
Chapter 16
Immersed Boundary Method for High
Reynolds Number Compressible Flows
Around an Aircraft Configuration

Taro Imamura and Yoshiharu Tamaki

16.1 Introduction

The boundary layer on the surface of a transport aircraft at the cruise condition is
almost fully turbulent. The Reynolds number (Re) of the flow based on themainwing
chord length is on the order of 107 (Wahls 2001; Green and Quest 2011). In addi-
tion, modern aircraft have high-aspect-ratio wings and long fuselages that increase
their surface area. Thus, the computational costs of a direct numerical simulation or
a large eddy simulation (LES) for an external flow around an aircraft are still too
high for engineering purposes. Choi and Moin (2012) reported that more than 108

cells are required to spatially resolve the flow around a wing whose aspect ratio is
4, even when a wall-modeled LES is used. The simulation also requires many time
steps because the time scale of the unsteady turbulent vortices is several orders of
magnitude smaller than that of the mean flow. Therefore, the Reynolds-averaged
Navier–Stokes (RANS) simulation is widely used for external flows around an air-
craft, especially for industrial application. In the derivation of the RANS equation,
the temporal fluctuation component and the mean component are decomposed. The
computation is carried out only through the mean component, and a steady-state
solution is obtained unless strong instabilities (e.g., separated flows behind a bluff
body or artificial oscillating motion) exist in the flow field. Under the cruise condi-
tion, the flow is mostly attached to the surface; thus, RANS simulations are fairly
accurate. For example, in the Drag PredictionWorkshops (DPWs) (2017), the RANS
simulation capability for an aircraft aerodynamic prediction was widely investigated.
These studies (Sclafani et al. 2010, 2013; Lee-Rausch et al. 2014; and Hashimoto
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et al. 2014) validated the results on body-fitted grids. The computational grids for
RANS simulations are designed to resolve the viscous sublayer of the turbulent
boundary layer, using high-aspect-ratio cells that conform to the wall surface. Using
the immersed boundary method (IBM) on Cartesian grids for the wall boundary
condition, the grids are not aligned to the wall surface (non-body-fitted grids). The
cells’ aspect ratio near the wall is fixed to unity when Cartesian grid is used which
is not suitable for high Reynolds number flow simulations. To resolve the viscous
sublayer, many cells are required as compared with that of the typical body-fitted
grid. In simple 2D problems, research (Takahashi and Imamura 2014; de Tullio et al.
2007) has proved that turbulent boundary layers can be reproduced when the viscous
sublayer is sufficiently resolved. However, simulating 3D turbulent flows using such
a fine grid is not realistic. Simulations of flows around high-aspect-ratio wings are
quite difficult to perform owing to the uniform cell size requirement in the span-wise
direction.

This chapter presents a methodology for simulating a high Reynolds number flow
using RANS equation on hierarchical Cartesian grids in combination with IBM. We
propose a new approach which applies the modified wall function to IBM. Addition-
ally, a flux-based method is developed based on the balance of the numerical fluxes
in order to evaluate the aerodynamic forces.

The remainder of this chapter is organized as follows. Section 2 describes the
baseline flow solver using Cartesian grids and the IBM for turbulent flow simulation.
A method to calculate the aerodynamic force acting on the immersed bodies is also
explained. Section 3 provides numerical results, e.g., turbulent flow over a 2D bump
and around an aircraft configuration. Finally, Sect. 4 summarizes the chapter.

16.2 Numerical Methods

16.2.1 The Baseline Grid Generator and Flow Solver
(UTCart)

The specification of the baseline flow solver the University of Tokyo Cartesian-
grid-based automatic flow solver (UTCart) is described. UTCart consists of two
parts: the grid generation and the flow solver. First, the hierarchical Cartesian grid is
automatically generated using tree data structures, i.e., the quadtree (2D) or oct-tree
(3D). The shapes of input objects are defined by sets of line segments in 2D or by
Standard Triangulated Language files (i.e., sets of triangular facet segments) in 3D.
Then, binary tree structures and bounding boxes are constructed for each object to
search the nearest segments. The cells intersecting the input object are treated as
wall cells. In addition, the cells inside the object are classified as body cells, whereas
those outside the object are classified as fluid cells. The grid distribution around
the object is controlled by the following two options. The first option is to control
the numbers of cells in the layers of the same cell size. Figure 16.1 illustrates the
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Fig. 16.1 Layers and the
refinement box of the
generated grid

case where the minimum number of cells in each layer is set to 4. The minimum
cell size near the wall (the first layer) is doubled after at least four cells of the
same size, and this continues to the far-field boundary. The number of cells in each
layer is controlled as necessary. The second option is the refinement box which is
used to refine uniformly a certain area of the computational domain. The refinement
box is specified by the minimum/maximum coordinates of the rectangular (2D) or
cuboid (3D) and the uniform cell size inside. After the generation of the hierarchical
Cartesian grid, the grid is partitioned using the METIS library (2019) for a parallel
computation based on the message passing interface. In each divided grid domain,
sleeve cells are specified for the communication between the domains.

In the second step, a flow calculation is performed. The numerical methods in
the solver are summarized in Table 16.1. The flow simulation by UTCart is based
on the compressible Euler/Navier–Stokes equations in a conservation form. For high
Reynolds number flows, RANS simulations are carried out using a turbulencemodel.
The governing equations are as follows:

∂ Q
∂t

+ ∂
(
F j − FV, j

)

∂x j
= 0, (16.1)

where Q = [ρ, ρui , ρE]T is the vector of conservative variables. F j =
[
ρu j , ρuiu j + pδi j , (ρE + p)u j

]T
is inviscid flux, and FV, j = [

0, τi j , τ jkuk − q j
]

denotes viscous flux (i, j, k = 1, 2 for 2D, and i, j, k = 1, 2, 3 for 3D). Here, ρ is the
density, ui is the velocity, E is the total energy per unit mass, τi j is the viscous stress
tensor, and q j is the heat flux. The ideal gas law for relating the thermal quantities is

p = ρRT, E = p

ρ(γ − 1)
+ 1

2
ukuk, (16.2)

where T is the temperature, R is the gas constant, and γ = 1.4 is the ratio of the
specific heat. The viscous stress tensor and the heat flux are approximated as
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Table 16.1 Numerical
methods for UTCart

Governing equations Compressible Euler equations

Compressible Navier–Stokes
equations

Compressible
Reynolds-averaged
Navier–Stokes equations

Turbulence model Spalart–Allmaras (SA-noft2)

Discretization method Cell-centered finite volume
method

Type of grids Unstructured hierarchical
Cartesian grids

Inviscid flux SLAU with third-order
MUSCL

Limiter Minmod or van Albada

Viscous flux Second order

Convective and diffusive flux
of SA

Second order

Gradient evaluation WLSQ (G)

Time integration method MFGS or LU-SGS (Yoon and
Jameson 1988)

Time-stepping method Local time-stepping method

τi j = 2(μ + μt )

[
Si j − 1

3
Skkδi j

]
, q j = −cp

(
μ

Pr
+ μt

Prt

)
∂T

∂x j
,

where μ is the molecular viscosity, μt is the eddy viscosity, Si j =
1/2

(
∂u j/∂xi + ∂ui/∂x j

)
, and cp = γ /(γ − 1)R is the specific heat at constant

pressure. Prandtl number Pr is set to 0.72, and turbulent Prandtl number Prt is set to
0.9. When the eddy viscosity μt is set to 0, Eq. (16.1) becomes the Navier–Stokes
equations. In Euler calculations, the molecular viscosity μ is additionally set to 0.
Spalart–Allmaras one-equation turbulence model (SA) (Spalart and Allmaras 1992)
calculates the eddy viscosity. The version of SA used in this research is an SA-
noft2 model (Turbulence Modeling Resource 2019), which neglects the ft2 term.
The equations of SA-noft2 are as follows:

∂

∂t
(̃ν) + ui

∂

∂xi
(̃ν) = 1

σ

[
∂

∂xi

(
(ν + ν̃)

∂ν̃

∂xi

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
+ cb1 S̃ν̃

− cw1 fw

(
ν̃

d

)2

, (16.3)

μt = ρν̃ fv1, fv1 = χ3

χ3 + c3v1
, χ = ν̃

ν
, S̃ = 
 + ν̃

κ2d2
,
 = √

2Wi jWi j ,
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Fig. 16.2 Schematic of the
wall boundary condition of
the immersed surface

Cell P

Cell F

FC

Wi j = 1

2

(
∂ui
∂x j

− ∂u j

∂xi

)
, fv2 = 1 − χ

1 + χ fv1
, fw = g

[
1 + c6w3
g6 + c6w3

] 1
6

,

g = r + cw2
(
r6 − r

)
, r = min

[
ν̃

S̃κ2d2
, 10

]
,

where d denotes the distance from the local point xi to the nearest point on the wall
surface. The closure constants are

cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41,

cw1 = cb1/κ
2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2, and cv1 = 7.1.

Thegoverning equations are discretized by the cell-centeredfinite volumemethod.
The hierarchical Cartesian grids are treated as unstructured data structure. The invis-
cid flux is evaluated using the simple low-dissipation advection upstream splitting
method (AUSM) scheme (Shima and Kitamura 2011). The third-order monotonic
upwind scheme for conservation laws (MUSCL) is used to increase the spatial accu-
racy. The viscous flux is calculated using a modified second-order central difference
(Wang et al. 2010). The accuracy of the convective and diffusive flux of the SA
model is second order. Gradients of the primitive variables are calculated using the
weighted least square method (WLSQ) (Shima et al. 2013). The matrix-free Gauss–
Seidel, which is an implicit time integration method, is used for the time integration
(Shima 1997). All the numerical computations are steady; thus, a local time-stepping
method is introduced to accelerate convergence. The subsonic far-field boundary con-
ditions are determined based on the method proposed by Chakravarthy and Osher
(1983).
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16.2.2 Immersed Boundary Method for UTCart

Figure 16.2 is the schematic of the grid near the wall boundary. The cells intersecting
the body surface are the wall cell, and the cell completely inside the fluid domain
is the fluid cell. UTCart imposes the wall boundary condition at the center between
fluid cell and the wall cell [point face center (FC)]. A discrete-forcing IBM is used
to determine the boundary conditions. Here, the IBM for inviscid and low Reynolds
number viscous flows is explained. The IBM for high Reynolds number flow is
described in the next subsection.

To determine the physical quantities of FC, an image point (IP) is set on the wall-
normal line through FC, assuming one-dimensional variable profiles between the IP
and the wall. The distance between the IP and the wall is dIP related to the size of
the ambient cells �x by

dIP = rIP�x, (16.4)

where rIP is the ratio of the IP distance to the cell size on the wall, which is a constant
value. The minimum value for rIP is

√
2 in 2D and

√
3 in 3D for the IPs to be located

in the fluid cells. Typically, the rIP value is set to 2–3. An exception may occur where
twowalls are located close to each other. If IP is located in thewall, thewall boundary
is considered to be a step-wise face, and the value at FC is determined using the value
at the fluid cell including the FC to avoid a numerical problem.

In the explanation below, the quantities at the IP and FC are represented by
subscripts IP and FC, respectively. The primitive variables q at the IP is linearly
interpolated locally inside the cell as

qIP = qP + ∂q
∂x j

∣∣∣∣
P

(
x j,IP − x j,P

)
, (16.5)

where the subscript P denotes the value at the center of the cell including the IP.
Then, the primitive variables at FC are calculated using the quantities at the IP.
For example, the pressure is assumed to satisfy the zero-gradient condition on the
wall. The wall-normal velocity must satisfy the non-penetration condition, where
the normal velocity is zero on the wall. Thus, a linear profile between the IP and
the wall is assumed. The boundary condition for the tangential velocity ut depends
on whether the wall is slip or non-slip. The numerical flux at FC is calculated using
the primitive variables at FC. An upwind scheme calculates the inviscid flux. The
viscous flux is calculated using only the quantities at FC assuming the adiabatic wall
boundary condition for the heat flux.

During the grid partitioning for the parallel flow computation, a modification
is applied to the list of sleeve cells when IBM is used (Imamura et al. 2017). As
illustrated in Fig. 16.2, physical quantities at the IP are used to define the wall
boundary condition at the FC which is an interface between the fluid cell and wall
cell. Extra communication is required if IP and FC are located in different domains.
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16.2.3 Wall Function for RANS

A wall boundary condition for UTCart to simulate turbulent flows is presented. The
SA wall model developed by Allmaras et al. (2012) is used to evaluate the effect
of the neglected molecular viscosity and construct a universal law of the wall. This
wall velocity model is derived under the assumption for the law of the wall analysis:
incompressible, zero pressure gradient, constant outer edge velocity, ignore advection
terms, and gradient terms parallel to the wall. The shape of this function is presented
in Fig. 16.3.

u+ = fSA
(
y+)

, (16.6)

where u+ and y+ are the normalized tangential velocity using wall friction velocity
uτ and distance in the wall unit, respectively. By substituting the tangential velocity
at IP in Eq. (16.6), Newton’s iteration is performed to obtain uτ . Then, the tangential
velocity at FC is calculated as

ut,FC = uτ fSA
(
y+
FC

)
. (16.7)

Furthermore, the temperature at FC is calculated by the Crocco–Busemann
relationship (White 2006):

TFC = TIP + Pr1/3

2cp

(
u2t,IP − u2t,FC

)
. (16.8)

Then, the density at FC is calculated as:

ρFC = pFC
RTFC

. (16.9)

Fig. 16.3 SA wall model
developed by Allmaras et al.
(2012)
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Fig. 16.4 Modification of
the velocity profile

The velocity profile defined by the wall function in Eq. (16.6) is a nonlinear
function. However, a spatial schemewith second-order accuracy reconstructs a linear
(first-order polynomial) profile within a cell. As a result, the velocity profile assumed
by the wall function cannot be reproduced in the cell. To overcome this problem, the
velocity profile and related flow variables should be modified. This idea originates
from Capizzano (2011). The tangential velocity profile is modified using the first
derivative of the SA wall model:

fSA,mod
(
y+) = u+

IP + d fSA
dy+

∣∣∣∣
IP

(
y+
IP − y+)

. (16.10)

The inviscid flux on the face is calculated using the tangential velocity u+(
y+
FC

)

obtained by Eq. (16.10). In this velocity profile (Fig. 16.4), the tangential velocity at
y+ = 0 is nonzero; thus, a virtual slip velocity is imposed on the wall. Note that the
viscous flux on the face is directly calculated as τFC = ρFCu2τ .

Alongwith the velocity profilemodification, it is important tomaintain the balance
of the shear stress,

(ν + νt )
du

dy
= τw

ρ
, (16.11)

where τw is the wall shear stress. Note that Eq. (16.11) is an approximate relationship
in the inner layer of the boundary layer, where the convection and pressure gradients
are negligible. Thus, a modification is required on the eddy viscosity profile corre-
sponding to the modification of the velocity profile. In the modified velocity profile
of Eq. (16.10), the velocity gradient (du/dy) is constant. Accordingly, νt must be
constant in the region between the IP and the wall to maintain the constant shear
stress implied by Eq. (16.11). Here, the near-wall solution of ν̃ is retained, and only
the wall-damping function fv1 in Eq. (16.3) is modified to avoid additional complex-
ity. To realize the constant profile of the eddy viscosity, the wall-damping function
must be

fv1 ∼ 1

d
, (16.12)

because of the near-wall solution of ν̃ is proportional to the wall distance d. For
the implementation, the profile of fv1 must be continuous. Thus, the wall-damping
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function is redefined as

fv1 =
{

fv1,original(d ≥ dcutoff)
fv1,near-wall(d < dcutoff)

. (16.13)

Cutoff distance dcutoff is equal to the distance between the IP and the wall, dIP.
The original damping function fv1 is

fv1,original = χ3

χ3 + c3v1
, (16.14)

and fv1,near-wall is a modified damping function near the wall defined as

fv1,near-wall = rd
(χrd)

3

(χrd)
3 + c3v1

, (16.16)

where rd = dcutoff/d. Note that fv1,near-wall is a product of rd and the original fv1
at d = dcutoff. When the IP is located in the log layer of the turbulent boundary
layer, fv1,near-wall is approximately equal to rd . This function depends on the relative
position of the IP in the boundary layer. For example, the shape of the function with
y+
IP = 50 is illustrated in Fig. 16.5. The modified eddy viscosity profile has a kink at
the cutoff point. The following technique is used to calculate the viscous fluxes on
the faces. Here, face lr is considered, which is the face between cells l and r. The
eddy viscosity on the face is required to calculate the viscous flux on faces l, r, and
νt,lr . However, the simple average of νt,l and νt,r is different from the true value of
the profile if the kink exists between cells l and r. This may cause numerical errors.
Thus, the following procedure is adopted to eliminate the effect of the kink. The
averages of left and right cells for ν̃, ν and d are calculated as follows:

(a) Wall-damping function, (b) Eddy viscosity

Fig. 16.5 Modification of the eddy viscosity profile



430 T. Imamura and Y. Tamaki

ν̃lr = rlr ν̃l + (1 − rlr )̃νr ,

νlr = rlrνl + (1 − rlr )νr ,

dlr = rlr dl + (1 − rlr )dr , (16.17)

where rlr is the ratio of the cell sizes:

rlr = �xr
�xl + �xr

. (16.18)

The eddy viscosity is calculated by those quantities:

νt |lr = ν̃lr fv1(χlr , dlr ), (16.19)

where χlr = ν̃lr/νlr . The ν profile is nearly linear near the wall, and the numerical
error is smaller than the simple average of νt .

Corresponding to the modification of the velocity and eddy viscosity profiles,
the thermal boundary condition has now been reconsidered. The Crocco–Busemann
relationship in Eq. (16.8) is differentiated in terms of wall-normal coordinate yields:

dT

dy
= Pr1/3

cp
ut
dut
dy

. (16.20)

In the modified velocity profile in Eq. (16.10), the normal gradient of the tangent
velocity is constant below the IP. Here, uτ is assumed to be nearly constant because
the velocity gradient in the log layer is small. Thus, the temperature gradient is nearly
constant below the IP, and the temperature profile becomes a linear profile:

TFC = TIP − dT

dy IP
(yIP − yFC), (16.21)

where the temperature gradient at IP is calculated in Eq. (16.20).
The proposedmethod is thoroughly tested through the simulations of the flat-plate

turbulent boundary layer. Further details are discussed by Tamaki et al. (2017) and
Tamaki (2018).

16.2.4 Force Calculation Method

To compute the aerodynamic force, the polygon-based method (Nonomura and
Onishi 2017) which integrates over the input CAD surface is often used. In this
method, the physical quantities (e.g., pressure) on the Cartesian grid are interpolated
and/or extrapolated onto the CAD surface before the integration. This method is the
same as the force integration method of conventional body-fitted grids, except for
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Fig. 16.6 Description of the
computational domain and
the boundaries

the interpolation and/or extrapolation. However, arbitrariness exists in the interpola-
tion and/or extrapolation formula; thus, the computed forces may contain additional
numerical errors. In addition, the integration accuracy depends on the resolution of
the CAD surface. Therefore, the calculation of force acting on the immersed body
based on the flow solution needs to be explored.

To remove the uncertainties related to the previous discussion, new force inte-
gration is developed based on the balance of the numerical flux. This idea is similar
to the far-field methods (van Dam 1999; Kusunose and Crowder 2002); however,
the integration surface is the step-wise cell boundary between the fluid cell and the
wall cell. Unlike the far-field method, the pressure and viscous component of the
force are calculated using this new method because the integration surface is near
the object surface. The force can also be decomposed when multiple objects exist in
the computational domain.

As illustrated in Fig. 16.6, an immersed body ΓS in Cartesian grids is considered.
The step-wise cell boundary near the wall and the far-field boundary are named ΓG

and ΓF , respectively. Note that the normal vectors of ΓG and ΓF are pointing outside
the computational domain. Furthermore, the domain between ΓG and ΓF and that
between ΓG and ΓS are named V1 and V2, respectively. To perform component-wise
integration of the aerodynamic force, the integral over ΓF is replaced by that over
ΓG . The momentum equation is integrated over domain V1 assuming neither mass
source nor body force exists in the domain. The near-field integration formula for
the aerodynamic force is described as follows:

Fi =
∫

ΓG

{
ρ
(
ui −U∞,i

)
u j + (p − p∞)δi j − τi j

}
n jdS. (16.22)

Equation (16.22) is discretized on the faces that compose ΓG :

Fi =
∑

face∈ΓG

[〈(
ρuiu j + pδi j

)
n̂ j

〉 − 〈
ρu j n̂ j

〉
U∞,i − p∞δi j n̂ j − 〈

τi j n̂ j
〉]
face,

(16.23)
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where
〈(
ρuiu j + pδi j

)
n̂ j

〉
are the momentum components of the inviscid flux,〈

ρu j n̂ j
〉
is the mass component of inviscid flux, and

〈
τi j n̂ j

〉
is the momentum compo-

nents of the viscous flux. Note that n̂ j is the normal vector component of the faces on
ΓG . Here, the integral of the viscous flux is considered to be the viscous component
of the aerodynamic force, and the remainder is considered to be pressure component.
The aerodynamic forces acting on each part of the immersed body (or each object)
can be decomposed when the faces are classified with respect to the nearest part or
object. Thus, it is suggested that one uses the same inviscid and viscous numerical
fluxes as those in the flow calculation of the flux components in Eq. (16.23). The
evaluated force directly reflects the accuracy of the flux used in the flow calculation,
and no additional numerical error is produced.

16.3 Numerical Results

16.3.1 Subsonic Flow Over a 2D Bump

The first test case is the subsonic flow over a 2D bump defined in the NASA Turbu-
lenceModel Resource (TMR) (2019). The effect of the stream-wise pressure gradient
is small compared to that of viscous force, except for the location close to a separa-
tion point (Tennekes and Lumley 1972). In this problem, the validity of the proposed
IBM is investigated in a flow with a mild pressure gradient. This is because the effect
of the stream-wise pressure gradient is neglected in the baseline, which is an approx-
imated governing equation for the proposed IBM. The Reynolds number based on
reference length L, and the free-streamMach number of 0.2 is 3 × 106, and the free-
stream temperature is 300 K. The overview of the grid and the boundary conditions
are illustrated in Fig. 16.7. Five grids with different grid resolutions are prepared
to check the trend of grid convergence as tabulated in Table 16.2. In addition, rIP is
fixed to 3 for this problem. CFL3D (2019) computes the reference result on the 1409
× 641 grid. These reference computational results are also provided in the TMR.
The y+

IP in Table 16.2 is estimated by c f of this reference result. The results of the
original IBM and modified IBM are compared to clarify the importance of the mod-
ification proposed in Sect. 2.3. The specification of these methods is summarized in
Table 16.3.

The distributions of the pressure and skin friction coefficients on the bump are
illustrated in Figs. 16.8 and 16.9, respectively. The reference result by CFL3D is also
illustrated in the same figures. On one hand, a large oscillation is observed on the
pressure coefficientCp in the original IBM results, and the skin friction deviates from
the reference result. This trend is obvious in the fine grids; the result in grid 5 predicts
the peak of c f at a different location, and the magnitude of c f is approximately 30%
smaller than the reference result. As a result, no trend of grid convergence is observed
in the original IBM results. However, the modified IBM reproduces the distribution
of c f more accurately. The oscillation of Cp is smaller than the original IBM result,
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(a) Computational grid

(b) Boundary conditions

Fig. 16.7 Computational grid over the bump

Table 16.2 Setting of computational grids over the 2D bump

Grid Min. cell size Number of cells y+
IP at x/L = 0.75 (estimation)

1 1.57 × 10−3 21,762 784

2 7.86 × 10−4 43,246 392

3 3.93 × 10−4 82,978 196

4 1.96 × 10−4 164,638 98.0

5 9.82 × 10−5 325,698 49.0

Table 16.3 Specification of the original and modified IBMs

Original IBM Modified IBM

Velocity profile SA wall model, Eq. (16.6) Linear, Eq. (16.10)

fv1 Original definition in SA, Eq. (16.3) Modified, Eq. (16.13)

Temperature profile Crocco–Busemann relationship, Eq. (16.8) Linear, Eq. (16.21)
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(a) Original IBM (b) Modified IBM

Fig. 16.8 Distribution of the pressure coefficient on the bump

(a) Original IBM (b) Modified IBM

Fig. 16.9 Distribution of the skin friction coefficient on the bump

and the magnitude of Cp is also more accurate. In addition, the skin friction on
the finer grids has better agreement with the reference result; thus, a correct grid
convergence trend toward the reference result is confirmed. Therefore, the modified
IBM can reproduce this flow with a certain degree of accuracy.

16.3.2 Flow Analysis Around the NASA Common Research
Model

To investigate the capability of the proposed framework for aerodynamic pre-
diction on a civil transport aircraft, transonic flows around the NASA common
research model (CRM) (Vassberg et al. 2008) are simulated (Tamaki 2018; Tamaki
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and Imamura 2018). The NASA CRM was developed as a benchmark in the
DPWs (2017). This geometry is widely tested in wind tunnel experiments (Rivers
and Dittberner 2014; Ueno et al. 2014) and in numerical simulations (Sclafani et al.
2010, 2013; Lee-Rausch et al. 2014; Hashimoto et al. 2014; Yamamoto et al. 2012;
Vassberg et al. 2014; and Tinoco et al. 2017). Using CFD simulations, a domestic
workshop in Japan, the Aerodynamic Prediction Challenge (APC) (2019) workshop,
was held recently to investigate the accuracy of the aerodynamic prediction of the
NASA CRM. The geometry tested in this workshop consists of a fuselage, main
wings, and horizontal tails with the incident angle of attack of iH = 0°. The cal-
culation setting in this section is adjusted to the condition of the experiment (Ueno
et al. 2014) in Japan Aerospace Exploration Agency (JAXA) transonic wind tunnel,
using a 2.16% scale model (the mean aerodynamic chord cref = 151.31mm). The
free-stream Mach number is 0.847; the free-stream temperature is 284 K; and the
Reynolds number based on the mean aerodynamic chord is 2.26× 106. The angles of
attack are from−1.79° to 5.72°. In the wind tunnel experiment, the wing is deformed
by the aerodynamic force acting on it (Tinoco et al. 2017). The geometry used in this
simulation is also deformed based on the experimental data. The deformation (twist
and bend) of the wing was measured (Ueno et al. 2014), and the data were provided
in the workshop (2019).

The grid is shown in Fig. 16.10. Here, a symmetric boundary condition is assigned
on the y = 0 plane, and a half-span model is simulated. To reduce the computational
cost, two different cell sizes are specified on the wall. The wing upper surface and
the tail are covered by the finest level of the cell because the flow features in those
regions are important in terms of accurate aerodynamic force simulation. The other
parts (the fuselage and wing lower surface) are covered with the second next level
of the cell to reduce the computational cost. The ratio of the IP distance to the cell
size, rIP, is set to 3. Coarse, medium, and fine grids are prepared to check the grid
sensitivity. In addition, a “medium-b” grid is created by changing the number of
cells in the second layer (refer to Fig. 16.1). Table 16.4 describes the specification of
these grids. The lengths in the table are based on the actual scale of the NASA CRM
(cref = 275.8 inch). The cell number slightly changes when the wing is deformed,
and the numbers presented in the table are α = 2.94°.

The UTCart computational cases are as follows. First, the grid sensitivity is exam-
ined at α = 2.94° on the coarse, medium, medium-b, and fine grids. Then, the flows
at α = −1.79, 0.62, 2.47, 2.94, 3.55, 4.65, and 5.72° are simulated on the medium
grid. Furthermore, reference calculations are conducted by a flow solver FaSTAR,
developed by JAXA (Hashimoto et al. 2012), on body-fitted grids. The computational
grids are provided in the APC workshop (Third Aerodynamic Prediction Challenge
(APC-III) 2019).

Figure 16.11 compares the surface pressure coefficient distributions of the two
flow solvers. The qualitative features (e.g., the position of the shock on the wing
upper surface) have good agreement with each other. Figure 16.12 presents the sur-
face pressure coefficient distributions on the section of the wing. As illustrated in
Fig. 16.13, the definition of the sections follows that of the APC workshop. These
sections are identical to the positions of the pressure taps of the experiment. At the
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(a) Overview of the computational grid (very coarse grid,only for visualization)

(b) Main wing tip (c) Main wing root

Fig. 16.10 Computational grid for UTCart (medium grid, except for the overview)

Table 16.4 Settings of the computational grid around the NASA CRM for UTCart

Coarse Medium Medium-b Fine

Total cell number 31,055,490 61,988,288 54,335,363 117,882,932

Domain size (inch) 4.80 × 104 3.60 × 104 3.60 × 104 5.40 × 104

�xmin (inch) 0.732 0.549 0.549 0.412

Number of cells in the first layer 3 3 3 3

Number of cells in the second layer 3 6 3 8

Number of cells in the rest of the
layers

3 3 3 3

cref
�xmin

753 1004 1004 1339
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(a) UTCart (medium grid) (b) FaSTAR (fine grid)

Fig. 16.11 Surface pressure coefficient calculated by UTCart, medium grid (α = 2.94°)

inboard sections, the surface pressure coefficient in theUTCart result has good agree-
ment with the FaSTAR result and the experimental data. The pressure distributions
at the outboard sections are slightly different from the FaSTAR result. The UTCart
grid size on the upper surface of the wing is uniform. Accordingly, the number of
cells in the local chord is smaller than that of the outboard sections, indicating that
the grid resolution relative to the local chord length is low in the outboard sections
and is assumed to be one of the causes of the inaccuracy. Furthermore, the shock
thickness of the UTCart result is thinner than that in the FaSTAR result at Section I.
This indicates that the UTCart computational grid has a higher grid resolution in the
chord-wise direction than the grid for FaSTAR.

Figure 16.14 presents the component-wise aerodynamic coefficients. The pres-
sure drag computed by UTCart is overestimated, especially on the coarse grid. The
pressure drag in the medium-b grid result is 3 drag counts (1 drag count is 10−4)
larger than the value of the medium grid result. This indicates that the pressure drag
is dependent on the grid resolution in the region away from the wall, revealing that
a proper grid refinement is required. Furthermore, the viscous drag is overestimated
by 7 drag counts even on the fine grid. This difference is caused by the wing and
the body. Simultaneously, the lift coefficient in the UTCart result is overestimated as
compared to the FaSTAR result, whereas the pitching moment coefficient is underes-
timated. For these two coefficients, the trend of grid convergence is observed toward
the FaSTAR result. The main cause of these discrepancies is the main wing. It may
also be due to the grid resolutions that capture the curvature of the leading edge and
the thickness of the trailing edges.

Figure 16.15 shows the computed and measured drag polar (drag coefficient vs.
lift coefficient) of this aircraft configuration. The basic trend of each coefficient
indicates fair agreement between the UTCart and FaSTAR results and between the
UTCart results and the experimental data.



438 T. Imamura and Y. Tamaki

(c) (d) 

(e) (f) 

(a) (b) 

Fig. 16.12 Surface pressure coefficient on the wing sections (α = 2.94°)
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Fig. 16.13 Definition of the wing sections of the NASA CRM

(a) Lift coefficient (b) Drag coefficient 

(c) Pressure drag coefficient (d) Viscous drag coefficient 

Fig. 16.14 Comparison of the aerodynamic coefficients of the NASA CRM (α = 2.94°)
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Fig. 16.15 Drag polar of
NASA CRM

16.4 Summary

We explored the methodology for high Reynolds number flow simulations using
hierarchical Cartesian grids in combination with IBM. To reduce the computational
cost, the wall function, i.e., the model of the near-wall part of the turbulent boundary
layer, was combined with IBM. The velocity of the wall model wasmodified to linear
profile to avoid numerical problems. We also demonstrated that the modification of
the eddyviscosity is essential to retain the balance of the shear stress near thewall. The
temperature profile is also modified accordingly. The object surface was immersed
in the Cartesian grid, and uncertainty was thus remarked in the evaluation of the
aerodynamic force. We clarified the relation between the aerodynamic force and the
numerical flux in the flow calculation. In the 2D bump problem, modified IBM, the
new approach introduced in this study, achieved higher accuracy than that of the
original IBM in predicting the skin friction and pressure coefficients. Consistent grid
convergence toward the converged solution was observed. In the flow simulations in
the NASA CRM configuration under the cruise condition, the flow patterns showed
fair agreement with those of FaSTAR and experimental data. Also, the basic trend
of aerodynamic coefficients was predicted correctly using the UTCart.

The proposed framework can be used to estimate the basic flow feature around a
complex geometry within a short time. Although the accuracy of the conventional
CFD simulation may be higher once a well-tailored body-fitted grid is prepared, the
proposed framework can also predict the flow with a certain degree of accuracy. The
grid generation is fully automatic; thus, the total workload for the flow simulations
is reduced compared to that of the conventional simulation on body-fitted grids. In
addition, shape optimization problems are conducted without a manual procedure in
the sequence of calculations. Thus, the proposed framework will be beneficial as a
tool for aerodynamic design.
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