
Chapter 9
Modelling the Economic Impacts
of Epidemics in Developing Countries
Under Alternative Intervention Strategies
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Abstract Modern levels of global travel have intensified the risk of new infectious
diseases becoming pandemics. Particularly at risk are developing countries whose
health systems may be less well equipped to detect quickly and respond effectively
to the importation of new infectious diseases. This chapter examines what might
have been the economic consequences if the 2014 West African Ebola epidemic
had been imported to a small Asia-Pacific country. Hypothetical outbreaks in
two countries were modelled. The post-importation estimations were carried out
with two linked models: a stochastic disease transmission (SEIR) model and a
quarterly version of the multi-country GTAP model, GTAP-Q. The SEIR model
provided daily estimates of the number of persons in various disease states. For
each intervention strategy the stochastic disease model was run 500 times to obtain
the probability distribution of disease outcomes. Typical daily country outcomes
for both controlled and uncontrolled outbreaks under five alternative intervention
strategies were converted to quarterly disease-state results, which in turn were
used in the estimation of GTAP-Q shocks to country-specific health costs and
labour productivity during the outbreak, and permanent reductions in each country’s
population and labour force due to mortality. Estimated behavioural consequences
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(severe reductions in international tourism and crowd avoidance) formed further
shocks. The GTAP-Q simulations revealed very large economic costs for each
country if they experienced an uncontrolled Ebola outbreak, and considerable
economic costs for controlled outbreaks in Fiji due to the importance of the tourism
sector to its economy. A major finding was that purely reactive strategies had
virtually no effect on preventing uncontrolled outbreaks, but pre-emptive strategies
substantially reduced the proportion of uncontrolled outbreaks, and in turn the
economic and social costs.

Keywords CGE · Disease modelling · Ebola · Developing countries ·
Asia-Pacific

JEL Classification: C68, D58, I15, H51

9.1 Introduction

The Ebola outbreak which began in West Africa at the end of 2013 became by far the
most severe Ebola epidemic to date. At the time we began the research reported in
this chapter in late 2014, fears were held of exponential growth in infections in West
Africa and the spread of the virus to other countries around the world. Fortunately,
over the succeeding months the situation stabilised and by late 2015 the epidemic,
which had cost over 11,300 lives, appeared over. As the Ebola emergency faded,
there was an increasing focus on learning lessons from the outbreak in order to
improve preparedness for any subsequent outbreak of Ebola, and of other emerging
infectious diseases (EIDs) in general.

The research reported here was part of a 2014–15 study of the risks and
consequences of Ebola spreading to certain developing countries in the Asia-Pacific
region (McBryde et al. 2015). In this chapter, our concern is with the part of the
study that examined the economic consequences that might have occurred if the
disease had spread to two of these Asia-Pacific countries. Our estimations were
carried out with two linked models: a stochastic disease transmission model and a
multiregional dynamic computable general equilibrium (CGE) model of the world
economy (a 9 industry, 15 region, quarterly version of the GTAP model, GTAP-Q).
In this chapter, we report on simulations for two small countries, Fiji and Timor-
Leste (East Timor).

Modelling the economic consequences of epidemics and pandemics forms an
important component of preparing contingency plans for possible new outbreaks.
In recent years there have been a number of such CGE studies, both with global
CGE models (e.g. Lee and McKibbin 2004; Verikios et al. 2016) and national CGE
models (e.g. Dixon et al. 2010; Verikios et al. 2012). Some of these CGE studies
use historical disease data in developing the economic shocks in modelling actual
outbreaks. In order to model on-going or hypothetical outbreaks, disease models
are a good method for estimating the possible course of an outbreak. Verikios and
his co-authors use versions of the long-established SIR epidemiological model to
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estimate infection numbers for a hypothetical H1N1 epidemic in Australia (Verikios
et al. 2012) and possible global influenza pandemics (Verikios et al. 2016).1

To date, CGE modelling of pandemics has primarily been of strains of influenza
and viral respiratory diseases, such as SARS. Compared to these diseases, Ebola is
characterised by a considerably longer delay between infection and symptom onset,
an increasing degree of infectiousness as the disease progresses in the individual,
a much longer period for an outbreak to reach epidemic proportions, and a much
higher fatality rate (around 70% if untreated).

The difference in the time course of Ebola from those EIDs modelled to date
raises a very different set of issues on response and intervention. Pandemic influenza
outbreaks are much more likely to be self-limiting than a large Ebola outbreak,
which in the absence of an effective response has the potential to cause larger scale,
more damaging outbreaks.2 Another difference relates to prophylactic behaviour.
Crowd avoidance can decrease influenza transmission, but has a more limited effect
in the case of Ebola for which there is no airborne transmission.3 On the other hand,
Ebola is transmitted by contact with blood or bodily fluids of an infected person,
even after death (at which time the viral load is at its height). An effective Ebola
transmission reduction response, therefore, includes a public education program
informing of the dangers of cultural practices that involve long delays in burial and
intimate contact with dead bodies.

In this chapter, we outline the approach taken to capture these distinctive features
of an Ebola outbreak. This is reflected in the disease model developed for the study
and the link with the CGE simulation. For a detailed discussion of the disease model,
see Annex B of McBryde et al. (2015).

In Sect. 9.2.1, we describe the disease model; a stochastic SEIR-type model
with additional compartments designed to capture essential features of Ebola
transmission and proposed interventions. The model contains the key features
of Ebola transmission described above, plus an explicit representation of the
healthcare workforce capturing their varying exposure risks compared to the general
population and their importance to impact control, the effects of local responses (e.g.
hospital- and home-based isolation, tracing and monitoring of contacts and health
capacity constraints), potential for interventions to assist early detection and case
assessments, and behavioural modifications (e.g. safer burial practices).

1The Susceptible-Infected-Removed (SIR) epidemiological model was first developed by Kermack
and McKendrick (1927) and there have been many versions, usually involving more disease
compartments over the past nine decades. SEIR models contain an extra compartment, E
(Exposed).
2Influenza outbreaks (even pandemics) tend to be contained (at least in terms of greatest impact)
to a single season, while the West African Ebola outbreak showed little indication of seasonality,
and hence could have been anticipated to persist for a longer duration. Prior to its 2013–2015 West
African outbreak, Ebola outbreaks had also been self-limiting, mostly due to their occurrence in
very isolated rural regions of Africa.
3The portrayal in the media of Ebola as an unfamiliar and “horrific” disease may well mean that it
has had greater impact on the public’s perception than influenza. It might thus be anticipated that
there is a stronger behavioural response in respect to international tourism and trade.
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An important feature of our disease modelling is that it is stochastic, rather than
the deterministic modelling used in previous CGE exercises. This choice is driven
by our stronger focus on the very early stages of a potential outbreak, and whether
it is likely to occur or not, and what can be done to contain it at this stage, rather
than assuming (as is more typical with influenza) that the outbreak will occur and
then explore the effect of longer-term control strategies in containing the size of the
outbreak.

These features of the disease model have implications for the CGE component of
the modelling. The stochastic nature of the disease modelling allows probabilities
to be put on the different CGE scenarios modelled. Also, the treatment of the
relationship between behavioural responses and transmission probabilities allows
aspects of the CGE modelling to be tied to disease modelling. For instance, costly
crowd avoidance behaviour forms an important CGE shock, but due to its general
ineffectiveness in transmission prevention, typical crowd avoidance behaviour does
not impact on the disease model.

The structure and parameters of the SEIR model are based on published
literature, including data stemming from the 2013–2015 West Africa outbreak and
past outbreaks in Central Africa (e.g. Chowell and Nishiura 2014; The WHO Ebola
Response Team 2014). Important aspects of the social and healthcare systems of the
target countries were then incorporated using a combination of expert consensus,
literature review and analysis of global datasets.

9.2 The Models

9.2.1 The Disease Model

9.2.1.1 The Compartments

We start by describing our compartmental model of infection used to simulate the
dynamics of an Ebola outbreak. We build this up in three stages, commencing
with Stage 1, the basic model of compartments prior to detection of the disease,
as depicted in Fig. 9.1. Here, since at the start of the 2013–2015 outbreak there
was no available vaccine and limited potential for prior immunity, all individuals
are initially classed as susceptible to infection (S). After infection, a person enters a
latent incubation stage (E), from which they subsequently transition to an infectious,
but not yet symptomatic, state (I0). At the time they develop symptoms (I), the
person’s infectiousness increases. Post-infection, individuals either recover with
probability (1 minus the case fatality rate, CFR), and cease to be infectious (R),
or die and remain infectious (D) until buried (B).

The outbreak is seeded with a single exposed individual, who we assume to be
an active Ebola case who has travelled, undetected, from a region where Ebola
is currently circulating. Susceptible individuals can then be infected by either
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Fig. 9.1 Basic Ebola disease model
 

 

 

Fig. 9.2 Ebola disease model with isolation in a home (Q) and hospital (H) setting

infectious and pre-symptomatic cases (at rate βI0), infectious and symptomatic cases
(at rate βI) or dead but not yet buried individuals (at rate βD).4

In Fig. 9.2, we add two more compartments to represent the isolation of infec-
tious cases in a hospital or home setting. Once Ebola is detected, future symptomatic
cases are ascertained with probability Pasc, and subsequently isolated in hospital
(H). The hospital-based isolation removes the risk of onward transmission to the
general population, lowers the risk to healthcare workers and visitors, and increases
the probability of survival (1 − CFRH).5 Hospital beds/isolation wards are limited;
and any cases ascertained while hospital-based isolation is at capacity are instead
isolated in home quarantine (Q), which is assumed to reduce (but not remove) the
risk of onward transmission, but not to affect the probability of recovery. Home
quarantine is also limited, by a finite stockpile of personal protective equipment
(PPE) and training capacity. Once this stockpile is exhausted, all future detected
cases remain fully infectious and untreated in the community (I).

The full disease model is depicted in Fig. 9.3 where extra compartments are
added to account for contact tracing and monitoring. In Fig. 9.3 monitored individ-
uals are indicated by subscript T. Monitored individuals undergo a similar disease

4The parameters σ , γ 0, γ 1 and τ are the rates at which the exposed person becomes infectious,
the rate at which the infectious person becomes symptomatic, and the rate at which symptomatic
persons recover or die, and the rate at which a dead person is buried, respectively.
5In order to capture differences in exposure, the population is stratified into the general community
and healthcare workers. Prior to detection the latter are at greater risk, but post-detection they are
at a lower risk due to the adoption of stringent infection control measures. These risk differences
are incorporated in separate βI parameters for the two groups. It is also assumed that if healthcare
workers become depleted beyond a certain proportion all case ascertainment would cease and
isolation of cases would no longer be possible.
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Fig. 9.3 Ebola disease model tracing and monitoring of contacts of ascertained cases

progression to the general community, but are always isolated if they become
symptomatic, provided the healthcare capacity persists. For each ascertained case,
20 contacts are monitored for 3 weeks, subject to capacity constraints.

9.2.1.2 Interventions

We compare several types of intervention:

(a) Improved surveillance, which may reduce the time to first Ebola detection,
and/or increase the probability of ascertaining subsequent cases.

(b) Increased isolation capacity (hospital-based and/or home quarantine/PPE),
increasing the number of cases that can be isolated and/or traced and monitored.

(c) Increased healthcare workforce, reducing the probability of depletion and
collapse of the healthcare system.

(d) Improved hospital facilities (disease treatment), reducing the case fatality ratio
of hospitalised cases.

(e) The introduction of safer burial practices, decreasing the delay between death
and burial (τ ) and/or reducing the rate of transmission per day from deceased
cases.

We conduct alternative simulations based on the timing of these interventions:
either deployed pre-emptively, prior to detection of the first Ebola case or reactively,
at some point after first Ebola detection.

9.2.1.3 Patches

We model Ebola transmission and control in one or more patches, each corre-
sponding to a single region within a country. We divide Timor-Leste and Fiji into
two patches each—one urban, representing Dili and Suva respectively, and one
rural, representing the remaining areas of each country. The numerical values of
parameters differ between patches to capture regional differences in population
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density (crowded living conditions in urban slums can increase transmission rates),
quality of healthcare (size of healthcare workforce and number of hospital beds) and
cultural differences (e.g. with burial practices). The patches are linked together by
estimated daily people movement flows.

9.2.1.4 Simulation Outputs

The disease model is run stochastically to capture the distribution of possible
outcomes arising from a small initial number of cases in a fashion that allows for the
possibility that an outbreak would fail to occur, even in the absence of any response,
simply due to initial cases recovering or dying without onward transmission. The
model tracks the number of people in each disease compartment and is updated
in discrete time steps of 1 day. At each time step, the number of people leaving
each compartment is sampled from a Poisson distribution with a mean equal to the
deterministic outflow rate for that compartment. Where there were multiple outflows
from a compartment (e.g. from infectious (I) to dead (D) or recovered (R)), the
number of people leaving was divided between the two destination compartments
by sampling from a binomial distribution. Due to the stochastic nature of the model,
each scenario was run 500 times to provide a probability distribution over possible
outbreak sizes. We classify these outcomes into three broad categories:

• Stochastic fade out: Due to chance, insufficient people are infected for transmis-
sion to become established and the outbreak ends with fewer than 10–15 cases.

• Controlled outbreak: Transmission becomes established, but the local response
and/or external intervention are able to limit the spread of infection and the
outbreak ends with 100–500 cases (<0.1% of total population infected over
2.5 years).

• Uncontrolled outbreak: Transmission becomes established and grows to the point
where the local response and an initial external intervention of the scale explored
in this project are unable to prevent the continuing spread of infection, resulting
in a substantial fraction of the population becoming infected during the outbreak.

As noted above, multiple realisations of the model were simulated for each
scenario. For the purposes of CGE modelling, representative single realisations were
selected from each of the Controlled and Uncontrolled Outbreak categories. These
selections were made by choosing the realisation for which the final outbreak size
was closest to the median final outbreak size for that category. Table 9.1 shows
the proportions of simulations for each country by each intervention scenario that
resulted in controlled outbreaks (first and third results column) and in uncontrolled
outbreaks (second and fourth columns).

The results here are generated by multi-patch simulations. External interventions
are of a pre-specified size, are triggered by detection of the outbreak, and are
deployed in the capital; there is no adaptive response to outbreak conditions, and no
“follow-up” interventions should control of the outbreak not be achieved. Beyond
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Table 9.1 Percentage of simulation runs resulting in controlled/uncontrolled outbreaks

Fiji Timor-Leste
Controlled Uncontrolled Controlled Uncontrolled

Baseline 0 100 0 100
Reactive Small 0 100 0 100
Reactive Large 0 100 0 100
Pre-emptive Small 27.4 72.6 90.5 9.5
Pre-emptive Large 29.7 70.3 90.8 9.2

the change in burial practices, there is no adaptive change in population behaviour
in response to outbreak conditions.

Table 9.1 excludes those simulations that resulted in stochastic fade-outs, which
occurred in around 30% of cases. It can be seen that if the disease does not fade
out that both reactive interventions, just as in the no-response baseline, result in
uncontrolled outbreaks in 100% of cases. Only if interventions are pre-emptive are
a proportion of outbreaks controlled.

9.2.2 The Economic Model

9.2.2.1 GTAP-Q

Given the quick rate at which global pandemics can spread, it is important that their
economic effects are modelled dynamically with each period being considerably
shorter than the annual basis upon which most dynamic CGE models are conducted.
Consequently, Verikios et al. (2016) developed a quarterly version of the GTAP
model (Hertel and Tsigas 1997; Ianchovichina and McDougall 2012), which we
refer to here as GTAP-Q.6 We use the theoretical structure of the GTAP-Q model
for the present study of the economic impacts of Ebola.

The development of GTAP-Q required the introduction to the standard version of
GTAP of two dynamic mechanisms. These relate to capital accumulation and labour
market adjustment. The first of these ensures that a regional industry’s capital stock
at the start of a period is equal to its capital stock at the beginning of the previous
period plus gross investment less depreciation during the previous period. Regional
investment in a period is an increasing function of the region’s expected rate of

6Quarterly models are particularly important when pandemics involve short and sharp peaks in
their effects (see Verikios et al. 2016, p. 2). Thus, even an outbreak that is quickly contained might
have a particularly disruptive effect for at least one quarter as a result of aversion behaviour. The
consequent adjustment problem is likely to be missed if the impact on, say, tourism is averaged
out over a year. Similarly, a rapid medical response to Ebola in a single quarter is likely to place
considerably greater stress on the health system than a similar size response spread over the course
of a year (a similar point was made by Dixon et al. (2010), with reference to an H1N1 outbreak).
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return relative to the global rate of return. The second dynamic mechanism relates
to the incorporation of a lagged wage adjustment process. In simulating the impact
of an event, or policy change, a gap may open up between the demand and supply
of labour in a region. The wage adjustment mechanism imposes sluggish movement
in a region’s wage rate such that it only slowly returns the regional labour market to
equilibrium. Thus, short-run labour market responses to a shock (like Ebola) tend
to be mainly expressed as changes in the unemployment rate (with little change in
average wage rates from baseline), whereas long-run responses tend largely to be
expressed as changes in average wage rates (with little change in unemployment
rates from baseline). GTAP-Q is parameterised so that the deviation from baseline
in excess labour demand or supply is eliminated in approximately 20 quarters.

Running simulations with a dynamic CGE model, like GTAP-Q, requires two
simulations. The first simulation involves a baseline forecast driven by quarterly
business-as-usual forecasts for certain variables with which the model is shocked.7

The baseline simulation then computes the changes in all other variables consistent
(in terms of the model’s theory and database) with these outside forecasts. In the
second simulation, normally referred to as the policy simulation, the model is run
again with an additional set of shocks to reflect the particular policy, or event being
analysed. The cumulative deviations between the results from the policy simulation
and the baseline simulation thus represent the effects of the policy or event.8 It is
such deviations from baseline, which are reported below as the impact of the events
(i.e. regional Ebola outbreak scenarios) modelled.

9.2.2.2 Adapting GTAP-Q for Modelling Asia-Pacific Developing
Countries

The GTAP database allows flexibility with the countries and industries that are
separately identified in the model. The GTAP-Version-9 database contains the
required multi-regional input–output data for 140 regions and 57 sectors. The 140
regions comprise 121 individual counties, plus 19 regions, which each cover a group
of countries. Neither of the two countries for which we model hypothetical Ebola
outbreaks is included as a separate country in the 140-region GTAP database. Fiji is
amongst the 23 countries that form the region “Rest of Oceania”, while Timor-Leste
is included in “Rest of Southeast Asia” (along with Myanmar).

A major task, therefore, was to separate out these two countries (plus PNG, which
was also modelled in the full study) from their respective regions. Only a limited
amount of data is available for these countries, with the World Bank, UNSTATS

7Where possible these are driven by macroeconomic and demographic forecasts from outside
experts and trends in tastes and technology. For this study, the baseline forecast is driven by
estimates for future quarterly movements in GDP and population for each of the model’s regions.
8For the technical details on dynamic CGE policy analysis (such as the necessary changes to model
closure between baseline and policy simulations), see Dixon and Rimmer (2002).
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and the US Central Intelligence Agency being the major sources. Using this data, we
employed estimation procedures developed by CoPS for splitting out countries from
composite regions (i.e. from regions of more than one country) that generate the
required multi-country input–output database (including international trade flows).
For details of the procedures, see Horridge (2011).9

The outside data required to perform the regional disaggregation include:

• Value added, by industry, for Fiji, PNG and the remaining 21 countries in Rest
of Oceania.

• Value added, by industry, for Timor-Leste and Myanmar in Rest of Southeast
Asia.

• Value of international exports and imports by commodity for the countries within
the two original composite regions.

As many of the 23 countries in the Rest of Oceania are very small, data for them
are often not included in a single data source. Therefore, we have combined data
from the following sources:

• UNSTATS: statistical databases from the United Nations Statistics Division.
These include Commodity Trade Statistics Database (COMTRADE), and
national accounts statistics on GDP and value added for industries at the one-
digit level for both countries in Rest of Southeast Asia, and for 14 out of 23
countries in Rest of Oceania10.

• The CIA World Factbook and World Development Indicators, which contain
GDP and three broad sectors (agriculture, industry and services) for almost all
countries in the world.

These data are used by the SplitReg program to calculate the shares of all
countries within each of the original composite regions (Horridge 2011). For each
relevant composite region, the program then uses these shares to split the region’s
original GTAP input–output data into a region of focus and a residual region. This
generates the required multi-regional input–output data for the composite region’s
new sub-regional structure.

The outcome was a GTAP-Q model comprising 15 regions, each containing
9 industries. The 15 regions consist of 6 separate countries (Australia, New
Zealand, Fiji, Papua New Guinea, Timor-Leste and Indonesia) plus 9 multi-country
regions (China and Hong Kong, Rest of Asia and Oceania, the United States
and Canada, Rest of America, Europe, Middle East, West Africa, Rest of Africa
and Rest of the World). The 9 industries are agriculture, fishing and forestry;

9The procedures are carried out using the SplitReg program available from the Centre of Policy
Studies archive at www.copsmodels.com/archivep.htm#tpmh0105
10The countries not covered by UNSTATS are American Samoa, Northern Mariana Islands,
Pitcairn, Tokelau, United States Minor Outlying Islands and Wallis and Futuna.

http://www.copsmodels.com/archivep.htm%23tpmh0105
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mining; manufacturing; utilities; construction; trade; transport; other services; and
government, education and health).11

9.2.3 Linking the Models

We conduct GTAP-Q simulations for the Ebola outbreak scenarios examined in the
disease modelling for each of the four focus countries. From the disease modelling
there are potentially 20 types of outbreaks, 10 for each country. These can be seen
in Table 9.1 that shows for each country, and for each of 5 intervention scenarios,
the proportions of outbreaks that result in small (controlled) outbreaks, and in large
(uncontrolled) outbreaks. As noted in Sect. 9.2.1.3, for both Fiji and East Timor,
baseline and reactive interventions result in 100% of outbreaks falling entirely into
the uncontrolled outbreak category. This reduces the number of CGE simulations to
be undertaken to 14.

For each outbreak scenario, we use as input to the economic modelling daily
figures for disease prevalence by treatment and mortality for a representative
outbreak event. This information from the disease modelling includes daily figures
for prevalence, distributed among those persons hospitalised, those isolated in
home quarantine and those fully infectious persons remaining in the community
untreated.12 It also included figures for the number of deaths and the number
recovered on each day.

These figures were used to compute for each quarter, the number of hospital days
and the number of days of home isolation. The daily figures were further disaggre-
gated by persons of working age and non-working age. Applying participation and
employment rates allowed the computation of working days lost each quarter due to
illness—under the assumption that once a person becomes sick (infectious) they are
(in non-fatal cases) either absent from work, or at work but largely unproductive,
until 30 days after recovery.

9.3 The GTAP-Q Simulations

The disease model results discussed in Sect. 9.2.3 formed the basis on which
to estimate the direct costs of each Ebola outbreak modelled: medical costs;
reduced productivity through sickness, carer activities and quarantine; and a
permanent reduction in a country’s workforce through Ebola fatalities. We also
use the information, particularly that of outbreak size, to estimate economic shocks

11The model is kept to 15 regions in order to facilitate the analysis of the economic effects
within the focus regions themselves, and the degree of spillover of economic effects to regions
not experiencing the hypothetical outbreaks.
12That is, distributed into the categories H, Q and I as defined in Sect. 9.2.1.1.
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resulting from behavioural effects that an outbreak is likely to induce.13 Such shocks
include aversion effects impacting on inbound and outbound (international) tourism,
disruption to freight and passenger transport and a reduction in consumption
associated with avoiding public places.

9.3.1 Increased Demand for Medical Services

The estimation of the quarterly medical costs of Ebola required the computation for
each country of the daily costs of hospital-based isolation and treatment, of home-
quarantine treatment, of case-tracing, Ebola testing, cleaning and burial costs.14

In order to estimate hospital costs in each focus country, we commence with daily
hospital costs in each of the four countries, plus some comparison countries. These
are shown in the first three columns of Table 9.2 for three categories of hospital.
The daily hospital cost for treating Ebola cases in the United States is reported in
the media to be between $8000 and $24,000. We assume a typical US hospital cost
for Ebola of $16,000 per day. We then estimated the daily hospital cost to treat Ebola
in a focus country as equal to the daily US hospital cost for Ebola multiplied by the
ratio of normal hospital costs in the country to normal hospital costs in the United
States (shown in the last three columns of Table 9.2).

This method yielded the following hospital costs (in $US):

Per day Per case

Fiji $919 $5512
East Timor $82 $494

Other medical costs were estimated as (1) Ebola tests—$US 244 per test; (2)
contact tracing—$225 per infectious case and (3) burial and sanitation—$404 per
death. For home isolation cases, it is assumed the household is provided with a
personal protection kit, and some elementary training in its use. The cost of the kit
and training is assumed to be $48 per case.

13The World Bank (2014) state that fear of contagion can cause both private persons and
governments to undertake behaviours that disrupt trade, travel and commerce. They note that it
is believed that such behavioral effects are believed to have been responsible for up to 80% or 90%
of the economic effects of recent pandemics (SARS and H1N1), citing Lee and McKibbin (2004).
14At this stage, we do not include ambulance services as an extra cost, but rather assume that this
is incorporated within hospital costs for Ebola cases.
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9.3.2 Reductions in Productivity and Workforce

It was assumed that one working day was lost for each day an employed person
was symptomatic, and if they recovered for an additional 30-day period after that—
representing the estimated time before they are fit to return to work. Following
Verikios et al. (2011), these lost days are treated as reductions in labour productivity.
That is, we assume that employers continue to make payments to Ebola-stricken
persons by way of sick leave or incur other equivalent costs, and thus suffer an
increase in their real unit (of output) labour costs during the lost days.15

We also assume that workdays are lost due to workers having to stay at home to
care for Ebola patients, and to family members of Ebola patients having to undergo
a period of home quarantine.

Little information on which to estimate lost-carers days was available. We made
estimates using a Fijian example of patient employment status and household
composition as a rough guide. Fiji is estimated by 2015 to have an average
household size of 4.5, of whom on average 1.6 persons are employed (including in
subsistence activities), 0.7 persons are engaged solely in home duties. 1.3 persons
are under 15, a third of a person is over 14 and engaged in full-time study, and
the remainder is unemployed, retired, etc. We consider separately Ebola patients
who are employed and those not employed, and by whether they are hospitalised,
quarantined at home, or are untreated and then estimate whether they require care,
and/or quarantine, by household members who are employed. Clearly, there are
many other factors that might affect the amount of carer leave taken, and our
estimates should be considered very broad indeed. We estimated on this basis that
on average a lost workday by an employed Ebola sufferer involved the loss of a
further 0.4 workdays for a carer/quarantined person in treatment, or an additional
0.2 days for an untreated person.16 For an Ebola patient (in treatment/quarantine)
who was not in employment in the quarter, we estimate that for every sick day,
an additional 0.7 days are lost. For non-employed untreated patients the additional
lost days are half that. The reason for the greater number of lost days when the
patient was not in work prior to becoming ill is that there are fewer available non-
working family members to care for them (and a greater number of employed family
members quarantined). When a patient died from Ebola, it was assumed that an
additional 3 person-days were lost by grievers.

In the case of the death of persons of working age, we impose negative shocks
to both the nation’s population and its workforce size. In the case of Ebola-related
fatalities of persons of non-working age a permanent reduction to population only
is imposed.

15This assumption is unlikely to be of any significance for the results reported in Sect. 9.4. It simply
means that the cost of sick (and carer) leave is born entirely by owners of capital.
16The smaller workdays lost for an untreated patient is based on the assumption that this does not
result in the quarantining of any other family members.
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9.3.3 Behavioural Effects 1: A Reduction in International
Tourism

A well-known effect of pandemics is its impact on international tourism (e.g.
McKercher and Chon 2004). Verikios et al. (2011), citing Pine and McKercher
(2004) and Wilder-Smith (2006), consider that regions undergoing a widespread
influenza epidemic could incur reductions in inbound tourism in the range of 20%–
70% during the peak infection period. Given the reports in the media regarding
the reaction of international tourists (including government and airline travel
restrictions) for the current West Africa Ebola outbreak, we assume that reductions
in inbound tourism are likely to be at the high end of estimates reported in
the literature. We assume, for both Fiji and Timor-Leste, a reduction of 50% in
inbound tourism for a controlled outbreak, and an 80% reduction for an uncontrolled
outbreak. These reductions are assumed to commence in the quarter that the
outbreak is announced, moving to the full size of the assumed reduction by the
next quarter. It is assumed for all countries that outbound tourism from the affected
country falls in line with reductions in income. International tourism is assumed to
begin to recover only after no new infections are observed in the affected country.

9.3.4 Behavioural Effects 2: Crowd Avoidance

Just as international tourists are likely not to visit countries with Ebola outbreaks,
persons living in affected countries are likely to experience a significant fear of
contagion. While, unlike international tourists, most residents must remain in the
affected country, they are likely to avoid crowds where this is possible.17 This
necessarily means a reduction in expenditures that involve mixing in large crowds
(e.g. large sporting and cultural events, markets and crowded retail precincts, public
transport). Dixon et al. (2010) assume a 10% reduction in leisure purchases for
a hypothetical H1N1 outbreak in the United States. Congressional Budget Office
(2006) assumes a similar size reduction, but more concentrated; a 20% reduction in
such purchases for one quarter.

Ebola outbreaks are likely to be longer lasting, and possibly generate more fear,
than recent pandemics. In light of this, the above estimates may be considered
a lower bound for the case of an Ebola outbreak. It is difficult, however, to
ascertain the degree to which crowd avoidance for a United States pandemic might
translate for developing countries analysed here. We modelled crowd avoidance for

17Much of this type of behaviour can be considered sensible measures to avoid contagion.
However, McKercher and Chon (2004) claim that in the case of SARS there was evidence that
behavioural changes greatly exceeded this. Schulze and Wansink (2012) find that in that responses
to perceived risk are more proportional where deliberation is possible, but disproportional for
emotional or stressful situations.
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uncontrolled outbreaks as though there were a 10% impost on purchasing outputs
from service sector—that is, from Trade, Transport and Other Services. We include
transport on the basis of the findings of Becker and Rubinstein (2011) that the
“Al-Aqsa” Intifada terror attacks reduced bus tickets purchased by up to 9% in the
subsequent week.18

9.3.5 Behavioural Effects 3: Increased Trade Costs

Insufficient information was available to ascertain whether freight and port costs on
merchandise trade to and from an infected country would be materially affected, or
by how much. No effects of this type were modelled.

9.4 GTAP-Q Simulation Results

In this section, we report simulation results for the effects of the 7 Ebola outbreak
scenarios described in Table 9.1. We describe the economic effects of outbreaks in
each country in turn, showing the time paths for the effects on GDP of the different
outbreak scenarios in one figure and the time paths for the employment effects in a
second figure. For each figure, the time paths are shown in terms of the percentage
deviation from the baseline forecast for the variable (GDP or Employment) which
results from the outbreak scenario.

9.4.1 A Fijian Outbreak

Looking at Fig. 9.4 we see the time paths of the effects on GDP from the seven
outbreak scenarios for Fiji. The time paths break into two identifiable groups: those
for the two controlled outbreaks and those for the five uncontrolled outbreaks. Both
controlled outbreaks involve pre-emptive action. The effects of both these scenarios
follow an extremely similar time-path. The disease modelling showed a similar
cumulative incidence over the four quarters of the outbreak for these scenarios,
although there is some difference in their time path, with the prevalence more
spread out (with more hospitalisation) under the slower/larger reactive intervention.
However, the direct effects on GDP of the disease (increased medical costs, reduced
productivity and reduced labour supply) are very small. It is the behavioural effects

18A number of other behavioural reactions are not modelled. Examples include absenteeism from
work as a crowd avoidance response, and lost days by parents needing to undertake child care as a
result of school closures (as occurred in West Africa).
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Fig. 9.5 Effects of different scenarios on Fiji’s employment (percentage deviation from baseline)

caused by the Ebola outbreak, which are responsible for nearly all of the GDP and
employment impacts for these controlled outbreak scenarios. On the news of an
Ebola outbreak in Fiji, it is assumed that international inbound tourism demand
falls below baseline by almost 30% in the first quarter (Q1) of the outbreak; and
by the second quarter (Q2) it is assumed that tourism demand falls further—to 50%
below baseline demand (see Sect. 9.3.4). This results in GDP falling (relative to the
baseline) by over 6% by Q2 for the two controlled outbreaks.

In Fig. 9.5, it can be seen that employment moves above baseline for 3 quarters
from Q3 (or Q4 for the pre-emptive large outbreak) in the uncontrolled scenarios,
and then from Q6 (or Q7 for the pre-emptive large outbreak) slowly move back
towards baseline, and ultimately reaches a new equilibrium below baseline, over the
remaining quarters of the simulation. The initial over-shooting of employment for
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the 3 quarters is the result of interaction between the path for the wage rate and the
path for the imposition and then attenuation of the direct economic consequences
of the outbreak. Over the first two quarters in particular, as the direct effects of the
outbreak are imposed on the Fijian economy, the real wage partly accommodates
this by falling below baseline. Hence, when the direct effects of the outbreak
attenuate over subsequent quarters, the real wage is temporarily below the level
consistent with the return of the unemployment rate to baseline, leading to transitory
employment overshooting.

Looking further at the uncontrolled outbreak cases, it can be seen that GDP and
employment are negatively affected during the first two quarters of the outbreak due
to adverse behavioural effects. For uncontrolled outbreaks, international tourism by
Q2 is 80% below its baseline value, and the tourism sector represents around a
quarter of the Fijian economy. By the third or fourth quarter, however, infections
and their associated medical costs have risen enough to raise aggregate demand to
a level sufficient to move GDP above baseline. The real wage (which moved below
baseline with reduced tourism in the first two quarters) begins to adjust, however,
to move resources towards the expanded medical sector. As medical expenditure
peaks, increases in the real wage and negative movements in labour productivity put
downward pressure on GDP and employment. By around Q10 GDP is about 16%
below baseline for most uncontrolled outbreak scenarios, and employment around
29% below.

From Q11 to Q13, however, the end of the uncontrolled outbreaks sees interna-
tional tourism demand commence its return towards baseline. This causes a smaller
negative deviation in GDP over the remaining quarters of the simulation. By Q20,
we see that employment is permanently below baseline, reflecting the reduction in
the labour supply accompanying Ebola mortality.

9.4.2 A Timor-Leste Outbreak

The effects of seven Ebola outbreak scenarios on Timor-Leste’s GDP and employ-
ment are depicted in Figs. 9.6 and 9.7.

Unlike Fiji, controlled scenarios have only a small effect on the Timor-Leste
economy. The direct impacts are small and Timor-Leste also has a relatively small
tourism sector. Since crowd avoidance is not modelled for controlled scenarios,
there is little by way of behavioural effects from the controlled outbreaks.

For the case of uncontrolled outbreaks, crowd avoidance causes a small reduction
in aggregate demand in the first two to three quarters, before rising health costs
results in a demand-induced increase in GDP in the next few quarters. After that,
the labour market effects and the peaking of health expenditure results in increasing
negative percentage deviations in GDP and employment from around Q6 to Q8
(depending on the time path of the direct effects of the uncontrolled outbreak). By
Q20, GDP is about 3% below its baseline forecast value. This reflects the long-run
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fall in employment (about 6% relative to baseline) due to Ebola mortality reducing
labour supply.

9.5 Concluding Remarks

In this chapter, we report the economic effects of hypothetical Ebola outbreak
scenarios for two illustrative examples of developing countries in the Asia-Pacific
region, Fiji and Timor-Leste. The simulations revealed very large economic costs
associated with uncontrolled Ebola outbreaks, and in the case of Fiji, considerable
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economic costs even for small outbreaks, due to that country’s substantial reliance
on international tourism.

The simulations were conducted over 20 quarters, with outbreaks commencing
in the first quarter. While controlled outbreaks generally lasted only 3–5 quarters,
and large outbreaks generally finished within 11–13 quarters, the economic effects
were projected to last for a longer period. While the economy returned to close to its
baseline forecast within the period modelled for those controlled outbreaks lasting
only a few quarters, for uncontrolled outbreaks the economic effects extend beyond
the 20 quarters of the simulations. For the large outbreaks, Ebola deaths reduced
labour supply below baseline by as much as 18% by the end of the outbreak, but by
Q20 there was insufficient time for labour–market adjustment to reduce employment
by the same degree. Nevertheless, even for the period modelled, the economic
impacts of large outbreaks on GDP and employment are large. For Fiji, the present
value of the reduction in GDP over the 20 quarters is of the order of $1.7 billion for
the five large outbreak scenarios.19 Furthermore, simulations were conducted under
the assumption that affected countries borrowed to cover increased medical costs
during the outbreak.20 The present value of the increase in Fiji’s external debt over
the period is around $1.1 billion to $1.2 billion for the large outbreak scenarios.

The international tourism sector comprises about a quarter of Fiji’s economy. A
substantial portion of the cost for that country’s economy is due to the contraction in
this sector during the outbreak. Timor-Leste experiences large outbreaks infecting
about the same proportion of its population as Fiji and has a population about one
third larger than Fiji. However, with a much smaller tourism sector, Timor-Leste is
projected to experience falls in GDP relative to baseline of the order of around $0.7
billion to almost $1.0 billion.

The direct effects of controlled outbreaks are small, and such outbreaks have
only a negligible effect on the Timor-Leste economy, where the behavioural effects
have limited impact. However, while the tourism reduction is smaller in Fiji for a
controlled outbreak (50% rather than 80%), it still is sufficient to result in a negative
impact on the nation’s GDP for seven quarters; starting at almost 4% below baseline
in Q1 before falling to almost 6% below baseline for the next three quarters, and then
gradually returning to the baseline over the next three quarters. Since there are few
deaths for controlled outbreaks, they cause little in the way of permanent effects on
the Fijian economy. However, the temporary tourism reduction does have a negative
impact on the country’s trade balance for the period it lasts. The present value of
Fiji’s increased debt is just over $0.3 billion.

The shocks for each CGE scenario were formed on the basis of simulation
outputs of a stochastic disease model. This allows us to place probabilities on
whether an outbreak is controlled or uncontrolled for each intervention scenario.
Thus, assuming there is no stochastic fade out, all reactive interventions result in
uncontrolled outbreaks. In the case of Fiji between 27% and 30% of small and

19Dollar values are in USD.
20The reduction in Fiji’s tourism exports also acts to increase the country’s external debt.
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large pre-emptive interventions, respectively, are estimated to result in controlled
outbreaks, while for Timor-Leste pre-emptive interventions result in just over 90%
of outbreaks being controlled. Thus, our linked disease-CGE model points to the
importance of pre-emptive measures in improving the chances of reducing the
substantial economic costs, as well as the human costs, of an uncontrolled Ebola
outbreak if an infected person were to enter either of the illustrative countries
examined.

It should be borne in mind, however, that while the economic and human
costs for uncontrolled outbreaks are shown to be extremely high, these results
should be viewed from the perspective that we assume no further response—either
innate behaviour change by the population or additional external intervention—
to escalating outbreak conditions. While such responses are likely, the range and
complexity of potential effects require model development and parameterisation that
are beyond the scope of this chapter.
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