
Chapter 7
A Levelset-Based Sharp-Interface
Modified Ghost Fluid Method
for High-Speed Multiphase Flows
and Multi-Material Hypervelocity
Impact

Pratik Das, Nirmal K. Rai, and H. S. Udaykumar

7.1 Introduction

The dynamic response of multi-material interfaces under high-speed flow conditions
is important in awidevariety of engineering applications. For example, the interaction
between gas–liquid interfaces and high-speed flows plays an important role in under-
water explosions and droplet combustion in gas-turbine engines and rocket motors
(Powell et al. 2001;Mayer and Tamura 1996). Shock interactionwith gas–solid inter-
faces is important in shock-induced dispersal of granular material after explosions
(Boiko et al. 1997), high-speed coating technologies (Dongmo et al. 2008), shock
processing of powders (Thadhani 1988), shock wave lithotripsy (Jamaluddin et al.
2011), etc. The hypervelocity interaction between two solid interfaces is important
in the high-speed impact penetration scenarios seen during high-velocity machining
processes (Marusich and Ortiz 1995), high-velocity geological impacts (Artemieva
and Shuvalov 2008), and munition–target interaction (Bürger et al. 2012). In such
high-speed multi-material flow problems, severe topological change of the multi-
material interfaces can occur. The interfaces may suffer extreme deformation (high-
speed machining), fragmentation (droplet break-up), and collapse (shock-induced
bubble or void collapse in solid or liquid); new interfaces can be created (cavitation
in liquid or damage in solid material). The situation is further complicated by the
interaction of high-speed nonlinear waves (e.g., shocks, tensile waves, or detonation
fronts) in the material with the interfaces. The complex physics associated with the
interfacial dynamics makes compressible multi-material flow problems numerically
challenging. In this chapter, we describe a generic numerical framework for solv-
ing problems involving the interaction of multi-material interfaces with high-speed
flows.
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Numerical methods for solving high-speed multi-material flow problems are
broadly classified under two approaches: Lagrangian and Eulerian. Lagrangian
approaches are popular for solving high-speed multi-material flow problems, espe-
cially in solid mechanics. The computational mesh in Lagrangian methods follows
the material points. In high-strain rate problems, extreme deformation of the mate-
rial may cause entanglement of the initial Lagrangian mesh and frequent re-meshing
may be required, which renders the numerical solution of such problems compu-
tationally challenging. The numerical challenges of mesh entanglement with large
deformation in the Lagrangian methods are ameliorated to some extent in the arbi-
trary Lagrangian–Eulerian (ALE) methods. In the ALE method, the mesh conforms
to the contours of the deforming object, but the mesh is not attached to the material
points. Nonetheless, re-meshing is still required in ALE to handle large deformation
of interfaces and objects in high-speed flow problems. An alternative approach for
such problems is the Eulerian method. In the Eulerian frameworks, the mesh is fixed,
and the material is allowed to “flow through” the mesh. Eulerian formulations are
preferred for solving problems in fluid mechanics, but the Eulerian framework can
also be used to solve the high-speed problems in solid mechanics. In the Eulerian
formulations for solid mechanics, spurious elastic dissipation may occur as the elas-
tic part of strain is not fully recovered because of nonintegrability in the elasticity
model. Nevertheless, under high-strain rate conditions, the elastic strains are negligi-
ble compared to the plastic strain. Furthermore, a unifying feature of broad spectrum
of problems under high-speed and/or high-strain rate conditions is the hyperbolic
nature of the governing equations, which can be cast under the umbrella of a general
Eulerian framework.

In the fixed-grid Eulerian methods, there is no explicit definition of the inter-
faces between different materials or phases. The interfaces do not align with the
fixed background mesh; instead, the interfaces are embedded in the fixed-grid. The
interfaces are tracked implicitly either through a progress variable/field variable or
Lagrangian marker point. For example, the levelset methods (Osher and Sethian
1988; Sethian and Smereka 2003; Sussman et al. 1998) uses a signed distance field
on the Eulerian grid to track the evolution of the interface. Similarly, in the volume
of fluid method (VOF) (Hirt and Nichols 1981), a marker function is defined as
the volume of a certain phase at a given computational cell of the Eulerian grid to
keep track of the interfaces. The front tracking methods (Unverdi and Tryggvason
1992) use Lagrangian marker points to trace the location of the interfaces embed-
ded within the Eulerian grid. Among these methods, levelset-based sharp-interface
tracking methods are attractive for solving high-speed multi-material flow problems.
In the levelset-based approach, zero-levelset contours sharply define the interfaces
embedded in the background mesh. Therefore, in the levelset-based approach, the
definition of the sharp interface is readily available from the levelset field, whereas,
in VOF or front tracking methods, the sharp interface is reconstructed from the
volume fraction field or the Lagrangian marker points, respectively. Also, with the
levelset-based approach, the extreme deformation, collision, merging, and fragmen-
tation of the interface is naturally incorporated through the advection of the levelset
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field. Therefore, levelset-based sharp-interface tracking is attractive for high-speed
multi-material flows where extreme deformation of the interfaces is commonplace.

The major challenges of Eulerian sharp-interface methods lie in applying bound-
ary conditions at the interfaces because in such methods the embedded interface
does not align with the background mesh. The ghost fluid method (GFM), origi-
nally developed by Fedkiw et al. (1999), has been successfully used to prescribe
appropriate boundary conditions at the embedded interfaces. In the GFM approach
(Sambasivan and UdayKumar 2009; Shiv Kumar and UdayKumar 2009), a band of
computational cells around the interface is defined as ghost points corresponding to
each phase of the interacting media. The ghost band, when supplied with appropriate
flow conditions, together with the respective real fluid, constitutes a single flow field.
The success of the GFM approach largely depends on the accuracy with which the
ghost states are populated. The ghost states, in turn, are derived based on the material
enclosed by the embedded interfaces. Thus, in the GFM framework, the treatment of
embedded interfaces essentially boils down to suitably defining the ghost states such
that the material properties and the interface conditions are represented accurately.
The interfacial conditions imposed at the interface through the GFM depends on
the materials/phases separated by the interfaces. The numerical implementations of
the interfacial conditions for different multi-material interfaces are discussed in this
chapter.

In the following sections of this chapter, first, the unified governing equations for
multi-material flows along with the strategies for material modeling cast in a Carte-
sian grid-based Eulerian framework is presented in Sects. 7.2.1 and 7.2.2. Following
that the numerical methods for solving the governing equations are discussed in
Sect. 7.2.3. The interfacial treatment through the levelsets and GFM are described in
Sects. 7.2.4, 7.2.5, and 7.2.6. Results obtained from several different multi-material
flow problems are presented in Sect. 7.3. At the end, the concluding remarks and the
scopes for future work are discussed in Sect. 7.4.

7.2 Methods

A Eulerian sharp-interface multiphase framework to perform reactive mesoscale
simulations involving different phases, i.e., solid, liquid, or gas under shock loading
is presented. A detailed description of the governing equations, constitutive models
and numerical algorithms are discussed in this section.

7.2.1 Governing Equation

The governing equations for compressible multiphase systems are solved in the
following form:

∂

∂t
(ρYk) + ∂

∂x j

(
ρu j Yk

) = ∂

∂x j

(−Jj,k
)+ .

ωk (7.1)
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∂

∂t
(ρui ) + ∂

∂x j

(
ρui u j − σi j

) = Mi (7.2)

∂

∂t
(ρE) + ∂

∂x j

[
u j
(
ρE − σi j

)] = ∂

∂x j

(−q j
)+ SE (7.3)

where ρ, ui , σi j , q j , and E are the density, velocity components, Cauchy stress
tensor, heat flux, and the specific total energy (kinetic and internal), respectively.
The subscript k is an index for identifying species in the multicomponent system. Yk ,
Jj,k , and

.
ωk are the mass fraction, diffusion mass flux, and the rate of production or

destruction of the mass of the kth species. The source terms Mi and SE account for
the exchange of momentum and energy between the different phases due to phase
change at the sharp interface. The Cauchy stress tensor σi j is decomposed into the
deviatoric τi j and dilatational part pδi j as,

σi j = −pδi j + τi j (7.4)

The definition of the deviatoric τi j and dilatational part pδi j changes with the
phase description. A detailed description of the constitutive models for different
phases is presented next.

7.2.2 Constitutive Models

Constitutive models for Solids
For the compressible flow of deformable solid materials, the dilatational part of the
stress, i.e., pressure in Eq. (7.4) is described using Mie–Gruneisen equation of state
(Meyers 1994) form as:

p(e, V ) = pc(V ) + �(V )
(e − ec(V ))

V
(7.5)

where V = 1/ρ is the specific volume, pc is the cold curve, and ec is the energy
along the isotherm and � is the Gruneisen parameter. For metals which feature in
the applications presented in the results section, such as nickel and aluminum, pc is
expressed as,

pc(V ) = ρ0c20η

1 − sη2
(7.6)

where η = 1 − V
V0
, ρ0 is the speed of sound, and s is the material parameter. The

values for the material parameters used in the current analysis are provided in the
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previous work (Sambasivan et al. 2013). The energy on the isotherm ec is obtained
as,

ec(V ) = e0 −
V∫

V0

pc(V )dV (7.7)

where e0 is the reference energy at 0 K (usually set to 0).
The deviatoric response of the solid materials (exhibiting elastoplastic behavior)

τi j is modeled using a hypo-elastic formulation where the rate of deviatoric stress
tensor τ̇i j is related to the rate of change of strain rate tensor Di j which is expressed
in terms of velocity components as,

Di j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
(7.8)

The response of elastoplastic materials to high intensity (shock/impact) loading
conditions are modeled by assuming the additive decomposition:

Di j = De
i j + D p

i j (7.9)

where De
i j and D p

i j are the elastic and plastic strain rate components, respectively, ui

and u j are the velocity components. Assuming isochoric plastic flow (tr(D p
i j ) = 0),

the volumetric or dilatational response is governed by an equation of state (Eq. 7.5)
while the deviatoric response follows the conventional theory of plasticity. Using
Eq. (7.10), the rate of change of deviatoric stress component can be modeled using
a hypo-elastic stress-strain relation:

τ
∧

i j = 2G
(

Di j − D p
i j

)
(7.10)

where G is the modulus of rigidity, τ
∧

i j is the Jaumann derivative, and Di j is the
deviatoric strain rate component.

The Jaumann derivative is used to ensure the objectivity of the stress tensor with
respect to rotation and expressed as,

τ
∧

i j = τ̇i j + τik
k j − 
ikτk j (7.11)

where 
i j is the spin tensor:


i j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
(7.12)

The deviatoric strain rate component in Eq. (7.10) is given by:
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Di j = Di j − 1

3
Dkkδi j (7.13)

The isochoric plastic strain rate component
(

D p
i j = D

p
i j

)
in Eq. (7.10) is modeled

assuming a coaxial flow theory (Drucker’s postulate) for strain hardening material
(Khan and Huang 1995):

D p
i j = ΛNi j (7.14)

where Ni j = τi j/
√

τklτkl is the outward normal to the yield surface and� is a positive
scalar factor called the consistency parameter (Ponthot 2002).

To update the stress state of the elastoplastic solid materials, first, an elastic
predictor step is performed by solving the stress equation,

∂

∂t

(
ρτi j

)+ ∂

∂x j

(
u jτi j

) = 2G
(
Di j
)+ 
ikτk j − τik
k j (7.15)

along with the conservation of mass, momentum, and energy equations (Eqs. 7.1–
7.3). After the elastic update, the plastic deformation of the material is incorporated
using the radial return algorithm given by Ponthot (2002), where the elastic stress is
brought back to the yield surface. The Johnson–Cookmodel defined the yield surface
as,

σY = [
A + B

(
ε̄ p
)n]
[
1 + C ln

( ˙̄ε p

˙̄ε p

)][
1 − θm

]
(7.16)

where σY is the yield stress, ε̄ p is the effective plastic strain, ˙̄ε p is the effective plastic
strain rate, A, B, C, n, m, and ˙̄ε p

0 are the model constants and θ = T −T0
Tm−T0

(T is the
temperature, T0 and Tm are the reference and melting temperature).

The details regarding the calculation of ε̄ p and ˙̄ε p from the radial return algorithm
is presented in the previous work (Sambasivan et al. 2013). The temperature T is
calculated as,

T = T0 + e − e0
CV

(7.17)

where e is the specific internal energy obtained from the energy equation (Eq. 7.3),
e0 is the reference energy, and CV is the specific heat at constant volume for the solid
material.

Constitutive models—for Liquids and Gas
For the liquid and gaseous phase, the dilatational part, i.e., pressure in Eq. (7.4) is
obtained based on the different equation of state models available in the literature.
Tait equation of state [ref] is used for water and liquid aluminum. Air and vapor are
modeled using the ideal gas equation of state. The JWL equation of state (Massoni
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Table 7.1 Initial conditions for the simulationof shock-induced combustionof an aluminumdroplet

ρ
(
kg/m3

)
P (Pa) u (m/s) T (K)

Pre-shocked air (x ≥ 8.64 m) 1.2 101,325.0 0.0 291.5

Post-shocked air (x < 8.64 m) 5.13 1431,216.0 225.91 966.5

Droplet 2030.0 181,582.8 0.0 2743.0

et al. 1999) is used for the gaseous mixture formed after decomposition of energetic
materials such asHMX.The expressions for the different equation of states are briefly
discussed below.

Tait equation of state for liquids:
The Tait EOS in the following form is used to obtain p in the liquid phase:

p = B

[(
ρ

ρ0

)N

− 1

]

+ A (7.18)

where A, B, N, and ρ0 are physical constants and depend on the material (Liu et al.
2005; Houim and Kuo 2013). The values of physical constants used in this work for
water and liquid aluminum are shown in Table 7.1.

JWL equation of state for reaction products for HMX:
The JWL equation of state is used for the reaction products obtained from the
decomposition of solid HMX:

p = A

[
1 − ωV0

V R1

]
exp(−R1V/V0) + B

[
1 − ωV0

V R2

]
exp(−R2V/V0) (7.19)

where V = 1/ρ is the specific volume, ω is the Gruneisen parameter, and A, B, R1,
and R2 are material parameters obtained from the work of Massoni et al. (1999).

For the liquid phase, the deviatoric or the viscous stress tensor in Eq. (7.4) is given
by:

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μ

∂u j

∂x j
δi j (7.20)

where μ is the viscosity of the liquid.
It is important to note that for the liquid and gas phases, the stress update equation

is not solved (unlike solids) and the deviatoric stress is obtained after solving the
mass, momentum, and the energy equations (Eqs. 7.1–7.3).

Constitutive models—Thermal and Species Diffusion
The heat fluxes due to thermal diffusion and species diffusion effects are obtained
from:
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qj =
N∑

k=1

Jj,khk − ∂(kT )

∂xj
(7.21)

where N is the total number of species in the gaseous phase. hk is the specific
enthalpy of kth,μ and k are the mixture averaged viscosity and thermal conductivity.

The diffusion mass flux
(
Jj,k
)
of the kth species is obtained from:

Jj,k = ρYkv j,k (7.22)

where v j,k is the diffusion velocity of the kth species along the j th direction. The
diffusion velocities are first calculated from:

v j,k
∧ = − Dk,mix

Xk

(
∂ Xk

∂x j
+ (Xk − Yk)

∂(ln p)

∂x j

)
(7.23)

where Xk is the mole fraction of the kth species. The mixture averaged diffusion
coefficient Dk,mix is obtained from binary diffusion coefficients Dkl using:

Dk,mix = 1 − Yk
∑N

l=1,k �=l Xl/Dkl

(7.24)

The diffusion velocities of the kth species are then corrected to ensure mass
conservation (Powell et al. 2001):

v j,k = v j,k
∧−

N∑

k=1

Ykv j,k
∧

(7.25)

The source term in the species transport Eq. (7.1),
.

ωk accounts for the vapor added
to the gaseous phase at the interface and the change in species concentration:

.
ωk = ω̇k,evap + ω̇k,react (7.26)

ω̇k,evap accounts the change in vapor mass fraction at the grid points near the droplet
surface due to evaporation and ω̇k,react accounts for the change in the mass fraction
of all the species involved in the chemical reaction.

ω̇k,evap is computed from the following equation:

ω̇k,evap =
{
0, for k = 1
ṁ ′′ Aint

V , for k = 2
(7.27)

where Aint is the area of the interface within a computational cell. V is the volume
occupied by the gaseous phase in a cell. Aint and V are computed using algorithms
described in Mousel (2012), Scardovelli and Zaleski (2000). ṁ ′′ is the evaporation
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mass flux at the gas–liquid interface and is computed from the Scharge-Knudsen
equation (Houim and Kuo 2013):

ṁ ′′ = 2C

2 − C

√
Mwk

2π Ru

(
Psat√

Tl
− Pv√

Tg

)

(7.28)

where

C =
{

1 −
(

ρg

ρl

) 1
3

}

exp

(

− 1

2
(
ρl/ρg

)1/3 − 2

)

where Ru is the universal gas constant and Mwk is the molecular weight of the kth
species.

For problems involving shock-induced chemical reactions, the source term ω̇k,react

in Eq. (7.26) is obtained using the Arrhenius-based chemical kinetic model. For
instance, energetic materials such as HMX can undergo decomposition depending
on the temperature rise. To model the chemical decomposition of HMX, a three
steps Arrhenius model given by Tarver et al. (1996) defines the ω̇k,react. Gas-phase
combustion of aluminum vapor in the air is modeled using a 11 equation reaction
model (Huang et al. 2009).

The source terms Mi represent the momentum exchange between the gas and the
liquid phase due to the phase change at the interface. Mi is calculated from:

Mi = ṁ ′′ Aint

V
ui (7.29)

The source term in the energy equation, SE , represents the total energy associated
with the phase changes and is calculated from:

SE =
N∑

k=1

ṁ ′′ Aint

V

⎡

⎣

⎛

⎝h f,k +
T∫

T o

C p,k(τ )dτ

⎞

⎠− Ru

Mwk
T

⎤

⎦ (7.30)

where h f,k is the specific enthalpy of formation of the kth species at the reference
state (T 0 = 298 K). Ck

p(T ) is the specific heat capacity at a constant pressure of the
kth species, at a temperature T. C p,k(T ) is a polynomial function of temperature T
in the absolute scale and taken from (Burcat’s Thermodynamic Data).

In the problems involving chemical reactions or phase changes, each of the Eule-
rian computation grid cells defines the mixture average pressure of the grid point,
i.e.:

p =
n∑

k=1

pk (7.31)
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where pk is the partial pressure of the kth component of the gaseous mixture.
The average temperature (T ) of the mixture is obtained by solving the following

equation for total specific energy (E) of the system using the Newton-Raphson
method:

E(T ) =
n∑

k=1

⎡

⎣Yk

⎛

⎝h f,k +
T∫

T o

C p,k(τ )dτ

⎞

⎠− Ru

Mwk
T

⎤

⎦+ u2 + v2 + w2

2
(7.32)

7.2.3 Numerical Schemes

The numerical schemes to solve the system of equations described in Sects. 7.2.1 and
7.2.2 are briefly discussed in this section. Since there are different timescales involved
in thegoverning equations for convection, thermal, and species diffusion and reaction,
the numerical scheme for the governing equations is based on an operator splitting
algorithm. The splitting of the operators is decided based on the relative timescales of
the physical process which can be determined a priori using the material parameters
relevant for the physical processes. For instance, the species, momentum and thermal
diffusion coefficients can inform about the relative time scales. Depending on the
operators, the numerical schemes can vary.

The hyperbolic terms in the governing equations are first integrated using a
third-order Runge–Kutta (TVD-RK) (Gottlieb and Shu 1998) scheme to obtain an
intermediate solution state U* at the nth timestep:

U∗ = H�t
(
Un
)

(7.33)

where Un is the solution state at the end of the nth timestep. H�t () is the lin-
earized operator for integrating the hyperbolic terms in the governing equations. The
parabolic terms in the governing equations are integrated using the Runge–Kutta–
Chebyshev (RKC) explicit time integration scheme (Verwer et al. 2004) to obtain a
second intermediate state U∗∗ from U∗:

U∗∗ = P�t
(
U∗) (7.34)

where P�t () is the operator for integrating the parabolic terms.
Finally, the source terms are integrated using a fifth-order explicit Runge–Kutta–

Fehlberg scheme to obtain the solution at the n + 1th timestep:

Un+1 = S�t
(
U∗∗) (7.35)

The timestep size �t is from the CFL number:
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�t = CFL

[
�x

u + a

]

min
,where CFL ≤ 1 and a is the wave speed (7.36)

A third-order accurate ENO-LLF (Shu and Osher 1989) scheme is used for spatial
discretization of the hyperbolic terms in the governing equations. A fourth-order
accurate finite difference scheme (Das 2017) is used to discretize the parabolic terms.

7.2.4 Interface Tracking Using Levelsets

The levelset method (Osher and Sethian 1988; Sethian and Smereka 2003) is used
in this work to define the interface between the gaseous and the liquid phases. The
zero-levelset contour defines the location of the sharp interface between the liquid
and the gaseous phases. A narrow-band levelset field provides the signed normal
distance to the nominal interface from any point in a band around the sharp interface.
The levelset field is advected to capture the evolution of the interface as the flow
evolves in time:

∂φ

∂t
+ un · ∇φ = 0 (7.37)

where φ represents the levelset field. un is the normal velocity of the interface. The
levelset field is advected at the end of eachflow timestep to capture the evolution of the
gas–liquid interface. The third-order TVD-Runge–Kutta method is used to perform
the time integration. The fifth-order WENO scheme (Jiang and Shu 1996) is used for
spacial discretization of Eq. (7.37). The high-order discretization scheme maintains
the accuracy of the levelset advection and mitigates the mass-conservation error
caused by numerical diffusion. The levelset field is reinitialized (Sussman et al. 1994)
every five timesteps to ensure that it remains a signed distance function. The different
materials separated by the zero-levelset contours are coupled using a modified ghost
fluid method (GFM), which is described next.

7.2.5 Boundary Conditions at the Interface

The flow calculations in the different materials or phases separated by the sharp
interfaces are coupled through the appropriate boundary conditions. The boundary
conditions or the interfacial jump conditions depend on the materials separated by
the interface. The appropriate boundary conditions for different types of interfaces
are described in the following sub-sections.

Boundary treatment of solid–solid interfaces:
In problems where deformable solids interact with each other on parts of the inter-
face, continuity of normal stress components and the continuity of normal velocity
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components are enforced. No constraint is applied to the tangential components of
stress and velocity fields.

The velocity field and stress states are transformed in the local normal and
tangential directions at each grid points as,

un = |	un| = 	u.n̂ (7.38)

us = |	us | = 	u.ŝ (7.39)

where 	u is the velocity vector in the Cartesian coordinates, 	un and 	us are the normal
and tangential velocity vectors.

The total stress tensor in the normal and tangential coordinates is given by

σ̃ = Jσ J T (7.40)

where J =
(

nx ny

sx sy

)
is the Jacobian matrix and n̂ and ŝ are local normal and

tangential vectors defined at the interface.
The coupling of the normal component of stress and velocity and decoupling of

the tangential components ensures frictionless sliding between the materials. Thus,
at the interfaces:

[	u.n̂
] = 0 (7.41)

[̃σnn] = 0 (7.42)

[̃σns] = 0 (7.43)

[P] = 0 (7.44)

where σ̃nn and σ̃ns are the normal components of the stress tensor, P is pressure, and
	u is the velocity vector.

Boundary treatment of solid–void interfaces:
This type of interfacial condition arises whenever the deformable solid interface
interacts with a surrounding void, i.e., at a free surface. Conditions corresponding
to physically consistent wave reflection phenomena are enforced at all free surfaces.
Therefore, zero-traction conditions on the normal stress components are enforced on
those portions of the interface that are free surfaces, viz.:

σ̃nn = 0 (7.45)

σ̃ns = 0 (7.46)
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Boundary treatment of fluid–rigid solid interfaces:
Interfaces between fluid and rigid solids are encountered in the simulations of
particle-laden flows. In such calculations, the particles are assumed as rigid solids,
i.e., particle deformation is neglected, and a no-slip and no-penetration boundary
conditions are enforced at the fluid–rigid solid interfaces. A Dirichlet boundary con-
dition is applied for the velocity components in the fluid. The velocity of the fluid
at the interface is set to the velocity of the solid–fluid interface representing the
embedded rigid object (uI).

For pressure and density, Neumann boundary conditions are enforced at the solid–
fluid interface. The density boundary condition is as follows:

∂ρ

∂n
= 0 (7.47)

A normal force balance at the interface provides the pressure boundary condition:

∂p

∂n
= ρsu2

I,t

R
− ρsan (7.48)

where uI,t is the magnitude of the tangential component of velocity of the fluid at
the interface and an is the magnitude of the normal component of acceleration of the
solid–fluid interface (a�).
Boundary treatment of fluid-fluid interfaces:
Fluid–fluid interfaces are encountered in problems involving bubbles or droplets
suspended in a gas. The interactions of the gas and liquid at the interface are further
complicated by the effects of surface tension and phase change. The interaction of
the two fluids at the interface is described by the following jump conditions:

[un] = ṁ ′′
[
1

ρ

]
(7.49)

[p] = −γ κ − ṁ ′′[un] − [τnn] (7.50)

[τns] = −dγ

ds
(7.51)

[
q̇ ′′
cond

] = −ṁ ′′[h] + [τnnun] + [τnsus] (7.52)

where the operator [ ] represents:

[χ ] = χg − χl

χ is anyflowvariable of interest. The subscripts g and l represent the flowvariables
at the interface in the gaseous and the liquid phase, respectively. The subscripts n
and s represent the directions normal and tangential to the interface. γ is the local
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surface tension at the gas–liquid interface. κ is the local curvature at the interface
and is calculated from the levelset field (Sussman et al. 1994).

Equation (7.49) accounts for the jump in the normal velocity of the two phases at
the interface caused by vaporization or condensation. Equation (7.50) describes the
jump in pressure at the interface due to surface tension (−γ κ), vaporization (ṁ[un]),
and jump in the normal component of viscous stress (τnn). The jump in the tangential
components of the deviatoric stress tensor ([τns]) in Eq. (7.51) represents the effect
of Marangoni stresses at the interface. The jump in the heat flux

([
q̇ ′′
cond

])
is given by

Eq. (7.52). It accounts for the latent heat of evaporation (ṁ[h]) and the work done
by the viscous stresses ([σnnun], [σnsus]).

The above-mentioned jump conditions for the different types of interfaces are
implemented through the ghost fluid method to couple the flow fields of different
materials at the sharp interface. The implementation of the GFM for these different
types of boundary conditions is described in the following section.

7.2.6 The Ghost Fluid Method

The ghost fluid method is used to supply appropriate boundary conditions at the
sharp interface. The ghost fluid method was originally proposed by Fedkiw et al.
(1999). In GFM, extra few layers of computational cells, defined as ghost layers,
are added beyond the sharp-interface boundary for each phase. Figure 7.1 shows a
schematic of a computational grid with an embedded interface to demonstrate the
categorization of the computational points into the “bulk points” in the material and
the “ghost points” within the ghost layer around the interface. The number of ghost
layers depends on the stencil size and order of the discretization scheme. The ghost
points provide the boundary conditions for the flow calculations at the computational
cells of their corresponding phase near the interface. The “ghost layer” is populated
such that the appropriate boundary condition at the sharp interface is imposed. There
are two steps in populating the ghost points with the ghost values. In the first step,
first, the flow field near the interface is reconstructed from the data available at the
bulk points in the vicinity of the interface to estimate the flow variables near the
interface. In the second step, the flow variables near the interface obtained from the
reconstructed flow field are used to estimate the ghost value for any flow variables at
the ghost point such that the boundary condition/interfacial jump condition for that
variable at the interface is satisfied.

Estimation of the flow variables near the interface:
Flow variables near the interface are estimated to extend the flow field from the
bulk points to the ghost points. However, in the Cartesian grid-based sharp-interface
methods, the grid points often do not align with the location of the interface. There-
fore, to obtain the values of the flow variables near the interface, the flow field is
reconstructed along the interface normal direction.
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Fig. 7.1 Categorization of the computational cells

The numerical methods for obtaining the flow variables near the interface in the
current levelset-based framework is explained through the following example of a
typical ghost point with respect to material 1 IG in Fig. 7.2. The flow variables near
the interface are obtained by probing the material 1 at a distance 1.5�x from the
interface in the gaseous phase. To probe for values of the field variables, first, the
normal projection of IG on the interface, (point labeled I in Fig. 7.2) is obtained. The
location of I is obtained from the following equation:

XI = XI G − φI G ∗ nI G (7.53)

where φI G is the magnitude of the levelset field at the point G and nI G is the unit
vector normal to the interface computed at G from the levelset field (Sussman et al.
1998). X I and XI G are the locations of the points I and IG, respectively. Following
this, a probe is inserted in the material 1. The probe is 1.5�x away from the point I
on the interface. The location of the probe is given by the following equations:

XF = XI + 1.5�x ∗ nI G (7.54)

where XF is the position of the endpoint of the probe F. A convex hull is formed
around F using neighboring grid points in the vicinity, as shown in Fig. 7.2. The
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Fig. 7.2 Numerical method for reconstructing the flow field near the interface

flow variables, e.g., pressure (pF ), density (ρF ), and velocity (uF ) at F are obtained
using bilinear interpolation from values at the grid points forming the convex hull.
The field variables at F interpolated from the computational grid are extended to the
ghost point IG while imposing appropriate boundary conditions at the interface.

Calculation of the ghost values from the flow variables estimated near the interface
The ghost values of the flow variables at the ghost points are calculated from the
reconstructed flow field near the interface. The ghost values are computed such
that the appropriate boundary conditions/interfacial jump conditions are satisfied.
The boundary conditions depend on the type of interface. The numerical method
for implementing the appropriate boundary conditions for solid–solid, solid–void,
fluid–rigid solid, fluid–fluid, and solid–solid interfaces are described in the following
sub-sections.

Solid– solid interface
The interaction between twodeformable solids ismodeled by populating ghost values
that satisfy the continuity of normal velocity, pressure, and normal component of the
stress tensor as described in Sect. 7.2.5. The ghost point for material 1 in material 2,
i.e., the point IG, is populated with the following conditions for the field variables,
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The density field is supplied using a zero gradient, i.e., Neumann condition:

ρIG = ρF (7.55)

The continuity of pressure is enforced at the ghost node IG in material 2 by simply
injecting the node with the real value of the pressure in material 2 as,

pI G = preal
I G (7.56)

Similar to the pressure, the continuity of normal velocity is applied by initializing
the normal component of the velocity vector with the real value (from material 2) of
the normal velocity component at node IG:

un,I G = ureal
n,I G (7.57)

The tangential velocity component at IG is extended using the zero-gradient
condition,

us,I G = ut,F (7.58)

The stress tensor at the ghost node IG is reconstructed by enforcing the zero-
gradient condition for the tangential components and continuity of normal stress
components,

σ̃I G =
(

σ̃ real
ns σ̃ real

ns

σ̃ real
ns σ̃ss,F

)
(7.59)

Solid–void interface:
For the solid–void interface, conditions corresponding to the physically correct wave
reflections are enforced. For instance, at the free surface, a compressive wave is
reflected back as a tensile wave and vice versa. Therefore, zero-traction conditions
for the normal stress components are enforced. The other field variables, i.e., density
and velocity components are initialized with the zero-gradient conditions.

The field variables at the ghost node, IG for the solid–void interface is populated
as,

ρI G = ρF (7.60)

un,I G = un,F (7.61)

us,I G = us,F (7.62)

pI G = pF (7.63)
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The zero-traction conditions, i.e., zero value of the normal stress components at
the interface are applied at the ghost node IG,

σ̃I G =
(−σ̃nn,F −σ̃nn,F

−σ̃nn,F σ̃ss,F

)
(7.64)

Fluid–rigid solid interface:
The no-slip boundary condition is applied at the fluid–rigid solid interface. The ghost
values for the flow variables at a typical ghost point IG (Fig. 7.2) for a fluid–rigid
solid interface are described in this section. A Neumann boundary condition for the
pressure and density are imposed at the interface by setting

pI G = pF (7.65)

and

ρI G = ρF (7.66)

where ρI G and ρI G are the ghost values of pressure and density at the ghost point IG.
A no-slip boundary conditions for velocity is used. For that uF is first decomposed
into the components normal and tangent to the interface, as given below:

(
un,F
us,F

)
=
[

nx ny

ny −nx

](
u
v

)
(7.67)

where un,F and us,F are the components of uF along the normal and the tangential
direction of the interface. u and v are the components of uF along the x- and y-
axis, respectively. nx and ny are the x and y components of nIG , respectively. The
ghost values of the velocity components at IG

(
un,I G, us,I G

)
are calculated from the

velocity of the gaseous phase and the velocity of the solid–gas interface using linear
interpolation, as follows:

un,I G = un,I (φI G + 1.5�x) − φI Gun,F

1.5�x
(7.68)

us,I G = us,I (φI G + 1.5�x) − φI Gus,F

1.5�x
(7.69)

where un,I and us,I are the components of velocity of the interface along the normal
and the tangential direction of the interface.

GFM treatment of the fluid–fluid interface:
Ghost values for the fluid–fluid interfaces are obtained such that Eqs. (7.49)–(7.52)
are satisfied. However, only satisfying Eqs. (7.49)–(7.52) while computing the ghost
values is not sufficient to ensure the coupling of the two phases at the interfaces. Equa-
tions (7.49)–(7.52) are coupled with a local 1D Riemann problem at the interface to
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allow the characteristics waves in the bulk material to travel across the interfaces.
However, solving Eqs. (7.49), (7.50), and (7.51) simultaneously in conjunction with
an interfacial Riemann problem is computationally expensive. To avoid this prob-
lem, the interfacial jump conditions are decoupled and solved separately during the
hyperbolic step and the parabolic step within an overall single flow timestep. The
following 1D local Riemann problem along with the following interfacial jump con-
ditions are solved to populate the ghost points before integrating the hyperbolic terms
in the governing equations:

[un] = ṁ ′′
[
1

ρ

]
(7.70)

[p] = −γ κ − ṁ ′′[un] (7.71)

The contributions from the parabolic terms for the two phases at the interface
are coupled by populating the ghost points such that the following interfacial jump
conditions are imposed at the interface:

[τnn] = 0 (7.72)

[τns] = −dγ

ds
(7.73)

[
q̇ ′′
cond

] = −ṁ ′′[h] + [τnnun] + [τnsus] (7.74)

The methods adopted to obtain the ghost values for the hyperbolic and the
parabolic steps are described in the following two sub-sections.

Treatment of interface for hyperbolic terms
An interfacial Riemann problem is solved to obtain p, ρ and un at the interfacial
ghost points. Figure 7.3 shows a schematic to illustrate the numerical method for
constructing a local 1D Riemann problem at a typical interfacial ghost point labeled
IG. A local Riemann problem normal to the interface is constructed at the ghost point
G. The initial conditions for the local Riemann problem are obtained from the flow
variables (ρ, un, p) in the gaseous

(
ρg, un,g, pg

)
and the liquid

(
ρl , un,l , pl

)
phases

near the interface.
A 1D Riemann problem is solved to obtain the intermediate (*) states from the

flow variables in the gaseous phase
(
ρg, un,g, pg

)
and the liquid phase

(
ρl, un,l , pl

)

at the interface. The intermediate (*) states are used as the ghost values at the ghost
points for each phase. In this formulation, the jumps in pressure and normal velocity
of the intermediate (*) states across the contact discontinuity given by the following
equations:

[
u∗

n

] = u∗
n,g − u∗

n,l = ṁ ′′
[
1

ρ

]
(7.75)
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Fig. 7.3 Schematic for computing the ghost values during the hyperbolic step of the multi-step
integration process

[
p∗] = p∗

g − p∗
l = −γ κ − ṁ ′′[un] (7.76)

are incorporated in the 1D Riemann problem. The Riemann problem takes the
following algebraic form:

fl
(

p∗
l , pl , ρl , un,l

)+ fg
(

p∗
g, pg, ρg, un,g

)+ un,g − un,l + [un] = 0 (7.77)

where

fg =

⎧
⎪⎨

⎪⎩

(
p∗

g − pg
)√ Ag

p∗
g−Bg

, when p∗
g > pg

2ag

γ−1

[(
p∗

g

pg

) γ−1
2γ − 1

]
, when p∗

g < pg
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Ag = 2

(γ + 1)ρg

Bg = γ − 1

γ + 1

(
Pg + B

)

ag =
√

γ Pg

ρg

and

fl =

⎧
⎪⎨

⎪⎩

(
p∗

l − pl
)√ Al

(p∗
l +B)−Bl

, when p∗
l > pl

2al
N−1

[(
p∗

l +B

pl+B

) N−1
2N − 1

]
, when p∗

l < pl

Al = 2

(N + 1)ρl

Bl = N − 1

N + 1

(
pl + B

)

al =
√

N ∗ (pl + B
)

ρl

B = B − A

The Newton-Raphson method is used to solve Eq. (7.77). ρ∗
g , ρ∗

l , u∗
n,g , and u∗

n,l
are obtained from the following equations:

ρ∗
g =

⎧
⎪⎪⎨

⎪⎪⎩

ρg

√
p∗

g
pg

+ γ−1
γ+1

γ−1
γ+1

p∗
g

pg
+1

, when p∗
g > pg

ρg

(
p∗

g

pg

) 1
γ

, when p∗
g < pg

(7.78)

ρ∗
l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρl

√√√√
p∗
l +B

pl +B
+ N−1

N+1

γ−1
γ+1

p∗
l +B

pl +B
+1

, when p∗
l > pl

ρl

(
p∗

l +B

pl+B

) 1
N
, when p∗

l < pl

(7.79)

u∗
g = ug + ul

2
+ fg − fl

2
+

ṁ ′′
[
1
ρ

]

2
(7.80)

u∗
l = ug + ul

2
+ fg − fl

2
−

ṁ ′′
[
1
ρ

]

2
(7.81)
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ρ∗
g , u∗

n,g , and p∗
g are obtained by solving the 1D interfacial Riemann problem at I

and are used as the ghost values for the gaseous phase. Similarly, ρ∗
l , u∗

n,l , and p∗
l ,

computed from the 1D interfacial Riemann problem are used as ghost values at the
interfacial ghost points with respect to the fluid phase. These ghost values for density,
velocity, and pressure at the interfacial ghost points are extrapolated to the interior
ghost points using a PDE-based multidimensional extrapolation approach (Meyers
1994).

The GFM for the parabolic terms
TheGFM treatment at the interface for the parabolic terms in the governing equations
is different from the hyperbolic terms. The ghost values for velocity and temperature
are calculated separately before integrating the parabolic terms in the governing
equation such that Eqs. (7.72)–(7.74) are satisfied.

Calculation of the velocity field in the ghost fluid region
The numerical method for computing the ghost values of velocity components for
coupling the parabolic terms at the interface is described in this section in the context
of a typical ghost point IG in Fig. 7.3. The ghost values of the velocity at IG are
obtained by solving Eqs. (7.72) and (7.73). which can be written in the following
forms:

[τnn] =
[
2μ

∂un

∂n
− 2

3
μ

(
∂un

∂n
+ ∂us

∂s

)]
= 0 (7.82)

[τns] =
[
μ

(
∂us

∂n
+ ∂un

∂s

)]
= −dγ

ds
(7.83)

where un and us are the components of velocities of the fluid phases along the
normal and the tangential direction of the interface calculated using Eq. (7.67).
The derivatives of un and us in Eqs. (7.82) and (7.83) can be approximated from
the reconstructed velocity field of the corresponding phases around the interface.
Now, the velocity of the two phases at the interface is not readily available because
the Cartesian grid does not align with the interface. The velocity of the fluids at
the interface can be obtained solving Eqs. (7.82) and (7.83) along with the jump
conditions for the velocity field at the interface given by the following equations:

un,I,g − un,I,l = [
un,I

] = ṁ ′′
[
1

ρ

]
(7.84)

us,I,g − us,I,l = [
us,I

]
(7.85)

where un,I and us,I are the components uI along the normal and the tangential direc-
tion of the interface.un,I,g and us,I,g are the velocity components of the gaseous phase
along n and s at the point I in Fig. 7.3. un,I,l and us,I,l are the velocity components
of the liquid phase along n and s at the point I.

The ghost values of the velocity at IG
(
uI G |ghost

)
are extrapolated from the velocity

of the gaseous phase at the interface
(
uI,g

)
and the point G (uG), so that:
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uI G |ghost = uI,g(φI G + 1.5�x) − φI GuG

1.5�x
(7.86)

Similarly, the velocity at the ghost points with respect to the liquid phase can also
be calculated by solving Eqs. (7.82)–(7.85).

Calculation of the temperature field in the ghost fluid region:
The ghost value for the temperature at IG is calculated such that the jump condition
in the heat flux given by Eq. (7.74) is satisfied. The jump in heat flux between the
gaseous and the liquid phase is cast in the following form:

−kg
∂T

∂n

∣∣
∣∣
g

+ kl
∂T

∂n

∣∣
∣∣
l

= [
q̇ ′′
cond

]
(7.87)

where kg and kl are the thermal conductivity of the gas and the liquid, respectively,
at the interface.

(
∂T
∂n

)
g
and

(
∂T
∂n

)
l
are the thermal gradients in the gaseous and the

liquid phase at the interface, in the direction normal to the interface. For a typical
ghost point IG, shown in Fig. 7.3a,

(
∂T
∂n

)
g
and

(
∂T
∂n

)
l
are estimated from the following

relations:

∂T

∂n

∣∣
∣∣
g

= TG − TI,g

1.5�x
(7.88)

∂T

∂n

∣∣∣
∣
l

= −TL − TI,l

1.5�x
(7.89)

where TG and TL are the temperature at the points G and L in Fig. 7.3a. Similar to the
velocity components, TG and TL are estimated from the temperature at the nearest
four grid points using bilinear interpolation. TI,g and TI,l are the temperature of the
gaseous and liquid phases, respectively, at the interface. The jump in temperature at
the interface is given by:

TI,g − TI,l = [TI ] (7.90)

In this work, the temperature is assumed to be continuous at the interface.
Therefore, [TI ] = 0.

Equations (7.88) and (7.89) are substituted in Eq. (7.87) to obtain:

−kg
TG − TI,g

1.5�x
− kl

TL − TI,l

1.5�x
= [

q̇ ′′
cond

]
(7.91)

Equations (7.90) and (7.91) are solved to obtain TI,g and TI,l as given below:

TI,g = kgTG + kl TL + kl[TI ] + 1.5�x
[
q̇ ′′
cond

]

kg + kl
(7.92)
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TI,l = kgTG + kl TL − kg[TI ] + 1.5�x
[
q̇ ′′
cond

]

kg + kl
(7.93)

Once TI,g and TI,l are obtained, the ghost value of the temperature at IG, TG |ghost,
is obtained by linear extrapolation:

TI G |ghost = TI,g(φI G + 1.5�x) − φI G TG

1.5�x
(7.94)

Further detail of the current GFM can be found in Das and UdayKumar (2019).

7.3 Results and Discussion

The above numerical framework has been validated against several benchmark exper-
imental and numerical studies in the previous work (Sambasivan and UdayKumar
2009; Shiv Kumar and UdayKumar 2009; Das 2017; Das et al. 2018a, b). In this
section, we demonstrate the extent of the capabilities of the current sharp-interface
methods in solving high-speed multi-material flow problems through the follow-
ing numerical example involving fluid–solid, fluid–fluid, solid–solid, and solid–void
interfaces.

7.3.1 Fluid–Rigid Solid Interface: Shock-Induced
Lift-off of a Rigid Cylinder in a Shock Tube

A numerical study of shock-induced lift-off of a rigid cylinder is performed using
the current method (Das 2017). The trajectory of the center of the cylinder calculated
from the current calculations is compared with a benchmark result. The length of
the computational domain is selected as the reference length scale and is taken to
be 1.0. The height of the domain is 0.2 and the diameter of the cylinder is 0.1 non-
dimensional units. The cylinder center is initially at (0.15, 0.05), i.e., the cylinder is
placed close to the bottom wall of the shock tube. The non-dimensional values of
the pressure and density of the un-shocked fluid are 1.4 and 1, respectively. The non-
dimensionalized density of the cylinder is 10.77. The Reynolds number calculated
based on the flow conditions behind the traveling shock wave is 240. A shock wave
of Ma = 3.0 is located initially at x = 0.08 and is allowed to evolve until time t
= 0.3 s. A reflective boundary condition is applied at the top and the bottom edges
of the computation domain. Neumann boundary condition is applied at the east and
the west edges of the computation domain. In this study, a uniform Cartesian grid is
used. Five different grid resolutions are considered, corresponding to 50, 100, 150,
200, and 400 points across diameter for the grid convergence study. The numerical
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Schlieren plots presented in Fig. 7.4 are obtained from themeshwith a grid resolution
of 200 points across the diameter of the cylinder.

The numerical Schlieren fields computed at different time instances (t = 0.0, 0.1,
0.3 s) are shown in Fig. 7.4. As the flow evolves, the incident shock interacts with the
cylinder and reflects from the cylinder surface. The reflected shock travels outward
from the cylinder surface and interactswith the bottomwall. The shockwave reflected
from the bottom wall of the computational domain interacts with the cylinder again,
producing a non-zero lift on the cylinder. The non-zero lift causes the cylinder to
move up from the bottom edge of the computational domain. The locus of the center
of the moving cylinder is compared with the benchmark results (Shiv Kumar and
UdayKumar 2009; Meyers 1994) in Fig. 7.5. The trajectory of the cylinder center
obtained from the current study is in good agreement with the results of previous
studies. It is also observed that the lift-off height of the cylinder is somewhat lower
in the current viscous flow simulation, i.e., viscous effects suppress the lift-off of the

a)

b)

c)

Fig. 7.4 Shock-induced (Ms = 3.0) lift-off of a rigid cylinder in shock tube
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Fig. 7.5 a Locus of the center of the rigid cylinder during the shock-induced lift-off. b The
decreasing L2 error in the locus of the cylinder with grid refinement

cylinder. This effect is modest in the present case since the length over which the
lift-off occurs is small. Thus, although the flow features differ noticeably between the
viscous and inviscid cases, the differences in the particle motion are not significant
for the current cylinder lift-off problem, at least for the duration of the simulation
(Fig. 7.5).

A convergence study is performed for the above moving boundary problem; the
convergence evaluation is based on the errors in tracking the locus of the cylinder
center. The L2 error in the locus of the cylinder is computed from:

ε =

√√√√√
√

∫T
0

(
xfine grid

ci − xCoarse grid
ci

)2
dt

∫T
0

(
xfine grid

ci

)2
dt

(7.95)

The error is seen to monotonically decrease with grid refinement in Fig. 7.5a.
Results obtained from the simulation of cylinder lift-off caused by shock impinge-

ment in a shock tube show that the current GFM is adequate for viscous simulations
of moving boundary problems in supersonic flow.

7.3.2 Fluid–Rigid Solid Interactions: Mach 5 Shock
Interaction with a Cluster of Particles

A resolved simulation of shock interaction with a cluster of randomly arranged
cylindrical particles is demonstrated. In this simulation, the shock Mach number
(Ms) is 5. A cluster of 62 randomly arranged aluminum particles of uniform diameter
is used in this simulation. The volume fraction (φ) of the particles in the cluster is
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5%. Reynolds number of the post-shock incoming flow with respect to each particle
(ReD) is 1000.

A uniform Cartesian grid used in the current calculation. The solid–fluid inter-
faces of the particles are tracked sharply using the current levelset-based approach.
No-slip boundary condition is applied at the interface. The particles in this calcula-
tion are resolved using 100 mesh points across the diameter to capture the viscous
boundary layer on the particles. The diameter of the particles (D) is selected as the
characteristic length scale in this calculation. The initial configuration of the par-
ticle cloud immersed in a quiescent fluid is shown in Fig. 7.6a. Outflow boundary
conditions are applied on all sides of the computational domain.

The sequence of numerical Schlieren in Fig. 7.6a–c shows the evolution of the
unsteady flow field and the intricate shock structures during the interaction of incom-
ing shock waves with the particles. As the incident shock interacts with the particle
cluster, the reflections of the incident shock from the front row of the particles coa-
lesce to form an effectively planar reflected shock, as seen in Fig. 7.6b, c. A part of
the incident shock is also transmitted through the cluster of particles. The reflected
and transmitted shock waves are seen in Fig. 7.6c. The transmitted shock loses its
strength as it travels through the cluster of particles. The attenuation of the strength
of the transmitted shock wave has been observed previously by Chaudhury et al.
(2013).

As the transmitted shock wave propagates through the cluster, multiple internal
reflections of the shocks lead to an unsteady flow field. The vorticity contour plot
of the shocked flow field at t ∗ Us

D = 57.0 in Fig. 7.7 exhibits this unsteadiness.
Baroclinic vortices generated in the slip lines combine with wake vortices caused by
separated shear layers form the coherent structures observed in the vorticity contour
plot. Vorticity concentrations are also seen in inviscid flow calculations of shocks
traversing particle clusters (Das 2017; Regele et al. 2014). In the present case, viscous
effects augment the inviscid vorticity generation mechanisms leading to increased
magnitudes of vorticity in the cluster (Das 2017).

Significant movement of the particles during the interaction with the incoming
shock wave is not observed in the current simulation. This is because the timescale
of the current simulation is significantly smaller than the timescale of the movement
of the particles (Das 2017; Mehta et al. 2016). However, it is worth mentioning that
the particle cluster gets compressed inhomogeneously during the interaction with the
shock. The sequence of numerical Schlieren in Fig. 7.7 shows that the displacement of
the particles in the downstreampart of the cloud is less than the particles in the front of
the cloud. As the shock passes over the cloud, the particles located at the leading edge
begin to equilibrate with the flow even before the shock has reached the downstream
end of the cloud. Owing to this, the particles at the front-end start moving before
the shock reaches the trailing end of the cloud. This leads to enhanced clustering
at the leading edge of the cloud, i.e., the local volume fraction of the particles at
the front-end of the cloud becomes higher relative to the rear-end. Therefore, even
within the short period of the shock passage, movement of the particles changes the
local solid volume fraction in the cloud.
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a)

b)

c)

Fig. 7.6 Mach 5 shock interaction with a cluster of 62 rigid cylindrical particles
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Fig. 7.7 Vorticity contours during Mach 5 shock interaction with a cluster of particles of 10%
volume fraction

The results obtained from the current simulation show that the levelset-based
approach in conjunction with the current GFM can capture the intricate features of
theflowfields, such as the viscous boundary layer over the particles and themovement
of the particles due to shock interaction. The current results and the previous studies
(Khan and Huang 1995; Massoni et al. 1999; Houim and Kuo 2013) have shown that
the current levelset-based approach is suitable for studying shock interaction with
particle clouds through resolved simulations.

7.3.3 Gas–Liquid Interfaces: Mach 3.5 Shock Interaction
with an Aluminum Droplet

The shock-induced combustion of a cylindrical droplet is studied using the current
levelset-based sharp-interface method. For this study, the interaction of a Mach 3.5
shock wave with a cylindrical aluminum droplet of 4 µm in diameter is simulated.
The initial computational setup for the simulation is shown in Fig. 7.8. Reflective

Fig. 7.8 Initial condition for
2D simulation of Mach 3.5
shock interaction with an
aluminum droplet of 4
micron in diameter
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boundary conditions are used at the north and the south boundaries of the compu-
tational domain. An outflow boundary condition is used at the east and the west
boundaries. The initial conditions for the simulation are as in Table 7.1.

The vaporization of the aluminum droplet at the surface and the combustion
of the evaporated aluminum in the air are modeled in this calculation. An 11-step
reduced-order reaction model for aluminum combustion in the air is used for this
current calculation (Huang et al. 2009). The material properties for the gas and the
liquid phases such as viscosity, thermal conductivity, and surface tension used in
the current simulation can be found in Houim (2011). With the given values for the
material properties and the flow conditions, the non-dimensional numbers are ReD =
1000 and WeD = 31.56. The grid resolution of 200 mesh points across the diameter
is used for this study.

The interaction of Mach 3.5 shock with the aluminum droplet is shown through
multiple snapshots of numerical Schlieren and pressure contours in Fig. 7.9. The
initial interaction of the incident shockwith the droplet is demonstrated inFig. 7.9a–c.
The high temperature and the impulsive vaporization of themolten aluminum droplet
initiate a shock wave at the droplet surface as seen in Fig. 7.9a. The interaction of
the incident shock with the gas–liquid interface produces a reflected shock in the gas
and a transmitted shock in the liquid. The reflected and transmitted waves are seen
in Fig. 7.9a. The transmitted wave travels faster through the liquid than the incident
wave in the air as the speed of sound is higher in the liquid than in air. The transmitted
shock wave travels further through the droplet and reaches the gas–liquid interface
at the leeward side of the droplet, as shown in Fig. 7.9b. Figure 7.9c shows that the
transmitted wave reflects back from the interface at the leeward end into the droplet
as a strong expansion wave. Therefore, the numerical Schlieren and the pressure
contours in Fig. 7.9a–c demonstrate that the physical behavior of nonlinear wave
interaction with the gas–liquid interface is captured by the current sharp-interface
method. The higher pressure observedwithin the droplet is due to the effect of surface
tension. This shows that the current GFM incorporates the effects of surface tension
while accurately propagating the characteristic waves from one medium to another
at the interface.

Figure 7.9d, e show, as the flow evolves further, the shock wave travels past the
droplet and the droplet starts to deform. The vaporized aluminum accumulated in the
wake starts to react with air in the wake of the droplet. The chemical reaction induces
strong unsteadiness and asymmetry in the wake even at the low ReD . The contours
of temperature and the species mass fractions are shown in Fig. 7.10. Figure 7.10a
shows that an unsteady diffusion flame forms in the wake of the droplet. The highest
temperature occurs in the shear layers, close to the boundary layer detachment points
behind the droplets. This is because of the high concentration of the aluminum
vapor in the shear layer behind the droplets, as seen in Fig. 7.10b. The aluminum
vapor generated at the front side droplet surface is mostly contained within the
thin boundary layer on the droplet surface. As the boundary layer detaches from
the surface at the leeward side of the droplet, the aluminum vapor accumulated in
the boundary layer flows into the post-detachment shear layer. However, Fig. 7.10b
shows that there in a very little amount of aluminum vapor in the recirculation region
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a)

b)

c)

d)

e) 

Fig. 7.9 Sequence of contour plot obtained from the simulation of Mach 3.5 shock interacting
with and aluminum droplet (Red = 1000). The left column shows the numerical schlieren images.
Pressure contours are shown in the right column
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Fig. 7.10 Contours of temperature (a) and mass fractions of aluminum vapor (b), Al2O2 (c), and
Al2O3 (d) during the Mach 3.5 shock-induced combustion of an aluminum droplet

behind the droplet. This is due to the fact that most of the evaporated aluminum gets
oxidized in the shear layer. The evaporated aluminum in the shear layer reacts with
the oxygen in the freestream and the high-temperature diffusion flame is formed.
The combustion products such as Al2O2 and Al2O3 flow into the recirculation region
behind the droplets. Figure 7.10c, d shows the accumulations of the combustion
products within the recirculation bubble.

The results presented in this section show that the current sharp-interface method
coupled with the compressible reacting flow solver successfully resolves the nuances
of droplet combustion in a shocked flow. The current GFM allows the characteristic
waves to travel across the gas–liquid interfaces without generating numerical arti-
facts. The effects of surface tension and vaporization at the liquid surface are also
incorporated using the current sharp-interface method. The reacting flow simulation
shows that the current method is suitable for interface-resolved simulation of droplet
combustion in shocked flows.

7.3.4 Solid–Void Interactions: Reactive Pore Collapse
in HMX Under 1000 m/s Shock Load

The capability of the current framework to handle shock-induced chemical reaction
is analyzed by studying the initiation and growth of reaction in a porous energetic
material, HMX. In porous energetic materials, the collapse of pores under shock
load leads to the formation of localized heated regions called hotspots (Field John
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Fig. 7.11 Cylindrical void of diameter 10 µm embedded in the HMX domain of size 45 × 45 µm
shock load is applied as a velocity boundary condition in the form of a pulse of duration 3 ns. The
east, south, and north faces of the domain are supplied with outlet boundary condition

1992). Depending on the temperature and size of the hotspot, chemical reactions
can initiate and grow in the material. To understand the behavior of hotspots in
porous HMX, reactive pore collapse simulations are performed for a 10µmdiameter
pore impacted under a sustained shock of particle speed, 1000 m/s as shown in
Fig. 7.11. Shock load is applied from the west face of the domain boundary. The east,
north, and south boundaries are supplied with zero-gradient boundary conditions.
The reaction initiation in the hotspot is modeled using Arrhenius kinetics-based
three steps decomposition mechanism proposed by Tarver et al. (1996). The reaction
initiation in the hotspot region leads to the decomposition of solid HMX to gaseous
reaction products. To define the mixture pressure, the Birch–Murnaghan equation of
state is used for the HMX and JWL equation of state is implemented for the final
gaseous products.

Figure 7.12 shows the temperature and mass fraction of the final gaseous species
contours obtained from the reactive pore collapse analysis. Figure 7.12c, d shows
that material jet impact forms near the pore interface and leads to the formation of
the blast wave along with the symmetrical secondary lobes. The blast wave leads to
the collapse of the secondary lobes is seen in Fig. 7.12f. The temperature at the lobe
collapse locations is high enough to initiate the chemical reaction (Fig. 7.12f). As
the collapse of the secondary lobes progresses, a further rise in temperature takes
place which is also augmented by energy released because of chemical reactions.
Eventually, the complete collapse of the secondary lobes takes place and ignites the
HMXmaterial at the secondary lobe locations. The reaction zone grows from the lobe
collapse locations to its surrounding under the combined influence of convection and
diffusion. It is interesting to note that for the applied shock, the rise in the temperature
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(a) Temperature (K) at t (b) Final species mass fraction at t 

(c) Temperature (K) at t 

(e) Temperature (K) at t 

(g) Temperature (K) at t 

(d) Final species mass fraction at t 

(f) Final species mass fraction at t 

(h) Final species mass fraction at t 

Fig. 7.12 Contour plots of temperature and mass fraction of the final species at different instances
of time for reactive single void collapse analysis under shock loading of 1000 m/s. The grid size
for the current simulation corresponds to 700 grid points across the void diameter of 10 µm
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because of the initial jet impact is not enough to initiate the reaction. Instead, reaction
initiates at the offset locations where secondary lobes are collapsed.

The current analysis shows the numerical framework can predict the initiation
and growth of chemical reaction in porous energetic materials.

7.3.5 Solid–Solid Interactions: Shock Compaction
of Metallic Particles Mixture

To demonstrate the ability of the current framework to handle compaction of large
clusters of particles, shock compaction of Ni/Al metallic mixtures is performed.
The numerical setup consists of a collection of spherical particles (Al-Ni mixture)
impacted by a copper flyer plate at the velocity of 1 km/s. The volume fraction
of particles is 60%, with the rest being void space. The particles have a diameter
of 20 µm and a frictionless contact is imposed at the interface. The computational
domain is 200 × 200 µm. The north and south domain boundaries are frictionless
walls. The copper plate is modeled as a piston that extends indefinitely to the left.
Thus, the west boundary ismodeledwith a constant velocity of 1 km/s. Themesh size
is set to have 50 grid cells across the diameter of a particle. Each particle interface is
modeled by a separate levelset function to allow for full contact-separation treatment
(Rai et al. 2014). Frictionless contact (sliding) condition is imposed between all
particles.

Figure 7.13 shows the density and temperature profiles at time t = 40 ns, t = 70 n,
and t = 90 ns. As seen in the figure, the Al particles undergo more deformation than
the Ni particles. The nickel particles tend to form clusters. This preferential flow
of Al through the Ni matrix and the clustering of Ni are observed in experiments
(Eakins and Thadhani 2008) as well as in other simulations (Eakins and Thadhani
2008). As can be observed, the focused flows of aluminum pinched between other
particles create jets of material with localized high temperature and velocity. The
flows cause the formation of small breakaway particulate material that detaches from
their original particle, as observed in previous simulations using CTH (Eakins and
Thadhani 2008). The particle fragments are at high temperature and can be ejected
from compacted particles with high velocity.

Vortex flows are also observed in our calculations, as in other experimental and
simulation work (Nesterenko et al. 1994; Tamura andHorie 1998). A detailed view at
time t = 74 ns is presented in Fig. 7.14. Aluminum particles form a focused flow that
encounters nickel particles. The aluminum ismelted and swirls around a void forming
a vortex pattern. This vortex is mostly composed of aluminum; the deformability of
globular Ni is too low to effectively mix with Al in this vortex, which explains the
inertness of Ni-Al mixtures (Eakins and Thadhani 2009). Thus, despite the high
mixing of the particles in such vortical flows, in mixtures with large differences in
deformability (such as in Ni-Al systems), vortical flows do not contribute to the
triggering of the chemical reaction. The compaction of spherical-shaped particles
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Fig. 7.13 Density and temperature fields for a Ni/Al mixture impacted by a copper flyer plate at
1 km/s at time t = 40 ns, t = 70 ns, and t = 90 ns

was found to present less contact area and mass mixing between aluminum and
nickel particles, and thus to be less sensitive to shock-initiated chemical reaction
(Eakins and Thadhani 2008). Flake Ni particles mixed with Al were found to yield
more intimate mixing (Eakins and Thadhani 2006). Thus, particle morphology plays
a significant role in initiating reactions.

Therefore, the current analysis shows that the current Eulerian framework can
efficiently handle contact and impact situation leading to the large deformation of
deformable solids that exhibit elastoplastic behavior under shock loading.
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Fig. 7.14 Density and temperature fields for a Ni/Al mixture impacted by a copper flyer plate at
1 km/s at time t = 74 ns. Detail of the particle compaction

7.4 Conclusions

A versatile sharp-interface Eulerian method is presented for the interface-resolved
simulations of high-speed multi-material flows. The levelset method is used to track
the large deformation of the material interfaces. A modified ghost fluid method is
used to supply the appropriate boundary conditions to the corresponding materials
at the interfaces. The current method allows for a broad-range of high-speed multi-
material flow problems involving interactions between solid and fluid phases in a
generic Cartesian grid-based Eulerian framework.

The generality of the current framework is owing to the hyperbolic nature of
the governing equations and the sharp-interface method for capturing the complex
interfacial dynamics. The hypo-elasticmodel for stress-train relations under the high-
strain rate assumptions allows us to cast the governing equations for solidmaterials in
an Eulerian framework. Therefore, a unified Eulerian framework is used for solving
the governing equation for both solid and fluid phases under high-speed conditions.

The multi-material interfaces embedded in the fixed Eulerian grid are tracked
sharply using levelset methods. The levelset method allows us to track extreme topo-
logical changes in the material interfaces with ease and robustness. The simulations
presented in the results section demonstrate that the levelset method can be used to
track extreme deformation of multiple closed interfaces within a single simulation.
The levelset-based sharp-interface tracking coupled with current GFM is used to
couple the field variables of different materials at the interfaces accurately. Different
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interfacial flow phenomenon such as nonlinear wave interaction with the interfaces,
the effects of phase change and surface tension at the interface are modeled using the
current GFM. The current GFM is suitable for imposing the appropriate boundary
conditions at the interfaces separating different materials and/or phases.

The capability of the current framework to handle large deformation, phase
change, and chemical reactions is demonstrated using a wide variety of prob-
lems involving high-speed multi-material interactions between the solid, liquid, and
gaseous phases. The interactions of rigid solid–fluid, fluid–fluid, and deformable
solid–void interfaces are demonstrated through three different problems in the results
section, i.e., shock-induced lift-off a rigid cylinder and combustion of aluminum
droplet under aMach 3.5 shock, and pore collapse-induced reaction initiation in ener-
getic materials under shock load. Shock interactions with multi-material interfaces
are captured accurately in the current method. The simulation of shock interactions
with an aluminum droplet demonstrates that the current Riemann solver-based GFM
allows the nonlinear wave to travel across the gas–liquid interfaces without incurring
any artificial numerical artifact. The sharp-interface multiphase framework is shown
to efficiently handle the large deformation involved in the collapse of the pore in
HMX to form hotspot. The multiphase framework allows to track the reaction ini-
tiation and expansion of the reaction products from the hotspots to the surrounding
involving the decomposition of solid HMX. Therefore, the three problems demon-
strate the robustness of the sharp-interface multiphase framework to handle large
deformation, phase change, and chemical reactions in wide variety of materials.

The robustness and efficiency of the current framework to handle process scale
simulations are demonstrated by solving two problems involvingmany particles, i.e.,
shock interaction of cluster of rigid particles and the compaction of Ni/Al metallic
powder under shock load. Each particle is defined using the narrow-band levelset
approach. The simulations of shock interaction of particle cluster demonstrate the
capabilities of the current numerical method to perform resolved simulations of
particle-laden flows. The current method is used in Das et al. (2018) to develop sur-
rogate models for drag on particles in shocked flows from resolved 3D simulations.
In the simulation of shock-induced compaction of Ni/Al powder, the definition of
the particles using different levelsets allows to model the physics governing the com-
paction between the Ni/Al particles accurately. The sharp-interface tracking of the
particles is shown to handle the localized extreme deformation situations efficiently
that arise during the compaction of the metallic powder bed. Therefore, these sim-
ulations demonstrate the capability of the current framework to perform large scale
simulations relevant to real-world engineering applications.
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