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Abstract The farming–pastoral zone in China is located in the monsoonal region.
It has large fluctuations in precipitation and land use. It is one of the most obvi-
ous areas of ecological vulnerability. Taking Yulin City of Shanxi Province as an
example, this paper builds an indicator system and then uses principal component
analysis (PCA) and analytic hierarchy process (AHP) to filter indicators and deter-
mine weights. Finally, this paper establishes an ecological vulnerability index (EVI)
model. Through the classification of EVI, the spatial distribution map of ecological
vulnerability in Yulin City is obtained. The results show that the ecological vulner-
ability in Yulin City tends to decrease from north to south. Among counties, Fugu,
Shenmu, Yuyang and Dingbian are extremely fragile, and the main causes of eco-
logical vulnerability are economics, landscape diversity, annual precipitation and
vegetation coverage.

Keywords Remote sensing · Ecological vulnerability · Principal component
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1 Introduction

When ecosystem is intervened by outside, it will make sensitive reactions and self-
recovery reactions, and this is ecological vulnerability [1]. China’s farming–pastoral
zone is located in themonsoon climate zone of Southeast Asia, and with large precip-
itation fluctuations, has characteristic of fragile ecology. Yulin City is an area where
ecology is particularly fragile. The ecological environment research of Yulin and the
whole farming–pastoral zone has attracted extensive attention from scholars. How-
ever, the main method for ecological assessment of Yulin is single-factor evaluation
method [2–6]. And a few methods for ecological vulnerability evaluation still have
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problems of large correlation between indicators and strong subjectivity of weight
determination [7–9]. These years, remote sensing is used in ecological research, and
it makes data acquisition simpler and data types more abundant [10–12]. This paper
uses remote sensing, meteorological and statistical yearbook data, principal com-
ponent analysis (PCA) and analytic hierarchy process (AHP) to obtain ecological
vulnerability index and analyzes the overall status, spatial distribution and causes of
ecological vulnerability of Yulin.

2 Study Area

Yulin is located in the northernmost part of Shanxi Province, between N 36°57′ –
N 39°35′ and E 107°28′–E 111°15′. It has typical semiarid and arid climate, and
the average annual precipitation is close to 400 mm. There are three landforms:
windblowngrass beach, loess hilly and gully, and beam-shaped lowhills. Themineral
resource is diverse and rich in total. It is an important energy export city in China.
Special climate, topography, soil texture and high-intensity human activities make it
a typical ecologically fragile area in the northern farming–pastoral zone.

3 Methods and Data

3.1 Construction of Ecological Vulnerability Indicator
System

This paper constructs an evaluation indicator system from three aspects: ecological
sensitivity, ecological restoration and ecological stress [13, 14]. Taking into account
the availability of data, 13 indicators were chosen to constitute the indicator system.
The indicator system is shown in Fig. 1.

3.2 Evaluation Indicator Selection and Weight Determination

3.2.1 Standardization of Primary Selection Indicators

We standardize the primary selection indicators to make them be unified to 0–1, so
that the values are closer to 1 indicating that the ecology is more fragile [4]. Eight
indicators of temperature, elevation, slope, aspect, soil erodibility factor, soil erosion
intensity, GDP density and population density are positively correlated with eco-
logical vulnerability; landscape diversity index, vegetation coverage, precipitation,
relative humidity and GPP are negatively correlated with ecological vulnerability.
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Fig. 1 Ecological vulnerability assessment indicator system

The standardized formulas are shown in Eqs. 1 and 2, respectively.

posively correlated: P∗i = (Pi − Pmin)/(Pmax − Pmin) (1)

negatively correlated: P∗i = 1 − (Pi − Pmin)/(Pmax − Pmin) (2)

P∗i represents the value after the normalization of the ith evaluation indicator, Pi

represents the value before the ith evaluation indicator is normalized, Pmax represents
the maximum value of the ith evaluation indicator, and Pmin represents the minimum
value of the ith evaluation indicator [4].

3.2.2 Selection of Evaluation Indicators

We use the PCA to analyze 13 standardized primary evaluation indicators [15–19].
Table 1 shows the results of sorting the principal components according to the con-
tribution value. The cumulative contribution rate of the first five is 86.81%, which
is more than 85%, indicating that the first five principal components can cover most
information of the primary selection indicators, so the first five principal components
are selected as evaluation indicators. Table 2 shows eigenvectors corresponding to
each principal component.

3.2.3 Determination of Indicator Weights

WeuseAHP to determine indicatorweights. The assignment principle of the pairwise
comparison matrix is shown in Table 3. The larger the value, the greater the influence
of the ith element on the previous indicator layer compared to the jth element.
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Table 1 Principal component contribution rate and cumulative contribution rate

Principal component Eigenvalues Contribution rate (%) Cumulative contribution rate
(%)

1 0.10317 32.7911 32.7911

2 0.08283 26.3266 59.1177

3 0.03872 12.3056 71.4233

4 0.03104 9.8670 81.2902

5 0.01737 5.5220 86.8123

6 0.01226 3.8962 90.7085

7 0.00934 2.9697 93.6782

8 0.00720 2.2894 95.9676

9 0.00390 1.2381 97.2057

10 0.00341 1.0833 98.2890

11 0.00252 0.8021 99.0910

12 0.00156 0.4959 99.5869

13 0.00130 0.4131 100.00

Table 2 Eigenvectors corresponding to each principal component

Eigenvector Principal component

1 2 3 4 5

α1 0.64236 −0.27545 0.32387 −0.03409 0.04721

α2 −0.11891 −0.25524 −0.16227 0.06069 0.08317

α3 −0.00889 0.01013 0.01042 −0.01733 0.09875

α4 −0.01328 0.09345 0.16424 0.97881 0.06298

α5 0.02509 0.27287 0.09066 −0.02346 −0.06305

α6 0.08523 0.12261 −0.12268 −0.00493 0.16803

α7 0.44726 0.28017 0.46675 −0.07925 −0.11404

α8 0.16351 0.28050 −0.05602 −0.00666 0.08573

α9 −0.32953 −0.19795 0.55427 −0.11678 0.70066

α10 −0.32737 0.49174 0.36467 −0.09927 −0.25902

α11 −0.07814 −0.00431 0.15554 −0.05549 −0.03140

α12 −0.28965 0.15145 0.14463 −0.04015 −0.15021

α13 0.18040 0.54730 −0.33484 −0.04125 0.58566

α1–α13: GDP density, population density, soil erodibility factor, aspect, DEM, GPP, landscape
diversity index, relative humidity, soil erodibility factor, annual precipitation, slope, annual average
temperature, vegetation coverage
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Table 3 Assignment of pairwise comparison matrix

Scaling Meaning

1 Element i and element j have the same importance to the previous-level factor

3 Element i is slightly more important than element j

5 Element i is more important than element j

7 Element i is much more important than element j

9 Element i is extremely more important than element j

2, 4, 6, 8 Indicates the intermediate value of the above adjacent judgment

Reciprocal A ji = 1/Ai j

This paper constructs a pairwise comparison matrix based on the contribution
rates of the first five principal components. Equation 3 is proposed to calculate
relative importance scale, Ai j represents the relative importance scale of elements
i and j, and αi and α j represent the contribution rates of elements i and j. A is
the pairwise comparison matrix constructed. After calculation, the weights of the
evaluation indicators are: 0.5350, 0.2868, 0.0853, 0.0555, 0.0374.

Ai j = (αi − α j )

3.4086
+ 1, (i < j) (3)
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3.3 Evaluation Model

The five evaluation indicators are graded by the natural discontinuity gradingmethod
shown in Table 4. The higher the level, the higher the ecological vulnerability.

In Eq. 4, EVI represents the ecological vulnerability index; wi represents the
weight of the ith evaluation indicator; fi represents the level of the ith evaluation
indicator [4].

EVI =
n

∑

i=1

wi fi (4)



162 Y. Zhong et al.

Table 4 Indicators’ grading results

Grade Principal component

1 2 3 4 5

1 0–0.47 0.09–0.46 0–0.71 0–0.36 0–0.52

2 0.47–0.79 0.46–0.74 0.71–0.93 0.36–0.56 0.52–0.71

3 0.79–1.18 0.74–1.03 0.93–1.16 0.56–0.76 0.71–0.88

4 1.18–1.58 1.03–1.42 0.16–1.40 0.76–0.97 0.88–1.08

5 1.58–1.94 1.42–2.03 1.40–1.82 0.97–1.33 1.08–1.62

3.4 Data Sources and Preprocessing

The soil erosion intensity is calculated according to RUSLEmodel (modified general
soil loss model) based on the above data [20–22]. Thirteen indicators are unified into
1 km resolution, UTM_Zone_49N (Table 5).

Table 5 Data sources Data type Data resource Indicator

Soil HWSD Soil erodibility
factor

Vegetation type MCD12Q1 Landscape
diversity index

Statistical data Shanxi provincial
bureau of statistics

Population and
GDP density

Topographic SRTM Elevation, slope
and aspect

GPP MOD17A2 Annual average
GPP

Vegetation
coverage

MOD13A2 Vegetation
coverage index

Meteorological China
meteorological
data network

Temperature,
humidity,
precipitation
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Table 6 Division of
ecological vulnerability levels
in Yulin

Vulnerability
level

EVI value Area (×103

km2)
Proportion of
total area (%)

Micro <1.9 9.17 21.8

Mild 1.9–2.7 4.26 10.1

Moderate 2.7–3.2 9.59 22.8

Severe 3.2–3.6 10.83 25.7

Extreme >3.6 8.26 19.6

4 Results and Analysis

4.1 Overall State of Ecological Vulnerability

The EVI is classified as shown in Table 6. Yulin has the largest area with severe
vulnerability, accounting for 25.7% of the city’s area. Moderate and above vulner-
ability account for nearly 70% of the city’s area, and only 20% of the city’s area is
micro-vulnerability.

4.2 Spatial Distribution of Ecological Vulnerability

The distribution of ecological vulnerability levels is shown in Fig. 2. The propor-
tion of vulnerability levels in various districts and counties is shown in Fig. 3. The
ecological vulnerability level of Yulin is characterized by high north and low south.
Fugu, Shenmu, Yuyang and Dingbian are most fragile. These four counties have 20–
45% extremely vulnerable areas. Especially in Shenmu, extremely vulnerable areas
account for 45% of the county’s area.

4.3 Analysis of the Causes of Ecological Vulnerability

Figure 4 depicts the standardized evaluation indicators of various districts and coun-
ties in Yulin. The closer the evaluation indicator is to 1, the greater the vulnerability
of the county. The main causes of ecological vulnerability in Dingbian are single
landscape, low vegetation coverage and low precipitation. The reason for the eco-
logical vulnerability of Fugu and Shenmu is human production activities and single
landscape types. These two counties develop coal industry vigorously, and this leads
to a decline in landscape diversity and increase in ecological vulnerability. The main
reason for the ecological vulnerability of Yuyang is the landscape type is not rich
enough and coupled with the pressure of human activities on the environment, and
vegetation coverage is low. The main reason for the ecological fragility in Jingbian
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Fig. 2 Spatial distribution of ecological vulnerability levels in Yulin City

Fig. 3 Statistics on
ecological vulnerability
levels of various districts and
counties in Yulin City
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is that the landscape type is not rich and the precipitation is small. The 5/6 popu-
lation in Jingbian is agricultural population, and less precipitation in arid areas will
restrict the growth of crops and reduce the stability of the agricultural and livestock
ecosystem. Vegetation coverage and aspect are the main reasons for the ecological
fragility of Hengshan. There is a large area of half-sunny slope in Hengshan, and
water evaporation on sunny slope is fast, which is not conducive to vegetation growth.
One of the most obvious features of the six southern counties is the large K value
and high vegetation coverage, and the vegetation has a tightening effect on the soil
thus decreasing EVI.
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Fig. 4 Evaluation indicators after standardization in various districts and counties of Yulin City

5 Summary

This paper processes remote sensing, and meteorological and socioeconomic data,
and uses PCA and AHP to calculate EVI. The main research results were as follows:

1. The method of combining PCA and AHP is used to construct the EVI model,
which reduces the correlation between indicators and improves the objectivity
of weight determination.

2. Obtain the distribution map of vulnerability level. It is found that the ecological
of six northern counties is more fragile than six southern counties. The extremely
fragile areas are Fugu, Shenmu, Yuyang and Dingbian.

3. The main causes for the ecological vulnerability of the farming–pastoral zone in
Yulin were economics, landscape diversity, annual precipitation and vegetation
coverage.
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