatial Sampling:

System PSF can be defined as the spatial integration of signal from point source over
the individual detector elements in a periodic linear array. Several factors affect the
PSF of an imaging system, namely, detection view angle, imaging depth, element
width and spatial sampling. In a linear array transducer the limited detection view
angle (α) has a significant effect on the lateral resolution [47]. The lateral resolution
of the imaging system (P) is inversely proportional to the numerical aperture sin α.
Hence the empirical relationship between α and P is given by [47]

P(α) = r1
sin α

(9)

where, r1 = 0.3. According to the equation [7], the resolution deteriorates with
decrease in the detection view angle α. This detection view angle in turn decreases
with increase in imaging depth, which is given by the relation, tan α = D

2z , where z is
the imaging depth and D is the transducer array length. In the case of a single element
scanning based measurement system for a planar recording geometry, the effect of
element width on the PSF has been derived in detail in literature [48, 49]. Wherein,
it is stated that the lateral extension of the PSF is approximately equal to the element
width. Further, it has been shown that when the element is scanned with a spacing
less than or equal to half the diameter of the detector element there is significant
reduction in aliasing artifacts [50]. Here, this is further extended by increasing the
discrete spatial sampling to smaller sub-λ steps for the case of a periodic linear array
scanning basedmeasurement system and its impact on PAT image qualitywas studied
while keeping the other transducer parameters such as element width, detection view
angle and the imaging depth constant.

Rigorous derivation of PSF for a periodic linear array in ultrasound imaging has
been reported recently [47]. The final expression of PSF with respect to PA imaging
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context is reiterated here for convenience of the readers. Let us assume a point target
located at q, image field point r and array of detector elements denoted by u. Then
the general form of the PSF for a periodic linear array is given by:

P(r, q) =
∫

F0(ω){
∫

E(u)W (u, r)D(q̂
′ ;ω)B

(
q ′;ω

)
eik(|r ′|−|q ′|)du}2dω (10)

where r′ = r–u and q′ = q–u. F0(ω) is the combined frequency response of the PA
input signal and the receiver array element. And,

E(u) =
∞∑

a=−∞
δ
(
u − u0 − ap p̂

)
(11)

is the sampling function that describes the position of element centers in a 1D linear
array, u0 is the position of a reference element, p is the pitch, p̂ is the unit vector and
W(u, r) is the weighting function. The other factors in equation [9] are as follows:
D

(
q̂

′ ;ω
)
is the directivity of array elements, B

(
q ′;ω

)
is the beam spread associated

with wave propagation, and the exponent is the phase shift associated with wave
propagation and imaging algorithm.

At the pre-staggered resolution level, the span of the spatial detector integration
will not be able to exceed the detector element pitch. However, on the upsampled sub-
λ grid, where the PSF is defined, the spatial integration from each detector can now
span multiple high-resolution samples. This can be noted from the PSF expression
in equation [9] that is analytically dependent on a finer/courser sampling function,
weighting factor and element directivity to an incoming PA signal.

3.1.2 Sub-pitch Translation Methodology in PAT

In PAT, acoustic signals are generated by optical absorption of pulsed light by an
endogenous optical absorber present in themedium.These photoacoustic signalsmay
be received either by using a scanned single element or a multi element array. The
detected signal at each element is later used for reconstructing the initial pressure
distribution generated from the optical absorber, which acts as the photoacoustic
source. As mentioned earlier, a densely sampled array using point acoustic detectors
having a wide detection view angle provides the best possible image resolution and
contrast in PAT with little time for data acquisition. However, it is not practical to
achieve such a receive-setup.

In the approach described below, the focus is on enhancing image quality while
using a typical λ-pitch (0.3 mm) linear array transducer having 128 elements at
receive for PAT. Here, an actuator-assisted sub-pitch linear translation approach is
used for increasing the density of acquired raw RF data in the lateral direction. In
this approach, the acoustic signal that is propagating from the photoacoustic source
for one light excitation pulse, or an average over several pulses, is first received over
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Fig. 9 a Schematic representation of the method adopted for sub-pitch translation of linear array
in PAT, b A zoomed version of only two elements and their relative positions with respect to initial
position is shown for better clarity

the transducer array kept in its original position. Thereafter, the transducer array is
translated by sub-pitch amount to acquire photoacoustic signals generated for the
next excitation pulse(s) and additional RF line data from locations in-between the
original positions of the detector elements are recorded. The RF data from sub-pitch
locations are augmented to the RF line data from original position to create a densely-
sampled frame data. In this study, sub-pitch translation of λ/4, λ/2 and 3λ/4 from
initial position were considered. A schematic representation of the various translated
positions (0, 1, 2 and 3) of the array transducer is shown in Fig. 9. The acquired sets of
dense raw RF frame data are then beamformed using standard delay and sum (DAS)
reconstruction method. This reconstructed image from denser data is compared with
a single reconstructed image from λ-separated RF line data in terms of resolution,
image contrast and depth of penetration.

3.1.3 Simulation

Simulations were performed using k-Wave Toolbox inMATLAB®(TheMathWorks,
Inc., MA, USA) [51, 52]. This simulation platform computes the time evolution of an
acoustic wave field within homogeneous or heterogeneousmedia using the equations
of linear acoustics. Photoacoustic source/optical absorbers were simulated using
numerical PSF phantom and numerical blood vessel phantom whose initial pressure
distribution is given by a grid-based image representative of a series of circular optical
absorbers (Fig. 12a) and vasculature (Fig. 13d), respectively. On the detector side, a
typical diagnostic ultrasound linear array probe was simulated having parameters as
listed in Table 1.

In simulation, sub-pitch translation was done by moving the phantom instead of
moving the array. First, position 0 data were acquired without moving the transducer
and phantom. The phantom was then translated by λ/4 (0.075 mm) and position 1
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Table 1 Parameters used in
k-Wave simulation

Parameters Diagnostic ultrasound linear array

Transducer width 38.4 mm (1536 grid points)

Element width 0.275 mm(11 grid points)

Element spacing (kerf) 0.025 mm (1 grid point = dx)

Element height 4 mm (2 grid points, dz = 2 mm)

Element pitch 0.3 mm (12 grid points = λ)

Number of elements 128

Sound speed 1540 m/s

data were acquired. In a similar manner, position 2 and position 3 data were also
acquired by translating the phantom by λ/4 from previous positions, respectively.
Position 0 and position 2 data were staggered next to each other to form the λ/2-
pitch configuration. All the individually acquired RF lines from position 0, 1, 2 and
3 were staggered next to each other to form the λ/4-pitch configuration. These two
sets of densely staggered raw RF data were reconstructed and compared against the
image reconstructed using unstaggered configuration in terms of improvements in
resolution and contrast.

3.1.4 Experiment

Apulsed laser diode (PLD)module (LaserComponentsGmbH,Germany) of 905 nm,
226 W peak power/pulse, 120 ns pulse width operated at 5 kHz PRF was used
as source of light excitation. The PLD was integrated with a Sonix Touch Q +
Ultrasound scanner (Analogic Ultrasonix®, MA, USA) by external triggering with
function generator. The ultrasound scanner was made to operate in passive receive
mode by reprogramming the code in Texo SDK platform using texosetsyncsignals()
command and by appropriately rearranging the BNC connectors in the PCI card to
receive the external trigger [53]. The ultrasound probe attached to the scanner is a
typical 5 MHz, 128 element linear array probe with 0.3 mm pitch (all the parameters
used in experiments were same as given in Table 1 under simulation).

Phantoms were made with 6% gelatin derived from acid-cured porcine skin
(Sigma-Aldrich Corp., St. Louis, MO) and 1% by weight dilution of 20% Intralipid®

solution (Sigma-Aldrich Corp., St. Louis, MO) for PAT imaging. The PLD module
generates an elliptical beamwith divergence of 12° along the slow axis and 20° along
the fast axis. The energy per pulse was 23.5 μJ. Three kinds of phantoms were pre-
pared for evaluating improvements in resolution, contrast and depth of penetration.
All the phantomsweremanufactured using a custom-mademould of either 50× 50×
30 mm or 80 × 80 × 40 mm dimensions, which can be opened on the source and
detector side for easy assembly on the stage for performing PAT experiment in trans-
mission mode. A schematic of the setup is shown in Fig. 10. The linear array probe
was mounted using a high precision 3D motion controller translation stage that has a
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Fig. 10 An illustration of the setup used for performing a 2D PAT on phantom 1 with single point
target b 3D PAT on phantom 2 for contrast study, c shows a detailed schematic of the phantom 2
with measurements, d shows phantom 3 prepared for depth of penetration study containing 9 leads
present at depths ranging from 2 to 15 mm from the PLD

pitch (distance covered by one 360° rotation) of 4 mm and can provide resolution of
up to 2.5 μm (i.e. 1600 steps/rotation). The 3D motion controller was translated in
steps of 0.075 mm separation and four such sub-λ position raw RF pre-beamformed
data sets were acquired and stored as illustrated in Fig. 9. Post-acquisition, these data
setswere staggered appropriately and beamformed using traditionalDAS reconstruc-
tion technique to obtain photoacoustic images corresponding to λ (128 lines with
0.3 mm pitch), λ/2 (256 lines with 0.15 mm pitch) and λ/4 (512 lines with 0.075 mm
pitch) configurations. The various phantoms prepared for each study is described
below.

Phantom for resolution study (Phantom 1)

A phantom containing a single lead inclusion of either 0.2 mm diameter or 0.5 mm
diameter (phantom 1) embedded at 6 mm from the source-side surface of the phan-
tom and 24 mm from the transducer-side surface of the phantom was utilized to
study the improvement in PSF. The cross-section of the lead was imaged by keeping
the transducer orthogonal to the target as shown in Fig. 10a. The improvement in
PSF was demonstrated in phantom 1 by analyzing the lateral profile taken across
the lead inclusion from the photoacoustic image obtained for the λ, λ/2 and λ/4
configurations.

Phantom for contrast study (Phantom 2)

The image quality improvement in terms of contrast was studied using a phantom
(phantom 2) with 2 leads crossing each other and inclined at an angle of 10.2° with
the source side surface having dimensions of 80 × 80 × 40 mm as shown in the
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schematic in Fig. 10b. Detailed measurements of phantom 2 is shown in Fig. 10c.
Firstly, the position 0 data was acquired and stored, following which the array was
translated by λ/2 in the x-direction and the sub-pitch data was acquired. Later, the
transducer was scanned in the z-direction orthogonal to the plane of imaging in steps
of 2 mm. Seven such imaging planes were stacked one on top of another to complete
a 3D PAT data acquisition. The PLD source was scanned along z direction for each
plane using a manual XYZ translation stage. An illustration of the setup is shown
in Fig. 10b. In each plane both the λ and λ/2 position data were acquired, stored,
staggered and beamformed to obtained staggered and unstaggered configurations.
In addition, to compare the effect of averaging vis-à-vis sub-pitch translation on the
improvement in contrast, samenumber of frames as the number of sub-λ position data
(in this case, 2 frames) at λ position were acquired without translating the transducer
and averaged. 2X averaging of λ pitch data was compared against λ/2 pitch data in
order to maintain comparable acquisition time. 2D maximum intensity projection
(MIP) image along the XY plane of the obtained 3D data was used to evaluate the
overall improvements in image quality.

Phantom for depth of penetration study (Phantom 3)

The results obtained from contrast study suggested that there is a possibility for
this improvement in contrast to translate as increased sensitivity of photoacoustic
signal propagating from deeper located targets. This is due to the increased signal
strength and noise cancellation stemming from the coherent summation of sub-pitch
data. This phenomenon was analyzed using phantom containing targets embedded
at different depths from the surface. 9 leads of 0.7 mm diameter was embedded with
increasing depth from the source-side surface of the phantom and a cross section
was imaged by keeping the transducer orthogonal to the targets. A schematic of the
setup used is shown in Fig. 10d and a schematic of the cross section of the phantom
containing leads at depths ranging from 2 mm to 15 mm along with the ROI chosen
for calculating Contrast Ratio (CR) is shown in Fig. 11.

3.1.5 Performance Evaluation

The image contrast improvements in both simulation and experiment was analyzed
by measuring Contrast ratio (CR) = 20log10(μ1/μ2) [54]. Where, μ1 is the mean
intensity within the high amplitude resolution lines at each level where the targets
were present and μ2 is the mean intensity of background region. For the depth
of penetration study, the target was considered to be detectable if the measured
contrast ratio, CR, was > 1 and CR in dB, was > 0 dB. In addition to evaluating the
detectability of the deeper located targets based on threshold on the contrast value,
the improvement in contrast of the last visible target in the 64 frame-averaged, λ-
pitch configuration was also analyzed and compared against its corresponding λ/2
and λ/4 pitch images by plotting of their axial and lateral profiles.
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Fig. 11 This figure shows a cross section of the phantoms prepared for depth of penetration study
(phantom 3) shown in Fig. 10d. The red box indicates the ROI chosen for calculating contrast values

3.2 Results and Discussion

In this section, the results obtained from simulations and experiments performed
on the various phantoms for evaluation of PSF, contrast and depth of penetration is
described in detail.

3.2.1 Simulation Results

(i) Evaluation of PSF improvement:

The improvement in PSF was first evaluated through simulation on a numerical
phantom having series of six-point absorbers with decreasing diameter ranging from
0.5 mm to 0.05 mm. The initial pressure distribution of the input image grid is shown
in Fig. 12a. Reconstructed images obtained from λ, λ/2 and λ/4 configurations are
shown in Fig. 12 b, c and d, respectively. The lateral profiles from images obtained
for each configuration are plotted in Fig. 12e along with the ground truth. A zoomed
image of 0.5 mm, 0.2 mm and 0.1 mm targets is shown below the lateral profile.

The results shown in Fig. 12 clearly demonstrate the improvements in resolution
when using a denser sampled array obtained by staggering of raw RF data acquired
at sub-pitch locations. Compared to λ-pitch array, LR obtained by augmenting true
RFA-lines at sub-pitch locations improved by 16.66% for 0.5mm and by 42.85% for
0.2 mm while using a λ/2 pitch array, respectively. Further, it can also be noted that
the magnitude of side lobes is considerably reduced in the lateral profile obtained
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Fig. 12 Simulation results obtained from PSF target is shown in this figure. Ground truth image is
shown in (a). Reconstructed images obtained using data acquired with b λ, c λ/2 and d λ/4 pitch
separation between the detector elements of the linear array is shown. e shows the lateral profiles
from the images obtained using the three configurations along with zoomed versions of 0.5 mm,
0.2 mm and 0.1 mm targets

using data from λ/2 and λ/4 pitch when compared to using data from only λ-pitch
array.

Blood vessel numerical phantom
The results obtained in simulations when imaging the numerical blood vessel phan-
tom are shown in Fig. 13. Gaussian noise was added such that the signal to noise
ratio of the data was 40 dB.

The images obtained using sub-pitch translation clearly demonstrates a better
resolution compared to that obtainedusing aλ-pitch array. Specifically, the thin vessel
branch located at 6 mm depth and around 16 mm laterally appear more continuous
in Fig. 13b, c than in Fig. 13a. The initial pressure distribution of representative
vasculature image is shown in Fig. 13d. The data corresponding to the location
marked by dark blue dashed line running across 4 vessels in Fig. 13d is plotted in
Fig. 13e. It is clearly seen that the last two vessels that are closely spaced appear as
one peak in image reconstructed from λ-pitch data. On the contrary, two separate
peaks are clearly seen on images reconstructed using both λ/2 and λ/4 pitch data
(markedwith black arrow in Fig. 13e). It can be noted that some of the vertical vessels
in the phantomwere not clearly visible in the reconstructed image due to limited view
problem. Several strategies have been reported in literature to overcome this issue
[55–59], however, the focus in this section was discuss approaches that exploit the
effect of increasing lateral array sampling and therefore this aspect is not described
here.

From the above simulation results, it is evident that denser array created by sub-
pitch translationmechanism is able to provide better LRwithout the need for increas-
ing the number of elements. In addition, there is a visible reduction in background
noise while using λ/2 pitch, which further decreases in reconstructed image using
λ/4 pitch data (compare background noise present within the black box in 13a, b, c.
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Fig. 13 Simulation results obtained using blood–vessel numerical phantom are shown in this figure.
PAT images reconstructed from data acquired using a λ, b λ/2 and c λ/4 pitch separation between
the detector elements of the linear array is shown. Initial pressure distribution of the input image
is shown in d. e shows the lateral profiles along the dark blue dashed line marked in 13(d) from
the images obtained using the three configurations and f shows the CR calculated from a, b and c
(black box denotes background noise ROI and light blue solid linein a, b and c denotes the profile
along which the signal peak values were taken)

This is also evident in the CR values plotted in Fig. 13f. The above results indicate
that, in the case of thin vasculature in real tissue, it may be crucial to have a dense
array sampling to obtain better image resolution.

Experiment results
Evaluation of PSF improvement (phantom 1)

Experiments using a point target phantom (phantom 1) using setup shown in
Fig. 10a with a 0.2 mm lead and 0.5 mm lead as targets were performed. The scanner
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Fig. 14 Photoacoustic images, lateral profiles and FWHM values obtained from 0.2 mm lead and
0.5 mm lead as targets is shown in this figure. PAT images reconstructed with a λ pitch, b λ/2 pitch
and c λ/4 pitch for a 0.2 mm lead is shown. The results from 0.5 mm lead target is presented in
d–f in the same order. g and h shows the lateral profiles of the three configurations for a 0.2 mm
and 0.5 mm lead respectively. A zoomed version of the profile is shown alongside Fig. 14g, h. The
plot of their corresponding FWHM values is shown in (i)

was coded to acquire an average of 128 frames obtained from 128 individual laser
firings pulsed at 5 kHz PRF for better SNR. Figure 14 shows the photoacoustic
images, lateral profiles and FWHM values obtained using data from λ, λ/2 and λ/4-
pitches, respectively. The images shown in Fig. 14 a–f were obtained by averaging
128 frames.

The results shown in Fig. 14 clearly demonstrate the improvement in LR obtained
by using the proposed sub-pitch translation mechanism for achieving high density
array. It is noticeable from Fig. 14a–c and d–f that as the sampling increases the
point target looks tighter. Also, in the lateral profile plotted in Fig. 14g, h the red
solid line has a narrower width than blue dotted line and the black dashed line.
This is evident in the zoomed version shown alongside Fig. 14g h for better clarity.
Figure 14i shows a plot of the FWHM values computed for the two cases of 0.2 and
0.5 mm. The LR improves by 29.66% and 16.66% while employing λ/2-pitch array
configuration when compared to that of conventional λ-pitch array while using a
0.2 mm lead and 0.5 mm lead, respectively. Similarly, LR improves by 34.48% and
25% when a λ/4-pitch array was used as opposed to a λ-pitch array for the 0.2 mm
and 0.5 mm case, respectively. The error bar shown in Fig. 14i was obtained from 5
independent realizations acquired at different parallel planes orthogonal to the axis
of the lead target. In addition, it can be noticed that the pixelation within the point
target decreases with increasing the array sampling. Similar to the results obtained
from simulation, experimental results also showed higher percentage improvement
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with 0.2 mm target than with 0.5 mm target. Thus, demonstrating that sub-pitch
translation is likely to improve resolution of sub-λ targets better.

Contrast Study (phantom 2)
Figure 15a, b shows stacked 3D visualization of the reconstructed photoacoustic
images from 7 planes, obtained using λ-pitch without and with averaging, respec-
tively. Figure 15c shows the stacked 3D visualization of images obtained by using
λ/2-pitch reconstructed data. A zoomed version of their corresponding 2D MIP
images along the XY plane is shown in Fig. 15d, e and f. A picture of the phantom
used during experiments is shown in Fig. 15g. The pixels corresponding to the solid
white line shown in Fig. 15g taken from the MIP images obtained using data from
λ-pitch, λ-pitch (averaged) and λ/2-pitch configurations, i.e., Figure 15d, e and f is
plotted in Fig. 15h. In addition, a side view of the 3D stack obtained with staggering
is showed in Fig. 15i to indicate the relative source-lead-transducer distance at each
plane. All images are displayed in 40 dB dynamic range.

Comparing Fig. 15a, b and c it is evident that Fig. 15c has a better contrast
between background and lead target. This trend is also visible in Fig. 15d, e and f

Fig. 15 Photoacoustic images obtained from a phantomwith embedded lead targets is shown in this
figure. Stacked arrangement of 2D reconstructed PAT images with a λ pitch b λ pitch (averaged)
and c λ/2 pitch obtained from 7 planes between 4.4 and 5.6 cm from the bottom surface at 2 mm
separation from each other is shown. 2D MIP images of the 3D stack on the XY plane that were
reconstructed with d λ pitch e λ pitch (averaged) and f λ/2 pitch is shown. Also shown in g is a
picture of the phantom used in the experiment. The lateral profiles taken along the white solid line
marked in Fig. 15(g) from the images obtained for the three configurations is shown in (h). A side
view with relative source-lead-transducer distance at each plane is shown in Fig. 15i



Ultrasound Receive-Side Strategies for Image Quality … 103

where the edges of the lead target have a better definition in image from λ/2-pitch
configuration than that from both the λ-pitch configurations. It can be observed from
the plots shown in Fig. 15h that the separation between the two leads is demarcated
with a sharper dip (marked with black arrow) in the image data obtained using λ/2-
pitch configuration, while they are hardly separable in the image data obtained from
both the averaged and unaveraged λ-pitch configurations. This may be an important
value addition when it comes to real situation of resolving extremely thin vasculature
in tissue that lie close to each other.

The improvement in contrast was quantified using Contrast Ratio as a metric
whose values obtained at 7 different y-levels on theMIP image is tabulated in Table 2.
The ROI chosen for calculating μ1 and μ2 is marked in Fig. 16. For each y-level
numbered from 1 to 7, the mean intensity of target (μ1) was chosen within the solid
black boxes and the mean intensity of background (μ2) was taken from the solid
white boxes at the same level in the background.

Depth of penetration Study
The results obtained by employing sub-pitch translation on phantom 3 and the corre-
sponding percentage improvement in depth of penetrationwith variation in parameter
settings are reported below.

Figure 17a shows the PAT B-mode images reconstructed using λ, λ/2 and λ/4-
pitch configurations obtained from averaging of 2, 16, 32 and 64 frames, respectively.
All the images were displayed in 30 dB dynamic range. Figure 17b shows plots of
axial profiles along the 9th lead from the λ-pitch PAT image obtained by averaging
64 frames, λ/2-pitch image averaged over 32 frames and λ/4-pitch image averaged
over 16 frames respectively. Figure 17c shows the plot of the contrast values of the

Table 2 CR values obtained in decibels for the different Y-levels

CR in dB 1 2 3 4 5 6 7

λ pitch 14.96 19.22 21.84 20.08 18.92 19.99 20.95

λ pitch (avg) 16.65 19.92 22.97 20.34 19.80 20.49 22.96

λ/2 pitch 21.72 23.39 26.21 24.26 22.55 23.51 24.35

Fig. 16 Region of Interest (ROI) chosen for calculation of Contrast Ratio [CR = 20log10(μ1/μ2)]
for 7 regions occupying different y positions on the MIP image is shown and Table 2 tabulates the
CR values obtained from each region
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same 9th lead with respect to the increasing sampling density. These values plotted
are not in dB and hence C = 1 level in the graphs marks the detectability threshold.
This is denoted by the grey solid line marked in Fig. 17c

It is clear from the images shown in Fig. 17a that the depth of penetration increases
from 12.42mm (location of 8th lead) to 14.3mm (location of 9th lead) by performing
sub pitch translation as opposed to performing mere averaging. This is evident by
comparing the bottom-right corner-most image to the top-left corner-most image in
Fig. 17a, wherein the visibility of the 9th lead present at 14.3 mm is much brighter
than the same lead present in any of the four λ-pitch images displayed along the first
row of the figure. Further the profile plots showed in Fig. 17b shows the decrease in
background noise level with increasing sub-pitch sampling despite using lower num-
ber of frames for averaging. The Contrast, C, measured from 9th lead target for the

Fig. 17 Photoacoustic images reconstructed using a λ, λ/2 and λ/4 pitch configurations obtained
by averaging 2, 16, 32 and 64 frames. b shows plots of the axial profiles of the 9th lead from λ-pitch
(average of 64 frames), λ/2-pitch (average of 32 frames) and λ/4-pitch (average of 16 frames).
c shows a plot of the contrast with respect to sample density for the 9th lead in the PAT images
obtained with average of 16, 32 and 64 frames
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different settings (average of 16, 32 and 64 frames) as a function of increasing sub-
pitch sampling density is plotted in Fig. 17c. The contrast values obtained using λ/2
translation approach with 16 frame averaging demonstrate a 63.9% improvement
over λ-pitch configuration obtained from average of 16 frames, 50.9% improve-
ment over λ-pitch configuration obtained from average of 32 frames and 34.57%
improvement over that obtained from average of 64 frames. Further, the contrast val-
ues obtained using λ/4 translation approach with 16 frame averaging demonstrate a
39.2% improvement overλ/2-pitch configuration obtained from average of 16 frames
and 11.6% improvement over λ/2-pitch configuration obtained from average of 32
frames respectively.

An increase in depth of penetration by about 15% to 14.3 mm in the PLD based
PAT setup by employing just λ/2 translation was obtained. Further improvement in
contrast was achieved by increasing the sampling to λ/4. Overall, this study demon-
strated the feasibility of achieving increased sensitivity of the photoacoustic sig-
nal travelling from deep-seated targets without incurring additional cost or system
complexity.

4 Removal of EMI in Low SNR PAT Images

Most of the photoacoustic receive setups, including commercially available ultra-
sound scanners and data acquisition boards, are highly sensitive to electromagnetic
interference (EMI) and other electronic noises, unless proper shielding methods are
used. Even with the use of metallic shielding it is only possible to reduce the impact
of EMI and it may not be possible to remove its effect completely. In practice, pho-
toacoustic signals generated with the use of low energy sources, such as a PLD or
LED, travelling from deep-seated optical absorbers inherently suffer from low SNR,
due to interference from such noises. In this situation, where the photoacoustic signal
may be corrupted due to the presence of some external electromagnetic field, mere
averaging of multiple frames may not be sufficient to suppress the noise source. This
noise may also limit the depth of penetration achievable with the light source. Hence,
methods to de-noise and improve the signal strength of low SNR PA signals can be
of particular importance in several applications.

In this section, investigation on the use of frequency domain filtering on post-
beamformed and pre-beamformed ultrasound RF data, respectively, is reported
and corresponding improvement in SNR of PA images is evaluated. Further, their
performance is comparedwith that obtained frommere averaging ofmultiple frames.

The results suggest that filtering the raw RF data before beamforming results in
better noise reduction than filtering the post beamformed photoacoustic image. It
should also be emphasized that this methodology is of importance, especially, when
dealing with deeper located targets. In this work we have explored a depth range of
18–22 mm, which is considered deep for the energy level of the pulsed laser diode
source that was utilized.
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In the following subsection, the steps adopted for implementing the algorithm is
described.

4.1 Methodology

Frequency Domain Filtering
Ultrasound signals received using commercial scanners are mostly bandlimited sig-
nals having center frequencyof 2–15MHz.Band-passfilters aremost commonlyused
for de-noising and improving SNR of photoacoustic signal. However, regular low
pass/high pass/band pass filters cannot be applied on the Fourier transformed ultra-
sound raw RF data when noise and signal share overlapping frequency spectrum [60,
61]. In this work, a thresholding-based digital notch filtering approach is employed
to remove significant noise components from the spectrum. Other similar filtering
approaches that have been demonstrated for PAT are cited [18, 20, 60, 62–65].

The raw data was transformed to Fourier domain by performing 2D FFT,

F(k, l) =
N∑

x=0

M∑

y=0

f (x, y)e
i2π

(
kx
N + ly

M

)

(12)

A threshold value σwas calculated empirically as 0.8*Mafter evaluating the range
of values in F, where M is the maximum absolute value of the 2D spectrum.

A binary image of the spectrum was obtained using thresholding as follows

g =
{
1 if |F | ≥ σ

0 if |F | ≤ σ
(13)

The binary image g is clustered into signal and noise components, and a digital
notch filter was implemented to subtract the noise components in g from the original
spectrum F. The 2D IFFT of the resultant spectrum resulted in the noise free image
data back in the spatial domain. The steps performed are detailed in the flowchart
shown in Fig. 18

In Fig. 18a–d, the step by step filtering process employed is reported. Figure 18a
shows an image of the raw RF data before being filtered. Figure 18b shows the 2D
spectrum of the data and Fig. 18c shows its corresponding thresholded binary image.
Figure 18d is the final filtered raw RF data before reconstruction. The image clearly
shows the removal of noise while leaving the photoacoustic signal intact.
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Fig. 18 A This figure shows the step by step process of filtering. Image a shows the noisy raw
RF data, b is the magnitude image of the 2D spectrum F, c shows the binary image, g and d is the
filtered raw RF data before beamforming. Alongside is shown the flowchart of the algorithm

4.2 Results

The effect of EMI removal on rawRF data using the proposed method in comparison
to regular band pass filtering is shown in Fig. 19.

The results shown in Fig. 19 clearly show that the proposed methodology is able
to remove the noise in the rawRF data due to EMI without affecting the signal
when compared to regular band pass filtering of the data. In Fig. 20 we show the
corresponding reconstructed images.

Figure 20a–c shows the photoacoustic images reconstructed after averaging over
128 frames. Figure 20a shows the PA image obtained without any filtering on either
pre-beamformedor post-beamformedRFdata. Figure 20b shows thePA image recon-
structed from filtered post-beamformed RF data. Figure 20c shows the PA image

Fig. 19 This figure shows the photoacoustic rawRF data a without any filtering, b with regular
band pass filtering and c with the proposed thresholding based digital notch filtering
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Fig. 20 Photoacoustic images obtained using a average of 128 frames and reconstructed without
any filtering, b average of 128 frames and filtered after reconstruction and c average of 128 frames
and filtered before reconstruction, d λ/2 pitch image averaged over 128 frames and reconstructed
without any filtering, e λ/2 pitch image averaged over 128 frames and filtered before reconstruction
and f is the plot of the SNR of target located at 20 mm depth in images a, b and c

reconstructed from filtered pre-beamformed raw RF data. Figure 20d shows the λ/2
pitch PA image obtained without any filtering on either pre-beamformed or post-
beamformed RF data and Fig. 20e shows the λ/2 pitch PA image reconstructed from
filtered pre-beamformed raw RF data. It is clear from the images shown in Fig. 20
that by performing filtering before reconstruction it is possible to significantly reduce
the electronic/EMI noise without causing any blurring or loss of the photoacoustic
signal. This is also evident in the values of SNR plotted in Fig. 20f. The SNR of tar-
get located at 20 mm depth increases by 61.4% and 20.05% by performing filtering
before and after beamforming, respectively, as opposed to regular averaging of 128
frames.

5 Conclusion

This chapter discussed the various ultrasound receive-side innovations that has been
demonstrated to improve the SNR and image quality in low energy LED/PLD based
PAT systems. First, a brief discussion on the beamforming schemes and ultrasound
hardware-based techniques that has been reported in literature for improving image
quality of PAT systemwith particular emphasis to the commercial LED-PAUS imag-
ing system was provided. This chapter also presented a recently developed sub-pitch
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translation approach that demonstrated improved resolution, contrast and depth of
penetration with fewer number of frames averaged when employed on a low energy
PLD based PAT system. Studies using K-wave simulation and experimental valida-
tion using phantoms demonstrating the benefits of the sub pitch translation scheme
were described. Further, presence of external noises such as EMI, jitter, electronic
noise etc., has a pronounced detrimental effect on PAT image quality particularly
when low energy sources such as LED/PLD are used. In this chapter a thresholding-
based digital notch filtering approach to remove effect of EMI from the frequency
spectrum of noisy data is also presented.
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Vascular Complexity Evaluation Using
a Skeletonization Approach and 3D
LED-Based Photoacoustic Images

Kristen M. Meiburger, Alberto Vallan, Silvia Seoni, and Filippo Molinari

Abstract Vasculature analysis is a fundamental aspect in the diagnosis, treatment,
outcome evaluation and follow-up of several diseases. The quantitative characteriza-
tion of the vascular network can be a powerfulmeans for earlier pathologies revealing
and for their monitoring. For this reason, non-invasive and quantitative methods for
the evaluation of blood vessels complexity is a very important issue. Many imaging
techniques can be used for visualizing blood vessels, but manymodalities are limited
by high costs, the need of exogenous contrast agents, the use of ionizing radiation,
a very limited acquisition depth, and/or long acquisition times. Photoacoustic imag-
ing has recently been the focus of much research and is now emerging in clinical
applications. This imaging modality combines the qualities of good contrast and the
spectral specificity of optical imaging and the high penetration depth and the spatial
resolution of acoustic imaging. The optical absorption properties of blood also make
it an endogenous contrast agent, allowing a completely non-invasive visualization
of blood vessels. Moreover, more recent LED-based photoacoustic imaging systems
are more affordable, safe and portable when compared to a laser-based systems.
In this chapter we will confront the issue of vessel extraction techniques and how
quantitative vascular parameters can be computed on 3D LED-based photoacoustic
images using an in vitro vessel phantom model.
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1 Introduction

Blood vessels play a fundamental role in the well-being of tissues, organs and organ
systems, by providing them with oxygen and nutrients and subsequently eliminating
waste products. Many diseases affect blood vessels and their attributes, such as
their number, size, or pattern [1]. For example, tumors typically induce the growth
of many vessel clusters with an abnormal tortuosity and smaller diameter, while
chronic inflammations induce neoangiogenesis [1, 2]. It is therefore evident how the
possibility of a non-invasive and quantitative evaluation of 3D vessel attributes is
essential for early diagnosis and the staging of various diseases [1].

Many imaging techniques can be used for visualizing vasculature structures. For
example, computed tomographic angiography (CTA) has an excellent spatial reso-
lution and it is very common in clinics. As a downside, however, it uses ionizing
radiations and iodinated contrast agents. Magnetic resonance angiography (MRA)
in spite of very good contrast and temporal resolutions and lack of ionizing radia-
tion, suffers from rapid extravasation of the contrast agent that affects the accuracy,
and is a very expensive imaging modality. Doppler ultrasound imaging (DU) has
much lower costs, large availability and it doesn’t use nephrotoxic contrast agents,
but it is operator-dependent, contrast agents typically have short duration and this
imaging technique is typically sensitive only to larger vessels and is not able to high-
light microvasculature. Also, a more recent technique, acoustic angiography, that
uses dual-frequencies ultrasound transducers for the minimization of background
[3] needs exogenous contrast agents and custom-made probes, while optical coher-
ence tomography angiography (OCTA) has a limited penetration depth and a longer
acquisition time [4, 5].

Photoacoustic imaging is an imagingmodality that has seen an exponential growth
over the last couple of decades. Using this technique, ultrasound signals are generated
from the interaction between a pulsed light source at a given wavelength and the
biological tissues that are irradiated. So, it is non-invasive and non-ionizing and it
combines the high spatial resolution and the penetration depth of ultrasound with
the high contrast and the spectral specificity of optical imaging [6, 7]. In particular,
the visualization of blood vessels is a main application of photoacoustic imaging, as
oxygenated and deoxygenated haemoglobin give forth a strong photoacoustic signal
at various wavelengths and therefore present an endogenous contrast agent for this
imaging modality [8, 9].

Typically, laser light sources are used for photoacoustic imaging, but these optical
systems are typically cumbersome, expensive, and they usually have fluctuations of
wavelength and power per pulse. Moreover, safety glasses or a shield is necessary
to protect the operator and/or patient from the irradiation of the light source. Much
recent research has focused on the use of different light sources, and in particular on
the use of pulse laser diodes. In fact, light emitting diodes (LEDs) are inexpensive,
compact, multi-wavelength and more stable. LED-based systems are therefore more
portable and an enclosure or protective glasses aren’t necessary [7]. However, due
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to the reduced energy the LED light source is able to emit compared to laser light
sources, these systems typically are limited to more superficial imaging applications.

In this chapter, we will present a proof of concept and feasibility study of using
3D LED-based photoacoustic images for the quantitative evaluation of the vascular
complexity network using a skeletonization approach and an in vitro phantommodel.
First of all, the numerous techniques for vessel extraction from images are presented
and summarized. Then, quantitative vascular parameters that are used to describe
vascular networks and that have been used in numerous studies are defined and
explained. Finally, we then present our approach for the phantom model definition,
image acquisition and processing steps, and validation results.

2 Blood Vessel Extraction Techniques

Many various methods have been introduced to automatically extract the vascular
network from medical images. The main differences between techniques are due
to pre-processing steps, computational time, accuracy, and the visual quality of the
obtained results [10].

Four main categories of blood vessel extraction techniques can be defined: pattern
recognition approaches, model-based approaches, vessel tracking approaches, and
machine learning approaches. It is also possible to combine the use of different
techniques together to improve the final results [11]. In this section, we will briefly
explore the fourmain categories of blood vessel extractionmethods and the numerous
methods that are included in each main category.

2.1 Pattern Recognition Techniques

Pattern recognition techniques are methods that are used for the automatic detection
and classification of various objects. In the specific application of vessel extrac-
tion, they detect vessel-like structures and features, and there are many different
approaches that can be classified within this main category, such as multi-scale,
skeleton-based, and ridge-based [12].

2.1.1 Multi-scale

Multi-scale approaches are based on extracting the vasculature at different levels
of resolution. The vessels with a larger diameter are extracted using images with a
lower resolution, since less detail is needed to correctly extract the vessel, whereas
the smaller vessels and microvasculature are extracted using images with a higher
resolution [12]. Instead of using images with an actual different resolution, multi-
scale methods found in literature can also be based on using kernels with different
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scales that enhance vessels with diameters of a certain dimension, such as the well-
known and applied Frangi filter [13].

2.1.2 Skeleton-Based

Skeleton-based vessel extraction techniques are employed to extract the blood vessel
centerlines and the entire vessel structure is created by connecting the vessel cen-
terlines. These kinds of techniques are based on first segmenting the vessels using
various approaches (such as thresholding), and the segmentation is then thinned using
a specific algorithm, such as themedial axis thinning algorithm [14]. The skeletoniza-
tion process is used to reduce the segmentation to aminimal representation that keeps
the morphology without redundancy.

Figure 1 shows some examples of skeletons obtained using various imaging
modalities.

2.1.3 Ridge-Based

Ridge-based vessel extraction techniques are based on the idea that grayscale image
can be seen as a 3D elevation map where intensity ridges approximate the skeleton
of objects that adopt a tubular shape [12]. In this way, ridge points are simply local
peaks in the direction of the maximal surface gradient and are invariant to affine
transformations.

Fig. 1 Examples of skeletons obtained with different imaging modalities. a Doppler ultra-
sound imaging, skeleton in red. b Optical coherence tomography angiography, skeleton in green.
c Contrast-enhance ultrasound imaging. d Photoacoustic imaging, skeleton in blue
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2.1.4 Region Growing

Region growing approaches are those based on segmenting the vessel network
through a region growing technique that segments images by analyzing neighboring
pixels and assigning them to specific objects based on their pixel value similarity
and spatial proximity [12]. A downfall to this kind of approach is that it is necessary
to provide some form of seed point from which to start the region growing analysis,
and these typically must be supplied by the user.

2.1.5 Differential Geometry-Based

Differential geometry-based vessel extraction methods consider the acquired images
as hypersurfaces and therefore extracts features, thanks to the crest lines and curva-
ture of the surface. The center lines of the vessels are therefore found as the crest
points of the hypersurface. In this way, a 3D surface can be described by two principal
curvatures (i.e., the eigen values of the Weingarten matrix) and their principal direc-
tions (i.e., the eigenvectors), which are their corresponding orthogonal directions
[12].

2.1.6 Matching Filters

Vessel extraction techniques based on matching filters are used to find objects of
interest by convolving the imagewithmultiplematchedfilters. The design of different
filters in order to detect vesselswith different orientation and size plays a fundamental
role with this type of approach, and the convolutional kernel size directly affects the
computational load of the method.

2.1.7 Mathematical Morphology

Methods based on mathematical morphology schemes rely on the use of morpholog-
ical operators to enhance vessel structures from the image. Morphological operators
are defined by applying specific structuring elements to the image, which define the
operator locality and can take on various geometries, such as a line, circle, square,
diamond, etc. The two main morphological operators are dilation and erosion, which
expands or shrinks objects, respectively. These operators can therefore be exploited
to enhance vessel structures and/or remove areas of the image that are not vessels.
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2.2 Model-Based Techniques

As their name implies, model-based techniques for vessel extraction apply explicit
models to extract the vasculature from the images. These methods can be divided
into four main different categories, which are briefly explored more in detail below.

2.2.1 Parametric Deformable Models

Parametric deformable models, often also known as snakes, are techniques that aim
to find object contours using parametric curves that deform under the influence of
internal and external forces. Internal forces are important for the smoothness of
the surface, while external ones attract it to the vessel boundary. The smoothness
constraint is the elasticity energy and makes the model more robust to the noise.
A downside of these models is that in order to start the process, the surface has to
be initialised and the model evolution depends on initial parameters that must be
fine-tuned by the user. Moreover, it is fundamental that the final model is robust to
its initialization. With recent implementations, it’s also possible to insert constraints
or a priori knowledge about geometry [12, 15]. These approaches are suitable for
complex architecture or variable vessels, but they are very time consuming.

2.2.2 Geometric Deformable Models

Geometric deformable models are based on the theory of curve evolution, and are
commonly known as level sets [12]. Level sets are based on the main concept that
propagating curves are represented as the zero-level set of a higher dimensional
function, which is typically given in the Eulerian coordinate system. This type of
approach has the following advantages: (1) it can handle complex interfaces that
present sharp corners and change its topology during the level set evolution; (2) the
curvature and normal to the curve, which are intrinsic properties of the propagating
front, can be easily extracted from the level set function; (3) it is easily extendable
to problems of higher dimensions, and is therefore not limited to 2D images.

2.2.3 Parametric Models

Parametric models (PM), not to be confused with parametric deformable models,
define parametrically the object of interest. In particular, for tubular objects, they
are described as a set of overlapping ellipsoids. In some applications, the model
of the vessel is circular. The estimation of parameters is done from the image, but
the elliptic PM approximates healthy vessels well but not pathological shapes and
bifurcations [12].
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2.2.4 Template Matching

This method attempts to recognize a structure, an a priori model or template, in
the image. This is a contextual top-down method. For the application of arterial
extraction, the template is a set of nodes connected in segments, that then is deformed
to fit the real structure. For the deformation, a stochastic process can be used [12].

2.3 Vessel Tracking Techniques

Vessel tracking approaches apply local operators on a focus known to be a vessel and
track it. They differ from pattern recognition approaches in that they do not apply
local operators to the entire image. So, starting from an initial point, these methods
detect vessel centerlines or boundaries by analyzing the pixels orthogonal to the
tracking direction [12].

2.4 Machine Learning

Machine learning is a subfield of artificial intelligence in which computers learn how
to solve a specific problem from experimental data.

These approaches can be divided in unsupervised and supervised:

• Unsupervised approaches try to find amodel that describes input images no having
prior knowledge about them. This technique doesn’t need the comparison with a
gold standard.

• Supervised approaches learn the model from a training set of labelled images and
then applies it to the input images. This technique has shown better performances,
and testing the trained network is typically very fast. On the other hand, training
the network typically requires a huge computational cost [11].

Recently, there has been a huge growth of the application of supervised machine
learning approaches under the form of neural networks and specifically convolu-
tional neural networks (CNNs) in the application of image processing. CNNs are
characterized by the presence of convolutional layers for feature extraction, pooling
layers for feature reduction and fully connected layers for classification [11].

3 Vessel Architecture Quantification

As discussed in the previous section, there are numerous methods that can be
exploited to extract the vessel network from images acquired using various imaging
modalities. All of thesemethods aim to extract the vessel network from the images, so
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that the vessels can further be classified and/or analyzed to gain important information
about the tissue or organ health status.

Many studies in literature are based on qualitative or semi-quantitative analyses of
the extracted vessel network, by either visually observing the enhanced or segmented
network or by manually selecting specific vessels to analyze with more quantitative
methods [1, 3, 16, 17].

In this chapter, and specifically in this section, we will go more into details
about how a quantitative analysis of the vessel network can be obtained and what
quantitative parameters can be computed from the skeleton of the vessel network.

As described previously, the skeleton of a vessel is a minimal representation of
the segmented vessels, which can be independent of the imaging modality used to
acquire the images. In fact, the main goal is to segment the vessels from the images
and once the segmentation is obtained using the desired technique, the skeleton of the
vessels can be obtained by applying, for example, the medial axis thinning algorithm
[14].Many techniques based on skeletonization have been used in literature to extract
the vessel network and then used to calculate quantitative parameters that can help
distinguish healthy from diseased tissue in numerous imaging modalities, such as
in CT images of the lung [18], ultrasound contrast-enhanced clinical images of the
thyroid to characterize thyroid nodules [19, 20], ultrasound contrast-enhanced images
of tumors in murine models [21], photoacoustic images of burn wounds in rats to
differentiate from healthy tissue [4], and optical coherence tomography angiography
(OCTA) images of clinical dermatological lesions for the automatic segmentation of
the lesion [22].

An important step before quantitative parameter calculation is the placement of a
specific region-of-interest (ROI) within which to calculate the parameters. This is to
help reduce the computational load, and is due to the fact that typically vasculature
is present not only in the area that is of interest (for example, outside of the tumor
or diseased tissue), and more importantly, due to the fact that these quantitative
parameters should not be considered using their absolute values, but in comparison
with the same parameters either at a different location or at a different time. So, the
relative comparison between the parameters gives a better evaluation rather than the
actual value by itself.

In all of the studies mentioned previously, the ROI is manually placed on the
desired areas, except for in the most recent study by Meiburger et al. [22] in which
the entire OCTA volume was analyzed by a sliding ROI. The quantitative vascular
parameters computed inside each ROI were then employed to automatically define
the lesion area. Subsequently, the ROI for the diseased zonewas automatically placed
in correspondence of the centroid of the defined lesion area and the healthy zone was
automatically placed in correspondence of the ROI that was found to be furthest
away from the considered diseased ROI.

In the next section we will go into more detail about what specific quantitative
parameters can be computed on the skeleton of the vessel network within the defined
ROI, which can be classified as either morphological or tortuosity parameters.
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3.1 Morphological Parameters

As the name implies,morphological parameters give an idea of themorphology of the
considered vessel network, taking into consideration their size, howmany vessels are
present, and how they are distributed between each other. The principal quantitative
morphological parameters that have been used in previous studies are:

• Number of trees (NT): defined as the number of vessel trees in which the skeleton
is decomposed

• Vascular density (VD): defined as the ratio between the number of skeleton voxels
and the total number of voxels of the considered ROI

• Number of branching nodes (NB): defines as the number of branching nodes that
are found in the vessel structure

• Mean radius (MR): mean radius of the segmented vessels of the structure.

While the first three parameters are consistently used in various studies, the mean
radius is a quantitative parameter that is sometimes excluded, due to the fact that it
the one that is most highly dependent on an accurate segmentation of the actual bor-
ders of the vessels. Thanks to the skeletonization process, a slightly oversegmented
or undersegmented vessels do not influence the first three quantitative parameters
(i.e., NT, VD, and NB). On the other hand, the mean radius is highly influenced by
an inaccurate segmentation, which is the reason why this parameter is sometimes
omitted in various studies.

3.2 Tortuosity Parameters

Tortuosity parameters are those parameters that analyze the path of the vessels and
how curved, tortuous or tightly coiled the vessel path may be. In order to calculate
these parameters, it is fundamental to first “isolate” a specific vessel to analyze and
then begin from one end point and arriving at the other end point, various quantitative
parameters can be calculated along the path, either by measuring angles, inflection
points, or simply path length.

Specifically, three main quantitative tortuosity parameters are typically calculated
to give an idea of the tortuosity of the considered vascular network:

• 2D distance metric (DM): defined as the ratio between the actual path length of
the considered vessel and the linear distance between the first and last endpoint
of the vessel

• Inflection count metric (ICM): defined as the 2D distance metric multiplied by
the number of inflection points found along the vessel path

• 3D sum of angles metric (SOAM): defined as the sum of all the angles that the
vessel has in space.
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Fig. 2 Graphical
representation of 2D distance
metric computation

The mathematical descriptions of these tortuosity parameters can be found in
previously published studies [1, 23].

Briefly, the DM gives a measure of the bidimensional tortuosity of the considered
vessel, since a straight line would give forth a value of 1, and as the vessel potentially
becomes more and more curved, the DM value will increase. Figure 2 shows a
graphical representation of how the DM is computed. The ICM adds to the DM as it
considers not only the overall curvature of the considered vessel, but also the number
of times the vessel changes direction in its path. Finally, the SOAM parameters are
helpful mostly in the case of tightly coiled vessels, which are not well-represented
by either the DM or ICM.

4 Phantom Design

In this section of the chapter, we will describe how a possible vascular phantom can
be designed to show the feasibility of evaluation the vascular complexity using a
skeletonization approach and 3D LED-based photoacoustic images.

In medical imaging, phantoms are samples with known geometry and compo-
sition that mimic biological tissues with their physical and chemical properties for
providing a realistic environment for clinical imaging applications. Stable and well
characterized phantoms are very useful for routine quality controls, training, cal-
ibration and for evaluating the performance of systems and algorithms. They can
be also used for the development of new applications before in vivo preclinical or
clinical studies. Moreover, phantoms allow to understand reproducibility in time and
among laboratories, to optimize signal to noise ratio, to compare detection limits and
accuracies of different systems and to examine maximum possible depth [24–27].

4.1 Model Design

In order to correctly evaluate vascular complexity, it is first necessary to design
a model that can represent in a simplified manner at least a section of a vascular
network. An example of a method that can be used to mimic a vascular network is
the creation of a 3D model which can then be printed using various materials.



Vascular Complexity Evaluation Using a Skeletonization Approach … 123

Fig. 3 3Dmodel designed for vascular complexity analysis. a Front view. b Lateral view. c Section
view

As a proof of concept, we designed a model using a computer aided design soft-
ware that had the following dimensions: 39.23 mm× 34.37 mm× 12.78 mm with a
wall thickness of 1 mm. The internal diameter of the designed vessels was equal to
1.5 mm. Figure 3 shows the designed model from a front view (a), lateral view (b)
and section view (c).

4.1.1 3D Printing

Once the model was designed, we then proceeded to use a 3D printer to print the
model. In this preliminary proof of concept study, we used the ProJet MJP 2500 Plus
with the VisiJet R Armor (M2G-CL) material, a tough, ABS-like clear plastic that
combines tensile strength and flexibility [28].

The ProJet MJP 2500 Plus is a 3D MultiJet printer that uses the inkjet printing
process. In particular, a piezo printhead deposits a plastic resin and a casting wax
material through the layer by layer technique.

Then the MJP EasyClean System is used to remove in a little time, the support
material from plastic parts using steam and EZ Rinse-C. It is composed of two
warmer units, one for bulk wax removal and one for fine wax removal. The support
material is separated by melting or dissolving. This is a non-contact method, so there
are less substrates or mask damages and contamination. Moreover, it permits a high
resolution and is inexpensive. Figure 4a shows an image acquired during the 3D
printing process and the final obtained model (Fig. 4b).

Fig. 4 Phantom manufacturing. a 3D printing process. b Final model. c Final phantom in agar
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4.2 Phantoms Realization

Once the 3D model is printed and all wax is removed, the vascular network phantom
must be filled with a liquid that can mimic blood, or at the very least absorb and
respond to the photoacoustic light impulse. Ideally, real blood or a biocompatible
contrast agent should be used. As what is reported here is a proof of concept idea to
show the feasibility of the approach, here we simply used a liquid ink that gave forth
a strong photoacoustic signal.

The final phantomwas then realized using agar,which is a jellying polysaccharide,
obtained from red algae and it is used to prepare transparent and neutral gels. Agar
powder dissolves at around 90–100 °C and it solidifies at 45 °C. The dose for 1 kg
of solution, is 7–10 g of powder.

The desired quantity of agar powder was weighed with a digital scale and then it
was put in a small pot with the corresponding quantity of water stirring at the same
time. The obtained solution was brought slowly to a boil with a burner continuing
to stir and at this point, the warm solution was poured in a container with the vessel
model. The phantom was left to cool down and after it solidified, it was pulled out
from the container. Figure 4c shows the final phantom filled with dye and inserted
in the solidified agar.

4.3 Acquisition Setup

In order to accurately assess vascular complexity, it is clear that a 3D volume of
the network must be acquired. It is therefore of fundamental importance to have the
phantom model fixed in the same spot and acquire 2D images at a given step size.
Some ultrasound systems have a mechanical motor and a corresponding software
that permits quick 3D acquisitions at a defined step size. On the other hand, if this is
not an option for the system that is used, it is still possible to use a specific setup that
guarantees the same position for the ultrasound probe as it runs along the phantom
and 2D images are manually acquired at each step.

In our first tests that are presented here, we used the second solution along with a
commercial LED-based photoacoustic and ultrasound imaging system (AcousticX,
Cyberdyne, INC, Tsukuba, Japan). So, for the image acquisition, the phantoms were
fixed to the base of a transparent container filled with water. The ultrasound probe
and photoacoustic LED light source arrays were secured to a metallic angle beam,
which in turn was fixed to a mobile support that could be moved along a binary in
response to a knob rotation. Figure 5 shows the imaging setup used.

The ultrasound probe and LEDs were put underwater near the phantom and lin-
ear scans were made moving the system with a defined step size. The step size is
what defines the resolution along the third dimension, so a smaller step size would
give forth a more accurate volume reconstruction of the vascular network and is
fundamental when considering microvasculature.
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Fig. 5 Imaging setup. a Entire imaging setup with metallic angle beam. b Zoom on ultrasound
probe and LED light sources

Due to the fact that here it was important mainly to show the feasibility of the
approach of using 3D LED-based photoacoustic images to evaluate vascular network
complexity, and that the phantom vessels had a large diameter compared tomicrovas-
culature, we chose to optimize processing time and used a large step size, equal to
1 mm. Considering the model that was designed, this gave forth a final volume that
consisted of 65 2D frames.

4.4 Device Settings

The device used for this feasibility study is the AcousticX, a LED-based photoa-
coustic imaging system (PLED-PAI) that is commercially available [29, 30].

The excitation source are light emitting diodes characterized by high density and
high power. Specifically, there are two LED arrays on either side of an ultrasound
probe and each array is composed of 4 rows of 36 single embedded LEDs. The
excitation wavelength is 850 nm. The dimensions of each array are 12.4mm (height),
86.5 mm (length) and 10.2 mm (width). The pulse width is variable and can be set
from 50 to 150 ns with steps of 5 ns. The pulse repetition rate can be 1, 2, 3 kHz or
4 kHz and it defines consequently the temporal resolution.

In order to reduce noise, it is also possible to control the frame averaging which
then influences the frame rate and temporal resolution. The possible frame rates are
30, 15, 10, 6, 3, 1.5, 0.6, 0.3, and 0.15 Hz [7].

For the acoustic part, there is a 128 channels ultrasound linear array transducer
with central frequency that can be set between 7 and 10 MHz that can pulse and
receive.

For the volume acquisition of the model, only the PA mode was used. The depth
was set to 3 cm and the frame rate was 6 Hz. The pulse repetition frequency was set
to 4 kHz with 640 frames averaging.
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5 Image Processing and Results

After image acquisition, it is then necessary to proceed to segment the images and
extract the skeleton of the vascular network in order to compute quantitative vascular
parameters that can give an idea of the complexity of the network. In this section
of the chapter we will present an example workflow that can be used to extract the
quantitative vascular parameters from the acquired images.

5.1 Segmentation and Skeletonization

Before the actual image segmentation, a few preprocessing steps often help in prepar-
ing the images and allowing a more accurate segmentation of the objects of interest,
which are, in our case, the phantom vessels containing the contrast dye.

Firstly, a 3D median filter was applied to the entire volume, using a 3 × 3 × 3
kernel and padding the volume by repeating border elements in amirroredway. Then,
a closing morphological operation was done using a disk-shaped structuring element
with a radius equal to 5 pixels. This step helped fill the vessels where mainly the
walls of the phantom were visible.

For the actual segmentation, the Otsu method [31] was used to find the global
threshold of each slice and then, the maximum among these was chosen to define a
unique threshold for all of the slices of the volume. The images were then segmented
using the found threshold, which in our case was equal to 0.43.

Then, a brief cleaning process was used to refine the obtained segmentation.
Specifically, each mask was processed by removing all the objects with area smaller
than 2% of the biggest object found in the mask. Subsequently, dilatation with a disk-
shaped structuring element with radius 3 and erosion with a disk-shaped structuring
element with radius 1 were then applied. Finally, any remaining holes in the objects
of the mask were then filled. Figure 6 shows a 3D representation of the original
photoacoustic images and the obtained segmentation.

For the skeletonization, an algorithm based on the medial axis extraction algo-
rithm by Lee et al. [14] that is implemented preserving the topology and the Euler

Fig. 6 3D representations. aOriginal photoacoustic image volume.bVolume aftermedian filtering.
c Segmented volume
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number was used. This procedure is done to specifically reduce the segmented binary
volume into a minimal representation of the vascular network while still preserving
morphology.

An algorithm was then implemented with the aim to correct the defects of the
skeletonization and to refine the final structure by removing the smallest branches.
In some areas of the obtained skeleton, there can be an accumulation of skeleton
voxels. In order to remove them, the branchpoints are identified and when, among
them, there are connected objectswith a value bigger than10pixels, they are removed.
Thereafter, the branches with a length smaller than a defined threshold are removed.

5.2 Parameter Calculation and Validation

As discussed in a previous section of this chapter, quantitative parameters that give
an idea of the morphology and tortuosity of the vascular network can be extracted
from the skeleton of the segmented vessels.

In the feasibility study presented here, a 3D computer-aided design (CAD) model
was specifically designed and was then printed. This allowed for not only real LED
photoacoustic image acquisition once the phantom was correctly filled with a dye,
but also the direct importation of the CADmodel in the same processing environment
(in our case, Matlab).

For validation purposes, the acquired images were also manually segmented so as
to give an idea if the automatic segmentation (and therefore the subsequent skeleton)
could be considered reliable or not. Then, the recall, precision, and Jaccard index
were calculated. These parameters are defined as follows:

Recall = T P

T P + FN
(1)

Precision = T P

T P + FP
(2)

Jaccard Index = T P

T P + FP + FN
(3)

where TP is a true positive, a pixel that was segmented in both the automatic and
manual masks; FN is a false negative, a pixel that was segmented only in the manual
mask; FP is a false positive, a pixel that was segmented only in the automatic mask.

Furthermore, thanks to the 3D model the quantitative vascular parameters were
able to be calculated using the experimental data with the 3D printed phantom and
LED photoacoustic image acquisition and also on the imported model using the
same skeletonization and vascular parameter computation processes. This type of
approach also allows a direct comparison of the quantitative vascular parameters
obtained using the various methods. Figure 7 shows different views of the 3D model
skeleton together with the automatic skeleton obtained using the acquired images.
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Fig. 7 aTopviewof skeletonof imported3Dmodel.b3Dskeletonviewof automatically segmented
volume

6 Feasibility Study Results

Table 1 shows the results of the comparison between the manual and the automatic
segmentation of the entire volume of the model. As can be seen, the recall parameter
is quite high, showing that when compared to a manual segmentation, the automatic
segmentation did not produce many false negatives. This means that the thresholding
technique was capable of accurately capturing the photoacoustic signal when it was
present within the image. On the other hand, however, the precision is only equal to
approximately 72%,meaning that there is a reasonably highnumber of false positives,
so the automatic algorithm was quite sensitive to noise and tended to oversegment
the acquired images.

As can be seen in Table 2, the quantitative vascular parameters thatwere calculated
corresponded quite well. In this table, the first column corresponds to the parameters

Table 1 Automatic segmentation validation results

Recall Precision Jaccard index

0.94±0.11 0.72±0.18 0.68±0.18

Table 2 Automatic quantitative vascular parameters validation results

Vascular parameter 3D model Automatic segmentation Manual segmentation

NT 1 6 6

VD 5.16 × 10−5 13.69 × 10−5 15.39 × 10−5

NB 9 57 77

DM 2.164 2.229 2.289

ICM 67.935 70.197 89.244

SOAM 0.041 0.241 0.545

MR (mm) 0.688±0.174 0.732±0.352 0.591±0.311
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computed using the directly imported 3D model, so it can be considered the ground
truth. The middle column shows the values computed using the automatic algorithm
and segmentation, whereas the last column displays the values obtained when using
the manual segmentation.

The biggest discrepancies can be seen within the SOAM tortuosity parameter
and the number of trees and number of branch nodes of the vascular network. It
is important to point out here how not only the automatic segmentation but also
the manual segmentation provided an overestimation of these parameters. This is
most likely due to the fact that, during the phantom manufacturing process, it was
seen that some parts of the phantom were not properly filled with the ink due to the
presence of remaining wax, resulting in no or less photoacoustic signals from those
points. At the same time, it is also important to underline how the 3D model was
imported into MATLAB with a very good spatial resolution, providing a perfectly
clean and rounded vessel mask. So, the acquired images were limited by a number of
various issues. Specifically, the obtained results were limited by (a) the high step size
and therefore low resolution between slices, (b) any small air bubble or imperfect
filling of the model with the dye, and (c) photoacoustic imaging artefacts which are
common especially when employing linear ultrasound probes for the photoacoustic
signal reception.

7 Conclusion

While the feasibility study presented here showed some limitations, mainly due to
phantom manufacturing and an imperfect wax removal technique, the results are
promising and merit a further investigation using even more complex vascular phan-
toms at first and then using in vivo images considering micro-vasculature to evaluate
the resolution limits of this approach. Overall, the proof of concept study shown here
in this chapter demonstrates the potential of evaluating vascular complexity using
3D LED-based photoacoustic images.
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Multiscale Signal Processing Methods
for Improving Image Reconstruction
and Visual Quality in LED-Based
Photoacoustic Systems

Kausik Basak and Subhamoy Mandal

Abstract Light-emitting diodes (LED) based photoacoustic imaging (PAI) systems
have drastically reduced the installation and operational cost of the modality. How-
ever, the LED-based PAI systems not only inherit the problems of optical and acous-
tic attenuations encountered by PAI but also suffers from low signal-to-noise ratio
(SNR) and relatively lower imaging depths. This necessitates the use of compu-
tational signal and image analysis methodologies which can alleviate the associ-
ated problems. In this chapter, we outline different classes of signal domain and
image domain processing algorithms aimed at improving SNR and enhancing visual
image quality in LED-based PAI. The image processing approaches discussed herein
encompass pre-processing and noise reduction techniques, morphological and scale-
space based image segmentation, and deformable (active contour) models. Finally,
we provide a preview into a state-of-the-art multimodal ultrasound-photoacoustic
image quality improvement framework, which can effectively enhance the quantita-
tive imaging performance of PAI systems. The authors firmly believe that innovative
signal processing methods will accelerate the adoption of LED-based PAI systems
for radiological applications in the near future.

1 Introduction

Photoacoustic imaging (PAI) emerged in the early 2000s as a novel non-invasive and
non-ionizing imaging method, harnessing the advantages of optical and ultrasound
imaging modalities to provide high-contrast characteristic responses of functional
and molecular attributes without sacrificing resolution (for depths of millimeters to
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centimeters) in highly optically scattering biological tissues. In PAI, acoustic waves
are generated by the absorption of short-pulsed electromagnetic waves, followed
by detection of generated acoustic waves using sensors, e.g., piezoelectric detectors,
hydrophones, micro-machined detectors. The term photoacoustic (also optoacoustic)
imaging is synonymous with the modalities where one uses visible or near-infrared
light pulses for illuminationwhile using electromagneticwaves in the radiofrequency
or microwave range is referred to as thermo-acoustic imaging. The research efforts
in PAI have been directed towards the development of new hardware components
and inversion methodologies allowing an increase in imaging speed, depth, and
resolution, as well as on investigating potential biomedical applications. Further,
the unique capabilities of the recently developed small animal imaging systems and
volumetric scanners have opened up the unexplored domain of post-reconstruction
image analysis. Despite these advantages and massive growth in PAI modalities, it
is still operational mostly in research fields and for preclinical studies due to high-
cost associated with the instrumentation and so-called limited-view effects, offering
sub-optimal imaging performance and limited quantification capabilities. Significant
limitations yet remain in terms of inadequate penetration depth and lack of high-
resolution anatomical layout of whole cross-sectional areas, thereby encumbering
its application in the clinical domain.

With the emergence of the light-emitting diode (LED)-based PAI modalities, the
operational cost of the imaging system drastically reduced, and the instrumenta-
tion becomes compact and portable while maintaining the imaging depth of nearly
40 mm with significant improvisation in resolution as well. Being cost-effective
and more stable compared to the standard optical parametric oscillator (OPO)-based
systems, the LED-based systems have made PAI technology more accessible and
open to new application domains. Recently several early clinical studies using PAI
have been reported, e.g., gastrointestinal imaging [1], brain resection guidance [2],
rheumatoid arthritis imaging [3]. Further, it is the capability of real-time monitoring
of disease biomarkers that makes it an impeccable tool for longitudinal supervision
of circulating tumour cells, heparin, lithium [4]. However, this probing modality,
especially LED-PAI is still characterized by low signal to noise ratio (SNR) and
lower image saliency when compared to several other clinically adopted imaging
modalities. Therefore, enhancing the SNR in both signal and image domain, as well
as the use of image enhancement techniques and pre-processing of PA images is of
significant interest to obtain clinically relevant information and characterize different
tissue types based on their morphological and functional attributes. In this context,
this chapter aims to provide the use of signal and image analysis in conjunction with
imaging and post-processing techniques to improve the quality of PA images and
enable optimized workflows for biological, pre-clinical and clinical imaging.

This chapter will illustrate relevant signal analysis techniques and is organized
with the following sections. Section 2 introduces a generalized PAI systemwhere dif-
ferent aspects of the imaging instrumentation are highlighted with a precise descrip-
tion, followed by discussion of different signal processing techniques, e.g., ensem-
ble empirical mode decomposition, wavelet-based denoising, Wiener deconvolution
using the channel impulse response and principal component analysis to increase the
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SNR of the acquired acoustic signals prior to reconstruction, in Sect. 3. Section 4
entails image analytics, intends to implement at different stages in post-processing,
ranging from noise removal to segmentation of different biological features. Var-
ious techniques, to significantly increase the SNR of PA images, are discussed
while maintaining a great deal in both spatial domain and frequency domain pro-
cessing techniques. Besides, segmentation of different biological structures, based
on their structural and functional properties, can be achieved through numerous
approaches e.g. morphological processing, feature-based segmentation, cluster tech-
niques, deformable objects. This entire section describes various image analysis
methods to comprehend PA image analysis further and helps to ascertain problem-
specific processing methodologies in the application domain. Additionally, Sect. 5
covers advanced solutions to improve image quality by rectifying various PAI param-
eters such as optical and acoustic inaccuracies, generated sue to practical limitations
and approximations in PAImodality. In this context, different experimental and algo-
rithmic approaches are discussed with the help of recent findings in PA research. In
summary, this chapter provides a holistic approach of performing LED-based PA sig-
nal and image processing at various stages starting from acoustic signal acquisition
to post-reconstruction of PA images through the different computational algorithms
with prospective dimensions of probable research areas to improve the efficacy of
PA imaging system in clinical settings.

2 Block Diagram of Imaging and Signal Acquisition

Ageneralized schematic of a PAI system is shown in Fig. 1. Generally, a nano-second
pulse duration light source (in Fig. 1, we show a laser diode-based PAI system) with
a repetition rate from 10 Hz to several kHz and wavelength in the range of visible to

Fig. 1 Schematic block diagram of a generalized laser-diode based PAI system
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NIR is used to irradiate the sample under observation. Importantly, it is also empirical
to keep the laser energy exposure within the maximum permissible limit following
the guideline by ANSI standard.1 Due to the thermoelastic effect, the absorbing
tissue compartments will produce characteristic acoustic responses which are further
acquired using an ultrasound transducer unit. An ultrasound transducer unit, working
in the range of several MHz, can be placed adjacent to the sample body to capture
these PA signals and converts them into their corresponding electrical signal levels
to transfer it to the data acquisition unit which is directly connected and controlled
with the host PC for post-processing, reconstruction and storage of the signal and
image data for further offline processing if required.

Prior to acquisition by data acquisition system, these PA signals are amplified due
to their low order of amplitude and filtered to reduce the effect of noises, usually com-
bines electronic noise, system thermal noise and most importantly the measurement
noise that arises due to the highly scattering tissuemedia forwhich the acousticwaves
undergo multiple attenuation event before acquisition using ultrasound transducers
[5]. These noises are capable of deteriorating the signal strength and eventually the
quality of PA images. Therefore, a significant amount of signal processing both at
the hardware level and software platform needs to be carried out to mitigate this
challenge. These techniques are discussed in the following sections.

3 Signal Domain Processing of PA Acquisitions

In most cost-effective PA imaging systems, researchers are using low energy PLD
or LED which in turn significantly reduces signal strength, hence affecting SNR and
quality of reconstructed images. Such imaging set-ups need significant improvement
in signal processing to enhance the SNR so that it would eventually produce consid-
erably good quality PA images after reconstruction.With recent scientific deductions
and technological advancement, several researchers have targeted this problem from
a different perspective. Zhu et al. introduced a low-noise preamplifier in the LED-
PAI signal acquisition path to increase the sensitivity of PA reception, followed by a
two-steps signal averaging: 64 times by data acquisition unit and 6 times by host PC,
thus combining 384 times averaging which significantly improves the SNR with a
square root factor of the total averaging times [6]. They also established such an SNR
improvement strategy through the phantom model experiment and in vivo imaging
of vasculature on a human finger. However, such a technique can also lead to los-
ing high-frequency information that stems from the small and subtle structures in
LED-PAI.

Among other signal enhancement techniques, several conventional approaches
include ensemble empiricalmode decomposition (EEMD),wavelet-based denoising,
Wiener deconvolution using the channel impulse response, and principle component
analysis (PCA) of received PA signals [5]. EEMD is a time-space analysis technique

1ANSI-American National Standards Institute
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that relies on shifting an ensemble noisy (white noise) data, followed by averaging
out the noisy counterpart with a sufficient number of trials [7]. In this mechanism, the
added white noise provides a uniform reference frame in time-frequency space. The
advantage over the classical empirical mode decomposition technique is that EEMD
scales can be easily separated without any a priori knowledge. However, challenges
arise while specifying an appropriate criterion for PA image reconstruction based on
intrinsic mode function.

In the case ofwavelet-baseddenoising, although the acoustic signal canbe tracked-
out from the background noise with significant accuracy, it is empirical to optimize
the thresholding parameter to suppress undesired noise and preserve signal details
optimally. Moreover, wavelet-based denoising requires prior knowledge about the
signal and noisy environment as the choice of wavelet function and threshold neces-
sitate the characteristics knowledge of the signal and noise. One way to overcome
such difficulty is to make the process parametric and adaptive [8, 9]. They introduced
polynomial thresholding operators which are parameterized according to the signal
environment to obtain both soft and hard thresholding operators. Such methodology
not only enables increased degrees of freedom to preserve signal details optimally
in a noisy environment but also adaptively approach towards the optimal parame-
ter value with least-square based optimization of polynomial coefficients. However,
such a heuristic analogy for optimally finding the threshold values is cumbersome
in LED-PAI imaging modality, thereby increasing the computational burden of the
overall denoising process.

Another category of methods that follow a deconvolution based strategies to
restore signal content and suppress noisy counterpart. Wiener deconvolution plays
a vital role in reducing noise by equalizing phase and amplitude characteristics of
the transducer response function [10]. Such a technique can greatly diminish both
the noisy and signal degradation part with an accurate assumption of the transducer
impulse response, failing to which it may bring additional signal artifacts and inter-
pretation of signal becomes difficult in those scenarios. The algorithm is hugely influ-
enced by the accurate estimation of correlation function between signal and noise
which firmly controls the SNR of the output. In case, where the prior knowledge
about the transducer response function and noisy power are unknown, researchers
undergo a probabilisticmeasure of the response function usingBayesian ormaximum
a posteriori estimation-based approach, which on the other hand, increases the com-
putational cost of the signal recovery mechanism. In the PCA mechanism, although
the algorithm searches for principal components distributed along the perpendicular
directions, often, it shows insignificant results due to its baseline assumption that the
ratio of PA energy to the total energy of detected signals is more than 75%, which is
not always the case [5].

Recently, researchers are exploring adaptive filtering mechanism, which does not
require any prior knowledge of the signal and noise parameters, which could yield
significant noise reduction. The ground assumption of such methodology stems from
the fact that signal and noise are uncorrelated in consecutive time points, which can
be satisfied with the general physics of the LED-PAI signal generation [11, 12].
Moreover, such techniques also attract the eye corner due to its fewer computations
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and reduced sensitivity to tuning parameters. One such technique where the SNR can
be significantly increased is an adaptive noise canceller (ANC). Although, in ANC,
there is a specific need to define a reference signal that significantly correlates with
the noise which is hard to deduce in a real-time environment. This challenge can
be adjusted in another form of ANC—adaptive line enhancer (ALE), in which the
reference signal is prepared by providing a de-correlation delay to the noisy signal
[13]. The reference signal consists of a delayed version of the primary (input) signal,
instead of being derived separately. The delay is provided to de-correlate the noise
signal so that the adaptive filter (used as a linear prediction filter) cannot predict the
noise signal while easily predicting the signal of interest. Thus, the output contains
only the signal of interests which is again subtracted from the desired signal, and
the error signal is thereafter used to adapt the filter weights to minimize the error.
It adaptively filters the delayed version of the input signal in accordance with the
least mean square (LMS) adaptation algorithm. The time-domain computation of the
ALE can be summarized as follows.

x(n) = pa(n) + noi(n) (1)

r(n) = x(n − d) (2)

y(n) =
L−1∑

k=0

wk(n)r(n − k) (3)

e(n) = x(n) − y(n) (4)

wk(n + 1) = wk(n) + μ e(n)x(n − k − d) (5)

where, x(n) is the primary input signal corresponding to the individual sensor element
of ultrasound (US) transducer array, consists of PA signal component [pa(n)] and
wideband noise component [noi(n)]. The reference input signal r(n) is the delayed
version of the primary input signal by a delaying factor d. The output y(n) of the
adaptive filter represents the best estimate of the desired response and e(n) is the
error signal at each iteration. wk(n) represents the adaptive filter weights, and L
represents the adaptive filter length. The filter is selected as a linear combination of
the past values of the reference input. Three parameters determine the performance
of the LMS-ALE algorithm for a given application [14]. These parameters are ALE
adaptive filter length (L), the de-correlation delay (d), and the LMS convergence
parameter (μ). The performance of the LMS-ALE includes: adaptation rate, excess
mean squared error (EMSE) and frequency resolution.

The convergence of the mean square error (MSE) towards its minimum value
is commonly used performance measurement in adaptive systems. The MSE of the
LMS-ALE converges geometrically with a time constant τmse as:



Multiscale Signal Processing Methods for Improving Image … 139

τmse ≈ 1

4μλmin
(6)

where, λmin is the minimum eigenvalue of the input vector autocorrelation matrix.
Because τmse is inversely proportional to μ, a large τmse (slow convergence) corre-
sponds to smallμ. The EMSE ξmse resulting from the LMS algorithm noisy estimate
of the MSE gradient is approximately given by:

ξmse ≈ μLλav

2
(7)

where,λav is the average eigenvalue of the input vector autocorrelationmatrix. EMSE
can be calibrated by choosing the values ofμ and L. Smaller values ofμ and L reduce
the EMSE while larger values increase the EMSE. The frequency resolution of the
ALE is given by:

fres = fs
L

(8)

where, fs is the sampling frequency. Clearly, fres can be controlled by L. However,
there is a design trade-off between the EMSE and the speed of convergence. Larger
values of μ results in faster convergence at the cost of steady-state performance.
Further, improper selection of μ might lead to the convergence speed unnecessary
slower, introducing more EMSE in steady-state. In practice, one can choose larger
μ at the beginning for faster convergence and then change to smaller μ for a bet-
ter steady-state response. Again, there is an optimum filter length L for each case,
because larger L results in higher algorithm noise while smaller L implies the poor
filter characteristics. As the noise component of the delayed signal is rejected and
the phase difference of the desired signal is readjusted, they cancel each other at the
summing point and produce a minimum error signal that is mainly composed of the
noise component of the input signal.

Moreover, researchers have proposed signal domain analysis to retrieve the acous-
tic properties of the object to be reconstructed from characteristic features of the
detected PA signal prior to image reconstruction. In the proposed method, the sig-
nals are transformed into a Hilbert domain to facilitate analysis while retaining the
critical signal features that originate from absorption at the boundary. The spatial
and the acoustic propagation properties are strongly correlated with the PA signal
alteration, and the size of an object governs the time of flight of the PA signal from the
object to the detections. The relationship between object shape and signal acquisition
delay exists partly because the smaller speed of sound (SoS) within the object will
delay the arrival of the signal and vice versa. A simplistic low dimensional model
as predicted by Lutzweiler et al. can forecast the corresponding time of arrival given
the known phantom shape or the SoS (Fig. 2) [15]. Based on a similar assumption,
the inverse problem of obtaining the unknown acoustic parameters can be solved
from the extracted signal features. Lutzweiler et al. implemented the signal domain
approach for the segmentation of PA images by addressing the heterogeneous optical
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Fig. 2 Signal domain analysis of PA (optoacoustic) signal a At the absorbing boundary (black
cross) of the numerical phantom huge signals will be detected at detector locations [(1) and (2)]
with a tangential integration arc (dashed black line). Opposite detectors provide partially redundant
information and, consequently information on the SoS. Accordingly, boundary signals (white cross)
with direct (1′) and indirect (3) propagation provide information on the location of a reflecting
boundary (white dashed line). b The corresponding sinogram with signal features corresponding to
those in the image domain in (a). c The workflow of the proposed algorithm: Instead of performing
reconstructions (red) with a heuristically assumed SoS map, signal domain analysis (green) is
performed prior to reconstruction. Unipolar signals H are generated from the measured bipolar
signals S by applying a Hilbert transformation with respect to the time variable. The optimized SoS
parameters are obtained by retrieving characteristic features in the signals via maximizing the low
dimensional functional f depending on acoustic parameters m through TOF and on the signals H.
Subsequently, only a single reconstruction process with an optimized SoSmap has to be performed.
Conversely, for image domain methods (pale blue) the computationally expensive reconstruction
procedure has to be performed multiple times as part of the optimization process. Adapted with
permission from [15]
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and acoustic properties of the tomographic reconstruction. Later in this chapter we
will discuss about the use of image analytics in improving the visual quality.

4 Image Processing Applications

Post image reconstruction, the PA images need to be further processed in both spatial
and transform domain for better visual perception of subtle features within the object
and in advance level to classify/cluster different regions based on the morphological
and functional attributes of the image. Several approaches that need tobeperformed in
this domain starting with pre-processing, object recognition and segmentation based
on morphological attributes and feature-based methodologies, including clustering
of various regions within the object to image super-resolution techniques which are
detailed in the following sub-sections.

4.1 Pre-processing and Noise Removal

Pre-processing in image domain majorly targets intensity enhancement of LED-PAI
images andfiltering of noises through spatio-frequency domain techniques.Although
the implementation of pre-processing steps is subjective, indeed it is essential to read-
just the dynamic scale of intensity and contrast for better understanding and percep-
tion of PA images, further helping in figuring out the significant regions or structures
within the sample of interest.Generally, the dynamic range of reconstructed grayscale
PA images is of low contrast, the histogram of which is concentrated within a nar-
row range of gray intensities. Therefore, a substantial normalization in the grayscale
range needs to performed to increase the dynamic range of intensities and even-
tually enhance the contrast at both global and local scale. Although the intensity
transformations—gamma, logarithmic, exponential functions play a crucial role in
the intensity rescaling process, it is quite evident that the exact transformation that
would possibly provide better-enhanced result is modality dependent.

Let f (x, y) denotes a reconstructed PA image, while f (x, y, t) corresponds to
the successive time frames of PA images and g(x, y) is the intensity enhanced PA
image. Following the gamma transformation, the rule, s = crγ maps the input inten-
sity value r into output intensity s with the power-law factor γ . This law works well
in general sense because most of the digital devices obey power-law distribution.
However, the exact selection of γ is instrument-specific and depends on the image
reconstruction methodology as well. Another frequently used technique is the loga-
rithmic transformation function, s = clog(1 + r) that expands the intensity range of
dark pixels of the input image while narrowing down the intensity range of brighter
pixels of the input PA images. The opposite is true for the exponential transformation
function. It is quite apparent that these two intensity transformations are experiment
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specific and are used to highlight the significant area/region in a case specific man-
ner. More subjectively, the intensity transformations are quite limited in use and can
facilitate image details at a very crude level. Histogram equalization, on the other
hand, works at both global and local scale, stretching out the dynamic range of the
intensity gray scales. The transformation function for the histogram equalization, of
particular interest in image processing, at a global scale and can be written as,

s = T (r) = (L − 1)

r∫

0

pr (ω)dω (9)

where, pr (r) denotes the probability density function of input intensities, L is the
maximum gray level value and ω is a dummy integration variable. In the discrete
domain, the above expression is reduced to,

s = T (r) = (L − 1)

MN

k∑

j=0

n j f or k = 0, 1, 2, . . . (L − 1) (10)

where, nk is the number of pixels having gray level rk and MN stands for the
total number of pixels in the input PA image. Although histogram processing at
a global scale increases the contrast level significantly, often, it turns out that several
subtle features in the imaging medium cannot be adequately distinguished from its
neighborhood background due to proximity in gray levels values between these two.
To mitigate this effect, researchers chose to implement local histogram processing
for contrast enhancement which works on relatively smaller regions (sub-image)
to implement histogram equalization technique. Similar to the global scale, local
histogram analysis stretch-out the intensity levels within the sub-image part, thereby
enhancing the subtle structural features at those locations.

For noise removal, PA image f (x, y) undergoes filtering operations based on
the PA imaging instrumentation and type of noises that hamper the image quality.
The filtering operations can be performed either in spatial or in frequency domain.
Depending on the nature of the associativity of noise (additive or convolutive), the
filtering domains are finalized. In general, for additive noises, one can go forward
with the spatial domain filtering, whereas for a convolutive type of noise it is advised
to carry out the filtering process in frequency or transform domain. Spatial filter-
ing operations are performed using the convolution operation using a filter kernel
function h(x, y), a generalized form of which is presented below,

g(x, y) = f (x, y) ⊗ h(x, y) =
a∑

s=−a

b∑

t=−b

h(s, t) f (x − s, y − t) (11)

where ⊗ denotes the convolution operation which is linear spatial filtering of an
image of size M × N with a kernel of size m × n and (x, y) are varied so that the
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origin of the kernel h(x, y) visits every pixel in f (x, y). In case of filtering based
on the correlation, only the negative sign in the above equation will be replaced by
a positive sign. Now, depending on the type of noise that corrupt the image content
or produce an artifact in the PA images, the filter kernel can be any of the types—
Low-pass filters: Gaussian, simple averaging, weighted averaging, median andHigh-
pass filters: first-order derivative, Sobel, Laplacian, Laplacian of Gaussian functions.
Details of these filtering kernels and related operations are described in [16, 17]. In
general, Gaussian smoothing operation can reduce the noisy effect which follows a
Gaussian distribution pattern, whereas simple averaging can reduce the blurry noise
globally, and median filtering reduces the effect of salt and pepper noise from input
reconstructed PA images. While the low-pass filters are working on the images to
reduce the effect of high frequency noises, high-pass filtering is performed to sustain
the edge and boundary information as well as to keep the subtle high-frequency
structures in PA images. A special category of filtering operation which reduces the
high frequency noises as well as restores the high-frequency edge information is
unsharp masking and high-boost filtering, expression of which is presented below,

gmask(x, y) = f (x, y) − f̄ (x, y) (12)

g(x, y) = f (x, y) + k.gmask(x, y) (13)

where, f̄ (x, y) is a blurred version of the input image f (x, y) and for unsharp
masking k is kept at 1 whereas, k > 1 signifies high-boost filtering. However, the
above filters work globally irrespective of the changes in local statistical patterns, and
there is a class of filtering techniques through an adaptive approach which includes
adaptive noise removal filter, adaptive median filtering, etc. [16]. Apart from these
generalized filtering approaches, there is a special class of techniques that controls
the intensity values using fuzzy statistics, enabling the technique to regulate the
inexactness of gray levels with improved performance [18]. The fuzzy histogram
computation is based on associating the fuzziness with a frequency of occurrence of
gray levels h(i) by,

h(i) ← h(i) +
∑

x

∑

y

μ Ĩ (x,y)i for k ∈ [a, b] (14)

where,μ Ĩ (x,y) is the fuzzy membership function. This is followed by the partitioning
of the histogram based on the local maxima and dynamic histogram equalization of
these sub-histograms. The modified intensity level corresponding to j-th intensity
level on the original image is given by,

y( j) = starti + rangei

j∑

k=strati

h(k)

Mi
(15)
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Fig. 3 Generalized block diagram for implementation of the frequency domain filtering process

where h(k) denotes histogram value at k-th intensity level of the fuzzy histogram and
Mi specifies the whole population count within i-th partition of a fuzzy histogram. In
the last stage, the final image is obtained by normalization of image brightness level
to compensate for the difference in mean brightness level between input and output
images. Such a technique not only provides better contrast enhancement but also
efficiently preserves the mean image brightness level with reduced computational
cost and better efficiency.

On the other hand, frequency domain techniques are also essential in the scope
of denoising PA images as it can efficiently and significantly reduce the effect of
convolutive type of noises. Periodic noises or noises arrived due to specific frequency
bands can be reduced through the frequency domain filtering approach as well.
Moreover, such transform domain filtering can also be used to reduce the effect of
degradation sources that hinders the image details after reconstruction. The general
block diagramof the frequency domain filtering technique is depicted below in Fig. 3.

The input PA images are transformed into frequency domain counterpart, fol-
lowed by the implementation of filtering kernel and again bringing back the images
to a spatial domain at the end. Through this frequency domain approach, one can
become aware of the noise frequencies and their strength, which further enables fre-
quency selective filtering of the PA images. Several filtering kernels can significantly
reduce the noisy part, like Butterworth andGaussian low- and high-pass filters, band-
pass, notch filtering kernels, homomorphic filtering etc.While transforming the input
image into its frequency domain counterpart, the noisy part in f (x, y) becomes in
multiplicative form, which can be further reduced by homomorphic filtering tech-
nique [16]. A more generalized form of homomorphic filtering which works on a
Gaussian high-pass filtering approach is given below,

H(u, v) = (γH − γL)

[
1 − exp

{
−c

(
D(u, v)

D0

)2
}]

+ γL (16)

where, D0 is the cut-off frequency, D(u, v) is the distance between coordinates
(u, v) and the center frequency at (0, 0). c advocates the steepness of the slope of
the filter function. γH and γL are the high and low-frequency gains. This transfer
function simultaneously compresses the dynamic range of intensities and enhances
the contrast, thereby preserving the high-frequency edge information while reducing
the noisy components. Another form of such filter is given in [17] which has the
transfer function,
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H(u, v) = 1

1 + exp{−a(D(u, v) − D0)} + A (17)

where, the high frequency and low-frequency gains are manipulated by following
rules,

γH = 1 + A and γL = 1

1 + exp[aD0]
+ A (18)

Although preprocessing of PA images in spatial and frequency domains signif-
icantly improve the image quality and enhances the contrast level, the selection
of proper filter function is purely subjective, and the parametrization of filtering
attributes is PAI model specific. Therefore, it is of more significant importance while
choosing the filter function and optimizing its parameters either through heuristic
approaches or iterative solutions which can further help in reducing the artifacts and
noisy components in PA reconstructed images.

4.2 Segmentation of Objects in PA Images

Post-reconstruction image analysis is an integral part of PAI as it aids in understand-
ing different sub-regions through the processing of different morphological features.
In case of functional imaging, it also helps to reduce artefacts and noise that unnec-
essary hampers functional parameters. Being a challenging task due to relatively low
intrinsic contrast of background structures and increased complexity due to limited
view problems of LED-PAI, various researchers have worked on the segmentation
of objects in PA images through the implementation of different algorithms that are
detailed in the following sections.

4.2.1 Morphological Processing

Classical approaches in image processing for edge detection and segmentation of
objects with different shapes and sizes can be implemented to segment out any object
of interest in PA images. In this context, classical Sobel operators (works on approx-
imating the gradient of image intensity function), Canny edge detector (implements
a feature synthesis step from fine to coarse-scale) and even combination of morpho-
logical opening and closing operators (through a specific size of structuring element)
can help in identifying the object edge/boundary. However, the parameterization of
these kernel operators is specific to the LED-PAI system as the contrast resolution
between object and background varies significantly, and intra-object intensity distri-
bution is modality dependent. Another mechanism driven by anisotropic diffusion
can estimate the object boundary in PA images through the successful formulation of
a scale-space adaptive smoothing function [19]. The operation works on successive
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smoothing of the original PA image I0(x, y) with a Gaussian kernel G(x, y : t) of
variance t (scale-space parameter), thereby producing a successive number of more
and more blurred images [20]. Such anisotropic diffusion can be modelled as,

I (x, y, t) = I0(x, y) ∗ G(x, y; t) (19)

with the initial condition I (x, y, 0) = I0(x, y), the original image. Mathematically,
the AD equation can be written as,

It = div(c(x, y, t)∇ I ) = c(x, y, t)�I + ∇c · ∇ I (20)

For a constant c(x, y, t), the above diffusion equation becomes isotropic as given
by,

It = c�I (21)

Perona and Malik have shown that the simplest estimate of the edge positions
providing excellent results are given by the gradient of the brightness function [19].
So, the conduction coefficient can be written as,

c(x, y, t) = g(‖∇ I (x, y, t)‖) (22)

The Gaussian kernel, used in smoothing operation, blurs the intra-region details
while the edge information remains intact. A 2D network structure of 8 neighboring
nodes is considered for diffusion conduction. Due to low intrinsic contrast stemming
from the background structures on PA modality, often this anisotropic diffusion
filtering can be used to create a rough prediction of the object boundary which
can be further utilized as seed contour for active contour technique (described later
in chapter) for actual localization and segmentation of the object boundary under
observation.

In another work, researchers show that low-level structures in images can be seg-
mented through a multi-scale approach, facilitating integrated detection of edges and
regions without restrictive models of geometry or homogeneity [20]. Here, a vector
field is created from the neighborhood of a pixel while heuristically determining its
size and spatial scale by a homogeneity parameter, followed by integrating the scale
into a nonlinear transform which makes structure explicit in transformed domain.
The overall computation of scale-space parameters is made adaptive from pixel to
pixel basis. While such methodology can identify structures at low-resolution and
intensity levels without any smoothing at even coarse scales, another technique that
serves as a boundary segmentation through the utilization of color and textural infor-
mation of images to track changes in directions, creating a vector flow [21]. Such an
edge-flow method detects boundaries when there are two opposite directions of flow
at a given location in a stable state. However, it depends strongly on color information
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and requires a user-defined scale to be input as a control parameter. However, recon-
structed PA images lack color information and edge-flow map has to be extracted
solely from edge and textural information.

Recently, Mandal et al. have developed a new segmentation method by integrat-
ing multiscale edge-flow, scale-space diffusion and morphological image processing
[22]. As mentioned earlier, this method draws inspiration from edge-flow methods
but circumvents the lacking color information by using a modified subspace sam-
pling method for edge detection and iteratively strengthens edge strengths across
scales. This methodology reduces the parameters that need to be defined to achieve
a segmented boundary between imaged biological tissue and acoustical coupling
medium by integrating anisotropic diffusion and scale-space dependent morpholog-
ical processing, followed by a curve fitting to link the detected boundary points. The
edge flow algorithm defines a vector field, such that the vector flow is always directed
towards the boundary on both its sides, in which the relative directional differences
are considered for computing gradient vector. The gradient vector strengthens the
edge locations and tracks the direction of the flow along x and y directions. The search
function looks for sharp changes from positive to negative signs of flow directions
and whenever it encounters such changes, the pixel is labelled as an edge point. The
primary deciding factor behind the edge strength is the magnitude of change of direc-
tion for the flow vector, which is reflected as edge intensity in the final edge map. The
vector field is generated explicitly from fine to coarse scales, whereas the multiscale
vector conduction is implicitly from coarse to finer scales. The algorithm essentially
localizes the edges in the finer scales. The method achieves it by preserving only the
edges that exist in several scales and suppressing features that disappear rapidly with
an increment of scales.

Often in LED-PAI imaging, noisy background is present in reconstructed images
due to low SNR, limited view, and shortcomings of inversion methodologies. Addi-
tionally, signals originate from the impurities or inhomogeneities within the coupling
medium. Such noises are often strong enough to be detected by edge detection algo-
rithm as true edges. Thus, the use of an anisotropic diffusion process is useful to
further clean up the image, where it smoothens the image without suppressing the
edges. Thereafter non-linear morphological processing is done on the binary (dif-
fused) edge mask. Mandal et al. took a sub-pixel sampling approach (0.5 px), ren-
dering the operation is redundant beyond the second scale level [22]. Further in PA
images, the formation of smaller edge clusters and open contours is quite apparent.
Thus, getting an ideal segmentation using edge linker seems to perform poorly. The
proposed method first generates the centroids for edge clusters and then tries to fit on
a geometric pattern (deformable ellipse) iteratively through a set of parametric oper-
ations. The method is self-deterministic and requires minimal human intervention.
Thus, the algorithm is expected to help automate LED-based PA image segmentation,
with important significance towards enabling quantitative imaging applications.
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4.2.2 Clustering Through Statistical Learning

Pattern recognition and statistical learning procedures play an essential role in seg-
mentation through clustering of different tissue structures in LED-PAI based on
their intensity profiles which are directly associated with the wavelength-specific
absorption of optical radiation, followedby characteristic emission of acousticwaves.
Depending on the constituents at vascular and cellular levels, various structures and
regions can be segmented through structural and functional attributes in PA images
using machine learning-based approaches. Guzmán-Cabrera et al. shown a segmen-
tation technique, performed using an entropy-based analysis, for identification and
localization of the tumor area based on different textural features [23]. The local
entropy within a window Mk × Nk can be computed as,

E(�k) = −
L−1∑

i=0

Pi log(Pi ) where Pi = ni
Mk × Nk

(23)

where, �k is the local region within which the probability of grayscale i is Pi with
number of pixels having the grayscale i is ni . The whole contrast image is then con-
verted to a texture-based image, in which the bottom texture represents a background
mask. This is used as the contrast mask to create the top-level textures, thus obtaining
the segmentation of different classes of objects with region-based quantification of
tumor areas.

In another research, Raumonen and Tarveinen worked on developing a vessel seg-
mentation algorithm following a probabilistic framework inwhich a new image voxel
is classified as a vessel if the classification parameters are monotonically decreased
[24]. The procedure follows an iterative approach by uniformly sweeping over the
parameter space, resulting in an imagewhere the intensity is replacedwith confidence
or reliability value of how likely the voxel is from a vessel. The framework is initiated
with the smoothing of PA images, followed by clustering and vessel segmentation
of clusters and finally filling gaps in the segmented image. A small ball-supported
kernel is convolved with the reconstructed PA images to smooth-out the noisy parts,
followed by a threshold filtering. Clustering is approached using a region growing
procedure in which the vessel structures are labelled as connected components. A
large starting intensity and a large neighbor intensity leads the voxels to be classified
as a vessel with high reliability, and decreasing these values increases the number
of voxels classified as vessel but with less reliability. Post-clustering, each vessel
network is segmented into smaller segments without bifurcations and finally filling
the gaps in vessel-segmented data and potential breakpoints of vessels are identified
and filled based on a threshold length of the gap and threshold angle between the tip
directions.

Furthermore, statistical learning procedures have shown to perform significantly
well in this context [25], showing a new dimension in LED-PAI research towards
automatic segmentation and characterization of pathological structures. Different
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learning techniques, comprising supervised, unsupervised and even deep neural net-
works, can be implemented for segmentation and classification of breast cancer,
which substantially improves the segmentation accuracy at the cost of computational
expenses. In a nutshell, Bayesian decision theory quantifies the tradeoffs between
various classification decisions using probability theory. Considering a two-class
problem with n features having feature space, X = [X1,X2 . . . ..Xn]T, the Bayes’
theorem forms the relationship,

p(ωi/x) = P(ωi )p(x/ωi )

P(x)
(24)

where, p(ωi/x) is termed as posterior, P(ωi) is prior, p(x/ωi) likelihood, P(x) is
evidence. Based on the various statistical and morphological features, the decision
can be made as,

P(ω1)p(x/ω1) > P(ω2)p(x/ω2) for class1 else class2 (25)

At a bit higher level, support vector machine (SVM), which is a highly non-linear
statistical learning network, works on maximizing the distance between the classes
and separating hyper-plane. Considering a two-class problem in which the region of
interest belongs to a particular class and all other areas are comprising another class
in PA images, let {x1, x2 . . . .xn} be our data set and let yi be the class label of xi.

Now,

(a) The decision boundary should be as far away from the data of both classes as
possible. Distance between the origin and the line WT X = k is,

Distance = k

‖W‖ (26)

And we have to maximize m where m = 2
‖W‖ .

(b) For this the linear Lagrangian objective function is

J (w, α) = 1

2
wTw −

∑
αi

{
yi

(
w0 + wT X

) − 1
}

(27)

(c) Differentiating thiswith respect tow andα, w can be recovered asw = ∑
αiyixi.

(d) Now for testing a new data z, compute
(
wTz + b

)
, and classify z as class 1 if

the sum is positive, and class 2 otherwise.

Although the algorithm is well capable of segmenting the region of interest, the
training procedure requires prior knowledge and annotation of the region of interest
to work in a supervised manner. In contrast to this, K-means clustering approach is
purely unsupervised andworks relatively fast in clustering various regions as per their
different statistical and image-based feature sets. For a 2-class clustering problem,
initially two points are taken randomly as cluster centers. The main advantages of
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K-mean clustering are its simplicity and computational speed. The disadvantage of
this technique is that it does not give the same result due to random initialization. It
minimizes the intracluster variances but does not ensure that the result has a global
minimumof variance. After the initialization of the center for each class, each sample
is assigned to its nearest cluster. To find nearest cluster one can use different distance
measures e.g. Euclidian, city-block, Mahalanobis distances etc. the simplest one to
use the Euclidian distance with the following form,

d(xi , yi ) =
√√√√

n∑

i=1

(xi − yi )
2 (28)

where xi and yi are the coordinates of ‘i’th sample, and n is the total number of
samples. The new cluster center is obtained by,

ci = 1

pk

∑

xi∈ck
xi (29)

where, pk is the number of the points in kth cluster and ck is the kth cluster. In order to
include the degree of belongingness, fuzzy c-means (FCM) based approach is more
accurate over the K-means clustering process. FCM contrasts K-means clustering
with the fact that in FCM each data point in the feature set has a degree of belonging
to a cluster rather than belonging entirely to a cluster. Let us define a sample set of
n data samples that we wish to classify into c classes as X = {x1, x2, x3, . . . .., xn}
where each xi is anm-dimensional vector ofm elements or features. Themembership
value of kth data point belonging to ith class is denoted as μik with the constraint
that,

c∑

I=1

μik = 1 ∀ k = 1, 2, . . . , n and 0 <

n∑

k=1

μik < n (30)

The objective function is,

J(μ, v) =
n∑

k=1

c∑

i=1

μb
ik(dik)

2 (31)

where b is the index of fuzziness and dik is the Euclidean distance measure between
the kth sample xk and ith cluster center vi . Hence, dik is given by (23),

dik = ‖xk − vi‖ =
⎡

⎣
m∑

j=1

(
xkj − vij

)2
⎤

⎦
1/2

(32)
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Minimization of the objective function with respect to μ and v leads to the
following equations. The ith cluster center is calculated by,

vi =
∑n

k=1 μb
ik · xk∑n

k=1 μb
ik

(33)

And membership values are, μik = (1/ dik)2/ (b−1)

∑c
r=1(1

/
drj)

2/ (b−1)

Now to find the optimum partition matrix µ, an iterative optimization algorithm
is used. The step-by-step procedure is given below,

(a) Initialization of the partition matrix µ(0) randomly.
(b) Then do r = 0, 1, 2,…..
(c) Calculation of c cluster centre vectors v(r)

i using µ(r)

(d) Updating the partition matrix µ(r) using the cluster center values, if∥∥µ(r+1) − µ(r)
∥∥
F ≤ ε where ε is the tolerance level and ‖·‖F is Frobenius

distance, stop; otherwise set r = r + 1 and return to step 2.

After obtaining the optimized partition matrix, depending upon the highest
membership value, the data points are assigned to that particular class.

Inmore recent work, Zhang et al. have demonstrated the deep-learning procedures
to segment out tumor area in breast PA images [25]. The area of deep learning is
becoming very broad with the recent advancement in artificial intelligence-based
approaches through mathematical formulations which is beyond the scope of this
chapter. In short, deep learning is a powerful technique that not only reduces the
labor in manually computing various features and curse of feature dimensionality
but also provides a powerful and robust mechanism of creating any decision. Zhang
et al. have shown different deep learning networks like AlexNet and GoogleNet
for PA images and established their efficacy in segmenting the breast tumor area
[25]. Furthermore, the final contour selection was implemented using a dynamic
programming architecture: active contour model which is elaborated in the next
section.

4.2.3 Deformable Segmentation

Segmentation of the region of interest through deformable objects plays a significant
role in PAI as it is indeed necessary to locate a region / area from the background
in-homogeneous reflection model. An example of such deformable object formation
is through designing an active contour (AC) algorithmwhich can regulate the bound-
ary based on various parameters such as energy, entropy, class levels etc. AC can
be modeled using geodesic and level set methods. Here, we focus on such an algo-
rithm designed using an improved snake-based ACmethod which works on a greedy
approach [13]. The idea is to fit an energy-minimizing spline along the boundary,
characterized by different internal and external image forces. The goal is to reach for
a curve where the weighted sum of internal and external energy will be minimum.
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The basic equation can be formulated as,

Esnake =
1∫

0

{Eint (v(s)) + Eext (v(s))}ds (34)

where, the position of snake is represented by a planar curve v(s) = (x(s), y(s)), Eint

is the internal energy force, used to smooth the boundary during deformation. Eext

represents the external energies, pushing the snake towards the desired object. Seed
contour for the initial labeling can be identified through various segmentation tech-
niques discussed earlier in this chapter. Coordinates of seed contour is transformed
into polar form (ρ, θ). The contour is now represented with a set of such discrete
polar coordinates vi = (ρi , θi ) for i = 0, 1, 2, . . . ., (n − 1); where θi = i × θs . For
example, quantization step size for angel θ is θz = 1

◦
(n = 360) and for ρ is ρs = 1

pixel. The energy function of this model is given by,

E =
n−1∑

i=0

(
aEcont (vi ) + bEcurv(vi ) + cEimage(vi ) + dEgrow(vi )

)
(35)

According to Fig. 4, for each point vi for i = 0, 1, 2, . . . ., (n − 1), the energies
at the points �i = {

v−
i , vi , v

+
i

}
are calculated and vi are moved to the point with

the minimum energy among these three where v−
i and v+

i are the two discrete points
adjacent to vi at the radial direction. This operation is performed iteratively until the
number of moved contour points is sufficiently small or the iteration time exceeds a
predefined threshold. The energy functions are: Econt is the internal continuity spline
energy that helps tomaintain the contour to be continuous, Ecurv is the internal curva-
ture energy for smoothing the periphery, Eimage is external image force that depends
on the image intensity points and Egrow represents the external grow energy that
helps to expand the contour from the center towards the boundary. Mathematically
they can be represented as [26, 27],

Fig. 4 Representation of
active contour (snake) in a
polar coordinate system
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Econt
(
v j

) = ∣∣d̄ − ∣∣v j − vi−1

∣∣∣∣ + ∣∣ρ̄ − ∣∣ρ j − ρi−1

∣∣∣∣ (
v j ∈ �i

)
(36)

where, d̄ = ∑ |vt−vt−1|
n and ρ̄ = ∑ |ρt−ρt−1|

n

Ecurv
(
v j

) = ∣∣vi+1 − 2v j + vi−1

∣∣2 + ∣∣ρi+1 − 2ρ j + ρi−1

∣∣2 (
v j ∈ �i

)
(37)

Eimage
(
v j

) = 1

R

R∑

r=1

I
(
ρ j + r × ρs, θ j

) − 1

R

R∑

r=1

I
(
ρ j − r × ρs, θ j

) (
v j ∈ �i

)

(38)

Egrow
(
v j

) =
{
e if v j = v+

i and
∣∣ Īv j − Īorigin

∣∣ < T
0 else

}
(39)

where, Īv j = 1
k×k

∑
vi∈�v j

I (vi ) and Īorigin = 1
k×k

∑
vi∈�0

I (vi )

�v j and �0 are two k × k (e.g., k = 3) sub-blocks with center points at vi and the
centroid of the contour respectively. The energy will decrease at v+

i if both the sub-
blocks are of the same intensity approximately, resulting in an outward movement
of the contour. This movement stops while the sub-blocks have different intensities.
Threshold T determines the range up to which the change in intensity is allowed. e
is a negative constant, small value of which will limit the algorithm for more shape
restrictions where large value of e also nullifies the effect of image energy for which
the contour can exceed the actual boundary.

5 Reconstructed PA Image Quality Improvement Using
a Multimodal Framework

Biological tissues show significant depth-dependent optical fluence loss and acous-
tic attenuations. Correcting for the optical and acoustic variations are critical for
delivering a quantitative imaging performance [28, 29]. Several techniques have
been proposed for alleviating this problem including the use of exogenous contrast
agents and computing differences in the spatial characteristics of the absorption
coefficient over length scales [30, 31], using multiple optical sources together with
non-iterative reconstruction and use of context encoding within a machine learning
framework [32]. Most of the applied methods use a model of light transport equation
considering a homogeneous medium [33]. Furthermore, for characterizing hetero-
geneous medium, the use of intrinsic (segmented) priors [34], and extrinsic priors
obtained by combining PA with diffused optical tomography [35], acousto-optical
imaging [36] and other imaging modalities have been investigated. However, these
methods require additional computational resources and often hardware support for
multimodal imaging. On the other hand, most current state-of-the-art PA imaging
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Fig. 5 The algorithmic
workflow for multimodal
prior based image correction
for small animal PA imaging.
Reprinted with permission
from [38]

systems come equipped with hybrid ultrasound imaging capabilities. Thus, there is
an increased interest in employing the co-registered US image to improve the per-
formance of quantitative PA imaging [37, 38]. Additionally, the use of integrated
PA-US imaging can further be utilized for the correction of small SoS changes.
Mandal et al. aimed to correct for the optical and acoustic inaccuracies in PA imag-
ing using extrinsic imaging priors obtained through segmentation of concurrently
acquired high-frequency US images [38]. The US prior is used to create a local-
ized fluence map and apply the correct SoS during advanced beamforming. Figure 5
depicts the process diagram. The method outlined by [38] shows that the use of mul-
timodal priors can significantly improve the quantification of PA signals, and further
computer vision methods can be employed to obtain the performance enhancement.
Related publications by Naser et al. [39] have further shown that combining finite-
element-based local fluence correction (LFC) with SNR regularization can estimate
oxygen saturation (SO2) in tissue accurately. Though a detailed discussion on tissue
oxygenation measurement is beyond the scope of the chapter, the readers should
reconcile to the fact that a quantitative measurement is only possible by producing
an accurate estimate of tissue absorption profile. The B-mode ultrasound images
provided a mean for surface segmentation and an initiation point for building the
FEM mesh, which was employed by both research groups.

The PA signal received from a high-frequency linear array system is often not suit-
able for proper segmentation of anatomical structures. Therefore, the co-registered
B-mode US signal is used as a reference frame to segment skin boundaries and
delineated organ structure as well as tumor masses. The segmented prior informa-
tion from the US is then used for iteratively correcting the PA images. A two-step
approach is used to generate the US priors: (1) the skin line is detected using graph
cuts [40, 41], and (2) internal structures were detected using active contour models
(Fig. 5) [27, 42]. The lazy snapping method based on graph cuts separates coarse and
fine-scale processing and enhances object specification and boundary detection even
in low contrast conditions. The satisfactory low SNR performance of the method
with suitable convergence speed makes it an ideal choice for skin line detection in
PA-US images. Earlier in this chapter, we have described active contour methods
in sufficient detail. Modified AC segmentation methods have been used extensively
for visual quality enhancement in PA images. The methods performed efficiently
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for whole-body tomographic images, as well as for 2D linear array geometries.
The majority of commercial LED-PAI systems utilize linear array geometry for sig-
nal acquisition; thus, the outlined methods are translatable to such instrumentations
without many changes.

The algorithmic workflow consists of acquiring the PA signal and beamforming
using the delay and sum algorithm. An automatic SoS estimation is implemented
based on prior temperature information [42]. The images are spectrally unmixed
using 10 optical wavelengths for finding out the tissue oxygenation profile. The US
images are individually segmented and superimposed on the PA image.A deformable
active contour segmentation (snakes) model is used for the segmentation of US
images. The segmented tissue boundary is considered as the starting point for the
model, followed by an iterative segmentation of the tumor region using multiscale
edge detectors.

The (segmented) prior information from the US image is used to delineate the
tumor mass and improve the fidelity of the optical fluence and multiparametric SoS
fitting. Based on the segmented US mask (Fig. 6a), the process can accurately model
the decay of light fluence used. The fluence field, thus created, is used to compen-
sate for the depth-dependent decrease in the PA signal (Fig. 6b–d). Additionally,
given the prior information about the tissue/coupling medium background, a two-
compartment model for SoS calibration can be implemented and fit two different
SoS for the object and the background. In summary, the multimodal segmentation
framework is helpful in addressing both the optical attenuation as well as the acous-
tic attenuation, providing an improved visual image quality and a more quantitative

Fig. 6 Fluence correction improvesCNRperformance and quantitative information of PA images, a
segmented ultrasound image, b referenceMRI image for validation, c co-registered PA-US image, d
fluence fieldmap generated FEMmethodwithUS prior information, e PA imagewithout correction,
and f PA image after correction. Adapted in parts from [38]
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imaging performance in vivo. The advanced multimodal methodologies can be inte-
grated with crucial image processing techniques and imaging physics to achieve
better LED-PAI imaging performance. Interestingly, the small form factor, as well
as the ease of handling LED-based illumination arrays, can make it a modality of
choice for exploring for such multimodal imaging, especially as we enter the realms
of radiological imaging.

6 Summary

The last couple of decades have seen rapid developments in the field of biomedical
PA imaging with the evolution of state-of-the-art small animal imaging scanners and
experimental clinical hand-held platforms. The technology has graduated from the
engineering laboratories to commercial products for pre-clinical imaging, and further
into biomedical/translational imaging platforms. So far, the focus of development in
PA imaging was primarily focused on hardware improvements and solving complex
inverse problems. More recently, researchers have shown the applicability of image
analysis to the current state-of-the-art PA imaging instrumentation. Post reconstruc-
tion signal and image processing methods are increasingly becoming practical tools
for improving the visual image quality of PA imaging. The imaging physics—image
analysis corroboration, as illustrated in this chapter, has led to the development of
new methods for quantitative inversion and parameter self-calibration, resolution
enhancement, and accurate mapping of fluence and acoustic heterogeneities. LED-
based PA systems are in a nascent state itself, and these developments in PA signal
processing will accelerate the growth and clinical adoption of LED-PAI. However,
several additional challenges (e.g., low SNR, reduced imaging depths, errors in mul-
timodal image registration due to high signal averaging requirement) exist in the
application of intelligent image processing techniques in LED-PAI images. In the
future, these advancements will be helpful in enabling quantitative molecular and
oncological imaging using multispectral LED-PAI imaging [43, 44]. This opens
up the possibility of a plethora of new developments, including the development
of machine learning (ML) based algorithms for parameter estimation and image
enhancement. ML-based algorithms can vastly be useful for improved reconstruc-
tion, identification, and segmentation of organs and vascular structures [45]. Finally,
the relatively lower cost, accessibility, and low-profile form factor of LED-based PA
system is bound to accelerate its use in computational PA imaging and encourage
further development in signal and image processing methodologies.
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Data Structure Assisted Accelerated
Reconstruction Strategy for Handheld
Photoacoustic Imaging

Samir Kumar Biswas and Nitin Burman

Abstract In photoacoustic computed tomography (PACT), advanced model based
iterative image reconstruction (MoBIIR) offers several advantages over analytical
methods such as back-projection, time reversal, Fourier transform, delay and sum
algorithms. However, MoBIIR also shows some disadvantages such as requirement
of large storage memory, higher matrix computation time and necessity of selecting
optimum parameters for the right solution. When using model based reconstruction
methods for high resolution photoacoustic and ultrasound tomography, large matrix
computation time is an important concern. In this chapter, we will discuss about
filtered back-projection, time reversal methods, F-K migration and a specific model
based iterative photoacoustic image reconstruction scheme where the direct non-
symmetric photoacoustic system matrix of form Hx = z (where H is m by n matrix
and m > n) has been analyzed in detail using Least Squared Conjugate Gradient
(LSCG) method where the computation of theHTH and thereafter regularization are
explicitly avoided. Apart from this, a unique pseudo-dynamical systems approach
based iterative algorithm is also discussed to demonstrate the insensitivity of tikhonov
type physical regularization (λ), which is used frequently in normal equation of form
HTHx = HTz. However, to implement the algorithms, the photoacoustic equation
is usually discretized over the spatial and temporal domain to form spatial-temporal
interpolated model photoacoustic system matrix (H ), where the data structure for
sparsity is considered for accelerating the computation and hence the reconstruction.
Finally, the applications of algorithms in photoacoustic imaging modality are shown.
The computational requirements of different reconstruction strategies suitable for
handheld photoacoustic imaging are also analyzed and discussed in detail.

Keywords Photoacoustic tomography · Iterative · Reconstruction ·
Regularization · Low noise

S. . K. Biswas (B) · N. Burman
Bio-NanoPhotonics Group, Department of Physical Sciences, IISER Mohali,
P.O. Box 160062, Mohali, India
e-mail: skbiswas@iisermohali.ac.in

© Springer Nature Singapore Pte Ltd. 2020
M. Kuniyil Ajith Singh (ed.), LED-Based Photoacoustic Imaging,
Progress in Optical Science and Photonics 7,
https://doi.org/10.1007/978-981-15-3984-8_7

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3984-8_7&domain=pdf
mailto:skbiswas@iisermohali.ac.in
https://doi.org/10.1007/978-981-15-3984-8_7


160 S. K. Biswas and N. Burman

1 Introduction

Parameter recovery based on information carried by radiation has been the essential
methodology employed in the development of many valuable tools for medical diag-
nostic imaging. Examples are the well known X-ray computer assisted tomography
(CAT),magnetic resonance imaging (MRI), ultrasonic imaging (USI), positron emis-
sion tomography (PET), etc. Each of the abovemodalities possess certain advantages
and some unavoidable disadvantages. For example, the ultrasound based imaging
is affordable and uses non-ionizing radiation, but provides images with low soft-
tissue contrast and probe-dependent spatial resolution, which does not give useful
functional information (for example, the metabolic state of an organ being imaged),
especiallywhen the required resolution is below 200–500mu.Our observation shows
that contrast plays a vital role in enhancing the resolution. The MRI provides good
quality images which can also give functional information with the administration of
external contrast agents, but is prohibitively expensive. To this collection of imaging
techniques, photoacoustic computed tomography (PACT) is a recent addition which
uses the physics of near infrared (NIR) light for enhancing contrast and principle of
ultrasound for improving high resolution in tissue. In PACT, a pulsed light is used for
excitation of certain tissue substances and as a result of light absorption, ultrasound
signals generation occur in the tissue substances through thermo-elastic phenomena.
The process of generating ultrasound with light-matter interaction and use of those
light induced ultrasound signals around the object for reconstructing the absorption
image of tissue substances altogether is known as photoacoustic computed tomogra-
phy (PACT). Near-infrared and ultrasound radiation are non-ionizing and therefore
both can be repeatedly employed without harm to the patient.

Photoacoustic phenomena generates a pressure gradient locallywithin tissue in the
ultrasound frequency regime, by theprocesses of optical absorption and thermoelastic
expansion [2, 3]. The physics of photoacoustic wave propagation can be used to map
the spatial distribution of light absorption in tissue substances (Fig. 1). Photoacoustic
imaging shows clinical level potential in providingdeep-tissue high resolution images
with optical spectroscopic contrast (Fig. 1). This new imaging modality has several
potential clinical applications in cancers [2–5], inflammatory arthritis [6], diabetes,
metabolic rate estimation in healthy as well in disease affected patients. This is also
proven clinically (Fig. 1) through the efforts of a number of researchers around the
globe [1–4, 7]. Usually, light with nanosecond (ns) pulse widths illuminates the
tissue sample. Ultrasound is produced by the PA effect following absorption of light
by tissue substances such as hemoglobin. The pressure waves propagates from high
gradient location to low gradient area and the propagated wave can be detected at
the tissue surface using ultrasound detectors.

The partial differential equation that models the photoacoustic wave propaga-
tion through the acoustically homogeneous medium due to nanosecond pulsed laser
irradiance can be described [8, 9] as
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Fig. 1 Photoacoustic computed tomographic image and ultrasound image in human subject. Com-
paring the resolution and what wee see in photoacoustic and ultrasound image under rheumatoid
arthritis disease in human finger joints. Reproduced with permission from [1]

∇2p(r, t) − 1

c2
∂2p(r, t)

∂2t
= − β

Cp

∂I(t)

∂t
A(r) (1)

where A(r) is the absorbed thermal energy density generated at position r and time
t due to nanosecond pulsed laser irradiance. I(t) is temporal pulsed laser profile.
Cp is the isobaric specific heat of the medium, β is the isobaric volume expansion
coefficient, and c is the acoustic speed. Now if the pulsewidth of the nanosecond laser
is much shorter than the stress relaxation time of the tissue like medium then we can
write the temporal pulse laser profile I(t) with stress confinement condition [8, 9] as
δ(t). The forward solution of above pressure wave equation can be obtained by the
use of Green’s function approach [8, 9] with absorbed energy (A(r)) distribution as;

p(r, t) = β

Cp

∂

∂t

⎡
⎣ 1

ct

∫

R=ct

A(r
′
)dr

′
δ(t − |r′ − r|/c)

⎤
⎦ (2)

The above equation is the pressure propagation equation where the propagation is
estimated by spatial-temporal correlated impulse response function δ(t − |r − r′|/c).
The pressure p(r, t) is an integrated pressure over a circle (in 2D) of radius R = ct
with a spatial sample width dr′. The equation shows that the contribution of the
pressure at time t at detector location (r) is only from a circular strep of width dr

′

at a radial distance ct=‖ r′ − r ‖. Here r
′
is an arbitrary point in the space where

pressure build up occurs due to the photoacoustic effect. Both analytical and model
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based iterative image reconstruction (MoBIIR) have been developed for solving and
modeling Eq.2 for knowing the initial energy deposition at the site of the tissue sub-
stances. To reconstruct the map of total absorbed energy, we will discuss frequently
used filtered back-projection and time reversal methods. In addition to the above
mentioned algorithms, we will discuss in details about Fourier transform assisted
F-K Migration based reconstruction, variants of model based iterative methods such
as a specific model based iterative photoacoustic (PA) image reconstruction scheme
where the direct non-symmetric PA system matrix of form Hx = z (where H is m
by n matrix and m > n) has been analysed in detail using Least Squared Conjugate
Gradient (LSCG) method where the computation of theHTH and thereafter regular-
ization are explicitly avoided. Apart from this, an unique pseudo-dynamical systems
approach based iterative algorithm is also discussed to demonstrate the insensitiv-
ity of tikhonov type physical regularization (λ), frequently used in normal equation
of form HTHx = HTz. The following sections describe various methods in more
details.

2 Analytic Equation Based Algorithms

2.1 Filtered BackProjection Based PACT Imaging

Notable among the algorithms used for solving Eq.2 are the analytic algorithms
based on filtered backprojection (BP) [3, 10] in the time-domain, which assume that
the measured data is a Radon Transform of the object function. The algorithms are
easy to apply for planar, cylindrical and spherical geometries [11]. A drawback of
this method is that it requires a full-view of object with a high number of projections,
and does not provide quantitative solution.

Following are the steps to reconstruct the source image using the back projection
algorithm in photoacoustic tomography. The original photoacoustic source, recorded
signal and their amplitude,time graph and reconstruction with backprojection are
presented conceptually in Fig. 2a–c

1. Start recording photoacoustic signals when t = 0.0 by using ultrasound detector,
as shown in Fig. 2a

2. Filter the signal as per the interest and then extract the time of flight details from
the signal, as shown in Fig. 2b

3. Drawing a circle by taking a detector position as its center and its time of flight
data as the radius(calculated using c = speed of sound), as shown in Fig. 2c

4. Repeating this for each detectors, as shown in Fig. 2c.

Backprojection or filtered backprojection is widely used in qualitative photoa-
coustic image reconstruction due to its simplistic approach, ease of implementation
and speed suitable for quasi real time PA imaging. Downside of this method is that
it does not provide quantitative information.
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Fig. 2 Backprojection’s conceptual presentation through visual graphs

2.2 Time Reversal Based PACT Imaging

In Time reversal (TR) approach, image reconstruction is performed by numerically
propagating the recorded data in reversed temporal order back into the domain [12,
13]. When t = 0 is arrived, the initial pressure distribution is recovered. The advan-
tages of the algorithm are that it can be applied to arbitrarily shaped measurement
surfaces, and has generally been described to be the least sensitive PA algorithm to
restrictions [12]. The method is also gaining its popularity due to the availability of
a free third party MATLAB toolbox, which performs the time reversal image recon-
struction using k-space methods [12]. The drawback of the TR approach lies in the
requirement for the time-reversed waves to traverse the entire domain from detector
coordinates which may entail unnecessary computations in regions which hold little
interest. In cases when the propagation model assumes acoustic homogeneity while
the measurement domain has unknown variations in density and speed-of-sound,
image artifacts can result from the phenomenon of artefact trapping [14]. TRmethod
needs large number projections to obtain high resolution images [12]. Time reversal
conceptual presentation is shown in Fig. 3.

Figure3a represents source and the array detector location, Fig. 3b shows recorded
signal’s amplitude at linear detector array as per the arrival time at their correspond
detectors’ spatial locations. Figure3c–e shows reversed temporal order back into the
spatial domain at three different time samples.

2.3 F-K Migration Based PACT Imaging

Fourier transform can be used to migrate the wave field as per the amplitude and
phase. Originally, migration technique is developed based on the reflecting source
modelwhich assumes that all the field scatterers generate secondary acoustic sources.
The main aim of migration is to reconstruct the secondary source position. Under the
plane wave model, the scattering source estimation problem can be made suitable
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Fig. 3 Time reversal’s conceptual presentation. a Represent source and the array detector location
in space, b recorded signal’s amplitude at linear detector array as per the arrival time at their
correspond detector locations, c–e shows reversed temporal order back into the spatial domain at
three different times

for plane wave imaging by a spatial transformation (F-K) of the hyperbolic traces
present in the raw data. To produce an image of the scatterers, all the hyperbolas must
be migrated back to their apexes. However, the advantage of migration technique is
that it improves focusing by use of amplitude and phase rectifications where the
correction is done for the effects of spreading of ray paths as the waves propagate.
This technique has been used as a basic tool in geophysics since the 1950s [15].

F-K migration takes back the recorded US signal to that time at which the wave
emerges out of the secondary source. It was first developed by Stolt in 1978 for B scan
seismic imaging [15]. Later, it was developed for plane wave ultrasound imaging by
Garcia in 2014 [16]. This algorithm is limited by the assumption of constant wave
velocity [16]. However, its fastest computation time makes it suitable for real-time
ultrasound imaging and same is true for photoacoustic imaging because both imaging
modality uses raw ultrasound data. The assumption to neglect the downward going
waves exactly matches with the PACT. Whereas, in plane wave ultrasound imaging
we have to fit the travel time with the exploding reflector model as shown in Fig. 4.

In plane wave imaging, all the transducer elements emit the ultrasound at the same
time to generate a plane wave. The plane wave proceeds towards the transducer and
interacts with the reflector surface. After the interaction, the reflector(at S(sx, sz), see
Fig. 4) becomes the secondary source and starts to emit radially outwards. usually
the reflected signal is recorded by the linear transducer. The travel time of the wave,
varying with the detector position(x), is given below:
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Fig. 4 x-z plane, where linear transducer is placed on the x axis and reflector in x-z plane. The
arrows represents the direction of propagation

• For exploding reflector model:

ˆt(x) = 1

ĉ

√
(ŝx − x)2 + (ŝz − z)2 (3)

• For plane wave ultrasound imaging:

t(x) = 1

c

(
sz +

√
(sx − x)2 + (sz − z)2

)
(4)

• For plane wave photoacoustic imaging:

t(x) = 1

c

√
(sx − x)2 + (sz − z)2 (5)

In order to use F-K migration in PWI we need to fit its travel time equation with
the exploding reflector model. However, doing so is an unachievable task. Due to the
dependency of wave amplitude with distance, most of the its energy is located at the
apex of the hyperbola. By equating the 0th–2nd order derivative of the Eqs. 3, 4 and
5 we can find out approximate fitting parameters. It yields ĉ = c√

2
and ŝz = √

2sz
for plane wave ultrasound imaging [15] and ĉ = c and ŝz = sz for photoacoustic
imaging.

Lets assume that �(x, z, t) is the scalar wavefield that is a solution to

∇2� − 1

c

∂2

∂t2
� = 0 (6)

We know the scalar wavefield at z = 0, time t. We need to know the scalar wave-
field at distance z at time t = 0 i.e. �(x, z, t = 0) (see Fig. 4).
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The Fourier transform of �(x, z, t) in the (kx, f ) spectrum is defined in the fol-
lowing way:

�(x, z, t) =
∫ ∞∫

−∞
φ(kx, z, f )e

2πι(kxx−ft)dkxdf (7)

Now substituting Eqs. (7) in (6) we get

∇2

[ ∫ ∞∫

−∞
φ(kx, z, f )e

2πι(kxx−ft)dkxdf

]

−1

c

∂2

∂t2

[ ∫ ∞∫

−∞
φ(kx, z, f )e

2πι(kxx−ft)dkxdf

]
= 0 (8)

These derivatives can easily be taken inside the integral and can be evaluated to
get

∫ ∞∫

−∞

[
∂2φ(kx, z, f )

∂z2
+ 4π2

[ f

c2
− k2x

]
φ(kx, z, f )

]
e2πι(kx−ft)dkxdf = 0 (9)

The left hand side of Eq. (9) is the Fourier transform of the terms in the square
bracket in Eq. (9). Now since its right hand side is equal to zero, the function will
also be equal to zero.

∂2

∂z2
φ(z) + 4π2k2z φ(z) = 0 (10)

where,

k2z = f 2

v
− k2x (11)

Nowwe have formulated the problem in the (kx, f ) domain i.e. is a Fourier domain
of (x, t). The boundary condition is now the Fourier transform of�(x, z = 0, t) over
(x, t) i.e. φ(kx, z = 0, f ). Since, Eq. (10) is a second order differential equation, its
unique general solution can be written as

φ(kx, z, f ) = A(kx, f )e
2πιkzz + B(kx, f )e

−2πιkzz (12)

where A(kx, f ),B(kx, f ) are to be determined from the boundary condition. It is
important to note that in Eq. (12) the two terms can be interpreted as the upgoing
(B(kx, f )e−2πιkzz) and downgoing(A(kx, f )e2πιkzz) wavefield (Fig. 5).
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Fig. 5 Various steps for implementing F-K migration and photoacoustic image reconstruction
strategies

Since, we only have one boundary condition, i.e. φ(kx, z = 0, f ), in order to solve
the problem we have to assume a limited model which assumes waves propagating
in one direction only. This means that

A(kx, f ) = 0, B(kx, f ) = φ(kx, z = 0, f ) (13)

Substituting (13) in (12) we get

φ(kx, z, f ) = φ(kx, z = 0, f )e−2πιkzz (14)

Substituting (13) solution in (7) we get

�(x, z, t) =
∫ ∞∫

−∞
φ(kx, z = 0, f )e2πι(kxx−kzz−ft)dkxdf (15)
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Now migrating (15) from time t to t = 0 we get our migrated solution

�(x, z, t = 0) =
∫ ∞∫

−∞
φ(kx, z = 0, f )e2πι(kxx−kzz)dkxdf (16)

This solution has a disadvantage that it is not an inverse Fourier transform of
function φ(kz, z = 0, f ). Stolt in 1978 suggested a change of variable from (kx, f ) to
(kx, f (kz)) to make the migrated solution an inverse fourier transform of φ(kx, z =
0, f (kz)). The variable change is defined by Eq. (11) which then can be solved for f
as:

f = c ×
√
k2x + k2z (17)

=⇒ df = ckz√
k2x + k2z

dkz (18)

Now substituting (17) and (18) in (16) we get

�(x, z, t = 0) =
∫ ∞∫

−∞

ckz√
k2x + k2z

φ(kx, z = 0, f (kz))e
2πι(kxx−kzz)dkxdkz (19)

We have seen that the new FFT-based F-K migration determines the wavefield
at the time of start that is t = 0. Advantage of the F-K migration is that it uses
few mapping and FFT techniques which makes it faster for real time imaging. The
reconstructed images with backprojection (Fig. 6a), time reversal (Fig. 6b) and F-K
migration (Fig. 6c) are compared visually and also based on the computation time.
For computation we have used a PC with Intel(R) Core(TM) i7-6700 CPU @ 3.40
GHz, DDR4 RAM: 32 GB. The computation time for reconstructing images using
BP is 2.6 s, TR is 99.3 s and for F-K migration it is 1.14 s.

Fig. 6 Comparing the reconstruction methods through visual perception and computed time
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3 Model Based Iterative Image Reconstruction Algorithms

Due to constant demand for quantitative and high resolution photoacoustic imag-
ing, model based algorithms are gaining importance. In model based iterative image
reconstruction (MoBIIR) methods, algebraic and matrix methods within an iterative
framework are used to minimize the residue between the model-generated data and
measured data. To implement the MoBIIR algorithms, first we shall discretize Eq.2
and formulate forward model in such a way that it serves to model PA wave propa-
gation [17–22] and relate the spatially discretized initial pressure distribution to the
acquired signals. Such an approach lends itself to application of algebraic and matrix
methods within an iterative framework, for image reconstruction. Now by shifting
r

′
, in Eq.2, we find a new t and then corresponding integrated pressure at a new

radial distance. So a spatial and temporal (spacetime) matrix H can be formed by
shifting the position r

′
(i, j) over the discretized space for a series of sample time tk

and then estimate the boundary pressure (zrd ,tk ) at detector location rd . The deposited
energy A(r) can be expressed over a discretized spatial domain (� ∈ R 2, r,r

′ ∈ �)
as A(i, j). Spatially correlated temporal impulse term for a sampled time, tk over
space ri,j can be written as h(tk − |r ′ − ri,j|/ci,j) 	 δ(t − |r′ − r|/c). The boundary
pressure estimation forward problem can be formulated (assumed η = β

Cp

∂
∂t ) from

Eq.2 over discretized spatial-temporal domain as,

zp(rd , tk) = η
∑
i,j

{ ∫

R=ct

1

ci,j tk
× h(tk − |rd − r

′
i,j|/ci,j)dr

′}
A(i, j) (20)

Algorithm 1 : Algorithm for estimating forward model matrix H and boundary
pressure (zp)
for

all detector positions rd
for

all pixels (i, j) over the discretized image domain xlA
calculate the time of flight tk = ‖ (ri,j - rd )/ci,j‖
Calculate interpolation coefficient pk at neighboring time points of tk
Estimate H (tk , l)= coefficient of pk/(tk cl) ∀ l;
Integrate the pressure over constant sampled time points tk with corresponding coefficient

pk as;
zd ,tk= zd ,tk+

pk
(tk cl )

× xlA
end for

end for

A series of constant time samples (tk = k/fs, where k = 1 . . .m) are considered
and h(t) is evaluated over space (ri,j ↔ rl) to form the propagation system matrix
H . The simplified form of pressure propagation equation can be written with system
matrix H and initial pressure vector xlA ( with β =1, Cp=1) as;
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zp(rd , tk) = η
∑
l,k

H (tk , r
l)xlA (21)

where the initial pressure vector (xlA) is formed from energy absorptionmatrixA(i, j).
The propagation system matrix H is formed with h(t) and its interpolated value
around the sampled time tk . The forward photoacoustic projection integral is com-
puted as shown in Algorithm 1.

The PA forward problem (Eq.21) with system matrix H can be written in matrix
multiplication form as;

zp = HxA (22)

where zp is measurement vector (zp ∈ R
m), H is the system matrix (H ∈ Mm×n(R)

wherem > n) which model the propagation of PA signal and the vector xA (xA ∈ R
n)

represents initial pressure rise. A photoacoustic reconstruction algorithm is used to
solve the PA inversion problem, that is to recover an image of the initial pressure
rise distribution xA inside the tissue from zp, the noisy PA signals measured at tis-
sue boundary. The photoacoustic pressure zp at boundary is obtained by integrating
pressure over a constant sampled time points with linear interpolated coefficients.

The solution is obtainedwithminimizing the residuebetween themodel-generated
(HxA) data and measured data (zp) by iterations. The minimization function [17–22]
for iterative method can be written as;

χ = argmin
χ

‖ zp − HxA ‖2 +λ ‖ xA ‖2 (23)

where λ is a regularization parameter to stabilize the ill-condition of the system
matrix in normal equation. The minimization equation (Eq.23) with Gauss-Newton
scheme lands to the normal equation [21, 22] required to be solved is then of the
form;

[HTH + Iλ]xA = HTzp (24)

The normal equation for photoacoustic inverse problem can be solved with variant
of regularization schemes. The simplest regularization selection method is L-Curve
method where a series of regularization set is formed and the best one which mini-
mizes the residue is chosen. However, Dean-Ben et al. [21] has used a least squares
QR (LSQR) based regularized reconstructionmethodwhere the direct solution vector
from full view data is used as regularization and shown an added advantage of being
highly efficient. Inversion of limited-view data is stabilized using Tikhonov or Total
Variation regularization [17, 19–23] which require explicit selection of an optimal
regularization parameter. Recently, Shaw et al. [22] presented a regularization opti-
mization scheme based on LS-QR decomposition which shows good performance
and computational efficiency with reconstruction time of 444.9 s.
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In order to achieve high accuracy with flexibility in using limited-view data, H
should be a highly discretized large systemmatrix. Further, thematrixH is transposed
to form a square matrix [HTH + Iλ] and the inverse is computationally expensive,
requiring large memory storage. HTH is often dense even when H is sparse [24].
Further, if H is ill-conditioned then the HTH is more ill-conditioned since its con-
dition number is the square of the condition number —{κ(H )}2 [24, 25]. One of
the challenging issues of iterative PA imaging is to balance the trade-off between
the computational efficiency of the reconstruction algorithms and the resolution of
reconstructed images.

To avoid the regularization selection and explicit formulation of HTH , non-
symmetric system matrix equation (Eq.22) can be solved by least squared CGS
method. The steps for solving the non-symmetric PA system matrix are shown in
Algorithm 2.

Algorithm2 : Solving non-symmetricmatrix equationHxA = zp using regularization
free LSCGS scheme.

Input: H and zp
Initialize:
x0A ⇐ 0

s0 ⇐ zp − Hx0A
r0 ⇐ f 0 = HT s0

q0 ⇐ Hf 0

Compute for output: xkA
For each iteration “k” the Least Squared Conjugate Gradient (LSCG) algorithm becomes as;;

α = ‖rk−1‖22
‖qk−1‖22

xkA ⇐ xk−1
A + αf k−1

sk ⇐ sk−1 − αqk−1

rk ⇐ HT sk−1

β ⇐ ‖rk‖22
‖rk−1‖22

f k ⇐ rk + βf k−1

qk ⇐ Hf k

It can be noticed that the inverse Algorithm 2 explicitly avoids calculation of
HTH . The main aim of the algorithm is to estimate the residual zp − Hx and then
multiply it by HT rather than subtracting HTHxA from HTzp. The algorithm 2 uses
few simple vector multiplications and additions which helps to execute it faster due
to use of the sparsity property of H and HT .
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3.1 Symmetry Conjugate Gradient Search (CGS) and Least
Square Conjugate Gradient Search (LSCGS) Based
Reconstruction

It is clear from several studies [17, 19–23] that symmetric normal equation is com-
monly used to model the photoacoustic reconstruction strategies and it is consid-
ered as a starting platform for adding various type of regularization and improv-
ing the reconstruction thereafter. Main goal of the inverse problem is to compute
the eigenvalues of normal equation HTHx=HTzp or in other suitable mathematical
form. Symmetric CG algorithm can be applied to the normal equation either from
[HTH + Iλ]xA = HTzp explicitly or simply extending it through applying vector
multiplications on HT and H in succession. By applying vector multiplication on
HT andH in succession, we can avoid formulatingmatrixHTH which will generally
be dense even whenH is sparse. Formulating the normal equation (HTH ) from data
structure assisted formulated sparse rectangular matrix (H orHT ) does not solve the
problem where the condition number of HTH is the square of the condition number
ofH and, it loses the sparsity which increase the required storage memory forHTH .
However, conjugate gradient algorithms use thematrix andmatrix-vector multiplica-
tions only. So it is not mandatory to form thematrixHTH which leads to cancellation
or loss of sparsity. Due to serious amplification of the spectral condition number (as
it is squared), it introduces error in eigenvalues. The idea of least-squares CG was
originally proposed by Hestenes and Stiefel [26] and, later it came to be known as
CGLS which involves vector computing terms of the form HT (Hx − HTzp) instead
of HTHx − HTzp. The difference between the two methods is entirely the rounding
error, which is important in practical problems where sparsity of the large matrix
need to be preserved for fast computing.

However, in the non-symmetric case, as it is shown in algorithm 2, all previous
search directions are used in order to calculate a new approximation and the rate of
convergence is determined by the Krylov sequence Hr0, H 2r0 and for symmetric
CGS method, the rate of convergence is determined by (HTH )Hr0,(HTH )2Hr0, . . .
as it would have been the case if the normal equations had been used. Here r is the
residue.

3.2 Pseudo-dynamical Systems Approach for PACT Imaging

A regularization-insensitive route to computing the parameter updates using the
normal equations (Eq.21) is to introduce an artificial time variable [23, 27–29]. Such
pseudo-dynamical systems, typically in the form of ordinary differential equations
(ODE-s), may then be integrated and the updated parameter vector is recovered
once when either a pseudo steady-state is reached or a suitable stopping rule is
applied to the evolving parameter profile (the latter being necessary if the measured
data is limited and noisy). Indeed, it has been shown [23, 28–30] that the well
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knownLandweber iterations correspond to an explicit Euler time discretization of the
pseudo-time ODE-s for the Gauss-Newton’s updates (Eq. 21) and appear to exhibit
a self-regularization character depending upon the pseudo time step. This is also
desirable in view of the fact that the addition of the regularization term alters the
minimization problem which we are trying to solve. Moreover, if one adopts an
explicit pseudo-time integration scheme for the ODE-s, an explicit inversion of the
discretized (linear case) operator in the normal equation for PA can be avoided. This
is the best feature of this method which has several advantages when dealing with
singularity and rank deficiency issues.

Here, we will develop a concept of solving the optimized normal equation for
photoacoustic problem as it was said in previous paragraph. The normal form ofmin-
imized photoacoustic equation can be further simplified with a notion of A = HTH
and b = HTzp. The optimized system of linear or non-linear equation (Eq.21) of
many physical, biological, and economic processes can be expressed in a general-
ized form as,

Ax = b (25)

where A ∈ R
N×N is a state companion matrix (for PAT, A = HTH + λI ), b ∈ R

N×m

(b = HTzp in our case) is the constant force matrix and x ∈ R
N×1 is the unknown

solutionvector (x). Since etA and etAμ0 are solutions of ordinary differential equations,
it is natural to consider methods based on numerical integration. For an example, in
a simple case, we solve a homogeneous matrix differential equation such as Ax =
0 with an introduced fictitious time at steady state as ẋ(t) = Ax(t) describing the
evolution of the system on pseudo time. With an initial condition x(t = 0) = x0, the
solution would be of form etAx0. The solution of Eq.25 can be obtained without
inverting the square matrix A. In principle, the solution is obtained from x(t) = etAx0
and can be formally defined by the convergent power series as,

etAx0 = Ix0 + tAx0 + t2A2x0
2! + · · · + · · · (26)

Generally, A is large, dense and non-sparse (in some cases, partially sparse A is
observed) due to formulation of normal equation from the sparse matrix with its own
transpose form. In particular the system of ordinary differential equation arises from
the spatial discretization of a partial differential equation. Typically eA is dense even
ifA is sparse, wewould like to compute this in an iterative way. The iterativemethods
are used for sparse matrix problems where only matrix vector products are needed.
A powerful class of methods that are applicable to many problems are the Krylov
spacemethods [31, 32], inwhich approximations to the solution are obtained from the
Krylov spaces spanned by the vectors {x0,Ax0,A2x0, . . . ,Amx0} for some ‘m’ that is
typically small compared to the dimension ofA. The Lanczosmethod [33] for solving
symmetric eigenvalue problems is of this form and for non-symmetric matrices the
Arnoldi iteration [33] can be used. In this method the eigenvalues of a large matrix
are approximated by the eigenvalues of a Hessenberg matrix of dimension ‘m’.
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Now, we will show how to form a pseudo-dynamic time integral equation of
minimized system Eq.26 of formAx + b = 0. The steady state equation ofAx + b =
0 (obtained from Eq.26) with a fictitious time can be written as time derivative form,

ẋ(t) = Ax(t) + b(t). (27)

Multiplying by factor of e−At throughout and integrating, we obtain

e−At ẋ(t) − e−AtAx(t) = e−Atb(t) (28)

e−At ẋ(t) − Ae−Atx(t) = e−Atb(t)

d(e−Atx)

dt
= e−Atb(t) (29)

Now integrating the above equations in [t, t + �t ] with initial boundary condition
x(t) = x∗, we obtained the pseudo-dynamic time integration equation for updating
the solution vector with f (s) = A(x∗)x∗ − b as,

x(t + �t) = eA�tx∗ +
t+�t∫

t

eA(t+�t−s)f (s)ds (30)

which converges to x̂ as t → ∞. Note that we have assumed A is square and positive
definite. Following the concept of local linearization [29], the linearization point t =
t∗ (such that x∗ := x(t)∗) could be chosen anywhere in the closed interval [t, t + �t]
without affecting the formal error order. While choosing t = t∗ yields the explicit
phase space linearization (PSL) [29], t = t∗ results in the implicit locally transversal
linearization (LTL) [34]. Denoting hd = tk+1 − tk to be the time step and xk := x(tk),
the explicit PSL map corresponding to the continuous update Eq.30 is written as:

xk+1 = eA(tk+1−tk )xk +
t+�t∫

t

eA(tk+1−s)f (s)ds (31)

An explicit strategy for obtaining the parameter updates via a semi-analytical inte-
gration of the pseudo-dynamic linear equation is proposed in this chapter. Despite the
ill-posedness of the inverse problem associatedwith photoacoustic computed tomog-
raphy, adoption of the first derivative update scheme combined with the pseudo-time
integration appears amuted sensitivity to the regularization parameterwhich includes
the pseudo-time step size for integration (Fig. 7).

A digital numerical phantom with two holo circular shape photoacoustic emitting
sources is considered to be embedded in a surrounding medium of size 20 × 20mm
and themedium is discretizedwith 100× 100 square gridswhere the size of eachpixel
is 20.0µm. The initial pressure rise is assumed to be 1 kPa to the both local shapes
and 0 kPa pressure for the background medium. The speed of sound (c = 1500m/s)
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Fig. 7 Reconstructedwith forwardmodel generated datawhichwere detectedwith a line detector of
128 sensors placed at y = 14.5mm. Original image is shown in (a), noisy signal is shown in (b). The
reconstruction are carried out by c BP method, d L-Curve method with regularization (0.001), e L-
Curve method without (near zero, 0.000001) regularization, f LSCGS method, g pseudo dynamic
approach with Tikhonov type physical regularization (0.001), h pseudo dynamic approach with
negligible (near zero, 0.000001) Tikhonov type physical regularization
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is taken to be uniform all over the simulated domain. Numerically generated data
with 128 detectors and data are corrupted with 40% random noise.

For computation we have used a PC with Intel(R) Core(TM) i7-6700 CPU @
3.40 GHz, DDR4 RAM: 32 GB. The computation time was found to be 0.3 s for
BP, more than 8000.3 s for pseudo dynamic system approach, 51.8 s for L-Curve
method with regularization, 128s for L-Curve method without regularization, and
1.5 s for LSCGS method. Selection of time step in pseudo dynamic system is one of
the drawback where computation time depends on the time step size. As the time step
size reduces, the computation time increases due to increase of iteration for smooth
solutions.

4 Numerical Phantom Experiment

Phantoms (physical or numerical) are of paramount importance to evaluate the per-
formance of reconstructed photoacoustic tomographic image either in experiment
or in simulation model. The test objects were developed with the aim of providing
known ground truths with complexity approaching the level of the context in which
the imaging and reconstruction is intended for. For all cases, a numerical phantom
with rectangular shape and circular shape photoacoustic emitting source is designed
and simulations are performed.

A digital numerical phantom with rectangular shape and circular shape photoa-
coustic emitting source were considered to be embedded in a surrounding medium
of size 30 × 30mm and the medium is discretized with 2048 × 2048 square grids
where the size of each pixel is 14.6µm. The initial pressure rise is assumed to be
1 kPa to the both local shapes and 0 kPa pressure for the background medium. The
speed of sound (c = 1500m/s) is taken to be uniform all over the simulated domain.
Figure8 shows simulated phantom, detector orientation and the pressure variation
over the domain. We have considered almost discrete helical shape detector array
orientation for getting very low number of linearly dependent algebraic equations in
the measurement sets. Numerically generated data are corrupted with 40% random
noise.

The image is reconstructed with full view where total number of projection is
12 and total number of detectors in the measurement is 384. Measurement data
expands around 0◦–360◦ of phantom surface. The images are reconstructed with (a)
TR method, (b) BP method, (c) L-Curve method, (d) proposed LSCGS method and
their corresponding images are shown in Fig. 9.

The image is reconstructed with half view where total number of projection
is 6 and total number of detectors in the measurement is 192. Measurement data
expands around 0◦–180◦ of phantom surface. The images are reconstructed with (a)
TR method, (b) BP method, (c) L-Curve method, (d) proposed LSCGS method and
their corresponding images are shown in Fig. 10.
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Fig. 8 Photoacoustic experimental set up for side illumination and the experimentation with ultra-
sound array detector

Fig. 9 Reconstructed with forward model generated 12 projections (half view, 384 detectors) data
expands around 0◦–180◦ of phantom surface. The reconstruction are carried out by a TR method,
b BP method, c L-Curve method, d proposed LSCGS method

Fig. 10 Reconstructed with forward model generated 6 projections (half view, 192 detectors) data
expands around 0◦–180◦ of phantom surface. The reconstruction are carried out by a TR method,
b BP method, c L-Curve method, d proposed LSCGS method
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5 Discussion and Conclusions

Here we have shown several reconstruction schemes where the motivation was to
develop or implement a suitable algorithm for real time handheld photoacoustic
imaging. Analytic equation based reconstruction strategies are quite simple, fast and
provide reasonably acceptable results though it faces challenging drawbacks due
to quantification which can be addressed with well defined reference and standard-
ization. Model based iterative reconstruction algorithm that permits to solve a non-
symmetric matrix (H ∈ Mm×n(R) where m > n) without explicit formation of HTH
and regularization can be used to obtain the photoacoustic solution of large system
matrix. It is shown that this procedure is computationally simple and gives reasonably
good results in terms of computation and resolution. It achieves low computation time
by explicitly avoiding the computation of HTH and regularization. A major advan-
tage of the proposed method is that it takes less memory compared to the normal
equation and is fast in execution compared to the time reversal methods, but slower
than backprojection. Computation time and memory requirement for conventional
image reconstruction methods and certain new inversion algorithms were studied in
detail using numerical phantoms. The computation details have been shown for both
limited view data and full view data when a considerable Gaussian random noise
is added to simulated boundary measurements. The resolution of non-symmetric
system matrix inversion with LSCGS method can be further improved with suitable
interpolation scheme which may introduce larger computation time and this needs
further investigation. A new class of reconstruction strategy with pseudo-dynamic
scheme has been discussed using normal equation where we showed the way to avoid
direct inversion of the system matrix and makes it tikhonov type regularization free.

The total reconstruction computation time with 220 × 220 grid points, 80 MSPS
sampling rate for back projection is 2.46 s and it used 3 GB memory, time reversal
took 1405.4 s and used 2.8 GB memory, L-Curve based normal equation method
took 6510.6 s and used 59.8 GB memory, non-symmetric matrix inversion took 7.4 s
and used 4.5 GB memory, when half view data is considered. When full view data
is considered the computation time with back projection is 4.22 s and it used 3 GB
memory, time reversal took 1411.4 s and used 2.9GBmemory, L-Curve based normal
equation method took 4588.6 s and used 59.9 GB memory, non-symmetric matrix
inversion took 17.2 s and used 5.3 GB memory. The computer used has Processor:
Xenon(R) CPU @2.67 MHz, 60 GB RAM).

The most formidable difficulty in crossing over to a full-blown 3D problem is
the disproportionate increase in the parameter vector dimension (a typical tenfold
increase) compared to the data dimension where one cannot expect an increase
beyond two to three folds [35]. Thus, if 3D iterative image reconstruction algo-
rithms are used, they would require implementation on highly parallelized process-
ing architectures as in graphics processing units (GPUs) [36]. However, considering
resolution and computation time, real time imaging may be possible with F-Kmigra-
tion based reconstruction both for 2D and 3D imaging, provided some calibration is
performed for gathering quantitative information. Getting quantitative information
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fromF-Kmigrationmethod is still a debatable subject. However, combination of F-K
migration and accelerated model based imaging may solve the purpose, where F-K
migration will provide real time imaging capability and accelerated model method
will quantify the parameters.
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Democratizing LED-Based Photoacoustic
Imaging with Adaptive Beamforming
and Deep Convolutional Neural Network

Haichong K. Zhang

Abstract The current standard photoacoustic (PA) imaging technology includes
two hardware requirements: high power pulsed laser for light illumination andmulti-
channel data acquisition device for PA signal recording. These requirements have
been limiting factors to democratize PA imaging because a laser is heavy, expensive
and includes hazardous risk, and most parallel data acquisition technology is avail-
able only in specialized research systems. The goal of this chapter is to provide an
overview of technologies that will enable safer and more accessible PA imaging, as
well as introduce the use of safe and fast light emitting diode (LED) light sources in
combination with clinical ultrasound machines. There are two limiting factors that
prevent achieving this. First, clinical ultrasound machines typically only provide
post-beamformed data based on an ultrasound delay function, which is not suitable
for PA reconstruction. Second, a PA image based on theLED light source suffers from
low signal-to-noise-ratio due to limited LED-power and requires a large number of
averaging. To resolve these challenges, an adaptive synthetic aperture beamforming
algorithm is applied to treat defocused data as a set of pre-beamformed data for PA
reconstruction. An approach based on deep convolutional neural network trains and
optimizes the network to enhance the SNR of low SNR images by guiding its feature
extraction at different layers of the architecture. We will review and discuss these
technologies that could be the key to advancing LED based PA imaging to become
more accessible and easier to translate into clinical applications.
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1 Introduction

Photoacoustic imaging is an emerging modality offering unique contrast of optical
absorption and imaging depth of ultrasound for a wide range of biomedical applica-
tions [1]. The clinical accessibility of photoacoustic (PA) imaging is limited because
of specific hardware requirements including high energy pulsed laser and channel
data acquisition system [2–5]. Most laser systems used for PA imaging provide high
pulse energy in themJ scalewith a low pulse repetition frequency (PRF) of 10–20Hz.
These laser systems are bulky, expensive, and unsafe, requiring eye protection, such
as laser glasses. Installation at a hospital would require a special room that meets the
laser safety requirements.

To democratize PA imaging toward broader clinical applications and its usage in
research, a light source that is compact, low-cost, and safe to use is desired. Light
emitting diode (LED) light sources have been considered as a viable alternative
[6, 7]. Compared to high power laser systems, the LED-based light source has the
advantage in terms of size, cost, and safety. Most importantly, the LED light source
is not classified as a laser, so laser safety regulations such as the light shield and laser
safety glasses are not required. The limitation of an LED light source is its low output
power. Series of LEDs can generate energy only in the range of µJ, while common
high-power pulsed laser used for PA imaging produce energy in the mJ range. Due to
the low power output, the received PA signal of an LED-based system suffers from
low signal-to-noise-ratio (SNR). Current technology aiming to improve the SNR
is based on acquiring multiple frames of PA signals, and subsequently perform an
averaging over them to minimize the noise. Though the pulse repetition frequency of
a LED-based system is much higher (in range of kHz) than the high-power laser, an
averaging over many frames, typically thousands, reduces the effective frame rate of
PA images. Furthermore, a large number of averaging frames require longer scanning
times, leading to potential motion artifacts in reconstructed PA images.

The other hardware challenge is the accessibility of data acquisition (DAQ)
devices used for PA imaging [8, 9]. Pre-beamformed channel data from acquisi-
tion devices are required to collect the raw PA signals because PA reconstruction
requires a delay function calculated based on the time-of-flight (TOF) from the light
source to the receiving probe element, while US beamforming considers the round
trip initiated from the transmitting and receiving probe element. Thus, the recon-
structed PA image with an ultrasound beamformer would be defocused due to the
incorrect delay function. Real-time channel data acquisition systems are only acces-
sible from limited research platforms. Most of them are not FDA approved, which
hinders the development of PA imaging in the clinical setting. Therefore, there is a
demand to implement PA imaging on more widely used clinical machines.

To broaden the impact of clinical PA imaging, this paper presents a vendor-
independent PA imaging system utilizing ultrasound post-beamformed data, which
is readily accessible in some clinical scanners. While a LED light source with low
energy output and high PRF is used to replace a conventional high energy laser,
a deep neural networks-based approach is presented to improve the quality of PA
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Fig. 1 The conventional photoacoustic imaging architecture and the new paradigm introduced in
this chapter using LED light source and clinical ultrasound machine

images as well as reduce the number of averaging frames in image reconstruction.
Figure 1 summarizes the process of PA image formation based on conventional archi-
tecture compared with the proposed paradigm incorporating a LED light source and
a clinical ultrasound machine.

In this chapter, we review two enabling technologies for a LED-based and PA
imaging system integrated with clinical ultrasound scanners; the image reconstruc-
tion approach using a post-beamformed RF data and the deep neural network-based
SNR enhancer.

2 Image Reconstruction from Post-beamformed RF Data

2.1 Problem Statement

The acquisition of channel information is crucial to form a PA image, since typical
clinical ultrasonicmachines only provide access to beamformed data with delay-and-
sum [2, 8]. Accessing pre-beamformed channel data needs customized hardware and
parallel beamforming software and is available for dedicated researchultrasoundplat-
forms, such as the Ultrasonix DAQ system [9]. In general, these systems are costly
with fixed data transfer rates that prohibit high frame rate, real-time imaging [10].
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More importantly, PA beamforming is not supported by most clinical ultrasound sys-
tems. Harrison et al. has suggested changing the speed of sound parameter of clinical
ultrasound systems [11]. Software access to alter the sound speed is not prevalent,
however, and the range for this change is restricted when available, making this
choice inadequate for reconstruction of PA images. In addition, the applicability of
this technique is restricted to linear arrays, because angled beams (e.g. as in curvilin-
ear arrays) changebeamformer geometry and the speedof sound.Thus, compensation
cannot be made by merely altering the sound velocity. In contrast, several clinical
and research ultrasound systems have post-beamformed radio frequency (RF) data
readily available. The objective in this section is to devise a PA image reconstruction
approach based on ultrasound RF data that the system has already beamformed. A
synthetic aperture-based beamforming algorithm, named Synthetic-aperture based
PhotoAcoustic RE-beamforming (SPARE), utilizes ultrasound post-beamformed RF
data as the pre-beamformed data for PA beamforming [12, 13]. When receive focus-
ing is applied in ultrasound beamforming, the focal point can be regarded as a virtual
element [14–16] to form a set of pre-beamformed data for PA beamforming. The
SPARE beamformer takes the ultrasound data as input and outputs a PA image with
the correct focal delay applied.

2.2 Technical Approach

2.2.1 Ultrasound Beamforming

The difference between ultrasound and PAbeamforming is the acoustic time-of-flight
(ToF) and related delay function. The delay function in delay-and-sum beamforming
is calculated from the distance between the receivers and the target in ultrasound
image reconstruction [17]. The acoustic wave is first transmitted from the ultrasound
transducer via a medium with a specific velocity, reflected at boundaries, and the
backscattered sound is received by the ultrasound transducer. The acousticToFduring
this process can be formulated as,

tU S(rF ) = 1

c
(|rT | + |rR|), (1)

where rF is the focus point originating from the ultrasound image coordinates, rT is
the vector from the transmit element to the focal point, rR is the vector from the focal
point to the receive element, and c is the speed of sound. Sequential beamforming
with dynamic focus or fixed focus is applied as a delay-and-sum algorithm in clinical
ultrasound systems. In dynamic focusing, the axial component, zF , of the focusing
point differswith depth, while a single fixed depth focus is used for the fixed focusing.

The acoustic TOF of PA signals is half of that of ultrasound, because the acoustic
wave is produced at the target by absorbing light energy, and the time to travel from the
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Fig. 2 Conventional PA imaging system (a) and proposed PA imaging system using clinical ultra-
sound scanners (b). Channel data is required for PA beamforming because ultrasound beamformed
data is defocused with the incorrect delay function, where the introduced approach treats this
information as pre-beamformed data for additional beamforming

optical transmission side negligible. Therefore, the acoustic TOF for photoacoustic
imaging is

tP A(rF ) = |rR|
c

. (2)

Considering the differences between Eqs. (1) and (2), when beamforming is
applied to the received PA signals based on Eq. (2), the beamformed RF signals
are defocused (Fig. 2).

2.2.2 Synthetic Aperture-Based Re-beamforming

In the SPARE beamforming, the beamformed RF data from the ultrasound scanner
is not considered as defocused useless data, but as pre-beamformed RF data for PA
beamforming. The additional delay-and-sum step is applied on the beamformed RF
data, and it is possible to reconstruct the new photoacoustically beamformed RF data.
The focus point in the axial direction is constant with depth when fixed focusing is
applied in the ultrasound beamforming process, suggesting that optimal focusing
has been implemented at the particular focal depth with defocused signals appearing
elsewhere. Initiating from the single focal depth, the defocused signals appear as
if they were transmitted from the focal point (i.e. a virtual element as illustrated in
Fig. 3b). In this sense, the ultrasound post-beamformed RF data is considered as PA
pre-beamformed RF data. The TOF from the virtual element, when a fixed focus at
zF is applied, becomes
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Fig. 3 Illustration of channel data and the SPARE-beamforming process [55]. a In channel data,
the wave front of received RF signals expand corresponding to the depth (green line). The red lines
indicate fixed focus delay function. b When fixed receive focusing is applied, the delay function
is only optimized to the focus depth (red line). c As a result of fixed receive focusing, the focal
point can be regarded as a virtual point source, so that inverse and forward delay and sum can be
applied. d Similarly, dynamic focusing could be regarded as a specific case of that in which the
virtual element depth zF is the half distance of re-beamforming focal depth zR
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where

∣
∣r ′

R

∣
∣ =

√
(xR)2 + (zR − zF )2, (4)

and r ′
F = rF − zF . xR and zR is the lateral and axial components of rR, respectively.

The dynamic receive delay function is applied in the positive axial direction when
zR ≥ zF , and negative dynamic focusing delay is applied when zR < zF . The
diagrams in Fig. 3b, c show the re-beamforming process of the SPARE-beamformer.
Post-beamforming processes such as envelope detection and scan conversion are
applied on the reconstructed data for the PA image display.

This theory applies to both fixed and dynamic focused beamformed ultrasound
RF data with difference being that in dynamic focusing, the round-trip between
the transmitter and the reflecting point in conventional ultrasound imaging must
be considered along with the location of the virtual point source. Thus, in SPARE
beamforming of dynamically focused data, the virtual point source depth, zF , is
considered to be dynamically varied by half of the photoacoustic beamforming focal
point depth, zR, as illustrated in Fig. 3d. Note that zR = 2zF is always true in this
special case.
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2.3 Simulation Evaluation

The concept validation was performed through the ultrasound simulation tool, Field
II [18]. A 128-element, 0.3 mm pitch, linear array transducer was assumed to be a
receiver, which matches the setup of the experiment presented in Sect. 2.4. The stan-
dard delay-and-sumPAbeamforming algorithmwas applied to the simulated channel
data in order to provide a ground-truth resolution value for this setup. Five-point tar-
gets were placed at depths of 10 mm to 50 mm with 10 mm intervals. To simulate
defocused data, delay-and-sum with dynamic receive focusing and an aperture size
of 4.8 mm was used to beamform the simulated channel data assuming ultrasound
delays. The simulation results are shown in Fig. 4. The ultrasound beamformed RF
data was defocused due to an incorrect delay function (Fig. 4b). The reconstructed
PA images are shown in Figs. 4c–d. The measured full width at half maximum
(FWHM) is shown in Table 1. The reconstructed point size was comparable to the
point reconstructed using a 9.6 mm aperture on the conventional PA beamforming.

Fig. 4 Simulation results. aChannel data.bUltrasound post-beamformedRF data. cReconstructed
PA image from channel data with an aperture size of 9.6 mm. d Reconstructed PA image through
SPARE beamforming

Table 1 FWHM of the simulated point targets for corresponding beamforming methods

FWHM (mm) Control using channel data SPARE-beamforming

10 mm depth 0.60 0.63

10 mm depth 1.02 0.99

10 mm depth 1.53 1.43

10 mm depth 1.94 1.91

10 mm depth 2.45 2.42
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2.4 Experimental Demonstration

The PA sensing system was employed for evaluating the LED-based PA imaging
performance; a near-infrared pulsed LED illumination system (CYBERDYNE INC,
Tsukuba, Japan) was used for PA signal generation. To collect the generated PA sig-
nals, a clinical ultrasound machine (Sonix Touch, Ultrasonix) with a 10 MHz linear
ultrasound probe (L14-5/38, Ultrasonix) was used to display and save the received
data. A line phantommadewith fishingwirewas imaged to evaluate the SNR and res-
olution performance. The ultrasound post-beamformedRFdatawith dynamic receive
focusingwas then saved. To validate the channel data recovery through inverse beam-
forming, the raw channel data was collected using a data acquisition device (DAQ).
Figure 5 shows the experimental results imaging the cross section of a line phantom
[19, 20]. The control data was reconstructed from channel data collected from the
DAQ. The SPARE result used the ultrasound post-beamformed data collected from
the ultrasound scanner as the input. The SPARE algorithm produced better imaging
contrast and SNR when comparing the inherent resolution of the two methods. By
quantifying the SNR change over the number of averaging, these twowere correlated
in a log-linear model for both with and without the use of channel data, depicted in
Fig. 5b. In result, the gradient of the SPARE method was larger than conventional
PA reconstruction from channel data, because the ultrasound beamformed data was
summed already across the aperture once even with incorrect focus, and the random

Fig. 5 Experiment results with LED light source imaging line phantom. a Comparison of control
using channel data from DAQ and SPARE results using ultrasound post-beamformed data. b SNR
analysis of both control and SPARE results. c Resolution analysis of SPARE results. Resolution
improvement was hindered at FWHM of 2 mm due to the aperture size [19, 20]
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Fig. 6 In vivo PA imaging
of human fingers using LED
light source. Experimental
configuration of ultrasound
and PA images of human
fingers are shown. PA images
were reconstructed using
channel data from a DAQ
device and beamformed RF
data with the SPARE
algorithm [19, 20]

noise can be suppressed in this process. The control result showed better spatial res-
olution compared to the SPARE result because the ultrasound beamformed data was
formed from a restricted aperture size (maximum 32 elements) due to restriction of
the ultrasound scanner, while the channel data could utilize the complete aperture
for reconstruction (Fig. 5c).

Human fingers were imaged using 850 nm LED bars for an in vivo experiment
(Fig. 6). The channel data was collected first, then the ultrasound beamformed data
was produced to compare standard and suggested solutions to beamforming. The
raw channel data was averaged 3000 times to maximize the imaging contrast. It was
verified that the SPARE approach could achieve comparable image quality to the
channel data.

2.5 Discussion

The introduced SPARE method would work for any structures that have high optical
absorption such as blood vessels that show strong contrast for near-infrared wave-
length light excitation. Reconstruction artifacts such as side lobe and grating lobe
could appear and influence non-point targets making the image quality of SPARE
image was worse than standard PA image using channel data. The algorithm could
also be incorporatedwith clinical ultrasoundmachines in real-time imaging schemes.
Theoretically, the SNR of two beamformers should be similar, and this discrepancy
could be attributed to the summation of axially distributed coherent information
twice, once for each beamforming step. When the SNR of the channel signals is
considerably low, the reconstructed image may contain a noise-related gradation
artifact as the number of summations differs for each focal point. Hence, beamform-
ing with the full aperture is more suitable in this high-noise situation. The image
quality improvement strategies (apodization, transmit gain compensation, etc.) are
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expected to have a comparable impact on the SPARE image enhancement. Apodiza-
tion improves the appearance of the reconstructed image, because it reduces the
sidelobes in the ultrasound beam.

The suggested technique is superior than the speed of sound adjustment approach
[11] and is applicable to steered beams (e.g. phased arrays) and to beam geometries
that vary from linear arrays (e.g. curvilinear arrays). As formulated in Eqs. (3) and
(4), the proposed beamformer applies a delay-and-sum assuming the PA signals are
received at the virtual element. Therefore, even if the ultrasound beam is angled, the
delay-and-sum algorithm is still applicable with the virtual element created by the
angled beam.

Suppression of ultrasound transmission may be regarded as another system
requirement. The ideal solution is to turn off the transmit events. However, if this
function is not available, an option is to lower the transmission energy voltage. The
use of an electrical circuit to regulate the timing of the laser transmission is another
strategy. Subtracting the images with and without laser excitation would highlight
the PA signals.

One system requirement for the SPARE beamformer is a high pulse repetition fre-
quency (PRF) laser system. In order tomaintain the frame rate, so that it is comparable
to that of ultrasound B-mode imaging, the PRF of the laser transmission should be
the same as the ultrasound transmission rate, in the range of at least several kHz. In
fact, a high PRF laser system, such as a LED, is idealistic. Based on the assump-
tion that the LED frame rate is 16,000 and the reception ultrasound has 128 lines of
acquisition, Fig. 7 summarizes the estimated frame rate and laser energy by varying
the number of averaging. Since SNR improvement under averaging is the square root
of the number of averaging, outputting 1 mJ and 5 mJ light source energy requires
25 and 625 times averaging, respectively. The highest frame rate available when the
DAQ unit is accessible is 625 and 25.6 frames per second, respectively. When a clin-
ical ultrasound scanner was used for data acquisition, the frame rate becomes 5 and
0.2 frames per second, respectively. Using clinical ultrasound machine, the highest
frame rate available is 125 without averaging.

The novelty of the SPARE algorithm suggested its potential for integration with
clinical ultrasound scanners to become real-time imaging systems [21]. Most real-
time photoacoustic imaging systems are currently based on open platform research
systems [9]. However, the option of using a clinical ultrasound system already with
FDA approval eases the transition of photoacoustic technology into the clinic. Poten-
tial applications include in vivo real-time photoacoustic visualization for brachyther-
apy monitoring [22–24], brain imaging [25–28], image-guided surgery [29, 30],
interventional photoacoustic tracking [31], multispectral interventional imaging [32,
33], and cardiac radiofrequency ablation monitoring [34].
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Fig. 7 Numerical estimation of frame rate using a LED system. Frame rate (a, d) and estimated
energy (b, e) by varying the number of averaging, and the relationship between frame rate and
estimated energy (c, f) are shown using a DAQ device (a–c), and using a clinical ultrasound system
(d–f) for data collection

3 SNR Enhancement with Convolutional Neural Network

3.1 Problem Statement

The most classic and conventional strategy to improve the SNR with a low-power
light source such as the LED-based scheme is averaging, obtaining multiple frames
(ten, hundreds, or a few thousand) of the same sample, then averaging them over.
When the noise has its distribution of o, , the noise distortion after the averaging of N
times is expressed as

σavg−N =
√
N

N
σ, (5)

and the SNR improvement is proportional to the number of frames used for averag-
ing. While using more frames to average earns an enhanced SNR, it decreases PA
imaging’s effective frame rate. Reduced frame rate makes it difficult to adapt this
technology tomoving objects, like the heart, and prone tomotion artifacts. The signal
processing approaches, such as adaptive denoising, empirical mode decomposition,
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wavelet transform or Wiener deconvolution could be used to tackle the limitation
of averaging [7, 35]. Coded excitation is a strategy that increases the SNR without
compromising the measurement time. In temporal encoding, the laser pulses are sent
with a special encoded pattern without the need for waiting the acoustic TOF. The PA
signals with an improved SNR are decoded from the received encoded RF signals.
Golay codes [36] and m-sequence family (such as preferred pairs of m-sequences
and Gold codes) [37, 38] have been proposed for temporal encoding. The limitation
of coded excitation is that it presents its benefit only if the pulse interval is shorter
than that of the acoustic TOF, thus ultra-high PRF lasers with hundreds kHz or sev-
eral MHz pulsing capabilities are required. Therefore, a more generalized approach
is needed to improve the SNR for the usage of LED light source.

A recently emerging approach based on deep convolutional neural networks is a
powerful alternative. Deep neural networks have been introduced to image classi-
fication [39, 40], image segmentation [41], image denoising [42] and image super-
resolution [43–46] and outperforms state-of-the-art signal processing approaches.
The published image enhancement techniques are based on stacked denoising auto-
encoder [42], densely connected convolutional net [46] or including perceptual loss
to enhance the spatial structure of images [44]. Neural networks have been applied
on PA imaging for image reconstruction [47–49] and removal of reflection artifacts
[50]. This section focuses on the usage of deep convolutional neural network to dif-
ferentiate the main signal from the background noise and to denoise a PA image with
a reduced number of averaging.

The introduced architecture consists of two key components; one is convolutional
neural networks (CNN) that extracts the spatial features, and the other one is recur-
rent neural networks (RNN) that leverages the temporal information in PA images.
The CNN is built upon a state-of-the-art dense net-based architecture [46] that uses
series of skip-connections to enhance the image content. Convolutional variant of
short-long-term-memory [51, 52] is used for the RNN to exploit the temporal depen-
dencies in a given PA image sequence. Skip-connections are integrated throughout
the networks, including both CNN and RNN components, to effectively propagate
features and eliminate vanishing gradients. While the full description of approaches
can be found in Refs. [53, 54], this section provides digest of them.

3.2 Deep Convolutional Neural Network

Adense net-basedCNNarchitecture to denoise PA images is introduced byAnas et al.
[46, 53, 54]. The PA image with a limited number of averaging is used as the input,
and the objective is to produce a high-quality PA image that provides an equivalent
SNR compared to a PA imagewith a considerably high number of averaging. Figure 8
shows the deep neural network architecture [46]. The network focusing on improving
the image quality of a single PA image is illustrated in Fig. 8a. The number of feature
maps in each convolutional layer is defined as ‘xx’ in ‘Conv xx’. The architecture
consists of three dense blocks, and each dense block is composed of two densely
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Fig. 8 A schematic of the introduced deep neural network-based approach (Reproduced from [53]).
a The dense net-based CNN architecture to improve the quality of PA image. The architecture
consists of three dense blocks, each dense block includes two 3 by 3 dense convolutional layers
followed by rectified linear units. b The architecture that integrates CNN and ConvLSTM together
to extract the spatial features and the temporal dependencies, respectively

connected convolutional layers and rectified linear units (ReLU). The benefit of
using the dense convolutional layer is elimination of the vanishing gradient problem
of deep networks [55] because all the features initially produced are inherited and
succeeded in the following layers. The output image is produced by convoluting the
feature map with all features from the concatenated dense blocks.

In addition to CNN, a recurrent neural network (RNN) [56, 57] is implemented
to mitigate the temporal dependencies in a specific sequence. While several variants
of RNN have been reported, and long-short-term-memory (LSTM) [51] showed the
most successful performance in different applications. ConvLSTM [52] is an exten-
sion of LSTM that uses the convolution operation to extract temporal features from
a series of 2D maps. The introduced architecture combining CNN and ConvLSTM
to improve the denoising performance is shown in Fig. 8b. The architecture takes as
inputs a series of PA images in different time points. It initially uses CNN to obtain
the spatial features and then subsequently utilizes ConvLSTM to exploit the temporal
dependencies. Two layers of ConvLSTM including skip connections are used for the
recurrent connection. At the end, all the features generated in the previous layers are
concatenated to compute the SNR improved PA image as the final output.

3.3 Experimental Demonstration

The concept was validated by training the network and assessing the SNR enhance-
ment with a point target and proved further with human fingers in vivo. Two sets of
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LEDbar-type illuminatorswere placed on both sides of a linear ultrasound transducer
array for the image setup. The LED’s pulse repetition frequency was set at 1 kHz
and PA data acquisition was synchronized with the LED excitation. PA images of the
point target from the wire phantom were used to train the neural networks, assuming
that those PA images with multiple point targets at different depths enable our net-
work to learn how to improve the quality of the point spread function. The trained
network with a point spread function can be applied to any arbitrary function of PA
target.

The number of averaging was used to control the reconstructed image quality to
produce input data consisting of low and high SNR target PA images for the training.
For low SNR inputs, lower values of N in the range of 200–11,000 was chosen,
with a step of 200. The averaging frame numbers in the sequence can be represented
as {Ns; 2Ns; 3Ns; …; N0} corresponding to time index {t1; t2; t3; …; tN0}, where
Ns was set to 200, and N0 was 11,000. For each chosen value of N, the large set
of 11,000 frames was split into several subsets, where each subset consists of N
frames of PA signals. For each subset of N frames data, the PA signals are averaged
first, followed by reconstruction to obtain one post-processed PA image. With the
collection of 11,000 frames for one phantom sample, the greatest possible quality PA
image can be achieved by reconstructing it from the averaged signal over all frames,
which is regarded as the ground truth target image. Note that for each experiment,
there is only one gold-standard target image that corresponds to more than one input
sequences. Mean square losses are used as a loss function between the predicted and
gold-standard target PA images. To minimize the loss function, TensorFlow library
(Google, Mountain View, CA) with Adam [58] optimization technique is used. The
quantitative assessment was performed with the independent test dataset. The peak-
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) were used as
evaluation indices that compare the output of our networks with the highest quality
target image [59].

The comparison of PSNRand SSIMof two techniques using deep neural networks
(CNN-only and RNN + CNN) for different averaging frame numbers is shown in
Fig. 9a, b. The solid line in the figure shows the mean value for each computing
method calculated from 30 test samples. The shaded region reflects the correspond-
ing standard deviation of each evaluation index. While both deep neural network
approaches outperform the SNR enhancement over averaging, the approach of RNN
+ CNN presented the highest performance among them. The improvements of RNN
+CNN in PSNRs of 5.9 dB and 2.9 dB was accomplished on average with respect to
averaging and CNN-only techniques, respectively. Figure 9c presents the amount of
frame rate enhancement two deep neural network approaches relative to averaging
to attain certain PSNA. The gain is calculated with respect to the frame number of
the averaging approach. For example, at a mean PSNR of 35.4 dB, the RNN+CNN,
CNN-only and averaging techniques need 1360, 3680 and 11,000 averaging frames,
respectively. When the averaging approach was treated as reference, the RNN +
CNN and CNN-only achieved gains in the frame rate of 8.1 and 3.0 times, respec-
tively. With the deep neural network approaches, the improved frame rate can be
achieved without compromising the SNR.
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Fig. 9 A comparison of PSNR and SSIM of our (RNN+CNN)method with those from the simple
averaging and CNN-only methods [53]. a PSNR versus averaging frame numbers. An improvement
at all the averaging frame numbers is seen for our method compared to the two other methods. A
higher improvement rate of the method is observed compared to the CNN-only method. b SSIM
versus averaging frame numbers. Unlike CNN-only method, the trend of improvement is observed
with the averaging frame numbers for our method. c Gain in frame rate versus mean PSNR

Figure 10 shows a qualitative comparison among all three comparative methods
for proper digital arteries of three fingers of a volunteer (anatomy is shown at bottom
in the figure). Three blood veins were noticeable for each finger, where enhanced
blood vessel detections were observed for the RNN + CNN approach (highlighted
by arrows). Note that the PA image averaged from the 5000 frames (high quality in
the figure) includes some remaining noises and artifacts due to the movement during
the scanning period.

Fig. 10 A comparison of our method with the averaging and CNN-only techniques for an in vivo
example [53]. Improvements are noticeable compared to those of other two methods in recovering
the blood vessels (marked by arrows)
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The GPU computation times are 15 and 4 ms for RNN + CNN and CNN-only
methods, respectively. The corresponding run-times in the CPU are 190 and 105 ms,
respectively.

3.4 Discussion

This section presented a deep neural networks approach to improve the quality of
PA images in real-time while simultaneously reducing the scanning period. Besides
using CNN to obtain the spatial features, RNN is used in the architecture to exploit
the temporal information in PA images. The network was trained using a sequence
of PA images from 32 phantom experiments. On the test from 30 samples, a gain
in the frame rate of 8.1 times is achieved with a mean PSNR of 35.4 dB compared
to the conventional averaging approach. A temporal PA sequence allows the neural
networks to learn the image and noise contents more effectively than a single image-
based CNN-only network does. In addition, for the CNN-only method, saturation in
both image quality indices is observed for higher averaging frame numbers (Fig. 9a,
b) indicating a decrease in the rate of improvement with a rise in the averaging frame
number, as opposed to the higher improvement rate for the CNN + RNN method.
Furthermore, the improved performance of the deep neural network approach was
demonstrated through an in vivo example (Fig. 10). The key benefit of the technique
is that it could improve the image quality from a reconstructed image with low
averaging frame number, thus eliminating the potential effect of the artifacts.

4 Conclusions and Future Directions

In this chapter, we reviewed a paradigm on PA imaging using LED light source
and image reconstruction with ultrasound post-beamformed RF data from a clini-
cal ultrasound system. SPARE-beamforming takes the post-beamformed data and
compensate the delay error by producing a PA image. Simulation and experimental
studies presented that this approach can achieve an equivalent resolution compared
to PA image generated from channel data. In addition, it was demonstrated that deep
neural networks have a potential to exploit the temporal information in PA images
for an improvement in image quality as well as a gain in the imaging frame rate.

Future directions along the line of this research include the exploration of develop-
ing beamforming algorithms utilizing more accessible data from clinical ultrasound
machine such as post-beamformed B-mode images. It was reported that if the PA
target is a point-like target, the post-beamformed B-mode image can be used as the
source for PA image recovery [60]. For the image quality enhancement based on
deep neural networks, more extensive in vivo evaluations are required to validate the
clinical translatability. Other training architectures that do not take the final B-mode
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image but pre-beamformed or post-beamformed RF data may enhance both SNR
and resolution of a PA image [61].
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Deep Learning for Image Processing
and Reconstruction to Enhance
LED-Based Photoacoustic Imaging

Kathyayini Sivasubramanian and Lei Xing

Abstract Photoacoustic imaging is a rapidly growing imaging technique which
combines the best of optical and ultrasound imaging. For the clinical translation
of photoacoustic imaging, a lot of steps are being taken and different parameters
are being continuously improved. Improvement in image reconstruction, denoising
and improvement of resolution are important especially for photoacoustic images
obtained from low energy lasers like pulsed laser diodes and light emitting diodes.
Machine learning and artificial intelligence can help in the process significantly.
Particularly deep learning based models using convolutional neural networks can
aid in the image improvement in a very short duration. In this chapter we will be
discussing the basics of neural networks and how they can be used for improving
photoacoustic imaging.Wewill also discuss few examples of deep learning networks
put to use for image reconstruction, image denoising, and improving image resolution
in photoacoustic imaging. We will also discuss further the possibilities with deep
learning in the photoacoustic imaging arena.

1 Introduction

1.1 Photoacoustic Imaging

Photoacoustic (PA) imaging is a hybrid imaging technique which has gained impor-
tance in the last several years [1–4]. It is based on the photoacoustic effect discovered
by Alexander Graham Bell in 1881 [5]. He observed that light energy absorbed by a
material results in an acoustic signal. He demonstrated this with an apparatus called
photophone which he designed. Almost after a century, it started gaining importance
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as we discovered that it can be used for the purpose of imaging. The major advantage
of photoacoustic imaging is that it combines the best features of two different imaging
modalities: the contrast of optical imaging and the resolution of ultrasound imaging
[1, 6]. Photoacoustic imaging is based on the principle that when a pulsed laser light
(pulse width in the range of nanoseconds) falls on a sample, if the sample absorbs the
light at the particular wavelength then it undergoes a small increase in temperature
in the order of milli kelvin (mK). Following the heating, there occurs thermoelastic
expansion of the sample, which leads to the generation of the pressure waves. The
pressure waves can be detected as photoacoustic waves by ultrasound transducers.
The sound waves captured by the transducers are then reconstructed to form images
known as photoacoustic images [7, 8]. Contrast agents are very important for pho-
toacoustic imaging because when a sample is irradiated with a particular wavelength
of light, only if the contrast agent absorbs light at that wavelength, detectable pho-
toacoustic waves will be emitted from the sample [9–11]. The imaging wavelength is
usually in the visible and the near-infra red (NIR) region of the optical spectrum, very
recently the second NIR window is being explored for PA imaging [12]. Therefore,
availability of contrast agents in thesewavelength regions is very critical for PA imag-
ing. Fortunately, there are some intrinsic contrast agents like blood (hemoglobin),
melanin, lipids, etc. present in the human body which provides great contrast in the
visible and near infrared spectrum [13–16]. However, the contrast from these are only
sufficient and suitable for imaging certain body parts and for certain applications.
Therefore, for imaging other organs and for different applications, the use of extrin-
sic contrast agents becomes inevitable. Some of the most commonly used extrinsic
contrast agents are organic dyes, inorganic dyes, nanoparticles, nanomaterials, etc.
Constant research is being done to develop highly efficient photoacoustic contrast
agents [17–25]. Different forms of photoacoustic imaging are available like pho-
toacoustic microscopy, tomography, endoscopy etc. [16, 26–32]. The applications
of photoacoustic imaging ranges from cellular level imaging to systems imaging.
Photoacoustic imaging can be used for obtaining both structural and functional data
from the sample. Some of the most explored applications of photoacoustic imaging
includes sentinel lymph node imaging, brain imaging, blood vasculature imaging,
tumor imaging and monitoring, oxygen saturation monitoring etc. [33–44].

The PA wave equation is given by

(∇2 − v−2
s ∂2/∂t2)p(�r, t) = −(β/CP)∂H (�r, t)/∂t

Here vs refers to acoustic speed, p(�r, t) refers to the acoustic pressure at location
r and time t, β refers to the thermal expansion coefficient, CP refers to the specific
heat constant at constant pressure, and H denotes the heating function which can be
described as the thermal energy converted per unit volume and per unit time. The left-
hand side of this equation describes the wave propagation, whereas the right-hand
side represents the source term.

Traditionally, large and bulkyNd:YAGor dye based lasers are used as illumination
source for photoacoustic imaging. They often need an optical table for housing them
and are non-portable. Even the smallest misalignment will alter the results greatly
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[45]. Very recently portable, mobile Nd:YAG laser with optical parametric oscillator
for tuning different wavelengths has been commercially available from opotek [37].
The biggest advantage of using these lasers is the high laser energy, which in turn
translates to higher penetration and high-resolution images. The catch with this laser
is that it is very difficult to combine the light to the ultrasound transducer, which
makes the clinical use of these lasers very limited. However, in recent times compact,
lightweight lasers are starting to be used for imaging like the pulsed laser diode (PLD)
and the light emitting diodes (LED) [46, 47]. The pulsed laser diode is very small
often palm size, and very light weight which makes it easily portable to use. It can
also be integrated with the ultrasound transducer much easily than the OPO laser.
The frequency of these lasers is very high therefore, they can provide large number
of frames in a short period of time. The problem with this laser is that the pulse
energy is very low and will often need averaging over multiple frames to obtain a
high-resolution image. LEDs are similar to the PLDs but with lesser energy. The
frequency of the LEDs is also very high. Multiple LEDs are placed in an array to
generate light for imaging. But, even with an array of LEDs the pulse energy of
the system is very low [48, 49]. The system requires a lot of averaging to obtain an
acceptable photoacoustic image. One major disadvantage with these systems is that
they are usually singlewavelength and cannot be tuned. Therefore, cannot be used for
spectroscopic studies like the Nd:YAG laser. However, in the last few years, multiple
commercial systems have been developed for real-time photoacoustic imaging using
different types of lasers like the Nd:YAG, PLD, LEDs etc. Ongoing research is being
done on how to improve the resolution of images from the low energy laser sources
like PLD, LEDs etc.

1.2 Photoacoustic Image Acquisition and Reconstruction

Asmuch as the light plays a crucial role in photoacoustic imaging, equally important
are the ultrasound transducers. The signal form the sample can be acquired using
ultrasound transducer [50, 51]. There are many ways in which an ultrasound trans-
ducer is used for photoacoustic imaging, a single element transducer can be used for
signal acquisition or a raster scan be performed to obtain a 2D or 3-D image or it can
be rotated around the sample to obtain a cross-sectional image. However, it can be
very time consuming to scan a big area. In order to complete scanning in a very short
time multiple transducers can be combined to make an array of transducers to obtain
images [33, 52, 53]. When using commercial systems, linear array, concave array
and convex array-based transducers are also available for data acquisition. These
transducers are supported by the data acquisition cards (DAQ) for image acquisition.
Once the data is acquired using the ultrasound transducers, it goes through the recon-
struction process to form the final image. Different types of reconstruction methods,
such as filtered back-projection, Fourier transform, alternative algorithm, time rever-
sal, inversion of the linear Radon transform, and delay and sum beamforming, have
been developed under different assumptions and approximation for ultrasound and
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photoacoustic imaging [54–59]. The issue with these image reconstruction methods
is that these methods assumes that the wave propagation is through a homogenous
media, but in reality, that is often not the case. Another issue with using these image
reconstruction methodologies is that these methods often generates artifacts like
reflection artifact, etc. and cannot remove these artifacts. Post-processing of images
is often used to remove some of the artifacts from the reconstructed images. How-
ever, the existing reconstruction and post-processing techniques are not sufficient
to improve the quality of the images. There is a great need to improve the imaging
resolution, reduce noise and remove artifacts of the photoacoustic images for clinical
translation. Continuous research is required and being done on how to improve the
image resolution from the perspective of reconstruction and post-processing.

Among the various image reconstruction methods, the delay-and-sum beamform-
ing method is the most widely used algorithm for the reconstruction of both PA and
US images. This algorithm works by summing the corresponding US signals while
adjusting their time delays in accordance to the distance between the detectors and
the sample. However, it has few drawbacks like low resolution, low contrast, and
strong side lobes which results in artifact generation. Matrone et al. proposed a mod-
ification to the DAS algorithm leading to a novel beamforming algorithm, called the
delay-multiply-and-sum (DMAS) beamformer, in order to help in overcoming the
limitations of DAS in ultrasound imaging. The DMAS provides the high contrast and
enhanced image quality, it also helps in obtaining narrow main lobes, and weaker
side lobes in comparison to DAS. Owing to these advantages, several researchers
extended the ultrasound DMAS algorithm to PA imaging also. Park et al. introduced
a DMAS-based synthetic aperture focusing technique to PA microscopy. Alshaya
et al. demonstrated the DMAS based PA imaging can be useful when using a lin-
ear array transducer also and additionally they introduced a subgroup of DMAS
method to improve the signal to noise ratio (SNR) and the speed of image process-
ing. To improve the quality of the image obtained from DMAS algorithm even more,
Mozaffarzadeh et al. proposed using a double-stage DMAS operation, a minimum
variance beamforming algorithm, or modified coherence factor [60–62]. In spite of
all these advances, it has been difficult to use DMAS for image reconstruction clini-
cally because of the heavy computation complexity involved in the incorporation of
this algorithm to a clinical PA imaging system.

Another commonly used reconstruction technique for photoacoustic imaging is
the back-projection (BP) method. This reconstruction technique and its derivatives
like the filtered back projection (FBP) are one of the major reconstruction algo-
rithms used for the photoacoustic computed tomography (PACT) specifically. This
algorithm makes use of fact that the pressure propagating from an acoustic source
reach the detectors at different time delays, which depends on a myriad of factors
like the speed of sound, the distance between the source and the detectors, etc. The
BP algorithm requires large number of signals collected from various view angles
as its input. These signals can be collected by a single transducer or use an array of
transducers rotating around the sample. Both the methods have their own pros and
cons. This is a faster reconstruction technique, back-projection (BP) algorithms are
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capable of producing good images for common geometries (planar, spherical, cylin-
drical) in simulations and is also applied widely for volumetric image reconstruction
in PA imaging. Constant development of BP algorithms leads to improved image
quality, which has improved the possibilities with PA imaging and the capabilities of
PA imaging in the various biomedical applications. The formulas of back projection
techniques are implemented either in the spatio-temporal domain or in the Fourier
domain. The BP algorithms are constantly modified to improve the applications and
the image quality, one of the modifications is based on a closed-form inversion for-
mula. This modified algorithm was very successful in detection of the position and
shape of absorbing objects in turbid media.

Although filtered back-projection (FBP) reconstruction techniques has proven its
use in solving for time-dependent partial differential equations through Fourier spec-
tral methods, there are still many critical problems that needs addressing to further
improve the quality of FBP-reconstructed images [63, 64]. One of the shortcomings
of the conventional back-projection algorithm is that they are not exact in experimen-
tal setting and may lead to the generation of substantial artifacts in the reconstructed
image, such as the accentuation of fast variations in the image, which is accompanied
by negative optical-absorption values that otherwise have no physical interpretation
[59, 65]. The presence of the artifacts has not restricted the use of BP algorithms for
structural PA imaging, they do affect the quantification capacity, the image fidelity,
and the accurate use of themethod for functional andmolecular imaging applications.

Time reversal is another reconstruction method used in photoacoustic imaging. In
the typical time reversal imaging reconstruction method, the recorded pressure time
series are enforced in time reversed order as a Dirichlet boundary condition as the
position of detectors on the measurement surface [66–69]. If the array of detectors
is placed sparsely to collect the measurement rather instead of a continuous surface,
the time reversed boundary condition will be discontinuous. This can cause severe
blurring in the reconstructed images. To solve the problem, Treeby et al., improved
time reversal image reconstruction technique with the usage of interpolated sensor
data. In the course, the interaction can be avoided by interpolating the recorded data
onto a continuous rather than discretemeasurement surfacewithin the space grid used
for the reconstruction. The edges of the reconstructed image are considerably sharper,
and the magnitude has also been improved. After that, they used the enforced time
reversal boundary condition to trap artifacts in the final image, and by truncating the
data, or introducing an adaptive threshold boundary condition, this artifact trapping
can be mitigated to some extent.

1.3 Types of Artifact

Artifacts are one of the major problems in photoacoustic imaging. The presence of
artifacts limits the application of photoacoustic imaging from a clinical perspective
and hampers the clinical translation of the imaging modality greatly. Reflection arti-
fact is one of the most commonly observed artifacts in photoacoustic imaging [67,
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70, 71]. These reflections are not considered by traditional beamformers which use
a time-of-flight measurement to create images. Therefore, reflections appear as sig-
nals that are mapped to incorrect locations in the beamformed image. The acoustic
environment can also additionally introduce inconsistencies, like the speed of sound,
density, or attenuation variations, which makes the propagation of acoustic wave
very difficult to model. The reflection artifacts can become very confusing for clini-
cians during diagnosis and treatment monitoring using PA imaging. Until these are
corrected the possibility of clinical translation is very slim.

In order to minimize the effect of artifacts in photoacoustic imaging different
signal processing approaches have been implemented to enhance signal and image
quality. These signal processing techniques use singular value decomposition and
short-lag spatial coherence. But these techniques are not so efficient in the removal of
intense acoustic reflection artifacts.A technique called photoacoustic-guided focused
ultrasound (PAFUSion) was developed which differs from other traditional photoa-
coustic artifact reduction methodologies as it uses ultrasound to mimic wavefields
produced by photoacoustic sources in order to identify reflection artifacts for removal
[72, 73]. A slight modification of this approach was developed which uses plane
waves instead of focused waves, but the implementation was very similar. Both of
these methods make the assumption that acoustic reception pathways are identical,
which may not always be true. When performing simultaneous ultrasound and pho-
toacoustic imaging in real-time it is not always possible to have an exact overlay of
the image because of the motion induced artifact caused by the moving organs inside
the body especially organs like heart, abdominal cavity, blood vessels etc. Certain
reconstruction methods have been proposed to overcome these types of artifacts,
but the problem is they don’t account for the inter patient variability and sometimes
variability in the same patient when imaging different body parts (Fig. 1).

1.4 LED Based Photoacoustic Imaging

LED based photoacoustic system can play a very important role in the clinical trans-
lation of photoacoustic imaging. LEDs are less expensive compared to the traditional
lasers for photoacoustic imaging, they are very compact, and capable of imaging in
multiwavelength (e.g., 750, 810, 930, and 980 nm) [47–49]. The energy output from
the LED arrays is much lesser than the energy from powerful class-IV lasers, there-
fore these can be used for clinical applications easily. But they have very low energy
and usually produce low resolution images and are noisier. They also have higher
laser pulse width, which limits the spatial resolution of the images. In order to obtain
better images, signal averaging in the order of 1000s is required to obtain one image,
which increases the image acquisition time. But, in spite of all the shortcomings
LED based photoacoustic imaging has gained a lot of momentum with different
types of applications that are possible with the system [47–49, 75–77]. The LED
based photoacoustic imaging system from Cyberdyne INC (Tsukuba, Japan) can be
operated at multiple wavelengths in the visible and the near infrared region. It has a
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Fig. 1 Images of errors of different image reconstruction methods using a simple numerical phan-
tom consisting of tubes. a, b Images of the numerical phantoms. e Illustration of the sub-sampling
pattern. c, d Slice view of full and sub-sampled data respectively. f–k Slice views through the
reconstructions of the tube phantom by different methods and for full or sub-sampled data. f, i non
negative least squares (NNLS) of full data at different iterations. g, j NNLS of sub-sampled data at
different iterations. h, k total variation (TV) of sub-sampled data at different iterations. Reprinted
with permission from Ref. [74]

linear array transducer for image acquisition and a 128-channel data acquisition card.
The system comes with inbuilt image reconstruction algorithms based on delay and
sum model, the image further undergoes post-processing through various filters [48,
77–79]. Figure 2 shows the schematic and the photograph of the LED-photoacoustic
imaging system (PLED-PA). It has been demonstrated using this system that it can be
used for applications like blood vessel imaging, diagnosis of inflammatory arthritis,
detection of head and neck cancer, etc. It has also been used for functional imaging
of blood oxygen saturation.

With the current reconstruction techniques and post-processing methodologies in
photoacoustic imaging it is really difficult to generate artifact and noise free images
in shorter time, with lesser averaging andminimal post-processing. This is especially
more relevant to the low energy laser sources like the PLD, LED etc. [80, 81]. In
order to improve the image reconstruction and reduce noise in the images in a shorter
duration, artificial intelligence can be made use of, specifically deep learning using
convolution neural networks could be very useful for this purpose. In the rest of
the chapter we will focus on how to make use of deep learning for photoacoustic
imaging.
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Fig. 2 LED photoacoustic imaging system. A Schematic representation of the PA system using
LED array light source. B Photograph of PLED-PA probe associated with motorized stage. C
Whole imaging setup. D PLED-PA probe with imaging plane and illumination source are shown
schematically. LED array design is also shown in the inset—there were alternating rows of LEDs
with different wavelengths. Reprinted with permission from Ref. [47]

2 Machine Learning and Artificial Intelligence

In the year 1950, Alan Turing proposed a ‘Learning Machine’ that could learn
and become artificially intelligent. Research in neurology had shown that synapses
worked like a network firing electric impulses, based on this idea, the construction of
an electronic brain was suggested. Marvin Minsky and Dean Edmonds build the first
neural network machine in the year 1951, it was called the Stochastic Neural Ana-
log Reinforcement Calculator (SNARC) [82]. Starting from the 80s the golden age
of machine learning began, in that period many ground-breaking discoveries were
made but due to non-availability of the infrastructure for higher computing power
and speed, further developments were hindered. In the year of 1981, the government
of Japan funded a project with the goal to develop machines which could carry on
conversations, translate languages, interpret pictures and reason like human beings,
some of which are not realized even today. In 1997 IBMs computer ‘Deep Blue’ bet
the world chess champion, Garry Kasparov and in 2005 a robot from Stanford was
able to drive autonomously for 131 miles. There are countless other examples of the
success of deep learning approaches in numerous fields [83–88].

Artificial intelligence (AI) is a technology that aims to make machines which tries
to mimic human brain and the field has grown exponentially in the last few years and
continues to impact the world significantly. The applications of artificial intelligence
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and machine learning are plenty, almost across all fields with a profound impact on
improvement of human lives. Machine learning (ML) and deep learning (DL) has
played a very significant role in the improvement of healthcare industry at different
levels, right from diagnosis to patient monitoring. It is widely used in the areas of
image processing, image analysis, diagnostics, treatment planning and follow-up,
thus benefitting a large number of patients. It also helps the clinicians by reducing
their workload and helps in making quicker decisions in many cases. Its impact on
image processing and analysis especially are noteworthy.

Machine learning is a subset of AI which relies on pattern recognition and data
analytics. In ML it is tested to identify if a computer can learn on its own from
data without being programmed to perform different tasks. The iterative aspect of
machine learning is critical because as models are exposed to new data, they are able
to independently adapt. The system learns effectively from previous computations
to make predictions and decisions.

2.1 Neural Networks

Artificial intelligence and machine learning are not complete without mentioning
neural networks (NN). Neural networks are a set of algorithms, modeled inspired
and based on human neural system, which are designed to recognize patterns [84,
89–91]. They interpret sensory data through a kind of machine perception, labeling
or clustering raw input. Neural networks are capable of recognizing patterns from
various input formats such as images, sound, text, etc. The information from the
different types of inputs are translated into numerical values that can be understood
by themachine. Some of the key areas inwhich neural networks help are in clustering
and classification [88, 92–94].Whengroupof unlabeleddata is presented to the neural
networks, they are capable of grouping them according to the similarities between
them.When the neural network is presentedwith a group of labelled data for training,
they can classify data effectively. Neural networks are capable of extracting features
which are then provided to the clustering and classification algorithms.

Deep learning is a subset of machine learning and is a rapidly growing field
of research that targets to significantly enhance the performance of many pattern
recognition and machine learning applications. Deep learning makes use of neural
network designs for representing the nonlinear input to output map together with
optimization procedures for adjusting the weights of the network during the training
phase. In the last few years, deep learning-based algorithms were developed for
achieving highly accurate reconstruction of tomography images.
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2.2 Convolution Neural Network

The convolutional neural network (CNN), is a special neural network model that is
designed to predominantly work with two-dimensional image data. Among neural
networks, CNNs are primarily used for image recognition, images classification,
Objects detections, recognition faces etc. [88, 93, 95, 96]. As the name suggests CNN
derives its name from the convolutional layer and as it suggests this layer performs
the “convolution” operation. In CNN, convolution is classified as a linear operation
which involves the moving one or more convolution filters (with a set of assigned
weights) across the input image [89, 97, 98]. Each of the weight from the convolution
layer gets multiplied with the input data from the image on which it is scanned to
yield a matrix that is smaller than the input image. The convolution filter is always
chosen to be smaller than the input image data and element-wise multiplication
followed by summation (dot product) is carried on between the convolution filter
and the filter-sized patch of the input. The CNN always uses a filter smaller than the
input image because, this filter can be used multiple times on the input data, and it
can be moved across the entire input image at different times also. This can happen
with data overlap or without overlap (top to bottom and left to right). Each of the
convolution filter is designed in such a manner that they can detect a specific type of
feature from the input image. As the filter ismoved across the image it starts detecting
the specific feature it is supposed to [89, 99, 100]. For more efficient and high-quality
feature extraction, the filter can be passed through the input image multiple times.
The result that is obtained after the filter performs the function of feature extraction
is called the feature map, which is a two-dimensional array of the filtered input. Once
the feature map is generated, it is passed through a nonlinearity like ReLU. Many
numbers of convolution filters can be used on the same input image to extract and
identify different types of featuremaps. Themore the featuremaps for a given image,
more accurate is the performance of the neural networks.

All CNN consists of at least three different types of layers, an input layer, an
output layer and several hidden layers. Initial versions of CNNs were shallow (one
input and one output layer with a hidden layer). Deep learning networks is classified
as anything that has a minimum of three layers. In deep learning, each passing layer
trains on features that are generated as the output from the previous layers and as the
number of layers progresses, they are able to recognize more complex features which
is known as feature hierarchy. This feature of deep-learning enables the networks to
handle very large, high-dimensional data sets with a multitude of parameters. Some
of the most commonly used layers in a CNN are discussed below. After the input
layer, the very first layer of a CNN is the convolutional layer. The convolution layer
performs the convolution operation on the input data. Once the convolution layer
extracts the features to generate the featuremap, it is passed through aRectified linear
units (ReLu), which are activation functions. Leaky ReLus allow a small, non-zero
gradient when the unit is not active. Once the data passes through the ReLu, it goes
through the pooling layers. The pooling layers combines the outputs from the neuron
clusters at each layer into a single neuron in the next layer. Max Pooling is one of
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Fig. 3 Representation of a typical CNN, consisting of convolutional, pooling, and fully-connected
layers. Reprinted with permission from Ref. [89]

the examples of pooling layers, this layer chooses and uses the maximum value from
each cluster of neurons in the previous layer and sends only the maximum values
of the cluster to the next layer. Next, upsampling layers performs an upsampling
using nearest neighbor, linear, bi-linear and tri-linear interpolation. Finally, fully
connected layers connect every neuron of one layer to every other neuron in another
layer. Model of a traditional CNN is shown in Fig. 3.

Feature extraction is a highly time-consuming task and it can be very tedious to
perform especially by humans. Deep-learning networks can perform feature extrac-
tion with very minimal or without human intervention. This comes in very handy in
the medical community, especially in the field like radiology, where there are always
limited personnel to scan all the diagnostic images of a patient. This is specifi-
cally important because diagnosis from the images is very crucial for the treatment
planning and monitoring of a patient.

2.3 Learning by Neural Networks

There are two different ways in which neural networks learns, which are supervised
learning and unsupervised learning.

1. Supervised learning: Supervised learning is a machine learning method and is
widely used, in this method a large dataset is required with corresponding labels.
A supervised learning algorithm is trained using ground truth images which is
a set of labelled data. Therefore, the algorithm attempts to reproduce the label
and calculates a loss function that measures the error between the output from
the machine and the label. The algorithm then considers the error value, which
is then further factored to modify the internal adjustable parameters (weights),
to further minimize this error and improve the efficiency of the model. The
performance rate of anymachine learning algorithm is basedon its howaccurately
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it handles previously unseen data [101–105]. This can be evaluated with some
data that the algorithm has not been exposed during the training process. This
data is called test set. The algorithm is said to be more generalized if it is able
to predict closer to the ground truth on unseen data. In contrast, if an algorithm
can perform with accuracy on previously exposed data but perform very badly
on the new test data, it shows that the algorithm only tries to memorize known
solutions without any abstraction and does not generalize well. This problem is
called overfitting. Overfitting is one of the most frequently encountered problem
in machine learning and it can be avoided in many ways [106–108]. Some of
them are to either train the algorithm with more data or data augmentation or by
completely using a different neural network. Choosing a different neural network
works best when the current network cannot handle the complexity of the data.

2. Unsupervised learning: Unsupervised learning is a method in which the algo-
rithms train themselves automatically as they are trained on unlabeled data. In
thismethod each node in every layer of the network tries to learn the features auto-
matically by repeatedly trying to reconstruct the data from the input set, it tries
to minimize the variation between the guesses of the network and the probability
distribution of the input data itself [109–111]. Also, in this process, the neural
networks learn to identify similarities and relationships between certain relevant
features and optimal results. The networks try to find connections between fea-
ture signals and what it represents, whether it be a full reconstruction, or with
labeled data [112, 113]. A deep-learning network can first be trained on labeled
data can then be applied to unlabeled data as well. This way, it gives the network
access to much more input than just the machine-learning nets. The key to the
performance of any deep learning model is data, the greater the amount of data a
network trains on, the network’s probability of accuracy improves likewise. The
output layer of any deep-learning network is either a softmax or logistic layer,
the classifier assigns a probability to a specific outcome or label, this type of
network is predictive in nature. Neural network follows a corrective feedback
loop, that rewards the weights which support the correct guesses, and punishing
weights that leads to error. The network tests extensively which combination of
input is significant as it tries to reduce error.

Gradient descent is a very commonly used function for optimization. It further
adjusts the weights according to the error values obtained. The slope of a neural
networks depicts the relationship between the allotted weights and the error function.
As a neural network continues to learn, it gradually starts adjusting many weights
so that they can map signal to meaning more accurately [114–117]. The relationship
between each weight of the network and the error is a derivative, every weight of
a network is just one factor in whole deep network which involves multitude of
transforms; the signal of each weight passes through activations and gets summed
over several layers. The basic crux of a deep learning network is to constantly adjust
and modify its weights in response to the error calculated in each iteration. This
continues to happen until the error can’t be reduced anymore. The activation function
layer of a network determines the possible output from a given node, based on the



Deep Learning for Image Processing and Reconstruction … 215

input data [100, 118]. The activation function is set in the layer level and gets applied
to all neurons present in that layer. Every output node produces binary output (0 or
1) as the two possible outcomes, as it determines whether an input variable either
deserves a label or it does not.Neural networksworking on labeled data only produces
a binary output, as the input they receive is often continuous. That is, the signals that
the network receives as input will be over a range of values and include any number
of metrics, depending on the problem it is attempting to solve. The mechanism that is
used for the conversion of continuous signals into binary output is known as logistic
regression. It calculates the probability that a set of inputs match the label. For
continuous inputs to be expressed as probabilities, they must output positive results,
since there is no such thing as a negative probability.

(a) Training the network:The neural network starts by randomly initializingweights
to the model and calculates the output from the first image. The obtained output
image is compared with the ground truth with the help of a loss function. The
loss is then back propagated to update and modify the weights of the network.
This process is performed multiple times to optimize the performance of the
networks.

(b) Testing of the network: After training, a network, testingwill be done to evaluate
the networks performance. In the testing data no labels are used. The network
with the previously trainedweights is evaluated on newdata thatwas not encoun-
tered by the network previously. These weights determine the prediction of the
network.

The Cost functions minimum is searched and an easy way to find a minimum
is using gradient descent. Hence, the cost function needs to be differentiable. To
perform the adjustment of the weights that are calculated by the gradient descent, the
machine learning algorithm computes a gradient vector that, for each weight, which
gives an indication on the error amount would increase or decrease if the weight
were modified (increased or decreased) by a small amount. By updating the weights
step-by-step the cost functions minimum is approached.

The learning rate parameter is introduced to improve the working efficiency of
the algorithm. The learning rate is multiplied to the cost function, which thereby
decides the step size for each iteration. If for a given algorithm the learning rate is
chosen too low, then the algorithm takes a long time to converge to the minima, in
contrary if the learning rate is chosen too large, then there is a possibility for the
algorithm to overshoot the minima. In the state-of-the-art deep learning algorithms,
the learning rate is made flexible which adapts continuously [119]. A lot of work
has been done to optimize gradient descent algorithms in recent years [118]. One
state-of-the-art algorithm called Adam [120] that is based on adaptive estimates of
lower order moments, it is made with high computational efficiency and can deal
with large datasets with ease [120].
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2.4 Backpropagation

Backpropagation is a methodology in which the contribution of each neuron towards
error is calculated after the completion of processing of a batch of data. Using back-
propagation, after the calculation of loss function and propagation of the error back-
wards, the weight of the neurons can be modified. The recently developed networks
using back propagation are faster than earlier approaches, thus enabling the neural
networks to be used for solving problems which were previously unsolvable. Back-
propagation based algorithm is the most commonly used optimization approach in
neural networks [121]. Using backpropagation, the networks weights are continu-
ously adapted and thereby facilitating the network to learn the best parameters [121].
Back propagation-based algorithms are being used extensively in medical image
processing.

2.5 Improving the Networks Performance

As the applications of the neural networks keeps growing, it becomes very important
to constantly improve the performance of the network to optimize their functions
better and to improve their efficiency. Some of the ways in which the neural networks
performance be improved are as follows.

1. Batch computing: Batch computing is used to improve the computational per-
formance of a neural network. A group of data is consolidated and grouped to
form a batch which helps in improving the computational performance as most
of the libraries are optimized better for array computing [122].

2. DataAugmentation:Data augmentation is commonly used to increase the amount
of data on which the algorithms are being trained on. When there is an increase
in the amount of data on which the algorithms learn it leads to an increase in
prediction accuracy of the algorithm. Therefore, data augmentation can improve
an algorithms performance [123].

3. GPU Computing: GPU computing is a technique used to increase computational
speed of processing by using a graphics processing unit (GPU), this unit tradi-
tionally handles only computations for computer graphics but it can also be used
to compute tasks that are normally carried out using the central processing unit
(CPU). The GPU is usually designed with more cores than a CPU and are capa-
ble of processing far more graphical data per second than the handling capacity
of a CPU. Thus, if the data is transferred to the GPU instead of the CPU and
processed there, it can lead to a significant speedup of the computing time.
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2.6 Evaluation Indices

For the quantitative evaluation of a neural networks based on their performance on the
test set, some of the most commonly used evaluation parameters includes signal-to-
noise-ratio (SNR), peak-signal-to-noise-ratio (PSNR) and structural similarity index
(SSIM). These are calculated for each of the test set data for comparison.

SNR

Signal to noise ratio (SNR) can be defined as the ratio of peak signal intensity from the
sample to standard deviation of the background intensities represented in decibels.
It is based on absolute signal strength and noise statistics of a given image. SNR can
be mathematically represented as follows:

SNR = 20 log10(μI/σb)

where, μI and σb represent the peak signal amplitude of the target area and the
standard deviation of the background, respectively.

PSNR

The term peak signal-to-noise ratio (PSNR) can be defined as the ratio between the
maximum possible value of a signal in a given image and the power of distorting
noise which affects the image quality. Because a variety of signals have a very wide
dynamic range, (ratio between the largest and smallest possible values of a changeable
quantity) the PSNR is usually expressed in terms of the logarithmic decibel scale.

The mathematical representation of the PSNR is as follows:

PSNR = 20 log10

(
MAXf√
MSE

)

The PSNR is a conventional measurement of the image quality in decibels (dB)
based on the mean square differences between the estimated and reference images
as:

where the MSE (Mean Squared Error) is given by:

MSE = 1

mn

m−1∑
0

n−1∑
0

‖f (i, j) − g(i, j)‖2

Here, f represents the matrix data from the original image, g represents the matrix
data from the degraded image, m represents the numbers of rows of pixels of the
images and i represents the index of that row n represents the number of columns
of pixels of the image and j represents the index of that column and MAXf is the
maximum signal value that exists in the ground truth image.
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SSIM

The Structural Similarity Index (SSIM) metric that is used to quantify the image
quality degradation which can be caused due to the image processing tools like as
data compression or by loss due to data transmission. It is a reference metric which
requires two images from the same image capture namely the reference image and
the processed image. The processed image is usually the compressed version.

SSIMmeasures the perceived quality of a digital image; a higher SSIM (in a scale
of 1.0) indicates a better representation of an estimated image in terms of perception.

2.7 Training Data

Training data is very important for deep learning for photoacoustic imaging. Gen-
erating training data and ground truth images for training algorithms is very crucial
as this data determines the efficiency of the model. Also, the number of training
data available, the quality of the images and the variety of images in the training
data pool helps the neural network model to learn more effectively and be able to
handle any kind of images that it might come across in real-time scenario. For dif-
ferent imaging modalities the training data can be acquired in different ways. For
the most commonly used clinical imaging techniques like MRI, CT etc. there are
multiple open source libraries with thousands of data. We can choose the dataset
which is most appropriate for our application and train the neural network with the
dataset. However, in case of certain applications where relevant data set might not
be available online or for imaging modalities that are not so commonly used for
clinical imaging, training data needs to be custom generated. This can be done in
two ways, the first is to use different imaging systems to acquire high quality images
for the specific application, these types of images are more realistic, and it is easy
to get a good ground truth image. But it can be very expensive to acquire enough
number of training data to train model and it can also be very time consuming. The
other method to generate training data is through simulation models. Simulation is
a cost-effective way to generate images and the ideal case scenario can be obtained
through simulation images. We can also add any type of artifact on the image to help
the model to perform better for a specific application. Simulation images make good
training data, but the shortcoming with this method is that it can sometimes be very
far from reality that when the model comes across a real image, it may not be trained
to work on the image.

2.8 Neural Networks for Medical Imaging

Now that what neural networks are and what they do is clear let’s explore its applica-
tions especially in the field of medical imaging [93, 124–128]. Neural networks are
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starting to have a huge impact on different aspects of medical imaging like segmenta-
tion, detection, classification etc. especially in the field of radiology. Classification is
one of the most important tasks in radiology, it typically consists of predicting some
target class like a lesion category or condition in the patient from an image or region
of interest in a dataset [99, 104, 129, 130]. This task is used for a wide range of appli-
cations, right from determining the presence or absence of a disease to identifying
the type of malignancy. Deep learning is very frequently used for the segmentation
task which can be defined as the identification of pixels or voxels composing an
organ or structure of interest [88, 131, 132]. For a machine learning algorithm, it can
be considered as a pixel-level classification task, where the end goal is to determine
whether a given pixel belongs to the background or to a target class (e.g., prostate,
liver, lesions). For this, from image classification tasks, image masks can be used
to perform various quantitative analyses such as virtual surgery planning, radiation
therapy planning, or quantitative lesion follow-up. Detection is another common task
for the deep learning, it can be used to identify focal lesions such as lung nodules,
hepatic lesions, or colon polyps. This can be used as a screening technique before a
radiologist can take a look at it [105, 133]. Detection is a subset of the classification
task however, classification only aims to predict labels, detection tasks aim to predict
the location of potential lesions, often in the form of points, regions, or bounding
boxes of interest. All of the three tasks are extremely useful for diagnosis, treatment
planning of a disease condition. The labeling of the images varies based on the task
it performs. Classification of images requires image labeling. Detection of images
requires marking the region of interest, such as a boxplot. Segmentation of images
requires pixel-wise delineation of the desired object.

2.8.1 Deep Learning for Radiology

Among the various clinical imaging techniques, radiology is one place where deep
learning is being explore more extensively. Radiology is one of the most important
and widely used clinical imaging tool for diagnosis of many diseases and clinicians
depend on it every day. Therefore, using deep learning in radiology can have more
impact in the clinics than any other imaging technique [134–140]. In this section we
will see how deep learning has come to play in the hospitals.

CheXNeXt is a convolutional neural network that was developed by a team of
researchers at Stanford, it has the potential to concurrently detect up to 14 different
pathologies, including pneumonia, pleural effusion, pulmonary masses, and nodules
in frontal-view chest radiographs. The CheXNeXt CNN was trained and validated
internally on dataset of ChestX-ray8 images [141]. A set of 420 images were used
for training and kept for validation purpose including images of all the original
pathology labels. 3 board-certified cardiothoracic specialist radiologists voted on the
imageswhich served as reference standard. The performance of the CheXNeXt’s was
compared with the performance of 9 radiologists using the area under the receiver
operating characteristic curve (AUC) on the validation dataset. It was observed that
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the performance of CheXNeXt was similar to the level of radiologists on 11 dif-
ferent pathologies but was not able to the achieve performance level of radiologist
on 3 pathologies. The radiologists significantly higher performance on three dif-
ferent pathologies (cardiomegaly, emphysema, and hiatal hernia). CheXNeXt has
performed significantly better than radiologists in detecting atelectasis. For the other
10 pathologies there was no statistical significance in differences between radiol-
ogists and the CheXNeXt. For the radiologists, the average time to interpret the
validation set (420 images) was significantly longer than CheXNeXt. Radiologists
took about 240 min but the CheXNeXt took only 1.5 min. One of the drawbacks
in this study was that both the CNN and the radiologists were not given any patient
history. Another limitation is that all the data acquired for this studywas from a single
institution only. So, the performance of the algorithm may be biased and limited by
it. Figure 4 shows the performance of the algorithm for various disease models in
comparison to a doctor. Figure 5 shows the predictions of the algorithm for disease
conditions.

This is one example of how a CNN can aid the physicians in the field of radiology.
Similarly, different types of algorithms are attempting to solve different types of
problems in radiology.

2.8.2 Deep Learning for Ultrasound Imaging

Ultrasound imaging is a commonly used imaging technique in the clinics for patient
diagnosis. There are many different types of artifacts present in ultrasound imaging,
which needs efficient methods for artifact reduction or elimination. Deep learning is
being explored for image classification, segmentation and artifact removal problems
in ultrasound [142–145]. One such example of a classification problem of thyroid
nodules is discussed below.

In the ultrasound images, thyroid nodules appear very heterogeneous in nature
with unclear boundaries with various internal components, this makes it very diffi-
cult for physicians to discriminate between the benign thyroid nodules and malig-
nant ones. A study was proposed for the diagnosis of thyroid nodules using a hybrid
method. The model was developed using a combination of two different pre-trained
convolutional neural networks. The two CNNs have different convolutional layers
and fully connected layers. Initially, the two which are pretrained with the ImageNet
database are trained individually. After individual training the two neural networks,
the feature maps are learned by the trained convolutional filters, pooling and nor-
malization operations of the two CNNs. After this the two obtained feature maps
are fused and a softmax classifier is used to diagnose (classify) the thyroid nodules.
This method was validated on 15,000 ultrasound images obtained from two different
hospitals.

For CNN1 and CNN2, a single testing was performed on the training step. A
multi-view was adapted to improve the performance of the network. For the input
of the trained CNNs 256 views of the thyroid nodule images were cropped and was
sampled randomly and used. The output was the average of the result of 256 views.



Deep Learning for Image Processing and Reconstruction … 221

Fig. 4 ROC curves of radiologists and algorithm for each pathology on the validation set. Each
plot illustrates the ROC curve of the deep learning algorithm (purple) and practicing radiologists
(green) on the validation set, Individual radiologist (specificity, sensitivity) points are also plotted.
The ROC curve of the algorithm is generated by varying the discrimination threshold. Reprinted
with permission from Ref. [141]

The two fused pretrained CNN used the fused feature maps that was generated by the
two CNNs in multi-view testing as shown in Fig. 6. The softmax layer was trained
for thyroid nodule classification. To compare the performance of the CNNs a well-
established classification method called SVMwas also implemented. The SVMwith
radial basis function (RBF) kernel was used for experiments [146].

The accuracy of the classification algorithm was tested and represented graphi-
cally in Fig. 7; this graph compares the classification accuracy of different methods
used in this study. It can be noted from the results that CNN based methods outper-
form the various other methods significantly in the classification of thyroid nodules.
Especially, the combination of CNN1 and CNN2 achieved a classification accuracy
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Fig. 5 In the normal chest radiograph images (left), the pink arrows and circles highlight the loca-
tions of the abnormalities. a Frontal chest radiograph (left) demonstrates 2 upper-lobe pulmonary
masses in a patient with both right- and left-sided central venous catheter. The algorithm correctly
classified and localized both masses as indicated by the heat maps. b Frontal chest radiograph
demonstrates airspace opacity in the right lower lobe consistent with pneumonia. The algorithm
correctly classified and localized the abnormality. Reprinted with permission from Ref. [141]

as 83.02% ± 0.72%, sensitivity as 82.41% ± 1.35%, and specificity as 84.96% ±
1.85%. These demonstrate the potential clinical applications of this method.

Photoacoustic imaging is very similar to ultrasound imaging and the techniques
from ultrasound can be easily adapted for photoacoustic with minimal modifications.
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Fig. 6 An overview testing of CNNs. This CNN based approach first extract multiple nodule
patches to capture the wide range of nodule variability from 2D ultrasound images. The obtained
patches are then fed into the networks simultaneously to compute discriminative features. Finally,
a softmax is applied to label the input nodule. Reprinted with permission from Ref. [146]

Fig. 7 Box plots of
performance measures for
classifying between benign
and malignant thyroid
nodules. In each box plot, the
center red line is the median
and the edges of the box are
the 25th and 75th percentiles,
the whiskers extend to the
most extreme data points not
considered outliers, and
outliers are plotted
individually. Reprinted with
permission from Ref. [146]

2.8.3 Deep Learning for Photoacoustic Imaging

Photoacoustic imaging is not being used in clinics yet. It aspires to become a clinical
tool for diagnosis. Image quality and easy interpretability is very crucial for that to
happen. Improvement in reconstruction and post processing of images is just one part
of it. As evident from the other types of clinical imaging modalities, deep learning
can be used for the improvement of photoacoustic imaging for artifact removal and
reduction [74, 147–154]. One of the major limitations for using deep learning for
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photoacoustic imaging is that there are not much clinically recorded data for training
and validation of the neural networks. Therefore generating data through othermeans
is very important for using deep learning for photoacoustic imaging. Using data from
simulations is one possible solution for generating data for photoacoustic imaging.

3 Monte Carlo Simulation

With respect to photoacoustic imaging monte carlo simulations for light propaga-
tion can be used to generate training data. Using monte carlo simulations, the light
absorbance by the sample can be calculated [155–158]. The absorbance is usually
directly proportional to the photoacoustic signal intensity. Therefore, we can get
an idea of how the photoacoustic image will look like. In monte carlo simulation
a sample object (of desired shape and size) is simulated in medium like tissue or
water, with the properties of the tissue specified. The absorption coefficient and the
transmission coefficient of the sample and tissue are predetermined from literature
and the number of layers are also mentioned [157–161]. Photon packet is launched
from the light source and the movement of the photon is tracked as it propagates
through the tissue. It loses weight as it passes through each layer where it either gets
absorbed or transmitted. It loses weight as it moves across the tissue and some of the
photonsmight hit the sample of interest and can get reflected, transmitted or absorbed
[155, 162, 163]. To obtain a high-resolution image millions of photons are launched
from the light source simultaneously and at the end of it, the light absorbance by the
sample is calculated. This is reconstructed to form the absorbance map. These are
equivalent to the photoacoustic images that are obtained from the imaging systems.

While building a MC simulation model, a large number of photons are modelled
to propagate through the simulation medium (tissue). While passing through any
medium photons undergo either reflection or refraction or absorption or scattering or
a combination of these. The path that the photon takes is determined by the optical
properties of the medium such as refractive index (n), absorption coefficient (μa),
scattering coefficient (μs), and scattering anisotropy (g). Absorption coefficient (μa)
of a sample can be defined as the probability absorption by the photon in the medium
per unit (infinitesimal) path length. This physical quantity is measured by Beer’s law.
Similarly, scattering coefficient (μs) can be defined as the probability scattering of
light in a medium per unit (infinitesimal) path length. Scattering anisotropy (g) is
defined as the mean of the cosine of the scattering angle. In biological tissues, the
typical values for the various optical parameters are as follows, μa = ∼0.1 cm−1, μs

= ∼100 cm−1, g = 0.9, and n = 1.4. The flow chart for MC for an embedded sphere
as object is shown in Fig. 8.

The images generated from the monte carlo simulation of light propagation
through tissues can be used to train the neural networks. An example of absorbance
maps generated frommonte carlo simulation for a spherical object is shown in Fig. 9.
For training networks on artifact detection and correction, monte carlo simulations
can generate artifacts on the images as well. Many different types of artifacts can
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Fig. 8 Flow chart of Monte Carlo with embedded sphere (MCES). Reprinted with permission from
Ref. [164]

Fig. 9 e–h The absorbance maps of sphere at depth 0.5 cm for illumination angles 0°, 5°, 10°, and
15°. Reprinted with permission from Ref. [164]

be generated in the images to train the neural networks model appropriately. Images
from the simulation can also be used to test a neural network. The major advantage
of using monte carlo simulation for photoacoustic imaging is that a large amount of
training data can be obtained very easily, and the data can be customized based on
the problem.
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4 Applications of Deep Learning in Photoacoustic Imaging

There are two ways in which deep learning can be applied for photoacoustic imag-
ing. First, is during the image reconstruction process itself. When the traditional
photoacoustic reconstruction techniques are being used, deep learning algorithms
can be used on the raw data during reconstruction process to make the images better
by reducing artifacts. Second, as a post-processing step after image reconstruction.
In this case the traditionally reconstructed photoacoustic images are passed through
deep learning algorithms to reduce the artifacts. Examples of both of these methods
will be discussed in the following sections.

Photoacoustic signals collected at the boundary of a tissue surface and are most
often band limited. In a recent work, in an attempt to improve the bandwidth of the
photoacoustic signal detected from the sample, a deep neural network was proposed.
Using the neural network would help in improving the quantitative accuracy of the
reconstructed PA images. A least square-based deconvolutionmethodwhich involves
the Tikhonov regularization framework was used for comparison with the proposed
network. The proposed deep learning method was evaluated with numerical and
experimental data as well.

The network proposed contains five fully connected layers, out of the five, one
layer is the input layer and one other layer is the output layer. The rest of the three
layers are hidden layers. The architecture of this network very similar to that of the
decoder network. Three different numerical phantoms (different from the training
data) were used to evaluate the performance of the network: (a) a blood vessel
network is frequently used as PA numerical phantom for imaging blood vasculature,
(b) Derenzo phantom containing different sizes of circular distribution of pressure,
and (c) PAT phantom to simulate sharp edges. The bandwidth enhancement using
the proposed neural network can be evidently observed from the images as shown
in Fig. 10. Here, frequency response of the signal calculated using the proposed
neural networks was very similar to full bandwidth signal response. These results
indicate that the proposed method using neural networks are capable of enhancing
detectedPAsignal’s bandwidth [165]. This further improves the contrast recovery and
quality of reconstructed PA imageswithout increasing any computational complexity
significantly.

Another example of using deep learning is photoacoustic imaging for artifact
reduction is discussed here. In one of the recentworks, a novel techniquewith the help
of a deep learning neural network which are trained layer-by-layer to reconstruct 3D
photoacoustic images with high resolution was proposed. This network incorporates
the physical model into the reconstruction procedure to iteratively reduce artefacts
[74]. In this method aU-Net was used to post process data from direct reconstruction,
the limitation of using neural networks for post processing is that the result from the
neural networks are highly dependent on the quality of the initially reconstructed
photoacoustic image.TheU-Net is one of the commonly useddeepneural network for
image denoising, it is a state-of-the-art deep learning technique. The U-Net consists
of equal number of contracting and expansive layers. In this network, the number of
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Fig. 10 Numerical phantoms used for evaluation: a blood vessel network, f Derenzo phantom, and
k PATphantom.Reconstructed (backprojected) initial pressure imageswith 100 detectors usingb, g,
l full BW signal, c, h,m limited BW signal, d, i, n predicted signal from least square deconvolution
method, and e, j, o predicted signal from the proposed DNN. The SNR of the data is at 40 dB.
Reprinted with permission from Ref. [165]

feature channels is the same in the first and last layer, similarly, the number of feature
channels in the second layer is two times the first layer and the same is true for the
second-last layer. The resolution is being halved in of each contraction step and gets
doubled in each of the expansion step. Every single layer in the neural network has a
large number of feature channels, this aspect of it allows the propagation of context
information to higher resolution layers in the network. Because of this the network
assumes a symmetry and providing a U-shape architecture. For the down sampling,
the contracting layers of the network consists of unpadded convolutions which are
followed by rectified linear units and a pooling operation.Number of feature channels
gets doubled in each of the down sampling step [166]. The expansive layers consist of
up sampling feature map followed by an up-convolution where the number of feature
channels gets halved, each of this is followed by a rectified linear unit. Owing to the
high complexity of the photoacoustic forward operator, the training and computation
of the gradient information was separated. This network used data from a set of
segmented vessels from lung computed tomography scans for training and testing.
The network was then applied to in-vivo photoacoustic data measurement.

Use of directly reconstructed images on the neural networks to remove artifacts is
a valid approach in many applications, specifically if the goal is to achieve fast and
real-time reconstructions. This approach only needs an initial direct reconstruction
and one application of the trained network. In the case of a full-view data, this is
a promising approach, but it has been demonstrated that even with limited-view
images this technique performs very well. A comparison of DGD and U-Net for
simulated data is shown in Fig. 11 (top row). The final image is cleaned up and
many vessels are properly reconstructed although, some of the minor details are
missing in the image and could not be recovered from the initially reconstructed
data. The difference to the true target is also shown in Fig. 11 (bottom row). The



228 K. Sivasubramanian and L. Xing

Fig. 11 Comparison of reconstructions for a test image from the segmented CT data. Left: top and
bottom shows the result by applying U-Net to the initialization x0 and the difference to the phantom,
maximal value of difference is 0.6012. Middle: shows the result of the DGD after 5 iterations and
the difference to the phantom, maximal value of difference is 0.4081. Right bottom: difference
images as side projections for the results of DGD and U-Net. Reprinted with permission from Ref.
[74]

differences are most pronounced in the outer parts of the domain as a consequence
of the limited view geometry. In comparison the reconstruction by DGD has a much
smaller overall error, but this is especially true in the center of the domain. The
maximal error of the U-net reconstruction is 0.6012 (on the scale of [0, 1]) and of the
DGD reconstruction 0.4081 as can be observed form Fig. 12. In conclusion we can
say that the U-net architecture performs very well and is even capable of removing

Fig. 12 Illustration of the proposed network for PAT image reconstruction. In the first step, the FBP
algorithm is applied to the sparse data. In a second step, a deep CNN is applied to the intermediate
reconstruction which outputs an almost artefact-free image. Reprinted with permission from Ref.
[150]
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some limited-view artifacts but is ultimately limited by the information contained in
the initial reconstruction.

In another work, deep learning approach was used for photoacoustic imaging
from sparse data. In this approach, linear reconstruction algorithm was first applied
to the sparsely sampled data and the results were further applied to a CNN with
weights adjusted based on the training data set. Evaluation of the neural networks
is non-iterative process and it takes similar numerical effort as a traditional FBP
algorithm for photoacoustic imaging. This approach consists of two steps: In the
first step, a linear image reconstruction algorithm was applied to the photoacoustic
images, this method provides an approximate result of the original sample including
under-sampling artifacts. In the next step, a deep CNN is applied for mapping the
intermediate reconstruction to form an artifact-free end image.

The neural network is first trained using simulated ellipse shaped phantoms sam-
ples. 1000 pairs of images were generated and used for training. One part of the
training data includes pressure data without any noise and the second part of the data
random noise was introduced to the simulated pressure data. The neural network was
evaluated on similar simulated images of ellipse samples which was not introduced
to the network during training. The network performed well by eliminating all the
artifacts from the test images. The network was further tested on Shepp-Logan type
phantoms and as expected the network was not able to remove all the artifacts from
the image as it was not trained on this data [167]. Hence, additional CNNs were
trained on 1000 randomly generated ellipse phantoms and 1000 randomly generated
Shepp–Logan type phantoms. The newly retrained network was once again tested
on the Shepp-Logan type phantoms. It is evident from the images in Fig. 13 that
when the neural network is trained with appropriate and correct training data, the
performance of the neural networks improves significantly.

4.1 Deep Learning for LED Based Photoacoustic Imaging

As discussed earlier, the image quality of the LED based photoacoustic imaging
system is not great. To improve the image resolution, improve artifact removal and
reduce the averaging for these images would greatly help in the clinical use of this
system. Deep learning can be applied to the photoacoustic images fromLED systems
to improve the overall system efficiency. One of the recent works uses deep neural
networks-based performance improvement of the system for improving the quality of
the images and also to reduce the average scanning time (averaging) of LED-basedPA
images. The proposed architecture of the neural networks consists of two important
components; the first is a CNN which is used for the spatial feature extraction, and
the second one is the recurrent neural networks (RNN) to leverage the temporal
information from the PA images. RNN is a form of neural networks in which the
output of each step is fed as input to the next step. It varies from the traditional
neural networks in the sense that, in CNNs the input and output through different
steps are independent of each other. The most unique and important feature of the
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Fig. 13 Reconstruction results for a Shepp–Logan type phantom from data with 2% Gaussian
noise added. a FBP reconstruction; b reconstruction using TV minimization; c proposed CNN
using wrong training data without noise added; d proposed CNN using wrong training data with
noise added; e proposed CNN using appropriate training data without noise added; f proposed CNN
using appropriate training data with noise added. Reprinted with permission from Ref. [150]

RNN is the hidden state, which helps the network to remember the information about
a sequence. The neural networks are built based on the state-of-the-art algorithm of
densenet-based architecture which uses a series of skip-connections to enhance the
image content. For the RNN component, convolutional variant of short-long-term-
memory was used to make use of the temporal dependencies in a given PA image
sequence. Skip connections was introduced in the both the networks, CNN and RNN
for effective feature propagation and elimination of vanishing gradient.

Figure 14a shows the densenet-based CNN architecture. The neural network
accepts a low-quality PA image as input and as output generates high quality PA
image. The number of feature maps are shown in Fig. 14. The architecture of the
network consists of three dense blocks, where each dense block consists of two con-
volutional layers followed by a ReLU. One of the major advantages of using the
dense convolutional layer is that it utilizes all the generated features from previous
layers as inputs through skip connections. This enables the propagation of features
more effectively through the network which leads to the elimination of the vanishing
gradient problem. Finally, to obtain the output image, all the features from the dense
blocks are concatenated, a single convolution with one feature map is performed at
the end.

In order to train the network experimental study was done using the LED based
photoacoustic system and evaluate the performance. The experiment including
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Fig. 14 A schematic of the neural network. a The densenet-based CNN architecture to improve
the quality of a single PA image. b A schematic of ConvLSTM cell. In addition to current input
Xt, it exploits previous hidden and cell states to generate current states. c The architecture that inte-
grates CNN and ConvLSTM together to extract the spatial features and the temporal dependencies,
respectively. Reprinted with permission from Ref. [168]



232 K. Sivasubramanian and L. Xing

acquiring images from phantoms and also in vivo human fingers. For the phan-
tom experiments, PA signal was acquired for a time period of 11 s leading to the
generation of 11,000 frames of pre-beamformed signals. To obtain a noise free image
through averaging having a steady set up without any motion is critical. This is pos-
sible with phantoms whereas, maintaining a steady position for in-vivo imaging is
very challenging therefore was only done for 5 s. After data acquisition, PA sig-
nals were averaged over certain number of frames, followed by beamforming using
delay-and-sum technique, subsequently detecting the envelope to reconstruct the PA
image.

Two different types of phantoms were used in this study, wire and magnetic
nanoparticle phantoms because of their high optical absorption coefficients. For the
wire phantom, a total of 62 sets of PA data from 62 different image planes was
acquired, and each of the data set consists of a total of 11,000 frames. The phantom
was built with fives cylindrical tubes that are placed at multiple depths. The tubes
were varied in concentration and depth to perform a comprehensive evaluation of the
performance of the neural networks. This helps in evaluating the sensitivity of the sys-
tem at various depths. Tubes 1–3were of same concentration but placed in decreasing
depths. At the maximum depth along with tube 3, tubes 4 and 5 were placed with
decreasing concentrations. For the phantom experiment suing nanoparticle tubes, a
total of 10 sets of PA data was acquired from 10 different image planes.

For effective training of the neural networks, different qualities of input PA images
was used. As stated previously, greater the averaging, better is the image quality and
resolution. This aspect was made use of to obtain images of varying quality. The
averaging works well with phantom data as the three is not motion artifacts involved.
The number of frames to be averaged (N) was chosen from a range starting with very
low value and increased to the highest possible value (11,000).

Figure 15 depicts the photoacoustic images from the two different phantoms
and in-vivo human finger here. The performance of the various networks can be
clearly observed from the difference in the quality of images from the different
neural networks for all the different samples and at various depths. This work is an
example of how a neural network can be trained on very simple data that can be
easily acquired to improve the image quality and reduce the scanning time for image
acquisition.

5 Limitations of Deep Learning

Deep learning has been very successful in the recent times for a variety of applica-
tions. In spite of its success, there aremany limitations associatedwith the application
of the technique. Firstly, deep learning is not the best machine learning technique
for all the different types of data analysis problems. For various issues in which the
data is already well structured or if optimal features are well-defined, instead of deep
learning a lot of other simple machine learning methods like logistic regression, sup-
port vector machines, and random forests can be applied to solve it. It will be much
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Fig. 15 Qualitative comparison of ourmethodwith the simple averaging and CNN-only techniques
for a wire phantom, in vivo example. The in vivo data consists of proper digital arteries of three
fingers of a volunteer. Example effect of depth on the PA image quality on nanoparticles. Reprinted
with permission from Ref. [168]

easier to apply and are also usually more effective with such datasets. CNNs have
become very dominant in the field of computer vision, there are some limitations
there as well. One of the most significant limitation is that deep learning is a technol-
ogy that requires a large amount of data; for the network to learn the weights from
scratch for a large network requires a huge number of labeled examples to achieve
accurate classification. Deep learning scales very well with large datasets. Therefore,
computing resources, time needed for training a deep learning model is very high.
Also, obtaining so much of labelled training data is very difficult.

Transfer learning is receiving more research for moving to an effective way of
reducing the data requirements. In recent transfer learning approaches, it reuses
weights from networks trained on ImageNet (a labeled collection of low-resolution
2D color images). For most applications in radiology, higher-resolution volumet-
ric images are required, for which pretrained networks are not yet available. As a
result, creating a large labelled medical image library is really important step for
further progress in applying deep learning, which is not easy due to cost, privacy
etc. Also, with more future breakthroughs in deep learning, data requirements can
be significantly reduced for training of deep learning systems.
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6 Future Directions for Deep Learning

Deep learning models has shown expert-level or better performance at few tasks.
Deep learning algorithms are capable of extracting or identifying more features
than humans. Data availability and curation of data into repositories is becoming
more organized now for better handling and usage of data. This will further help in
developing better models for deep learning as there will be more availability of a
variety of training data including different scenarios. In the recent past there have
been approaches where they use data from one imaging modality to train a network
for better performance on another imaging modality. This will help in boosting the
performance of the neural networks as they train on better ground truth images. The
importance of deep learning will keep increasing in the days to come in the hospitals.

For photoacoustic imaging, deep learning will have a more important role to play.
Deep learning for photoacoustic is not much explored till now, so the potential of
it has fully not been understood. Some of the major areas in which deep learning
can be used for photoacoustic in general and LED based photoacoustic systems also
includes better and faster reconstruction algorithms, reduction of artifacts in images,
reduction in averaging to produce a high resolution image, decreasing the data acqui-
sition time, possibility of reducing the laser power used for image acquisition and
lesser exposure time. Further research in all the above-mentioned area will greatly
improve the performance of photoacoustic imaging system andmaymake the clinical
translation and utilization of photoacoustic for diagnosis and real-time monitoring
more feasible in the near future.

7 Conclusion

In this chapter we discussed the limitations of the current image reconstruction and
denoising techniques in photoacoustic imaging. The basic concepts ofmachine learn-
ing and artificial intelligence was established with a focus on deep learning. The
applications of deep learning in various medical imaging techniques was discussed.
Based on this, the use of deep learning in photoacoustic imaging was analysed espe-
cially for improvement in areas of image reconstruction, image denoising and image
resolution. Although, deep learning has a lot of potential applications for improv-
ing photoacoustic imaging, it comes with certain limitations, especially in terms of
training data. Upon overcoming the limitations, deep learning will definitely help in
clinical translation and utilization for various clinical applications in the near future.

Next section of this book will focus on preclinical imaging applications and early
clinical pilot studies using LED-based photoacoustics.
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Abstract Tomographic photoacoustic and ultrasound imaging is essential for
isotropic spatial resolution and to obtain a full view of the target tissue. However, to-
mographic systems with pulsed laser sources and custommade transducer arrays are
expensive. Additionally, there are other factors that limit the wide use of photoacous-
tic and ultrasound tomographic systems which include the size of the tomographic
systems that use pulsed laser and the laser safety issues. A cost-effective, compact
and safe photoacoustic and ultrasound tomographic system can find several imaging
applications both in clinics and small animal labs. LED-based photoacoustic imag-
ing has shown the potential to bring down the cost, enable faster imaging with high
pulse repetition rate and is safer when compared to pulsed lasers. The conventional
US system can be adopted for photoacoustic imaging by adding a light source to
it. Hence, linear transducer arrays are preferred as they are cheaper and allow faster
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imaging. The combination of LED-based illumination and linear transducer array-
based tomographic imaging can be a cost-effective alternative to current tomographic
imaging, especially in point-of-care applications.

1 Introduction

In photoacoustic (PA) imaging, pulsed (nanosecond) light induces thermoelastic
expantion in optical absorbers, resulting in acoustic signal generation. Detection
of these optically excited acoustic signals for imaging enables optical absorption
contrast at ultrasound (US) resolution [1, 2]. This imaging modality can surpass the
high optical scattering with the detection of less scattered acoustic signals. Hence,
it is a preferred modality where optical contrast, larger imaging depth, and high
resolution are required [3]. PA tomography is one of the widely used configurations
for deep tissue imaging where the target biological tissue allows a larger view angle
[4, 5]. PA tomography has been demonstrated for applications such as breast cancer
imaging [6, 7], thyroid cancer imaging [8], finger joint imaging [9], brain functional
imaging [10], and small animal whole-body imaging [11]. An additional advantage
of PA imaging is that it can be combined with US imaging as the same transducer can
be used for both modalities [3, 12–14]. The visualization of PA images in the context
of well known US images, with their complementary nature combining structural
and functional information is of added value for clinical applications [3, 15]. Major
limitations of tomographic systems are its cost, large size and safety issues with
the use of pulsed laser sources [16]. Additionally, the large number of transducers
and acquisition channels in tomographic systems also contribute to its size and cost.
Hence, there is an urgency for cost-effective, compact and safe to use systems for an
increasing number of clinical applications [16].

System cost and size of PA tomography systems can be considerably reduced
by replacing pulsed Q-switched lasers with alternative sources such as laser diodes
or LEDs [17]. Recent developments in LED-based PA imaging has shown promise
in developing systems which are portable, safe to eye and having high frame rate
[18]. A commercial system with LED-based illumination and linear US transducer
is available for research applications [18]. This system is an example which shows
that conventional US systems can be combined with PA imaging by simply plug-
ging in a light source [18, 19]. An advantage of such a configuration is that with a
software update, widely used US systems can incorporate PA imaging and can find
faster clinical acceptance [19]. Another aspect is the use of linear transducer array
instead of custom-developed transducers for tomographic imaging. The wide use of
linear array and its production in large numbers resulted in high yield and low cost.
Additionally, it enables faster US imaging with switching on and off subsets in an
array for transmission [20]. While for PA imaging the whole array can simply be
in the receive mode [20]. The usage of linear array also allows the use of less com-
putational complex reconstruction methods such as the Fourier domain algorithm
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[21]. Using the conventional US systems with linear array and low-cost illumination
sources such as LEDs for tomographic imaging can enable cost-effective, compact
and faster imaging systems.

2 Tomographic Imaging Using Linear Array

Linear transducer arrays are one of the first choices for tomographic imaging from
its very beginning, starting with Oraevsky et al. in [22]. The factors which enabled
the widespread clinical use were its availability in various frequency ranges, low
cost, and ease of integration [23]. However, due to limited aperture and directional
sensitivity of the linear transducer array, imaging suffers from loss of structural
information, anisotropic resolution and artifacts [23]. In order to overcome the limited
view problem, several methods were suggested. The use of a reverberant cavity by
Cox et al. [24] and two planar acoustic reflectors at an angle by Li et al. [25] are some
of the examples. However, the detected field of view in these proposed methods is
limited and multiple artifacts degrade the image quality making it challenging in a
practical setting. Scanning the transducer still remains a viable option for high-quality
tomographic imaging at the expense of scanning time.

A combined PA and US imaging by circular scanning of the linear transducer
was first studied by Kruger et al. in [26]. Two transducer scanning modes were used
for tomographic PA and US imaging, as shown in Fig. 1 [27]. Rotating the long axis
of the transducer about a center for imaging results in 2D imaging and rotating the
shorter axis provides 3D imaging [27]. In the 2D imaging case, multiple views of
the same imaging plane in a target tissue can be obtained by circular scanning of the
transducer. In this case, the tomographic image can be formed either by a combined
acoustic reconstruction fromall the elements or by compoundingB-scan images from
individual views [23, 28]. In case of 3D imaging, the cylindrical focusing of the linear
transducer array must be taken into account. This focus along the elevation direction

Fig. 1 Transducer configuration for 2D and 3D tomographic imaging. In the 2D imaging the long
axis of the transducer is rotated around the sample. The imaging plane of the transducer with the
cylindrical focusing is shown with doted lines. In the 3D imaging consists of linear scan at every
angular location
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results in imaging a different plane in each scan location. Combining these non-
overlapping images from subsequent scan locations can result in discontinuities and
smearing of structures [29]. To overcome these discontinuities in the 3D imaging, a
translate-rotate scanningwas proposed,where at each angular location a linear scan is
performed [30, 31]. In this chapter, we are focusing on the 2D imaging configuration.

3 Imaging Aspects Using a Linear Array

The characteristics of the US transducer should be considered while designing the
tomographic imaging configuration. Commercially available transducer arrays have
acoustic focusing and directional sensitivity. The focus along the axial direction and
the focus-zone where the transducer response is uniform should be considered to
define the center of rotation and imaging area [26]. Further, the directivity of the
transducer should be considered when defining the angular steps for the scanning. In
this section, we present ultrasound transducer characterization results, followed by
numerical simulations to determine an optimal number of angular views for tomo-
graphic imaging. We also present our image reconstruction approach and analysis of
resolution improvement with tomographic imaging.

3.1 Transducer Characterization

AcousticX system (Cyberdyne Inc., Japan) was used in this work for both PA and US
imaging. We have considered a linear transducer array with 128 elements having a
center frequencyof 7MHzand a−6dBbandwidth of 4–10MHz,with a pitch of 0.315
mm. The transducer was first characterized to measure the directivity and focus. The
characterization was performed in an acoustic receive mode. A 30 µm thick black
suture wire (Vetsuture, France) was used as a PA target with LED-based illumination.
We have used an LED array, illuminating at 850 nm wavelength with a pulse energy
of 200µJ and a pulse duration of 70 ns. The PA source was fixed and usingmotorized
stages the transducer was moved to various axial and lateral locations. In the first
experiment, the focus of the transducer was measured. The PA source was aligned
to the short axis of one of the center elements of the transducer. The raw PA signal
from the line target was acquired and the peak-to-peak value was plotted against the
distance between the transducer and the PA source. Themeasurements were repeated
for varying the axial distance between the transducer and the PA source. Figure2a
shows the peak-to-peak value of the PA signal at different axial positions. From the
plot, the maximum PA signal value (3.5 × 104) was observed at 20 mm which is
the focus of the transducer. On either side of the focus, a uniform drop of PA signal
intensity to a value of 2.8 × 104 was observed. A similar pattern was observed by
Kruger et al. [26]. They considered the focus of the transducer as the center of rotation
for tomographic imaging and the uniform region for imaging. The same approach
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Fig. 2 Transducer characterization. a Axial response of the transducer. bAcoustic field of a single
element

was adopted in our study. We have considered the focus distance (20 mm) to define
the center of rotation with a ±5 mm window within the uniform region (15–25 mm)
in the axial response of the transducer for larger and smaller samples.

In the second experiment, the directional sensitivity of a single element in a
transducer array was measured. The transducer was scanned in both lateral and axial
direction and peak PA signal values were recorded for one of the center elements.
Figure2b shows the PA intensity at different lateral and axial locations. At each
depth with a Gaussian fit on the measured data, the Full Width Half Maximum
(FWHM) was calculated. The angle made by the FWHM point with the center of
the transducer element was calculated to be 26.8 ± 0.2◦. To obtain the combined
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directivity of the transducer, the acoustic field of individual elements were combined
together. The opening angle on either side of the transducer was calculated in a
similar fashion using the FWHM points. The combined directivity of the transducer
was estimated to be 16.6◦ ± 1.5◦. The opening angle of a single element need to be
considered for PA mode as well as conventional line-by-line B-mode US imaging as
all elements are in the receiving mode. In the plane wave US mode, the directivity
of the whole transducer needs to be considered, as US transmission from all the
elements is involved in this mode.

3.2 Optimal Number of Angular Views

A target structure placed at an angle with the transducer is detectable if the normal
from it falls within the opening angle of a transducer element [32]. Hence, with
the opening angle of 26.8◦ ± 0.25◦ to detect a structure with an arbitrary angle, a
minimum of 14 views are required to cover the entire 360◦. While in the case of
plane wave US imaging, with the opening angle of the transducer being 16.6◦ ±
1.57◦, 24 angular views are required to have full-view tomographic imaging. This
theoretical estimation is a minimum as the transducer directivity is not a sharp cutoff
function. Hence, we performed an acoustic simulation to study the number of angular
views required to obtain an adequate image quality in the tomographic setting. A
phantom was designed for the simulation study as shown in Fig. 3a. Considering
the tomographic imaging we would like to test whether structures having different
orientations can be reconstructed well. Angular dependency was incorporated in
the phantom with 24 line targets placed at 15◦ angular steps as shown in Fig. 3a.
Next, we considered targets with different sizes to test the resolution enhancement
with tomographic imaging. Line targets and circular disks of different sizes were
considered in the phantom tomake it resolution dependent. Given a center-frequency
( f0) of the transducer and the corresponding wavelength (λ0), a typical resolution of
λ0/2 is expected from the transducer. In our experiments with the center frequency of
7MHz and a bandwidth of 4–10MHz, the second set of structures were incorporated
in the phantomwith different thickness varying from λ0/4, λ0/2, λ0, 2λ0 to 4λ0. The
circular targets of diameter λ0/2, λ0, 3λ0/2 and 2λ0 were also placed in the phantom.
Further, four different levels of initial pressures were also included making it ideal
phantom for image quality based study.

Acoustic wave propagation was performed using k-Wave toolbox of MATLAB
[34]. A homogeneous acoustic medium mimicking water with a speed of sound of
1502 m/s and a density of 1000 kg/m3 was used in the forward model. The transducer
elements were modeled to have finite size with spatial averaging of point detectors
with a directivitymask [34]. Gaussian noise with a signal to noise ratio of 50 dB, with
the signal level taken as theRootMean Square (RMS) value of the raw acoustic signal
was generated and added as the measurement noise. The simulation was repeated
for different number of angular views with the linear array around the phantom.
Individual B-scan images were formed from each angular view using the Fourier
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Fig. 3 Image quality versus angular views. a Ground truth photoacoustic phantom. b, c Recon-
structed images from 4, 16 and 64 angular views. e Zoomed in region of the phantom, marked
with the green box in (f–i) and the corresponding reconstructed images from 1, 4, 16 to 64 angles
respectively. j, k Line profiles from a vertical (yellow) and a horizontal (blue) region, comparing
ground truth and reconstructed photoacoustic pressure (Reproduced with permission [33])

domain reconstruction algorithm [35]. The tomographic imagewas formed by spatial
compounding of B-scan images from all angles.We have chosen structural similarity
(SSIM) index [36] and peak signal-to-noise ratio (PSNR) to measure the image
quality of the reconstructed image with respect to the ground truth. We have selected
SSIM to check how well the structures are reconstructed and PSNR to measure the
signal to the noise level in the image. Figure3b–d shows reconstructed images from
4, 16 and 64 angular views respectively. A zoomed-in region (marked in green) of
the ground truth and reconstructed images from 1, 4, 16 to 64 angles are provided in
Fig. 3e–i. In imagingusing a single viewonly horizontal line targets are reconstructed.
This limited view problem can also be observed in the circular targets, as only the
top and bottom boundaries were reconstructed. Calculated SSIMwas 0.09 indicating
low structural similarity. Additionally, the reconstructed image contains artifacts and
measurement noise providing a poor PSNR value of 7. An additional view from 18◦
can only provide a small improvement in the image quality as no additional angular
information is available. With 4 angular views, SSIM improved to 0.3 and PSNR to
11, as all the vertical and horizontal structures are reconstructed. It can be observed
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that structures with different intensity levels are also distinguishable. However, the
circular targets are not fully reconstructed and the noise level is still high. From4 to 16
views there is a linear increase in reconstructed image quality. In case of tomographic
image with 16 number of angular views all the structures at different angles, intensity
levels and sizes are resolved well with providing an SSIM of 0.53 and the noise and
artifacts are much lower with a PSNR value of 15.3. Further increasing the number of
views has little impact on the image quality with SSIM change from 0.52 to 0.56 for
the number of angular views from 16 to 64. The line profiles in Fig. 3j, k compares the
ground truth to the reconstructed photoacoustic intensity. The profile in Fig. 3j shows
line target with 5 different thickness, the smallest circular target and three line targets
placed at different orientations. The reconstructed PA pressure levels are compared
with that of ground truth. The profile in Fig. 3k shows targets with 5 different initial
pressure levels and the corresponding reconstructed PA pressure levels. These line
profiles also shows that from 16 number of views the structures can be reconstructed
to a large extent and more views add less information. From this study based on
image quality, we can conclude that 16 angular views in a step of 22.5◦ is optimal for
tomographic PA image reconstruction. This is a good agreement with the theoretical
estimate of 14 views made earlier. A small oversampling with angular steps of 20◦
resulting in 18 number of angular views were considered for the experimental study.

3.3 Tomographic Image Reconstruction

Tomographic image formation can be performed by combined acoustic reconstruc-
tion [23] or by spatial compounding of the B-scan images [28, 37]. We have con-
sidered multi-angle spatial compounding to form tomographic photoacoustic and
ultrasound images [28]. The PA and US signals were acquired using the linear trans-
ducer array by scanning around the sample as shown in Fig. 5a, b. The PA andUS data
from each angle are first reconstructed to form B-scan images. The B-scan images
formed directly from the system using an in-built real-time reconstruction algorithm.
This can also be performed off-line using a similar Fourier domain algorithm [35,
38]. Additionally, the system can perform both plane wave and B-mode US imaging.
The B-scan images were then rotated to the corresponding angle they were acquired.
An image rotation was performed to correct for the angle it was acquired. The rotated
images are then averaged to obtain the tomographic image.

3.4 Resolution Improvement

Imaging using a linear array with a single view of the target results in an asymmetric
resolution along the axial and lateral direction. A higher resolution can be achieved
along the axial direction compared to the lateral, as the resolution along axial direc-
tion depends only on the bandwidth of the transducer [39]. There are two factors that
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Fig. 4 Photoacoustic Point Spread Function (PSF) obtained from 30µm target. a Normalized PSF
from a single view with the linear array. b Normalized PSF from tomographic imaging obtained
from 18 angular views. c Comparison of 1D PSF extracted from (a) and (b) along the lateral and
axial direction

degrade the lateral resolution. First, the finite size of the element results in a spa-
tial averaging of the received acoustic signals [39]. Second, the reconstruction from
limited view measurements causing artifacts along the direction where detectors are
absent [40]. Reconstruction from a full-view tomographic measurement can improve
the resolution with projections from all the angles. Resolution improvement in tomo-
graphic imaging using a linear array was reported by Kruger et al. [41] with simple
compounding of B-scan images from different angles. A small improvement in reso-
lution was claimed with combined image reconstruction from all the measurements
[42] and with the use of multi-view Hilbert transform [23].

We have performed Point Spread Function (PSF) measurements in PA mode with
a single view andwith tomographic imaging from 18 views. A suturewire (Vetsuture,
France) with a diameter of 30µm was used as PA target and an 850 nm LED array
as illumination source. Figure4a shows PSF from a single view. Measured axial
Full-Width Half Max (FWHM) was 0.22 mm and lateral FWHMwas 0.47 mm. PSF
from tomographic reconstruction using spatial compounding of 18 angular views is
shown in Fig. 4b. The PSF is symmetric and the axial and lateral resolution were
measured to be 0.31 mm. A detailed analysis of 1D PSF along the lateral and axial
direction for both single view and the tomographic case is shown in Fig. 4c. It can
be observed that spatial compounding provides an improvement in lateral resolution
at the expense of degrading the axial resolution. However, it is possible to obtain an
isotropic resolution and limited view artifacts can be removed.

4 LED-Based Illumination for Tomography

In this section we present the illumination configurations using LED arrays. We also
performed simulations to study the light propagation from the LEDs into soft tissue
and present tomographic imaging results using the illumination configuration. The
AcousticX system used in this study can drive four LED units simultaneously. While
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Fig. 5 Tomographic imaging configurations with a illumination from the top of the sample and b
illumination from the sides of the sample (Reproduced with permission [33])

in the normal hand-held configuration only two LED units are used. Tomographic
imaging demands more energy for better penetration depth. Hence a combination
of all four LED units were considered for illumination. Each LED unit consists of
144 elements arranged in an array of 36 × 4 with an active area of 55 × 7 mm with
an energy of 200µJ per pulse. Two LED configurations are presented in this work.
The first one is for applications where the top of the sample can be accessed for
illumination, such as brain functional imaging [43]. The second configuration is for
samples that can only be accessed from its sides, such as finger joint imaging or
small-animal whole-body imaging. A schematic of the illumination configurations
is provided in Fig. 5.

To study the fluence distribution in a soft tissue using these two illumination
configurations, combined optics and acoustic simulations were performed. The light
propagation from LED array into the tissue was modeled using Monte Carlo simula-
tionwithMonteCarlo eXtreme (MCX) photon transport simulator [44]. A cylindrical
phantom with a 25 mm diameter in water having average soft tissue optical tissue
properties (μa = 0.56mm−1,μs = 9.9mm−1, g = 0.90, n = 1.4) [45] was considered
in these simulations. The LED elements were modeled with a solid opening angle of
120◦. In the top illumination case, four adjacent LED units were positioned at a dis-
tance of 5 mm above the phantom as depicted in Fig. 5a. While for illumination from
the side, two LED bars were placed above and below the transducer’s active part,
with an angle of 30.8◦ such that the illumination intersect the focus of the transducer
(at 20 mm) in a non-scattering medium. Additionally, two more LED bars with an
angle of 105◦ relative to the transducer array were placed in the imaging plane. To
reflect the acoustic signals away from the transducer and to minimize artifact, the
LED arrays were placed in an angle of 5◦ with the imaging plane.

The fluence maps from the Monte Carlo simulations were then coupled with the
acoustic simulation. To obtain the initial pressure, the ground truth was multiplied
with normalized fluence map. A plane 5 mm inside cylindrical phantom was con-
sidered for the fluence map. The Grüneisen parameter was not considered here, as
we were interested only in the spatial variation of initial pressure and not in its ab-
solute value. For the ground truth a vascular structure from a retinal image in the
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DRIVE database was used [46]. To mimic soft tissue acoustic properties, a speed-
of-sound of 1580 m/s and density of 1000 kg/m3 were used for the phantom. For
the coupling medium we assigned a speed-of-sound of 1502 m/s and a density of
1000 kg/m3. The acoustic attenuation was modeled as power-law with pre-factor
chosen to be 0.75dB/(MHz1.5 cm). The directivity and bandlimited nature of the
transducer was also modeled as explained in the previous simulation (Sect. 3.2). The
first-order k-space model was used for forward acoustic wave propagation. To mimic
measurement noise, Gaussian noise with SNR of 30 dB (with respect to the RMS
value of the PA signal) was added to the RF signals. For a realistic scenario the spatial
variations in the acoustic properties are unknown. Hence, for the reconstruction, we
assumed an uniform acoustic properties. The tomographic images were formed by
spatial compounding of reconstructed B-scan images from all the angles. A normal-
ization was performed on the reconstructed images such that the total intensity of the
vascular structures are the same as that of the ground truth [47]. The normalization
was performed by segmenting the pixels in the region of the vascular structures and
normalizing such that the sum of pixel values in the segmented region is equal to that
of the ground truth. Tomographic images obtained from top and side illuminations
were compared validated against the ground truth.

A uniform illumination is desired to view the whole sample from all the angles
and to form a perfect tomographic image. In this simulation study, we compare the
difference in reconstructed image from a fixed top illumination and rotating side
illumination. Figure6a and b show optical fluence map from the top and side illumi-
nation. A line profile of the fluence map extracted from the center of the phantom is
also shown below images. In the top illumination, the fluence is mostly uniform. An
asymmetric drop of the fluence at the edges of the phantom in the vertical direction
can be observed compared to the horizontal. This asymmetry is due to the rectangular
(50 mm × 40 mm) illuminated region, as we stacked LED units. From the center of
the phantom to the edge a maximum drop in fluence of 46% was observed. In the
case of side illumination, the fluence dropped to 30% at the center compared to the
one at the boundary.

The ground truth vascular phantom is shown in Fig. 6c. The initial pressure map
from top and side illumination, obtained by multiplying the ground truth with the
fluence map (Fig. 6a, b) is shown in Fig. 6d, e. Tomographic images obtained from
16 angular views are shown in Fig. 6f, g. In both the configurations, all the structures
in the phantom were reconstructed. Figure6f shows that with top illumination, the
reconstructed pressure level is lower towards the boundary of the phantom compared
to the center. While for side illumination in Fig. 6g, the reconstructed pressure is
lower at the center of the phantom, compared to the rim. This is further evident in the
line profiles in Fig. 6h, i, extracted from the reconstructed images along the vertical
(white) and horizontal (green) lines through the center of the phantom. The speed-
of-sound is considered uniform in the reconstruction. As a result of this assumption,
a lateral shift in the peaks compared to the ground truth can be observed in the
line profiles. In the tomographic imaging utilizing spatial compounding of B-scan
images, this can result in smear artifacts from multiple angles and a change in the
size of the structures. To concluded, both configurations can be used for tomographic
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Fig. 6 A simulation study comparing top and side illumination configurations. a, b Normalized
optical fluence maps in the two cases respectively. A line profile of the fluence map extracted from
the center of the phantom is shown below the image. c Ground truth vascular phantom. d, e Initial
pressure obtained from top and side illumination respectively. f, g Reconstructed and normalized
tomographic images from 16 angular views. h, i Comparison of line profiles between the ground
truth (c) and the reconstructed images (f) and (g), along horizontal (green) and vertical (white) lines
passing through the center of the phantom respectively (Reproduced with permission [33])

imaging. However, with top illumination, a region of interest around the center can be
reconstructed well. This aspect can be helpful in applications like small animal brain
imaging. In the case of side illumination, there is a significant amount of overlap in
the illuminated regions between angular views. This overlapping illumination region
allowsmultiple view of the same structure enabling tomographic reconstruction. The
lower fluence at the center of the sample can result in a lower reconstructed pressure
level in this region. However, with more number of transducer elements observing
the center higher SNR can be obtained with averaging. Using the side illumination
the rim of the object is illuminated fairly uniform. Hence side illumination can be
potentially used for finger joint tomographic imaging.
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4.1 Imaging Experiments

The illumination configurations developed in Sect. 4, and scanning steps for tomo-
graphic imaging using a linear array determined in Sect. 2, were incorporated in the
experimental setup. In this section, we present imaging using the two LED array
configurations. We also discuss the imaging speed our tomographic system.

4.2 Tomographic Imaging Using Top Illumination

In the first configuration, all the four LED units are stacked together to form a large
array of 576 elements, placed 5 mm above the sample for uniform illumination.
In this case, the illumination is static and only the transducer is rotated around the
sample for tomographic imaging. Uniform illumination of the entire sample for all
angular views is ideal for tomographic imaging as this enables the transducer to view
the same structure from different angles. To a large extent, this is possible with the
illumination from the top of the sample.

Figure7a shows a photograph of a leaf skeleton stained with India ink and in-
cluded in a 3% agar phantom. The leaf phantom was selected as it has structures of
different thickness and orientation for a resolution study in the tomographic setting.
Additionally, the structures in the leaf mimic typical vascularization such as the one
in small animal brain [43]. PA imaging of these structures indicates the applicability
of this imaging system. Figure7b–g shows B-scan PA and US images from three
angular views. These images show the structure of the leaf with the limited view
from a linear array. Structures which are having smaller angles with the transducer
are reconstructed well. This shows the need for tomographic imaging to obtain a full
view of the sample. Figure7h, i show the PA and US tomographic images respec-
tively. A zoomed-in image of the leaf in Fig. 7j shows four levels of structures based
on the thickness. It can be observed in Fig. 7k–m, that with increasing number of
angular views from 4, 12 to 18, finer structures are visible. Three levels of structures
are reconstructed with 18 angular views leaving only the smallest structures in the
leaf undetected. The smallest structures were not reconstructed as the bandwidth
of the transducer is limited and the high frequency components in the PA signals
were not detected. The tomographic US image formed with the plane-wave mode in
Fig. 7c shows the boundary of the leaf and the larger veins. It should be noted that the
number of angular views of 18 is insufficient in the plane wave mode for a complete
tomographic imaging and the specular nature of the imaging is not appropriate to
differentiate these structures.

It is also possible to image ex vivo tissue samples of small size using this config-
uration. A typical example is surgically excised tissue to look for malignancy before
pathological inspection [39]. In another experiment, we have imaged an ex vivo
mouse knee sample. In this case, we also compared the difference in tomographic
US imaging using the plane wave and conventional line-by-line scanned B-mode.
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Fig. 7 Tomographic imaging of a leaf skeleton. a Photograph of the leaf. b, d, f Photoacoustic
B-scan image from three angles. c, e, gUltrasound B-scan image from three angles. h Photoacoustic
tomographic image from 18 angular views. iUltrasound tomographic image from 18 angular views.
j Zoomed in region of the leaf skeleton indicated by green box and (k)–(m) are PA tomographic
image of the zoomed in region using 4, 12 and 18 angular views (Reproduced with permission [33])
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Fig. 8 Mouse knee imaging. a Photograph of the ex vivo mouse knee sample. US tomographic
images obtained from b plane wave imaging and c B-mode imaging. d PA image of the sample. e
Combined PA and US image (Reproduced with permission [33])

Figure8a shows the mouse knee sample embedded in a 3% agar phantom.
Figure8b shows tomographic US imaging using the plane wave mode and Fig. 8c
using B-mode. Tomographic imaging using B-mode US shows superior quality in
its compared with the case of plane wave. Two bones forming the joint and the tis-
sue around it are visible in the tomographic image. Adding more angular views can
improve the plane wave ultrasound-based tomographic image. A major blood vessel
running through the joint is visible in the photograph in Fig. 8a. The PA image in
Fig. 8d shows the blood vessel and several branches from it. There are some discon-
tinuities as the blood vessel was not completely in the imaging plane. Additionally,
clotted blood near the point where the joint was dissected is also visible as a high
absorbing spot. The coregistered PA and US tomographic image in Fig. 8e shows
both joint and blood vessels. The capability to visualize both vascular development
and joint damage can be useful for early detection of rheumatoid arthritis.

4.3 Finger Joint Imaging Using Side-Illumination

Rheumatoid Arthritis (RA) is an autoimmune disorder affecting joints, which leads
to disabilities [48]. If not detected and treated at an early stage, the disease can per-
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manently damage the joints. Imaging the synovium to identify inflammation and
angiogenesis can indicate the disease activity. US and magnetic resonance imag-
ing (MRI) are used for imaging joints. US imaging is less sensitive to early stage
changes in the synovium. The vascularization of the synovium is imaged using Ul-
trasound power Doppler (US-PD) [49]. However, lack of sensitivity to small blood
vessels limits the applicability of US-PD. MRI can provide good visuaization of the
synovium. However, it is largely inaccessable, expensive and needs contrast agents
[49]. In this scenario, PA imaging has shown the potential to detect vascularization
in the synovium with the high optical absorption of the blood [49]. Physiological
biomarkers in the synovial tissues such as neoangiogenesis, hypoxia and hyperemia
can be detected using PA imaging [50]. Therefore, PA imaging can be used for joint
imaging for RA and other rheumatologic conditions such as osteoarthritis, crystal
deposition diseases, seronegative spondyloarthropathies, and systemic lupus [48].
There are many efforts to use low-cost and compact light sources in PA imaging
systems, specifically for the application of RA [48, 49]. The primary goal is to have
a compact PA system as a point-of-care device in the vicinity of a rheumatologist.
Patient studies using LED [51] and laser diode [49] based PA illumination added
to conventional US systems have shown promise in point-of-care imaging for RA
monitoring. However, these handheld systems using linear transducer arrays canmiss
early signatures of RA due to the asymmetric resolution and limited view. Hence, a
tomographic system is needed to obtain a full view of the target tissue [52, 53].

We have developed a finger joint imager using the side illumination configuration
explained in Sec. 4. A holder for the transducer and LED units with the configuration
design developed in Sect. 4 was 3D printed. A schematic of the finger joint imager is
shown in Fig. 9a. A translational stage with an accuracy of 100µmwith a maximum
range of 157.7 mm and a rotational stage with a 0.1◦ accuracy for 360◦ rotation
was used for scanning the imaging probe. Additionally, hand rest and a fingertip
positioner were used to minimize movement during the scan. A photograph of the
finger joint imager is shown in Fig. 9b. In a proof-of-concept experiment, a finger
joint of a healthy female volunteer was imaged. Figure9c shows combined PA and
US images of a finger showing the interphalangeal joint and the blood vessels around
it. Tomographic PA and US images were acquired at locations p1 at the joint, and
p2 which is 5 mm away from the finger joint. Figure9d–f are tomographic PA, US
and combined images at p1. Figure9g–i are tomographic PA, US and combined
images at p2. The ultrasound images show a hypoechogenic region for both bone
and blood vessels. The skin and the blood vessels are visible in the PA images. The
interphalangeal joint in the US image (p1) shows two distinct regions in the bone
with a narrow separation possibly from the curved region of the joint. Figure9j shows
tomographic PA images with increasing number of angular views from a partial view
of 90◦ to a full-view acquired from 360◦. This images shows the need for a full-view
tomographic imaging. In this proof-of-concept study to minimize the imaging time
for in vivo measurement plane-wave, US image was used. The use of B-mode and
more angular views can improve image quality. The initial result shows that the
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Fig. 9 Finger joint imaging. a Schematic and b photograph of the imager. c Combined PA and US
image from a linear scan of the finger joint. d–f Photoacoustic, ultrasound and co-registered image
respectively at position p1. g–i Photoacoustic, ultrasound and co-registered image respectively at
position p2. jTomographic photoacoustic images obtained from increasing number of angular views
(Reproduced with permission [33])

tomographic US and LED-based PA system can be used to image the vascularisation
around the finger joint and the bone structure, which shows its potential. To test the
system for its applicability in RA imaging, an extensive patient study is required.
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4.4 Tomographic Imaging Speed

In the AcousticX system, RF data from all US elements are acquired at a sampling
rate of 40 MHz for US and at 20 MHz for PA imaging and transferred to the GPU
board. Acquired data (US and PA) is reconstructed using an in-built Fourier-domain
based reconstruction algorithm and then displayed in real-time. The system can drive
the LED arrays as well as transmit and acquire data parallelly from all 128 elements
of the US probe to generate interleaved PA and plane wave US images at a maximum
frame rate of 30.3 Hz, with the maximum LED pulse repetition frequency (PRF) of
4 KHz which delivers the possibility of averaging more PA frames to attain good
SNR without degrading the frame rate.

In our experiments at an LED PRF of 4 KHz, 64 PA frames are averaged on-board
within the DAQ and then the data is transferred to AcousticX PC through the USB
interface. This data is averaged 6 times in the PC and then reconstructed using a
frequency-domain algorithm implemented in the GPU. One US (planewave) frame
is acquired between every 64 PA frames to generate US and PA overlaid images at
an interleaved frame rate of 10.3 Hz. After acquiring one PA and US image at the
first angular view (97 ms), the imaging probe was rotated by 22.5◦ in 2.56 s and the
next view was acquired. This was continued for 16 different angular views to attain
360◦ view, which is then used for generating a PA/US tomographic image. Thus, the
total time required for generating a full view tomographic US/PA image is 42.5 s.

The system is also capable of performing conventional US line-by-line acquisi-
tion (transmit with 10 channels, receive with 16 channels) by scanning each line of
an image for generating high quality B-mode US images along with PA images at
the expense of frame rate (6.25 Hz compared to 10.3 Hz in the plane wave US). In
the small animal cadaver experiment, this setting was used since high-speed scan-
ning is not a prerequisite in this case. The total time required for generating a full
view tomographic US/PA image is 43.5 s, which is almost a second slower than the
acquisition involving plane-wave US imaging.

5 Future Perspectives

Our simulation, phantom, ex vivo and in vivo results give a direct confirmation
that LED-based tomographic PA imaging using linear array US probes holds strong
potential in multiple clinical and preclinical applications. However, several improve-
ments are required for translating this technology to preclinical labs and clinics. The
use of multispectral tissue illumination for obtaining blood oxygen saturation images
is one of the key applications of PA imaging. By utilizing LED arrays of different
wavelengths, we would like to explore this in our future studies in a tomographic
setting. It is foreseen that 3D images of vasculature and oxygen saturation combined
with anatomical information offered by US imaging would be a valuable tool for RA
detection and staging in both preclinical and point-of-care clinical settings. Currently,
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LED arrays are designed in such a way to fit well on both sides of a linear array US
probe with an aperture close to 4cm. In this work for tomographic imaging, we used
a pseudo-arc-shaped illumination with commercially available LED matrices. How-
ever, a custom developed arc or ring-shaped LED array would be more appropriate
for tomographic imaging applications. We would like to explore custom-developed
LED arrays for specific applications such as small animal imaging in the future.

Another improvement we would like to incorporate into the system is on the US
transducer. We have used a 7 MHz linear array probe in this work. For imaging
deeper structures, we would like to use a transducer with low center frequency (1–3
MHz) with a wide bandwidth. From the PA images, we observed that blood vessels
were visualized as double-layered features (only lumen) with no information inside
the vessels. This is mainly because of the bandwidth limitation of the US probe.
For accurate PA imaging, it is of paramount importance to design high bandwidth
US probes in the future. This may help to visualize entire blood vessels, instead of
walls as in conventional linear array US probe-based 2D PA imaging. Quantitative
PA imaging will also be more accurate with an improved US transducer with high
bandwidth.

From the application perspective, an update to the commercial system with circu-
lar scanning and tomographic image rendering would be useful for many labs to use
the proposed tomographic imaging. This will enable the use of an LED-based system
(AcousticX) in animal imaging facilities and pre-clinical labs for tomographic imag-
ing.With all the above improvements in light delivery, acoustic detection, and circular
scanning, we foresee to target small animal imaging (brain and abdomen) and several
clinical applications (RA monitoring, breast imaging) in the future. An affordable,
point-of-care full view tomographic imaging system with structural, functional, and
molecular contrast is expected to have a significant impact in pre-clinical/clinical
diagnostic imaging and treatment monitoring.

6 Conclusion

In this chapter, we have demonstrated that using LED-based illumination and a
linear transducer array, tomographic photoacoustic and ultrasound imaging system
can be performed. A method to determine the optimal number of angular views for a
full view tomographic imaging is presented and it was validated with experimental
results. In terms of penetration depth, the pulse energy from an LED is a limitation for
tomographic imaging. Hence, we have demonstrated the use of 576 LED elements
in two configurations in the tomographic setting. Both the configurations developed
here have great potential biomedical imaging applications. We have successfully
demonstrated the applicability of ourmethod in joint imaging both in ex vivo samples
and in vivo human finger. However, we restricted ourselves to imaging applications
involving smaller samples (≤30 mm), as the pulse energy is still a bottleneck for
larger tissues. A tomographic imaging time using our system is mainly limited by
the scanning time. Although the imaging takes less than a minute, this speed can
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still be a limitation in some applications. Imaging speed is a trade-off factor that we
considered to reduce the system cost. Provided that the longer pulse duration (10s
of nanoseconds) is acceptable for photoacoustic imaging, this inexpensive, compact
and safe to use tomographic system demonstrated in this work can find applications
especially in point-of-care imaging.
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Functional and Molecular Photoacoustic
Computed Tomography Using Light
Emitting Diodes

Sumit Agrawal and Sri Rajasekhar Kothapalli

Abstract Photoacoustic Computed Tomography (PACT) has been widely explored
for inexpensive non-ionizing functional and molecular imaging of small animals
and humans. In order for light to penetrate into deep tissue, a bulky and high-cost
tunable laser is typically employed. Light Emitting Diodes (LEDs) have recently
emerged as smaller and cost-effective alternative illumination sources for photoa-
coustic (PA) imaging.We recently developed a portable, low-costmultispectral three-
dimensional PACT system using multi-wavelength LED arrays, referred to as LED-
PACT, enabling similar functional and molecular imaging capabilities as standard
tunable lasers. In this chapter, first the capabilities of commercial LED array-based
B-mode PA and Ultrasound (US) imaging system, referred to as LED-PAUS, to per-
form functional and molecular imaging with both in vivo and phantoms studies are
presented.We also present the details of the development of LED-PACT systemwith
essential hardware components, acquisition and reconstruction software needed for
the implementation. This chapter also covers simulations and experimental results
comparing the capabilities of LED-PACT system with commercial LED-PAUS sys-
tem. LED-PACT and LED-PAUS system together demonstrate the potential of LED
based photoacoustic imaging for pre-clinical and clinical applications.

1 Introduction

Photoacoustic tomography (PAT) is an emerging biomedical imaging technology that
combines rich optical contrast with the high spatial resolution of ultrasound [1, 2]. In
PAT, a biological specimen is illuminated with a sufficiently short laser pulse, which
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causes an increase in temperature due to energy absorption. This temperature increase
leads to thermoelastic expansion of the specimen, which induces ultrasonic pressure
generation. The generated pressure then propagates to transducers surrounding the
specimen. The received ultrasound signal is converted into an optical-absorptionmap
of the specimenwith different image formationmethods. PAT has shown great poten-
tial in biomedicine for several applications ranging from clinical breast angiography
[3, 4] to pre-clinical whole body imaging of small animals [5–7].

Based on the image formationmethods, PAT setups can be grouped into twomajor
categories. In the first method, a single element transducer mechanically scans the
imaging object in two dimensions. Photoacoustic received signal at each acquisition
provides a one-dimensional image along the acoustic focus of the transducer element.
Elementary stitching of these one-dimensional images along the two dimensions of
themechanically scanned region of interest gives a three-dimensional optical absorp-
tionmap of the specimen. PAT setups using this direct method of image formation are
called as photoacoustic microscopy (PAM) setups [8–10]. In the second method, dif-
ferent geometries of multi-element transducer arrays are used to electronically scan
the imaging object. Each element of the transducer has a larger acceptance angle
compared to the previous case. Photoacoustic image formation involves complex
computational reconstruction algorithms that can effectively merge the data from
all transducer elements. PAT setups using these complex reconstruction methods are
called as photoacoustic computed tomography (PACT) setups [11–15].

Common PACT setups comprise of a cumbersome Q-switched Nd:YAG laser
[11–15]. These lasers typically have a nanosecond pulse width with hundreds of mJ
pulse energy. Such high pulse energies can easily provide sufficient signal to noise
ratios for applications ranging from organelles to small animals to human imaging.
However, these laser sources, widely explored in a typical research setup, are not
suitable for clinical applications due to their massive cost and substantial footprints.

Recently, many researchers have employed both laser diodes [16–22] as well as
LEDs [22, 23] in the development of PA imaging systems. However, the emission
from laser diodes still remain coherent and are still under the category of class-IV
lasers. LEDs, unlike the class-IV lasers, offer a unique opportunity to operate with
more flexibility and ease of use. The challenging aspect of using LEDs compared
to laser sources for PA imaging is their low power pulses (about two orders of
magnitude smaller than the typical class-IV lasers) struggling to provide sufficient
signal from deeper tissue regions. To overcome this, sizable signal averaging is
performed utilizing the orders of magnitude higher repetition rates of the LEDs.

Several groups have explored the LED based PA imaging applications utilizing
the higher repetition rates to achieve acceptable signal to noise ratios. Further, to
improve the pulse energies researchers have also explored the arrayed arrangement
of LEDs [24–29]. In the arrayed format, the typical pulse energies increases from
few μJ to hundreds of μJ and thus improves the penetration depth of LED-based PA
imaging.

The previous studies [24–29] utilized the arrayed format of LED arrays only in a
typical B-mode fashion, where they place two LED arrays adjacent to a linear ultra-
sound probe and acquire B-mode photoacoustic images along the depth dimension
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Fig. 1 LED arrays attached
to conventional ultrasound
probe [Reprinted with
permission from 24]

of the specimen. There are two disadvantages of using the LED arrays in the above
format. First, in order for light and ultrasound to fall in the common imaging plane,
the angled arrangement of LED arrays (as shown in Fig. 1) leads to a standoff region
of about 8–10 mm.

Second, for deep tissue imaging applications, the signal to noise ratio reduces
drastically with the lower light energy reaching to the deeper regions. We have
addressed the above-mentioned problems with a novel approach of placing multiple
LED arrays around the imaging specimen. Our setup not only provides a close-to-
zero standoff region but also helps to increase the penetration depths in deep tissue
imaging applications to about 35 mm, similar to the big lasers.

With this approach, ours is the first LED based three-dimensional PACT system
that uses multiple LED arrays and a linear ultrasound probe to generate volumetric
3-D PACT images of the imaging object. Similar to the high-cost tunable lasers,
our LED-PACT system allows for the multi-wavelength LED arrays housed in a
cylindrical geometry to enable the functional and molecular imaging capabilities.

The rest of the chapter is organized as follows. Section 2 presents several phan-
tom as well as in vivo studies demonstrating the capabilities of the commercial
LED-PAUS system. Section 3 first describes our proposed LED-PACT system with
the details of the development of the hardware as well as the reconstruction of PACT
images. It also presents simulations and validation studies over different tissue mim-
icking phantoms comparing the capabilities of our proposed system with the LED-
PAUS system and proposing solutions to overcome its limitations towards the goal
of developing a clinically applicable, low-cost LED-PACT system.

2 LED-Based PAUS Imaging

The commercially available LED-based combined ultrasound (US)/photoacoustic
(PA) B-mode imaging system, referred to as LED-PAUS system, explained below
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in Sect. 2.1 is capable of acquiring 2-D/3-D B-mode US/PA images in real time. In
this section, we first introduce the commercially available LED based PAUS system
and then present different studies involving LED based PAUS system.

2.1 Commercial LED-PAUS Imaging System

A commercially available LED-PAUS system (AcousticX, Cyberdyne Inc., Ibaraki,
Japan) capable of acquiring interleaved PA and US B-mode images in real time was
presented previously [26, 27]. This system uses LED arrays for PA excitation and
a linear US transducer for ultrasonic excitation and detection. For B-mode 2-D/3-D
US/PA acquisition, two LED arrays are positioned on either side of the US probe
as shown in Fig. 1. Each of these LED arrays consists of four rows of 36 1 mm ×
1 mm LEDs. These LED arrays are capable of delivering a maximum optical energy
of 200 μJ per pulse and can be driven with a repetition rate of 1–4 kHz with pulse
duration of 30–150 ns. The ultrasound probe is a lead zirconate titanate (PZT) 128-
element linear array transducer having a pitch of 0.3 mm and total length of 38.4 mm.
The central frequency of the transducer is 7MHz and themeasured−6 dB bandwidth
is 75%. The ultrasound and photoacoustic modalities have sampling rates of 20MHz
and 40 MHz respectively. The US probe has an elevation focus of 15 mm, achieved
with the help of an acoustic lens incorporated on top of the transducer array. In the
following subsections, we have covered several phantom as well as in vivo studies
published using this LED-PAUS system.

2.2 Capability of LED-PAUS System to Image Exogenous
Contrast Agents

Exogenous contrast agents can be targeted for specificmolecules or cells for preclini-
cal and clinical applications. Photoacoustic contrast agents have significant feasibility
to assist in monitoring and diagnosis of diseases [30–36]. This work fromHariri et al.
[24] characterized the detection limit of some common small molecules used in pho-
toacoustic imaging: ICG [31], MB [32, 33], and DiR [36]. These are NIR-sensitive,
Food and Drug Administration (FDA)-approved contrast agents for both Fluorescent
and photoacoustic imaging. Various concentrations were scanned, and the detection
limits were calculated at three standard deviations above baseline. Figure 2a, e, i
show MIP images of high concentrations of ICG (640, 320, and 160 μM), MB (6,
3, and 1.5 mM), and DiR (592, 296, and 148 μM). Figure 2b, f, j shows the average
photoacoustic intensity along all ten ROIs for each tube associated with Fig. 2a, e, i.

Figure 2c, g, k showMIP images for the detection limit of ICG (36, 18, 9μM, and
DI water), MB (1.5, 0.75, 0.37 mM, and DI water), and DiR (136, 68, 34 μM, and
DMSO). Figure 2d, h, l show the average photoacoustic intensity along the ROIs.
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Fig. 2 Evaluation of LED-based photoacoustic imaging system for exogenous contrast agents. a
MIP image of ICG solutions (640, 320, 160 μM, and DI water) with high concentration as positive
control inside Teflon light wall tubes. b Statistical analysis of data in A. c MIP image detection
limit experiment for ICG (36, 18, 9 μM, and DI water). d Statistical analysis of data in (c). e
MIP images of MB solutions (6, 3, 1.5 mM, and DI water) with high concentration as positive
control inside Teflon light wall tubes. f Statistical analysis of data in (e). g MIP image detection
limit experiment for MB (1.5, 0.75, 0.37 mM, and DI water). h Statistical analysis of data in (g). i
MIP images of DiR solutions (592, 320, 148 μM, and DMSO) with high concentration as positive
control inside Teflon light wall tubes. j Statistical analysis of data in (i). k MIP image detection
limit experiment for DiR (136, 68, 34 μM, and DMSO). l Statistical analysis of data in (k). All the
error bars demonstrate standard deviation between different ROIs in each tube. Scan size is 10 mm
[Reprinted with permission from 24]

The error bars show the standard deviation between ROIs in each tube. The limit
of detection for ICG, MB, and DiR is 9 μM, 0.75 μM, and 68 μM, respectively
when 850 nm is used for ICG and DiR and 690 nm is utilized for MB. The power
for the LED-based system at 690 nm is almost three-fold lower than that at 850 nm.
This might explain the lower detection limit for MB rather than ICG and DiR. This
experiment also highlights how LED based systems are limited by the choice of
wavelengths. While OPO based systems are capable of scanning wide-wavelength
range, this system can only use twowavelengths at a time. Thus, it can be challenging
to carefullymatch the absorption peak of the contrast agentwith the excitation source.
Nevertheless, many species absorb strongly at 690 or 850 nm and customized LED
sets are available for ratiometric imaging.

2.3 Capability of LED PAUS System to Image Labeled Cells
in Vivo

This work from Hariri et al. [24]. presents in vivo experiments to demonstrate the
feasibility of LED-PAUS system for clinical applications. Several groups [37, 38]
have previously used photoacoustic imaging for stem cell imaging. Here, labeled
cells are used to understand the in vivo performance of this LED-PAUS system. This



272 S. Agrawal and S. R. Kothapalli

study used DiR which has been demonstrated as an effective contrast agent for cells
checking [39, 40]. Figure 3a, e, i show photoacoustic images before injection of DiR,
DiR @ HMSC, and HMSC, respectively.

The needle generates strong photoacoustic signal and overlaying the photoacous-
tic data with the ultrasound images offers more comprehensive structural informa-
tion in addition to functional details from DiR-labeled cells. Figure 3b, f, J demon-
strate B-mode photoacoustic/ultrasound images before injection. Figure 3c, d shows
photoacoustic and photoacoustic/ultrasound images of injected DiR in the mice,
respectively. These figures show strong photoacoustic signal in the presence of DiR.
Figure 3g shows capability of LED-PAUS system to detect cells labeled with contrast
agent. DiR was used as contrast agent for labeling the HMSCs. Unlabeled HMSCs

Fig. 3 In vivo evaluation of LED-PAUS system. a Photoacoustic image when needle is subcu-
taneously injected on spinal cord area before DiR injection. The needle has strong photoacoustic
signal. b Photoacoustic/ultrasound image of (a). c Photoacoustic image after subcutaneously injec-
tion of DiR. d B-mode photoacoustic/ultrasound image of (c). e Photoacoustic image when needle
is subcutaneously placed on the spinal cord area before HMSC labeled with DiR (DiR @ HMSC)
injection. f B-mode photoacoustic/ultrasound image of (e). g Photoacoustic image after injection of
HMSC labeledwithDiR (DiR@HMSC) on spinal cord. hB-mode photoacoustic/ultrasound image
of (g).i Photoacoustic image in presence of needle before injection of unlabeled HMSC as control
experiment. j B-mode photoacoustic/ultrasound image of (i). k Photoacoustic image of HMSC as
control. This image shows no photoacoustic signal for HMSC. l B-mode photoacoustic/ultrasound
image of (k). [Reprinted with permission from 24]
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were also injected as control (Fig. 3k, l), but there was no increase in photoacous-
tic signal. Hence this study demonstrated the feasibility of LED-PAUS system for
in vivo studies including photoacoustic cell imaging.

2.4 LED-PAUS System for Monitoring Angiogenesis
in Fibrin Scaffolds

Laser speckle contrast analysis (LASCA), a widely used imaging technique within
regenerative medicine, has high spatial resolution but offers limited imaging depth
and is only sensitive to perfused blood vessels. As an emerging technology, PA imag-
ing can provide centimeters of imaging depth and excellent sensitivity in vascular
mapping. PA imaging in combination with conventional US imaging offers a poten-
tial solution to this challenge in regenerative medicine. This study from Zhu et al.
[41] presented here used LED-PAUS dual system to image and monitor angiogene-
sis for 7 days in fibrin-based scaffolds subcutaneously implanted in mice. Scaffolds,
with or without basic fibroblast growth factor (bFGF), were imaged on day 0 (i.e.,
post implantation), 1, 3, and 7 with both LASCA and LED-PAUS imaging systems.
Quantified perfusion measured by LASCA and PA imaging were compared with
histologically determined blood vessel density on day 7. Vessel density corroborated
with changes in perfusion measured by both LASCA and PA. Unlike LASCA, PA
imaging enabled delineation of differences in neovascularization in the upper and the
lower regions of the scaffold. Overall, this study has demonstrated that PA imaging
could be a noninvasive and highly sensitive method for monitoring vascularization
at depth in regenerative applications.

2.4.1 In Situ Polymerization of Fibrin Scaffolds

This in vivo research [41]was conductedwith the approval of the InstitutionalAnimal
Care and Use Committee at the University of Michigan. Female BALB/c mice (n
= 5, 19.2 ± 1.0 g, 4–6 weeks old; Charles River Laboratories, Wilmington, MA)
were anesthetized with isoflurane (5% for induction and 1.5% for maintenance).
The lower dorsal hair was removed by shaving and applying depilatory cream (Nair,
Church & Dwight Co, Ewing, NJ). The skin was disinfected with povidone-iodine
(Betadine, Purdue Products L.P., Stamford, CT). The scaffold mixture (0.3 mL per
implant) was injected subcutaneously using a 20-gauge needle (Becton Dickinson,
Franklin Lakes, NJ) at two locations within the lower dorsal region and allowed to
polymerize for 2 min before removal of the needle. The scaffold mixture consisted
of the following: 10 mg/mL bovine fibrinogen (Sigma-Aldrich, St. Louis, MO) in
Dulbecco’s modified Eagle’s medium (Life Technologies, Grand Island, NY), 0.05
U/mLbovine aprotinin (Sigma-Aldrich), 125μg/mLAlexa Fluor 647-labeled human
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fibrinogen (Molecular Probes, Eugene, OR), 2 U/mL bovine thrombin (Thrombin-
JMI, King Pharmaceuticals, Bristol, TN), 34 μg/mL bovine serum albumin (Sigma-
Aldrich), and 6.6 mU/mL porcine heparin (EMD Millipore, Burlington, MA). Each
mouse received one implant with 1 μg of bFGF (EMD Millipore) per scaffold,
whereas the contralateral implant served as a negative control (i.e., 0 mg bFGF). The
placement of the negative control (i.e., left or right side) was randomized in all mice.

2.4.2 LASCA and LED-PAUS Imaging of Scaffolds

The detailed experimental schedule, including scaffold implantation and imaging, is
shown in Fig. 4. On days 2, 4, and 6, 50 μL of 20 μg/mL bFGF was subcutaneously
injected into scaffolds initially containing bFGF on day 0 (i.e., +bFGF). Phosphate
buffered saline (Life Technologies) was injected into the negative control scaffolds
(i.e., −bFGF). LASCA and PA imaging procedures were done in no particular order
on days 0, 1, 3, and 7.Abrief schematic diagramofLASCA/PA imaging is also shown
in Fig. 4. After the completion of imaging on day 7, the mice were euthanized, and
the implants were retrieved for histology.

Fig. 4 The 7-day longitudinal experimental schedule. Scaffold implantation was done on day 0.
LASCA/PA imaging was on day 0 (i.e., after implantation), 1, 3, and 7. bFGF or PBS was injected
subcutaneously adjacent to each scaffold every 2 days. Scaffolds were retrieved on day 7 for H&E
and CD31 staining. Each mouse received two scaffolds represented by the blue areas. bFGF, basic
fibroblast growth factor; H&E, hematoxylin and eosin; LASCA, laser speckle contrast analysis;
PA, photoacoustic; PBS, phosphate buffered saline [Reprinted with permission from 41]
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LASCA imagingwas employed tomonitor the perfusion noninvasively and longi-
tudinally in and around the subcutaneous implants placed in the lower dorsal region.
To perform LASCA imaging, the mice were anesthetized with isoflurane and imaged
with a PeriCam PSI HR (Perimed, Ardmore, PA) LASCA system. Figure 5a displays
a macroscopic image of a mouse with implants along with longitudinal perfusion
images from days 0 to 7. The ROIs are marked by black and red ellipses, indicating
the −bFGF and +bFGF implants, respectively. The LASCA images qualitatively
show more perfusion in the +bFGF scaf- folds than the −bFGF scaffolds in the
days after implantation. Figure 5b shows a quantitative analysis of the ROIs, which
was based on computing a relative change in average perfusion units for a given
implant relative to day 0. Overall perfusion tended to increase over time, with the
greatest increase observed for the+bFGF group relative to the−bFGF group, which
approached statistical significance on day 7 (p = 0.055).

To perform LED-PAUS imaging, mice were anesthetized with isoflurane and
secured to a platform in a prone position. The platform was partially submerged in a
37 °C water tank such that the implanted scaffolds were completely submerged for
imaging. Two 850 nm LED arrays were used for imaging. A series of 2-D US and
PA images of each scaffold were acquired at 10 Hz in the sagittal orientation while
the probe was translated at 0.5 mm/s across the volume of the implant. Figure 6a

Fig. 5 a Photo of dorsal view (leftmost) and longitudinal LASCA images of a mouse with two
subcutaneous implants. The ROIs were chosen based on the physical location of the implants, and
are denoted by colored ellipses (red for +bFGF and black for −bFGF). For all LASCA images,
the caudal direction is toward the left. ROI dimensions: 1.1 cm (major axis), 1.0 cm (minor axis). b
Quantification of the change in perfusion relative to day 0, based on an ROI analysis of the LASCA
images, shows an overall increase in perfusion over time. The greatest change in perfusion was
observed on day 7, with+bFGF scaffolds trending toward greater perfusion than−bFGF scaffolds.
α:−bFGF versus+bFGF on day 7 (p= 0.055). ROIs, regions of interest [Reprintedwith permission
from 41]
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Fig. 6 Longitudinal LED-PAUS imaging of two subcutaneous implants. Green and red arrows
indicate the upper and lower edges of the scaffold, as determined through the B-mode US. a
A series of two-dimensional PAUS images from a +bFGF scaffold on day 7 at different scan
positions. Note that only images within the range of −2.5 to 2.5 mm are used for MIP image. b A
series of longitudinal MIP PAUS images of+bFGF and−bFGF scaffolds from the samemouse. PA
intensity represented in red has the greatest difference on day 7. MIP, maximum intensity projected;
US, ultrasound [Reprinted with permission from 41]

shows a series of 2-D PAUS images from a +bFGF scaffold on day 7 at different
scan positions (i.e., sagittal planes). The PA signal, in red, is overlaid on the B-mode
US image, in grayscale. Figure 6b shows a series of longitudinal MIP PAUS images
of both scaffolds from the same mouse. Qualitatively, the +bFGF implant has a
PA intensity that increased over time, especially adjacent to the skin. Some signal
appears within the scaffold, likely due to the projection of multiple images into a
single plane. With the −bFGF implant, only point-like contrast was detected in the
scaffold, with no obvious trend during the 7-day experiment. The PA signal from the
+bFGF and −bFGF scaffolds appeared similar on day 0. The results on different
days of each mouse are normalized with day 0 and then compared the percentage
change. The greatest difference was observed on day 7, which was also consistent
with the LASCA results. On day 7, the +bFGF scaffold displayed a strong PA
signal, especially between the skin and upper layer of the implant. Some PA signal
was observed in the −bFGF scaffold, although at a lower level compared with the
+bFGF scaffold.

Further, the perfusion in implants measured by both LASCA and LED-PAUS
imaging techniques were validated by quantitative histology. Imaging was able to
cover the entire scaffold volume, and enabled delineation of neo-vascularization in
the upper and the lower regions of the scaffolds, respectively. The LED-PA imaging
results well matched with the findings from histology, suggesting that PA imaging
could be a non-invasive and highly sensitive method for monitoring angiogenesis at
depth in regenerative applications.
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2.5 High Speed Photoacoustic Imaging Using LED-PAUS
System

Conventional laser-based PA imaging systems are not suitable for dynamic studies
because of their low repetition rates and consequent low frame rates. LED’s used
in LED-PAUS system can be driven at high repetition rates of upto 4 kHz, offering
the possibility of real-time PAUS imaging at frame rates close to 30 Hz. However,
this frame rate is still not enough for applications involving dynamic tissue move-
ments. This study from Sato et al. [42], presents a new high-speed (HSS) imaging
mode in the LED-PAUS system. In thismode, instead of toggling between ultrasound
and photoacoustic measurements, it is possible to continuously acquire only photoa-
coustic data for about 1.5 s with a time interval of 1 ms. With this improvement,
photoacoustic signals can be recorded from the whole aperture (38 mm) at fast rate
and can be reviewed later at different speeds for analyzing dynamic changes in the
photoacoustic signals. This new high-speed feature opens up a feasible technical path
for multiple dynamic studies that require high frame rates such as monitoring cir-
culating tumor cells, voltage sensitive dye imaging, myocardial functional imaging
etc.

This study validated the HSSmode by dynamically imaging the blood reperfusion
in the finger of a human volunteer, thereby enabling the real-time measurement of
the blood flow velocity. A rubber band was wrapped around the index finger, and
the blood was pushed out as far as possible from the fingertip, causing temporary
ischemia (Fig. 7a). Figure 7b shows the position of LED arrays on both sides of
the US linear array probe and the finger placed between them. The finger and the
LED-PAUS probewere positioned in a water bath as shown in Fig. 7c. After blocking
the blood flow to the finger (by using rubber bands as shown in Fig. 7a), HSS mode
was initiated and data acquisition was started. At the same instant, the rubber band
wrapped around the finger was released in such a way that high-speed PA imaging
can visualize the reperfusion of blood in the finger. To improve SNR, they pulsed
the LED light source at 4 kHz and received the PA signal once every 0.25 ms. Four
frames were averaged on board for improving SNR. To maintain high framerate,
plane wave US imaging was used along with PA imaging. In addition, number of
pulse-echo ultrasonic acquisitions was reduced to six frames to enable continuous

Fig. 7 a Rubber band used to block the blood flow to the finger, b positioning of finger and the
LED-PAUS probe, c photograph of the probe and finger positioned inside the water bath [Reprinted
with permission from 42]
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high-speed PA signal acquisition for 1.5 s. Several measurements were done on the
same finger of the volunteer to validate and evaluate the new high-speed imaging
capability.

Figure 8 shows the results (first experiment) of imaging blood reperfusion in a
human finger. Figure 8a shows the PA/US image at the start of acquisition, when
there is almost no blood flow to the finger. Figure 2b–n shows the PA/US images at
different time points (interval of 10 ms) during the high-speed acquisition. After the
rubber band was released from the finger, PA signal intensity is clearly increasing in
a blood vessel inside the imaging plane. It is visible that the blood vessel of interest
is completely reperfused in about 130 ms.

Figure 9 shows the results of another example in which blood flow velocity is
calculated from the reperfusion of blood in finger. The distance indicated by the
dashed line was 6.4 mm, and the time taken for the blood to flow from the start point
on the left side to the end on the right side was 35 ms. From this, blood flow was
calculated to be about 18 cm/s.

Fig. 8 LED-PAUS overlay images acquired and displayed at different time points during the reper-
fusion of blood vessel in a human finger. PA images are displayed in hot colormap and conventional
US images are displayed in gray scale. It is clear from the images that blood is reperfused into one
of the blood vessels as the time is increasing from 0–130 ms. By 130 ms, the blood vessel was
completely reperfused [Reprinted with permission from 42]
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Fig. 9 LED-PAUS overlay image showing the reperfused blood vessel. Yellow line (indicated
between ‘+’ markers) shows the blood vessel from which the blood flow velocity was calculated
[Reprinted with permission from 42]

2.6 Human Placental Vasculature Imaging Using
LED-PAUS System

Minimally invasive fetal interventions, such as those used for therapy of twin-to-twin
transfusion syndrome (TTTS), require accurate image guidance to optimize patient
outcomes. Currently, TTTS can be treated fetoscopically by identifying anastomos-
ing vessels on the chorionic (fetal) placental surface, and then performing photo-
coagulation. Incomplete photocoagulation increases the risk of procedure failure.
Photoacoustic imaging can provide contrast for both haemoglobin concentration and
oxygenation, and in this study, it was hypothesised that it can resolve chorionic
placental vessels.

In this study, fromManeas et al. [43], to investigate the feasibility of the system to
visualize superficial and subsurface placental vessels on the fetal chorionic placenta, a
normal term placenta was collected with written informed consent after a caesarean
section delivery at University College London Hospital. The umbilical cord was
clamped immediately after the delivery to preserve the blood inside the vessels. The
placentawas initially placed in a plastic container and subsequently itwas coatedwith
ultrasound gel for acoustic coupling and covered with cling film. The container was
filled with water at room temperature for acoustic coupling and for free translation
of the imaging probe. The experimental setup can be seen in Fig. 10.

LED-PAUS system with two 850 nm LED arrays was used to image several
highly vascularized locations on the surface of the chronic fetal side. The linear
stage was used to translate the imaging probe for 3-D image volume acquisition
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Fig. 10 Experimental setup to image a human placenta. A clamp was used to mount the ultrasound
probe with the light emitting diode (LED) arrays to the linear motorized stage. The placenta was
coated with ultrasound gel, covered with cling film, and placed inside a water-filled container
[Reprinted with permission from 43]

along 40 mm scan region. Sample PA and US frames of a term human chorionic
placental vasculature that were acquired in real-time are presented in Fig. 11. With
PA imaging, superficial blood vessels and a subsurface structure were visible to a
depth of approximately 5 mm from the placental chorionic fetal surface.

Some of these vascular structures were not apparent in US images. With US
imaging, a large blood vessel located at a depth of approximately 7 mm could be
identified, but this vessel was not apparent with PA imaging.

Fig. 11 Single frames of ultrasound (US), photoacoustic (PA), and merged US and PA images
acquired from a human placenta, at one location (a–c). A large blood vessel (yellow arrow) that
is visible in the US image was not visible in the PA image. A subsurface structure was visible
with PA imaging (white arrow). All the images are displayed on logarithmic scales [Reprinted with
permission from 43]
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Fig. 12 Photograph (a) and photoacoustic (PA) images (b, c) of a portion of the human placenta.
Superficial branching blood vessels are apparent in both the photograph and the PA images. High
intensity PA signals (dashed squared box) that are not visible in the photographmight be attributable
to subsurface vascular structures. The PA images are displayed on a logarithmic scale as maximum
intensity projections (MIPs) of the reconstructed 3D photoacoustic image volume [Reprinted with
permission from 43]

Figure 12 shows a photograph of the area that was imaged and the corresponding
top and side maximum intensity projections (MIPs) of the reconstructed 3-D pho-
toacoustic signals. Several superficial branching vessels were clearly resolved. In
the top view MIP PA image, high intensity PA signals appeared to originate from
vascular structures that were not visible in the photograph.

This feasibility study demonstrated that photoacoustic imaging can be used to
visualize chorionic placental vasculature, and that it has strong potential to guide
minimally invasive fetal interventions.

2.7 In Vivo Real-Time Oxygen Saturation Imaging Using
LED-PAUS System

In this study, from Singh [44], potential of LED-based PAUS system in real-time
oxygen saturation imaging is demonstrated using an in vivomeasurement on a human
volunteer. 2-D PA, US, and oxygen saturation imaging were performed on the index
finger of a human volunteer. Results demonstrate that LED-based PAUS imaging
system used in this study is promising for generating 2-D/3-D oxygen saturation
maps along with PA and US images in real-time. Light illumination was provided
by two combination LED arrays fixed on both sides of the US probe as shown in
Fig. 13. Each LED arrays consists of 144 elements arranged in four rows. In this
study, combination LED array were used in which first and third rows are embedded
with 850 nm LED elements and second and fourth with 750 nm elements. For each
LED array, energy per pulse is 50μJ, and 100μJ for 750 nm and 850 nm respectively.
Light pulse duration can be varied from 30 to 100 ns and 70 ns pulse-width was used
for the reported measurement.
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Fig. 13 Photograph of LED-based PAUS probe in which two LED arrays (750/850 nm) are placed
on both sides of a linear array US probe (7 MHz) (left). Photograph of the LED array (right) with
four rows of LED elements in which row 1 and 3 are 850 nm elements, row 2 and 4 are 750 nm
elements. In this picture, 850 nm elements are activated and captured using an IR camera [Reprinted
with permission from 44]

The system can pulse the LED arrays as well as transmit/acquire data parallel
from all 128 elements of the US probe to generate interleaved PA/US (planewave or
line-by-line) images at a frame rate of 30 Hz. System can drive the LED’s at a rate
of 4 kHz, providing the opportunity to average multiple frames without losing the
frame rate. In the multispectral mode for oxygenation imaging, it can toggle between
two wavelengths (750 and 850 nm in this case) at a rate of 4 kHz and provide oxygen
saturation image overlaid with US or PA images at frame rates as high as 30 Hz.

Index finger of a human volunteer was immersed in water (imaging plane/location
is marked in Fig. 14) and LED-PAUS probe was used to perform real-time (Frame
rate: 10 Hz) interleaved oxygen saturation and US imaging. Real-time feedback
allowed to align the probe with a pulsating radial artery (depth: 7 mm).

Figure 14 (right) shows the results of oxygenation imaging experiment usingLED-
PAUSsystem, inwhich tissueoxygenationmap is overlaid on conventionalUS image.
Alignment of probewas done in such away that a pulsating radial arterywas inside the
imaging plane (this was verified using the pulsating nature of it while looking at one
wavelength PA image). In the oxygenation image, arterial blood is visualized in red

Fig. 14 Location on human finger where imaging was performed (left) and oxygen saturation
image overlaid on conventional pulse echo image (right) [Reprinted with permission from 44]
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color (oxygenation level close to 100%) and superficial venous blood in yellow shade
(oxygenation level close to 70–75%) as expected. Also, it is interesting to see that
skin melanin is visualized in blue color (above venous structure). It is commendable
to mention that the system is capable to separate and visualize three different optical
absorbers in tissue (arterial blood, venous blood, and melanin) using a simple 2
wavelength approach. It is important to note that, obtained oxygenation values are
relative because of wavelength-dependent light fluence variations. However, form
these results, it is clear that LED-PAUS system can differentiate arteries and veins in
healthy human volunteers, where blood oxygenation changes in arterial and venous
blood is expected to be less than around 20%.

2.8 In Vivo Imaging of Human Lymphatic System Using
LED-PAUS System

Non-invasive in vivo imaging of lymphatic system is of paramount importance for
analyzing the functions of lymphatic vessels, and for investigating their contribution
to metastasis. This study from Singh [45] demonstrates the capabilities of LED-
PAUS system to image human lymphatic system in real-time. Results demonstrate
that the system is able to image vascular and lymphatic vessels simultaneously. This
could potentially provide detailed information regarding the interconnected roles of
lymphatic and vascular systems in various diseases, therefore fostering the growth
of therapeutic interventions.

ICG has a peak spectral absorption at approximately 810 nm and has almost no
optical absorption above the wavelength of 900 nm. Exploiting this, a combination
LED array with 820 and 940 nm that can toggle between these wavelengths at a rate
of 4 kHz was developed. This study hypothesized that ICG administered into the
lymphatic vessels will generate PA signal only when the LED array emits light of
820 nmwavelength.On the other hand, other tissue optical absorbers likemelanin and
blood vessels possess absorption characteristic in both 820 and 940 nmwavelengths,
which in turn generates PA signals in bothwavelengths. For differentiating veins from
lymphatic vessels with ICG, the PA images generated at 940 nm can be divided by
images at 820 nm. After acquiring and reconstructing PA data for both wavelengths,
images are normalized for variations in optical energy. Then the 940 nm PA image
is divided by the 820 nm image and displayed real-time (10 Hz) along with the pulse
echo US image. Following the division of images, the jet colormap is used in such
a way that image intensity values close to or above 1 (veins) are color coded in red
and those pixels with values below 0.5 (ICG) are coded in blue. Apart from this, the
systems’ user interface also enables visualization of the images acquired with the
two wavelengths separately along with the US image for real-time validation of the
experimental procedures.

To perform real-time imaging of human lymphatic vessels and blood vessels
in vivo, measurements on the limb of a healthy volunteer were made. Under the
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guidance of a clinician, 0.1 ml of ICG (Diagnogreen 0.25%; Daiichi Sankyo Phar-
maceutical, Tokyo, Japan) was injected subcutaneously into the first web space of
the lower limb of a healthy person. ICG entering and flowing inside the lymph vessel
was observed with a conventional fluorescent camera. After identifying the approx-
imate position of a lymphatic vessel, real-time dual wavelength PAUS imaging was
performed and the processed images were displayed (image generated by dividing
940 nm image with 820 nm image) along with conventional pulse echo US image.

Figure 15a and b shows PA images of 820 and 940 nm acquired at position 1 in
which the probe was well aligned with a superficial vein. Beneath the melanin layer
(marked with red arrow in 820 nm image), a superficial vein is clearly visualized
in both PA images (double layered feature at a depth of ~2.3 cm, marked with pink
arrow in 820 nm image). It is important to note that features visible in both the
820 and 940 nm images are identical at this position. Figure 15c and d show PA
images of 820 and 940 nm acquired at position 2 in which the probe was aligned
with a probable lymphatic vessel. At this position, common features evident in both
wavelength images are likely to be veins (markedwith pink arrows in 820 nm image).
At a depth of ~2.6 cm, some bright features are visible only in the 820 nm image

Fig. 15 a PA image—820 nm acquired when the probe was aligned to a superficial vein (position
1), b PA image—940 nm acquired when the probe was aligned to a superficial vein (position 1), c
PA image—820 nm acquired when the probe was aligned to a lymphatic vessel (position 2), and
d PA image—940 nm acquired when the probe was aligned to a lymphatic vessel (position 2).
Red arrows—Melanin, Pink arrows—Veins, and Green arrows—Lymphatic vessel [Reprinted with
permission from 45]
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Fig. 16 a PA image—940/820 nm acquired when the probe was aligned to a superficial vein
(position 1), b PA image—940/820 nm acquired when the probe was aligned to a lymphatic vessel
(position 2), c 940/820 nm PA image overlaid on US image when the probe was aligned to a
superficial vein (position 1), and d 940/820 nm PA image overlaid on US image when the probe
was aligned to a lymphatic vessel (position 2). Red arrows—Melanin, Pink arrows—Veins, and
Green arrows—Lymphatic vessel [Reprinted with permission from 45]

(Fig. 15c, marked with green arrows). These may be lymphatic vessels with ICG
contrast.

Figure 16a shows the PA image obtained by dividing 940 and 820 nm images at
position 1. As expected, the vein inside the imaging plane is visualized in red color
since there is not much difference in absorption coefficient of venous blood in these
two wavelengths. Figure 16b shows the PA image (940/820 nm) at position 2 where
the probable lymphatic vessel is inside the imaging plane. In this case, we can see
several features in blue color which confirms that these are lymphatic vessels. The
ratio of 940 and 820 nm images resulted in low values in these areas since ICG inside
lymphatic vessel is expected to absorb only 820 nm light. Figure 16c and d shows
the same 940/820 nm PA images at two positions, but overlaid on conventional US
images in gray scale.

From these results, it is evident that, by using a two-wavelength approach, we can
simultaneously visualize and separate vein, lymphatic vessel, and melanin in vivo
with high spatial and temporal resolution. It is worth mentioning that, these results
were obtained at a frame rate of 10 Hz for two-wavelength PA imaging (along with
processing for color-coded visualization) interleaved with pulse echo US imaging.
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This is the first report on visualization of human lymphatic vessels using an LED-
based PAUS system.

2.9 Multispectral Photoacoustic Characterization Using
LED-PAUS System

The commercial LED-PAUS system has been so far used to perform either single or
dual wavelength PA imaging. However, true advantages of photoacoustic imaging
lies in being able to spatially un-mix multiple (more than two) tissue chromophores.
This necessitates the use of more than two wavelengths. Towards this goal, this study
from Shigeta [46] demonstrates the use of multiple wavelength LED arrays with the
commercial LED-PAUS system. Here, the absorption spectra of ICG and porcine
blood is photoacoustically measured using LED arrays with multiple wavelengths
(405, 420, 470, 520, 620, 660, 690, 750, 810, 850, 925, 980 nm).Measurements were
performed in a simple reflectionmode configuration inwhichLEDarrayswhere fixed
on both sides of the linear array ultrasound probe. Phantom used consisted of micro-
test tubes filled with ICG and porcine blood, which were placed in a tank filled with
water, as shown in Fig. 17.

Figure 18a shows the PA signal intensities from ICG and hemoglobin with respect
to different excitation wavelengths. Figure 18b shows PA intensities with respect
to wavelengths normalized to optical output power of 660 nm LED arrays. It is
evident that hemoglobin absorption is higher in lower wavelengths and ICG is highly
absorbing in the range of 800–925 nm. For ICG, an absorption peak at thewavelength
of 850 nm is visible. It is worth mentioning that the measured spectral behavior of

Fig. 17 a Experimental set up and, b photograph of micro-test tubes filled with ICG and porcine
hemoglobin [Reprinted with permission from 46]
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Fig. 18 aMeasured PA signal intensities at different wavelengths, and b PA intensities with respect
towavelengths normalized tooptical output power of 660nmLEDarrays [Reprintedwith permission
from 46]

ICG and hemoglobin (blood) is matching reasonably well with the reference values.
These results demonstrate the potential capability of LED based PAUS system in
performing clinical/pre-clinical multispectral photoacoustic imaging.

3 LED-Based PACT System

We recently developed a low-cost and portable PACT system [47, 48] using multi-
wavelength LED arrays as optical sources and a linear ultrasound transducer array
for the photoacoustic detection exploiting the commercial LED based B-mode PAUS
system. In this section, we cover both the hardware implementation and the recon-
struction of the LED-PACT system. We also present different validation studies
comparing the capabilities of conventional LED-PAUS system with the LED based
PACT system.

3.1 Design of LED-Based PACT System

A schematic of our experimental setup for the LED based photoacoustic computed
tomography system is shown in Fig. 19d. A 3-D printed cylindrical tank, with an
inner diameter of 38 mm, is used as the imaging cylinder. This imaging cylinder
consists of five slots for housing the four LED arrays and one linear US probe.
The cylinder with US probe and LEDs is attached to a rotational stage (PRMTZ8,
ThorLabs Inc., Newton, NJ, USA). We have mounted this rotational stage in the
inverted configuration as shown in Fig. 19d, f. The rotational axis of the stage is
aligned with the vertical axes of the cylindrical imaging tank. The object to be
imaged is embedded into a scattering phantom and this phantom is then attached to a
phantom holder, as shown in Fig. 19d. The phantom is inserted into the imaging tank
from the bottom (as shown in Fig. 19f) and is kept stationary during the rotational
acquisition.
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Fig. 19 Schematic representation of our LED based photoacoustic computed tomography (PAT)
system. a Commercial LED-based combined photoacoustic/ultrasound (PA/US) system. b Typical
arrangement of the two LED arrays and the US probe for B-mode PA/US imaging. c Optical image
of an LED array consisting of four rows of 36 LEDs of dimension 1 mm × 1 mm. d Schematic
showing the hardware implementation of our system consisting of a linear ultrasound probe and
four LED arrays attached to an imaging cylinder mounted on rotation stage. Schematic also shows
the placement of an imaging object. e Optical images showing the placement of four LED arrays
(690/850 nm) and the US probe around a cylindrical tank of inner diameter 38 mm. f Photograph
of our complete tomography setup with the LEDs, probe and the rotation stage controlled by the
motor controller shown in (g). h Computer giving control signals to the controller for rotation of
stage [Reprinted with permission from 47, 48]

Four LED holders (3-D printed, shown in Fig. 19d) housed in the cylindrical tank,
hold the multi-wavelength LED arrays such that the stationary phantom is uniformly
illuminated at all rotational positions. Figure 19e shows an example arrangement of
four LED arrays (with each having 850/690 nm pair) and a linear US probe. The
two sub-images in Fig. 19e shows the illumination at 690 and 850 nm wavelength
achieved by selectively switching ON or OFF the respective wavelengths’ LEDs
from the LED array pairs, achieving uniform illumination at both the wavelengths.
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The servo motor controller (KDC101 DC, ThorLabs Inc., Newton, NJ, USA, shown
in Fig. 19g) controls the rotation stage with the help of a separate computer, shown in
Fig. 19h. 2-DRF-Scanmode of commercial LED-PAUS system is used to acquire the
B-mode PA images at all rotational positions and the acquired raw data is processed
offline to reconstruct the volumetric 3-D photoacoustic computed tomography image
at each wavelength.

While commercial B-mode LED-PAUS systems can only use two LED arrays at a
time, the proposed LED-PACT system geometry is capable of employing more than
four LED arrays used in this study. This not only increases the optical energy density
inside the tissue medium, but also allows custom integration of multi-wavelength
LEDs suitable for spectroscopic photoacoustic imaging.

3.2 LED-PACT Data Acquisition and Image Formation

The system acquires the PA data at a sampling rate of 40 MHz and the data is
transferred to the graphical processing unit using USB 3.0 connection from the DAQ.
One PA frame is acquired for each pulse of LED excitation. After the required PA
frame averaging, the raw data is saved into the PC. During the 360° rotation, with a
frame averaging of 2560 and pulse repetition frequency of 4 kHz, we have acquired
a total of 90 frames, with 4° rotational steps. Total PA raw data corresponds to the
1024 time samples captured for each of the 128-transducer elements for each of these
90 frames, i.e. the size of the data matrix is 90 × 1024 × 128.

A model-based time-reversal reconstruction algorithm [49] is applied, which
numerically propagates the received photoacoustic pressure data back into the tissue
medium from all the transducer elements. An Intel Xeon (2.1 GHz 32-core) based
computer with 128 GB RAM and Nvidia Titan Xp GPUwas used for the reconstruc-
tion. Since the computation time of model-based reconstruction methods increases
exponentially with the size of the computational grid, two-dimensional computations
can be orders of magnitude faster than three-dimensional computations. To be com-
putationally efficient, we have applied the time-reversal algorithm in the 2-D plane
formed by the rotation of a single transducer element. This is repeated for all 128-
transducer elements individually, forming two-dimensional slices of the 3-D volume
in 300 μm steps. The final 3-D image is formed by concatenating the 128 2-D slices
into a single three-dimensional volume.With the above computational configuration,
the total scan time for full tomography took around 102 s for each wavelength and
about five minutes for the image reconstruction using the time-reversal algorithm.

3.3 Simulation and Experimental Studies

In this section, we first present a comparison study for the light fluence distribution
along the imaging region in Sect. 3.3.1. Here, we have compared our proposed
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strategy for LED arrays’ placement along the cylindrical tank for performing the
LED based PACT, with the conventional approach of using two LED arrays in LED-
PAUS.This section also presents several validation studies to compare the capabilities
of our LED based PACT system with the conventional LED based PAUS system.

3.3.1 Comparison Study for Fluence Distribution

There are two distinct ways of numerically calculating the optical fluence distribution
in a system. The first and most accurate method is to use a Monte Carlo simulation
for light transport [50, 51].WhileMonte Carlo simulations are able to more precisely
model the light transport, there can be an exceptional computational burden for large
spatial grids, especially in three dimensions. An alternative to Monte Carlo methods,
when working in the photoacoustic regime, is to model the diffusion approximation
to the radiative transport equation [52]. The diffusion approximation uses a partial
differential equation that is computationally much faster than similar Monte Carlo
methods, with acceptable accuracy when used in the photoacoustic regime [52]. In
order to measure the difference in fluence distribution between LEDs and laser, as
well as different geometries of light source, we have applied the finite difference
method in MATLAB to solve the optical diffusion equation [52–54]:

∇ · D(x)∇�(x) + μa(x)�(x) = 0, x ∈ X; �(y) = q(y), y ∈ ∂X (1)

In this equation, D = [3(μa + μs
′)]−1 is the diffusion coefficient, where μa =

0.1 cm−1 and μs
′ = 10.0 cm−1 are the absorption and reduced scattering coefficients

of the simulated tissue medium. q(y) represents the optical source located at the
boundary, either the LEDs or laser surrounding the region of interest.

As described in Sect. 2, the LED arrays used in this study consists of 1 mm x
1 mm LEDs arranged in a 2-D matrix form (4 rows and 36 columns). For a dual
wavelength LED array (e.g. 850/690 nm), alternate two of the four rows are of
same wavelength. Each of the element present in the array is separated by a 1 mm
distance in all directions from the neighbor elements. We have defined these LED
arrays in a three dimensional grid and have calculated the fluence distribution for a
typical homogeneous tissue medium to study the effect of placing these arrays in the
proposed approach.

Figure 20 presents a detailed study of the fluence distribution comparing our pro-
posed approach (LED-PACT) with the conventional approach of placing the LED
arrays for performing LED based PAUS imaging. Figure 20a shows an X–Y plane
map with two LED arrays (shown in white, each array’s two elements are shown cor-
responding to the 850 nmwavelength) placed at the left and right side of an ultrasound
transducer (shown in blue) along the imaging circle (X–Y plane of the cylindrical
imaging tank) shown in orange. Figure 20b shows a similar X–Y planemapwith four
LED arrays as proposed, placed along the orange circle and separated by 72° from
each LED array and the ultrasound transducer (shown in blue). Figure 20c, d show
the three-dimensional arrangement of the LED arrays along the cylindrical imaging
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Fig. 20 Comparison of optical fluence distribution inside the tissue medium of 5 cm diameter for
the proposed LED-based PACT and the conventional B-mode PAUS systems. a Schematic of LED-
PAUS geometry consisting of two 850/690 nm LED arrays (white dots) and a linear ultrasound
transducer array (blue rectangle) placed on the boundary (orange circle) of the tissue medium.
b Similar schematic for the PACT geometry shows the arrangement four LED arrays with 72°
separation and the ultrasound transducer. c, d show the corresponding 3-D schematic positions of
the LED arrays in the PAUS and our PACT systems. Individual dots represent the positions of LED
elements for a given wavelength in the dual-wavelength LED array. e, f show the 2-D optical fluence
map inside the tissue medium for the two schematics shown in (a) and (b) respectively. g, h show
the 3-D fluence distribution for the two schematics shown in (c) and (d) respectively. i Shows the
fluence profile comparison along a diagonal in the imaging circles of the PAUS geometry shown in
(a) and the PACT illumination shown in (b) [Reprinted with permission from 47]

tank for the conventional and the proposed approach, respectively. The X–Y cross-
sections of the simulated fluence maps with the conventional and proposed approach
are shown in Fig. 20e, f and the corresponding three dimension fluence are shown in
Fig. 20g, h.

To study the changes in the fluence across the width of the imaging tank, we have
plotted the magnitude (in dB) of the fluence in an X–Y plane (at the middle of the
cylindrical tank) along the diagonal. Figure 20i shows the fluence profile plot for the
conventional and the proposed approach clearly presenting the advantages of using
the four LED arrays along the imaging tank.
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3.3.2 Structural Imaging Studies

To compare the structural imaging capabilities of our developed PACT system with
the commercial LED-PAUS system, we have imaged four pencil lead targets struc-
turally placed in the imaging region. The four targets are embedded in to 1.5%agarose
phantom cylinder with diameter of 35 mm, height of 80 mm.

To mimic the tissue scattering, intralipid (INTRALIPID 20% IV Fat Emulsion,
VWR international, Radnor, PA, USA) was added to the agarose phantom to achieve
reduced scattering coefficient of 10 cm−1. Figure 21a–c shows the schematic side
view, side view photograph and top view photograph of the phantom respectively.
In this phantom, we have three 0.3 mm diameter pencil leads (marked as 2, 3 and
4 in Fig. 21a), and one bundle (group of 5 0.3 mm diameter pencil leads with total
diameter of ~0.9 mm) marked as 1 in Fig. 21a.

To compare these results with the conventional B-mode LED-PAUS system 3-D
scan, we have scanned the phantom in Fig. 21a using two LED arrays (850 nm)
and the same ultrasound probe, with the arrangement shown in Fig. 19b. The 3-D

Fig. 21 Comparing the structural imaging capabilities of the LED-based PACT and PAUS systems
using a pencil lead phantom. a Schematic showing side view of a tissue-mimicking intralipid
phantom with four targets embedded. The depth of targets from the top surface of the phantom are
as follows: 1 (bundle of five 0.3 mm pencil leads: at 10 mm), 2 (0.3 mm pencil lead: at 14 mm),
3 (0.3 mm pencil lead: at 23 mm), 4 (0.3 mm pencil lead: at 31 mm). b, c Photographs of the side
and top views of the phantom. Reconstructed 3-D volume rendered photoacoustic image (d) using
PACT, and e linear scanning of the conventional PAUS systems. Photoacoustic amplitude plots of
the pencil lead target #3, located at 23 mm depth inside the medium, along the lateral, axial and
elevational directions of the volume rendered (f–h) PACT image shown in (d) and i–k the linear
scan image shown in (e) [Reprinted with permission from 47]
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reconstructed volume rendered PA image for conventional b-mode 3-D scan is shown
in Fig. 21e. Only the pencil lead “3”, and the bundle “1”was seen in the reconstructed
image. This is due to the following two limitations of using conventional B-mode
LED-PAUS system. (1) With a lower LED light source, a small photoacoustic target
located behind/below a thick/big photoacoustic target, is likely to be shadowed in
conventional B-mode imaging. The same targetwhen imagedwith our proposedLED
basedPACTsystem, is detectedwith a decent SNR. (pencil lead “2” shown inFig. 21).
(2) While using conventional LED-PAUS system [24–29], the angular arrangement
of LED arrays around the ultrasound probe as shown in Fig. 1, leaves about 8–
10 mm of standoff region. The pencil lead “4” is about 31 mm from the top surface
of the phantom. Hence, with the 8–10 mm of standoff, the conventional B-mode
LED-PAUS system having a maximum data acquisition capability of 38 mm, fails to
detect this target. However, due to negligible standoff with our PACT configuration,
the same pencil lead target “4” is detected with a decent SNR.

We further studied the spatial resolution of our proposed LED based PACT sys-
tem using the broken pencil lead “3” shown in Fig. 21a. A comparison study for
LED-PACT versus LED-PAUS system is performed by calculating the lateral, axial
and elevational resolutions with the plots shown in Fig. 21f–k. Peak photoacoustic
amplitude for the pencil lead target “3” was plotted with respect to the lateral, axial
and elevational distance as shown in Fig. 21f–h and i–k respectively for PACT and
PAUS scans. The profiles shown in the plots were used to estimate the resolution
of the system. Half of the distance between 90 and 10% of the peak photoacoustic
amplitude was calculated as 300 μm in the lateral direction for PACT system as
shown in Fig. 21f. Lateral resolution for PAUS system was calculated as 600 μm as
shown in Fig. 21i. Similarly, the axial, elevational resolutions of PACT system and
PAUS system were calculated as 120 μm, 2.1 mm and 130 μm, 3 mm respectively.

These experiments demonstrated that the PACT system can see through the
shadow (blind spot) imaging regions of the conventional PAUS systems and visualize
smaller targets hiding behind larger targets. These experiments also demonstrated
that the spatial resolutions of the PACT system are better than the PAUS. These
advantages can be attributed to the fact that the PACT system enables more uniform
illumination of the imaging region during the 360° rotation. The conventional LED-
PAUS systems require the imaging head to be 10 mm above the tissue surface to
achieve uniform illumination of the phantom. This 10 mm standoff is usually filled
with ultrasound coupling medium and leads to several complications such as (1)
creation of bubbles and associated artifacts during the linear scan, (2) ultrasound and
optical attenuation inside the thick coupling medium, (3) uncomfortable imaging
of living subjects, and (4) extended imaging depth and computer memory which
reduces imaging speed. The LED-PACT system demonstrated here required no such
stand-off and therefore could image all 4 pencil lead targets inside the phantom,
whereas the LED-PAUS system misses the target-4 at 31 mm depth.
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3.3.3 Dual-Wavelength Imaging with Our PACT System

In this section,we have presented the capabilities of our system to performdualwave-
length photoacoustic computed tomography. To perform dual-wavelength imaging,
we have employed the 850/690 nm LED array pairs. Each of the four LED arrays
placed around the cylinder tank can be toggled to provide either 850 or 690 nm light,
as shown in Fig. 19e. At each rotation step of 4°, two different frames are acquired
corresponding to the twowavelengths of LEDs used.We have validated our approach
by imaging two phantoms, with one having only endogenous photoacoustic targets
(blood and melanin) and the other having a combination of blood with an exogenous
contrast, i.e. Indocyanine-green (ICG).

Figure 22a shows the geometry of our first phantom. Here, highly oxygenated
blood (Bovine Blood CITR, Carolina Biological Supply, Charlotte, NC, USA) and
0.1 mMMelanin solution (M8631, Sigma-Aldrich, St. Louis, MO, USA) were filled
separately in 0.5 mm outer diameter tubes. These tubes were embedded in to 1.5%
agarose phantom cylinder with diameter of 35 mm, height of 80 mm. To mimic the
tissue scattering, intralipid (INTRALIPID20% IVFat Emulsion,VWR international,
Radnor, PA, USA) was added to the agarose phantom to achieve reduced scattering

Fig. 22 Dual-wavelength imaging with LED based photoacoustic computed tomography system:
validation over two phantoms. a First phantom: showing geometrical placement of the Oxygen rich
blood (OXY) tube and a Melanin (M) tube inside scattering phantom. b, c 3-D PACT images of the
phantom with 850 and 690 nm LED light illumination respectively. d, e Spectrally unmixed 3-D
volumetric images of the phantom using the results in (b, c) highlighting the spatial distribution of
(OXY) and (M) tubes respectively. f Second phantom: showing geometrical placement of the ICG
tube and a Melanin (M) tube inside scattering phantom. g, h 3-D PACT images of the phantom at
850 nm and 690 nm illumination respectively. i, j Spectrally unmixed 3-D volumetric images of the
phantom highlighting the spatial distribution of (ICG) and (M) tubes respectively [Reprinted with
permission from 48]
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coefficient of 10 cm−1. Figure 22b, c shows the reconstructed volumetric 3-D PACT
images for the above phantomwith the 850 nm and 690 nmwavelengths respectively.
With the dual wavelength tomography data acquired with our setup, we also applied
a linear unmixing technique to separate the two types of chromophores imaged,
viz. oxy rich blood and melanin. As the absorption of these chromophores differs
significantly at the above two wavelengths, we could separate them spatially, as
shown in Fig. 22d, e.

In our second study, we arranged ICG (with 1250μMconcentration) andMelanin
(1 mM concentration) tubes inside similar scattering medium. Figure 22f shows the
geometry of our second phantom. Figure 22g, h shows the reconstructed volumetric
3-D PACT images for our second phantomwith the 850 nm and 690 nmwavelengths
respectively. We further applied linear unmixing technique to separate these two
chromophores, viz. ICG and melanin, and were able to separate them spatially, as
shown in Fig. 22i, j.

3.3.4 Oxygen Saturation with Our PACT System

We further validated the vascular oxygen saturation imaging capabilities of the
LED-PACT system by imaging a human finger mimicking phantom using four dual-
wavelength 850/690 nm LED arrays. The human finger anatomy can be understood
with the help of the schematic shown in Fig. 23a. For mimicking the finger, we used
a high scattering intralipid phantom (reduced scattering coefficient of 15 cm−1) and
embedded an animal bone inside it.We further embedded the two types of blood tubes
(Bovine Blood CITR, Carolina Biological Supply, Charlotte, NC, USA), namely,
high-oxygenated (oxy-rich) tube and the low-oxygenated (oxy-poor) tube, both with
outer diameter of 0.5 mm. The side view and top view optical images of the phantom
are shown in Fig. 23b, c respectively.

The experimental setup used to image this phantom consisted of four 850/690 nm
LED array pairs. Each of the four LED arrays placed around the cylinder tank can be
toggled to provide either 850 or 690 nm light, as shown in Fig. 19e. At each rotation
step of 4°, two different frames are acquired corresponding to the two wavelengths
of LEDs used. Figure 23d–f represents the ultrasound, photoacoustic (at 850 nm)
and co-registered (US + PA) frames at a single rotation step, captured during the
full tomography acquisition. The structure of the finger is visible in the US frame
whereas the presence of blood tubes can be seen using PA frame. With our pro-
posed approach, the full 3-D volume rendered PACT images generated for the above
phantom are shown in Fig. 23g, h, with 850 nm and 650 nmLED illumination respec-
tively. Figure 23i shows the volumetric oxygen saturation map of the finger phantom
obtained using the PACT images at the mentioned two wavelengths.

The LED-PACT configuration delivered higher (400 μJ) pulse energy for each
850 nm as well as 690 nm wavelengths than possible with the conventional LED-
PAUS systems that can accommodate only two such LED arrays. This enabled
mapping of vascular oxygen saturation from deeper regions.
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Fig. 23 LED-PACT-imaging of vascular oxygen saturation using a human finger-mimicking phan-
tom. a Schematic sketch of a typical human finger with the location of bones and the blood vessels
(oxy rich: HbO2; and oxy poor: Hb). b, c Show the side and the top view photographs of the finger
phantom consisting of bone and blood vessels. d The ultrasound (US), e photoacoustic (PA), and f
co-registered US+ PA frames acquired at one of the rotational steps during the 360° rotation around
the phantom. g, hThe reconstructed 3-D volume rendered PACT images of the finger phantom using
850 nm and 690 nm LED illuminations respectively. i Shows the spectrally unmixed volumetric
oxygen saturation map for the finger phantom [Reprinted with permission from 47]

3.3.5 Multi-spectral Imaging with Our PACT System

One of the main advantages of our LED-PACT system, compared to the existing
LED-based PAUS system, is that it can be easily adapted to allow custom designed
multi-wavelength excitation using multiple LED arrays, to enable similar functional
andmolecular imaging capabilities of tunable lasers. This is demonstrated by imaging
a tissue mimicking phantom embedded with three chromophores having different
optical absorption spectra using two dual-wavelength 850/690 nm LED arrays and
two 470 nm LED arrays. Each of these four LED arrays placed around the cylinder
tank can be selectively switched “ON” or “OFF” to provide either 850, 690 or 470 nm
light. At each rotation step of 4°, three different frames are acquired corresponding to
the three wavelengths of LEDs used. In this study, we have imaged three biologically
relevant chromophores, i.e. Indocyanine-green (ICG), Methylene blue (MB) and
melanin, embedded in a high scattering phantom.
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Figure 24a shows the geometry of our phantom. Here, 1 mM Melanin solution,
1 mM ICG solution and 1 mM MB solution were filled separately in 0.5 mm outer
diameter tubes. These tubes were embedded in to 1.5% agarose phantom cylinder
with diameter of 35 mm, height of 80 mm. To mimic the tissue scattering, intralipid
(INTRALIPID 20% IV Fat Emulsion, VWR international, Radnor, PA, USA) was
added to the agarose phantom to achieve reduced scattering coefficient of 10 cm−1.
Figure 24b shows the optical top view image of the phantom. Figure 24c–e shows
the arrangement of US probe and the four LED arrays used for illuminating the
phantom with 850 nm, 690 nm, and 470 nm light respectively. To maintain uniform
distribution of light for the three wavelengths, out of the two 850/690 nmLED arrays,
one is placed close to the transducer and the other one is placed at diagonally opposite

Fig. 24 LED based multispectral photoacoustic computed tomography. a Schematic view and b
a photograph of the tissue mimicking cylindrical phantom of 35 mm diameter and 80 mm height.
The phantom is embedded with 0.5 mm polyethylene tubes filled with 1 mM concertation solutions
of melanin (M), indocyanine-green (ICG), and methylene blue (MB) c–e Show the arrangement of
ultrasound (US) transducer array, two 850/690 nm LED arrays and two 470 nm LED arrays with
sequentially switched 850 nm, 690 nm and 470 nm wavelength emissions from the arrays. f–h 3-D
PACT images of the phantomacquiredwith 850 nm, 690 nmand 470 nm illumination respectively. i–
k Spectrally unmixed volumetric images of the phantom, obtained from themultispectral PA images
in (f–h), show the spatial distribution of M, ICG, and MB tubes respectively. l Superimposed 3-D
unmixed image of the three chromophores. Scale bar is 10 mm in the images (f–l) [Reprinted with
permission from 47]
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corner. Similarly, one 470 nm LED array is placed closed to the transducer and the
other one is placed at diagonally opposite corner. Figure 24c shows the configuration
where we only switch ON the 850 nm light from the 850/690 nm pairs. The total
output energy in this case is 200μJ. Similarly, in Fig. 24d, we switch ON the 690 nm
light from the 850/690 pairs giving the same output energy of 200 μJ. To maintain
the same energy and distribution for 470 nm light, we switch ON only half of the
LEDs in each of the 470 nm arrays as shown in Fig. 24e.

Figure 24f–h shows the reconstructed volumetric PAT images for the above phan-
tomwith the 850 nm, 690 nm, and 470 nmwavelengths respectively. Since the optical
absorption of melanin decreases with increase in the optical wavelength, the PA con-
trast of the melanin is higher at 470 nm and lower in the 870 nm PACT images.
Similarly, the peak absorption of MB ~680 nm correlates well with the highest PA
intensity of the MB tube at the 690 nm wavelength. With the three wavelengths
tomography data acquired with our setup, we also applied a linear unmixing tech-
nique to separate the three types of chromophores imaged, viz. Melanin, ICG, and
MB. Based on these spectral trends, the linear spectral unmixing technique could
easily separate the three chromophores, as shown in Fig. 24i–k. We further super-
imposed the three unmixed images to visualize and confirm the respective spatial
distribution of the three chromophores in the given 3-D volume, as shown in Fig. 24l.

This current study is designed to demonstrate the above described various advan-
tages of our novel LED-PACT system using proof-of-concept experiments on tissue
mimickingphantoms.The imagingperformance of theLED-PACTsystemcanbe fur-
ther improved frommultiple directions. This includes a better imaging geometry that
employs more than 4 LED arrays, faster data acquisition, model-based image recon-
struction algorithms [55–57] and deep learning approaches [58–60]. Fully developed
LED-PACT will can be validated on living subjects such as imaging small animals
and human body parts such as finger, wrist and breast.

4 Conclusion

In this chapter, we first discussed the commercial LED-based dual mode Photoa-
coustic and Ultrasound imaging system, referred to as LED-PAUS system. We have
presented several phantom as well as in vivo studies demonstrating the capabili-
ties as well as limitations of the commercial LED-PAUS system. This chapter also
presents our recently developed LED based photoacoustic computed tomography
system, referred to as LED-PACT system that integrates four LED arrays and a lin-
ear ultrasound transducer array in a cylindrical housing. The LED-PACT system
has several benefits compared to the existing LED-based PAUS systems, such as
multispectral photoacoustic imaging, better spatial resolution, uniform illumination,
and improved imaging depth. Validation experiments on different tissue mimick-
ing phantoms demonstrated the structural, functional and molecular photoacoustic
imaging capabilities of the system. With further optimization, such as increase in
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the number of LED arrays and model-based image reconstruction, LED based PACT
imaging systems herald a promising biomedical imaging tool of living subjects.
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LED-Based Functional
Photoacoustics—Portable and Affordable
Solution for Preclinical Cancer Imaging

Marvin Xavierselvan and Srivalleesha Mallidi

Abstract Photoacoustic imaging (PAI) is an imaging modality with promising
results in cancer theranostics, both in preclinical and clinical applications. Its appli-
cability in image-guided drug delivery and monitoring therapeutic response holds
great promise for clinical translation. Current PAI techniques rely on using bulky
lasers to provide the nanosecond pulsed light for photoacoustic signal generation.
Tremendous growth in semiconductor industry within the last decade has led to cre-
ation of low-cost powerful LEDs that can be used as an alternate light source in lieu
of laser to generate photoacoustic signal. In this chapter, we provide an overview
of PAI usage in preclinical cancer research and provide examples of the LED based
PAI performance in similar settings. LEDs will play a major role in catapulting PAI
into clinics at an earlier pace and low cost than expected.

1 Introduction

Today cancer is one of the leading causes of death worldwide. In the United States
approximately 1.8 million people will be diagnosed with cancer and around 600,000
deaths due to cancer are projected to occur in 2019 [1]. Preclinical cancer research
in small and large animals have been central to comprehend many physiological
and biomolecular processes involved in tumorigenesis, not only at the organ level
but also systemically in the whole body. These studies were vital in development of
new treatments or in designing better targeting and dosimetry of current treatments.
Gauging the heterogeneity in tumors especially with vasculature being unevenly
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distributed [2] leading to hypoxia, rapid proliferation of tumor cells, deteriorating
microenvironments [2, 3] is critical in evaluating therapeutic efficacy. Hypoxia is
a major factor for the resistance to radiotherapy, chemotherapy and photodynamic
therapy. Hence it could be used as a potential biomarker for treatment efficacy [4, 5].
Blood vessels are usually disrupted in the core of tumor while the periphery vessels
are deformed and hyperpermeable, causing the drugs to be distributed unevenly with
higher concentration in the periphery and very low concentration in the tumor core
affecting treatment efficacy [6, 7]. Understanding the intratumor drug accumulation
and vascular heterogeneity is of clinical relevance, as it would provide important
information for designing personalized cancer therapeutic strategies.

Imaging can play a huge role in early detection of cancer, monitoring the response
after a treatment and providing information on the tumor microenvironment non-
invasively in real time. Commonly employed imaging techniques that are used in
medical settings for the diagnostic and treatment procedures are magnetic resonance
imaging (MRI), ultrasonography, X-ray based examinations (computed tomogra-
phy), nuclear medicine tomography like positron emission tomography (PET), single
photon emission computed tomography (SPECT). Each imaging technique has its
benefits for specific applications. However, some of these techniques are very expen-
sive and involve the use of ionizing radiation or radioisotopes and external contrast
agents to obtain image with better contrast. Currently there are no standard tech-
niques available to measure oxygen levels in tumors in clinical use. Oxygen sensing
pO2 electrodes (polarographic needles, phosphorescence, fluorescence based) can be
used to acquire the information of oxygen at the site of electrode, but they are invasive
which limits the longitudinal measurements at multiple site of the tumor. Addition-
ally it only provides point measurement and cannot provide the spatial information
of oxygen levels in the tumor [8].

Non-invasive imaging techniques such as MRI, PET and CT scan can be used
for studying oxygen levels, but they are expensive and involves ionizing radiation or
radioisotopes or external contrast agents for the measurement. Blood oxygenation
level dependent (BOLD) and tumor oxygenation level dependent (TOLD) MRI can
be used to assess tumor oxygenation as the contrast generated by oxygenated and
deoxygenated hemoglobin and eventually predict radiation response [5, 9]. However,
MRI is a “macroscopic” realm imaging modality and cannot match the resolution of
an ultrasound imaging system. Among the newer imaging modalities that do not use
ionizing radiation and can detect blood oxygen saturation at ultrasonic resolution
is photoacoustic imaging (PAI) [10–12]. PAI has been in development for several
years, gained lot of attention recently and is currently in clinical trials for breast
cancer and other malignancies [13–15]. PAI is a hybrid imaging technique based on
the photoacoustic effect which is the generation of acoustic waves when the sample
is irradiated with pulsed light. The intensity of light is varied either periodically or
as a single pulse to get this effect. Optical imaging techniques like stimulated emis-
sion depletion microscopy and photoactivation localization microscopy have super
spatial resolution of 10–100 nm, while confocal microscopy has 0.5–1 µm but these
techniques have a poor imaging depth typically 10–100 µm [16]. High frequency
ultrasound can achieve spatial resolution of 10–100 µm but clinical systems only
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reaches about 0.1–1 mm resolution with a penetration depth of 5–50 mm. The spatial
resolution of MRI ranges from 10 to 100 µm with an imaging depth of 10–100 cm
[17]. PAI fits in the middle range (mesoscale) providing high optical contrast image
with a resolution of 0.5–100µm and at a reasonable penetration depth of 0.5–10 mm
[16]. Medical ultrasound is widely used in the clinics to visualize the structure, size
and pathological lesions of muscles, various internal organs. and are employed for
both diagnostic and therapeutic applications. PAI can be easily coupled with clinical
ultrasound systems as the ultrasound transducer can be used to receive the acoustic
waves generated as a result of the photoacoustic effect. Studies have shown that PA
can detect cancer while providing tumor vasculature information complementing the
structural and site information of the tumor deep inside the body bymaking use of the
endogenous contrast agents or by using targeted external agents towards the tumor.
The endogenous molecule such as hemoglobin, myoglobin or melanin are optical
absorbers in the biological tissues which can give photoacoustic signals. Since PA
can provide information about blood vasculature network in the tumor, it can be used
to monitor and evaluate the treatment response [18]. Information on angiogenesis,
oxygen saturation and total hemoglobin content in the tumor can be obtained using
PAI without the use of external contrast agents [12]. Oxygenated hemoglobin and
deoxygenated hemoglobin have different optical absorption at different wavelengths.
Deoxy Hb has peak absorption at 750 nm, while oxy Hb has a peak absorption at
850 nm and they both have similar absorption at 805 nm. The photoacoustic signal at
these wavelengths gives information about oxygen saturation while their sum gives
the total hemoglobin content.

2 LED Based Photoacoustic Imaging

PAI systems used in preclinical applications or clinical applications use bulky and
expensive Optical Parametric Oscillator (OPO) laser or Q-switched Nd:YAG laser
and have large footprints. They have low repetition rate leading to low image frame
rate and acquisition speed. These issues bear huge hinderance to the translation of
PAI for the clinical applications [19].

Recent advances in the Light emitting diode (LED) technology has led to the
development of LED based PAI systems that are of low cost, compact, portable
and can be readily translated into various clinical applications given high frame
rates. AcousticX, an LED based PAI system from Cyberdyne Inc. (Tsukuba, Japan)
performs alternating US and PA imaging at a frame rate of up to 30 Hz and displays
the image individually or on overlay [20, 21]. The LEDs in the AcousticX can be
driven at various repetition rate of up to 4 kHz [21]. LED’s have low output power
when compared with class IV lasers, when used in groups of 2D arrays, the delivered
output power which is two orders of magnitude smaller than the power produced by
lasers [22]. With high repetition rate and signal averaging the low output power
from LEDs can be compensated and be used to improve the signal to noise ratio
(SNR) comparable to that of laser-based PA systems. The radio frequency (RF) data
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generated during the acquisition can be read through MATLAB for further analysis
and visualization. So far, the tumor vasculature and oxygen saturation imaging has
been performed with laser based PAI system. There are very few reports on the use
of LED based PAI for monitoring tumor response to therapies and oxygen saturation.
Various studies have been performed using the LED based PAI for its sensitivity by
imaging exogeneous contrast agents and superficial vascular network in the body. In
this book chapter, we present results from the recent papers on utilizing laser based
PAI formonitoring oxygen saturation in pre-clinical cancer research.Wedemonstrate
the LED based PAI system’s potential to monitor the change in oxygen saturation
and perform contrast enhancement using nanoparticles in an in vivo tumor model.
We also review the current status of PAI in monitoring vasculature and blood oxygen
saturation for preclinical cancer research and elucidate the role of LED based PAI in
preclinical cancer research prior to such technologies being translated to clinic.

2.1 PAI to Monitor the Tumor Microenvironment

The tumor microenvironment, particularly the physiological aspects such as hypoxia
and vascular density, is known to have to have major impact on cancer treatment
outcomes. Hence it is critical to understand these aspects and monitor the dynamic
treatment dependent changes in the tumor vascular and oxygenation function as has
been demonstrated by several studies [5, 9, 18, 23–25]. An example is the study
conducted by Rich and Seshadri [8] where tumor oxygenation was studied in a
mouse with patient derived head and neck squamous cell carcinoma (HNSCC) tumor
xenografts and the photoacoustic images were compared with MRI pre and post-
radiotherapy. The tumor response to hyperoxiawasmonitoredwith PAI bymeasuring
oxygen saturation (SO2) and longitudinal relaxation rate (R1) using MRI. The viable
region in the tumor showed an increase in SO2 and R1 while the necrotic region did
not show any change. Furthermore, good correlation was observed between MRI
and PAI as well as histology and PAI (Fig. 1). Changing the breathing gas to oxygen
from the room air resulted in significant increase in the tumor SO2 and R1. Reverting
to normal air from oxygen showed a decrease in both values. The median value of
the PAI signal at 850 nm post oxygen breathing showed a positive correlation with
the median R1 values. They used PAI to predict the outcome of the tumor response to
radiation and chemoradiation by measuring the SO2 before and 24 h post treatment.
The change in SO2 24 h post treatment with the change in tumor volume at 2 weeks
following the treatment, showed that an increase in SO2 following the treatment had
a good outcome (growth of tumor was inhibited) compared to the ones that did not
change much or had a reduction in SO2.

A study led by Wilson et al. [26] used spectroscopic PAI to differentiate among
different breast tissues (normal, hyperplasia, ductal carcinoma in situ (DCIS), and
invasive breast carcinoma) in a mouse model by measuring oxygen saturation, total
hemoglobin, and lipid content.Normal andhyperplasia tissue had significantly higher
total hemoglobin content than the DCIS and invasive breast carcinoma, while the
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Fig. 1 Top row: ultrasound image overlaid with oxygen saturationmap of tumor during exposure to
air (Pre-Oxygen) and followed by 100% oxygen inhalation, Middle row: ultrasound image overlaid
with hemoglobin concentration map of same tumor following the oxygen challenge. Bottom row:
T2 weighted image overlaid with color map of longitudinal relaxation rate (R1). Histology section
of tumor is shown on the right, (V) is the viable region in tumor where response to the oxygen
challenge is found and (N) is necrotic region in tumor where no responses were detected in PAI and
MRI. Figure reprinted with permissions from Rich and Seshadri [8]

oxygen saturation for all the tissues was higher than the normal tissue. The lipid
content was significantly decreased in DCIS and invasive breast carcinoma than
the normal or hyperplasia. Combining these parameters and performing spectral
analysis of photoacoustic images allows for differentiating normal and hyperplasia
fromDCIS and invasive breast carcinoma with decent accuracy. Using clinical grade
PAI systems, spectroscopic PAI can be assessed with focal breast lesions and this
technique when used along with ultrasound can improve the diagnostic accuracy of
breast cancer [27, 28].

We tested the LED based PAI system for its ability to image the vasculature in
the tumor and track the changes in oxygen saturation when breathing is challenged
with normal air and 100% pure oxygen. For our study, we used subcutaneous head
and neck tumor (FaDu) xenografts in nude mice. When the tumor size reached about
100mm3, the tumors were imaged using the AcousticX, LED based PAI system. The
animalwas anesthetized and immersed in awarmwater bath for the acoustic coupling
with the ultrasound transducer. First, theB-mode image of the tumor is acquired using
a 7 MHz ultrasound transducer. Two sets of multiple arrays of 850 nm LED light
source on a 2D block was used to irradiate the tumor from both sides of the US
probe. The LED were fired at a repetition rate of 4 kHz and the signal was averaged
384 times to image at a frame rate of 10 Hz. Photoacoustic images of the blood
vessel in the tumor was acquired and simultaneously raw RF data was saved. Using
custom written MATLAB codes based on previously reported algorithms [29–32],
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Fig. 2 Overlay of PA and
US image (red and gray
colormap respectively)
showing the vasculature in
subcutaneous FaDu tumor
xenografts in mice. PA
images were scanned using
the LED based PAI system
(850 nm wavelength)

the RF data was read and processed to get the US/PA images of the tumor blood
vessels as shown in Fig. 2. The PA image of the vasculature is shown in orange-red
pseudo colormap in Fig. 2. Clearly the image shows heterogenous vascular density
in the tumor which demonstrates the ability of the LED based PAI system to obtain
vascular information from tissues that are more than 1 cm deep.

2.2 Oxygen Enhanced PAI

Taking cues from the oxygen enhancedMRI, oxygen enhanced PA imaging provides
high spatially resolved images with hemoglobin concentration and blood oxygena-
tion by measuring the change in oxygenation level in blood preceded by inhaling
100%oxygen.Oxygen enhanced imaging can differentiate hypoxic regions fromwell
oxygenated regions. The biomarkers derived from the measurement of hemoglobin
change in oxygen enhanced PAI performs better than the biomarkers derived from
the static PAI in terms of repeatability and robustness and also correlate well with
the histopathologic analysis of tumor vasculature function [24]. Dynamic contrast
enhanced PAImakes use of external contrast agents to boost the photoacoustic image
contrast. Multiple wavelength PAI is performed to separate the contrast agent signal
from oxygenated and deoxygenated hemoglobin which provides information on the
oxygenation and vasculature perfusion in the tumor [33]. With PAI making its head-
way in clinical testing with endogenous contrast, we anticipate that this technology
will soon be applied with FDA approved contrast agents to obtain molecular maps
of the lesions under consideration.

A study conducted by Tomaszewski et al. [23], compared oxygen enhanced (OE)
PAI and dynamic contrast enhanced (DCE) PAI as biomarkers for tumor vascula-
ture, hypoxia, and necrosis. They co-registered OE-PAI and DCE-PAI and showed
a quantitative spatial per pixel correlation between the biomarkers derived from OE
and DCE PAI for the assessment of tumor hypoxia and vascular maturity with the
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immunohistochemistry. The change in oxygen saturation (�SO2) post switching of
breathing gas to 100% oxygen from air and the increase in ICG (�ICG) signal fol-
lowing its administration is shown for two tumor types. A strong per pixel correlation
was observed between the change in oxygen saturation and change in ICG signal.
No correlation was observed between change in ICG signal and oxygen saturation
(SO2) measured at baseline for air or 100% oxygen, showing that just measuring the
oxygen saturation does not provide information about the tumor perfusions. Further
analysis of DCE-PAI revealed areas in the tumor with distinct ICG kinetics. The first
group was dubbed as ‘clearing’ which showed an increase in ICG signal followed
by an exponential decay of the signal. The second group referred to as ‘retaining’
showed a slow increase in signal with no clearance. The signal either increased grad-
ually or remained high and stable over the course of the experiment. The fraction of
the clearing regions was significantly higher in the rim of the tumor than the tumor
core.

OE responding fraction was calculated for each tumor and scan as a ratio of
number of tumor pixels responding to the total number of pixels in the tumor. OE-
PAI response for these two regions display significant differences. The retaining
regions showed lower OE responding fraction than the clearing region as well as
weaker correlation between �SO2 and �ICG. Immunohistochemistry of the tumor
sections for vascular maturity (CD31 positive cells), hypoxia (CAIX), and tumor
necrosis (H&E) showed a positive correlation between CD31, DCE, and OE PAI,
while showing a negative correlation between CAIX, tumor necrosis, and OE-PAI.
The results show that DCE-PAI signals are markers for vascular maturity while OE
PAI signals are for tumor hypoxia and necrosis.

For oxygen saturation measurements, a combined array of 750 nm and 850 nm
LED light source is used. The animal was set to breathe normal air initially and a
B-mode image of the hind leg muscle of mice is imaged. Using the 750/850 nm LED
array, the oxygen saturation of the muscle was acquired (cycle 1). The breathing gas
was then switched to 100% oxygen and breathing was allowed to stabilize for two
minutes followed by acquisition of an oxygen saturation image (cycle 2). The cycle
was repeated multiple times and oxygen saturation of the muscle at each cycle was
acquired. At each imaging timepoint, corresponding RF data was also saved. An ROI
was used on the oxygen saturation image acquired at different timepoints to calculate
the relative change (Fig. 3a). We can also infer from Fig. 3b that as the breathing
gas was set to 100% oxygen, the relative change in SO2 increased and when the
breathing gas was set to normal air, the change in SO2 decreased. This experiment
showed the ability of the LED based PAI system to track the changes in the oxygen
saturation and image it in real time.

2.3 PAI to Predict the Tumor Response to Treatment

Tumor microenvironment, particularly the vasculature and its function (delivering
oxygen), is a central theme for many drug development and cancer therapeutic
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Fig. 3 a Oxygen saturation change in hind leg muscle of mice when the animal breathing was
challenged with cyclic changes of air and 100% oxygen, imaged using 750/850 nm LED array with
red being oxygenated and blue being hypoxic regions. b Relative change in oxygen saturation in
the muscle calculated using the ROI

research groups. PAI plays a major role in this realm as it measures the vascular
density and blood oxygen saturation longitudinally for diagnosis as well as to mon-
itor therapeutic response. Many cancer treatments rely on the oxygen availability
in the tumor and by acquiring the vascular information using PAI and monitoring
the oxygen content in the tumor before and after treatment, tumor response to the
therapy can be gauged and appropriate subsequent therapies can be designed.

Hysi et al. [34] used oxygen saturation measurement and radiofrequency signals
from PAI to estimate the response of the tumor in a mouse for a heat activated cyto-
toxic (HaT-DOX) liposome containing the drug doxorubicin (DOX) and saline as
control. PAI imaging was performed for 30min pre and post treatment as well as 2, 5,
24 h, and 7 days post treatment. The responders for the HaT-DOX treatment showed
a 50% decrease in the tumor volume while the non-responders showed an increase.
The ROI fromB-mode is used to segment PA images at twowavelengths, 750 nm and
850 nm, and compute the oxygen saturation of the tumor (Fig. 4a). A reference phan-
tom was used to obtain the spectral parameters using the normalized power spectra.
A SO2 histogram was computed and used to quantify the changes in blood vessel
oxygenation throughout the tumor. The responders had a drop in the oxygenation
which was evident in early as 30 min and was observed till 24 h timepoint. The early
change in the blood vessel oxygenation correlated with the treatment response. The
mode of oxygen saturation was plotted against the PA spectral slope (SS) (average
value of each treatment group at that timepoint). The responders showed a decrease
in oxygenation and PA SS at 750 nm and 850 nm (Fig. 4b). SS further decreased after
the 24-h timepoint but the SO2 mode increased at 7 days post treatment. HaT-DOX
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Fig. 4 ASchematic illustration for generating tumor oxygenationmaps and PA spectral parameters.
Using the B-mode ultrasound image, an ROI is selected to generate oxygen saturation map of tumor
by segmenting PA images at 750 and 850 nm.Averagemode of SO2 is calculated from the histogram
of oxygen saturation values from all the slices of tumor. Reference phantom is imaged at 750 nm
and 850 nm and the collected frequency information and normalized power spectra is used to obtain
the RF spectra and PA spectral parameters of the tumor. B Mode SO2 plotted against the spectral
slope (PA SS) calculated from 750 nm (top row) and 850 nm (bottom row) and for HaT-DOX
a responders (n= 5), b non-responder (n= 1), and c saline (n= 7). Each dot represents the average
SS across at least 100 normalized power spectra within 21 tumor slices at each timepoint for every
mouse. Figure reprinted with permissions from Elsevier and Hysi et al. [34]
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non-responder’s oxygenation did not drop significantly 24 h post treatment, and there
was high variation and no clear trend in SS distribution. The control saline group did
not exhibit large change in SS. This shows that the difference in SS post treatment
can be useful to identify the non-responders for the treatment.

Photodynamic therapy (PDT) is a forthcoming treatment option for cancer therapy.
PDT is a photochemical process where a molecule called photosensitizer (PS) is
excited by a particular wavelength of light to generate cytotoxic species which kills
tumor cells [35, 36]. PDT can be of type I process where electron transfer happens
with excited PS to generate radicals and radical anion species while in type II process,
the excited PS transfers energy to molecular oxygen producing singlet oxygen which
upon contact with cells are toxic [37]. Photosensitizers get distributed all through
the cells of the body but stays longer in the cancerous cells because of enhanced
permeability and retention effect (EPR) [38]. After a specific time delay (Drug Light
Interval, DLI) depending on the photosensitizer, PS gets specifically accumulated in
the cancer cells, following that tumor is exposed to light delivered through a device
suitable for the site location of the tumor [39]. PDT response depends on tumor
oxygenation and DLI. With high DLI, most of the PS gets accumulated in the tumor
cellular compartment and PDT causes inflammation in the tumor region while in a
low DLI case, PS is mostly in the blood vessel and PDT causes vascular shutdown
within the irradiate region. Furthermore, in addition to DLI, the oxygenation status
of the tumor also determines PDT efficacy. A study conducted by [25] in oral cancers
shows highly oxygenated tumors respond better to PDT than the tumors with low
oxygen content. Therefore, it is important to monitor for tumor oxygenation as it
provides valuable information to calculate PDT light dose and PS concentration
effectively.

Mallidi et al. [18] used PAI to find the changes in oxygen saturation (SO2) of the
tumor and using it as a surrogate biomarker for the predicting the response to PDT
and identify recurrence of tumor post treatment. BPD was used as PS and 1-h DLI
and 3-h DLI was chosen for PDT treatment. 65% of the mice in 1-h DLI group had
complete suppression of tumor 30 days post treatment dubbed as responders, while
35% had regrowth after two weeks. 3-h DLI group had six-fold increase in tumor
growth post treatment and was not significantly different from no treatment group. 3-
h DLI group was referred to as non-responders. PAI was performed for 1-h and 3-h
DLI groups at pre-PDT, immediately post-PDT, 6-h and 24-h post-PDT and SO2 and
total hemoglobin content (HbT) in the tumor was measured. Figure 5a describes the
average SO2 and HbT values at various time points in both 1-h DLI and 3-h DLI
groups. While the SO2 did not change significantly for 3-h DLI immediately post-
PDT due to less disruption to the vasculature, 1-h DLI showed a significant increase
immediately post-PDT followed by decrease to 3% and 8% at 6-h and 24-h post-PDT
respectively in tumors that responded to the treatment (Fig. 5a). An algorithm was
devised based on the SO2 values at various timepoints post treatment. Average SO2

value for every frame of the PAI scan was calculated for 6-h and 24-h post-PDT. If
the average SO2 at 6-h post-PDT and 24-h post-PDT for a particular B-scan frame
was less than 6.2 and 16.3%, the region is considered treated (colored as green) or
non-responsive (colored as red) as shown in Fig. 5b. The algorithm was repeated
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Fig. 5 aMean SO2 and HbT values at various time points (Pre-PDT, Post-PDT, 6-h and 24-h post-
PDT) in the 1-h DLI and 3-h DLI groups. b Graphical outline of the algorithm used to classify the
PDT treatment responders from non-responders and to generate the prediction map for predicting
treatment response and tumor regrowth using the ultrasound (US) and photoacoustic (PA) images.
Figure adapted with permissions from Mallidi et al. [18]
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for all the B-scan frames in the 3-D tumor volume to get the prediction map. The
pre-PDT or immediately post-PDT SO2 values alone did not predict the treatment
outcome, but the combined average SO2 value at 6-h and 24-h at each frame made
the prediction. The timepoint for SO2 measurement and threshold levels need to
be optimized for different tumor models along with the algorithm to get a better
prediction for patient specific treatment design and response outcome.

2.4 Contrast Enhancement in PAI Using Nanoparticles

Advancement in the field of nanotechnology led to the development of various types
of nanoconstructs and nanoparticles that act as both drug carriers (theranostic agents)
and contrast agents (diagnostic agents). These nanoparticles can also be loaded with
dyes that have high optical absorption such as methylene blue, IRdye800, Indocya-
nine green. In addition to contrast dye, chemotherapeutic drugs like doxorubicin
which are toxic to normal tissues are also encapsulated in nanoconstructs to min-
imize the toxic effects on healthy cells [40, 41]. The presence of imaging agents
in these nanosystems will enable PAI to monitor the nanoparticle uptake, retention,
and interaction with the tumor tissue [42–45]. The nanosystems are generally non-
targeted or specifically targeted to biomarkers expressed in malignancies. Especially
in tumors, non-targeted nanoparticles are selectively retained in the cancerous cells
because of enhanced permeability and retention effect while the targeted nanoparti-
cles get localized in the target cell through receptor mediated endocytosis or other
biological mechanisms [46–48]. Furthermore, the drugs and contrast agents from
nanoparticles can be released using external energy sources such as light, heat, etc.
and these processes can be monitored with PAI.

This provides PAI with the opportunity to image for contrast agents and give
information on the tumor profile, pharmacokinetics, and drug distribution inside the
tumor [44, 45, 49–51]. The nanoparticles-based contrast agents are categorized into
metallic and non-metallic nanoparticles [14]. Plasmonic metal nanoparticles utilize
surface plasmon resonance effect to increase the optical absorption to provide greater
acoustic signal than the normal dye. For example, gold nanoparticles in the form of
nanorods or nanospheres are employed in PAI as exogeneous contrast agents because
of the surface plasmon resonance (SPR) effectwhich gives rise to their tunable optical
absorption properties [12, 52, 53]. Non-metallic nanoparticles like single walled
carbon nanotubes (CNT) are strong light absorbers by nature and can serve as high
contrast molecular agents for photoacoustic imaging [54]. Carbon nanotubes and its
variant single referred to as CNTs are widely used as carrier vehicles for chemo drugs
andmolecular agents [55–57]. PAI is increasingly used in image guided drug delivery
of contrast agents and nanoparticles into tumors and also used in image guided cancer
treatment like PDT, phototherapy, and chemoradiation [48, 53, 57, 58].

Given the rise of PAI in monitoring nanoparticle uptake, we believe LED based
photoacoustic imaging is a more affordable option available for various research
groups to avail the opportunity of utilizing the technology to understand nanoparticle
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Fig. 6 Contrast enhancement in LED based PAI using exogeneous contrast agents. Combined
overlay of PA and US image of subcutaneous FaDu tumor in mice before (a) and after (b) the NC
dye administration. PA images were acquired using 850 nm LED light source (areas with greater
contrast is shown with white arrows)

or drug uptake non-invasively at high resolution. Figure 6 demonstrates the capability
of the LED based PAI system in imaging a naphthalocyanine (NC) dye which has a
strong absorption in the NIR region (~absorption peak at 860 nm). Figure 6a shows
the photoacoustic image overlaid with ultrasound of FaDu tumor xenografts in nude
mice. An 850 nm LED light source was used for the photoacoustic scan of tumors. A
100µL NC dye was injected intratumorally into the FaDu tumor interstitium using a
32-gauge needle and the distribution of dye inside the tumor was imaged. Figure 6b
shows the distribution profile of the NC dye in the tumor. The NC dye has distributed
into almost all parts of the tumor, but strong PA signal was received from the top of
tumor which is potentially due to these areas receiving stronger light energy. Several
studies demonstrate unmixing of the dye signal from the blood using spectroscopic
photoacoustic imaging using tunable lasers [42]. Such studies will be possible with
the availability of multi-wavelength LEDs for PAI.

3 Future Directions

The AcousticX system currently has only a few LEDs arrays operating at 470, 520,
620, 660, 690, 750, 820, 850, 940 or 980 nm. The dual wavelength combination
LED arrays are available at 690/850, 750/850 and 820/940 nm. The possibility of
having only fewer wavelengths in LED array significantly limits the potential of PAI
in terms of multiwavelength spectroscopic imaging and unmixing signals from mul-
tiple photoacoustic contrast generating chromophores. The dual combination LED
are developed based on optical signature of hemoglobin in blood and widely used
photoacoustic contrast agent Indocyanine green. Any other contrast agent with dif-
ferent peak optical absorption properties probably cannot be imaged with the current
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LED arrays. Furthermore, to unmix blood photoacoustic signature (oxygenated and
deoxygenated hemoglobin) from the contrast agent, there should be at least three
illumination wavelengths available. The choice of wavelength depends on the chro-
mophores used in the study. Cyberdyne Inc. the pioneers in fabricating LED light
source for PAI understand the need of various light source and are in pursuit of
developing other wavelengths in both single source and multiwavelength combina-
tion LED arrays in order to further advance the utility of LEDbased PAI in preclinical
research.

Functional imaging of tumors is one of major application of PAI. Depending on
the tumor model and focus of study in the preclinical research, tumor size ranges
from few mm to 1–2 cm. The current shape of LED arrays is a rectangular box
of approximately 8 cm in length to conform around the linear array transducers.
The LED array is large in comparison to tumors being studied by many research
groups and most of the light from LED is delivered outside the tumor region of
interest. Studies to progress towards designing custom shaped LED are currently
being undertaken based on niche applications where such a technology could make
significant impact. Moreover, making use of flexible electronics in fabricating LED
arrays would be useful for myriad preclinical or clinical applications.

4 Conclusion

The examples and in vivo demonstrations presented in the chapter showcase the
utility of LED based PAI for imaging vasculature, monitoring changes in oxygen
saturation, and gauging the distribution of nanoparticles within the tumor. The low
power light delivered by the LEDs may cause poor signal to noise ratio, however
the high frame rate LED-based PAI produces images on par with slower frame rate
laser-based PAI due to the possibility of averaging many frames obtained within a
short time range. With the advances in semiconductor industry leading to production
of powerful LEDs, exciting opportunities await for the portable, low-cost LED-based
PAI systems in the pre-clinical and clinical application realm.
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LED-Based Photoacoustic Imaging
for Guiding Peripheral Minimally
Invasive Procedures
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and Adrien Desjardins

Abstract Photoacoustic imaging (PAI) could be useful for improving guidance of
peripheral minimally invasive procedures. In this clinical application space, light
emitting diodes (LEDs) have several potential advantages as excitation sources. B-
mode ultrasound (US) imaging is often used for guiding invasive medical devices;
however, most anatomical structures do not have unique US appearances, so the
misidentification of tissues is common. There are several potential uses for LED-
based PAI, including identifying procedural targets, avoiding critical tissue struc-
tures, and localising invasive medical devices relative to external imaging probes.
In this chapter, we discuss the state-of-the-art of visualising tissue structures and
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medical devices relevant to minimally invasive procedures with PAI, key clinical
considerations, and challenges involved with translating LED-based PAI systems
from the benchtop to clinical use.

1 Introduction

1.1 Photoacoustic Imaging of Peripheral Vasculature

Photoacoustic imaging (PAI) is an emerging modality that provides information
complementary to conventional B-mode ultrasound (US) imaging. With PAI, pulsed
excitation light is delivered to tissue, where it is absorbed by specific tissue con-
stituents and the corresponding temperature rise generates US waves via the photoa-
coustic effect. Received US signals are processed to generate an image [1]. Whereas
B-mode US imaging yields information about variations in the mechanical proper-
ties of tissue, image contrast in PAI stems from optical absorption by endogenous or
exogenous chromophores. In the visible and near-infrared (NIR) wavelength ranges,
haemoglobin in blood is a prominent optical absorber, so that vasculature can be visu-
alised with high contrast [1] and blood oxygen saturation can be estimated [2]. Lipids
can also be prominent optical absorbers in the NIR, so that nerves can be directly
visualised [3–5]. Studies performed to date indicate that PAI has strong potential for
clinical translation in broad range of applications. This chapter is focused on the use
of PAI for guiding minimally invasive procedures.

Several studies have demonstrated that PAI can visualise human peripheral vas-
culature in vivo, including vessels in the human palm [6–8] and arm [9]. In a study by
Fronheiser et al., photoacoustic imaging was used to map and monitor vasculature
for haemodialysis treatment [9]. It has also been shown to be promising for assess-
ing skin microvasculature pathology, or for investigating soft tissue damage such as
burns [10]. Favazza et al. were interested in visualising vasculature to obtain indica-
tors of cardiovascular health [11]. More recently, Plumb et al. [12] obtained highly
detailed 3D images of the human microvasculature (Fig. 1) and investigated the
dynamic potential of their system by assessing the response of the microvasculature
to thermal stimuli. Taken together, these studies indicate that PAI can provide clin-
ically compelling images of vasculature, which motivates its application to guiding
minimally invasive procedures.

Developing PAI systems so that they can be used routinely to guide minimally
invasive devices such as needles and catheters involves multiple challenges. From
a translational standpoint, both the size and the cost of these systems are important
factors. This consideration has led to interest in light emitting diodes (LEDs) as PA
excitation sources [13, 14]. However, a prominent challenge associated with using
LEDs is that they tend to havemuch lower pulse energies than conventional excitation
sources such as Nd:YAG lasers and optical parametric oscillators (OPOs), so that US
signals are correspondingly weaker. Pioneering work by Hansen [15] demonstrated
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Fig. 1 Photoacoustic imaging (PAI) of human peripheral vasculature, acquired with an optical
parametric oscillator (OPO) as the excitation light source. The top panel shows a photoacoustic (PA)
image (top left) alongside the corresponding ultrasound image (top right), obtained simultaneously
from a volunteer; the bottom panel shows corresponding volumetric PAI data sets, presented as
coronal and sagittal maximum intensity projections. The dashed line in the bottom right image
indicates plane through which axial image (top left) was reconstructed. Adapted with permission
from Plumb et al. [12]

the feasibility of LED-based PAI, and Allen and Beard [16] investigated the use of
LEDs for biomedical applications. Recently, LEDs have been integrated alongside
a clinical, handheld imaging probe as part of a commercial system (CYBERDYNE
INC., Tsukuba, Japan) [17]. In this system, an LED array is positioned on each side of
the imaging probe, angled so that their axes of illumination intersect the US imaging
plane. B-mode US images and photoacoustic images can be acquired sequentially,
with photoacoustic information overlaid onto the US images in real-time.
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1.2 Applications to Minimally Invasive Procedures

LED-based PAImay be well suited to guidingminimally invasive procedures that are
targeted at peripheral blood vessels or nerves. In current clinical practice, B-mode
US guidance is used to visualise both anatomical structures and invasive medical
devices. Procedures that use US guidance include peripheral venous access (e.g.
for central line placement and vascular access in varicose vein procedures), periph-
eral arterial access (e.g. for arterial pressure monitoring and percutaneous coronary
interventions), biopsies, nerve blocks, fascial plane blocks and interventional pain
procedures. In expert hands, B-mode US imaging can provide reliable identification
of structures such as nerves, arterial and venous blood vessels, muscle, solid organs
and tumours. However, none of these structures give rise to unique US appearances
with B-mode imaging; the reflected US waves are dependent upon the mechanical
properties of the tissue and the angle of insonation, so that misidentification of tis-
sues is common. In these contexts, LED-based PAI could be useful in a variety of
ways. Firstly, it could help to identify procedural targets, such as blood vessels or
nerves. Blood vessels can be visualised directly with PAI due to the presence of
haemoglobin in red blood cells, with excitation wavelengths spanning visible and
NIR wavelengths. Likewise, direct image contrast for nerves and surrounding adi-
pose tissues can be obtained with specific NIRwavelengths where optical absorption
by lipids is prominent [3–5]. Secondly, LED-based PAI could be used to avoid dam-
aging critical structures or puncturing arteries. Finally, it could be used to localise
invasive devices relative to external imaging probes.

2 LED-Based Photoacoustic Imaging of Vasculature

Several studies have explored the use of LED-based PAI to image superficial human
vasculature. In the study of Xia et al. [18], the human finger and wrist were imaged,
and strong PA signals from subsurface vascular structures in both imaging locations
were observed. This study showed relatively strong visual correspondence between
US and PA modalities, although the authors noticed distinct differences between the
features visible with US and those visible with PAI (Fig. 2). In another study by
the same group, it was shown that LED-based PAI could provide sufficient depth
and resolution to image superficial vasculature, such as the digital vessels [19].
These results suggest that LED-based PAI might be useful clinically for identifying,
avoiding or targeting superficial vasculature.

Maneas et al. used an LED-based system (AcousticX, CYBERDYNE INC.,
Tsukuba, Japan) to image placental vasculature, in the context of fetal medicine
[20]. They imaged post-partum human placentas ex vivo and were able to detect
superficial blood vessels with PAI that were not apparent with US alone (Fig. 3).
They compared images acquired from this system to those acquired from a Fabry-
Pérot based system and concluded that the two systems were complementary: the
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Fig. 2 Photoacoustic (PA) imaging of human finger with a light-emitting diode (LED)-based sys-
tem. a Schematic showing the location of the imaging plane; b PA imaging; c ultrasound (US)
B-mode imaging; d PA overlaid on US. Interpretations: digital artery (red arrow), veins (blue
arrows) and skin surface (yellow arrow). Adapted with permission from Xia et al. [18]

former allowed for rapid 2D PA and B-mode US imaging whilst the latter yielded
finer detail.

In order to be useful for guiding vascular access procedures, a PAI device would
need to visualise vessels to depths of 40 mm or more, thereby ensuring its suitability
for patients with a high body mass index (BMI). For vascular access applications,
imaging vessels with diameters greater than 2 mm would be necessary. However, it
would also be useful to identify vessels with much smaller diameters and to ensure
that collapsed vessels and those parallel to the imaging plane can be seen. Visualising
these vessels could improve the safety of minimally invasive procedures by enabling
clinicians to avoid vascular structures where necessary.

Beyond identifying human vasculature, unequivocally distinguishing between
arteries and veins is a prominent clinical objective, particularly in the context of
avoiding puncturing arterial structures when targeting veins. In current clinical prac-
tice, this can be challenging. US-guided clinical procedures that involve percuta-
neous access to vessels would benefit from enhanced visualisation of arterial and
venous structures. For instance, with central venous access, misidentification of arte-
rial structures can lead to catastrophic bleeding; the risk of arterial puncture has been
estimated to be as high as 6% [21]. The addition of imaging modalities such as
colour US Doppler imaging can help to discriminate pulsatile blood flows, which
are indicative of arterial blood. Nonetheless, arterial puncture is still a risk [22], with
many underlying factors. Higher risk procedures include those where the vasculature
is too small to identify on US, and also ones in low-flow or no-flow states where
Doppler imaging has limited utility, which can occur when patients are in shock or
cardiac arrest.

LED-based PAI is promising for differentiating between arterial and venous struc-
tures, based on differences in the optical absorption spectra of oxy- and deoxy-
haemoglobin. Zhu et al. explored the use of LED-based PAI to quantify blood oxy-
genation levels in a human volunteer [2], using two dual wavelength LED bars
emitting alternatively at 690 and 850 nm. Their high imaging frame rates, which
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Fig. 3 Photoacoustic (PA) imaging of human placenta with a light-emitting diode (LED)-based
system. a Combined PA and ultrasound (US) imaging; b photograph of the placenta (fetal side);
c 3D PA image, displayed as a maximum intensity projection of the reconstructed image volume.
Adapted with permission from Maneas et al. [20]
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reached 500 Hz, could be well suited to visualising rapid changes in oxygenation
levels. Additionally, LED-based PAI provided dynamicmeasurements of vasculature
resulting from cuff occlusion [19]. The authors of that study discussed how LED-
based PAI imaging of superficial vasculature could potentially be used in clinical
settings to measure diagnostic parameters such as the heart rate and recovery time
from cuff occlusion.

3 LED-Based Imaging of Invasive Medical Devices

Many types of needle-based procedures could benefit enhanced visualisation of
nerves. As an example, nerve blocks involve injections of anaesthetics around a
nerve or group of nerves, to treat pain or to prepare a patient for surgery. In these
procedures, accurate and efficient identification of nerves is essential. In current prac-
tice, US guidance is used to ensure that the needle reaches the target nerve and avoids
other structures. Whilst the use of colour Doppler can be beneficial in these contexts,
smaller vessels and those oblique to the imaging plane can often be overlooked.
Although US has enabled deeper and more challenging blocks to be performed by a
greater number of practitioners, inadvertent vascular injury remains a risk [23, 24].
These complications can be even greater in anticoagulated patients. Imaging nerves
is challenging, as their appearance can mimic other structures such as tendons [25].
Moreover, nerves exhibit anisotropy, so their appearance is strongly dependent on the
angle of insonation. Despite its advantages for visualising neural structures, the res-
olution of B-mode US can be insufficient to consistently recognise smaller branches,
which are increasingly of clinical interest. For example, advanced practitioners may
wish to selectively block small sensory branches (less than 1 mm in diameter) in the
forearm or ankle, which are extremely challenging to visualise with US. If PAI could
provide enhanced visualisation of small superficial neural structures, there would be
strong potential to improve procedural outcomes.

4 Prospects for LED-Based Photoacoustic Imaging
of Peripheral Nerves

To the authors’ knowledge, the use of LED-based PAI for visualising nerves during
minimally invasive procedures has remained elusive. The use of PAI with conven-
tional excitation light sources to image nerves has been explored to a limited extent.
Ex vivo pilot studies indicate that PAI may provide higher contrast for nerves than
that obtained with B-mode US, and that it could be useful for differentiating nerves
from tendons [26] (Fig. 4). Even with high energy sources such as OPOs, when
excitation light is delivered from the tissue surface, obtaining sufficient signal from
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Fig. 4 Photoacoustic (PA) imaging of a nerve/tendon pair, using an interventional multispectral
system with an optical parametric oscillator as an excitation source. a, b Ultrasound (US) images
of nerve and tendon samples; c, d the PA images superimposed onto the corresponding US images.
Adapted with permission from Mari et al. [26]

lipids at clinically relevant depths is challenging. One solution, which may be rele-
vant to future implementations of LED-based PAI, can be found with interventional
PAI, where excitation light is delivered through a needle to reach targets several
cm beneath the surface [27–30]. With an LED-based PAI system, either identifying
nerves as procedural targets or as structures to avoid could be useful, depending
on the clinical context. Ideally, nerves could be visualised at depths up to 60 mm
with these systems. As this could be very challenging, given the relatively low pulse
energies of LEDs, visualisation of nerves to depths of 30 mm would still be useful.

Imaging of percutaneous devices such as needles and catheters using US can be
challenging. As a result, identification of the needle tip is vital to prevent damage to
underlying structures.With steep insertion angles, USwaves are reflected away from
the transducer, so that the needle is not visible. In addition, catheters can be very
poorly visible when positioned in soft tissues. Visualising needles and catheters is
another area where LED-based PAI could be very useful, and the combination of PAI
with current US techniques could provide better real-time guidance. In a study by
Xia et al. [18], the performance of LED-based PAI for guiding needle insertions was
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Fig. 5 Light-emitting diode (LED)-based photoacoustic imaging (PAI) of needle insertions. a
Ultrasound (US) imaging; b photoacoustic (PA) imaging at 850 nm; c US image with PA overlay.
Adapted with permission from Xia et al. [18]

evaluated for the first time. Using an ex vivo bloodmimicking phantom, needles were
visualised to depths of 38 mm. At insertion angles of 26°–51°, the signal-to-noise
ratio (SNR) achieved was 1.2–2.2 times higher than that measured with B-mode
US alone; the SNR decreased as the needle insertion angle increased. Although
the spatial resolution was similar for both US and PA imaging, the inserted needle
was visible down to 2 cm with PAI but it was barely visible with US (Fig. 5). In a
second study by Xia et al. [31] medical devices were coated with a carbon nanotube
polydimethylsiloxane composite to enhance visibility for photoacoustic imaging. In
this study, two experiments were performed: first, a metal needle was inserted into
chicken breast and in the second, a catheter dipped in the composite coating was put
into the chicken breast. In both cases, the devices were barely visible with US but
were visible with LED-based PAI. The uncoated and coated needles were visible to
depths greater than 20 mm and 30 mm, respectively.

5 Challenges for Clinical Translation

A significant challenge for the clinical translation of LED-based PAI for minimally
invasive procedures is to overcome poor SNR arising from low pulse energies and
long pulse durations. Poor SNR, which limits the imaging depth, has also been
encountered with the use of laser diodes for PAI [32–34]. One solution, which was
suggested by Allen and Beard [16, 35] and implemented by Dai et al. [36], is to
overdrive LEDs when they are driven at low duty cycles [37]. Another solution is
to perform signal averaging, to which LEDs can be well suited due to their high
repetition rate. However this solution comes that expense of decreasing the frame
rate [14]. Allen and Beard [35] used signal averaging to demonstrate that LEDs can
be used as an excitation source for imaging superficial vascular anatomy. Coded
excitation sequences such as Golay code pairs [16] can also be used, as a type of
averaging, to improve the SNR. In practice, motion can limit the lengths of these code
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pairs. In 2013, Allen and Beard [16] demonstrated that Golay code pairs could be
used to simultaneously acquire signals from a tissue-mimicking phantom at multiple
wavelengths.

A second challenge with the clinical translation of LED-based PAI is to manage
the heat that LEDs produce, which can be transferred to the patient and can also result
in shifts in the emission wavelengths of the LEDs [38]. These thermal considerations
will be important when considering integration of LEDs directly into US imaging
probes, as an evolution from bulky, side-mounted arrays (Fig. 6) [39].

Exogenous contrast agents could also improve the SNR and depth penetration
achievable with LED-based PAI systems. To increase SNR of vessels, contrast agents
such as gold or silver nanoparticles have been used to generate larger signals [40–45].
However, adding contrast agents is usually sub-optimal or not possible for clinical
translation; many of the ones used in pre-clinical studies are unapproved for human
use and are known to be toxic. In this respect, injections of indocyanine green (ICG)
are promising, as this contrast agent is approved for use in human patients and has
optical absorption spectra that can be matched to LEDs. Singh et al. [39] used ICG
as a contrast agent to show simultaneous imaging of both vascular and lymphatic
structures in vivo. In combination with contrast agents such as ICG, LED-based PAI
could potentially be used to increase contrast for nerves, with injections around the
nerves during hydrodissection.

Fig. 6 The imaging probe of a light-emitting diode (LED)-based PAI system (AcousticX,
CYBERDYNE INC., Tsukuba, Japan). Images adapted with permission from Singh et al. [39]
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Tissue-mimicking phantoms will be important for training clinicians with PAI
systems. Anatomically accurate phantoms, with optical and acoustic properties sim-
ilar to those of human tissue, can be challenging to develop. To this end, there has
recently been work to develop anatomically realistic vascular [46] and photoacous-
tic phantoms [47]. Another key step to facilitate clinical training with LED-based
PAI systems is the use of computer assisted segmentation of photoacoustic images.
Recent studies have applied deep learning algorithms to photoacoustic images, for
instance to segment vessel structures [48] and to assist with breast cancer diagnostics
[49].

6 Conclusion

In summary, LED-based PAI systems have strong potential for guiding a wide range
of minimally invasive clinical procedures with peripheral targets. As photoacoustic
excitation sources, LEDs have the advantage of being compact, so that they can
potentially be tightly integratedwith clinicalUS imagingprobes.However, they come
with the significant challenge of overcoming low SNR that results from smaller pulse
energies and longer pulse durations thanmany conventional photoacoustic excitation
sources. Recent demonstrationswith LED-based systems to visualise vasculature and
minimally invasive devices are promising indications of how PAI could be used in
clinical practice.
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Application of LED-Based Photoacoustic
Imaging in Diagnosis of Human
Inflammatory Arthritis

Yunhao Zhu, Janggun Jo, Guan Xu, Gandikota Girish, Elena Schiopu,
and Xueding Wang

Abstract Using low cost and small size light emitting diodes (LED) as the alter-
native illumination source for photoacoustic (PA) imaging has many advantages,
and can largely benefit the clinical translation of the emerging PA imaging (PAI)
technology. To overcome the challenge of achieving sufficient signal-to-noise ratio
by the LED light that is orders of magnitude weaker than lasers, extensive signal
averaging over hundreds of pulses is performed. According to our research, the
LED-based PAI could be a promising tool for several clinical applications, such as
assessment of peripheral microvascular function and dynamic changes, and diag-
nosis of inflammatory arthritis. In this chapter, we will first introduce a commer-
cially available LED-based PAI system, and then show the ability of this system in
identifying inflammatory arthritis in human hand joints. B-mode ultrasound (US),
Doppler, and PA images were obtained from 12 joints with clinically active arthritis,
five joints with subclinically active arthritis, and 12 normal joints. The quantitative
assessment of hyperemia in joints by PAI demonstrated statistically significant differ-
ences among the three conditions. The imaging results from the subclinically active
arthritis joints also suggested that the LED-based PAI has a higher sensitivity to
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angiogenic microvasculature compared to US Doppler imaging. This initial clinical
study on arthritis patients validates that PAI can be a potential imaging modality for
the diagnosis of inflammatory arthritis.

1 Introduction

Inflammatory arthritis caused by autoimmune disorders is a chronic, progressive set
of diseases with worldwide prevalence [1]. Rheumatoid arthritis (RA), one such
type of inflammatory arthritis, has symptoms of stiffness, pain, and swelling of
the joints. In addition, RA synovium shows hypoxia, neoangiogenesis and synovial
proliferationwithin the peripheral joints [2–4]. Synovial angiogenesis is an important
feature in the early stage of development and perpetuation of inflammatory arthritis.
Magnetic resonance imaging (MRI) and ultrasound (US) Doppler imaging has been
employed as the main modalities in identifying inflammatory arthritis [5, 6]. The use
of MRI is not widespread for general clinical screening and diagnosis due to the high
cost and limited accessibility. B-mode US Doppler can offer high-resolution images
of joint structures and has proven sensitive in detecting blood flow. US Doppler
imaging, however, is more sensitive to the fast blood flowing in relatively larger
vessels. Slow blood flowing in smaller capillaries, which are more clinically and
pathologically relevant to early active synovitis [7], could be missed by Doppler
imaging.

Laser-induced photoacoustic imaging (PAI) has shown the capability of identi-
fying active synovitis in human finger joints [8, 9]. With the unique capability of
mapping highly sensitive optical information in deep tissue with excellent spatial
resolution [10], this emerging imaging technique has been developed and investi-
gated for various preclinical and clinical applications [11–13]. Presenting endoge-
nous optical absorption contrast in tissues, PAI,when combinedwithB-modeUS, can
provide additional functional and molecular information such as blood volume and
blood oxygen saturation which are highly valuable in diagnosis of many pathological
conditions [14–17].

The advancement of light emitting diode (LED) technology offers a unique oppor-
tunity to solve the challenges in clinical applications of PA imaging [18, 19]. Com-
pared to expensive class-IV laser systems, the LED-based light source is much lower
in both owning and operating costs. The lower costs together with the significantly
reduced footprints of the LED light source can make PA imaging a practical option
for point-of-care screening or diagnosis of a variety of diseases. Furthermore, unlike
class-IV laser systems which need to be placed in dedicated spaces securing safety
and operation requirements (e.g., light shielding, high electric power, and air or water
cooling), LED light source can operate in almost any place, including resource defi-
cient settings such as on battlefields or in ambulances. At the light fluence we are
working with, there is no need for wearing laser safety glasses for anyone within the
operation area.



Application of LED-Based Photoacoustic Imaging … 337

However, the biggest challenge for LED-based PA imaging is to produce sufficient
signal-to-noise ratio (SNR) in biological samples. During limited pulse duration of
100 ns or less, LED, evenworking as a group such as a 2Dpanel, can only deliver light
energy that is about two orders ofmagnitude lower than that from a class-IV laser. For
example, 2D LED array panels along with Acoustic X system (Cyberdyne, Inc.) can
deliver up to 200μJ of pulsed light at 850-nmwavelength.Without performing signal
averaging, however, this low pulse energy will still not be able to produce detectable
PA signal from biological samples even at the surfaces. Fortunately, taking advantage
from the high pulse repetition rate from 1 kHz to 16 kHz, extensive signal averaging
from dozens to hundreds of pulses can be performed. In this way, the LED-based
PA imaging system is able to achieve SNR comparable to those in laser-based PA
imaging systems without sacrificing the capability of performing real-time imaging
[20, 21]. If there is no special description, all results below were acquired with a
7-MHz linear array (128 elements), with two 850-nm LED bars driven at 4 kHz
repetition rate, and 384 times averaging.

2 LED-Based PA Imaging of Subsurface Microvasculature
In Vivo: A Feasibility Study

Via the experiments on human finger and other parts, the performance of LED-
based PA imaging for 2D and 3D mapping of subsurface microvasculature in vivo
are discussed first, including sensitivity, spatial resolution, penetration depth, and
imaging speed, as well as its feasibility in sensing and quantifying the hemodynamic
properties and changes in motion such as arterial pulsation, blood reperfusion, and
blood oxygen saturation.

2.1 Imaging Microvasculature in 2D and 3D

Figure 1 shows an example result of PA and US combined 2D and 3D imaging of
a human finger. The 3D PA and US combined image acquired via the linear scan
of the probe along the digit is presented along different views including coronal,
axial, and sagittal in Fig. 1a–c. In each 2D rendering, the PA image of microvessels
is presented in pseudo-color, and superimposed on the background gray-scale US
image. Figure 1d shows perspective view of the spatially distributed vessels in the
finger acquired by PA imaging.
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Fig. 1 a Coronal, b axial, and c sagittal views of the 3D PA and US combined image of a human
finger from a volunteer. d Perspective view of the 3D PA image showing the microvessels in the
finger. Reprinted with permission from [22]

2.2 Arterial Pulsation and Blood Reperfusion

Figure 2a shows a real-time acquired PA and US B-scan results of a human finger
along the sagittal sectionwith a frame rate of 10Hz. Topresent the arterial pulsation in
motion (asmarked by the arrows), four frames from the cine loop are presented. In the
pseudo-color PA images, besides themarked artery, spatially distributedmicrovessels
in the finger up to 5-mm deep can also be recognized. A higher central frequency of
10-MHz linear array (128 elements) was employed.

Working at a higher frame rate of 500 Hz, Fig. 2b shows another results of real-
time PA and US B-scan of a finger demonstrating the capability of this system in
imaging and quantifying fast hemodynamic changes in vivo. Note that the two 850-
nm LED bars were driven at 16 kHz pulse repetition rate, and 32 times averaging
was conducted and a 7-MHz linear array was employed. Both the two frames in
Fig. 2b are from a cine loop scan showing the blood reperfusion into the finger after
releasing of a rubber band which tied around the root of the finger. The left and the
right images were acquired right after and at 46 ms after the rubber band releasing
respectively. As we can see, during a time period of 46 ms (i.e., 23 frames), the
blood signal expanded along the vessel for a total length of 4.6 mm (from right to
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Fig. 2 a Four frames from a video showing the cine loop of B-scan PA imaging of a human finger
(index finger, sagittal section) presenting the pulsation of an artery marked by the arrows. Imaging
frame rate: 10 Hz. b Two frames from a video showing the cine loop of B-scan PA imaging of
a human finger (index finger, sagittal section) showing the blood reperfusion into the finger after
releasing of the rubber band which tied around root of the finger. (Left) The image acquired right
after the rubber band releasing; (Right) The image acquired at 46 ms after the rubber band releasing.
The flow rate Imaging frame rate: 500 Hz. The distance between two asterisks is measured to be
4.6 mm. Blood flow direction is marked by the arrow. Reprinted with permission from [22]

left, as marked by the two asterisks). The speed of blood reperfusion in this vessel
is quantified to be 100 mm/s.

2.3 Blood Oxygen Saturation

Hypoxia is an important biomarker reflecting the onset and progression of many dis-
eases such as cancer. It has been validated that multispectral PA imaging, by probing
the spectroscopic difference between oxygenated and deoxygenated hemoglobin, can
evaluate relative hemoglobin oxygen saturation and hypoxia in biological samples
in vivo, in a non-invasive manner [23–25]. By design, the LED-based PA imaging
for measurement of blood oxygenation could be realized by using a pair of dual-
wavelength LED bars which can emit 690 and 850-nmwavelength light alternatively
as shown in Fig. 3a. Due to the fast switch between the two wavelengths (lagging
time <0.5 ms), the accuracy in quantitative imaging of blood oxygenation does not
suffer from body motion. PA functional imaging of blood oxygenation in the vessels



340 Y. Zhu et al.

Fig. 3 a Photo of a pair of dual-wavelength LED bars that emits 690 and 850-nm light alternatively.
b PA (pseudo color) and US (gray scale) combined image showing the microvessels in the cross-
section of a human finger. c Correlation between the dual-wavelength PA measurements of the
blood sO2 in the finger and the SpO2 readouts from a pulse oximeter. A fitting line (dashed line, y
= ax + b, a = 1.251, b = –0.234) is presented, and R-square of 0.9838 is achieved. At each SpO2
level, the asterisk on red line shows the mean, and the distance above or below it shows the standard
deviation of the PA measurements. Reprinted with permission from [22]

in an index finger of a volunteer was shown. Figure 3b is an example PA image show-
ing the microvessels in a cross-section of the finger, which is superimposed on the
gray-scale US image. The region of interest (ROI) was marked by the dashed yellow.
As shown in Fig. 3c, the dual-wavelength PA measurements of blood oxygenation
and the readouts from the pulse oximeter achieved a good correlation (R-square =
0.9838).

2.4 Imaging of Peripheral Vasculature and Response to Cold
Exposure

Disturbance of peripheralmicrovascular function can be associatedwithmany patho-
logical conditions such as diabetes mellitus [26–31], heart failure [32, 33], and Ray-
naud’s phenomenon (RP) [34, 35]. RP, seen as the first manifestation in 70% of
the patients with systemic sclerosis, refers to constriction of the microvessels of the
hands or feet in response to cold exposure. Objective evaluation of peripheral micro-
circulatory flow plays a key role in the characterization and treatment assessment
of RP [35]. For example, it has been demonstrated that, for patients with RP, the
blood flow in skin measured by laser Doppler decreases significantly after local cold
exposure [36].

Here we show the LED-based PA imaging in mapping peripheral microvessels
in foot, and in sensing the decrease in microvascular flow in response to cold tem-
perature. The decrease in PA signal intensity should be caused mainly by the vaso-
contraction instead of the temperature change in blood which may also affect PA
signal intensity via the temperature-dependent Grüneisen parameter. This is due to
the fact that the temperature change in blood should be small, since the experimental
duration was short and the blood in the vessels was also continuously flowing.

PA imaging of peripheral vasculature acquired from the dorsal surface of the left
foot of a volunteer is shown in Fig. 4. The dashed rectangle in Fig. 4a indicates
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Fig. 4 aMaximum intensity projection PA and US combined image showing the vasculature in the
dorsal surface of a human foot. The dashed rectangle indicates the imaged area. b Perspective view
image showing the 3D vasculature. The depth (i.e., the position along the z axis) is color encoded.
c B-scan PA and US combined images of the vasculature in foot surface acquired at a temperature
of 40.8 and 34.2 °C. The dashed circles indicate the regions of interest (ROI) for quantifying the
change of PA image intensity in response to the local cold exposure. d Data distribution showing
the averaged PA image intensities of vessels within the ROI at the two different temperatures (i.e.,
40.8 vs. 34.2 °C). For the PA measurements at each temperature, the asterisk on red line shows the
mean, and the distance above or below it shows the standard deviation. A p-value of 0.0285 was
achieved for a two-tailed t-test (n = 4), demonstrating the capability of PA imaging in detecting
the change in peripheral microvascular flow in response to the local cold exposure. Reprinted with
permission from [22]

the scanned area on the foot surface. With the 3D image acquired, a maximum
intensity projection (MIP) PA and US combined image and a perspective view PA
image with depth color-encoded are presented in Fig. 4a and Fig. 4b, respectively.
Spatially distributed microvessels within the depth up to 10 mm can be recognized.
Figure 4c shows 2D B-scan images of the foot surface acquired at 40.8 and 34.2 °C
respectively. Pseudo-color PA image showing the vessels is superimposed on the
gray-scale US image. The PA intensities of the blood vessels within the ROI marked
by the dashed circle were averaged. The quantified PA measurements at the two
different temperatures (40.8 vs. 34.2 °C) are compared, as shown in Fig. 4d. With
four independent measurements at each temperature (n = 4), a two-tailed t-test was
conductedwith a hypothesis that there is no difference between the PAmeasurements
at the two temperatures. A p-value of 0.0285 was achieved, suggesting that the
decrease in peripheral microvascular flow in response to the local cold exposure
(i.e., temperature drop from 40.8 to 34.2 °C) can be detected by the LED-based PA
imaging.
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3 LED-Based PA Imaging of Inflammatory Arthritis:
A Clinical Study

We have demonstrated the capability of PA technique in imaging human peripheral
joints [37–41].These relatively smaller joints are usually among thefirst to be affected
by inflammatory arthritis. The early research findings fromanimalmodels and human
subjects suggest that PA imaging holds promise for rheumatology clinic, and can
provide a low-cost and non-invasive tool for early diagnosis and treatmentmonitoring
of inflammatory arthritis [8, 42–45]. In this section, we explored the feasibility of
detecting soft tissue inflammation in human peripheral joints by using the LED-based
PA system, and its capability in differentiating arthritic joints from normal joints by
evaluating the enhanced microvascular flow in the synovial tissue.

3.1 Introduction of Inflammatory Arthritis

Synovial angiogenesis is an important early feature in the development and perpetu-
ation of RA [46]. Angiogenesis from a combination of hypoxia and high metabolic
demand increases the number of synovial vessels [47], which drives synovial infil-
tration and hyperplasia. Neoangiogenesis, hyperemia and hypoxia in pathological
synovium are therefore essential hallmarks of inflammatory arthritis and regarded as
the key features for the early diagnosis of the disease [48–60].

During the progression of inflammatory arthritis, at the very early stage we can
see inflammatory markers in tissues, then we will notice functional changes such as
hyperemia, hypoxia and metabolic activity as shown in Fig. 5. Later in the progress,
anatomical changes will happen including synovium thickening and effusion.

3.2 LED-Based PA Imaging in Three Groups of Joints:
Clinically Active Arthritis, Subclinically Active Arthritis
and Healthy Joints

The LED-based PA imaging can potentially be a low-cost and non-invasive tool for
early diagnosis and treatment monitoring of inflammatory arthritis by evaluating
the enhanced microvascular flow in the synovial tissue. US Doppler (left) and PA
(right) images as shown in Fig. 6 of the three groups are compared in this section,
including clinically active arthritis joints, subclinically active arthritis joints, and
normal healthy joints.

As an example of clinically active RA, Fig. 6a showedDoppler US B-scan and the
corresponding PAI of a humanmetacarpophalangeal (MCP) joint with inflammation.
Doppler US image (left) was obtained by a sonographer right before the PAI scan.
Right image was the superimposed PA and US image acquired immediately after US
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Fig. 5 Sketch of an inflamed human MCP joint showing hyperemia in synovium. Reprinted with
permission from [61]

Doppler scan. TheUS images in both showed highly correlatedMCP joint structures.
The hyperemia displayed by colored Doppler images can also be found at the same
position, where the pseudo-color red pixels were blood signals detected by PAI.

As an example of subclinically active, PA and US Doppler images are shown in
Fig. 6b. In this case, we found hyperemia can be recognized in PA images but not
by Doppler US imaging using the ZONARE system right before the PAI scan. Same
as the clinically active arthritis patients, this group of patients also had swelling and
pain in affected finger joints, as confirmed by the board-certified rheumatologists
following the American College of Rheumatology (ACR) criteria. However, the
activity in the affected joints was not strong enough to be detected by the USDoppler
imaging systems used. These patients, with hyperemia seen only on PAI images, were
categorized as a separate group which was defined as sub-clinically active arthritis.

Following a similar procedure,wehadhealthyvolunteer performed anUSDoppler
scan, followed by a subsequent scan of the same finger joints using the LED PAI as
shown in Fig. 6c. Unlike the results from the arthritic joints, no prominent hyperemia
can be identified in the synovium of the normal joints, which was confirmed by both
US Doppler imaging and PAI.

3.3 Statistic Results Based on Imaging

To characterize the capability of PAI utilizing LED light source in differentiating
the three groups studied [i.e., clinically active arthritis group (n = 12), subclinically
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Fig. 6 (Left column) US Doppler images and (right column) PA images of human MCP joints.
a The images of a clinically active inflammatory arthritis joint showing hyperemia in both US
Doppler and PA images. b The images of a subclinically active inflammatory arthritis joint showing
hyperemia in PA image only but not in US Doppler image. c The images of a normal joint showing
no hyperemia in either US Doppler image or PA image. Reprinted with permission from [61]

active arthritis group (n = 5), and normal group (n = 12)], the imaging quantified
results from the three groups were compared. With the pseudo-color PA images of
each joint acquired, we evaluated the hyperemia as a biomarker of joint inflammation
by quantifying two parameters, including (1) the density of colored pixels and (2)
the average intensity of colored pixels in the joint area. For each pseudo-color PA
image of a joint, the density of colored pixels was calculated by dividing the number
of colored pixels by the number of total pixels in the joint area; the average intensity
of colored pixels was calculated by the sum of the intensities of all colored pixels
divided by the number of colored pixels in the joint area.

The quantified parameters of the three groups are compared in Fig. 7. Figure 7a
shows the box plots of the density of colored pixels in the joint area. The averages
and the standard deviations of the three groups are 14.0± 5.80 (%), 7.0± 3.20 (%),
and 0.4± 0.51 (%), respectively. To examine whether there is statistically significant
difference in this first parameter between any of the two groups, two tailed t-test was



Application of LED-Based Photoacoustic Imaging … 345

Fig. 7 Statistical studies comparing the hyperemia in the three groups of joints (i.e., clinically
active arthritis, n = 12; subclinically active arthritis, n = 5; and normal, n = 12) as quantified by
LED PAI. a The quantified results showing the density of colored pixels in pseudo-color PA images
of the three groups. b The quantified results showing the average intensity of colored pixels in
pseudo-color PA images of the three groups. Note * stands for p < 0.05, and ** stands for p < 0.005.
Reprinted with permission from [61]

performed using the built-in functions of the MATLAB (R2016b, Mathworks). The
statistical analyses show that any of the two groups can be differentiated by PAI
based on the quantified density of colored pixels in the joint area. The p-values from
the two-tailed t-tests were 0.024 for differentiating the clinically active group and
the subclinically negative group, 5.6 × 10−8 for differentiating the clinically active
group and the normal group, and 3.1 × 10−6 for differentiating the subclinically
active group and the normal group.

Figure 7b shows the box plots of the average intensity of colored pixels in the
joint area for the three groups. The averages and the standard deviations of the three
groups are 24.53 ± 8.28, 15.03 ± 4.54, and 3.56 ± 1.97, respectively. Similarly,
the statistical analyses show that any of the two groups can be differentiated by PAI
based on the quantified average intensity of colored pixels in the joint area. The p
values were 0.030 for differentiating the clinically active group and the subclinically
negative group, 2.0 × 10−8 for differentiating the clinically active group and the
normal group, and 2.0 × 10−6 for differentiating the subclinically active group and
the normal group.

All above results have demonstrated that LED PAI is capable of differentiating
arthritic joints from the normal joints.

4 Future Perspective

In the future, wewill focus on imaging theAchilles tendon area. Because the psoriatic
arthritis effects not only the joints, but also the tendon. In clinic, Doppler ultrasound
imaging has been used as a standard procedure to detect the flow in tendon. Clinicians
conventionally scan the Achilles tendon of the patients in two ways—scanning along
the tendon, and across the tendon to find the hyperemia in the tendon area using
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Doppler ultrasound, and PAI can do the same with much higher resolution. In the
same way, we could identify the hyperemia in the joint as well as the enthesitis in
the tendon area with PAI. Enthesitis is an inflammation in the enthesis, which is also
a symptom of psoriatic arthritis.

We have already scanned the tendon area of several psoriatic arthritis patients
and visualized hyperemia in the photoacoustic images, which are also validated
by the Doppler ultrasound in a feasibility study. In the future, we will accumulate
more results from volunteers and patients with two imagingmodalities—theDoppler
ultrasound and PAI, to find the statistical significance between the patient and normal
groups.

5 Conclusion

The imaging results from human subjects have demonstrated that the LED-based
PA imaging can be a potential clinical tool for assessment of a variety of disease
conditions associated with peripheral microvascular function and the diagnosis of
inflammatory arthritis. In a clinical study, the results fromarthritis patients andnormal
volunteers demonstrated that the LED-based PAI can detect the early functional
changes of inflammation in human peripheral joints. In addition to the structural
details and blood flow detected by the pulse-echo and Doppler US, the PAI provides
unique information regarding subtle changes in blood content independent of flow.
The quantitative PA measurements have also demonstrated narrower and sharper
criteria for identifying neovascularity in the synovium.
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Abstract Port-wine stain (PWS) is categorized as a benign capillary vascular mal-
formation, which is difficult to cure. In general, PWS appears on the face, but it can
affect other areas of the body too. The affected skin surface may thicken slightly
and develop an irregular, pebbled surface in adulthood. PWS’s cosmetic appear-
ance causes substantial mental stress for the patients. Currently, characterization and
treatment evaluation of PWS are generally conducted using physical examination
and using imaging tools like digital camera, ultrasound imaging, dermoscopy, and
tristimulus colorimeters. All these commonly used imaging techniques do not offer
enough imaging depth and contrast required for the accurate evaluation of PWS. In
this clinical pilot study, we demonstrated for the first time that LED-based photoa-
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1 Introduction

Skin diseases, such as port-wine stain (PWS) can be diagnosed and treated using
techniques like photoacoustic imaging (PAI) [1–3], photodynamic therapy (PDT)
and acoustic dynamic therapy (ADT) because the lesions are located at the superficial
skin layer.

PWS is a discoloration of human skin caused by a vascular anomaly (i.e., cap-
illary malformation in the skin). In the past years, several techniques have been
developed for characterization and treatment evaluation of PWS. In current derma-
tology clinical practice of China, physicians diagnose and evaluate the status of
PWS dominantly based on subjective observation. The primary assisting tools used
in the evaluation process of PWS include digital camera (DC), high-frequency ultra-
sound, Dermoscopy, and Tristimulus colorimeters (VISIA-CR™ system). Each of
them has some limitations. Optical methods working in the ballistic regime, such as
dermoscopy and VISIA, do not have sufficient penetration to cover the entire scale
of PWS. High-frequency ultrasound, although with better imaging depth, does not
offer sufficient contrast to differentiate PWS and healthy skin tissue.

The emerging photoacoustic (PA) imaging technology is capable of mapping
the optical absorption contrast in deep biological tissue with excellent ultrasonic
resolution. Combining the advantages of US imaging and fluorescence imaging,
PA imaging offers great potential to offer a new way for the evaluation of PWS,
quantitatively.

2 Theory

The human skin is mainly composed of three layers: epidermis, dermis, and hypo-
dermis (Fig. 1). The epidermis is divided into two sub-layers: The stratum corneum
(~10 μm thickness) with high lipids and low water content and living epidermis
(~80 μm thickness) containing melanosomes for light absorption and scattering.
The dermis (~2 mm thickness) has two sub-layers too: The papillary dermis and the
reticular dermis, which contains two vascular plexuses, i.e., upper and deep blood
plexuses in the upper and lower reticular dermis. The thickness of hypodermis is
around 3 mm [4, 5].

The thickness d, light absorption coefficient η, and optical depth (ηd) of each
skin layer at 840 and 532 nm are shown in Table 1 [2, 4, 6]. The optical depth of
the dermis layer is the largest and contributes most to the optical absorption of the
whole skin.

Especially for 840 nm, the light absorption coefficients of upper and deep blood
plexuses are much larger than those of other layers, meaning that the change of the
blood plexuses thickness has more effect on the total optical absorption. While not
only is the epidermis thin, it also absorbs very little light. On the other hand, although
the hypodermis and muscle layers are relatively thick, their absorption is much less
than that of the dermis.
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Fig. 1 Schematic of the multilayered skin

Table 1 Thickness, light absorption coefficients and optical depths of the normal skin [4, 6] and
PWS [2] at 840 and 532 nm

Layers d (mm) λ = 840 nm λ = 532 nm

η

(mm−1)
η · d η

(mm−1)
η · d

Epidermis Stratum
corneum

0.01 0.00091 0.010 4.0 0.36

Living
epidermis

0.08 0.13 4.0

Dermis Papillary
dermis

0.1 0.105 0.23 0.5 2.34

Upper
blood
plexus

0.08 0.15875 2.45

Reticular
dermis

1.50 0.105 0.5

Deep
blood
plexus

0.07 0.4443 18.1

Dermis 0.16 0.105 0.5

Hypodermis 3.0 0.009 0.027 0.4778 1.43

Muscle tissues 3.0 0.029 0.087 0.1366 0.41

PWS (upper blood
plexus)

0.1 ~ 1.5 0.15875 0.016 ~ 0.24 2.5 0.25 ~ 3.75
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Fig. 2 Theoretical model
for photoacoustic detection
of skin tissue

PWS is a benign neoplasia formed by hyperplasia and dilatation of postcapillary
venules throughout the epidermis and dermis of the skin. The thickness of lesion is
usually about 0.1–1.5 mm, and its light absorption coefficient is similar to that of
upper capillary plexuses, which causes the light absorption of skin in visible and
near-infrared bands to increase significantly.

The light penetration depthsμη(1/η̄) of the lesion at 840 and 532 nmare estimated
at around 6.3 mm and 0.41 mm, respectively. Comprehensively considering the
optical attenuation and imaging depth, it is evident that 840 nm is more suitable
for PWS detection than 532 nm.

Therefore, we approximately treated the light absorption layer (lesions) as com-
posed of the epidermis and the dermis. The hypodermis was treated with weak light
absorption and themuscle tissuewere took as the backing tissuewithout light absorp-
tion. Hence, the three layers of transparent liquid (coupling layer)—light absorption
tissue (lesions)—backing tissue formed the physical model for PA signal excitation
and detection (Fig. 2).

2.1 Temperature Field

A pulsed plane-wave laser beam with light intensity I0(t), wavelength λ, and pulse
width τ L is incident perpendicularly on the skin surface after passing through a
transparent coupling layer f (liquid) [7]. Skin tissue is composed of two layers.
The upper layer a is lesion with the thickness l, the density ρa, the specific heat
capacity CTa, the thermal conductivity κTa, the thermal diffusivity αTa = κTa/ρaCTa,
and light absorption coefficient η(λ), which absorbs light energy and form a heat
source distributing along the depth z. The thermal power density of the heat source
is,

g(z, t) = ηI (z, t) = ηI0(t)e
ηz . (−l < z < 0) (1.1)
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The second layer is a semi-infinite transparent medium b, whose density, specific
heat capacity, thermal conductivity, and thermal diffusivity are ρb,CTb, κTb, and αTb.
The heat source in medium a heats the adjacent medium b and liquid layer f through
heat conduction. The PA signal is formed by the thermoelastic signal of medium a,
and the thermal expansion of liquid layer f. This PA signal can be received by the
acoustic probe being placed at a distance ‘Z’ away from the interface of layer a and
f in the liquid layer. When the detector scans along x-axis (or using an ultrasound
array probe), the photoacoustic images of different components or structures in the
tissue can be obtained together with the ultrasound images.

The temperature fieldsTa(z, t),Tb(z, t), andTf (z, t) inmedia a, b and f respectively
satisfy the heat conduction equation:

∂2

∂z2
Ta(z, t) − 1

αTa

∂

∂t
Ta(z, t) = −g(z, t)

kTa
= − η

kTa
I0(t)e

ηz, (0 ≥ z > −l)

(1.2)

∂2

∂z2
Tb(z, t) − 1

αTb

∂

∂t
Tb(z, t) = 0, (−l ≥ z > −∞) (1.3)

∂2

∂z2
T f (z, t) − 1

αT f

∂

∂t
T f (z, t) = 0 (z > 0) (1.4)

Here, αTj = κTj/ρ jCTj and κTj are the thermal diffusivity and conductivity of
medium j (=a, b, f ), respectively. ρ j and CTj are the density, specific heat capacity
accordingly. The Initial conditions at t = 0,

Ta(z, 0) = Tb(z, 0) = T f (z, 0) = T∞ = 0, (1.5a)

∂

∂t
Ta(z, 0) = ∂

∂t
Tb(z, 0) = ∂

∂t
T f (z, 0) = 0, (1.5b)

And the boundary conditions at Z = −l and Z = 0,

Tb(−l, t) = Ta(−l, t), (1.6a)

Ta(0, t) = T f (0, t), (1.6b)

kTb
∂

∂z
Tb(−l, t) = kTa

∂

∂z
Ta(−l, t), (1.6c)

kTa
∂

∂z
Ta(0, t) = kT f

∂

∂z
T f (0, t). (1.6d)

The Laplace transform of heat conduction equations:

∂2

∂z2
Ta(z, s) − σ 2

a Ta(z, s) = − η

kTa
I0(s)e

ηz, (0 ≥ z > −l) (1.7a)
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∂2

∂z2
Tb(z, s) − σ 2

b Tb(z, s) = 0, (−l ≥ z > −∞) (1.7b)

∂2

∂z2
T f (z, s) − σ 2

f T f (z, s) = 0, (z > 0) (1.7c)

Here, σ 2
j = s/αT j , j = a, b, f .

And the Laplace transform of boundary conditions at Z = −l and Z = 0,

Ta(−l, s) = Tb(−l, s), (1.8a)

Ta(0, s) = T f (0, s), (1.8b)

kTa
∂

∂z
Ta(−l, s) = kTb

∂

∂z
Tb(−l, s), (1.8c)

kTa
∂

∂z
Ta(0, s) = kT f

∂

∂z
T f (0, s), (1.8d)

The general solution of Eq. (1.6a) is

T h
a (z, s) = A(s)eσa z + B(s)e−σa z .

Assume the particular solution of Eq. (1.6a) is

T ∗
a (z, s) = −M(s)I0(s)e

ηz,

and substitute it to Eq. (1.6a) to obtain

−M(s)I0(s)e
ηz
(
η2 − σ 2

a

) = − η

kTa
I0(s)e

ηz .

Then we can solve the particular solution coefficient

M(s) = η

kTa
(
η2 − σ 2

a

) , (1.9)

So, the Laplace transform solution of temperature field in medium a is

Ta(z, s) = A(s)eσa z + B(s)e−σa z − M(s)I0(s)e
ηz . (0 ≥ z > −l) (1.10a)

And the Laplace transform solutions of temperature field in medium b and f are

Tb(z, s) = D(s)eσb(z+l), (−l ≥ z > −∞) (1.10b)
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T f (z, s) = F(s)e−σ f z, (z > 0) (1.10c)

Substitute Eq. (1.10a)–(1.10c) into Eq. (1.8a)–(1.8d), the simultaneous equations
of coefficients A(s), B(s), C(s) and D(s) can be obtained as follows,

A(s) + B(s) − F(s) = M(s)I0(s),

A(s) − B(s) + ξF(s) = γ M(s)I0(s),

A(s)e−σal + B(s)eσal − D(s) = M(s)I0(s)e
−ηl ,

A(s)e−σal − B(s)eσal − χD(s) = γ M(s)I0(s)e
−ηl . (1.11)

Here,

ξ = kT f σ f

kTaσa
, χ = kTbσb

kTaσa
, γ = η

σa
. (1.11a)

From the coefficient determinant,

 =

∣∣∣∣∣
∣∣∣

1 1
1 −1

0 −1
0 ξ

e−σal eσal

e−σal −eσal
−1 0
−χ 0

∣∣∣∣∣
∣∣∣

= e−σal(1 − χ)(1 − ξ) − eσal(1 + χ)(1 + ξ),

A = M(s)I0(s)

∣∣∣∣∣∣
∣∣

1 1
r −1

0 −1
0 ξ

e−ηl eσal

γ e−ηl −eσal
−1 0
−χ 0

∣∣∣∣∣∣
∣∣

,

B = M(s)I0(s)

∣∣∣∣∣∣
∣∣

1 1
1 γ

0 −1
0 ξ

e−σal e−ηl

e−σal γ e−ηl
−1 0
−χ 0

∣∣∣∣∣∣
∣∣

,

D = M(s)I0(s)

∣∣∣∣∣∣
∣∣

1 1
1 −1

1 −1
γ ξ

e−σal eσal

e−σal −eσal
e−ηl 0
γ e−ηl 0

∣∣∣∣∣∣
∣∣

,

F = M(s)I0(s)

∣∣∣∣∣∣
∣∣

1 1
1 −1

0 1
0 γ

e−σal eσal

e−σal −eσal
−1 e−ηl

−χ γ e−ηl

∣∣∣∣∣∣
∣∣

,

A = M(s)I0(s)
[
(1 − ξ)(γ − χ)e−ηl − (γ + ξ)(1 + χ)eσal

]
,

B = M(s)I0(s)
[
(1 + ξ)(γ − χ)e−ηl − (γ + ξ)(1 − χ)e−σal

]
,

D = M(s)I0(s)
{[

(1 + γ )(1 + ξ)eσal − (1 − γ )(1 − ξ)e−σal
]
e−ηl − 2(γ + ξ)

}
,
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F = M(s)I0(s)
[
(1 + χ)(1 − γ )eσal − (1 + γ )(1 − χ)e−σal + 2(γ − χ)e−ηl

]
.

We get the solution of each coefficient,

A(s) = A


=
[
(1 − ξ)(γ − χ)e−ηl − (γ + ξ)(1 + χ)eσal

]

(1 − ξ)(1 − χ)e−σal − (1 + ξ)(1 + χ)eσal
M(s)I0(s), (1.12a)

B(s) = B


=
[
(1 + ξ)(γ − χ)e−ηl − (γ + ξ)(1 − χ)e−σal

]

(1 − ξ)(1 − χ)e−σal − (1 + ξ)(1 + χ)eσal
M(s)I0(s), (1.12b)

D(s) = D


=
{[

(1 + γ )(1 + ξ)eσal − (1 − γ )(1 − ξ)e−σal
]
e−ηl − 2(γ + ξ)

}

(1 − ξ)(1 − χ)e−σal − (1 + ξ)(1 + χ)eσal
M(s)I0(s), (1.12c)

F(s) = F


=
[
(1 − γ )(1 + χ)eσal − (1 + γ )(1 − χ)e−σal + 2(γ − χ)e−ηl

]

(1 − ξ)(1 − χ)e−σal − (1 + ξ)(1 + χ)eσal
M(s)I0(s). (1.12d)

Equations (1.10) and (1.12) show that the temperature field in each layer is related
to the incident laser pulse power, the absorbed light energy by medium a, and the
thermophysical properties of each layer of the medium. By using the Laplace trans-
form solution of the temperature field, the displacement field and stress field in the
media a, b and f can be solved by the thermoelastic equations of the solid and liquid
media, then the PA signal at position Z can be deduced.

2.2 Displacement Field in Media and Photoacoustic Signal
in Liquid

One-dimensional thermoelastic equation and constitutive equation along the z
direction in isotropic biological tissue a (Fig. 2) are:

(λa + 2μa)
∂2ua
∂z2

− (3λa + 2μa)βTa
∂Ta
∂z

= ρa
∂2ua
∂t2

,

τzza = (λa + 2μa)
∂ua
∂z

− (3λa + 2μa)βTaTa,

from which it can be derived that:

∂2ua
∂z2

− 1

c2a

∂2ua
∂t2

= Ga
∂Ta
∂z

, (2.1a)

τzza = ρac
2
a

[
∂ua
∂z

− GaTa

]
, (2.1b)

c2a = λa + 2μa

ρa
, Ga = βTa

(3λa + 2μa)

(λa + 2μa)
. (2.1c)
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Similarly, one-dimensional thermoelastic equation and constitutive equation of
biological tissue b (Fig. 2) are as follows:

∂2ub
∂z2

− 1

c2b

∂2ub
∂t2

= Gb
∂Tb
∂z

, (2.2a)

τzzb = ρbc
2
b

[
∂ub
∂z

− GbTb

]
, (2.2b)

c2b = λb + 2μb

ρb
, Gb = βTb

(3λb + 2μb)

(λb + 2μb)
. (2.2c)

Here, cj is speed of longitudinal wave of medium j,Gj is thermoelastic coefficient
of medium j, βT j is coefficient of linear expansion of medium j, λ j and μ j are Lamé
elastic constants of medium j (j = a, b).

Acoustic wave equation in liquid f,

ρ f
∂2u f

∂t2
= − ∂

∂z
p(z, t). (2.3)

One-dimensional state equation of liquid,

−p(z, t) = B f
∂u f (z, t)

∂z
− B f βT f (z, t) (2.3a)

From the derivative of Eq. (2.3a) with respect to z and substitute into Eq. (2.3),
the thermoelastic equation describing liquid particle displacement can be obtained,

ρ f
∂2u f

∂t2
= B f

∂2u f (z, t)

∂z2
− B f β

∂

∂z
T f (z, t),

Or

∂2u f (z, t)

∂z2
− 1

c2f

∂2u f (z, t)

∂t2
= β

∂

∂z
T f (z, t), (2.4)

Here, β is the volume thermal expansion coefficient of liquid, ρ f is the density of
liquid, Bf is the volume elasticity coefficient of liquid, and cf is the speed of sound
of liquid,

c2f = B f

ρ f
. (2.4a)

The initial conditions for particles motion in the three-layer media:

ua(z, 0) = ub(z, 0) = u f (z, 0) = 0, (2.5a)
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∂ua(z, 0)

∂t
= ∂ub(z, 0)

∂t
= ∂u f (z, 0)

∂t
= 0, (2.5b)

The boundary condition are continuous displacement and continuous normal
stress at the boundary z = 0 and z = −l,

ua(0, t) = u f (0, t), τzza(0, t) = −p(0, t), (2.6a)

ua(−l, t) = ub(−l, t), τzza(−l, t) = τzzb(−l, t). (2.6b)

The Laplace transform of thermoelastic displacement Eqs. (2.1), (2.2), (2.4) and
constitutive Eqs. (2.1a), (2.2a), (2.3a),

∂2ua(s, z)

∂z2
− s2

c2a
ua(s, z) = Ga

∂Ta(s, z)

∂z
, (−l < z < 0) (2.7a)

∂2ub(s, z)

∂z2
− s2

c2b
ub(s, z) = Gb

∂Tb(s, z)

∂z
, (z < −l) (2.7b)

∂2u f (s, z)

∂z2
− s2

c2f
u f (s, z) = β

∂T f (s, z)

∂z
, (z > 0) (2.7c)

τzza(s, z) = ρac
2
a

[
∂ua(s, z)

∂z
− GaTa(s, z)

]
, (2.8a)

τzzb(s, z) = ρbc
2
b

[
∂ub(s, z)

∂z
− GbTb(s, z)

]
, (2.8b)

p(s, z) = −ρ f c
2
f

[
∂u f (s, z)

∂z
− βT f (s, z)

]
. (2.8c)

Substitute Laplace transform solution (1.10) of temperature field into Eq. (2.7),
and get:

∂2ua(s, z)

∂z2
− s2

c2a
ua(s, z) = Ga

[
A(s)σae

σa z − B(s)σae
−σa z − M(s)I0(s)ηe

ηz
]
,

(2.9a)

∂2ub(s, z)

∂z2
− s2

c2b
ub(s, z) = GbD(s)σbe

σb(z+l), (2.9b)

∂2u f (s, z)

∂z2
− s2

c2f

∂2u f (s, z)

∂t2
= −σ f βF(s)e−σ f z . (2.9c)

To solve the displacement field Eq. (2.9) in the three-layer media, the particular
solutions of Eq. (2.9) can be set as:
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u∗
a(s, z) = Ga

[
a(s)σae

σa z − b(s)σae
−σa z − m(s)I0(s)ηe

ηz
]
,

u∗
b(s, z) = Gbd(s)σbe

σb(z+l),

u∗
f (s, z) = −σ f β f (s)e−σ f z . (2.10)

Substitute Eq. (2.10) to Eq. (2.9) and determine coefficients a(s), b(s),m(s), d(s),
and f (s) as

a(s)σae
σa z(σ 2

a − s2

c2a
) = A(s)σae

σa z, a(s) = A(s)
(
σ 2
a − s2

c2a

) ,

b(s)σae
−σa z

(
σ 2
a − s2

c2a

)
= B(s)σae

−σa z, b(s) = B(s)
(
σ 2
a − s2

c2a

) ,

m(s)I0(s)ηe
ηz

(
η2 − s2

c2a

)
= M(s)I0(s)ηe

ηz, m(s) = M(s)
(
η2 − s2

c2a

) ,

(
σ 2
b − s2

c2b

)
Gbd(s)σbe

σb(z+l) = GbD(s)σbe
σb(z+l), d(s) = D(s)

(
σ 2
b − s2

c2b

) ,

− σ f β f (s)e−σ f z

(

σ 2
f − s2

c2f

)

= −σ f βF(s)e−σ f z, f (s) = F(s)
(
σ 2
f − s2

c2f

) .

(2.11)

Suppose the homogeneous general solution of Eq. (2.9) as

uha(s, z) = ah(s)e(s/ca)z + bh(s)e−(s/ca)z,

uhb(s, z) = dh(s)e(s/cb)(z+l),

ph(s, z) = f h(s)e−(s/c f )z . (2.12)

Therefore, the displacement transformation solutions in media a and b and the
sound pressure transformation solution in the liquid are:

ua(s, z) = ah(s)e
(

s
ca

)
z + bh(s)e

−
(

s
ca

)
z

+ Ga

⎡

⎣ A(s)σa(
σ 2
a − s2

c2a

)eσa z − B(s)σa(
σ 2
a − s2

c2a

)e−σa z − ηI0(s)M(s)
(
η2 − s2

c2a

) eηz

⎤

⎦, (2.13a)

ub(s, z) = dh(s)e
(

s
cb

)
(z+l) + Gb

D(s)σb(
σ 2
b − s2

c2b

)eσb(z+l), (2.13b)
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u f (s, z) = f h(s)e−(s/c f )z − β
F(s)σ f(
σ 2
f − s2

c2f

)e−σ f z . (2.13c)

Substitute the displacement solution (2.13) into the Laplace transform of the
boundary condition:

ua(0, s) = u f (0, s), τzza(0, s) = −p(0, s),

ua(−l, s) = ub(−l, s), τzza(−l, s) = τzzb(−l, s),

and get the coefficients ah(s), bh(s), dh(s) and f h(s). Normal stress in biological
tissue is:

τzz j (s, z) = ρ j c
2
j

[
∂u j (s, z)

∂z
− G jTj (s, z)

]
, j = a, b, (2.13d)

And acoustic pressure in liquid is

p(s, z) = −ρ f c
2
f

[
∂u f (s, z)

∂z
− βT f (s, z)

]
,

p(s, z) =
⎡

⎢
⎣sz f f

h(s)e−(s/c f )z − ρ f s
2 βF(s)
(
σ 2
f − s2

c2f

)e−σ f z

⎤

⎥
⎦, (2.13e)

Here, z f = ρ f c f is acoustic impedance of the liquid.
From the boundary conditions, the linear equations of the unknown coefficients

are

ah (s) + bh (s) − f h (s) = −Ga

⎡

⎢
⎢
⎣

A(s)σa(
σ2
a − s2

c2a

) − B(s)σa(
σ2
a − s2

c2a

) − ηI0(s)M(s)
(

η2 − s2

c2a

)

⎤

⎥
⎥
⎦− β

F(s)σ f(

σ2
f − s2

c2f

) , (2.14a)

ah (s) − bh (s) + Za f f
h (s) = Za f

(
s

c f

)
βF(s)

(

σ2
f − s2

c2f

) −
(

s

ca

)
Ga

⎡

⎢⎢
⎣

A(s) + B(s)
(

σ2
a − s2

c2a

) − I0(s)M(s)
(

η2 − s2

c2a

)

⎤

⎥⎥
⎦. (2.14b)

ah(s)e
−
(

s
ca

)
l − bh(s)e

(
s
ca

)
l − Zabd

h(s) = GbZab

(
s

cb

)
D(s)

(
σ 2
b − s2

c2b

)

− Ga

(
s

ca

)⎡

⎣ A(s)

(σ 2
a − s2

c2a
)
e−σal + B(s)

(σ 2
a − s2

c2a
)
eσal − I0(s)M(s)

(
η2 − s2

c2a

) e−ηl

⎤

⎦, (2.14c)

ah(s)e
−
(

s
ca

)
l + bh(s)e

(
s
ca

)
l − dh(s) = Gb

⎡

⎣ D(s)σb(
σ 2
b − s2

c2b

)

⎤

⎦
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− Ga

⎡

⎣ A(s)σa(
σ 2
a − s2

c2a

)e−σal − B(s)σa(
σ 2
a − s2

c2a

)eσal − ηI0(s)M(s)
(
η2 − s2

c2a

) e−ηl

⎤

⎦, (2.14d)

or

ah(s) + bh(s) − f h(s) = N1(s), (2.14a)

ah(s) − bh(s) + Za f f
h(s) = N2(s), (2.12b)

ah(s)e
−
(

s
ca

)
l − bh(s)e

(
s
ca

)
l − Zabd

h(s) = N3(s), (2.14c)

ah(s)e
−
(

s
ca

)
l + bh(s)e

(
s
ca

)
l − dh(s) = N4(s), (2.14d)

Here,

Za f = z f

za
=
(

ρ f c f

ρaca

)
, Zab =

(
ρbcb
ρaca

)
, (2.14e)

where, z j = ρ j c j is the acoustic impedance of medium j (j = a, b and f ). And

N1(s) = −Ga

⎡

⎣ A(s)σa

(σ 2
a − s2

c2a
)

− B(s)σa

(σ 2
a − s2

c2a
)

− ηI0(s)M(s)
(
η2 − s2

c2a

)

⎤

⎦− β
F(s)σ f(
σ 2
f − s2

c2f

) ,

(2.15a)

N2(s) = Za f

(
s

c f

)
βF(s)

(
σ 2
f − s2

c2f

) −
(

s

ca

)
Ga

⎡

⎣ A(s) + B(s)

(σ 2
a − s2

c2a
)

− I0(s)M(s)
(
η2 − s2

c2a

)

⎤

⎦,

(2.15b)

N3(s) = Zab

(
s

cb

)
Gb

D(s)

(σ 2
b − s2

c2b
)

−
(

s

ca

)
Ga

⎡

⎣ A(s)

(σ 2
a − s2

c2a
)
e−σal + B(s)

(σ 2
a − s2

c2a
)
eσal − I0(s)M(s)

(
η2 − s2

c2a

) e−ηl

⎤

⎦,

(2.15c)

N4(s) = Gb

⎡

⎣ D(s)σb

(σ 2
b − s2

c2b
)

⎤

⎦
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− Ga

⎡

⎣ A(s)σa

(σ 2
a − s2

c2a
)
e−σal − B(s)σa

(σ 2
a − s2

c2a
)
eσal − ηI0(s)M(s)

(
η2 − s2

c2a

) e−ηl

⎤

⎦. (2.15d)

The coefficient determinant  and  f of Eqs. (2.14a–2.14d)

 =

∣∣∣∣∣
∣∣∣∣∣

1 1
1 −1

0 −1
0 Za f

e
−
(

s
ca

)
l −e

(
s
ca

)
l

e
−
(

s
ca

)
l
e
(

s
ca

)
l

−Zab 0
−1 0

∣∣∣∣∣
∣∣∣∣∣

,  f =

∣∣∣∣∣
∣∣∣∣∣

1 1
1 −1

0 N1(s)
0 N2(s)

e
−
(

s
ca

)
l −e

(
s
ca

)
l

e
−
(

s
ca

)
l
e
(

s
ca

)
l

−Zab N3(s)
−1 N4(s)

∣∣∣∣∣
∣∣∣∣∣

,

So,

 =
[(
1 + Za f

)
(1 + Zab)e

(
s
ca

)
l − (

1 − Za f
)
(1 − Zab)e

−
(

s
ca

)
l
]
, (2.16a)

 f = [N2(s) − N1(s)](1 + Zab)e
(

s
ca

)
l

+ [N2(s) + N1(s)](1 − Zab)e
−
(

s
ca

)
l − 2N3(s) + 2ZabN4(s). (2.16b)

The coefficient of the general solution of displacement field in liquid is

f h (s) =  f


=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
N2(s) − N1(s)

](
1 + Zab

)
e

(
s
ca

)
l + [

N2(s) + N1(s)
](
1 − Zab

)
e
−
(

s
ca

)
l − 2N3(s) + 2ZabN4(s)[

(
1 + Za f

)(
1 + Zab

)
e

(
s
ca

)
l − (

1 − Za f
)(
1 − Zab

)
e
−
(

s
ca

)
l
]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(2.17a)

Thus, the Laplace transform solution of the photoacoustic signal in the liquid can
be obtained from Eq. (2.13e):

p(s, z) =
⎡

⎢
⎣sz f f

h(s)e−(s/c f )z − s2
ρ f βF(s)
(
σ 2
f − s2

c2f

)e−σ f z

⎤

⎥
⎦. (2.17b)

Let s = iω in the above equation, photoacoustic signal spectrum can be expressed
as,

p(ω, z) = i z f ω f h(ω)e−ik f z + ρ f ω
2 β
(
σ 2
f + k2f

) F(ω)e−σ f (ω)z], k2f = ω2

c2f
.

(2.18a)

where, the acoustic displacement amplitude of liquid particle is:
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f h (ω) =
{ [

N2(ω) − N1(ω)
](
1 + Zab

)
eikal + [

N2(ω) + N1(ω)
](
1 − Zab

)
e−ika l − 2N3(ω) + 2ZabN4(ω)

(
1 + Za f

)(
1 + Zab

)
eikal − (

1 − Za f
)(
1 − Zab

)
e−ika l

}

.

(2.18b)

While

F(ω) =
[
(1 − γ )(1 + χ)eσal − (1 + γ )(1 − χ)e−σal + 2(γ − χ)e−ηl

]

(1 − ξ)(1 − χ)e−σal − (1 + ξ)(1 + χ)eσal
M(ω)I0(ω).

(2.18c)

Here,

M(ω) = η

kTa
(
η2 − σ 2

a

) , σ j (ω) = (1 + i)
√

ω

2α j
= (1 + i)

μ j (ω)
, ( j = a, b, f )

Here, σ j (ω) is he heat wave vector in medium j, and μ j (ω) is its heat diffusion
length. And

N1(ω) = −β
F(ω)σ f(
σ 2
f + k2f

) − Ga

[
A(ω)σa

(σ 2
a + k2a)

− B(ω)σa

(σ 2
a + k2a)

− ηI0(ω)M(ω)
(
η2 + k2a

)

]

,

(2.19a)

N2(ω) = i Za f
k f βF(ω)
(
σ 2
f + k2f

) − ikaGa

[
A(ω)

(σ 2
a + k2a)

+ B(ω)

(σ 2
a + k2a)

− I0(ω)M(ω)
(
η2 + k2a

)

]

,

(2.19b)

N3(ω) = iGbZab
kbD(ω)

(σ 2
b + k2b)

− ikaGa

[
A(ω)

(σ 2
a + k2a)

e−σal + B(ω)

(σ 2
a + k2a)

eσal − I0(ω)M(ω)
(
η2 + k2a

) e−ηl

]

,

(2.19c)

N4(ω) = Gb

[
D(ω)σb

(σ2
b + k2b )

]

− Ga

⎡

⎣ A(ω)σa

(σ2
a + k2a )

e−σal − B(ω)σa

(σ2
a + k2a )

eσal − ηI0(ω)M(ω)
(
η2 + k2a

) e−ηl

⎤

⎦, (2.19d)

A(ω) =
[
(1 − ξ)(γ − χ)e−ηl − (γ + ξ)(1 + χ)eσal

]

(1 − ξ)(1 − χ)e−σal − (1 + ξ)(1 + χ)eσal
M(ω)I0(ω), (2.20a)

B(ω) =
[
(1 + ξ)(γ − χ)e−ηl − (γ + ξ)(1 − χ)e−σal

]

(1 − ξ)(1 − χ)e−σal − (1 + ξ)(1 + χ)eσal
M(ω)I0(ω), (2.20b)

D(ω) =
{[

(1 + γ )(1 + f )eσal − (1 − γ )(1 − ξ)e−σal
]
e−ηl − 2(γ + ξ)

}

(1 − ξ)(1 − χ)e−σal − (1 + ξ)(1 + χ)eσal
M(ω)I0(ω), (2.20c)
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Equation (2.18) is the theoretical solution of PA signal generated by a two-layer
medium (light absorbing medium/semi-infinite non-absorbing substrate) in a semi-
infinite fluid. Equations (2.18)–(2.20) show that the light energy absorbed by the
medium can produce a PA signal consisting of two parts, i.e. acoustic and thermal
wave. It is relevant to the incident light intensity, light absorption coefficient, the
thickness of medium a, thermal diffusion lengths, acoustic impedance of three kinds
of medium, acoustic frequency etc. Through the measurement of PA spectrum, the
mechanical and thermal properties of medium can be nondestructively tested and
evaluated.

2.3 Photoacoustic Signal of PWS

PWS is a congenital abnormal proliferation of capillaries that does not resolve on
its own. The lesion thickens and darkens with age. Clinically, the lesion thickness
(l) will be around 0.1–3 mm. Under 840 nm wavelength, due to the difference of
the capillary network density, the average light absorption coefficients of isolated
lesions are different. The light penetration depth μη at 840 nm of capillaries is about
5–10 mm, according to the data from Table 1

(
μη = 1/η̄

)
.

In the range of frequency from 1 to 10 MHz, the wavelength of sound wave in
water is 1.5–0.15 mm, and the thermal diffusion length μa of skin and vasculature
are around 1.04–0.33 μm and 0.286–0.090 μm when their thermal diffusivity αTa

are about 6.75mm2 s−1 and 0.513mm2 s−1, respectively.
Therefore, for PWS, the light penetration depthμη ismuchhigher than the acoustic

wavelength λac and lesions thickness l, which are higher than the thermal diffusion
length μa . So PWS is a kind of weak light absorption and thermally “thick” sample
for the wavelength 840 nm. That is:

μη � (λac, l) � (
μa, μ f

)
, i.e.η � (

ka, k f
) � (

σa, σ f.
)
. (3.1)

But the low-frequency approximation of kal � 1 is not satisfied. So, using the
formula

e±ikal = cos(kal) ± isin(kal),

Equation (2.18b) can be rewritten as

f h (ω) =  f


=
[
N2(ω) − ZabN1(ω)

]
cos(kal) − i

[
N1(ω) − ZabN2(ω)

]
sin(kal) − N3(ω) + ZabN4(ω)

(
Za f + Zab

)
cos(kal) + i

(
1 + ZabZa f

)
sin(kal)

. (3.2)

Here,

 f = [
N2(ω) − ZabN1(ω)

]
cos(kal) − i

[
N1(ω) − ZabN2(ω)

]
sin(kal) − N3(ω) + ZabN4(ω) (3.2a)
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 = (
Za f + Zab

)
cos(kal) + i

(
1 + ZabZa f

)
sin(kal). (3.2b)

Photoacoustic spectrum generated by light absorption of PWS in the fluid can be
written as

p(ω, z) ≈ iz f ω f h(ω)e−ik f z, k2f = ω2

c2f
. (3.3)

Using Eq. (3.1) and

e−ηl ≈ (1 − ηl), e−σal ≈ 0,

Equations (2.18)–(2.20) can be written as

f = kT f σ f

kTaσa
, b = kTbσb

kTaσa
, σ j (ω) = (1 + i)

√
ω

2α j
= (1 − i)

μ j
, ( j = a, b, f )

Za f = ρ f c f

ρaca
, Zab = ρbcb

ρaca
, Ga = βTa

(3λa + 2μa)

(λa + 2μa)
, Gb = βTb

(3λb + 2μb)

(λb + 2μb)
,

r = η

σa
� 1, M(ω) ≈ − η

kTaσ 2
a

, (3.4a)

A(ω) ≈ (r + f )

(1 + f )
M(ω)I0(ω) ≈ f

(1 + f )
M(ω)I0(ω), (3.4b)

B(ω) ≈ − (r − b)(1 − ηl)

(1 + b)eσal
M(ω)I0(ω) ≈ b(1 − ηl)

(1 + b)eσal
M(ω)I0(ω), (3.4c)

D(ω) ≈ − (1 + r)(1 − ηl)

(1 + b)
M(ω)I0(ω) ≈ − (1 − ηl)

(1 + b)
M(ω)I0(ω), (3.4d)

F(ω) ≈ − (1 − r)

(1 + f )
M(ω)I0(ω) ≈ − 1

(1 + f )
M(ω)I0(ω), (3.4e)

and

N1(ω) ≈ −β
F(ω)

σ f
− Ga

[
A(ω)

σa
− B(ω)

σa
− ηI0(ω)M(ω)

k2a

]

≈ −β
F(ω)

σ f
− Ga

[
A(ω)

σa
− ηI0(ω)M(ω)

k2a

]

≈
[

β

σ f (1 + f )
+ ηGa

k2a

]
I0(ω)M(ω) ≈ ηGa

k2a
I0(ω)M(ω), (3.5a)

N2(ω) ≈ i Za f
k f βF(ω)

σ 2
f

− ikaGa

[
A(ω)

σ 2
a

+ B(ω)

σ 2
a

− I0(ω)M(ω)

k2a

]
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≈ i Za f
k f βF(ω)

σ 2
f

− ikaGa

[
A(ω)
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So,

 f ≈ [N2(ω) − ZabN1(ω)] cos(kal)

− i[N1(ω) − ZabN2(ω)] sin(kal) − N3(ω) + ZabN4(ω)

≈ −[Zab cos(kal) + i sin(kal)]N1(ω) + ZabN4(ω)

≈ {Zab[1 − ηl − cos(kal)] − i sin(kal)}ηGa

k2a
I0(ω)M(ω)

Using
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kTaσ 2
a

, σ 2
a (ω) = − iω

αTa
, αTa = kTa

ρaCTa
,

to substitute into the above equation and get:

 f ≈ η2Ga

iωk2a

1

ρaCTa
{Zab[1 − ηl − cos(kal)] − i sin(kal)}I0(ω). (3.6)

Therefore, the displacement amplitude of the fluid particle is:

f h (ω) =  f
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}
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The corresponding normalized PA signal spectrum is:
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)
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}

e
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. (3.8)
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The results show that the PA signal of PWS is proportional to the light absorption
coefficientη2 and inversely proportional to the frequencyω2, which is associatedwith
the mechanical and thermal properties of lesions. Therefore, PWS can be diagnosed
quantitatively with PA imaging technique.

For most patients with mild lesions, whose thickness satisfies (kal) � 1, so

cos(kal) ≈ 1, sin(kal) ≈ kal � 1, ηl � 1.

Equation (3.7) can be further simplified to:

p̄(ω, z) ≈ −Ga
η2z f

k2a

1

ρaCTa

{
ηlZab + i(kal)(

Za f + Zab
)+ i

(
1 + ZabZa f

)
(kal)

}

e−ik f z,

or

p̄(ω, z) ≈ −Ga
z f za(

z f + zb
)

η2l

ρaCTa

(
η
zb
za

c2a
ω2

+ i
ca
ω

)
e−ik f z . (3.9)

This suggests that the PA signal amplitude is proportional to the lesion thickness
l, increases rapidly with the increase of light absorption coefficient η and reduces
rapidly with the increase of frequency ω. So, it’s very sensitive to the changes of
capillary density in the lesion. Therefore, PA diagnosis technique is a highly sensitive
detection method for PWS.

3 Clinical Pilot Study

3.1 Material & Methods

The US and PA images were acquired by an LED-based PA and US imaging system
(AcousticX, CYBERDYNE, INC., Tsukuba, Japan), which has been introduced in
a previous publication [8]. The LED array has 144 elements, each with a size of
1 mm × 1 mm. The four lines of 36 elements distribute on an area of 6.88 mm
× 50.4 mm, providing 200 μJ pulse energy at 850-nm wavelength. Working with a
pulse repetition rate of 4 kHz, extensive signal averaging can be conducted to enhance
the signal-to-noise ratio (SNR). The LED-produced PA image and US image from a
sample can be acquired simultaneously by this dual-modality system. A 128-element
linear probe working at 9 MHz central frequency was used to acquire the PA and
US images. The light from the LED array illuminated the skin with a power density
of 2.6 kW/m2, which is below the safety limit of 5.98 kW/m2, according to the
international electrotechnical commission (IEC) 6247117 [9].

A coupling water bag (Fig. 3a) is sterilized by alcohol before each imaging pro-
cedure. Figure 3b shows a typical data acquisition scene with a performer (left) and
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Fig. 3 a Photograph of coupling water bag and imaging probe, b clinical imaging scene, and
c patient positioning

a patient (right). During the imaging period, the patient is required to lie flatly on a
testing bed to fully expose the PWS region of interest (ROI), as is shown in Fig. 3c.
For each ROI, we choose one healthy region (HR) with the most similar anatomical
condition to it (we pick the symmetric position of ROI if available) as well for one
additional imaging process to perform offline data processing. Before each imaging
procedure, the performer will mark the ROI, as shown in Fig. 4, with the red arrow,
and the corresponding HR, as indicated by the blue arrow. The arrows’ orientations
indicate the right side of resulting images.

During the imaging process, the performer scans the ROI with the imaging probe,
and then record all the images involved. The result with the most appropriate contrast
will then be picked for data processing. The same procedure is performed for each
matched HR of every ROI.

In every selected image, firstly, an empty area away fromROI is circled out for the
measurement of averaged PA signal amplitude (Epa), which indicates the noise level
of present image that is required for signal calibration. Afterwards, the performer
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Fig. 4 Photograph of a PWS
patient with imaging
assisting marks

observes the results of ROI and matched HR to circle out areas suspended for the
incidence of PWS in the ROI and the symmetric healthy region in matched HR. The
Epa values of ROI and HR are then divided by the noise level, yielding to Vtar and
Vnor. We define a parameter—PWS level by Vtar/Vnor, to quantitatively describe the
status of each ROI. Figure 5 gives the typical comparison of ROI and HR in an adult
patient.

Fig. 5 Typical photoacoustic/ultrasound overlay image of a PWS region (ROI) and b control region
(HR)
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3.2 Results and Discussion

3.2.1 PA Evaluation for Various Age Groups

As a typical capillary disorder, continuous development with age is an important
feature of PWS. Figure 6 shows the photograph of 3 patients, age of 4, 13 and
33 years, respectively. It is clear that the darkness and the diseased skin thickness
both grow with the age of patients.

In this study, a total of 22 patients were included. The clinical evaluation for each
patient given by DC, dermoscopy, and VISIA were collected, as well as the newly
developed PWS level parameter acquired by the PAI system. The typical data set for
one patient is shown in Fig. 7.

Fig. 6 Photograph of patients with various ages

Fig. 7 Typical data set from a patient
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Fig. 8 PWS level
comparison of the 2 groups
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The enrolled 22 patients were divided into two groups, according to their ages, as

3–6 years old and above 6 years old. The PWS level comparison of the two groups
is shown in Fig. 8. The mean PWS levels of 3–6 years group and >6 years group are
1.77 ± 0.63 and 2.73 ± 0.75, respectively.

The significant difference of the two different age groups correspond well with
the given knowledge of PWS disease. Based on this result, the new parameter PWS
level holds good potential in evaluation of PWS. To further demonstrate this point,
study of dynamicmonitoring of PWS before and after PDT treatment was conducted,
which is detailed in next section.

3.2.2 PA Evaluation for PDT Treatment Efficacy

In current clinical practices in China, hematoporphyrin monomethyl ether photody-
namic therapy (HMME-PDT) is proved to be an effective method for treating PWS
[10, 11].

Two out of the 22 patients volunteered this study for dynamic PWS level monitor-
ing, as shown in Figs. 9 and 10. The immediate reduction of PWS level corresponds
to the edema instantly after the PDT treatment. At 3-day point, the PWS level of each
patient shows a recovering status, or even getting worse (Fig. 9), which corresponds
to the damage-repairing period that starts at that time point. The repairing period
often comes with a hyperemia status, which is the reason why the PWS level gets
back here. Nonetheless, after that period, the PWS level goes down steadily, and
eventually gets to the 2-month endpoint.

Five out of the 22 patients volunteered for PWS level monitoring before and 2-
month after PDT treatment, the result ofwhich is shown in Fig. 11.Amean PWS level
reduction of 41.08% ± 11.30% was observed after one PDT treatment. From our
results, it is clear that approximately 3–4 PDT treatments are required to completely
cure the patient.

The dynamic monitoring results show the good correspondence of PWS level to
the actual patient’s status, and the 2-month PWS level monitor shows the efficacy
of PDT treatment. Based on these results, it is clear that the PWS level parameter
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Fig. 9 Dynamic PWS level monitoring #Patient 1

Fig. 10 Dynamic PWS level monitoring #Patient 2
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Fig. 11 2-months PWS
level monitor
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holds good potential to be used as a guiding tool for dose control in the treatment
process of PDT. Additionally, as a quantitative tool, the PWS level of patients can
be collected to serve as the source for big-data analysis as well, which will lead to a
better understanding of this disease, or even other capillary disorders.

Other than mapping the hemoglobin, by combing different wavelengths that have
optical absorption contrast on oxyhemoglobin anddeoxyhemoglobin, thePA imaging
is also capable of mapping the oxygen saturation [12, 13]. By scanning the imaging
probe, it is technically feasible to perform volumetric imaging as well. In addition,
for the practice of dermatology, the proposed protocol, which is already in a clinical-
procedure-equivalent manner, is easily translatable to clinics.

4 Summary and Outlook

PAI has inherent advantages for vascular recognition. Firstly, compared with other
biological macromolecules, hemoglobin has a very high absorption for the near-
infrared light which leads to the high specificity for hemoglobin with PAI using these
wavelengths. Secondly, due to the process of light-in and sound-out, the sensitivity
and resolution of PAI is much higher than that of ultrasonic imaging, which makes it
possible to image capillaries.But, because of the tiny size of the capillaries, traditional
PA theory is no longer applicable for their quantitative diagnosis. Instead, the optical,
thermal, mechanical and acoustic properties of different biological tissues need to
be analyzed in the micro-scale. Meanwhile, the effects of some different parameters,
such as light penetration depth, thermal diffusion length, wavelength of sound wave,
and vascular size, on photoacoustic signals are very important and these are covered
in the theoretical section of this chapter. This theoretical analysis can also be applied
to other similar layered tissue with strong light absorption.

Current clinical results have already demonstrated the safety, functional contrast
and clinic-friendly protocol of this LED-based PAI strategy. This ongoing research
has already shown its great translational potential.Moreover, other than the discussed
application of PWSevaluation, this imaging strategy is also potentially useful to assist
doctors in assessing many other skin diseases, vascular tumor or skin carcinomas
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that come with microvessels malformation or angiotelectasis, like actinic keratosis
(AK), Bowen’s disease (BD), superficial basal cell carcinoma (BCC), squamous
cell carcinoma (SCC) and extramammary Paget’s disease (EMPD). Besides, some
inflammatory skin diseases, like psoriasis, are accompanied with vascular abnormity
as well, which could also be a potential application. Furthermore, the application
could be extended to fundus oculi lesion diagnosis, angiogenesis monitoring, and
so on. We believe that PAI, as an emerging imaging strategy, would promisingly
play a greater role in the early stage evaluation of a lot of diseases located in the
light-accessible depth range.

5 Conclusions

PWS levels acquired using LED-based PAI holds strong potential to be a quantitative
parameter for the evaluation of PWS status. We demonstrated for the first time that
LED-based photoacoustics can be used as a point-of-care tool for clinical evaluation
of PWS disease. Our results also give a direct indication that LED-based PAI is useful
for guiding PDT-treatments.

Acknowledgements Authors gratefully acknowledge the patients who participated in this clinical
study.
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Clinical Translation of Photoacoustic
Imaging—Opportunities and Challenges
from an Industry Perspective

Mithun Kuniyil Ajith Singh, Naoto Sato, Fumiyuki Ichihashi,
and Yoshiyuki Sankai

Abstract Photoacoustic imaging, the fastest growing biomedical imaging modality
of the decade holds strong potential in creating a significant impact in the field of
medicine. This non-invasive technique with optical spectroscopic contrast and ultra-
sonic spatial resolution can be a potential tool for diagnosis and treatment monitoring
of several devastating diseases like cancer. Even though the growth of this imaging
modality in a research setting is exemplary, clinical translation is not happening at
an expected pace. In this chapter, after briefly discussing about the technology and
its market, we will discuss about important components in a photoacoustic imag-
ing system (light source, ultrasound probes, DAQ etc.) and conclude about the key
strategies in this direction and the improvements that may potentially help for fast
clinical translation. In the next part, we elaborate about the major steps in the clinical
translation process—focusing on key opportunities and challenges to be solved.

1 Introduction

Photoacoustic (PA) imaging [1, 2] is increasingly becoming popular and slowly
translating from benchtop to bedside after demonstrating strong potential in clinical
medicine (diagnosis, treatment monitoring, interventional guidance) [3]. However,
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number of companies involved in PA commercialization is less and it is also worth
mentioning that there is no system with an FDA pre-market approval yet. From
these points, it is clear that the translation process is not straightforward and fast. At
this point of time, it is of paramount importance to debate about the challenges and
opportunities in clinical translation of PA imaging and the focus of this chapter is
the same.

Clinical market demand for a high resolution real-time deep-tissue functional
imaging modality is quite high and thus PA imaging is expected to revolutionize the
field of medical diagnostics in coming years. This technique with optical spectro-
scopic contrast and acoustic resolution offers several advantages over other medical
imaging modalities [3]:

Non-invasive and safe: Compared to gold standard modalities like X-ray, PA
imaging can be repeatedly used on tissue, thus suitable for treatment monitoring.
Scalable resolution: Spatial resolution is dependent on the ultrasound detection
and can be scaled for imaging cells to organs.
Endogenous contrast: Optical spectroscopic contrast offered by hemoglobin, fat,
lipid etc. No need of contrast agents for imaging vasculature.
High imaging depth: Attenuation of ultrasound in tissue is orders of magnitude
lower than that of light, thus PA imaging can easily image deep (for example:
whole breast 3D imaging).

In general, there are 4 different implementations (Fig. 1) of PA imaging, each
with different resolution, imaging depth, and field of view. PA microscopy or PAM
is suitable for imaging superficial tissue structures (1–5 mm) with very high resolu-
tion [4]. Two implementations are common in a microscopy set up namely: optical
resolution PAM (OR-PAM) and also acoustic resolution PAM (AR-PAM), with dif-
ferences in scanning and image generation methods [4]. In an endoscopic method,
pulsed light is delivered inside the body through an endoscope and functional PA-
based tissue characterization can be performed. Minimally invasive PA imaging in

Fig. 1 Four different implementations of photoacoustic imaging
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Fig. 2 Different applications of biomedical photoacoustic imaging

which light is delivered through a percutaneous needle for guiding surgical proce-
dures are also common in a research-setting [5, 6]. Because of the synergy with
pulse echo ultrasound imaging, most common implementation is a handheld reflec-
tion mode arrangement in which light delivery is attached to the ultrasound probe,
which is also called photoacoustic tomography (PAT) with imaging depth in cm
scale [7]. When pulsed light is illuminated on the tissue, PA signal generated from
the absorber will propagate in all directions. If there are detectors around the tissue,
it is feasible to generate a full view 3D image. In PA computed tomography, image
slices from all locations are collected and stitched together to generate images. This
is the most popular configuration for breast-imaging, one of the promising appli-
cations of photoacoustics [8]. Figure 2 shows the range of information that can be
obtained from PA images and some of applications associated with it.

2 Commercially Available Photoacoustic Imaging Systems

As discussed before, number of companies involved in commercialization of PA
imaging is not high (less than 20 entities are active or visible). Figure 3 shows a list
of commercially available research-based PA imaging systems and their approximate
list price [9]. Most of these systems are currently used for pre-clinical applications
and clinical pilot studies in a research setting. Vevo LAZR X (Fujifilm Visualsonics,
Canada), MSOT InVision 128 (iThera Medical Gmbh, Germany), and Nexus 128+
(Endra Life Sciences, USA) can provide real-time volumetric vascular/functional
information and are specifically designed for pre-clinical applications.

LOUISA 3D (TomoWave, Inc., USA) is designed for breast cancer imaging
research. All these commercial systems mentioned above use solid-state lasers for
tissue illumination, which may be one of the key factors for high cost [9]. AcousticX
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Fig. 3 Commercially available photoacoustic imaging systems—applications and list price [9]

(Cyberdyne Inc., Japan) utilizes LED arrays for tissue illumination and is portable,
affordable, and potentially eye/skin safe because of this reason [10–13]. However,
this system also is currently used only for pre-clinical applications [10] and clinical
pilot studies [14] in a research setting as it is yet to obtain medical device safety
approvals.

In recent years, leading companies in the field are working hard for translating
PA imaging technology to clinic. Imagio® breast imaging system (Seno Medical
Instruments Inc., USA) has received CEMark (April 2014) and is undergoing a post-
market surveillance and clinical follow-up study in Europe [15]. Figure 4 shows live
use of this system which is also expecting a pre-market approval from US FDA very
soon. Only other system which received European CE marking is MSOT Acuity
(iThera Medical Gmbh, Germany) [16] which has already shown strong potential
in detection of Crohn’s disease, breast cancer, melanoma, scleroderma and vascular
diseases (Fig. 5).

3 Photoacoustic Imaging Technology: Market Trend

In 2016, the total biomedical PA imaging market was worth $35 M, mainly due to
pre-clinical and analytical imaging segments (Photoacoustic Imaging: Technology,
Market and Trends, Report by Tematys with Laser & Medical Devices Consulting,
2017). It is forecasted to reach around $240 M in 2022. Release of clinical products
(pending FDA approval) in coming years will have a significant impact in market
growth. Considering the successful early clinical pilot studies, within few years
from now, it is expected that clinical PA imaging market will be ahead of preclinical
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Fig. 4 Imagio® breast imaging system being used by a clinician (image provided by Seno Medical
Instruments, Inc.)

Fig. 5 MSOT Acuity system being used by a clinician (image provided by iThera Medical Gmbh)
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segment owing to the foreseen release of many clinical PA systems suitable for
multiple applications in oncology, rheumatology, cardiology, and dermatology.

4 Key Components in a Photoacoustic Imaging System

4.1 Optical Source for Tissue Illumination

To generate PA signals effectively, the thermal expansion caused by optical absorp-
tion needs to be time variant. This requirement can be achieved by using either a
pulsed laser or a continuous-wave (CW) laser with intensity modulation at a constant
or variable frequency. Pulsed excitations are the most commonly used because of
high SNR offered by them (when compared with CW excitation). Typically, a Q-
switched Nd:YAG pulsed laser is used as the optical source in PA imaging systems.
Costs of these light sources are in the range of $45–$100 K USD depending on the
level of energy/pulse and the pulse width [9]. Some of the commercially available
laser sources provide built-in fixedwavelength options, typically at 532 and 1064 nm.
Continuous wavelength tuning (650–950 nm) is usually provided by an optical para-
metric oscillator (OPO). Size and cost of these laser sources are one of the key factors
hindering the clinical translation of PA imaging and it is of paramount importance to
develop portable and affordable light sources that can be used for tissue illumination
in PA imaging [3].

Use of pulsed laser diodes for PA imaging has been well explored recently by
several research groups [7, 17]. In a European project FULLPHASE, a consortium
of academic and industrial partners succeeded in developing a fully integrated multi-
wavelength PA imaging (up to 4 wavelengths) probe that can acquire and display 2D
US and PA images in an interleaved manner at high frame rates. Figure 6 shows the
US (gray scale) and PA image (hot scale) of human proximal interphalangeal joint
of a human volunteer acquired using this probe [7].

Even though this project succeeded in developing an integrated US/PA probe
with smaller footprint and demonstrated its potential in early clinical pilot studies,
translation to the clinic never happened.

Another category of light sources being explored heavily for PA imaging are
LED’s. Even though LED’s are similar to laser diodes in terms of light genera-
tion, they do not create stimulated emission and thus are not considered as laser
sources (broader bandwidth and less coherent). Use of high-power LED arrays for
superficial PA imaging has shown good potential [10–13] and we (CYBERDYNE,
INC.) are commercializing multiwavelength LED-based PA and US imaging sys-
tem (AcousticX) for research use. From the initial clinical pilot studies, we believe
that LED elements holds strong potential as light sources in PA imaging, espe-
cially in a hospital-setting where laser safe-rooms and goggles are not appropriate.
Figure 7a shows the AcousticX PA/US probe with 850 nm LED arrays and a 7 MHz
linear array probe. Figure 7c shows the 3D MIP PA image of area of a human foot
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Fig. 6 a A schematic of the handheld PACT probe. US ultrasound array transducer, P deflecting
prism, DOE diffractive optical elements, DS diode stack, MCL micro-cylindrical lenses, CR alu-
minum cooling rim. Photoacoustic/ultrasound images of a human proximal interphalangeal joint in
b sagittal and c transverse planes. Adapted with permission from Ref. [7]

Fig. 7 a Integrated US/PA probe with LED arrays fixed on both sides of a linear array probe,
b area of a human foot where handheld scanning was performed, c 3DMIP PA image of the marked
imaging location—acquisition time: 6 s, image reconstruction time: 10 s

marked in Fig. 7b. In a completely handheld operation, the probewas linearly scanned
through the marked region and 3D image was rendered using the in-built GPU-based
reconstruction algorithm of AcousticX.

With wide range of available wavelengths (470–980 nm), possibility to tune pulse
widths based on US probe frequencies, compactness, affordability, and energy effi-
ciency, LED-based PA imaging holds promise in functional and molecular clinical
imaging. We expect that addition of LED-based PA imaging to conventional pulse-
echo US imaging in a clinical scanner will have profound impact in point-of-care
diagnostic imaging and also accelerate the clinical translation of PA imaging.

Xenon flash lamps, solid-state diode pumped lasers (instead of bulkywater-cooled
lasers) and even intensity modulated continuous wave lasers are explored as PA-
illumination source by different research labs around the globe [9]. It is expected
that fast advancements in solid-state device technology will further improve these
light sources and also help acceleration of clinical translation of PA imaging.
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4.2 Ultrasound Detection

US probe is the key component of a PA imaging system as its characteristics (sensi-
tivity, bandwidth etc.) defines the image quality to a large extent. Even though several
configurations are used (curved, ring, hemispherical arrays etc.!) in a research set-
ting, piezo electric linear array US probes are the most commonly used PA detectors
because of its affordability and portability (easy to develop a handheld US/PA probe
in this configuration) [9]. Clinicians are also used to this configuration and this may
help to introduce PA imaging as an add on modality to conventional pulse echo US
imaging easily [3]. However, clinical linear array probes are designed to perform
US imaging which deals with pulse echoes in the pressure range of Mega pascals
and PA signals are often in the range of pascals to Kilo pascals. Thus, the sensitivity
will be a key issue if one picks a clinical US probe and use it for PA imaging [3].
Also, the bandwidth of PA signals is often very high for the conventional US probes.
It is of paramount importance to develop affordable detectors which are broadband
and highly sensitive (in both transmission and reception) for efficiently performing
interleaved US and PA imaging of deep tissue [18].

Recently, other types of acoustic sensors have been also explored as a detector for
the PA imaging. Some of the promising ones are Fabry–Perot interferometers (FPIs),
micro ring resonators (MRRs), and capacitivemicromachined ultrasound transducers
(CMUTs) [19]. Out of these CMUT’s are considered to be the future because of the
ability to offer real-time and high-resolution images of larger field of views [19].

4.3 Data Acquisition System

Since both PA and US imaging involves acoustic detection, electronic DAQ can be
shared for both modalities (by switching between two modalities) to obtain naturally
overlaid PA and US images with structural and functional contrast. In this regard, the
most economical way will be to integrate a light source to a clinical US scanner (light
source can be controlled by a trigger signal from the scanner) and perform imaging
(when light is on, US must be off and vice versa). In terms of image reconstruction,
one can ideally reuse a planewave US reconstruction algorithm for PA imaging (by
reducing the time of flight by 2—as PA imaging only involves one side travel of
acoustic signals from tissue to probe) [3].

As discussed before, PA signals are quite weak in nature and it is important
to have low noise preamplification and multiple steps of signal enhancement for
extracting real PA signals from noise. Conventional US scanner may not be handy if
the detection sensitivity (front end electronics) is low. Custom-made electronics for
parallel PA data acquisition and US transmission is currently quite expensive. It is
expected that fast growing field of electronics will help circumvent this problem and
help accelerate the translation of PA imaging from benchtop to bedside [3].
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5 Clinical Translation of Photoacoustic Imaging: Steps,
Opportunities and Challenges

In a general sense, fate of any new medical imaging modality depends upon how
effectively it can solve an unmet clinical need and also its usefulness in a hospital
setting (rich information, minimal disruption etc.). PA imaging naturally possess all
advantages of optical imaging techniques (the famous optical contrast) combined
with depth of penetration and spatial resolution of US. It is evident that combined
PA/US imaging holds strong potential in detection of vasculature and hypoxia, two
key biomarkers for different disease conditions (inflammation, cancer etc.). How-
ever, there is a need to optimize the system based on application. For example, 1MHz
spherical array US probe and 1064 nm laser light source with 10 mJ/pulse energy
would be ideal for imaging a whole breast [20]. On the other hand, a linear array
7 MHz US probe and 850 nm LED light with 0.5 mJ/pulse optical energy is suffi-
cient for real-time imaging of rheumatoid arthritis in a human finger [14]. This is
different from established radiological imaging modalities (x-ray, CT, MRI, PET)
which are usually centralized systems that are used for different clinical applications.
Considering this, PA imaging faces different challenges and opportunities for clinical
translation and commercialization.

As discussed before, no PA imaging device has got US FDA approval for use as
a medical device. Imagio® system from Seno Medical Inc. and MSOT Acuity sys-
tem from iThera medical Gmbh recently obtained CE marking and clinical studies
are progressing in Europe. Even though some companies are focusing on one appli-
cation (for example Imagio® system targets breast cancer), academia and industry
are working together to explore other killer applications that can give rich medical
information that cannot be obtained using gold-standard techniques.

Real-time imaging of deep tissue with structural, functional, and molecular con-
trast is not easy to obtain with any other conventional imaging modalities and this
is the key reason for huge amount of technical, R&D in the field of PA imaging
in recent years. Over the past 20 years, PA-based medical imaging has progressed
significantly in terms of imaging speed and sensitivity, thanks to the advances in
component hardware and software. With all these developments, PA imaging can
now image a whole organ (for example breast) in 3D with micrometer resolution
and imaging depth exceeding 4 cm. Figure 8 shows such an image from the group of
Lihong Wang, one of the pioneers in the field [20]. This shows the potential of the
technology in breast cancer screening and also other clinical applications in which
angiogenesis is an early biomarker.

Commercialization or in other words “evolution of an idea to a product which is
marketable” is the key factor for any new technology to reach patients and impact
healthcare. When compared to nonclinical products, commercialization of a med-
ical device is complex and expensive. Apart from all important commercialization
steps for a nonclinical device, additional tasks including clinical trials, regulatory
approvals (including vast amount of documentation), negotiations with insurance
companies, and post use safety monitoring are required when any company is trying
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Fig. 8 Breast imaging results from Caltech Single-Breath-Hold ring-shaped imager a Vasculature
in the right breast of a 27-year-old healthy female volunteer. Images at four depths are shown in
increasing depth order from the nipple to the chest wall, b the same breast image with color-encoded
depths, c a close-up view of the region outlined by the magenta dashed box in (b), with selected
thin vessels and their line spread plots, d a selected vessel tree with five vessel bifurcations, labeled
from B1 to B5, e heartbeat-encoded arterial network mapping of a breast cross-sectional image (red
= artery, blue = vein), f amplitude fluctuation in the time domain of the two pixels highlighted
by yellow and green dots in (e), and g Fourier domain of the pixel value fluctuations in (f). The
oscillation of the arterial pixel value shows the heartbeat frequency at ~1.2 Hz. Reproduced with
permission from [20]

to commercialize a PA system, which is a medical imaging device. It is clear from
these factors that huge investment in terms of time and finance are required upfront
for any companies to translate an optical technology like PA imaging into clinic.
Since PA imaging holds potential in several clinical applications, it is also difficult
for companies to identify the right application to target, conduct clinical trials and
obtain safety approvals. At this point, it is still important for both researchers and
academia to explore all possibilities and identify right clinical applications of PA
imaging, which can consequently accelerate the translation of the technology from
a research-setting to clinic.

Figure 9 shows generalized steps towards clinical translation of any optical clinical
technologies [21]. Some of the steps in this can be restructured or carried out in
parallel for decreasing cost and speed up the whole process. Even though PA imaging
is well developed in a research setting, speed of clinical translation is rather slow,
and most companies involved have reached only the stage of clinical trials (step 5
in Fig. 9). Couple of exceptions are systems from iThera Medical Gmbh and Seno
Medical Instruments Inc. which got CEmarking and are validated by clinical studies
in large scale. Some of the key steps in clinical translation [21] and its associated
challenges are briefly described in following sections.
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Fig. 9 Steps toward clinical translation of optical technologies. Reproduced with permission from
[21]

5.1 Validation Using Preclinical Models

After building a prototype, preclinical models (ex vivo body fluids, tissue or animal
models of disease) are usually used for validating the technology. Results of these
studies are generally very important for supporting the valorizations. For PA imag-
ing, companies involved must invest carefully on this step as each application may
need separate preclinical models. Also, it is important to test different system con-
figurations (US probes, light wavelengths etc.) with relevant animal models focused
on targeted contrast, spatial resolution and imaging depth.

The basic requirement of a preclinicalmodel is to accurately replicate the intended
human use and also the associated clinical utility claims. In PA imaging, lot of papers
are published in which this aspect is not taken care of. For example, transplanted
tumors in rodents are commonly used to demonstrate high sensitivity and specificity
of the technology and this is often not useful since the tumors are far different when
compared to human tumors in terms of bio-chemical or structural characteristics [21].
At least in some situations, it may be worth investigating the possibility of using
human tissue/tumors ex vivo (for example, tumor embedded in tissue mimicking
phantoms) to validate the technology. However, this may require safety and ethical
approval for the system well in advance.
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5.2 Clinical Studies

Different stages of clinical trials are usually conducted after preclinical validation
of the technology. Phase I studies involve validation of initial safety and technical
feasibility. Since pulsed-light sources are used for tissue illumination in PA imaging,
it may be very important to prove that the system is safe for skin and eyes of the
users and patients (ANSI standards are well defined in this regard) [22]. Laser-safe
rooms in hospitals and well-defined laser goggles (based on light wavelengths) for
patients and users are amust when pulsed lasers are used as illumination sources [22],
consequently resulting in additional hurdles for clinical translation process. In this
regard, use of LED’s which are non-coherent (not defined as lasers) is a wise option
at least for superficial imaging applications. Phase II studies are conducted to prove
that the system can efficiently be used for the intended application. This is usually
conducted by small clinical pilot studies followed by multi-center clinical trials
involving significant number of patients to avoid bias. Last but not the least, phase
III studies are used for comparing the performance of the technology with existing
approved alternatives (gold standard techniques). It is important that technology is
at least equivalent to a gold standard in terms of performance.

For companies, these steps are cumbersome, however, the motivation is the antic-
ipation of significant revenues and high clinical impact once the technology is trans-
lated to clinics. Results of this phase may result in redesign of system or additional
preclinical studies. In some cases, these studies may conclude that the technology
being validated is not worth commercializing. However, PA imaging clinical studies
until now are quite promising and results show that when compared to gold stan-
dard modalities, PA imaging can offer higher specificity and sensitivity in several
applications (breast cancer, arthritis, crohn’s disease, skin cancer etc.).

One key challenge foreseen is the burden of companies in acquiring regulatory
approvals separately for different applications that can be tackled using the same
system. For example, a linear array 7 MHz US probe and two LED arrays of 850 nm
(AcousticX, Cyberdyne Inc.) are sufficient for imaging rheumatoid arthritis in a
human finger and also detection/staging of port wine stain. The interesting question
or challenge is that whether the company should go through all regulatory pro-
cess separately for accessing these two markets. In any case, using clinical trials,
it is important to identify whether the market is large enough for the product to be
commercially viable.

5.3 Standardization of the Technology

Even though not a routine step of clinical translation, standardizing the technol-
ogy is of profound importance considering the diverse system configurations and
associated clinical applications. When compared to gold standard medical imaging
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Fig. 10 Different focus areas of IPASC

modalities (Nuclear imaging, MRI, CT etc.), optical imaging technology in gen-
eral lacks established methods for standardization and calibration. However, a new
consortium (IPASC: International PhotoAcoustic Standardization Consortium) was
recently formed specifically for accelerating clinical translation of PA imaging [23].
The overall goal of IPASC is to reach consensus on PA imaging standardization to
improve the quality of preclinical studies and also to speed up the efforts in clinical
translation. Furthermore, by establishing standards, IPASC hopes to facilitate open
access, use, and exchange of data between different research groups and companies.
This consortium is currently represented globally in over 15 countries withmore than
90 academic and industrial members. It is expected that the standardization efforts
of this consortium will immensely help accelerating the clinical translation of this
powerful biomedical imaging modality.

IPASC is focused on

1. Define the recipe for tissue mimicking phantoms that can be used for testing any
preclinical or clinical PA imaging systems

2. Use these phantoms to quantitatively compare PA imaging data acquired using
different commercially available and lab-based systems

3. Provide open access reference data sets for validating and comparing different
reconstruction and spectral processing algorithms

4. Developing standardized test methods for testing and validating new PA imaging
systems.

To achieve the above goals, activities of IPASC are focused on three different areas
as shown in Fig. 10. Considering the participation of US FDA, renowned research
labs, and companies involved in clinical translation of PA imaging, this excellent
cooperation is expected to have a significant impact in accelerating the process of
bringing this technology to clinic.

6 Conclusions

PA imaging is one of the fastest growing biomedical imagingmodalities of the decade
with excellent potential in wide range of preclinical and clinical applications.With its
rich optical absorption contrast and high ultrasonic scalability, PA imaging provides
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a complete toolbox for the life sciences, complementing other imagingmethods in its
contrast mechanism, spatial-temporal resolution, and penetration depth. Compared
to the tremendous scientific developments, clinical translation of PA imaging is still
in a premature stage (no product with a US FDA approval). Use of expensive and
bulky pulsed lasers that demands the use of laser-safe rooms and eye-safety goggles
is one of the key factors hindering the translation process.

This chapter details about the main components of a PA imaging system and
the developments/strategies required for accelerating the technology from benchtop
to bedside. Cost and applications of some of the commercially available PA imag-
ing systems are briefly discussed. Also, vital steps in the clinical translation of the
technology are detailed with specific focus on challenges and opportunities.

US and PA imaging involves acoustic detection, dual-mode PA/US imaging with
structural and functional contrast can be seamlessly implemented in a clinical US
scanner. US imaging is a well-accepted modality worldwide and integration of illu-
mination unit to this will be the easiest way for PA imaging to hit the clinic. Naturally
overlaid PA and US images will offer complementary contrast which thenmay be the
key for early detection of several diseases including cancer. Impact and importance
of a point-of-care imaging device that can provide deep-tissue structural, functional,
and molecular contrast with high spatial and temporal resolution is very high. Even
though there are diverse hurdles and challenges to be solved in the clinical translation
process, it is expected that this promising technique will revolutionize the field of
medical imaging and touch lives in coming years.
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