
Chapter 15
Immersed-Boundary Methods
for Simulating Human Motion Events

Jung-Il Choi and Jack R. Edwards

15.1 Introduction

Immersed-boundary methods are a general class of technique that indirectly imposes
the effects of a (possibly moving) solid surface on the surrounding flow. While the
original immersed-boundary method dates from the work of Peskin (1972), the tech-
nique was recast into a form more useful for conventional CFD strategies by Mohd-
Yosuf (1997), Verzicco et al. (2000), Fadlun et al. (2000), and others. A review article
summarizing these and other techniques is that of Mittal and Iaccarino (2005). A key
to these newer immersed-boundary methods is the enforcement of fluid boundary
conditions indirectly, through specification of the distribution of the fluid velocity
in the vicinity of the immersed boundary. This paper presents a generalization of an
immersed-boundary method developed for time-dependent, incompressible flows in
Choi et al. (2007). This approach is similar to that of Gilmanov et al. (2003) in that a
surface mesh consisting of structured or unstructured elements is embedded within
a flow and that flow property variations normal to the surface are reconstructed. The
surface meshes may be closed (surrounding a volume of space) or zero-thickness
(surfaces alone). The Navier–Stokes equations are solved in cells outside the body
(field cells); a constant property condition is enforced for cells inside the body (inte-
rior cells); and boundary conditions are enforced through specifying distributions of
fluid properties in a collection of band cells just outside the immersed body (band
cells). In contrast to many other IB techniques, the methods developed in Choi et al.
(2007) can be applied to turbulent flows at highReynolds numbers by virtue of the use
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of power-law interpolation techniques to mimic the near-wall profile of an attached
turbulent flow. The methods are also applicable to general curvilinear meshes as well
as unstructured meshes. Since the publication of Choi et al. (2007), extensions to
particle-laden incompressible flows (Oberoi et al. 2010; Choi et al. 2012), gas-phase
contaminant transport (Choi and Edwards 2008, 2012), and compressible, turbulent
flows (Ghosh et al. 2010a, b, 2012) have been developed. All of these studies have
rendered immersed objects as point clouds, which has advantages if the object is
sufficiently detailed but becomes inconvenient if the object is relatively featureless.
This report outlines a way of embedding stereo-lithography (STL) files as immersed
objects within a computational domain and introduces several techniques for con-
verting scenarios involving complicated and possibly moving objects into detailed
large-eddy flow simulations driven by immersed-boundary motion. The presented
applications involve realistic humanmotion activity as well as secondary effects such
as buoyancy-driven flow resulting from the human thermal plume.

15.2 Numerical Methods

15.2.1 Governing Equations

For a three-dimensional, time-dependent incompressible flow, the grid-filtered
governing equations for a fluid phase can be written as

∂ ūi
∂xi

= 0, (15.1)

∂ρūi
∂t

+ ∂

∂x j
(ρūi ū j + p̄δi j − τ i j + τ SGS

i j ) = f̄i , (15.2)

where ūi is the velocity vector, ρ is the density of the fluid, p̄ is the pressure, f̄i is an
external force,μ is the molecular viscosity, τ i j is the viscous stress tensor for a New-
tonian fluid, and τ SGS

i j is the subgrid-scale (SGS) stress tensor. Note that the overbar
represents grid-filtered variables. Based on the Smagorinsky model (Smagorinsky
1963), which assumes that the SGS stress tensor is proportional to the velocity strain
rate Si j , the SGS stress tensor is modeled as τ SGS

i j = −2μt Si j . The subgrid-scale

eddy viscosity is defined as μt = ρ(Cs�)2(2Si j Si j )1/2, where Cs(= 0.1) is the
Smagorinsky constant and � is a local grid-filter width, which is set equal to the
cube root of the mesh-cell volume.

The mass conservation equations for transport of a set of passive gaseous
contaminants in Eulerian framework (Crowe et al. 1996) are as follows:

∂ρk

∂t
+ ∂

∂x j
(ρk(ūi + v̄k, j )) = 0, (15.3)
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where the subscript k denotes the kth gas species. Here, ρk is the mass density of
species k. The diffusion velocity ṽk,i is given by Fick’s law:

v̄k,i = −
(

μ

Sc
+ μt

Sct

)
1

ρ̄k

∂Y k

∂xi
, (15.4)

where the mass fraction Y k = ρk/ρ and the laminar and turbulent Schmidt numbers
are assigned values of 0.72 and 1.0, respectively (Crowe et al. 1996). It is assumed that
the mass fractions of the tracer-gas species are small enough that the density of the
carrier gas is not affected significantly. We extrapolate contaminant concentration to
all physical surfaces; the contaminant concentration is set to zero inside all immersed
surfaces.

Under incompressible flow assumptions, the evolution of temperature θ can be
written as:

ρCp

(
∂θ

∂t
+ ū j

∂θ

∂x j

)
= ∂

∂x j

(
(α + αt )

∂θ

∂x j

)
+ Q̇, (15.5)

where θ is temperature, Cp is specific heat capacity at constant pressure, α is the
thermal conductivity, αt is the turbulent thermal conductivity, and Q̇ is an external
heat source. The thermal conductivities α and αt are related to the molecular and
eddy viscosities through the assumption of constant laminar and turbulent Prandtl
numbers (0.72 and 0.9, respectively). Equation (15.5) is solved subject to isothermal,
adiabatic, or imposed heat-flux boundary conditions at solid surfaces. Buoyancy
effects resulting from temperature gradients are imposed in Eq. (15.2) using the
Boussinesq approximation: f̄i = ρ∞gi (1 − θ/θ∞), where gi is the gravitational
force and the subscript ∞ denotes the undisturbed-flow state.

Basic formulation We solve the three-dimensional incompressible Navier–Stokes
equations using a finite volume approach. Time integration of the discrete Navier–
Stokes equations is achieved by an artificial compressibility approach (Chorin 1967)
which is facilitated by a dual time-stepping procedure at each physical time step.
At time level n + 1, sub-iteration k, the solution of the discrete representation of
Eqs. (15.1) and (15.2) can be written as

A(Vn+1,k+1 − Vn+1,k) = −Rn+1,k . (15.6)

The flow variablesV = ( p̄, ūi )T are advanced from time level n (Vn+1,k=0 = Vn)

to time level n + 1 (Vn+1 = Vn+1,k=kmax ) over a number of sub-iterations kmax. The
system Jacobian matrix is denoted as A, and the corresponding residual vectors
R = (Rc, RMi )

T can be written as

Rn+1,k
c =

[
∂ ūi
∂xi

]n+1,k

(15.7)
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Rn+1,k
Mi

= ρ

(
3ūn+1,k

i − 4ūni + ūn−1
i

�t

)
+

[
∂

∂x j
(ρūi ū j + p̄δi j

−τ i j + τ SGS
i j ) − ρ f̄i

]n+1,k
. (15.8)

Equation (15.8) is solved approximately at each sub-iteration using an implicit
technique based on incomplete LU decomposition (Wesseling 1995). For the spatial
discretization, the inviscid fluxes in the governing equations are discretized using
a low-diffusion flux-splitting scheme (LDFSS) (Edwards and Liou 1998; Neaves
and Edwards 2006), while second-order central differencing methods are used to
discretize the viscous components. For the cases presented later, higher-order spa-
tial accuracy for the interface fluxes is achieved by using the piecewise parabolic
method (Colella and Woodward 1984). The effects of smaller subgrid fluctuations
are modeled using a Smagorinsky subgrid eddy viscosity (Baurle et al. 2003). The
present flow solver uses METIS (Karypis and Kumar 1998) to partition a general
multi-block grid over the number of allowable processors.Message-passing interface
(MPI) communication routines are used to pass information among the processors.
The incompressible flow solver and its components have been validated for a range
of model problems (Edwards and Liou 1998).

15.2.2 Cell-Classification Procedure

We develop a classification algorithm for computational nodes based on the signed
distance function 	(x, t), which is less than zero for cells within a closed immersed
body and greater than zero for cells outside the body. Special procedures discussed
later are used to handle zero-thickness immersed surfaces for which the signed
distance is always positive.

Classification of computational cells TheHeaviside functionG(	(x, t)) is defined
to be one for points just outside the immersed body and within the immersed body
and is zero otherwise. The calculation of the Heaviside function is initiated by first
initializing G(	(xk, t)) = 0 for all points xk . Then, given a point xk , if 	(xk, t) > 0
and if any 	(xm, t) < 0, where xm is a face, edge, or vertex neighbor of xk , then
G(	(xk, t)) is set to 1. If 	(xk, t) ≤ 0, then G(	(xk, t)) is also set to 1. The set of
nearest neighbors, for a structured grid discretized according to a cell-centered finite
volume method, is generally defined as the 26 cells that are immediately adjacent to
a particular mesh cell, though smaller subsets can be used. Finally, we can define the
Heaviside function as

G(	(xk, t)) =
{
0 for xk ∈ 
F

1 for xk /∈ 
F
, (15.9)

where
F represents the set of the node points shown as the open circles in Fig. 15.1.
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Fig. 15.1 Schematic
illustrating classification of
cell-centered points for a
complex immersed body
surface. Open, gray, and
close circles represent field
(
F ), band (
B) and
interior points (
I ),
respectively, and thick line
represents an immersed body
surface. Adapted from (Choi
et al. 2007)

The classification of the node points can be summarized as follows:

• Field points: xk ∈ 
F if 	(xk, t) > 0 and G(	) = 0,
• Band points: xk ∈ 
B if 	(xk, t) > 0 and G(	) = 1,
• Interior points: xk ∈ 
I if 	(xk, t) ≤ 0 and G(	) = 1.

where 
B and 
I represent the set of the node points shown as the gray and closed
circles in Fig. 15.1, respectively. The zero iso-surface of the signed distance function
defines the immersed body surface.

Surface definition in a computational domain The most popular way to describe
3D objects in computer system is to construct surface meshes composed of trian-
gular elements (henceforth referred to as triangle meshes). This can be done using
a computer-aided design (CAD) format or through other means, but the key is that
triangle elements with an outward-pointing normal vector are created for each sep-
arate component of the object, as different components may move at different rates.
The next step is to define 3D surfaces using the unsigned distance and classification
whether an arbitrary point in a background domain is inside or outside of the objects.
Classification can be achieved by counting intersections of a ray going from the
given point (outside point from the object) to infinity since the number of intersec-
tions must be odd if the point is inside—this is called a ray tracing method (Linhart
1990). Another means of classification is to define a signed distance using the inner
product between a pseudo-normal vector and a distance vector to an arbitrary point
from its closest point on the surface—this is known as a signed distance computation
(Gouraud 1971; Bærentzen andAanæs 2005).While the formermethod needs to visit
the parts of the triangle mesh along the ray tracing line, the latter algorithm needs
to find the closest point on the mesh. We will apply the signed distance computation
which is faster than ray tracing method in order to define 3D surfaces which will be
incorporated with the present immersed-boundary method.
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Fig. 15.2 Schematics for a a minimal distance from the points in a computation domain to surface
points and b nearest neighbors for triangle elements. Adapted from (Edwards et al. 2010)

The distance d from grid points xg in a computational domain 
C to the closest
surface point xs on triangle meshes �l for lth component is simply defined as d =∥∥xg − xs

∥∥ in Fig. 15.2a. Computation of the distance to 3Dobjects can be achieved by
using brute force computation, a Voronoi diagram (Hoff et al. 1999), or hierarchical
data structures (Payne and Toga 1992; Guéziec 2001). Among these methods, we
use a k-d tree hierarchical data structure with a bounding box to accelerate finding
the nearest triangle mesh element. For simplicity, we consider the one component’s
closed surface as shown in Fig. 15.2b. At first, we find a cloud of nearby points xvi
from the given point xg in a bounding box, in order of the closest distance, using an
approximate nearest-neighbor (ANN) searching algorithm (Arya et al. 1998). The
next step is to search the closest point in the set of the neighbor triangle meshes
�

j
i ∈ �i which are shared with a cloud of nearby vertices xvi since the closest vertex

is typically different from the closest point on a triangle mesh. We can define the
subset�s = {�i } of the total trianglemeshes�. Based on the subset�s , theminimum
distance can be obtained using point-triangle, point-edge, and point-vertex distance
calculations.

In the search process, the subset �s can be reduced using geometric restriction.
Modern CAD programs enhance the uniformity of the triangles and control the edge
distances. At a given edge distance de, we can get a restriction for the searching
algorithm. As shown in Fig. 15.2b, the circles show the spheres with radius de and
origin xvi . The entire triangle neighbors �

j
i shared with the vertex xvi are included

within the spheres. The distances d j
i in the subset �i are bounded as |dk

i − di | ≤ de
with respect to the point-vertex distance di . Also, the distance is |d j

1 − d1| ≤ de for
the subset �1 which is the equivalent subset for the minimum point-vertex distance.
The difference between two point-vertex distances can be written as d j

i −dk
1 −2de <

di−d1 < d j
i −dk

1+2de. Ifd
j
i < dk

1 , the difference should be bounded asdi−d1 < 2de.
Therefore, the abovenearest distance calculation should be repeated for the ith nearest
vertex point in the ANN list which satisfies di − d1 < 2de.
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Signed distance computation The signed distance function 	 can be obtained by
multiplying the unsigned distance d with the sign of the dot product of the distance
vector with the outward normal vector n:

	 = sgn((xg − xs) · n) d, (15.10)

where sgn(ϕ) returns a value of 1 for each nonnegative element and −1 for each
negative element of ϕ and ‖ ‖ denotes the magnitude of the vector.

This simple procedure was found not to work properly for some very complex
CAD objects (Choi et al. 2007). Usually, the CAD objects are defined as triangular
surface elements that contain each vertex and face-normal vector. If a nearest surface
point at a given field point is located on an edge or at a vertex, the simple signed
distance function may not be calculated correctly. Therefore, we consider an angle-
weighted pseudo-normal vector (Bærentzen and Aanæs 2005), which is defined at
surface nodes (vertices) or edges, rather than cell centers of surface triangles. For a
given vertex xv, we identify the triangle elements shared with the vertex and calculate
the incident angle αi for each element with the outward-pointing face-normal vector
ni (Choi et al. 2007). The angle-weighted pseudo-normal vector nv at the vertex can
be defined as

nv =
∑

i αini∥∥∑
i αini

∥∥ , (15.11)

where i denotes the triangle elements that surround the vertex and ‖ ‖ denotes the
magnitude of the vector. Based on the pseudo-normal vector at the vertex and face-
normal vectorni at the element center xi , we can determine an inside/outside decision
using the same signed distance function in Eq. (15.10)with the data set of the vertices.
This procedure essentially averages local fluctuations in the outward normal that
could result from small features in the CAD file.

To define a global signed distance function 	 at any given mesh point, a simple
priority rule is exercised. First, the global distance function is initialized to a large
number. Then, the global signed distance function at a particular point is taken as the
minimum of the individual signed distance functions for each component l at that
point:

	 = min
l

(	l). (15.12)

The collections of points that comprise the surfaces are allowed tomove according
to prescribed rate laws.

Embedding of CAD objects as immersed surfaces One of our major goals is to
be able to incorporate general stereo-lithography (STL) files as immersed objects in
our program without any additional user intervention. As discussed earlier, the main
challenge is in accurately computing the signed distance from any of our mesh points
to the nearest point on the STL surface. This challenge is made more difficult for
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objects that contain large, flat panels (usually rendered as two triangles) and smaller
features that aremore refined. In our earlier work, we simplymesh-refined the objects
until a clear rendering was achieved, but this required significant pre-processing and
led to STL files that could be very large (millions of cells). In this work, we develop
a module for directly reading STL files and for computing nearest distances and
normal vectors to any panel, edge, or node on the surface. A detailed step-by-step
procedure is as follows:

Step 1: Import STL file (ASCII format) and determine element-to-element con-
nectivity. The STL file provides coordinates of vertices of each triangle alongwith
the normal vector associated with the face center of each triangle.
Step 2: Calculate, for every triangle, coordinates of the face center and the mid-
point of each edge, pseudo-normal vectors at each vertex, and normal vectors at
the midpoint of each edge.
Step 3: Add these additional coordinates/normal vectors to the database.
Step 4: Given a particular field point, use approximate nearest-neighbor (ANN)
searching (Arya et al. 1998) to determine a set of nearest vertices to that point.
Step 5: Determine whether the true nearest point to the surface lies on a triangle,
at a vertex, or on an edge.
Step 6: Based on this decision, find the nearest point and assign the appropriate
normal vector (face-centered, pseudo-normal, or edge-centered) to this point.
Calculate signed distance functions at each query cell.

The search for an initial subset of possible vertices is an N log(m) operation,
so this approach is still relatively efficient. Note that, N and m are the number of
query points and the listed data points (possible vertices), respectively. The case of
very large triangles neighboring small triangles, however, can require expanding the
initial subset decision space to include all possible triangles, leading to a complexity
of O(Nm).

For moving objects, we initially read ASCII-formatted STL files for the objects at
each time step. This reading sequence required non-trivial I/O access times compared
to the entire computation. Thus, we developed an improved STL reader to accelerate
the reading sequence using binary formatted STL files as well as avoiding redundant
procedures. The current status of the reader is that it is able to read directly immersed
objects from STL files (ASCII or binary format) and can separate automatically
multiple objects in STL files into smaller segments.

Figure 15.3 shows the original avatar rendering in 3DSMax®, the surface trian-
gulation, and the rendered image as an immersed body in the computational domain.
The avatar consists of four segments such as body, head, hat, and gun. In order to
make a closed immersed surface for the soldier, we merged the body, head, and hat
into a single object. Note that, we maintain the skinning in the merging procedure
for the original biped motion.



15 Immersed-Boundary Methods for Simulating Human Motion Events 403

Fig. 15.3 Soldier avatar: a 3DSMax® rendering, b triangle elements in a STL file, and c immersed
object rendering in a computational domain

15.2.3 Immersed-Boundary Formulation

Given the classification of the computational domain into field, band, and interior
cells as described above, a direct forcing approach is used to enforce the boundary
conditions at the interior and band cells. This results in the residual form of the
governing equation system shown below which is then solved implicitly, coupled
with exterior cells, by use of sub-iteration techniques:

R̃n+1,k
i = (1 − G(	n+1))Rn+1,k

i

+ G(	n+1)

[
V n+1,k
i − V n+1,k

B,i

�t

]
, i = c, Mx , My, Mz . (15.13)

This equation represents the blending of the Navier–Stokes residual with a source
term that relaxes the primitive variable vector V = ( p̄, ūi )T to its band-cell values.
As discussed earlier, other equations representing transport of species concentration
and heat may be added to this system.

Determination of information at the interpolation point The developments fol-
low hinge on the determination of flow properties q(dI ) at a certain distance dI away
from the surface (see Fig. 15.4). Given a point within the band xk and a list of nearest
neighbors to that point xl , a merit function wl is defined as

wl = 1√
(|xl − xk |)2 − ((xl − xk) · n)2 + ε

for (xl − xk) · n > 0, (15.14)

otherwise wl = 0.
In this, (xl − xk) · n is the projection of the distance from xk to xl in the direction

of the outward normal, and ‖xl − xk‖ is the magnitude of the distance vector itself.
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Fig. 15.4 Schematic determination of the distance dI between the interpolation point xi and surface
node point for a given band point xk using the projected distance dI from neighbor points xl to
outward normal line based on surface-normal vector n at the immersed surface points xs marked by
green circle. Large closed circle represents the band point to be interpolated with the information at
neighbor point. Hatched black and gray circles represent the field points and band points associated
with the present determination, respectively

If point xl is located directly along the outward normal line corresponding to band
point xk , and if (xl − xk) · n is positive, meaning that point xl is further away from
the surface than point xk , then the merit function returns a very large value (~1/ε,
where ε is 10−12).

The actual calculation of wl is performed in three stages. First, only field points
(those with	(xl , t) > 0 and G(	(xl , t)) = 0) are considered as members of the list
of nearest neighbors. Then, wl is calculated according to Eq. (15.14), and the sum
of the weights

∑
m wm is calculated. If this sum is nonzero, then the actual weight

function for each nearest neighbor is determined as

ωl = wl∑
m
wm

. (15.15)

Otherwise, the process is repeated, now considering both field points and other
band points as members of the list of nearest neighbors. If this application also results
in no viable interpolation points being found, then the band point xk is effectively
set to an interior point.

The location at which interpolated properties are defined, dI , is calculated for a
particular field point as

dI =
∑
l

ωl(xl − xk) · n. (15.16)
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Note that, this distance is in the direction of the normal coordinate. With this, the
fluid properties q(dI ) are found by applying the weighting functions,

q(dI ) =
∑
m

qmωm . (15.17)

Variable reconstruction in band cells The following closures are used for the fluid
properties in the band cells, where the subscript ‘I’ indicates properties obtained
at an interpolation point located along the normal line extending outward from the
nearest surface location corresponding to the band cell in question, and the subscript
‘B’ indicates the band cell.

pB = p(dI )

uB,i − uS,i = uT,i (dI )
(
dB

/
dI

)k + uN ,i (dI ) fN (dI , dB),

uN ,i (dI ) = (u j (dI ) − uS, j )n jni ,

uT,i (dI ) = (ui (dI ) − uS,i ) − uN ,i (dI ) (15.18)

In these expressions,n is the normal vector at the closest point on the body surface,
d is a distance from the nearest surface point, uS, j is the velocity at the nearest surface
point, and k is a power-law. The choice of k allows the model to replicate a turbulent
velocity profile (k = 1/7 or 1/9) or a laminar profile (k = 1). To obtain the temperature
distribution near the surface, the following expressions are utilized. These are a low
Mach-number simplification of more general relations derived fromWalz’s formula
(Walz 1969):

Isothermal wall:

TB

T (dI )
= Tw

T (dI )
+

(
1 − Tw

T (dI )

)(
dB
dI

)k

(15.19)

Adiabatic wall:

TB

T (dI )
= 1 (15.20)

The function fN (dI , dB) that scales the normal velocity component in Eq. (15.18)
is determined by enforcing a discrete form of the continuity equation at each band
cell using a locally parallel flow assumption. A general formulation suitable for
compressible flows is given in Ghosh et al. (2010); here, a simpler form suitable for
constant-density flows is presented.

fN (dI , dB) =
(
dB

/
dI

)
d−(

dB
/
dI

)
d− + (

1 − dB
/
dI

)
d+ ,

d− = (
dB

/
2dI

)k
and d+ = (

1 + dB
/
dI

)k/
2k . (15.21)



406 J.-I. Choi and J. R. Edwards

Note that, this procedure does not rigorously enforcemass conservationwithin the
band cells, as the integral form of the continuity equation is not used. If precise mass
conservation is required, the pressure interpolation in Eq. (15.18) can be replaced
by the solution of the continuity equation in the band cells. This, however, can lead
to oscillations within the band cells, and for some of the moving-body applications
presented later, a hybrid approach is utilized. Given that Rc,orig is the initial residual
of the continuity equation within a band cell, a modified residual is defined as

Rc, mod = Rc,orig + CFmax

(
0,−

∑
k

nB · nk Ak

)
�t2

p(dB) − p(dI )

(dI − dB)2
|uB · nB |.

(15.22)

This approach (with CF set to 100) provides additional numerical dissipation
within band cells when objects move but reduces to the solution of the continuity
equation for non-moving objects.

Interface blocking for zero-thickness immersed surfaces When the continuity
equation is solved within band cells, there is a need to identify mesh-cell faces across
which mass flow must be restricted (‘blocking’ interfaces). This is a trivial task for
objects that are closed, but for zero-thickness objects, special considerations must be
made. To this end, we introduce indices for classifying mesh-cell interfaces as being
blocking (no mass transport allowed) versus non-blocking (transport allowed) for
zero-thickness immersed objects. The classification of the grid cells in the immersed-
boundary (IB) method needs to be robust for any kind of complex immersed surface.
Normally, two adjacent triangle elements share one edge; however, the disconnected
edges at the boundary of non-closed object only belong to one triangle element.
For a given cell’s center point xq , we find the nearest point xs on a zero-thickness
immersed surface using ANN algorithm (Arya et al. 1998) and then compute the
unsigned distance function 	. Using inner products between the position vector xq
at the query cell and the position vectors xnb at adjacent neighboring cellswith respect
to the nearest point xs , we can classify the band cells for zero-thickness immersed
surfaces by detecting a sign change of the inner product; i.e., if (xq −xs)·(xnb−xs) <

0 for |	| ≤ 2�, then xq is band cell. Note that � is a representative grid resolution.

For an open surface (zero-thickness surface), the blocking index B is only valid
for the case that nearest surface points are not on the disconnected edges of the
immersed surface from two adjacent cells xi and x j , because the signed distance
functions at the cells may not be unique due to the ambiguity of the pseudo-normal
vectors at the edges. To avoid the ambiguity, we introduce two incident angles to the
parallel direction at the disconnected edges as shown in Fig. 15.5. Let us suppose
that the nearest surface points are xls for the lth immersed object and xms for the mth
immersed object at the cell xi and x j with the center of the interface xi j , respectively.
We can define Bl(xi j ) and Bm(xi j ) based on the lth and the mth immersed objects,
respectively, using the proposed algorithm. For example, if the nearest surface point
xls on the lth immersed object for the cell xi is not on a disconnected edge, the blocking
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Fig. 15.5 Schematic of classifications for interface blocking, a non-blocking, b blocking, and
c blocking index in the vicinity of doors and door frame. Red and blue colored circles represent the
blocking index in x and y directions, respectively. Note that, there is no blocking in z direction. The
actual doors and door frame are rendered in the inset figure

index Bl(xi j ) can be simply determined by an inner product of two position vectors
xi − xls and x j − xls . However, if the nearest surface point x

l
s is on a disconnected

edge, we need to define two angles θ l
1 and θ l

2 illustrated in Fig. 15.5 for determining
the blocking index. The angles are defined as

θ l
1 = cos−1

[((
xi − xi j

) · nle
)
/
(∣∣xi − xi j

∣∣∣∣nle∣∣)] (15.23)

θ l
2 = cos−1

[((
xls − xi j

) · nle
)
/
(∣∣xls − xi j

∣∣∣∣nle∣∣)], (15.24)

where nle is a unit vector that is orthogonal to the line segment of the disconnected
edge and the plane involving with the triangle element containing the segment. Thus,
the blocking index Bl(xi j ) for the lth immersed object can be defined as

Bl(xi j ) =
⎧⎨
⎩
1, if θ l

1 ≥ θ l
2 for xls is on a disconnected edge

1, if (xi − xls) · (x j − xls) ≤ 0 for xls is not on a disconnected edge
0, otherwise

(15.25)

Similarly, we can define Bm(xi j ) based on the mth immersed object. Finally, the
blocking index B(xi j ) for all the immersed objects at the interface xi j can be defined
as

B(xi j ) =
{
1, if Bl(xi j ) + Bm(xi j ) ≥ 1
0, if Bl(xi j ) + Bm(xi j ) = 0

, (15.26)

Note that B(xi j ) indicates that the interface is a virtual wall. This means that
mass cannot be transferred through the interface and the information at the cell x j is
excluded in the interpolation stencil for the cell xi and vice versa.
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15.3 Simulations Involving Human Activity

15.3.1 Problem Definition

The primary use of the developed methodology has been in conducting simulations
of realistic human motion, with a specific focus toward capturing induced wake
and thermal plume effects on the transport of airborne agents, which can either be
gas-phase or particulate in nature. Applications of this capability include entry/exit
into shelters designed for collective protection of individuals from harmful agents.
Such shelters may use overpressure to inhibit agent transport under static operating
conditions and/or airlock systems to remove material that is inevitably transported
into the system upon personnel entry. A key to the design of sheltering systems of
this type is an understanding of the volume flow of air [normally expressed in cubic
feet (CF)] exchanged during an entry event. With this information in place and with
knowledge of the agent concentration field, it is possible to predict the mass flow of
agent into the shelter.

Such entry events are highly dynamic, involving motion of multiple persons,
moving doors, and possibly a transient external flow field. As such, the large-eddy
simulation/immersed-boundary methodology described earlier can be used to good
effect in capturing the flow physics. The remaining sections describe several appli-
cations of this type, along with strategies designed to reduce the output into forms
suitable for incorporation into fast-running system performance models.

15.3.2 Agent Transport Due to Thermal Plume and Motion
Effects

The first case considered involves simulation of an experiment conducted by Toyon.
Incorporated involving tracer-gas transport due to the combined effects of buoyancy
(human thermal plume) and wake transport (Juricek 2014). The experimental test
chamber (Fig. 15.6) consists of two rooms, a 3 × 6 × 8 ft (L xW x H) antechamber,
connected to a second, 12 × 6 × 8 ft main chamber by a swing door (24-inW × 70-
in H). Compressed gaseous perfluorocarbon tracer compounds (PDCH and PMCH)
mixed in air were released at a flow rate sufficient to ensure detectability. At time t
= 0, a person initiates the release of the agent and walks from the antechamber into
the main chamber, where he stands for 7.5 min. Tracer-gas concentrations (parts per
billion) are sampled over one-minute intervals.

Simulation results for the ‘moving’ experiment are presented in Fig. 15.7 for a
simulation of 7.5 min in duration and using a 12 M cell mesh. The moving person is
rendered as a closed-surface immersed body and is incorporated as a sequence of STL
files, generated using 3DSMax® using protocols described earlier. The hinged doors
are rendered as zero-thickness immersed objects and are comprised of planar STL
files. Rate laws for the door motion are defined in a separate subroutine. The tracer
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Fig. 15.6 Schematic of room chambers used in simulations

Fig. 15.7 Tracer-gas transport at 3.5 s (left figure) and 300 s (right figure)

gas is ‘emitted’ from a location under the person’s left armpit—this involves the
tagging of specific elements of the STL files as mass and momentum sources. In the
actual experiment, the person held the tracer-gas emission tube at this same location.
A similar approach is used to model human ‘breathing’ from the nose, though this
effect is minor compared to transport due to the thermal plume. At 3.5 s into the event
(left component of Fig. 15.7), the person’s thermal plume is rendered as a red iso-
surface (T = 304 K). Iso-surfaces of swirl strength, indicating locations of vortex
cores, are colored by tracer-gas concentration. Wakes generated by closing door
motion and human walking motion dominate thermal and tracer transport at early
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Fig. 15.8 Comparison of predictions with tracer-gas measurements for moving-person entry into
the chamber

times. After 5 min (right component of Fig. 15.7), buoyancy-driven flow spreads the
tracer-gas plume upward and away from the person.

Quantitative comparisons with experimental gas-samplingmeasurements are pro-
vided in Fig. 15.8. The centermost image shows probe locations within the chamber,
while the surrounding images plot agent concentration (ppb) versus time. Probe A
is directly above the person, and measurements here are affected both by regular
human breathing motion, buoyancy, and (initially) by the decay of velocity fluctu-
ations resulting from the door closing and the person stopping (due to inertia, the
wake continues to move forward after the person stops, creating a disturbance field
that moves entrained material forward and eventually upward). The predicted con-
centration levels (sampled at 100 Hz) are very noisy. Filtering the predictions over
an interval of 10 s (corresponding to the time required for the gas-sampling syringe
pump to operate) reduces the noise significantly. Generally, there is good overall
agreement between the simulation and experiment. Probe C is further away from
the source, and the concentration field in this region is not nearly as intermittent.
The predictions are in close agreement with experiment at this location. The general
agreement with experiment is reasonable at all probe locations, with some individual
samples showing larger differences than others.
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15.3.3 Airlock Entry Simulations

The next set of simulations focuses on personnel entry into a multiple-person-entry
(MPE) airlock located at the front of a large shelter. These simulations were designed
to determine the amount of gas transported into the airlock over the duration of an
entry event as a function of the number and arrangement of entering personnel as
well as wind speed and wind direction. The computational domain surrounding the
shelter and within the interior of the airlock was rendered as a structured, multi-block
mesh, with isotropic meshes used in the regions of human activity. Part of the interior
of the shelter was also meshed to enable simulations of personnel entering the shelter
from the airlock, leading to a total mesh-cell count of 31.3 M. Figure 15.9 shows a
wire-frame view of the rendered interior of the complete domain.

Airlock initialization A separate calculation was used to initialize flow within the
airlock, which is designed to operate at a target overpressure level. Figure 15.10
(left) shows a side view of the airlock mesh, emphasizing regions of mesh clustering
designed to resolve various air jets and exit ports used to facilitate the purging of
contaminated gas. Figure 15.10 (right) shows a snapshot of the airlock flow field,
highlighting the entering jets of air from the manifold and from the shelter itself,
which also operates at an overpressure. In the image, black streamlines emanate
from the manifold, while red streamlines emanate from the shelter.

Initialization procedures The external velocity fieldwas initialized using a Pasquill
neutrally stable velocity profile. The inputted ‘target’ velocity for each trial corre-
sponds to the velocity at 2 m above the surface. The inputted flow direction was used
to resolve the velocity profile into directions perpendicular to and parallel to the door
entrance plane. The orientation is such that 0° corresponds to flow directed into the
door, 180° corresponds to flow directed out from the door, and 90° corresponds to
flow parallel to the door entrance plane. The simulations were conducted for a fixed

Fig. 15.9 Wire frame
rendering of airlock and
shelter
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Fig. 15.10 Side view of airlock mesh (left) and snapshot of flow inside airlock (right)

period of time (10 s) prior to the entry event to allow the external flow to stabilize, and
discrete wind speeds of 0, 0.8, 1.6, 3.2, 4.8, and 6.0 m/s and discrete wind directions
of 0°, 45°, 90°, 135°, and 180° (26 trials, since zero wind speed holds for all direc-
tions) were used. Several personnel arrangements were used during the course of the
study: single-person entry, five-person single-file entry, four people carrying a patient
on a litter, seven-person single-file entry, five-person side-by-side entry, and seven-
person side-by-side entry. Animation sequences for each of the entry events were
created using 3DSMax®, and the generated sequences of STL files were converted
to closed immersed objects using procedures described earlier. The bump-through
doors, rendered as planar STL files and containing embedded vents for overpressure
control, were ‘opened’ and ‘closed’ through the use of specially defined rate laws
and were rendered as zero-thickness immersed surfaces.

Five-person, side-by-side airlock entry Figure 15.11 shows snapshots correspond-
ing to the entry of five people side by side into the multi-person airlock. The average
walking speed of the group is 1.1 m/s, and the wind speed is zero for this case. Iso-
surfaces of swirl strength, colored by agent concentration, illustrate the flow patterns
generated upon entry. Red contours correspond to a normalized agent concentra-
tion of unity, while blue contours correspond to a normalized agent concentration of
zero. FrameA corresponds to conditions just prior to entry. Highlighted flow features
include air jets entering the airlock from themulti-port manifold and the exiting of air
through the door values to maintain the target overpressure. The doors open (Frame
B) just prior to entry, leading to an initial expulsion of air in the direction of the
entry. A suction pressure is created behind the exiting vortex, allowing flow outside
the airlock to migrate into the system. This, combined with the effects of wakes
induced by moving personnel, induces net agent transport into the airlock (Frame
C). As the doors close, the airlock begins to recover the target overpressure, and flow
again emerges from the door vents (Frame D). Figure 15.12 shows a close-up view
of wake structures generated as the group makes their way through the released air
stream. The time is just after Frame B above; the doors are rendered as transparent
to provide a better view of the interior of the airlock. Figure 15.13 (left) plots cubic
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Fig. 15.11 Five-person side-by-side entry into MPE

Fig. 15.12 Close-up view of group entering airlock
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Fig. 15.13 Raw (left) and normalized (right) CF transported versus time

feet of gas transported into the airlock versus time for different wind speed/wind
direction combinations. The transport histories are similar to one another and can be
effectively collapsed by normalizing by the target CF value at the door closing point
(the average of the upper and lower peaks), as shown in Fig. 15.13 (right).

For eventual inclusion into a fast-running system performance model, it is nec-
essary to correlate the target CF transported at the door closing point as a function
of wind speed and wind direction. One might expect that wind vectors more aligned
with the entry event would enhance transport into the airlock, as would higher wind
speeds, but the entry event can also be in the wake of the shelter for wind directions
greater than 90°, leading to interactions with vortices shed by the airlock and shelter
edges. The dependence is thus not trivial, and our best approach has been to fit the
target CF as a function of wind speed and direction angle using a single hidden-layer,
ten-node neural network with a sigmoidal activation function:

CFtarget(V, θ) = (c1 +
10∑
k=1

bkhk)c2 + c3

hk = 1
1+exp(−xk )

xk = a1,k + a2,k
V−a3,k
a4,k

+ a5,k
θ−a6,k
a7,k

, (15.27)

Figure 15.14 shows scatter plots of CFtarget predicted by Eq. 15.27 for 50,000
randomly distributed (V, θ ) ordered pairs, with V varied from 0 to 6 m/s and θ varied
from 0 to 180°. A good coverage of the factor space is indicated, and most of the trial
data points lie within the predicted factor space. The average error is 4.20%, and the
largest error is around 8%. It is also to be noted that this case shows the expected
trends of increased transport into the airlock for higher wind speeds and directions
more aligned with the movement of the group. The zero wind speed values represent
the effects of wake transport in the absence of windmotion. CF transported generally
increases with the number of personnel, but the arrangement also affects transport. A
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Fig. 15.14 Predicted target CF versus wind speed and wind direction

similar case conducted with five people entering in single file results in nearly twice
as much transport at zero wind speed (60 CF vs. 36 CF). This is partially due to the
duration of the event, which is ~3.5 s for the side-by-side entry versus 5 s for the
single-file entry.

15.3.4 Flow Over a Ruined Building

The last example, while not involving moving entities, illustrates the process of
constructing a scenario, creating geometries as sets of STL files, and rendering the
objects as closed or zero-thickness immersed bodies. The scenario involves a person
buried in rubble releasing a gas-phase taggant to aid in his rescue. ACADdescription
of a ruined building was obtained from Turbosquid.com (an online retailer for 3D
CAD models used in gaming). The building geometry is that of a small house with
four small rooms that has collapsed upon itself. The geometry was imported into
3DSMax® and then exported as a binary STL file. This file was then read into
Autodesk’s NetFabb®, a tool for assembling, repairing, and modifying STL files for
use in 3D printing. The STL file for the soldier used in the earlier simulations was
added to the scenario, rescaled, and repositioned, so that he was ‘trapped’ under a
portion of the building. The STL files were then exported and pre-processed using
the steps described earlier for inclusion as immersed objects in the simulation. The
geometry is open to the air above, as shown in Fig. 15.15. The placement of the person
and the wind direction is also shown in the figure. The same Pasquill boundary layer
used in the shelter simulation was used in this case, which contains about 64 M cells
with an isotropic region surrounding the region occupied by the object. The cell size
in the isotropic region is 1 in. The person holds the taggant canister and also breathes
but otherwise is stationary (his legs are pinned underneath a part of the building).

http://Turbosquid.com
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Fig. 15.15 Collapsed building containing injured person

Mass and momentum sources were applied at locations on the person’s STL object
to mimic taggant release and transient breathing.

Figure 15.16 shows the flow structures that emerge after several transit times.
In the left image, an iso-surface of taggant mass fraction (0.0001) is shown col-
ored by velocity magnitude. The image on the right shows iso-surfaces of swirl
strength colored by the logarithm of taggant mass fraction. The irregular geometry

Fig. 15.16 Taggant concentration (left) and swirl strength (right) iso-surfaces: flow over a ruined
building—bottom images show top-down views
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of the building provides sources for turbulence generation as well as low-momentum
regions that may trap fluid. The small enclosure in which the person is placed is one
such region—the taggant fills the entire enclosure before being entrained into the
external wind field. The breath gas remains within the enclosure, but breathing is a
periodic source of effluent—later times would show the expulsion of the breath gas
from the enclosure. The fact that the chosen taggant (SF6) is non-buoyant keeps the
plume close to the surface.

15.4 Conclusion

An immersed-boundary method suitable for general flow simulations has been pre-
sented. Themodel is grid-topology independent and is based on the decomposition of
a computational domain into cells inside an immersed body (field cells), cells outside
but adjacent to an immersed body (band cells), and cells far away from an immersed
body (field cells). Immersed objects are generated initially as sets of closed-surface
or zero-thickness stereo-lithography (STL) files. Procedures for rendering these files
as immersed objects within the domain hinge first on splitting such objects into sim-
pler units and secondly on the calculation of the signed distance from each field cell
to the embedded surfaces. Interpolation methods based on turbulent boundary layer
theory are used to connect the flow solution in band cells to specified surface bound-
ary conditions and to the solution of the Navier–Stokes equations in the field cells.
The approach differs from others in the literature in its use of power-law forms for
the near-surface velocity, thus enabling the method to mimic the energizing effect of
a turbulent boundary layer without excessive near-surface resolution. Applications
have been presented for cases involving gas-phase agent transport as induced by
human activity (including realistic human motion, breathing, and buoyancy effects
due to the human thermal plume) and by other factors, such as an external flow field
and moving doors. The combination of large-eddy simulation techniques for cap-
turing wake-induced turbulence and the developed immersed-boundary techniques
for representing the effects of stationary and moving objects on the flow evolution
provides a powerful framework for conducting realistic simulations of complicated
time-dependent flows.
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