
Chapter 6
Ghost Fluid Lattice Boltzmann Methods
for Complex Geometries

Arpit Tiwari, Daniel D. Marsh, and Surya P. Vanka

6.1 Lattice Boltzmann Method

Lattice Boltzmann method (LBM) (Chen and Doolen 1998; Luo 2000) has emerged
as a powerful alternate computational tool for simulating microscopic and macro-
scopic flows in complex configurations. In conventional computational fluid dynam-
ics (CFD) methods, the Navier–Stokes equations describing the continuum behavior
of fluid flows are solved numerically. The equations describing the conservation
of mass, momentum and energy are solved to determine the macroscopic variables
(velocity, pressure and temperature). On the other hand, LBM is ameso-scalemethod
which solves reduced versions of the microscopic Boltzmann kinetic equations for
particle distribution functions. Simplified kinetic models are developed that retain
only specific details of themolecularmotion sufficient to recovermacroscopic hydro-
dynamic behavior. LBM is, therefore, an intermediate approach between the contin-
uum and the more fundamental approach of molecular dynamics (MD) simulations.

LBM evolved from lattice gas automata (LGA), in which a simplified kinetic
model is constructed for simulating fictitious particles in discrete lattice space and
time. The LGAmodel proposed by Frisch et al. (1986) consists of a two-dimensional
equilateral triangular lattice space with hexagonal symmetry. Particles point toward
the nearest lattice site; the kinetic model consists of collision and streaming based on
certain rules. LGA is based on Boolean operation, thus suffers from statistical noise.
This problem was cured by replacing Boolean particle distribution variables with
ensemble-averaged particle distribution functions (McNamara and Zanetti 1988),
which formed the basis of LBM. However, the primitive formulations of LBM were
computationally inefficient because of the complexity of the collision operator in
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the ensemble form. The major breakthrough in efficiency was achieved through the
linearization of the collision operator (Higuera and Jiménez 1989) assuming local
equilibrium. This was further simplified using the Bhatnagar–Gross–Krook (BGK)
approximation (Bhatnagar et al. 1954) of single relaxation time toward equilibrium
leading to the lattice Bhatnagar–Gross–Krook (LBGK) model; the local equilibrium
functions are chosen such thatmacroscopic equations are recovered (Qian et al. 1992;
Chen et al. 1992).

SinceLBMis an intermediate approach between themacroscopic andmicroscopic
methods, the Navier–Stokes equations can be obtained by carrying out multi-scale
expansion of the LB equations (Chen and Doolen 1998; Luo 2000). Similarly, LB
equations canbederived from the continuumBoltzmannBGKequations, inwhich the
equilibrium distribution is described by the Boltzmann–Maxwellian function. Low
Mach number reduction of Boltzmann BGK equations leads to LB equations (Chen
and Doolen 1998; Luo 2000). There is an extensive literature on analysis and
advancement of LBM for various applications.

6.1.1 Basic Formulation of LBM

In LBM, particle distribution functions are advanced in time via two processes:
collision and streaming. Various advanced formulations have been developed over
the years for these processes (e.g., multi-relaxation-time LBM and entropic LBM).
However, since the focus of this book in on boundary conditions, for conciseness,
we present a widely used basic formulation of LBM here—the single relaxation-
time D2Q9 model. As the name suggests, it is a two-dimensional model, in which
the collision process employs a single relaxation-time parameter, and particles are
restricted to move along nine velocity vectors during streaming, as shown in Fig. 6.1

Fig. 6.1 D2Q9 model of
LBM
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(see Sect. 6.4.3 for a three-dimensional LBM implementation). The discrete equation
governing these processes is

fi (x + c vi�t, t + �t) − fi (x, t) = −�i , i = 0, 1, . . . , 8, (6.1)

in which, the left- and right-hand sides represent streaming and collision processes,
respectively. fi is the discrete particle distribution function, x is the spatial location
vector, vi is the particle velocity, t is time and �t is the time step. c = �x/�t is the
lattice speed, where�x is the lattice spacing.�i denotes discrete collision operation.
The nine velocities are given by

vi =

⎧
⎪⎨

⎪⎩

(0, 0) for i = 0,

(cos((i − 1)π/2), sin((i − 1)π/2)) for i = 1 to 4,√
2(cos((i − 5)π/2 + π/4), sin((i − 5)π/2 + π/4)) for i = 5 to 8.

(6.2)

The collision term �i can take various forms provided the conservation laws are
obeyed; the linearized collision function based on BGK approximation takes the
form

�i = fi − f eqi
τ

, (6.3)

where τ is a relaxation-time parameter, and f eqi is the equilibriumparticle distribution
function:

f eqi = wiρ

(

1 + c vi · u
c2s

+ (c vi · u)2

2c4s
− u2

2c2s

)

, (6.4)

where cs = c/
√
3 is the lattice speed of sound and wi is the weighing function:

wi =

⎧
⎪⎨

⎪⎩

4/9 for i = 0,

1/9 for i = 1 to 4,

1/36 for i = 5 to 8.

(6.5)

ρ and u are the density and flow velocity, respectively, obtained from the particle
distribution functions and velocities using

ρ =
∑

fi and ρ u =
∑

c fi vi . (6.6)

Applying a Chapman–Enskog procedure on the LB equations, macroscopic conti-
nuity and momentum equations can be derived in the low Mach number limit, with
pressure (p) and kinematic viscosity (ν) given by p = ρ c2s and ν = (τ − 1/2) c2s �t .
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6.1.2 Advantages of LBM

LBM offers a number of advantages compared to the conventional CFD methods.
The simplified kinetic model utilized in LBM has a linear streaming operator, while
Navier–Stokes equations have a nonlinear convection term. The nonlinearity asso-
ciated with the collision operator in LBM is localized, which makes it highly suited
for parallelization (see Sect. 6.4.4 for a discussion on parallelization using GPUs).
In LBM, pressure variations are implicitly expressed as a function of density varia-
tions, thus eliminating the well-known pressure–velocity coupling issue that needs
special treatment in conventional incompressible CFD solvers. Furthermore, since
LB equations are obtained by reducing Boltzmann equations, (1) micro-scale multi-
phase physics are easier to incorporate in LBM and (2) coupling with molecular
dynamics (MD) simulations is straightforward (discussed in Sect. 6.4.5). It is thus
widely used in the analysis of complex fluids and multi-phase flows. Conventional
solvers need special care in dealing with multi-phase flows (Shukla et al. 2010; Ti-
wari et al. 2013). LBM also offers advantages compared to molecular simulations.
In LBM, the simplified kinetic model utilizes a small set of velocities in the phase
space. This makes computations significantly faster compared to solving the Boltz-
mann equations of molecular motion derived from the kinetic theory utilizing the
Boltzmann–Maxwellian equilibrium distribution function, where the phase space is
continuous and infinite.

6.2 Boundary Conditions in LBM

Accurate implementation of boundary conditions is challenging in LBM due to the
difficulty in obtaining particle distribution functions from the prescribed hydrody-
namic conditions at the boundaries. This is because the number of unknown particle
distribution functions is typically more than the number of hydrodynamic bound-
ary conditions. For stationary walls, the basic implementation of the well-known
bounce-back condition simply inverts the particle velocities at the wall. However,
it is only first-order accurate, and not applicable to moving walls. Several advance-
ments have been proposed to improve its applicability and accuracy (Ziegler 1993;
Ladd 1994; Filippova and Hänel 1998; Mei et al. 1999; Ginzburg and d’Humieres
2003; Lallemand and Luo 2003; Yu et al. 2003).

In the so-called hydrodynamic boundary implementation (Noble et al. 1995), the
unknown (incoming) particle distribution functions are obtained from the prescribed
hydrodynamic conditions at the boundaries using Eq. (6.6). The original implemen-
tation was only limited to those LBM models in which the number of unknown
distribution functions is equal to the number of hydrodynamic boundary conditions.
This limitation was addressed later by proposing additional rules to handle LBM
models in which the number of missing functions is more than the prescribed bound-
ary conditions (Maier et al. 1996; Zou and He 1997). Chen et al. (1996) proposed an
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extrapolation approach, inwhich the incoming distribution functions are extrapolated
from the interior distribution functions, and the equilibrium distribution functions
at the boundaries are computed from the prescribed hydrodynamic boundary con-
ditions using Eq. (6.4). Guo et al. (2002) developed an extension of this method by
splitting the incoming distribution functions into equilibrium and non-equilibrium
parts. Equilibrium parts are computed using Eq. (6.4), while the non-equilibrium
parts are extrapolated from the interior functions.

All the boundary approaches mentioned above need special care when dealing
with complex geometries. For conventionalCFDmethods, immersed boundarymeth-
ods (IBM) are now widely used to deal with curved boundaries. Since its first in-
troduction by Peskin (1972), there has been an extensive amount of research on
IBM. Among the approaches developed are forcing via deformation of elastic re-
gion tracked by Lagrangian points (Peskin 1972; Goldstein et al. 1993; Lai and
Peskin 2000; Lee and LeVeque 2003), forcing via Lagrange multipliers (Glowinski
et al. 1999; Taira and Colonius 2007), direct forcing by modifying discrete momen-
tum equations (Mohd-Yusof 1997; Fadlun et al. 2000; Balaras 2004; Gilmanov and
Sotiropoulos 2005; Uhlmann 2005), direct boundary implementation using Carte-
sian grid method (Ye et al. 1999) and direct boundary implementation using ghost
cells (Majumdar et al. 2001; Tseng and Ferziger 2003). In the ghost-cell technique,
hypothetical (ghost) cells are placed outside the fluid domain such that each cell has
at least one neighbor inside the domain. Various options have been developed to
extrapolate values to these cells to enforce boundary conditions. One widely used
implementation obtains values via locating image points inside the fluid domain
along the boundary normal (Majumdar et al. 2001).

IBMhas been implemented into LBMaswell. The original IB formulation of forc-
ing via deformation of elastic regionwas coupledwithLBMbyFeng andMichaelides
(2004). The same authors later employeddirect-forcing IB formulation inLBM(Feng
and Michaelides 2005). An alternative way of calculating the forcing term was de-
veloped by Niu et al. (2006) via the momentum exchange method of Ladd (1994).
Several researchers have extended/improved forcing function-based IBM for vari-
ous applications (Peng et al. 2006; Zhang et al. 2007; Dupuis et al. 2008; Tian et al.
2011; Kang and Hassan 2011). A drawback of this approach is that the no-slip con-
dition is not strictly enforced at the walls. Wu and Shu (2009) proposed a velocity
correction method to solve this issue. Another way of implementing strict boundary
conditions is using the ghost cells-based IB method. Tiwari and Vanka (2012) first
coupled this method with LBM and demonstrated its efficiency, accuracy, general-
ity and ease of implementation. This approach and the subsequent research works
toward its applications and improvements are discussed in the following sections.

6.3 Ghost Fluid LBM

Here, we describe a ghost fluid immersed boundary lattice Boltzmann method (GF-
IB-LBM) developed by Tiwari and Vanka (2012), which imposes hydrodynamic
boundary conditions via ghost nodes, rather than using the forcing concept. A gen-
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eral approach using extrapolation along boundary normal is employed to obtain
hydrodynamic values at the ghost nodes, which are then used to obtain equilibrium
particle distribution functions. The non-equilibrium particle distribution functions
are simply extrapolated from the fluid domain. The two contributions are then added
to obtain particle distribution functions at the ghost nodes.

6.3.1 Algorithm and Implementation

For conciseness, we restrict our focus towall (stationary aswell asmoving) boundary
conditions in curved geometries. (Themethoddetailed belowcanbe extended to other
types of boundary conditions in a straightforward fashion). The implementation in
two dimensions (see Sect. 6.4.3 for three-dimensional extension) briefly involves the
following steps.

1. Ghost node and corresponding image point identification: Before streaming op-
eration, ghost nodes adjacent to a boundary are identified such that each ghost
node has at least one neighboring node in the fluid domain. For each ghost node,
an image point is located inside the fluid domain along the boundary normal. This
is shown in Fig. 6.2.

2. Density and velocity determination at image points: A special bilinear interpo-
lation procedure is developed by Tiwari and Vanka (2012) to obtain hydrody-
namic values at the image points. A four-point interpolation is used when all the
surrounding nodes are interior (Fig. 6.2a). If a surrounding node is not interior
(Fig. 6.2b), then it is replaced by the point of intersection of the normal from that
node with the boundary curve. For velocity, the values at the wall intersection
points are simply the prescribed boundary values. These points are used along
with the interior nodes to obtain velocities at image points. This approach to obtain
bilinear coefficients can be expressed using this general formula:

Fig. 6.2 Interpolation at image points: a all neighboring nodes inside, and b two inside and two
outside nodes (Tiwari and Vanka 2012)
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a x j + b y j + c x j y j + d = u j if node j is inside,

a x ′
j + b y′

j + c x ′
j y

′
j + d = u′

j otherwise,

where j = 1:4 denote the four surrounding nodes, a to d are the bilinear coeffi-
cients, (x j , y j ) and u j are the spatial Cartesian coordinates and velocity, respec-
tively, at node j and (x ′

j , y′
j ) and u′

j are the spatial Cartesian coordinates and
velocity, respectively, at the wall intersection point of node j . For density, the
interpolation formula is modified such that it utilizes the zero normal gradient
condition at the wall intersection points. This can also be expressed using this
general formula:

a x j + b y j + c x j y j + d = ρ j if node j is inside,
a nx j + b nyj + c (x j nyj + y j nx j ) = 0 otherwise,

where (nx j , nyj ) denotes the boundary normal from node j , and ρ j is the density
at node j .

3. Density and velocity determination at ghost nodes: Velocity and density values at
the image points are extrapolated to the ghost points along the normal direction
such that the prescribed velocity and zero density gradient conditions are satisfied
at the wall.

4. Particle distribution function determination at ghost nodes: The equilibrium part
( f eqi ) is obtained from density and velocity values at the ghost nodes using
Eq. (6.4). The non-equilibrium part ( f neqi = fi − f eqi ) is obtained analogous to
density computation using the aforementioned special interpolation procedure.
The two contributions are then summed to obtain particle distribution functions
at the ghost nodes, which are then streamed inside the fluid domain during stream-
ing operation. Note that second-order accuracy of the equilibrium part is ensured
by the second-order accurate bilinear interpolation of density and velocity. How-
ever, the simple extrapolation of non-equilibrium part is only first-order accurate.
Overall, second-order accuracy is attained because the non-equilibrium part cor-
responds to the first-order term in the asymptotic expansion of the particle distri-
bution functions (Tiwari and Vanka 2012; demonstrated in Sects. 6.4.1 and 6.4.2).

6.3.2 Advantages

The overall approach is simple and efficient and preserves second-order accuracy for
curved boundaries.Amajor advantage is its generality—applicable to inflow/outflow,
moving wall, symmetric and periodic boundary conditions (including Dirichlet as
well as Neumann conditions; Tiwari and Vanka 2012). An illustration is presented in
Sect. 6.4.2. Furthermore, the method by design imposes hydrodynamics conditions
strictly at the boundaries. Boundary enforcement is local, hence preserves high par-
allelism of LBM (discussed in Sect. 6.4.4). It also enables straightforward coupling
withmolecular dynamics simulations via ghost nodes, as demonstrated in Sect. 6.4.5.
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6.4 Application of GF-IB-LBM

We first demonstrate the accuracy of GF-IB-LBM on four test problems involving
curved andmoving boundaries. Then, we discuss its couplingwithmolecular dynam-
ics in a GPU-parallelized framework. For conciseness, only key results are presented
here; we refer to Tiwari and Vanka (2012), Tiwari et al. (2009) and Marsh (2010) for
more details.

6.4.1 One-Dimensional Problem

Wefirst consider cylindrical Couette flow problem to (1) compare results with analyt-
ical solution and (2) demonstrate the importance of extrapolation of non-equilibrium
distribution function in achieving second-order accuracy. The flow is assumed lam-
inar, which makes this problem inherently one dimensional, which we solve using
a two-dimensional lattice for demonstration (Tiwari and Vanka 2012). We consider
an inner cylinder of radius r1 rotating with an angular velocity ω and a stationary
outer cylinder of radius r2. Angular velocity is chosen such that Reynolds num-
ber based on the inner cylinder’s diameter and tangential speed is 50. Figure6.3
shows good agreement of velocity (u) variation along the radial (r ) direction with
the analytical solution. In Fig. 6.4a, the L2 error norm (‖e‖N ) of velocity along the
radial direction is plotted against grid spacing to demonstrate second-order accuracy
of the method. We also plot in Fig. 6.4b, the results obtained without extrapolating
the non-equilibrium part ( f neqi ), which shows a slope ≈ 1.4. This demonstrates the
importance of extrapolation of the non-equilibrium part.

Fig. 6.3 Comparison of
radial velocity profile for
cylindrical Couette flow
using a 321 × 321 grid in a
2.5r2 × 2.5r2 square domain
with analytical solution for
two aspect ratios
(A = (r2 − r1)/r1) (Tiwari
and Vanka 2012)
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(a) with fneq
i extrapolation (GF-IB-LBM) (b) without fneq

i extrapolation

Fig. 6.4 Variation of L2 error norm (‖e‖N ) of radial velocity with grid spacing (�x) for cylindrical
Couette flow for two aspect ratios (A = (r2 − r1)/r1); m denotes slope (Tiwari and Vanka 2012)

6.4.2 Two-Dimensional Problems

We next consider flow between two rotating eccentric cylinders (Fig. 6.5a). Due to
a misalignment in their rotation axes, the flow between them is two dimensional.
This configuration is included here to show second-order accuracy of GF-IB-LBM
for a two-dimensional problem. Tiwari and Vanka (2012) considered four different
combinations of eccentricity, radius ratio and rotational speeds. For conciseness, we
present here grid convergence of two cases: (1) inner cylinder rotating and (2) outer
cylinder rotating. Figure6.5b demonstrates second-order accuracy of the method.

(a) schematic (b) error norm

Fig. 6.5 Schematic of the domain considered and variation of L2 error norm (‖e‖N ) of radial
velocity with grid spacing (�x) for two cases of flow between rotating eccentric cylinders: case
1 has inner cylinder rotating and case 2 has outer cylinder rotating; m denotes slope (Tiwari and
Vanka 2012)
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We next consider flow over a cylinder in a channel. The previous two problems
had only wall boundaries, therefore, this problem is chosen to demonstrate generality
of the method for other types of boundary conditions. In this problem, parabolic
velocity boundary condition is applied at the inlet, and constant pressure as well
as fully developed conditions are separately considered at the outlet (Tiwari and
Vanka 2012). This is a widely used verification problem; extensive benchmarking
data exists (Schäfer et al. 1996). Reynolds number based on average inlet velocity and
cylinder diameter is 20 for the simulated configuration. We consider three uniformly
spaced lattices with n = 16, 32 and 64, where n denotes the number of nodes across
the diameter. Figure6.6a shows streamlines in the recirculation zone, and Fig. 6.6b
shows variation of pressure coefficient cp with cylinder angle θ using GF-IB-LBM
(n = 64) with constant pressure boundary condition at the outlet. The drag and lift
coefficients compare well with those reported by the high-resolution study of Schäfer
et al. (1996) in Table6.1.

x
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0.1
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(a) streamlines

0 100 200 300
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0

0.5
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1.5

2

θ

c p

(b) pressure coefficient

Fig. 6.6 Streamlines in the recirculation zone and variation of pressure coefficient with cylinder
angle for flow over a cylinder using GF-IB-LBM with n = 64 (Tiwari and Vanka 2012)

Table 6.1 Comparison of drag and lift coefficients (Tiwari and Vanka 2012) with Schäfer et al.
(1996)

Coefficient n = 16 n = 32 n = 64 Schäfer et al. (1996)

Drag 5.3203 5.4772 5.5799 5.5700–5.5900

Lift 0.0488 0.0141 0.0101 0.0104–0.0110
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6.4.3 Three-Dimensional Problem

We demonstrate the extension of the approach to three dimensions in this section.
Single relaxation-time D3Q27 LBM model is used here. As the name suggests, it
consists of a three-dimensional lattice with particles restricted to move along 27
directions. The ghost fluid technique described in Sect. 6.3 is extended to three di-
mensions via tri-linear interpolation. In this case, an image point is surrounded by
eight neighboring nodes; during interpolation, the outside nodes are replaced with
the intersection of normal from those nodes with the boundary, analogous to the two-
dimensional implementation. For demonstration, we simulate Taylor–Couette flow
between cylinders (Fig. 6.7) using this approach (Tiwari et al. 2009). We consider
the following configuration: radius ratio (inner radius/outer radius) is 0.5 and aspect
ratio (height/inner radius) is 3.8. Rotational speed is chosen such that the Reynolds
number based on the gap between the annulus and the tangential speed is 100. The
generation of toroidal vortices due to flow instability at high Reynolds number is
well known and widely studied (Wereley and Lueptow 1998) for the Taylor–Couette
problem.Tiwari et al. (2009) simulated this configuration usingGF-IB-LBM;Fig. 6.7
shows generation of vortices with a 125 × 125 × 95 lattice.

Fig. 6.7 Schematic, velocity
vectors and contours of
horizontal velocity
component obtained by
simulating Taylor–Couette
problem using
three-dimensional
GF-IB-LBM (Tiwari et al.
2009)
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6.4.4 Parallelization Using Graphical Processors

Lattice Boltzmann method is inherently highly parallelizable, hence significant
speed-up can be obtained by utilizing graphical processing units (GPUs). One of the
advantages of GF-IB-LBM is that it preserves the locality of the underlying LBM
model—only needs information of the nodes surrounding the image points to enforce
boundary conditions. Marsh (2010) developed a parallel implementation of LBM on
GPUs and highlighted that parallelization of the ghost fluid techniquewas straightfor-
ward. They used Compute Unified Device Architecture (CUDA) (NVIDIA: https://
developer.nvidia.com/cuda-zone), which is the melding of hardware and software
that NVIDIA has provided to allow scientific applications to be more easily written
and executed on an NVIDIA GPU. CUDA operates by executing threads on mul-
tiprocessors contained within the GPU. They reported 50–75 times speed-up on a
modern GPU compared to a modern central processing unit (CPU) for their test
problems using GF-IB-LBM.

6.4.5 Coupling with Molecular Dynamics

We next discuss the applicability of ghost fluidmethod in coupling LBMwithmolec-
ular dynamics (MD) simulations. MD is an atomistic method, which has been used
in computational studies for a long time, but has only recently become feasible for
many applications due to its high computational cost. One of the target areas of
MD simulations is nano- and micro-scale flows, where the flow behavior is not well
described by the Navier–Stokes equations. MD examines physical phenomena on
the atomistic scale by considering individual molecules and their interactions with
each other. Extensive literature exists on interaction potentials (Allen et al. 2004);
the Lennard-Jones potential is often used:

Vi j (ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

, (6.7)

where Vi j and ri j are the potential and distance, respectively, between molecules i
and j . The two parameters ε and σ are used to characterize the interaction strength
and length scale, respectively.

Coupling molecular dynamics with a non-atomistic CFD code such as lattice
Boltzmann is advantageous when boundary wall effects are important to capture at
the atomistic resolution, but the computational penalty of such high fidelity in the
bulk flow is not desired. For example, consider a simple two-dimensional, planar
channel flow as shown in Fig. 6.8. Marsh (2010) decomposed it into three domains
for coupling: an MD domain near walls, an LBM domain for bulk flow and an
overlap domain. They used Schwarz alternating method (SAM) (Dolean et al. 2015)
to couple the two methods. This approach decouples both time and length scales

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
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Fig. 6.8 Schematic of LBM-MD coupling in a planar channel (Marsh 2010)

Fig. 6.9 Velocity halfway
through channel flow in the
overlap region (Marsh 2010)

allowing for a fully hybrid scheme. LBM andMD individually solve their respective
domains including the overlap region. SAM operates by first advancing LBM by one
time step (�t). Boundary conditions are then applied to the atomistic region via the
overlap region. In this step, the velocity of amolecule in the overlap region is set to the
fluid velocity at the nearest lattice node.MD is then advanced viamultiple (p) smaller
time steps (δt) such that�t = p δt . Boundary conditions are then applied to the bulk
region.GF-IB-LBMoffers straightforward enforcement of boundary conditions from
MD to LBM in this step. It just requires using the averaged values from MD and
imposing them on the appropriate ghost nodes. Marsh (2010) developed a parallel
implementation of the coupling approach on GPUs (as discussed in Sect. 6.4.4), and
simulated the aforementioned channel flow configuration. For demonstration, we
show in Fig. 6.9 the velocity vectors near wall obtained from the coupled simulation;
we refer to Marsh (2010) for more details.
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6.5 Recent Advances

Khazaeli et al. (2013) implemented ghost fluid technique on thermal LBM. Their ap-
proach uses interpolation–extrapolation methodology based on image points similar
to Tiwari and Vanka’s (2012) GFM. Thermal LBM contains an additional distribu-
tion function for internal energy, whose values they obtain at ghost nodes analogous
to the particle distribution function calculation via extrapolation from image points.
They used an inverse distance-weighing approach for interpolation and demonstrated
second-order accuracy for several problems with curvilinear boundaries.

Chen et al. (2013) investigated pressure oscillations that appear due to boundary
implementation inLBM.Their investigation focusedon theghost fluid IBmethod (Ti-
wari and Vanka 2012), for which, they implemented a cut-cell-based weighting strat-
egy to enforce geometric conservation to suppress these oscillations. They tested this
method on four problems and demonstrated that the modified GFM reduces pres-
sure oscillations while preserving its accuracy. Chen et al. (2014) compared different
bounce-back and IB schemes and concluded that the unified-interpolation bounce-
back of Yu et al. (2003), the direct-forcing approach of Kang and Hassan (2011) and
the ghost fluid approach of Tiwari and Vanka (2012) are best suited for the acoustic
problems they considered.

Kaneda et al. (2014) developed a multi-relaxation-time extension of the single
relaxation-time GFM (Tiwari and Vanka 2012). They compared their results with
the standard bounce-back scheme and confirmed that GFM has better accuracy, but
found a defect in density calculation at image points. They attributed this to a larger
predicted pressure and proposed an improvement by implementing a normal moment
relation (the balance of centrifugal force and pressure) for the estimation of density
distribution functions at the boundaries. Jahanshaloo et al.’s (2016) review provides
an overview of several approaches developed to impose boundary conditions in LBM
(including thermal LBM).

Mozafari-Shamsi et al. (2016a) developed an extension ofGFM(Tiwari andVanka
2012) for thermal LBM and implemented it for Dirichlet as well as Neumann ther-
mal boundary conditions. As mentioned earlier, thermal LBM contains an additional
equation to evolve internal energy distribution functions. Internal energy distribution
functions at the ghost nodes are obtained analogous to the calculation of particle dis-
tribution functions as described in Sect. 6.3; they employedGFM’s inherent feature of
computing gradient of the macroscopic variables normal to the curved boundaries to
formulate heat flux (Neumann) boundary conditions. In a later study, they (Mozafari-
Shamsi et al. 2016b) used this GFM approach to formulate conjugate heat transfer
boundary conditions at curved interfaces of two materials having different thermal
properties. Boundary conditions for conjugate heat transfer are difficult to impose
because heat fluxes must match in addition to imposing a common temperature value
at the boundary points. Here, again, GFM’s (Tiwari andVanka 2012) normal gradient
calculation makes it suitable to enforce such interface conditions. They verified the
accuracy and stability of GFM computations on three test problems and confirmed
its second-order accuracy.
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Li et al. (2016) developed a quadratic interpolation (QGFM) variant of bilinear
interpolation GFM (BGFM) (Tiwari and Vanka 2012). They compared them with
Guo et al.’s (2002) extrapolation method, linear interpolation bounce-back (LIBB)
method and quadratic interpolation bounce-back (QIBB) method. They found that
LIBB, QIBB, Guo et al.’s scheme and BGFM are comparable in efficiency for the
problems simulated, but QGFM takes about 10% more computation time due to a
larger stencil construction. As expected, they observed that quadratic interpolation
schemes (QGFM and QIBB) are more accurate compared to their linear counterparts
(BGFMandLIBB). However, they found that the conventional bounce-back schemes
are more accurate than ghost fluid interpolation schemes for the problems studied.
They also compared these techniques for boundary pressure oscillations in LBM
and found that oscillations are best suppressed by Guo et al.’s scheme. The authors
also studied the influence of different collision models, refilling techniques and force
evaluation methods in suppressing pressure oscillations.

Xu et al. (2018) recently proposed a forcing-based IB-LBM scheme for fluid–
structure interaction problems. To improve numerical stability, their scheme approx-
imates the feedback coefficient explicitly and splits Lagrangian force into traction
from surrounding flow and inertial force from boundary acceleration. They also
developed a dynamic geometry-adaptive grid refinement strategy, which improves
the efficiency of the coupled solution by having fine resolution only near the fluid–
structure interfaces.
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