
Chapter 9
A Sharp-Interface Immersed Boundary
Method for High-Speed Compressible
Flows

Shuvayan Brahmachary , Ganesh Natarajan , Vinayak Kulkarni,
and Niranjan Sahoo

9.1 Introduction

Numerical simulation of flow past bodies offers several challenges especially when
the geometry is complex in nature. Ensuring a good quality body-conformal mesh
for the underling geometry is not a trivial proposition and demands user expertise
while also being time-consuming. The challenge of creating a good quality body-
conformalmesh becomes evenmore severewhen the geometries undergomotion. For
such scenarios, Cartesian grid-based methods offer a significant advantage because
of the ease with which the complex bodies can be treated on a simple orthogonal grid.
This reduces the cost and time associated with grid generation and can be extended in
a straightforward manner for moving body problems. The use of a fixed background
grid provides the user with significant leverage by avoiding mesh movement and
re-meshing that would be necessitated on flow solvers with conformal meshes. One
of the approaches in this class is the “cut–cell” method that has been used quite
extensively (Clarke et al. 1986; Udaykumar and Shyy 1995; Ye et al. 1999). However,
this approach suffers from stability issues due to small cells near the boundary that
limit the time step and requires cell-merging strategies to overcome this problem.
Another class of Cartesian grid-based methods that have gained popularity in the
last few years is the immersed boundary method, originally proposed by Peskin in
his seminal work in 1972 (Peskin 1972). Over the last two decades, there have been
several variants of the immersed boundary methods, although the development of
these techniques for fluid flows and heat transfer has been largely for incompressible
flows. A good and comprehensive review of IB methods can be found in Mittal and
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Iaccarino (2005) and Sotiropoulos andYang (2014), with the latter highlighting some
of the interesting applications of IB techniques for complex incompressible flows.

The use of IB approaches for compressible flows has not been as widespreadwhen
compared to its incompressible counterparts. The earliest studies in this direction
were carried out by Ghias et al. (2007) and de Palma et al. (2006). While the former
discussedmostly low subsonic flows using ghost-cell IBmethods, the latter extended
the IB methodology to low supersonic flows. This was followed by the work on
sharp-interface IB methods for transonic flows using local grid refinement by de
Tullio et al. (2007). Cho et al. (2007) employed the Brinkman penalisation method,
which belongs to the class of “diffuse" interface IB methods for compressible flows
over a wide range of Mach numbers. Studies using a hybrid Cartesian immersed
boundary (HCIB) method in the subsonic and transonic regimes were carried out
by Zhang and Zhou (2014). Sambasivan and Udayakumar devised a sharp-interface
variant for multi-material compressible flows (Sambasivan and UdayKumar 2010),
and ghost-cell immersed boundary approaches have been employed to study shock
diffraction and explosion with moving bodies (Mo et al. 2016). There have also
been efforts to develop higher-order finite difference IB methods for compressible
flow (Brehm et al. 2015) but most studies have been targeted at flows in the high
subsonic and low supersonic flow regimes. Furthermore, while most studies have
addressed Euler flows, only a few efforts concentrate on viscous compressible flows
(Palma et al. 2006; de Tullio et al. 2007; Ghosh et al. 2010; Pu and Zhou 2018).
Importantly, there have been only a handful of studies that have attempted to use the
IB approach for high Mach number flows. In particular, the recent studies of Das
et al. (2017) and Qu et al. (2018) have employed immersed boundary methods for
shocked particle-laden flows and moving rigid bodies, respectively. Nevertheless,
even these studies in high-speed viscous flows do not address the issue of resolution
of the thin boundary layers and consequently the prediction of wall heat flux and skin
friction. To the best of the authors’ knowledge, only the studies of Arslanbekov et
al. (2011) and Sekhar and Ruffin (2013) have attempted to study the stagnation heat
flux estimation using IB methods. While their investigations discussed hypersonic
flows, the Reynolds numbers in their studies were quite moderate. An important
aspect of immersed boundary approaches that also has not been deeply probed is
the issue of discrete conservation. Unlike cut-cell-based methods, IB approaches are
clearly not discretely conservative and there have been no major efforts to look into
the conservation errors particularly in compressible flows.

The literature survey presented herein, while not exhaustive, clearly points to the
need to assess the class of immersed boundarymethods for hypersonic laminar flows.
Thismotivates our studies detailed in this chapterwherewe focus on the development
of a sharp-interface immersed boundary method in the finite volume framework and
discuss its ability to accurately compute hypersonic inviscid and laminar flows. We
specifically discuss the aspects of discrete conservation as well as the efficacy of the
IB approach for computing heat flux and skin friction distribution in viscous flows
past canonical configurations. The remainder of the chapter is organised as follows.
Sections9.2 and 9.3 describe the numerical framework in details. The investigations
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pertaining to conservation errors, Euler flows as well as viscous flow computations
form the subject matter of Sect. 9.4. We summarise the salient findings from the
present study in Sect. 9.5, where a few recommendations for future research are also
outlined.

9.2 Finite Volume Solver for Compressible Flows

In this section, we describe the details of the finite volume flow solver which forms
the basic workhorse of the numerical investigations detailed later in this chapter. The
immersed boundary method, to be discussed in the following section, is integrated
with this flow solver. Based on an unstructured data framework, the flow solver solves
the Navier–Stokes equations for a perfect gas which in the conservative form (in two
dimensions) reads,
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where the vectors SI and SV are the inviscid and viscous source terms, respectively,
and are relevant only for axisymmetric flows. These may be expressed as,
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where,

τθθ = μ
(
−

2
3

(∂u

∂x
+

∂v

∂y

)
+

4v
3y

)

We set α = 1 for axisymmetric simulations while for planar two-dimensional
studies α = 0. Here, U represents the vector of conserved variables (mass, momen-
tum and energy) and FI and GI represent the inviscid fluxes while FV and GV

represent the viscous fluxes. The components of heat flux are represented by qx and
qy while τxx, τyy and τxy are the components of the symmetric viscous stress ten-
sor. Integrating these vector conservation laws over an arbitrary control volume and
applying the Gauss divergence theorem yield the semi-discrete form of the governing
equations. The semi-discrete form of the conservation laws in a compact form reads,
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where u⊥ = unx + vny, θx = uτxx + vτxy − qx, θy = uτyx + vτyy − qy.
The quantity Ωi is the volume of the ith cell, ΔS is the face area and nx and ny

are the components of the outward unit normal to the face. The summation is over
all faces J of a cell i, and the convective and viscous fluxes at a face are evaluated at
the face mid-points using a single-point Gauss quadrature. A second-order accurate
linear reconstruction proposed by Barth and Jesperson (2001) is employed to deter-
mine the states required for convective flux computations. The convective fluxes are
determined usingAUSM scheme (Liuo and Steffen 1993), unless otherwise specified
and the Venkatakrishnan limiter (Blazek 2001) is used to ensure monotonicity of the
solution. Green–Gauss reconstruction (Blazek 2001) is employed to determine the
gradients required for viscous flux computations. Time advancement is realised using
a five-stage Runge–Kutta scheme (Blazek 2001), although a single-stage RK scheme
(equivalent to explicit Euler) is employed for steady flow computations where tem-
poral accuracy is unimportant. This finite volume (FV) solver has been extensively
validated in previous work on several problems involving inviscid and viscous com-
pressible flows (John and Kulkarni 2014). The flow solver, being based on unstruc-
tured data, is also capable of handling adaptive grids which are constructed by an
isotropic refinement strategy (Natarajan 2009) that divides each “parent” cell into
four “children” with the regions where adaptation is effected identified by the user
apriori.
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9.3 Hybrid Cartesian Immersed Boundary Method

The details and implementation of the sharp-interface hybrid Cartesian immersed
boundary (HCIB) method are discussed in this section. The HCIB approach was
first proposed by Gilmanov and Sotiropoulos (2005) for incompressible fluid flows.
The present work is an extension of their methodology to compressible inviscid
and viscous flows. In the technique, the solid body is immersed into an underlying
Cartesian mesh. The solid boundary is discretised using linear line segments in two
dimensions (or surface triangulated in three dimensions). Unlike traditional body-
conformal CFD solvers, the mesh does not conform to the geometry, and therefore,
the accurate calculation of the near-wall numerical solution is critical. The HCIB
approach has been implemented in the finite volume framework described previously
in Sect. 9.2 and constitutes two distinct stages that are described below.

9.3.1 Cell Classification

The first stage in the HCIB approach is the classification of the cells (or control
volumes) of the underlying Cartesian mesh into three categories. Cells whose cell
centres lie inside the solid are classified as solid cells (denoted as S) while the
remaining cells are termed as fluid cells (denoted as F). This is effected using a ray-
casting algorithm.All F cellswhich share at least one facewith aS cell are then termed
as immersed cells (denoted by I cells). The procedure behind this classification step
is shown in Fig. 9.1 and distinguishes the regions where the solution is sought (F and
I cells) from those where the solution is not necessary (S cells). For stationary cases,
it is easy to see that the classification is a one-time affair whereas for moving body
problems, it must be repeated at every time step.

Approximated Immersed Boundary

Actual boundary

Fluid cell (F)

Immersed cell (I)

Solid cell (S) Solid region

Fluid region

Fig. 9.1 Classification of cells



256 S. Brahmachary et al.

9.3.2 Solution Reconstruction

The second stage in the HCIB approach involves solution reconstruction where the
numerical solution in the near vicinity of the solid body is obtained by enforcing
the boundary conditions while preserving the sharp interface of the geometry. The
numerical solution needs to be only computed in the F and I cells with those in the
F cells obtained by solving the Navier–Stokes equations. The solution in I cells is
however obtained using some form of algebraic reconstruction as detailed in this
section.

We now describe the solution reconstruction for viscous compressible flows for
geometries with adiabatic as well as isothermal walls. The solution reconstruction
is an interpolation along the direction locally normal to the interface as shown in
Fig. 9.2. The boundary conditions are enforced directly at the sharp interface in this
study. To do so, we first identify the nearest face on the solid boundary for each
I cell. Following this, we identify points b and f on the body surface and in the
fluid domain, respectively, which lie along the normal n̂ to the nearest face and also
contain the centroid of the I cell. The point b is the intersection point of the local
normal with the geometric boundary while point f is the closest point on this line
that cuts a connector joining two F cells (see Fig. 9.2). The boundary condition on
the body surface is used to determine the primitive variables at b while we adopt
linear interpolation of the solutions at F1 and F2 to evaluate the fluid properties at f.

φf =
φF1d2 + φF2d1

d1 + d2
(9.1)

Fig. 9.2 Reconstruction for
obtaining φ at immersed
cells

b

f

I

F1

F2

n

F1 & F2

b
I

f
Fluid cells

Body point
Immersed cell

Fluid point

Outward normal

n
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where d1 and d2 refer to distances of the point f from the centroid of cells F1 and F2.
The primitive variables at the I cells are then obtained by a suitable interpolation at
b and f points. The choice of this reconstruction can be either a polynomial or non-
polynomial interpolation, and it need not necessarily be identical for all primitive
variables. The specific details of this reconstruction strategy when both isothermal
and adiabatic surfaces are involved are now discussed.

Assuming that the solution varies linearly and denoting the variable of interest as
φ, one can write its variation along the normal direction as,

φ = C1r + C2 (9.2)

where r is the distance measured from the b point on the sharp interface along the
direction of the outward local normal. Subsequently, if the unknowns C1 and C2 can
be uniquely determined from two independent conditions then the value at the I cell
may be computed as,

φI = C1rbI + C2 (9.3)

The constants C1 and C2 are typically evaluated using the boundary conditions at
“b” and the interpolated solution at “f”.

9.3.3 Reconstruction for Velocities

For viscous flows, the solid wall satisfies both the no-slip as well as the impermeable
wall boundary condition, i.e. u||b = 0 and u⊥b = 0, respectively. The quantities u||

and u⊥ denote the components of velocity vector along the local tangential and local
normal directions, respectively, and may be determined as,

u|| = ufny − vfnx (9.4)

u⊥ = ufnx + vfny (9.5)

where nx and ny now refer to the components of the normal to the interface along
which the one-dimensional solution reconstruction is effected. The values of these
velocity components at the f point may be computed using Eq. (9.1) where φ is
chosen as u|| or u⊥. The use of the known values at b and f points helps to compute
the values of u|| and u⊥ at the I cells using Eq. (9.3) and one can obtain the Cartesian
velocity components at the cell centres using the reverse transformation that reads,

uI = (u||I ny) − (u⊥I nx) (9.6)

vI = (−u||I nx) − (u⊥I ny) (9.7)
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For moving bodies whose motion is induced by the flow, the velocity components of
the body are nonzero and are evaluated by solving the second-order ODEs describing
Newton’s second law of motion. This gives,

uk+1
b = uk

b +
Δt

Mb
Fk

x

vk+1
b = vk

b +
Δt

Mb
Fk

y

(9.8)

where k and k + 1 represent the present and next time step, respectively, and Mb

is the mass of the body. The terms (Fx, Fy) represent the force components and are
determined from the wall pressure and wall shear stresses. We choose the contour of
integration for this purpose as the approximated immersed boundary as highlighted
in Fig. 9.1, which leads to an approximated domain stair-step representation as also
in Mizuno et al. (2015).

9.3.4 Reconstruction for Pressure

The pressure at the cell I is obtained by invoking the boundary layer approximation
that strictly holds for non-separated flows. This gives ∂p

∂r = 0, and as a result, one
can impose the pressure outside the boundary layer on the surface. We thus have
pb = pI = pf, with pf obtained using Eq. (9.1). While this condition would be
strictly valid only for thin layers and unseparated flows, they have been used for
inviscid flows (Brahmachary et al. 2018) and appear to work even in scenarios with
flow separation (as shall be shown in studies in Sect. 9.4.6).

9.3.5 Reconstruction for Temperature

The value of temperature at the point b depends on whether the wall boundary is
adiabatic or isothermal. For isothermal walls, the wall temperature Tw is known
and is constant which results in Tb = Tw. The temperature at the immersed cell TI

can then be obtained using Eq.9.3. It is also possible to employ nonlinear and non-
polynomial interpolation (Ghosh et al. 2010) although this has not been considered
in the present study.

9.3.6 Reconstruction for Density

The density at I cells follows from the equation of state (EOS) for a perfect gas and
is computed as,
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ρI =
pI

RTI
(9.9)

where R is the gas constant and pI as well as TI follow from suitable reconstruc-
tion approaches as described in Sects. 9.3.4 and 9.3.5. This methodology of one-
dimensional solution reconstruction along the local normal direction closely resem-
bles the extended extrapolation technique in Zhao et al. (2010) except that the normal
velocity varies linearly in our approach as opposed to the quadratic variation in the
extended extrapolation method.

9.3.7 Calculation of Wall Pressure, Shear Stress and Heat
Flux

For viscous computations, the major quantities of interest are the surface distribution
of pressure, heat transfer and viscous stresses. We provide a concise description of
the computation of these parameters in the IB-FV solver to enable reproducibility of
results in the following sections.

The pressure at the wall, by virtue of the homogeneous Neumann BC, is
pw = pI = pf and may also be quantified using the coefficient of pressure defined
by,

Cp = (pw − p∞)/(0.5ρ∞V2
∞)

The wall heat flux is related to the temperature gradients at the wall and is defined
as,

qw = kw
∂T

∂r

∣∣∣
w

where kw is the fluid thermal conductivity at the wall and is a function of the wall
temperature Tb (obtained from Sutherland’s law). Simple finite differencing may
be employed for linear solution variation of temperature gradient in the near-wall
region. The heat flux on the surface then follows as,

qw = kw
TI − Tw

rbI

A non-dimensional wall heat flux may also be defined in terms of Stanton number
(St),

St = qw/(0.5ρ∞V∞cp(To − Tw))

where To is the total temperature of the freestream and cp is the constant pressure
specific heat capacity.

Like the wall heat flux, the wall shear stress is a scalar quantity whose distribution
over the surface is estimated to obtain the viscous drag acting on the body. The wall
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shear stress is obtained by adding up all components of the viscous force along the
local tangential direction as,

τw = (τxxnx + τxyny)tx + (τxynx + τyyny)ty

where tx = ny and ty = −nx denote the components of the local tangent vector and
nx and ny are the components of the local normal to the surface. The conventional
representation is to use the non-dimensional wall shear stress, which is referred to
as the skin friction coefficient (or simply skin friction), Cf defined as,

Cf = τw/(0.5ρ∞V2
∞)

The computation of Cf warrants the estimation of viscous stress components at
the body faces. These may be obtained by first identifying a neighbourhood of F cells
associated with each b point (and therefore a unique I cell) and then using an inverse
distance weighted averaging of the velocity gradients in these F cells to obtain an
estimate at the b point [for further details refer to Brahmachary et al. (2018)]. These
estimates are consequently employed to calculate the viscous stresses.

9.3.8 Reconstruction for Euler Flows

It is important to highlight the differences and/or simplifications in the reconstruction
approach discussed herein for compressible inviscid flows. In case of Euler flows, the
only boundary condition available at b is u⊥b = 0 while the values for all remaining
quantities (u||, pb and ρb) and their gradients are obtained using inverse distance
weighting (IDW) as described in Eqs. (9.10) and (9.11),

φb =

∑i=n
i=1 wiφi∑i=n

i=1 wi

(9.10)

∇φb =

∑i=n
i=1 wi∇φi∑i=n

i=1 wi

(9.11)

wherewi = 1/|di|, |di| being the distance between the centroids of the ith neighbour
(which is a F cell) and b. Here, n represents the total number of node-sharing cells
in the neighbourhood of the immersed cell.

In the following section, we shall explore the efficacy and versatility of the IB-FV
solver that employs this HCIB strategy in an unstructured finite volume framework
to estimate aerodynamic forces and heat loads in high-speed flows.
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9.4 Numerical Investigations

This section is devoted to the numerical studies using the IB-FV solver for com-
pressible inviscid and viscous flows. The importance of the interpolation strategy on
the accuracy of the solution is investigated through a number of test cases involving
simple moving bodies and complex stationary geometries on canonical problems
in inviscid and laminar hypersonic regimes. We discuss the role of solution recon-
struction on conservation errors in compressible flows. One of the critical issues
related to non-conformal approaches is that of discrete conservation. Due to the
non-conservative nature of the solution reconstruction performed in the I cells (as
opposed to the solutions obtained at F cells by solving discrete form of the conser-
vation laws), there is an inherent lack of conservation in IB approaches. This issue
has not been addressed at length in the compressible flow regime, and we probe this
aspect using two different test problems.

9.4.1 Transonic Flow Past Bump

The first test case is the transonic flow past a 10% thick bump. The computational
domain is 3 × 1, and the associated boundary conditions are shown in Fig. 9.3. The
inflow is at a freestream Mach number M∞ = 0.675 while the pressure at the outlet
is fixed, Pout = 0.737. This test case Ni (1982) leads to a normal standing shock
nearly three quarters from the leading edge of the bump. We carry out simulations
on four meshes, viz. 150× 50, 225× 75, 300× 100 and 450× 150 using the IB-FV
solver. Computations have also been performed using a FV solver on body-fitted
meshes of equivalent grid resolution. In Fig. 9.4a–d, we show the comparison of
the solutions obtained using the non-conformal IB-FV solver along with the body-
conformal FV solver. One can clearly observe that not only is the shock diffused in
the coarsest grid, its location has also been inaccurately estimated with the IB-FV
solver. With grid refinement, the shock location approaches that estimated using the
FV solver, which is indeed conservative. One can notice that the shock location from
all FV solutions is same (except the shock is diffused on coarser grids). We also see
the differences between the two solvers from the pressure distributions in Fig. 9.5a
and b where the average shock location using IB-FV approach depends on the grid
resolution and agrees with those estimated by the FV solver only on the finest mesh
and the computed results from Luo et al. (2006).
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10% thick bump

S
ubsonic

inlet

S
ubsonic

outlet
M∝=0.675 Pout=0.737

Fig. 9.3 Computational domain for transonic flow past bump along with boundary conditions

IB-FV
150 x 50

FV
150 x 50

(a)

IB-FV
225 x 75

FV
225 x 75

(b)

IB-FV
300 x 100

FV
300 x 100

(c)

IB-FV
450 x 150

FV
450 x 150

(d)

Fig. 9.4 Mach contours depicting normal standing shock for different mesh resolutions a 150 ×
50, b 225 × 75, c 300 × 100 and d 450 × 150 (Min: 0.1, Δ: 0.1, Max: 1.5) (Top: IB-FV solver;
Bottom: FV solver on body-fitted mesh)

These observations confirm that the solutions obtained using the IB-FV solver
are not discretely conservative but the conservation errors diminish with grid refine-
ment. We further investigate these discrete conservation errors by considering the
supersonic flow past a wedge.
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Fig. 9.5 Pressure distribution on the surface of the body from a FV solver on conformal grid and
b IB-FV solver on non-conformal grid and its comparison with Luo et al. (2006)

9.4.2 Supersonic Flow Past Wedge

We numerically simulate the supersonic flow past a wedge with a semi-vertex angle
of 20◦ and a freestream Mach number M∞ = 2. This configuration is however not
aligned with the underlying Cartesian mesh nor is the oblique shock that is the
flow feature of interest. For this test problem as well, we simulate the flow on four
different meshes in a domain of size 0.1× 0.15. The details of the mesh are provided
in Table9.1. We compute the mass defect on every mesh as,

Δm =
∑

ρf U⊥,f ΔSf (9.12)

where the summation is over all the boundary faces of the domain as well as the
interior faces shared by S and I cells, i.e. the summation is performed along the stair-
step representation in Fig. 9.1. For the FV solver on body-fitted meshes, the mass
defect would be of the order of the steady-state residuals, which is a result of the
discrete mass conservation. Since the IB-FV framework has been shown to be not
discretely conservative, we expect a finite mass defect larger than the steady-state

Table 9.1 Mass defect Δm on different grids

Grid Characteristic length scale, h Mass defect, Δm

100 × 150 1/100 0.115

150 × 225 1/150 0.075

200 × 300 1/200 0.057

250 × 375 1/250 0.045
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Fig. 9.6 Variation of mass
defect Δm with grid
refinement
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residuals on every mesh. This is confirmed in Table9.1 which shows the mass defect
on the four different meshes. The errors are three orders of magnitude higher than the
residuals, but decrease as the grid is refined. From Fig. 9.6, one can see that the mass
error falls at a rate close to unity i.e. mass defect fall linearly with grid refinement.
Thus, one can remark that there is a finite O(h) conservation error for the IB-FV
approach similar to the observations made for a class of mesh-free methods (Sridar
and Balakrishnan 2003) and the framework is strictly conservative only in the limit
as grid spacing tends to zero.

9.4.3 Hypersonic Flow Past Double Ellipse

To demonstrate the ability of the IB-FV solver in handling hypersonic Euler flows
past complex configuration, we study the high-speed high angle-of-attack flow past
a double-ellipse configuration (Gustaffson et al. 1991). The freestream Mach num-
ber is M∞ = 8.15 and the angle of attack of 30◦ makes it challenging to accurately
simulate the flow as well as estimate the surface pressure distribution. The dou-
ble ellipse is immersed into two different Cartesian meshes with a total number of
cells nc = 36,000 in a computational domain of [−0.1, 0.1] × [−0.1, 0.1]—while
one employs a uniform grid (see Fig. 9.7a) with equal grid spacing the other utilises
a non-uniform spacing (see Fig. 9.7b) which is finer near the canopy region.

The significance of the mesh in the context of non-conformal IB-FV solver can
be understood from Fig. 9.8a where the surface distribution of pressure coefficient
Cp is shown for both the uniform and non-uniform meshes. It can be observed that
while results computed on both these meshes yield an overall fair agreement with the
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(a) (b)

Fig. 9.7 a Uniform, b non-uniform Cartesian grid employed in IB-FV solver for flow over double
ellipse

X

-C
p

0 0.02 0.04 0.06 0.08 0.1 0.12
-2

-1.5

-1

-0.5

0

0.5

IB-FV, uniform grid
IB-FV, non-uniform grid
Gustafsson et al. 1991
Brahmachary et al. 2018

(a) (b)

Fig. 9.8 a Pressure distribution and b Mach contours for hypersonic flow past double ellipse (Min:
0, Δ: 0.5, Max: 8.15)

numerical data of Gustafsson et al. (1991), the uniform mesh is not very accurate in
resolving the pressure jump across the weak canopy shock. The non-uniform mesh
clustering however accurately captures the weak canopy shock and hints towards the
need for selectivemesh refinement in regionswhere sharp gradients in flow are likely.
Figure9.8b depicts the Mach contours that show the strong detached bow shock as
well as the weak canopy shock. We can, therefore, remark that the IB-FV solver
is capable of accurately computing flows with sharp flow gradients but necessitates
sufficient local mesh resolution to also resolve the complex geometries.
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9.4.4 Cylinder Lift-Off

To highlight the applicability of the IB-FV solver for moving body problems, we
simulate the supersonic flow past a cylinder initially at rest but “lifts-off” due to the
aerodynamic forces. The test case consists of a rectangular domain of size 0.1 × 0.2
with a cylinder of radius 0.05m and density ρc = 10.77kg/m3 placed at the bottom
wall (0.15, 0.05), as shown in Fig. 9.9. The pre-shock condition is maintained as
ρ=1.4kg/m3 and p = 1Pa, whereas the left boundary is assigned as post-shock state.
The cylinder is considered rigid and the influence of gravity is neglected and we
compare our solutions with available numerical results in the literature that make the
same assumptions. Studies were conducted on uniform Cartesian grids whose details
are provided in Table9.2 which also contains the position of the centre of mass of the
cylinder at a final time of t ∼ 0.3s. It can be observed that while there are differences
in the position of the cylinder when compared with the results in Arienti et al. (2003),
these differences tend to diminish with increasingmesh resolution. These differences
can also be attributed to the fact that the reconstruction strategy in the I cells in the
present work are different from those in Arienti et al. (2003). Figure9.10 shows the
pressure contours at two different time instances which clearly depict the complex
unsteady flow phenomena. We also compare the time history of the trajectory of the
cylinder with those computed by Sambasivan and UdayKumar (2009) in Fig. 9.11
and a good agreement in the results is further proof of the ability of the proposed
IB-FV framework in computing high-speed Euler flows accurately.

In the test case to follow, we shall investigate the efficacy of the present IB-FV
flow solver for scenarios involving laminar hypersonic flows with an emphasis on
the accurate prediction of wall heat flux and skin friction.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2
t = 0.0 s S

upersonic
outlet

S
upersonic

inflow

Initial shock location

Fig. 9.9 Location of body and shock at time t = 0 s

Table 9.2 Position of centre of mass of cylinder (in m) at time t ∼ 0.3s

IB-FV Arienti et al. (2003)

Characteristic
grid scale, h

Xc Yc Xc Yc

1/500 0.721 0.144 – –

1/1000 0.697 0.147 0.625 0.145

1/1600 0.684 0.148 – –
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Fig. 9.10 Pressure contours at a t = 0.16 s (Min: 0, Δ: 0.4, Max: 19.22), b t = 0.3 s (Min: 0, Δ:
0.4, Max: 19.22) on 1000 × 200 grid

Fig. 9.11 Trajectory of the
centre of mass of the
cylinder on 1000 × 200 grid
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9.4.5 Hypersonic Flow Past a Flat Plate

Wefirst numerically simulate the viscous compressible flow past a flat plate of length
L = 0.5334m at a freestreamMach numberM∞ = 6. Although the geometry is sim-
ple, the high freestream Reynolds number Re∞ = 1.4 × 107 makes it an interesting
test case to test the ability of the IB-FV solver in accurately predicting the wall prop-
erty distributions. The freestream pressure and temperature areP∞ = 2211.56Pa and
T∞ = 65 K, respectively, and the surface of the flat plate is maintained at a constant
temperature Tw = 100 K. We consider a computational domain of size 0.1× 0.5334
which is divided into a total number of control volumes nc = 50,000, with 250 grid
points along the length of the body and 200 grid points normal to it. The grid is
non-uniform with clustering near the wall surface and a minimum grid spacing of
Δymin = 4 × 10−6 m is chosen to ensure that the boundary layers arewell-resolved.
The computations have also been performed using the FV solver as well for the sake
of comparison.

Figure9.12a shows the comparison of the pressure distribution along the surface
of the flat plate obtained from the IB-FV and the FV solvers. The pressure distri-
butions from both the solvers are in excellent agreement as is also the distribution
of wall Stanton number in Fig. 9.12b. It is also interesting to note that the heat flux
distribution computed suing the IB-FV solver also agrees well with the numerical
data of Lillard and Dries (2005). Although the flat plate geometry conforms to the
Cartesian grid, the IB-FV solver computes the near-wall quantities using a linear
reconstruction as opposed to the FV solver which solves the conservation laws. The
excellent comparison of wall pressure and Stanton number distributions is a testi-
mony to the fact that the linear reconstruction suffices to accurately estimate the wall
heat fluxes on simple geometries even at high Reynolds numbers.
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Fig. 9.12 Distribution along the surface of the wall for a wall pressure and b Stanton number with
numerical data of Lillard and Dries (2005)
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9.4.6 Hypersonic Flow Past a Compression Ramp

In order to consider non-aligned geometries, we numerically investigate the flow past
a compression ramp which has been studied in the past both numerically as well as
experimentally (Holden 1978). Figure9.13a describes the configuration consisting of
a straight rampof lengthL = 0.4394manda semi-vertex angle of 15◦. The freestream
conditions are taken the same as that of the experimental study with M∞ = 11.63
and Re∞ = 552,216/m. The freestream temperature is T∞ = 67.05 K with the ramp
surface kept at a constant temperature of Tw = 294.38 K. The computational domain

0 0.70

0.12

Flat plate Ramp

Flat plate Ramp

Fig. 9.13 a Ramp geometry (schematic, not to scale), b locally adapted grid and c pressure contour
for flow past compression ramp (Min: 0, Δ: 51.66, Max: 620)
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is initially divided into nc = 67,500 volumes with a minimum grid spacing of Δy =
3.2 ×10−4 m. This initial resolution was improved to properly capture the boundary
layer by selective adaptation and the final adapted mesh shown in Fig. 9.13b had
229,338 control volumes with a minimum grid spacing of Δy = 2×10−5 m. This
corresponds to a cell Reynolds number (based on freestream conditions and local
grid resolution) around 11 and is shown to be sufficient to resolve the boundary layer.

Figure9.13c shows the pressure contours where the leading edge shock emanating
near the compression corner strikes the ramp and this region corresponds to the max-
imum pressure on the ramp surface. Figure9.14a compares the surface distribution
of coefficient of pressureCp which shows an excellent agreement with experimental
data. The comparison of wall skin friction and Stanton number in Fig. 9.14b and c
also agrees quite well with the experimental observations. These results demonstrate
that the IB-FV solver is fairly accurate even when the geometries are not conforming
to the underlying mesh, provided the mesh resolution near the boundary is sufficient
enough. This demands a low value for the cell Reynolds number and can be achieved
using selective adaptive refinement as in this study.
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9.4.7 Hypersonic Flow Past a Cylinder

As afinal test case,we consider the laminar hypersonic flowpast a blunt configuration
that has been studied experimentally in the past. This is a canonical configuration
representative of the nose cone of re-entry geometries, and the test case is an ideal
one to assess the IB-FV framework for high Reynolds number compressible flows
past blunt geometries. The configuration is a circular cylinder of radius 0.0381m (see
Fig. 9.15a) in a hypersonic flow with freestream Mach number of M∞ = 8.03 and
freestreamReynolds number ofRe∞ =1.835×105. The cylinderwalls aremaintained
at Tw = 294.44 K while the freestream temperature is T∞ =124.94 K, following the
experimental study by Wieting (1987). The computational domain of size 0.07 m ×
0.14 m is initially discretised by a uniform Cartesian mesh with a grid spacing of
2.3×10−4 m, into which the cylinder is immersed. This grid resolution is improved
significantly by four levels of localmesh refinement resulting in afinal grid of 244,433
control volumes that have a near-wall resolution of 1.43×10−5 m.

Figure9.15b shows the pressure contours from the steady-state solution where the
detached bow shock is clearly visible. The surface pressure distribution in Fig. 9.16
is in excellent agreement with the experimental data of Wieting (1987) (for both
initial and final grids), indicating that the grid resolution is not critical in predicting
the wall pressures. However, one can observe from Table9.3 that this is not the case
for stagnation point heat flux, which is severely under-predicted when compared

-0.07 0
-0.07

0

0.07

R = 0.0381 m

Fig. 9.15 a Cylinder geometry and b pressure contour for flow past cylinder (Min: 0, Δ: 5087,
Max: 71,220)
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Fig. 9.16 Pressure distribution along the cylinder and its comparison with experimental data
(Wieting 1987)

Table 9.3 Comparison of stagnation point heat flux qo

Method qo (W/cm2)

Wieting (Wieting 1987) (Exp) 72

IB-FV (initial grid) 0.876

IB-FV (adapted grid) 5.58

to the experimental data. Surprisingly, the estimates of stagnation point wall heat
flux showed little improvement with local adaptation. This is in stark contrast to the
performance of the solver for the test case in Sect. 9.4.6 where the Stanton number
distribution on the ramp surface was quite accurately predicted. The inaccurate pre-
dictions of the wall heat flux raise concerns regarding the reconstruction strategy
and recent studies in Brahmachary (2019) point to the need to evolve physics-driven
reconstruction with possibly non-linear/non-polynomial interpolants for velocities
and temperature.

9.5 Conclusions

The present work is directed towards the development and assessment of a sharp-
interface immersed boundary/finite volume approach for high-speed compressible
flows in an unstructured Cartesian mesh framework. The methodology adopts a one-
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dimensional linear reconstruction that preserves the sharp geometric interface and
the framework is rigorously tested for both inviscid and viscous flows. We show
that the framework is not discretely conservative but the conservation errors are
found to decrease with grid refinement, pointing to the consistency of the approach.
Numerical investigations on inviscid test problems with stationary and moving bod-
ies show that the IB-FV solver can quite accurately predict the wall pressures and
aerodynamic forces. However, the numerical framework was not entirely accurate
for laminar hypersonic flow problems. While the IB-FV solver could compute the
wall pressures accurately for the three geometric configurations studied herein at
high Reynolds number, it could compute the surface heat fluxes accurately only for
non-blunt geometries. On blunt configurations, the IB-FV solver significantly under-
estimated the stagnation point heat flux and these estimates were largely unaffected
by increasing grid resolution. The source of these errors in heat flux predictions
clearly lies in the reconstruction accuracy and conservation errors, and a thorough
diagnostic analysis (Brahmachary 2019) needs to be undertaken to uncover the defi-
ciencies of the sharp-interface IB-FV solver and improve its performance for high
Reynolds number hypersonic flows.
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