
Chapter 4
Coupling the Curvilinear Immersed
Boundary Method with Rotation-Free
Finite Elements for Simulating
Fluid–Structure Interaction: Concepts
and Applications

Anvar Gilmanov, Henryk Stolarski, and Fotis Sotiropoulos

4.1 Introduction

Unsteady fluid–structure interaction (FSI) problems taking place in geometrically
complex domains and involving large deformations of three-dimensional, thin struc-
tures are encountered in a broad range of engineering and biological problems
across a range of Reynolds numbers and flow regimes. Examples range from inflat-
ing parachutes and flow-activated energy harvesting devices, to swimming aquatic
organisms, to native as well as prosthetic heart valves, to name a few. The inherent
complexity of such problems along with the highly nonlinear nature of the ensuing
FSI, which is associated primarily with the large deformations of the solid, present
unique challenges to numerical methods. Such challenges arise from, among others:
(i) the need tomodel geometric and constitutive nonlinearities of the solid bodies; (ii)
the often arbitrary complexity of the dynamically evolving flow domains, due to the
arbitrarily large amplitude of the deformation thin flexible structures may undergo;
and (iii) the challenges in obtaining robust and efficient FSI algorithms, especially in
problems with low mass ratios (Sotiropoulos and Yang 2014; Baek and Karniadakis
2012) which are commonly encountered in cardiovascular flow simulations. These
challenges along with recently developed approaches for tackling them constitute
the main focus of this chapter.

There are two general approaches typically used for simulating complex flows
with deformable boundaries: (1) the boundary conforming arbitrary Lagrangian
Eulerian (ALE) approach; and (2) immersed boundary (IB) methods. The ALE
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approach (Hirt et al. 1974; Donea et al. 1982) is well suited for resolving near-
wall viscous regions in high Reynolds number flows due to its inherent body-fitted
mesh structure that conforms to boundaries at all times. However, for significant
movement of the boundaries, ALE methods are cumbersome to apply to problems
with large deformations since they require frequent remeshing in order to prevent
the mesh from becoming severely distorted. The remeshing procedure is computa-
tionally expensive making ALE methods inefficient in complex three-dimensional
problems. Fixed, non-boundary conforming, grid methods provide another alterna-
tive to solving problems with deformable boundaries and complex geometry. Such
methods are generally referred to as immersed boundary (IB) methods and are espe-
cially attractive for simulations of complex flows in engineering and biology because
they do not require remeshing and can readily handle arbitrarily large deformations
of the structures. The various types of IB methods have been recently reviewed by
Sotiropoulos and Yang (2014). The interested reader is referred to this paper as well
as the earlier review byMittal and Iaccarino (2005) for details. Promising approaches
that enhance the capabilities of IB methods in the simulation of fluid flow interacting
with moving/deformable bodies at high Re numbers are methods involving adaptive
mesh refinements (Vanella et al. 2010; Angelidis et al. 2016).

In this chapter, we focus our review of the literature exclusively on IB numerical
approaches proposed for handling FSI of flexible structures in complex domains.
We pay special attention to the distinction between discretization techniques used to
handle the flow and those applied to structural governing equations, since a range
of formulations have been proposed in the past. These include pure finite-difference
(FD) (Griffith et al. 2009; Wiens and Stockie 2015; Zhu and Peskin 2002; Le et al.
2009; Luo et al. 2008) or finite element (FE) (Dettmer and Períc 2006; Barker andCai
2010; Bazilevs et al. 2012) methods for both the flow and structural equations as well
as mixed formulations combining FD (or finite volume) discretization for the flow
with FE for the structural equations (Zheng et al. 2010; Farhat and Lakshminarayan
2014).

Diffused interface IB methods use FD for both the fluid and structural solvers
(Griffith et al. 2009). In this approach, the loading on the structural surface, due to
interaction with the fluid, is introduced by appropriately defined body forces in the
momentum fluid equations. A number of successful applications of such methods,
whichwe shall refer to herein as IB-FD-FDmethods for their use of FD discretization
for both the fluid and solid equations, have been reported over the years (Wiens and
Stockie 2015; Zhu and Peskin 2002; Le et al. 2009). The accuracy of such methods
can be improved by incorporating local mesh refinement as was done in Griffith
et al. (2009). One potential difficulty with this class of methods, however, arises
from treating the solid surface as diffused interface, which complicates the accurate
calculation of the wall shear stress field on the surface. Yet, such detailed calcu-
lations may be required in cardiovascular flow problems, such as heart valve flow
simulations, in which complex wall shear stress patterns on the valve leaflets have
been linked with increased potential for aortic valve diseases and other aortopathies
(Ge and Sotiropoulos 2010).
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A sharp interface IB method using FD formulations for both the flow and struc-
tural equations was proposed by Luo et al. (2008). This method was formulated for
linear viscoelastic solids and applied to simulate two-dimensional FSI in laryngeal
aerodynamics. The same formulation was later modified to incorporate a FE formu-
lation for the structural equations and applied to simulate FSI of a high mass ratio
3D flapping wing at very low Reynolds number (Re = 50) (Luo et al. 2010). Tian
et al. (2014) further extended this method to simulate several complex FSI problems
at low Reynolds numbers (Re ∼ 102). An ALE formulation utilizing the so-called
embedded boundary approach was proposed by Farhat and Lakshminarayan (2014)
for solving compressible FSI problems for external aerodynamics applications at
high Reynolds numbers. This approach employs finite volume discretization for the
fluid equations with finite elements for the structural equations. While this approach
can work well for structures in unbounded domains, remeshing difficulties may
arise when the structure is embedded within a complex confined domain. A pure
finite-element-based formulation, for both the flow and the structural equations, was
recently proposed by Kamensky et al. (2015). This method employs the immersoge-
ometric FSI approach and was applied to simulate FSI of a bioprosthetic heart valve
in a straight aorta.

In FSI simulations of biological tissues, e.g., heart valve leaflet interaction with
blood flow, it is critical to use a relevant and efficient structural model that is able
to realistically represent the deformation of the tissue under loads imposed by the
pulsatile blood flow. Such undertaking, however, is not a trivial task since the large
deformations of the tissue and its concomitant geometric nonlinearity pose major
modeling challenges. To circumvent these challenges recent studies attempting to
simulate FSI of tissue valves chose to either use simplified membrane-like materials
(Borazjani 2013) or treat the valve leaflets as thick bodies (Tian et al. 2014). However,
biological tissues of leaflets are normally thin and they exhibit significant bending.
Therefore, a shell model for the solid body is a more appropriate choice (Kamensky
et al. 2015; Sacks et al. 2009). Most finite element (FE) methodologies for handling
shells, however, are computationally very demanding as they employ two or three
nodal rotations alongside with three nodal translations, i.e., 5 or 6 degree of freedom
per node. An exhaustive review of this large body of literature is beyond the scope
of this chapter, but the reader is referred to a number of recent review papers on
the topic (Stolarski et al. 1995; Gal and Levy 2006). Note that the efficiency of
the FE shell model becomes of paramount concern in FSI simulations of complex
problems where the need to couple the fluid and structural solvers together can
dramatically increase the computational cost per time step. For that, in our work we
have selected to adapt and incorporate in the FSImethodology a previously developed
nonlinear, rotation-free triangular shell element formulation (Stolarski et al. 2013),
which has already been shown to provide accurate and robust solutions of various thin
shell FE problems. We have successfully coupled such an approach with the sharp
interface curvilinear IB (CURVIB) method, previously developed by our group (Ge
and Sotiropoulos 2007) to simulate FSI problems (Gilmanov et al. 2015, 2018). In
this chapter, we review the basic features of this novel CURVIB-FE-FSI formulation.
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The CURVIB method employs second-order accurate, central finite differenc-
ing discretization for the flow equations along with an efficient fractional step
approach for satisfying the discrete continuity equation to machine zero in curvi-
linear grids. This method has also been extended to carry out large-eddy simula-
tion (LES) of turbulent flows using wall models for reconstructing boundary con-
ditions at the immersed boundary nodes (Kang et al. 2011). The LES version of
the CURVIB method has been validated extensively for a broad range of complex
turbulent flows. Some recent examples include: turbulent flow past an axial flow
turbine in an open channel (Kang et al. 2014); open-channel turbulence interacting
with a mobile sediment bed (Khosronejad and Sotiropoulos 2014), and complex
rigid structures interacting with a free surface (Calderer et al. 2014). As such the
CURVIB method provides an efficient and accurate approach for simulating geo-
metrically complex flows across a range of Reynolds numbers. Furthermore, since
the CURVIBmethod employs unstructured triangular meshes to discretize immersed
boundaries, the method is ideally suited for coupling it with our efficient rotation-
free FE shell model (Stolarski et al. 2013), which is ideally suited for handling FSI
problems involving arbitrarily large deformations. To enable this coupling, we report
herein on a number of algorithmic advances and significant improvements of our pre-
viously developed methodology. Our FE solver is highly efficient and versatile for
thin bodies—it can be applied in analysis of a variety of structures including engi-
neering structures such as shells, plates, beams and may incorporate various material
properties, including those characterizing biological tissues such as heart valves and
arterial walls.

In this chapter, we present the recently developed methodology and demonstrate
its ability to simulate very challenging FSI problems involving large amplitude oscil-
lations. The first problem is that of an inverted elastic flag, recently studied experi-
mentally by Kim et al. (2013), which is especially challenging because: (1) the flow
occurs at high Reynolds number and requires implementing the resulting CURVIB-
FE-FSI formulation in conjunction with LES; and (2) depending on the elasticity of
the flag the FSI problem exhibits dynamically rich variety of solutions (Kim et al.
2013). To the best of our knowledge, the first numerical solution of that problem
was reported in Gilmanov et al. (2015). Here, we report simulations for a set of
parameters under which the flag undergoes periodic oscillations and show that the
computed motion of the flag is in excellent agreement with the measurements. In
the second application problem, we demonstrate the ability of the coupled CURVIB-
FE-FSI method to simulate the FSI of a tri-leaflet valve in an anatomic aorta. Our
simulations capture the rich 3D vorticity dynamics during the opening and closing
of the valve leaflets.

The chapter is organized as follows. In Sect. 4.2, we describe the governing
equations for both fluid and solid structures. In Sect. 4.3, we present the numerical
approach used to solve the coupled system of fluid and solid equations with appro-
priate boundary conditions. In Sect. 4.4, the flapping of an inverted flag is presented.
In this section, we also demonstrate the applicability of the proposed FSI approach to
simulate pulsatile blood flow in an anatomic aorta with a tri-leaflet heart valve using
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both isotropic and nonlinear anisotropic materials (Gilmanov et al. 2018). Finally,
in the Sect. 4.5, we summarize the major features of he presented approach.

4.2 Governing Equations

Weconsider FSI of a deformable body�s submerged in an incompressible fluid occu-
pying a volume�f bounded by ∂�f, the method is applicable to multiple deformable
thin bodies but for the ease of presentation and without loss of generality we present
the method for a single body.

In what follows, we use bold symbols for vectors and bold underlined symbols for
tensors andmatrices. The regular and italic symbols are reserved for scalar and tensor
components, respectively. The overbar notation indicates known and/or prescribed
values.

4.2.1 The Equations for the Fluid Domain

In general, fluid boundaries can be presented as consisting of three non-overlapping
parts: ∂�f = �N

f ∪ �D
f ∪ �fsi. Here, �D

f and �N
f are the stationary boundaries in

which Dirichlet and/or Neumann boundary conditions are specified. �fsi is the inter-
face between the fluid domain and the solid domain, i.e., the moving interface the
configuration of which needs to be determined by solving the FSI problem.

The equations governing the motion of Newtonian incompressible fluid in a
domain �f the Navier–Stokes and continuity equations, which read in vector/tensor
notation as follows:

ρf
dv
dt

= ∇ · σ f in�f,

∇ · v = 0 in�f. (4.1)

In the above equations, ρf is the mass density of the fluid, d/dt is the material or
Lagrangian time derivative, v is the fluid velocity vector, and σ f is the fluid stress
tensor. The above equations are subjected to various boundary conditions for the
velocity v on the various segments comprising the fluid boundary. For example, on
the Dirichlet portion of the boundary �D

f Dirichlet boundary conditions and on the
Neumann segment of the boundary �N

f , a stress boundary condition of the following
form may be applied:

v = v̄ on�D
f σ f · nf = t̄ f on�N

f (4.2)

where v̄ and t̄ f are known functions, nf is the normal unit vector to the �N
f boundary.

For FSI problems, the immersed deformable body has its own displacement field u,
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velocity field u̇, and stress field σ s. On �fsi the velocity field and the normal stress
field must be continuous. This physical requirement gives rise to the following set
of boundary conditions on the FSI segment of the fluid boundary:

v = u̇, σ f · nf = σ s · ns on�fsi (4.3)

Here, nf and ns are the local normal unit vectors on the fluid and solid interfaces,
respectively. Note, therefore, that on the �fsi segment of the boundary both Dirichlet
and Neumann conditions must be satisfied (given by Eq. 4.3) so that the problem
is well posed and the Navier–Stokes Eqs. (4.1) supplied with boundary conditions
(4.2) on �D

f and �N
f can be solved.

To facilitate the subsequent presentation of the FSI algorithm, we denote the
governing equations for the fluid domain as an operatorF , which receives the input
information from the boundary conditions and yields the pressure p and velocity field
v inside the fluid domain �f as follows:

(p, v) = F(
v̄, t f, u̇, σ s

)
in�f (4.4)

here u̇ and σ s are applied at the boundary �fsi. Equation (4.4), therefore, should be
viewed as the operator notation for Eqs. (4.1–4.3).

4.2.2 The Equations for the Solid Domain

In the solid domain, we use the Lagrangian viewpoint to describe the motion of
the solid undergoing large deformations. In this approach, the current position r of
a material point at time t is related to its position R at the reference configuration
by the mapping �:r = Φ(R). The gradient of that transformation (the so-called
deformation gradient) is therefore: F = ∂Φ/∂R. The displacement and velocity of
a material point are defined as:

u = r − R, u̇ = du/dt (4.5)

The momentum equations for the solid part, formulated in the current configura-
tion, have the following form (Kang et al. 2011):

ρs
du̇
dt

= ∇ · σ s in�s, (4.6)

where ρs is the current mass density of the material. Here, σ s is the Cauchy stress
tensor for the solid structure, with the symbol ∇ representing the gradient operator
in the current configuration. The boundary of the solid structure can be represented
as sum of non-overlapping parts ∂�s = �N

s ∪ �D
s ∪ �fsi, where the indices D and N

denote boundaries with Dirichlet and Neumann conditions, respectively:
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u̇ = ¯̇u on �D
s , σ s · ns = t̄s on �N

s (4.7)

where �D
s and �N

s represents the portions of the surface of the body in its current
configuration where Dirichlet and Neumann conditions are applied, respectively, t̄s
is a traction vector acting on the surface, ns is a unit normal to the boundary and ¯̇u
is the velocity prescribed on the surface.

For FSI problems, additional boundary conditions must be implemented on the
�fsi:

u̇ = v on�fsi, σ s · ns = t f on�fsi (4.8)

here �fsi is part of the moving structure surface the configuration of which needs to
be determined by solving the FSI problem, t f = σ f · nf is a traction vector which
acts on this part of surface from the fluid, σ f and nf are the stress tensor and surface
normal unit vector from the fluid. We will discuss later how to define the traction
vector for thin surfaces.

The solid momentum equations and the boundary conditions can be recast in
terms of an operatorH, which incorporates both the (kinematic and dynamic) bound-
ary conditions and constitutive equations to yield the velocity u̇ and displacement
field u

(u, u̇) = H
(
v̄, t̄, v, t f

)
in�s, (4.9)

here v and t f are applied at the boundary �fsi .

4.3 Numerical Algorithms for Fluid–Structure Interaction

A sharp interface IB algorithm for solving FSI problems with thin deformable
structures embedded in a fluid domain requires developing and integrating the fol-
lowing algorithmic components: (1) an algorithm for solving the fluid flow equa-
tions (Sect. 4.3.1); (2) an algorithm for solving the thin shell structural equations
(Sect. 4.3.2); (3) an approach for defining the action from the thin shell onto the sur-
rounding fluid by identifying the IB nodes in the vicinity of the body where boundary
conditions need to reconstructed (Sect. 4.3.3); (4) an approach for calculating the
action from the fluid to the thin shell body computing the forces due to pressure and
shear (Sect. 4.3.4); and (5) an algorithm that integrates the fluid and solid solvers
into a coupled FSI formulation. In this section, we discuss the approaches we adopt
in this work to develop these algorithmic components (Sect. 4.3.5).
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4.3.1 The Fluid Solver F

The fluid solver is based on theCURVIB approach (Ge and Sotiropoulos 2007)which
uses the hybrid stagger/non-staggered approach originally proposed by Gilmanov
and Sotiropoulos (2005) to solve the governing equations in generalized curvilinear
grids (Ge and Sotiropoulos 2007). The Navier–Stokes and continuity equations (4.1)
are partially transformed in generalized curvilinear coordinates and read in tensor
form (repeated indices j = 1, 3 assumes summation) as follows:

∂

∂ξ j

(
V j

J

)
= 0,

∂vq
∂t

+ C
(
vq

) + Gq(p) − 1

Re
D

(
vq

) = 0, q = 1, 2, 3, (4.10)

where the Cartesian velocity vector is denoted as v(v1, v2, v3), p, the pressure divided
by the density ρf, V j = vrξ

j
xr is the jth contravariant velocity component in the

general curvilinear coordinate system ξ(ξ1, ξ2, ξ3), J is the Jacobian of the geometric
transformation J = ∂(ξ1, ξ2, ξ3)/∂(x1, x2, x3), and grm = ξ r

xq ξ
m
xq is the contravariant

metric tensor. The convectiveC
(
vq

)
, gradientGq(p), and viscous D

(
vq

)
operators in

Eq. (4.10) are defined in curvilinear coordinates as (the repeated indexes r, m imply
summation over the values 1, 2, 3):

C
(
vq

) = J
∂

∂ξ r

(
V r

J
vq

)
, q = 1, 2, 3,

D
(
vq

) = J
∂

∂ξ r

(
grm

J

∂vq
∂ξm

)
,

Gq(p) = J
∂

∂ξ r

(
ξ r
xq

J
p

)
. (4.11)

The above equations are discretized via a hybrid staggered/non-staggered
approach using three-point central differencing for all spatial derivatives and inte-
grated in time via a second-order accurate fractional step, pressure projectionmethod.
The momentum equations are solved with a Jacobian-free solver, while flexible gen-
eralized minimal residual (FGMRES) method with multigrid pre-conditioner is used
to solve the Poisson equation to satisfy the discrete continuity equation to machine
zero (see Ge and Sotiropoulos 2007 for details).

Complex immersed boundaries are handled using a sharp interface IBmethodwith
velocity reconstruction along the local normal to the body (Ge andSotiropoulos 2007;
Gilmanov and Sotiropoulos 2005; Borazjani et al. 2008). Some details concerning the
reconstruction method for thin flexible boundaries will be provided in a subsequent
section of this chapter.

The CURVIB method has been recently extended to carry out LES of turbulent
flows in geometrically complex domains. The details of the LES version of our
flow solver can be found in Kang et al. (2011, 2014). Here, it suffices to mention
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that the dynamic Smagorinsky model (Germano et al. 1991) is used for subgrid-
scale closure with three-point central, second-order accurate finite differencing for
the convective terms. Boundary conditions at IB nodes in the vicinity of complex
immersed boundaries are reconstructed using a wall model approach adapted for
the CURVIB method by Kang et al. (2011). In this chapter, we will report the first
application of the LES version of method to simulate FSI of a flexible structure at
high Reynolds number.

4.3.2 The Solid SolverH: Finite Element Model for Thin
Shells

Themomentumequations for the solid (Eq. 4.6) can be expressed in variousweak for-
mulations using the principle of virtual work. In this work, we select the Lagrangian
version of the weak form, which is related to the initial configuration, uses the second
Piola–Kirchhoff stress tensor S and the variation of theGreen–Lagrange strain tensor
E. By virtue of how they appear in the principle of virtual work given below, these
two tensors constitute a dual set in the reference configuration representing volume
V0 bounded by the surface boundary A0. This version of the weak form reads as
follows:

˚

V0

(
δETS + δuTρsü

)
dV0 −

¨

A0

δuT t0dA0 = 0. (4.12)

In the above equation, ρs is the constant density of the solid in the original config-
uration, t0 represent the surface loads in that configuration, and ü is the acceleration.
To focus on the essential features of the algorithm in the illustrative examples pre-
sented in this chapter the Neo–Hookean (Macosko 1994) constitutive equation is
used. Thus, in any fixed, local coordinate system the stress and strain tensors are
related as follows:

Sloc = DlocEloc (4.13)

with

Dloc = Y

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤

⎦, (4.14)

where Y is the Young’s modulus and ν is the Poisson’s ratio, index loc indicates that
constitutive equation is described in a local Cartesian system. Having the stresses
defined in that specific system, they can be transformed to any other system by the
usual transformation roles for tensors.
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Although, to simplify our exposition of the concepts, in the examples presented
here the constitutive equations defined above are used, the overall methodology
described here has been recently combined with complex material behavior, more
appropriate for biological applications.Gilmanov et al. (2016) incorporated a general,
hypereleastic constitutive model in the rotation-free, large deformation, shell finite
element (FE) formulation and applied it to dynamic simulations of an aortic heart
valve. In a forthcoming paper (Gilmanov et al. 2018), we incorporate the rotation-
free thin shell FE method for nonlinear, anisotropic, hyperplastic tissues (Gilmanov
et al. 2016) in the CURVIB-FE-FSI framework (Gilmanov et al. 2015). The main
goal of that paper was to provide quantitative illustrations of the significant effects
that the material properties of the heart valve leaflets have on hemodynamics.

We consider only thin shell models for the solid domain. In the Kirchhoff–Love
model of thin shells (Timoshenko andWoinowsky-Krieger 1959) the position vector
R of any point within the volume of the shell in the reference configuration is defined
in terms of the surface curvilinear coordinates and the local normal distance ζ to the
middle surface, with −h0/2 ≤ ζ ≤ h0/2, and h0 being the thickness of the shell.
The position of the points in the current configuration of the shell r is defined in the
same way and can be mapped back to the reference configuration using the same
local normal distance to the middle surface ζ . For the Kirchhoff–Love model of thin
shells the components of the Green–Lagrange strain tensor in the entire volume of
the shell can be expressed via the deformation of the shell’s middle surface as follows
(Stolarski et al. 2013):

Ei j = Em
i j + ζ Eb

i j . (4.15)

Here Em
i j are the membrane and Eb

i j the bending components of the strain tensor.
We adopt here the model developed by Stolarski et al. (2013), which employs

triangular finite elements and approximates the shell curvature tensor without using
the rotational degrees of freedom. To accomplish that the curvature of a given ele-
ment is associated with nodal displacements of that element as well as with nodal
displacements of the three surrounding elements, this permits definition of a com-
plete quadratic polynomial, representing configuration of that group of four elements
(called “the patch”) in a moving with the shell rectilinear coordinate system. This
polynomial, simply by its differentiation, permits for simple, and accurate, approxi-
mations of the element curvature tensor at any stage of the large deformation process.
Most importantly, since the above approach is used only to compute the bending
strains within the element and the computation of the membrane strains is based on
the flat geometry of the element, the non-physical membrane locking is automati-
cally avoided. For the derivation and the details of the method the reader is referred
to Stolarski et al. (2013).

The outlined approach leads to the discretized FE version of the governing equa-
tions for the structure. By virtue of Eq. (4.15), the weak formulation of Eq. (4.6) can
be written in the following form, containing the sum over all elements e = 1, . . . , E
of the triangulated domain:
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E∑

e=1

⎛

⎝
˚

_V0

(
δuT

e

(
Bm + ζ Bb

)T
S − δuT

e ρsb + δuT
e ρsüe

)
dV0 −

¨

A0

δuT
e tdA0

⎞

⎠ = 0,

(4.16)

where ue, üe are the displacement and acceleration within the element e, Bm and
Bb are membrane and bending strain-displacement matrices, respectively. Thus, the
vector of internal forces is

f inte =
˚

V0e

[(
Bm

)T
TTDlocT Em + ζ 2

(
Bb

)T
TTDlocT Eb

]
dV0, (4.17)

where superscript indices (m) and (b) indicate membrane and bending-related matri-
ces in the curvilinear coordinate system on the surface (Stolarski et al. 2013), while
matrix T represents the necessary transformation of tensors to make the representa-
tion of the stresses and strains in the correctly related coordinate systems. Because
of the space restrictions, the detailed formulation of all matrices we employ is not
given here. Instead, we refer the Readers to the recently published paper (Stolarski
et al. 2013), where all such details of the formulation are presented.

The element vector of the nodal external forces f exte and the element mass matrix
Me resulting from the presented formulation take the following form

f exte =
¨

A0e

NT tdA0, Me =
˚

V0e

ρsNTNdV0, (4.18)

where t is a traction vector, and N is a vector of linear basis functions (Stolarski et al.
2013). Here, the external forces f exte (u, t) depend both on structure displacements
u and the applied fluid traction t. Assembly of the above vectors and matrices leads
to the following final form of the structural domain equations:

f int(u) + Mü = f ext(u, t). (4.19)

In this chapter, three types of boundary conditions for the shell are used: free,
hinged, and fixed boundary conditions. Detailed description and implementation of
these boundary conditions one can find in Stolarski et al. (2013).

In the numerical integration of some dynamic, nonlinear problems with high
frequency modes, a dissipative mechanism is needed in Eq. (4.19) to dump spurious
oscillations and help get converged solutions (Smith andGriffith 2004). If dissipation
is to be included in the system, a term related to the velocities has to be added in
Eq. (4.19) as follows:

f int(u) + Mü + Du̇ = f ext(u, t), (4.20)

where the matrix D defines the dissipation term.
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The detailed description of the solid solver algorithm with all matrices can be
found in Stolarski et al. (2013). A short description of this algorithm is presented
below.

We employ the Newmark time integration algorithm (Newmark 1959) to solve
solid structure Eq. (4.20), which is formulated as follows:

u̇n+1 = u̇n + 
t(1 − γ )ün + 
tγ ün+1
,

un+1 = un + 
tun + 
t2
(
1

2
− ω

)
ün + 
t2ωün+1

, (4.21)

where
t is the time step, subscript n, n+1 indicates time level tn+1 = tn +
t , and
γ, ω are parameters that determine the stability and accuracy of the scheme. Implicit
schemes are unconditionally stable for 2ω ≥ γ ≥ 0.5. The Newmark scheme has
second-order accuracy for γ = 0.5, ω = 0.25 (Smith and Griffith 2004). From
Eq. (4.21), one gets the following formulas for the velocity and acceleration vectors
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which, when inserted in Eq. (4.20), yield
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= f ext. (4.23)

When the unknown un+1 is retained in the left-hand side of the equation and the
known variables are gathered in the right-hand side, the following discrete equation
is obtained
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+ f ext. (4.24)

The last equation constitutes a nonlinear system of algebraic equations that has
to be solved at each time step. This system is solved using the Newton linearization
approach. Denoting by un+1

i the value of un+1 at iteration i, the following equation
is obtained by linearizing f int

(
un+1
i

) = f int
(
un+1
i−1 + 
un+1

i

)
:

f int
(
un+1
i

) ≈ f int
(
un+1
i−1

) + K n+1
i−1 
un+1

i = 0, (4.25)
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where K is the tangent stiffness matrix. The increment 
un+1
i between the iteration

i − 1 and i is the solution of the following system of linear algebraic equations,
resulting from Eq. (4.24).

(
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t
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un+1
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i−1 , (4.26)

with the residual
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in which the forces f ext(un, tn), f int(un) are computed according to the explicit
formulas presented in the preceding sections. The matrix D presented in Eq. (4.20)
can be independently defined as linear combination of mass and stiffness matrices
M, K (the so-called proportional damping)

D = fmM + fkK , (4.28)

where fm and fk are constants and are called “Rayleigh” damping coefficients (Smith
and Griffith 2004).

The solutionof the above linear equations,
un+1
i , is used to update displacements,

velocities, and accelerations as follows:
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The iterative process is declared converged when a specified tolerance of the
iterative process is met, and the algorithm is advanced to the next time level.

The conjugate gradient (CG) method (Smith and Griffith 2004) is used to solve
the linear system of Eq. (4.26). Overall, the cost of using CG is relatively low. The
overall computational cost, however, depends on the number of Newton iterations
to update the displacement, velocity, and acceleration of the nodal points of the
structural mesh.
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4.3.3 Representation of Immersed Thin Structures
in the Fluid Domain

A key feature of our method is that it employs a FE formulation for thin shells in
which the structural equations are formulated in terms of variables defined on its
mid-surface (see Sect. 4.3.2). This approach is accurate and, thus, appropriate for
analysis of thin structures, but it also augments the efficiency of the overall FSI
methodology.

Whether or not the thickness of the structures is accounted for in the FSI analysis
presents important algorithmic challenges for the CURVIB method. This is because
the CURVIB method is designed to use normal vectors to the immersed surface
to: (i) identify the position of background grid nodes relative to the fluid/structure
interface by finding fluid nodes (IB nodes) in the immediate proximity of the interface
as illustrated in Fig. 4.1; (ii) reconstruct velocity boundary conditions at immersed
boundary (IB) nodes along the local normal to the boundary; and (iii) calculate the
loads on the structure imparted by fluid stresses for FSI problems (see Sect. 4.3.4).
Bodies with nonzero thickness, which have been handled in all previous applications
of the CURVIB method, are closed surfaces (i.e., the topologically equivalent to
a sphere). This implies that at every point on the surface of the body there is a
unique normal vector that points toward the fluid side of the interface, namely the

Fig. 4.1 The background grid where the governing equations for the fluid are solved along with the
thin body immersed and associated IB nodes. Solid circles and solid line are vertices and elements
of the solid structure, respectively. Open circles are IB nodes from positive side and open circles
with small primes are IB nodes from negative side of the surface. The red line marks the interface
between the fluid domain and the layer of IB nodes surrounding the thin structure. Figure reprinted
with permission from Gilmanov et al., Journal of Computational Physics, 300, 814–843 (2015).
Copyright 2015, American Institute of Physics
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Fig. 4.2 Two different approaches for considering thin immersed body in the fluid. a A closed
body for which only the outward normal vector points toward the fluid side of the interface. The
standard CURVIB formulation has been developed for such bodies. b A surface with boundary
(the mid-surface of the thin structure). A two-side surface for which both the positive and negative
surface normal vectors point toward the fluid side of the interface. In both sketches open circles
denote background grid nodes (IB marks the immersed boundary nodes where boundary conditions
are reconstructed), closed circles are Lagrangian points discretizing the body, and e is the center of
a structure shell element. Dashed lines indicate the direction of the searching algorithm from the
background (fluid) grid node A(i, j, k) to the adjacent points B(i ± 1, j ± 1, k ± 1). The points
IB+ and IB− in (b) indicate IB nodes from positive and negative side of the surface, respectively.
Figures reprinted with permission from Gilmanov et al., Journal of Computational Physics, 300,
814–843 (2015). Copyright 2015, American Institute of Physics

positive wall normal vector (see Fig. 4.2a). On the other hand, when the structure is
represented only by its mid-plane, as in the present FE thin shell model, the resulting
surface is what is referred to in topological terms as a surface with boundary (i.e.,
the topological equivalent of a disk). For such a case, it is readily apparent from
Fig. 4.2b that at each point on the surface both the positive and negative wall normal
vectors point toward the fluid side of the interface. Consequently, the standard node
classification and boundary condition reconstruction algorithms used in the CURVIB
method (Borazjani et al. 2008) cannot be readily applied and need to be modified.
In this section, we describe the algorithmic changes we have implemented to the
CURVIB method to enable its coupling with the thin shell FE formulation.

At each triangular element e on the mid-surface of the thin structure, we calculate
the positive n+

e and negative n−
e surface normal vectors to identify the positive and

negative, respectively, sides of the surface. The normal vectors are calculated at the
center of the element e, and the positive normal is defined as the outward normal
of the triangle with clockwise nodal numbering. It is thus evident that n+

e = −n−
e .

The triangulated surface is tracked with a set of Lagrangian points (the nodes of the
triangles), which are used to define the boundary conditions (position and velocity
of each Lagrangian node) for the fluid solver.

To find the IB nodes for a given configuration of the thin structure mid-surface
we begin by checking the intersection between the lines connecting the centers of
fluid cells in the vicinity of the body (dashed lines) and the surface (solid lines) as
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shown in Fig. 4.2b. In three dimensions, the intersection is found by checking six
surrounding grid lines from the local grid point A(i, j, k) and the adjacent points
B(i ± 1, j ± 1, k ± 1) (Fig. 4.2b). A fluid node is also considered as an IB node if
the distance between the point and the center of an element e is less than one grid
cell size 
h, i.e.,

∣∣
r ib,e
∣∣ < min 
h, where 
r ib,e = (rib − re), r ib is the position

of the IB node and re is the position vector of the center of the triangular element
(see Fig. 4.2b). The IB node is assigned to correspond to the surface element e on
the solid surface.

To implement this algorithm in parallel computing, we utilize the bounding box
search approach (Borazjani et al. 2008) in order to reduce the involvement of unnec-
essary surface triangles in the searching algorithm. We cover the entire structure
with a volume of size [xmin − xmax; ymin − ymax; zmin − zmax]. This volume is fur-
ther divided into Ni × N j × Nk smaller bounding boxes uniformly. The choice of
Ni , N j , Nk depends on the number of triangulated elements and the number of grid
points per processors. In our simulations, Ni , N j , Nk are typically chosen to be less
than 50. Our line intersection strategy above is applied only for fluid points and
triangulated elements that belong to the same bounding box or adjacent ones.

To handle the aforementioned difficulty arising in our thin body approach, due to
the fact that both positive and negative wall normal vectors at every element point
toward the fluid, we separate the IB nodes in two categories: (i) positive IB+ and (ii)
negative IB− nodes. Note that this type of separation is crucial for the load calculation
discussed in Sect. 4.3.4. To determine whether an IB node is on the positive (+) or
negative (−) side of the surface, we compute the dot product of the positive local
normal vector with the vector connecting the center of the triangular surface element
with the closest IB node: if

(
n+
e · 
r ib,e

)
> 0 then the IB node is located on the

positive side, otherwise it is on the negative side (see Fig. 4.2b). We also note that
the relationship between an IB node and the corresponding surface element e is not
unique as there could be several IB nodes that correspond to the same solid surface
element. This is particularly true when the background fluid grid size is much smaller
than the triangulated cell of the solid surface. In the subsequent section, we discuss
how we handle surface elements that do not have a unique IB node associated with
them insofar as the calculation of the forces acting on that element is concerned.

For Reynolds numbers for which the grid spacing is sufficiently fine to resolve the
near wall flow, velocity boundary conditions are reconstructed at the IB nodes using
linear interpolation along the local normal of the solid surface (Gilmanov et al. 2003).
In our fractional step method for solving Eq. (4.1) (Ge and Sotiropoulos 2007), this
relationship is implicitly incorporated into the nonlinear momentum equation and is
enforced at all times. For high Reynolds number simulations a wall model is used to
reconstruct boundary conditions at the IB nodes as described in Kang et al. (2014).
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4.3.4 Calculation of Loads on the Interface Γ fsi

To enable the coupling of the fluid and structural domains in our FSI algorithm,
the flow imparted loads must be calculated on the solid surface in order to properly
define the problem for the structural solver.

A major challenge in load calculation is the need to efficiently calculate the trac-
tion vector t f on the fluid–solid interface in parallel environment since the solid body
can span across partitioned computational domains, which are assigned to different
processors. It is thus necessary to develop a scalable algorithm to collectively com-
pute the local loading at each processor and assemble all the information to have a
complete loading distribution t f on the interface �fsi. Here, we utilize the layer of
the IB nodes discussed in Sect. 4.3.3 above and illustrated in Fig. 4.1. We calculate
separately the pressure and viscous forces on this layer of IB nodes for each processor
and the final loading condition on the IB nodes is assembled from all portions of all
processors.

Since the fractional step method we employ only requires velocity boundary
conditions at the IB nodes (Ge and Sotiropoulos 2007), the pressure p at these nodes
is not available. For that we calculate pressure at the IB nodes using interpolation
along the normal direction in the similar fashion for the velocity components as
reported in Gilmanov and Sotiropoulos (2005).

We note that we fully retain the sharp interface nature of our method in the
calculation of the traction vectors even though the thin body is represented by its
mid-surface. This is accomplished by using the previously discussed positive and
negative wall normal vectors to independently calculate and store the forces acting
on the (+) and (−) sides of each element on the interface using one-sided interpolation
directed from the element toward the respective (+) or (−) side of the fluid nodes.
Consequently, the so-calculated + and − traction vectors at each surface element
exhibit a discontinuity across the thin body, which is an important physical feature of
the problem preserved by this approach. The shear stress tensor components τ f,i j are
evaluated locally at every fluid node using the second-order differencing to compute
the velocity gradients:

τ f,i j = μ

(
∂vi
∂x j

+ ∂v j
∂xi

)
. (4.30)

Depending on the grid resolution, the components of the shear stress tensor τ f

are interpolated along the normal direction n± in similar fashion as the pressure
(Gilmanov and Sotiropoulos 2005) or reconstructed using a wall model (Kang et al.
2012) to obtain values at the IB± nodes τ±

ib. Finally, the fluid stress tensor σ±
ib at the

IB± nodes is evaluated as follows:

σ±
ib = −p±

ib I + τ±
ib, (4.31)
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where I is the unit tensor. After the fluid stress tensor σ±
ib has been obtained, a one-

sided projection procedure, from the corresponding + or − IB nodes to the actual
solid surface is required to find the stress tensor on�fsi. This procedure is described as
follows. We already mentioned above in the Sect. 4.3.3 that the relationship between
IB nodes and a surface element e is not unique as there could be several IB nodes
(say N

±
e such nodes exist) that are associated with the same surface element e. Note

that only either positive or negative IB nodes are involved in the load calculation
process of positive or negative stresses, correspondingly. Therefore, for such cases
and in order to calculate the fluid stress tensor σ±

e on the surface of the body �fsi an
interpolation procedure is implemented from the surrounding IB± nodes to the solid
surface element as follows:

σ±
e =

N
±
e∑

ib=1

σ±
ib/

∣∣
r±
ib,e

∣∣/
N

±
e∑

ib=1

1/
∣∣
r±

ib,e

∣∣. (4.32)

Finally, the net loading at each triangular element on the thin structuremid-surface
is defined as the sum of loads from both sides of the middle surface te = t+e + t−e ,
where t±e = σ±

e · n±
e (see Fig. 4.3). Note that the total traction vector of the load te

is calculated using all (positive and negative) IB nodes associated with the center of
the triangular element e. In our FE solver, however, the traction vector is required
at the vertices of the triangular elements tv. Thus, an interpolation procedure is
implemented to transfer the traction vector from the elements to the nodes using

Fig. 4.3 The thin structure in our formulation is treated as a sharp interface.The schematic illustrates
that at each element e on the surface, two traction vectors are computed from the positive t+e and
negative t−e sides of the interface. The total traction vector te = t+e + t−e is used to compute the local
load imparted by the flow on the structure on each surface element. Figure reprinted with permission
from Gilmanov et al., Journal of Computational Physics, 300, 814–843 (2015). Copyright 2015,
American Institute of Physics
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distance weighted average: tv = I(te) = ∑ē
e=1

(
te/

∣∣
rv,e
∣∣)/

∑ē
e=1

(
1/

∣∣
rv,e
∣∣),

where the summation is implemented over all elements e adjacent to the vertex v and∣∣
rv,e
∣∣ is a distance from the vertex v to the center of the element e.

4.3.5 The Algorithm for Coupling the Fluid F and Solid H
Solvers

The governing equations of the fluid (Eq. 4.1) and solid (Eq. 4.6) domains as well as
the continuity conditions on the interface constitute a modularly partitioned fluid–
structure interaction problem, which can be solved by coupling together two inde-
pendent solvers: the fluid solver F and the solid solver H. We use the conventional
Dirichlet–Neumann partition (Felippa et al. 2001) to couple the system of fluid–
solid equations. This means that the fluid equations are solved by enforcing Dirichlet
boundary condition, while the solid equations are solved by prescribing the load on
the interface �fsi (Fernandez et al. 2007). The need to enforce the continuity of the
velocity and the normal stresses on the interface �fsi requires that both the displace-
ment and velocity of the solid body u and u̇ must be tracked. We define Q as the
solution of solid solver H (Eq. 4.9):

Q = (u, u̇) (4.33)

From Eq. (4.4) and (4.9), the FSI coupling can be formulated as a fixed-point
operator for Q:

Q = H ◦ F(Q) (4.34)

To facilitate the description of the FSI algorithm, let us assume, without loss of
generality, that the pressure and velocity fields vn , pn for the fluid alongside with
the displacements and velocities of the solid structure un , u̇n are known at time
step n. The fluid and structural equations, Eqs. (4.35–4.36), are solved to obtain the
structural displacement and velocity as well as the fluid pressure and velocity fields
at time step tn+1 with the current boundary conditions on �N

f ∪�D
f ∪�fsi via a series

of subiterations (l) to satisfy Eq. (4.34). We seek the solution of the discrete fluid
operator F at time step tn+1 as:

F(
vn+1, pn+1, un+1, u̇n+1) = 0, in�f, (4.35)

and the solution of the discrete solid operator H as follows:

H
(
un+1, u̇n+1, tn+1

) = 0, in�s, (4.36)
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where tn+1 = L(
vn+1, pn+1

)
is the traction vector imparted by the fluid on the body

surface �fsi. The function L(
vn+1, pn+1

)
represents the loading on the structure

surface from the pressure and velocity fields in fluid. The approach we employ to
calculate L in the discrete space is described in Sect. 4.3.4, Eqs. (4.30–4.32). The
fixed-point subiteration procedure to find Q at time steps n + 1 can thus be written
as follows:

Qn+1
l+1 = Hn+1 ◦ Fn+1(Qn+1

l

)
, (4.37)

where l + 1 is the new iterate of Qn+1. In our fixed-point iteration, the fluid solver
F uses displacements and velocity of the solid structure un+1

l , u̇n+1
l and gives new

fluid velocity vn+1
l+1 and pressure field pn+1

l+1 by solving Eq. (4.35). The solid solverH
in turn uses the so updated fluid velocities, and pressure field to advance the solution
of displacements and velocity of the solid structure un+1

l+1 , u̇n+1
l+1 . Subiterations (l) are

implemented every time step to satisfy the coupled system of equations and advance
the solution to time step n + 1:

(
vn+1
l+1 , pn+1

l+1

) = F(
vn+1
l , pn+1

l , un+1
l , u̇n+1

l

)
,

(
un+1
i+1 , u̇n+1

i+1

)
l+1 = H

((
un+1
i , u̇n+1

i

)
l , t

n+1
l

)
, l = 0, 1, 2, . . . ; i = 1, 2, 3 . . .

(4.38)

where index l is the number of fixed-point iteration and all variables at level l = 0 are
at the previous time step n, index i is the number of Newton iteration for structural
equations. The subiterations continue until an appropriate norm of the error of the
flow and structural variables between levels l + 1 and l has been reduced to a desired
tolerance and the above equations have been satisfied at level n + 1. The above
procedure is generally described as a strongly coupled FSI algorithm and ensures
that the continuity of the stress at the fluid–structure interface is satisfied within
the desired convergence threshold. If we just apply the above algorithm for one
subiteration (l = 0), the requirement for the continuity of the stress is enforced only
within an error that depends on the accuracy of the temporal discretization scheme.
Such an algorithm is generally far more efficient than the strongly coupled approach
and is referred to as loosely coupled iteration.Generally, loosely coupledFSI schemes
are robust for problems involving large mass ratio (structural density considerably
larger than the fluid density) while strongly coupled iterations are required to enhance
robustness for problems with mass ratios of order one or lower (Sotiropoulos and
Yang 2014; Baek and Karniadakis 2012).

For mass ratio problems of order one (ρf/ρs ≈ 1), which arise in simulations
of heart valves, the Aitken nonlinear relaxation technique is also implemented to
accelerate the convergence of the strongly coupled FSI algorithm (Borazjani et al.
2008; Küttler and Wall 2008). The convergence tolerance for the structural and
strongly coupled FSI solvers is of order 10−8 in terms of the L∞ norm.

We note that for all the cases we simulate in this work, although the underlying
FSI dynamics is complex, the degrees of freedom (DOF) for the structural mesh
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are quite low (in the order of thousands) compared to the fluid DOFs (in the order
of millions) since the structures are relatively small and simple. Thus, the cost for
solving the solid equations is small in comparison with the fluid equations. For that
the solid solver is implemented as a serial code possessed by the root processor. All
processors involved in the solution of the fluid equations receive the same image Q
of the structure from the root processor.

Our code is parallelized and uses the Petsc Library. The simulations we report
herein have been carried out on a cluster with dual 8-core AMD6112. To estimate the
efficiency of the code, we report the CPU time per node of the computational grid,
per processor, and per time step. For the inverted flag problemwe report in Sect. 4.4.2
below this quantity is equal to tCPU/(Nodes · Procs · n time) ≈ 3 × 10−2 μs.

4.4 Application to Complex FSI Problems

In this section, we demonstrate the predictive capabilities of the proposed CURVIB-
FE-FSI algorithm by applying it to simulate two quite challenging both involving
FSI with thin flexible structures. The first is the large amplitude vibrations of an
inverted flexible flag, which has been studied experimentally by Kim et al. (2013). In
the second example, we demonstrate the ability of the CURVIB-FE-FSI algorithm
to simulate pulsatile, physiologic flow through a tri-leaflet aortic valve placed in an
anatomic aorta. This second problem is more challenging because it is geometrically
more complex, is characterized by low mass ratio (ρs/ρf ∼ 1) and imposes a more
stringent overall test for the stability and robustness of the FSI solver. Note that both
of these problems were first presented in Gilmanov et al. (2015).

4.4.1 Oscillations of a Flapping Inverted Flag

The computational challenges in this problem are related to the large amplitude
oscillations of the flag as well as to high Reynolds number of the flow. This problem
was also investigated in recently published laboratory experiment (Kim et al. 2013).
The problem is referred to as the inverted flag because the flag, a thin flexible sheet
of length L, is mounted on its trailing edge with its leading edge free to move in
response to a uniform incoming flow u∞ (see Fig. 4.4a). Kim et al. (2013) carried
out a series of experiments by varying u∞ and/or the structural properties of the flag
and identified a dynamically rich phase space of flag responses. They showed that
the non-dimensional parameter that governs the dynamics of the FSI problem is the
nondimensional bending stiffness β = B/ρfu2∞L3, where B is a flexural rigidity
B = Yh30/12

(
1 − ν2

)
of the flag, ρf is the fluid density, Y is the Young’s modulus, ν

is the Poisson’s ratio, and h0 is the thickness of the plate. Kim et al. (2013) identified
three regimes of flag response as a function of β: (1) the straight mode, where the
flag is too rigid to be deflected by the flow and remains straight (large values of β);
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Fig. 4.4 a Computational domain used to simulate the inverted flag problem. The side xmin and
all four sides ymin, ymax, zmin, zmax are Dirichlet boundaries with inflow u = u∞ and no-slip
boundary conditions v = 0, respectively. On the boundary xmax Neumann condition ∂v/∂n = 0 is
implemented; bComparison of calculated (solid line) andmeasured (Khosronejad and Sotiropoulos
2014) time histories of the flag leading edge displacements for flapping mode with β = 0.1. Open
circles are experimental data. Figures reprinted with permission from Gilmanov et al., Journal of
Computational Physics, 300, 814–843 (2015). Copyright 2015, American Institute of Physics

(2) the flapping mode, where the flag undergoes large amplitude flapping oscillations
(intermediate values ofβ); and (3) the deflectedmode,where theflag is soflexible that
it is deflected by the flow toward one side and remains fixed at this position at all times
(small β values). Here, we report simulations for β = 0.1, which is in the flapping
regime. This regime is quite challenging from the FSI simulation standpoint as it
involves very large amplitude oscillations. The specific β value is selected because
for this value the experiment of Kim et al. (2013) revealed a complex dynamic
response of the flag characterized by rich flapping dynamics including several local
minima and maxima of the flag leading edge position during the cycle of flapping
motion. We carry out simulations for the following values of the various governing
parameters for this problem: Y = 2.38 × 109 Pa, ν = 0.38, ρs = 1.2 × 103 kg/m3,
h0 = 8×10−4 m, H = L = 0.3 m, u∞ = 6.7 m/s, μ = 1.92×10−5 Pa s, ρf = 0.98
kg/m3, hence B = 0.118 N m and β = 0.1. The corresponding Reynolds number,
based on the inflow velocity and flag length, is Re = u∞ρfL/μ = 99,505, and,
therefore, the massively separated flow in the wake of the flapping flag is expected
to be turbulent. For that we employ the CURVIB-FE-FSI method in LES mode with
three-point central differencing for the convective terms in the flow equations, the
dynamic Smagorinsky subgrid-scale model (Germano et al. 1991) for closure, and
the wall model of (Wang and Moin 2002) to reconstruct boundary conditions on the
flag as adapted for the CURVIB method by Calderer et al. (2014). The plate surface
is discretized with 206 triangle elements and the background fluid grid is discretized
with a uniform Cartesian mesh with 561× 201× 201 in the stream wise (x), vertical
(y), and transverse (z) directions, respectively. The non-dimensional time step is
equal to 
̃t = 0.01.

Figure 4.4b compares themeasured (Kim et al. 2013) and computed time histories
of the flag leading edge deflection. It is seen that the computed results are in excellent
agreementwith the experimentalmeasurements. The simulations not only capture the
amplitude and period of oscillationswith good accuracy but also resolve the two local
deflectionmaxima (minima) that occur in the vicinity ofmaximum (ymin or ymax) flag
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Fig. 4.5 Snapshots of the simulated inverted flag flow fields during a half period of oscillation.
Contours are the out-of-plane vorticity component (z-vorticity) are plotted at various instants in
time. The corresponding flag shape is also shown and the corresponding time instant is marked
with a red dot in the inset. Light blue circle indicates the fixed trailing edge and the arrow indicates
direction of moving leading edge. Figures reprinted with permission from Gilmanov et al., Journal
of Computational Physics, 300, 814–843 (2015). Copyright 2015, American Institute of Physics

deflection. A more quantitative comparison with the measurements reveals that the
maximum discrepancy between experiments and simulations, which occurs around
maximum and minimum tip deflection, does not exceed 7% of the measured values.

Figure 4.5 depicts the calculated instantaneous out of plane vorticity field at var-
ious instants during the flapping cycle. These snapshots as well as video animations
of the vorticity field (not shown herein) clearly show that the flapping dynamics is
correlated with the formation of a large leading edge vortex as the flag tip approaches
maximum deflections. The vortex begins to form as the flagmoves upward as a result
of shear-layer roll-up and leads to massive separation and shedding of vorticity in
the wake at maximum deflections. The resulting wake is very complex and exhibits
a large-scale meandering motion as a result of the continuous flapping motion of the
flag. The computed results shown in Fig. 4.5 are in good overall qualitative agree-
ment with the flow visualizations reported by Kim et al. (2013) and their overall
description of the underlying wake dynamics as obtained in their experiments.

To elucidate the three-dimensional structure of this highly unsteady andmassively
separated wake, we plot in Fig. 4.6 several snapshots of the Q-criterion (Hunt et al.
1988). It is evident from this figure that the flow is dominated by shear-layer roll-up
off the sharp edges of the flag, which leads to the formation of an arch vortex along
the leading edge and intertwined spiral vortex tubes shed off the two sides of the flag.
These structures separate from the flag and break up into small-scale turbulence in
the wake.
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Fig. 4.6 Snapshots of Q-criterion iso-surfaces (Hunt et al. 1988) at three time instants showing
the inverted flag near the maximum (ymax) deflection. These snapshots elucidate the 3D coherent
structures in the wake of the flapping flag. The red dot in the inset of each figure identifies the corre-
sponding instant. Figures reprinted with permission fromGilmanov et al., Journal of Computational
Physics, 300, 814–843 (2015). Copyright 2015, American Institute of Physics

To our knowledge the results reviewed herein Gilmanov et al. (2015) elucidated
for the first time the three-dimensional structure of the wake of a flapping inverted
flag and clearly illustrated the ability of our CURVIB-FE-FSI method to solve a
very complex, high Reynolds number problem involving complex large amplitude
vibrations of a thin structure. Even though not shown herein, we have carried out
simulations for values of β in all three experimentally identified flag response regions
and our results are in very good agreement with the experiments of Kim et al. (2013).

4.4.2 FSI Simulation of Tri-leaflet Aortic Valve

In this section, we demonstrate the ability of the method to simulate physiologic flow
through a tri-leaflet aortic valve located in an anatomically realistic aorta. The flow
through the aorta is driven by a prescribed physiologic flow wave form at the aorta
inlet, the response of the valve leaflets and associated flow field are simulated by the
new CURVIB-FE-FSI algorithm.

We consider a tri-leaflet aortic heart valve and model it as a thin shell using the
rotational free FE formulation of Stolarski et al. (2013) as described in Sect. 4.3.2
above. We use in these simulations a model suitable for a prosthetic polymeric aortic
valve with isotropic material and the Neo–Hookean constitutive equation. The geo-
metric and material characteristics of the valve are specified from values available in
the literature to correspond to a prosthetic polymeric valve (Carmody et al. 2006) and
are as follows: valve diameter d0 = 0.0254 m, leaflet thickness h0 = 6.0× 10−4 m,
YoungmodulusY = 1MPa, Poisson coefficient ν = 0.35, and densityρs = 1.2×103

kg/m3. As shown in Fig. 4.7a the valve is placed in an anatomic aorta, which has
been reconstructed from patient-specific MRI data.

The pulsatile flow wave form we prescribe as inflow boundary condition at the
inlet of the aorta domain is shown in Fig. 4.7a. The corresponding heart beat is
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Fig. 4.7 a Computational domain for the FSI simulations of a tri-leaflet heart valve in an anatomic
aorta.At inflowpulsatile physiological flowshown in (a) is simulated; at outflowNeumannboundary
condition ∂v/∂n = 0 is implemented; on the aorta wall no-slip boundary condition is implemented;
b physiological incoming flow wave form specified at the inlet of the aorta. Figures reprinted
with permission from Gilmanov et al., Journal of Computational Physics, 300, 814–843 (2015).
Copyright 2015, American Institute of Physics

equal to 70 bpm, which gives a period of the cardiovascular cycle T = 0.857 s.
The valve diameter d0 is used as the characteristic length scale and the peak systolic
velocity of U0 = 0.8 m/s is used as the velocity scale. Using the viscosity of blood
μ = 3.52 × 10−3 Pa s, and blood density ρf = 1050 kg/m3, gives a peak systolic
Reynolds number Re = 6000, which well within the physiologic range (Carmody
et al. 2006). The characteristic time scale is equal to T0 = d0/U0 = 3.1×10−2 s and
thus the non-dimensional period of cardiac cycle is T̃ = T/T0 = 0.857/3.1×10−2 =
27.6 non-dimensional time units. The non-dimensional time step for the simulations
is set equal to t̃ = 0.01, which corresponds to discretizing the cardiac cycle with
Ntime = T̃ /t̃ = 2760 computational time steps. Since the density ratio for this
problem is of order one, the strong coupling FSI iteration is required for stable and
robust simulations. In all subsequently presented simulations 4–10 strong coupling
iterations are sufficient to reduce the residuals by 8 orders of magnitude.

The overall computational setup is shown in Fig. 4.7a and consists of (a) the
anatomic aorta, (b) the flexible tri-leaflet prosthetic heart valve, (c) the rigid valve
support structure, and (d) housing. A curvilinear boundary-fitted grid is used to
discretize aorta domain with 101×101×601, in the two transverse and stream wise
directions, respectively. The valve leaflets are discretized with 476 triangle elements.

The flow wave form shown in Fig. 4.7b, which corresponds to the systolic phase
of the cardiac cycle during which the aortic valve opens and closes, is used to specify
time-dependent Dirichlet conditions for the velocity at the inlet. At the outlet of the
aorta zero-gradient Neumann condition ∂v/∂n = 0 is applied for all three velocity
components alongwith a correction of the so-resulting velocity field to enforce global
mass conservation. No-slip and no-flux boundary conditions are applied on all solid
surfaces.

We note that in our numerical method the discrete continuity equation is satisfied
to machine zero at each time step, thus preserving the incompressible nature of the
flow locally and globally. This is accomplished by solving the Poisson equation in
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Fig. 4.8 Instantaneous contours of vorticity magnitude on a plane through the aorta plane of
symmetry during systolic phase showing the opening and closing process of the aortic heart valve.
The red dot in the inset of each figure identifies the corresponding instant during the cardiac cycle.
Figures reprinted with permission from Gilmanov et al., Journal of Computational Physics, 300,
814–843 (2015). Copyright 2015, American Institute of Physics

the projection step of the fractional step method with the residual reaching machine
zero at every physical time step. For more details, we refer the reader to Kang et al.
(2011).

The calculated flow fields for one simulated systolic cardiac cycle are shown in
Fig. 4.8. Contours of instantaneous vorticity magnitude are plotted in this figure
on a plane passing through the center of the aorta. As seen in this figure, a well-
defined vortex ring forms as soon as the valve opens at early systole (Fig. 4.8a).
Shear layers connecting the aortic valve vortex ring with the valve leaflets are also
evident in Fig. 4.8a. As the valve leaflets continue to open, the vortex ring advances
and impinges on the curved aorta wall and breaks up. The valve leaflet shear layers
intensify as the flow rate through the valve increases and the flow in the wake of
the valve leaflets is seen to break up into small-scale turbulence at approximately
halfway within the accelerating phase of the cardiac cycle (Fig. 4.8c). By the time
the peak systolic flow is reached and the valve has opened fully, the flow in the aorta
is seen to have transitioned to a fully turbulent state downstream of the valve leaflets
(Fig. 4.8d). This state persists even after the valve closes and the flow structures in
the aorta gradually decay (Fig. 4.8f).

The results shown in Fig. 4.8 reveal significant differences between the simulated
flow patterns reported in Le and Sotiropoulos (2013) for a mechanical bi-leaflet
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Fig. 4.9 Instantaneous iso-surfaces of the Q-criterion (Hunt et al. 1988) at various instant in
time during valve opening. The red dot in the inset of each figure identifies the corresponding
instant during the cardiac cycle. Figures reprinted with permission from Gilmanov et al., Journal
of Computational Physics, 300, 814–843 (2015). Copyright 2015, American Institute of Physics

heart valve (MBHV) in the same anatomic aorta. More specifically, when a MBHV
is implanted in the aortic position the turbulent state downstream of the valve leaflets
does not emerge until shortly after peak systole. For the tri-leaflet valve, however,
Fig. 4.8 clearly shows that the flow transitions to turbulence well before peak systole
is reached. This finding should be attributed to the complex vortex dynamics induced
by the shape of the tri-leaflet valve orifice as it opens and the interaction of the aortic
valve vortex ring with the aorta wall.

To illustrate the three-dimensional dynamics of coherent structures as the valve
opens, we plot in Fig. 4.9 instantaneous snapshots of the Q iso-surface (Hunt et al.
1988). As seen in Fig. 4.9a, as the valve opens the shear layer from the valve leaflets
rolls up to form a three-lobed vortex ring that follows the shape of the valve orifice.
As the valve continues to open, this vortex ring becomes distorted as each one of
its three lobes, forming at the valve commissures, bends forward and propagates at
faster speed than the rest of the ring. This complex deformation of the aortic valve
ring is clearly evident in Fig. 4.9c where three distinct vortex loops are seen to have
formed. Each loop forms because of the faster propagation and associated stretching
of the corresponding lobe of the initial ring. Essentially the vortex interactions and
instabilities revealed by our simulations are similar to those observed in pulsatile
flow through corrugated nozzles (New and Tsovolos 2012). These instabilities along
with the subsequent impingement of the three-lobed aortic valve ring on the aorta
wall are ultimately responsible for the relatively early transition to turbulence of the
flow in the wake of a tri-leaflet valve.
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As mentioned earlier, in all of the above simulations, a linear, isotropic Saint-
Venant (StV) material model was used, which has been also employed in the past,
e.g., in Tepole et al. (2015) and may be applicable only to a certain type of prosthetic
valves. Recently, the May-Newman and Yin (MNY) model (May-Newman and Yin
1998) and its applicability to heart valve has been discussed in Gilmanov et al. (2016)
to simulate natural heart valves. However, the analysis presented in that paper did not
involve fluid flowand, consequently, no FSI algorithmwas used. Instead, the dynamic
behavior of leaflets was investigated by prescribing time-varying pressure loading
taken from experiments. For the set of parameters used, we found in Gilmanov et al.
(2016) that heart valve with the StV material model is more obstructive to the blood
flow in comparison with the heart valve with theMNYmaterial model. The complete
FSI simulations (Gilmanov et al. 2018) led to the same conclusion that the StV heart
valve is more obstructive to the blood flow and creates more complex blood flow
patterns. To qualitatively compare the opening kinematics of StV and MNY heart
valves and the associated differences in hemodynamic patterns, in Fig. 4.10 the results
of FSI simulations with StV and MNW heart valves are shown. The instantaneous
vorticity contours for the two considered cases (StV andMNY) are shown in the first
and second columns of Fig. 4.10. To illustrate the three-dimensional dynamics of the
coherent structures as the valve opens, we plot in Fig. 4.10 (third and fourth columns)
the instantaneous Q iso-surfaces (Hunt et al. 1988). Figure 4.10a shows that for the
time interval shown, the StV heart valve opens only partially and obstructs the blood
flow, causing significant vorticity generation downstream of the valve leaflets. At
exactly the same time, the MNY heart valve is fully open and vortices are shed from
the fully formed valve orifice (Fig. 4.10a–c). One can see that with the StV material,
the jet spreads into the aorta faster than that for theMNYvalve. Starting at t ≈ 0.12 s,
the large-scale coherent structures arising in the StV valve material disintegrate into
small turbulent structures (Fig. 4.10a). For the MNY material on the other hand, the
vortices remain coherent, which indicates that the MNY valve flow remains laminar
for a longer period of the cardiac cycle than the StV valve flow. In fact, only starting
at approximately t ≈ 0.192 s (Fig. 4.10c), the large-scale vortex structure arising in
the MNY valve disintegrates as it begins to interact with the aortic wall.

Helical flow patterns have been observed in the aortic arch, which are clearly
seen from the movies (not shown here) of Q-structures spreading into the aorta. As
mentioned earlier, these flow patterns are dependent on the kinematics of the valve
which, in the coupled FSI analysis, is dependent on the properties of the leaflet
material. We have shown that as the StV valve opens, the shear layer induced by the
valve leaflets rolls up to form a three-lobed vortex ring (Fig. 4.9), which corresponds
to the shape of the valve orifice. For the MNY valve, however, the opening process
is faster and the resistance to the blood flow is reduced, which leads to a toroidal
shape of the vortex. As the valve continues to open (Fig. 4.10b and c), the vortex
ring for the StV valve becomes distorted but for the MNY valve remains toroidal and
coherent. As discussed above, for the MNY valve, the coherent vortex ring begins
to get disorganized only later due to its interaction with aortic wall (Fig. 4.10c). It is
clearly seen that this large coherent structure produced by theMNY valve propagates
into the aorta along a helical path (Fig. 4.10).
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Fig. 4.10 Comparison of instantaneous contours of vorticity on a plane through the aorta during
systolic phase showing the opening process of the StV aortic valve (first column) and MNY aortic
valve (second column). The third and fourth columns are the instantaneous iso-surfaces of the Q-
criterion (Hunt et al. 1988) for StV andMNYmodels, respectively. The dot in the inset of each figure
identifies the corresponding instant during the cardiac cycle: a ta = 0.128 s, b tb = 0.16 s, and c
tc = 0.192 s. Figures reprinted with permission from Gilmanov et al., Journal of Biomechanical
Engineering, 140 (2018). Copyright 2018, American Institute of Physics

To our knowledge the results we have presented herein [originally reported in
Gilmanov et al. (2018)] represent the first FSI simulation of a tri-leaflet heart valve
whosematerial is nonlinear and anisotropic andwhich is interactingwith an anatomic
aorta at physiologic conditions. The ability of themethod to resolve the very complex
flow patterns and associated vorticity dynamics as the valve leaflets open and close
illustrates its potential as a powerful tool for patient-specific simulations of native
and prosthetic heart valves.

4.5 Conclusions

We have presented a recently developed computational approach for simulating
fluid–structure interaction (FSI) problems in complex domains with thin flexible
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solid structures. It is based on integrating the sharp interface CURVIB solver, pre-
viously developed for FSI problems with rigid structures (Borazjani et al. 2008),
with an accurate and efficient rotation-free FE formulation for thin shells (Stolarski
et al. 2013) into a coupled FSI framework that is able to handle very large deforma-
tions/displacements of thin shell structures. The inverted flag case in particular, which
to the best of our knowledge we simulated numerically for the first time (Gilmanov
et al. 2015), illustrates the ability of our method to simulate with LES a dynamically
rich, high-Reynolds number FSI problem. Comparisons with the measurements of
Kim et al. (2013) for this case revealed the ability of the method to capture even
subtle features of the flag kinematics, such as the existence of multiple local extrema
near the location of maximum deflection, and reproduce wake structures similar to
those visualized in the laboratory. We subsequently reviewed results from recent
application of our method (Gilmanov et al. 2015, 2018) to simulate the dynamics
of a tri-leaflet aortic heart valve placed in an anatomic aorta to demonstrate the
capability of the method to solve complex FSI problems in realistic cardiovascular
anatomies and at physiologic conditions. Our simulations elucidated the rich vortic-
ity dynamics during the opening of the valve leaflets. The differences for StV and
MNY valves’ motion and their deformation were shown to give rise to significantly
different hemodynamics both near the valve and in the ascending aorta. For the StV
valve, the vortex ring is seen to grow in complexity rapidly and ultimately break
into turbulence much sooner during the accelerating phase of systole than for the
MNY valve. Our simulations show that the heart valve with the StV material model
is more obstructive to the blood flow in comparison with the heart valve with the
MNY material model.
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