
Chapter 14
Hybrid Lagrangian–Eulerian
Method-Based CFSD Development,
Application, and Analysis

Namshad Thekkethil and Atul Sharma

14.1 Introduction

Fluid–structure dynamics (FSD)—a coupled interaction between fluid dynamics and
structure dynamics—is one of the complex phenomena observed in nature and has
led to the development of biomimetic-based engineering systems. Analysis of the
FSD in the natural systems could lead to a better design of the biomimetic systems.
Since experimental methods have several limitations with regard to physical model
for the complex FSD phenomenon, computational methods can take the lead in the
analysis of the experimentally challenging FSD problems. For the computational
fluid–structure dynamics (CFSD), there are various types of methods that are based
on independent advancements in computational fluid dynamics (CFD) and compu-
tational structure dynamics (CSD) along with a coupling between the CFD and CSD
that can be either one-way or two-way. For a one-way coupled CFSD, the structure
is rigid and subjected to a forced motion that is independent of fluid dynamic forces
acting on the structure while the fluid flow depends on the kinematic conditions of the
structure. For a two-way coupled CFSD, the fluid flow and motion and/or deforma-
tion of flexible/rigid structure are dependent on each other; the motion/deformation
of the structure is caused by the fluid dynamic forces.
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14.1.1 CFSD Development, Application, and Analysis

Computational fluid–structure dynamics involves the development of a software, its
application for a fluid–structure dynamics problem to obtain scientifically exciting
and engineering-relevant results, and analysis of the results for a unified cause-and-
effect study (Sharma 2017). Historically, the Eulerian approach-based finite volume
method (FVM) is usually preferred in CFDwhile CSD prefers Lagrangian approach-
based finite element method (FEM). However, for CFSD, various combinations of
Eulerian and Lagrangian methods are considered that are broadly classified into two
approaches:monolithic and partitioned. Themonolithic approach considers fluid and
structure as a continuum and uses either Eulerian or Lagrangian approach throughout
the domain, whereas the partitioned approach solves the fluid flow and the structure
motion or/and deformation separately along with a coupling condition at the fluid–
solid interface. The partitioned approach is further classified into three types: fully
Lagrangian, arbitrary Lagrangian–Eulerian (ALE), and hybrid Lagrangian–Eulerian
(HLE) methods.

Fully Lagrangian method (Belytschko and Kennedy 1975; Donea et al. 1976)
considered both the fluid dynamics and structural dynamics in the Lagrangian system
and was the first choice for CFSD. However, the Lagrangian method for fluid flow is
limited to almost stationary fluid since the fluid flow leads to a distortion of the mesh.
ALE method considers body-fitted mesh and involves dynamic meshing without the
mesh distortion problems (Noh 1963). ALEmethods are efficient for many classes of
FSI problems; however, it is limited by the need to re-mesh and gets into the trouble of
the mesh distortion at a larger deformation of the structure. The HLEmethods are the
best choice for large deformation of CFSD problems. It uses the Eulerian approach
for CFD and the Lagrangian approach for CSD. The HLEmethod presented here was
proposed in our recent work (Thekkethil and Sharma 2019) for both one-way and
two-way coupled CFSD problems. The HLE method considers a physical law-based
FVM (Sharma 2017) and a level-set function-based immersed boundary method (LS-
IBM) for CFD and geometric nonlinear Galerkin FEM for CSD along with direct
implementation of coupling conditions at the fluid–solid interface.

14.1.2 Immersed Boundary Method

A historical development for CFD simulation of flow across immersed complex-
shaped body started with a finite difference method-based solution on a Cartesian
grid that approximates the curved body as a stepped one. Later, a finite volume
method-based solution on a body-fitted grid was proposed initially for a structured
curvilinear grid and later for an unstructured grid. The FVM-based solution contin-
ued for many years; however, the progress in CFD application from flow across a
stationary structure to a moving and/or deforming structure led to various numeri-
cal challenges in generating a time-wise varying body-fitted structured/unstructured
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grid. This led to a renewed interest in the application of Cartesian grid although with
a new form—non-body-fitted Cartesian grid.

Immersed boundary method (IBM) (Peskin 2002) is a numerical methodology for
finite difference method (FDM) or FVM-based CFSD development on a non-body-
fitted and fixed Cartesian grid that involves a special treatment for implementation
of fluid–solid interface boundary conditions and also for the CFD solution on the
partially filled fluid cells. IBM gained popularity during the last few decades. The
motion/deformation of the immersed structure results in certain Cartesian fluid cells
(near the fluid–solid interface) to be partially or entirely filled with the solid at
certain time instants. Depending on the numerical method to handle the change in
the fluid cells near the moving interface, many IBMs are available in the literature
that can be broadly classified into two types (Mittal and Iaccarino 2005): continuous
forcing IBM and discrete forcing IBM (Mittal and Iaccarino 2005). The discrete
forcing IBM is further classified based on the direct or indirect implementation of
fluid–solid interface boundary conditions. A sharp-interface IBM (Udaykumar et al.
2001; Mittal et al. 2008) considers the physically realistic sharp fluid–solid interface,
while a numerically diffused fluid–solid interface is considered in a diffused interface
IBM (Pan 2006; Patel and Natarajan 2018). Depending on the strategy used for
the application of fluid–solid interface boundary conditions, various sharp-interface
methods are available in the literature, such as ghost-cell-based IBM (Majumdar
et al. 2001; Mittal et al. 2008) and cut-cell-based IBM (Udaykumar et al. 2001).
Both methods use a certain type of interpolation for the application of fluid–solid
interface boundary conditions.

14.1.3 Outline of the Chapter

In this chapter, we present an HLE method-based CFSD development in Sect. 14.3
and its application for analysis of various types of one-/two-way coupled CFSDprob-
lems in Sect. 14.4. The HLE method (Thekkethil and Sharma 2019) involves FVM
and LS-IBM for fluid dynamics and geometric nonlinear Galerkin FEM for structural
dynamics and is based on a partitioned approach. The associated conservation laws
and the fluid–solid coupling conditions are presented in Sect. 14.2.

14.2 CFSD: Conservation Laws and Fluid–Solid Coupling
Conditions

For anyFSDproblem, conservation laws for fluid flowand structure dynamics need to
be satisfied along with a continuity of stress and kinematics as the coupling condition
at the fluid–solid interface. For fluid flow,mass andmomentum conservation laws are
considered in the Eulerian formwhile a Lagrangian form ofmomentum conservation
law is considered for motion as well as deformation of the structure.
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14.2.1 Mass and Momentum Conservation Laws for a Fluid
Control Volume: Eulerian Form

For an incompressible fluid control volume (CV) with volume �v and surface �v

(Fig. 14.1a), the Eulerian form of unsteady mass and momentum conservation laws
is given for a negligible body force as

Mass: Mv
out − Mv

in = 0 (14.1)

Momentum:
∂

∂t

(M−→u )v + Av
out − Av

in = −→
F v

s (14.2)

where Mv
in and Mv

out are the mass flow rates while Av
in and Av

out are the momentum
flow rates entering and leaving the CV, respectively. Furthermore,M is the mass, −→u
is the velocity, and

−→
F v

s is the surface force acting on the surface �v of the control
volume.

14.2.2 Momentum Conservation Law for a Solid Control
Mass: Lagrangian Form

For a solid control mass with volume�m and surface�m (Fig. 14.1b), the Lagrangian
form of momentum conservation law is given for a negligible body force as

d

dt

(M−→u )m = −→
F m

s where −→u = d
−→
d

dt
(14.3)

Fig. 14.1 a Mass and momentum conservation on a fluid control volume �v with control surface
�v and b momentum balance in a solid control mass �m with control surface �m
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Here, d
dt

(M−→u )m
is the rate of change of instantaneous momentum of the control

mass,
−→
F m

s is the surface force acting on the surface �m, and
−→
d is the displacement

vector of the control mass.

14.2.3 Fluid–Solid Coupling Conditions

Coupled fluid dynamics and structural dynamics govern the fluid–solid interface
dynamics. The coupling is obtained by continuity of kinematics and stress field at
the interface, given as

−→u f ,int = −→u s,int and σs,int.n̂ = σf ,int.n̂ (14.4)

Here, the subscripts f and s represent the fluid and structure, respectively, and int
represents the fluid–solid interface. The vector n̂ represents the unit normal vector at
the interface.

14.3 HLE Method-Based CFSD Development: Hybrid
FEM-FVM-Based Numerical Methodology

The present HLE method (Thekkethil and Sharma 2019) uses a form of conserva-
tion law that is Lagrangian for structure dynamics and Eulerian for fluid dynamics,
presented in the previous subsection. Furthermore, the derivation of the algebraic for-
mulations for the present HLE method-based CFSD development considers a phys-
ical law-based finite volume method (Sharma 2017) and a Galerkin finite element
method (Zienkiewicz et al. 1977) for the fluid and structure dynamics, respectively.
The physical law-based FVM starts with a discrete form of conservation laws, pro-
posed by Sharma (2017) in a recent textbook on CFD as compared to starting with
the partial differential equations (PDEs) in almost all the other FVM books on CFD
(Patankar 2018; Versteeg andMalalasekera 2007). Both the physical law-based FVM
and the PDE-based FVM use the same approximations and, thus, result in the same
algebraic formulation for CFD.

Numerical methodology for the FVM-based CFD development and FEM-based
CSD development and the associated coupling for HLE method-based CFSD devel-
opment are presented in separate subsections below.
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14.3.1 CFD Development: Physical Law-Based FVM
and Level-Set Function-Based Immersed Boundary
Method

CFD development consists of five steps (Sharma 2017): grid generation, FVM-based
algebraic formulation, solution methodology, computation of engineering parame-
ters, and testing. The first three steps of the CFD development are presented in sep-
arate subsections below for the present level-set function-based immersed boundary
method (LS-IBM). The present LS-IBM involves a level-set function-based direct
implementation of fluid–solid interface boundary condition (Shrivastava et al. 2013);
thus, it avoids any interpolation for the interfacial boundary conditions.

14.3.1.1 Cartesian Grid Generation

For the development of a CFD solver, the present LS-IBMconsiders a fixed Cartesian
grid, as shown in Fig. 14.2. For flow across a non-Cartesian or complex-shaped
structure, as seen in Fig. 14.2, the non-body-fitted Cartesian grid results in certain
partially filled fluid control volumes (CVs) that require special treatment to ensure
mass and momentum conservation laws and no-slip boundary conditions. The figure
shows the various types of CVs for the Cartesian grid.

Fig. 14.2 Computational domain for a 2D FSI problem with a Lagrangian triangular mesh for
structure immersed in the Eulerian Cartesian mesh in the complete domain
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14.3.1.2 Physical Law-Based FVM

Figure14.3a shows a computational stencil for a CV P whose neighbouring CVs are
also fluid CVs. Considering the computational stencil, for a 2D incompressible flow,
amass andmomentum conservation law-based FVM results in discretemathematics-
based approximated algebraic formulation, given (Sharma 2017) as

(
mn+1

x,e − mn+1
x,w

)�yP −
(

mn+1
y,n − mn+1

y,s

)
�xP = 0 (14.5)

ρf
φn+1

P − φn
P

�t
�VP + An+1

φ,P = Dn+1
φ,P + Sn+1

φ,P

where Aφ,P = [(
m+

x,eφ
+
e + m−

x,eφ
−
e

)− (
m+

x,wφ+
w + m−

x,wφ−
w

)]�yP
[(

m+
y,nφ

+
n + m−

y,nφ
−
n

)
−
(

m+
y,sφ

+
s + m−

y,sφ
−
s

)]
�xP

Dφ,P = μf

[(
φE − φP

δxe
− φP − φW

δxw

)
�yP +

(
φN − φP

δyn
− φP − φS

δys

)
�xP

]

Su,P = (pw − pe) �yP, Sv,P = (ps − pn)�xP (14.6)

wheremx andmy are the components of mass flux in x- and y-directions, respectively,
and the superscript n + 1 represents the time instant (t + �t).

Fig. 14.3 Computational stencil for a fluid control volume with a all the neighbouring cells in the
fluid and b north and east neighbours in the structure
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For a semi-implicit solution methodology considered here, momentum equation
considers the implicit time-level (n + 1) for all the terms (advection A, diffusion D,
source S). Furthermore, φ = u and φ = v in Eq. (14.6) correspond to x-momentum
and y-momentum conservations, respectively. The advection terms Au,P and Av,P are
the advection of x-momentum flow rate and y-momentum flow rate, while the diffu-
sion terms Dχ

u,P and Dχ

v,P are the viscous forces in x- and y-directions, respectively.
Furthermore, ρf is the density of the fluid,μf is the viscosity of the fluid, and p is the
pressure acting on the surface of the CVs. Also, in the advection term, themass flux in
the positive and negative directionsm+ = max (m, 0) and m− = min (m, 0), and u/v
velocity at the face centre φf =e,w,n,s = wDφD + wU φU + wUU φUU is obtained using
an advection scheme (Sharma 2017). Here, D, U, and UU correspond to the down-
stream, upstream, and upstream-of-upstream values, respectively, and the weights
wD,wU , andwUU for the first-order upwind (FOU), second-order upwind (SOU), and
quadratic upstream interpolation for convective kinematics (QUICK) schemes are
obtained from a distance-based extrapolation/interpolation scheme (Sharma 2017).

14.3.1.3 Solution Methodology: Semi-implicit Pressure Projection
Method

A semi-implicit pressure projection method (SIPPM) on a co-located grid system
is used for the unsteady solution of the algebraic formulation—Eq. (14.5) for mass
and Eq. (14.6) for momentum conservation. The velocity field −→u n+1

P at a new time-
level (n + 1) is obtained from the momentum conservation equation, while the mass
conservation equation is converted into an algebraic equation for pressure (presented
below), using a predictor–correctormethod in the SIPPM.The predictor step involves
prediction (represented by ∗ values) of velocity at cell centre −→u ∗

P as well as normal
velocities of mass fluxes at the face centres (u∗

e , u∗
w, v∗

n , and v∗
s ). The predicted mass

fluxes at the face centres are used to obtain the pressure pn+1
P at the new time-level

(n + 1) from the pressure equation. Finally, the pressure field is used to obtain the
velocity correction (represented by ′ values) at the cell centres −→u ′

P and then obtain−→u n+1
P = −→u ∗

P + −→u ′
P . Formulation of the algebraic equations for −→u ∗

P , u∗
f /v∗

f , pn+1
P ,

and −→u ′
P is presented below for the SIPPM.

Original Proposition:

Using Eq. (14.6) with φ = u or v, the velocity at the cell centre un+1
P and that at the

east face centre un+1
e are given as

ρf
un+1

P − un
P

�t
�VP + An+1

u,P = Dn+1
u,P + (

pn+1
w − pn+1

e

)�yP

ρf
un+1

e − un
e

�t
�Ve + An+1

u,e = Dn+1
u,e + (

pn+1
P − pn+1

E

)�yP (14.7)
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Predictor step:

The projection method results in a velocity predictor equation for u∗
P/u∗

e obtained
from the above equation, after dropping the pressure term, given as

ρf
u∗

P − un
P

�t
�VP + A∗

u,P = D∗
u,P

ρf
u∗

e − un
e

�t
�Ve + A∗

u,e = D∗
u,e (14.8)

From the above implicit equation, u∗
P is obtained after an iterative solution while

u∗
e is approximated by linear interpolation of the neighbouring cell-centre predicted
velocity, i.e. u∗

e = u∗
P, u∗

E ; similarly, u∗
w = u∗

P, u∗
W , v∗

n = v∗
P, v∗

N , and v∗
s = v∗

P, v∗
S

where v∗
P is obtained from equation similar to Eq. (14.8). Note that u∗

e is not obtained
from the above implicit equation.

Corrector step:

Subtracting Eq. (14.8) for u∗
e fromEq. (14.7) for un+1

e , we get an approximate velocity
correction as

un+1
e − u∗

e ≈ �t

ρf

(
pn+1

E − pn+1
P

)

δxe
(14.9)

⇒ mn+1
x,e ≈ m∗

x,e − �t

(
pn+1

E − pn+1
P

)

δxe
(14.10)

The approximations in the above equation correspond to neglecting the velocity
correction corresponding to the advection and diffusion terms—resulting in the semi-
implicit equation (Patankar 2018) although the original proposition is fully implicit
[Eq. (14.6)].

Algebraic formulation for pressure:

Equations similar to Eq. (14.10) can be obtained for the mass fluxes at the other face
centres, and substituting from these equations to the mass conservation Eq. (14.5),
we obtain the pressure equation as

aPpn+1
P = aEpn+1

E + aW pn+1
W + aN pn+1

N + aSpn+1
S + b

where aE = �t�yP

δxe
, aW = �t�yP

δxw
, aN = �t�xP

δyn
, aS = �t�xP

δys
,

aP = aE + aW + aN + aS , b = −S∗
m,P

= −
[(

m∗
x,e − m∗

x,w

)�yP +
(

m∗
y,n − m∗

y,s

)
�xP

]
(14.11)
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Special Treatment for Partially Filled Fluid CVs

Figure14.3b shows a control volume P with its east and neighbouring north cells in
the structure. The solution procedure is same as other cells except for the computation
of advection, diffusion, and pressure terms on the faces whose adjoining CV is a solid
CV. For the control volume P in Fig. 14.3b, considering the east and north interfaces
as horizontal and vertical lines, the advection and diffusion fluxes at the east and
north sides are computed at Eint and Nint, respectively (instead of e and f ), using the
values of velocity at the solid boundary. The advection and diffusion fluxes at Eint

and Nint are given as

an+1
φx,E,int = mn

x,E,intφ
n+1
E,int, an+1

φy,N ,int = mn
y,N ,intφ

n+1
N ,int

dφx,E,int = μf
φn+1

E,int − φn+1
P

δxE,int
, dφy,N ,int = μf

φn+1
N ,int − φn+1

P

δyE,int
(14.12)

where δxE,int and δyN ,int are shown in Fig. 14.3b. The interface velocities (φE,int

and φN ,int) and the mass fluxes at the east and north sides are obtained from the
neighbouring solid grid points (at the interface) by linear interpolation, given as

φE,int = φN2 , φN3 , φN ,int = φN1 , φN2

mx,E,int = ρf uE,int, my,N ,int = ρf vN ,int (14.13)

where N1, N2, and N3 are solid nodes (defined for FEM), as shown in Fig. 14.3b.
Similar linear interpolation is used to obtain vE,int and vN ,int, and the resulting

−→u E,int

and −→u N ,int are used to obtain the advection fluxes [Eq. (14.12)] without using any
advection scheme. The interface distances in the diffusion flux, δxE,int and δyE,int

[Eq. (14.12) and Fig. 14.3b], are obtained using the level-set function ψ , given as

δxE,int = xE − xP

|ψE − ψP| |ψP| , δyN ,int = yN − yP

|ψN − ψP| |ψP| (14.14)

For the mass balance, the mass fluxes at east and north faces that corresponds to
the interface values [Eq. (14.13)] are directly used; resulting mass balance equation,
for the partially filled CV “P” (Fig. 14.3b), is given as

aPpn+1
P = aW pn+1

W + aSpn+1
S + b

where aP = aW + aS , b = −S∗
m,P

= −
[(

mn+1
x,E,int − m∗

x,w

)�yP +
(

mn+1
y,N ,int − m∗

y,s

)
�xP

]
(14.15)

The interface pressures (PE,int and PN ,int) are obtained from the pressure gradient
boundary condition at the interface, given as

∂p

∂n
= −ρf an =⇒ ∇p.n̂ = −ρf

−→a . n̂ (14.16)



14 Hybrid Lagrangian–Eulerian Method-Based CFSD Development … 371

where an is the normal acceleration at the interface. Using the level-set function at
the interface, it is given (Shrivastava et al. 2013) as

∂p

∂x

∂ψ

∂x
+ ∂p

∂y

∂ψ

∂y
= −ρf

(
ax,int

∂ψ

∂x
+ ay,int

∂ψ

∂y

)
(14.17)

where ax,int and ay,int are the accelerations in the x- and y-directions at the solid
surface. Considering the solid boundary as horizontal and vertical lines, the above
equation results in an approximated boundary condition for the pressure, given as

∂p

∂x
≈ −ρf ax,int,

∂p

∂y
≈ −ρf ay,int (14.18)

Thus, the pressure boundary conditions at the east and north faces of the cell P are
given as

pE,int = pP − δxE,intρf ax,E,int

pN ,int = pP − δyN ,intρf ay,N ,int
(14.19)

where ax,E,int and ay,N ,int are obtained by linear interpolation from the solid grid
points [similar to Eq. (14.13)].

Calculation of Level-Set Function: A Geometric Method

Level-set function ψ (Sethian 1999) is a normal distance function with a change in
sign across an interface. The sign of ψ is used to detect the Cartesian CVs that are
in the fluid and also the partially filled CVs. Furthermore, its magnitude is used to
calculate the diffusion fluxes [Eq. (14.14)] in the partially filled CVs. The sign of
the level-set function is distinguished by using a winding number algorithm, and
its magnitude is obtained by a minimum distance algorithm, proposed in our recent
work (Thekkethil and Sharma 2019). The algorithms are presented here for a 2D
solid body; however, it can be extended to 3D geometries also.

The surface of the structure �s is divided into nss number of line segments �i, as
shown in Fig. 14.4, where i = 1, 2, . . . , nss. For the endpoints in the line segments,
the position vectors are specified as

[−→x 1,
−→x 2, . . . ,

−→x nss

]
. For any cell P in the

Cartesian domain (Fig. 14.4), the sign of the level-set function is computed using the
winding number algorithm, which is better than many other methods in this category
such as line tracing algorithm, that fails if the shape of the structure is complex. In
the winding number algorithm, the counterclockwise angle subtended by each line
segment with the cell P is added to obtain the winding number. For the cell P with
position vector−→x in Fig. 14.4, the angle subtended by the line segment �i is given as

θi = cos −1

[(−→x i − −→x ) . (−→x i+1 − −→x )
∣∣−→x i − −→x ∣∣ ∣∣−→x i+1 − −→x ∣∣

]

(14.20)
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Fig. 14.4 For a fluid cell in
the Cartesian system,
computation of angle
between two consecutive
grid points on the structure
surface

The winding number ωn for the cell P is computed as

ωn,P = 1

2π

nss∑

i=1

θi (14.21)

For any cell P inside the structure, ωn,P will be 1 while it will be 0 for a cell P in the
fluid.

For finding the magnitude of the level-set function, the minimum distance algo-
rithm is used. For each Cartesian cell P, the shortest distance from each line segment
�i (Fig. 14.4) is calculated as

|ψ |P,i = ∣∣−→x d

∣∣

where −→x d =

⎧
⎪⎨

⎪⎩

−→x − −→x i−→x − −→x i+1−→x − (−→x i + t
[−→x i+1 − −→x i

])

if t < 0

if t > 1

if 0 ≤ t ≤ 1

t =
(−→x − −→x i

)
.
(−→x i+1 − −→x i

)

∣
∣−→x i+1 − −→x i

∣
∣2

(14.22)

The magnitude of the level-set function is computed as the minimum of the shortest
distance from each line segment, given as

|ψ |P = min
(|ψ |P,1 , |ψ |P,2 , . . . , |ψ |P,nss

)
(14.23)

For a 3D geometry, a 3D winding algorithm (Jacobson et al. 2013) can be used to
find whether the point lies inside or outside the structure. The 3D geometry surface
can be divided into a finite number of elements. For each Cartesian cell, similar to θi

in 2D, the solid angle can be calculated for each element on the surface. Summation
of the solid angles with all the elements gives a measure of the winding number. For
finding the magnitude of the level-set function, similar to |ψ |P,i in 2D, the shortest
distance from each element can be computed, and the minimum of the shortest
distance gives the magnitude of the level-set function.
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Solution algorithm:

For the present HLE method, the CFD solution is obtained by solving the equations
presented in Sect. 14.3.1.3, for the completely as well as partially filled CVs. The
solution algorithm to obtain the velocity and pressure at a new (n + 1)th time step
from the old nth time instant is given as follows:

1. Initialise the velocity, pressure, and level-set field in the domain as per the initial
configuration variables.

2. Compute the level-set function ψ using Eqs. (14.21) and (14.23).
3. Solve Eq. (14.8) for u∗ and v∗.
4. Predict S∗

m,P [Eq. (14.11)] required for the pressure equation.
5. Solve the pressure equation, Eq. (14.11).
6. Calculate the corrected mass flux mn+1

f [Eq. (14.10)].

7. Solve Eq. (14.7) for un+1
P and vn+1

P using mass conserving mass flux mf n+1 and
linearly interpolated pressure (pw = pP, pW and pe = pP, pE).

8. Set n = n + 1 and repeat steps 2 − 8 for the next time step. Continue up to certain
stopping criterion of the transient simulation.

14.3.2 CSD Development: Geometric Nonlinear Galerkin
FEM-Based Numerical Methodology for Structural
Dynamics

For the structural dynamics involving large deformation, a geometric nonlinear
Galerkin FEM-based algebraic formulation is used here to convert the momentum
conservation equation [Eq. (14.3)] to a system of linear algebraic equations for dis-
placement vector

−→
d . Similar to the CFD development in the previous section, CSD

development is presented below in separate subsections for grid generation, FEM-
based algebraic formulation, and solution methodology.

14.3.2.1 Unstructured Grid Generation

For the development of a CSD solver, the present geometric nonlinear Galerkin
FEM-based numerical methodology considers a fixed body-fitted unstructured grid,
as shown in Fig. 14.2. The figure shows that the grid generation involves dividing the
solid into several control masses, considered triangular here. The control masses are
called as elements, and the grid points at the vertices of the elements are called as
nodes in FEM, represented by unfilled circles in Fig. 14.2. Although the triangular
elements, along with the nodes, move substantially during large deformation, a fixed
node/element is considered in the geometric nonlinearGalerkin FEMpresented in the
next subsection. This involves defining the deformation vector

−→
d at the various solid

nodes, with reference to the initial (t = 0) node configuration, shown in Fig. 14.2.
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14.3.2.2 Geometric Nonlinear Galerkin Finite Element Method

In order to solve the Lagrangian form of themomentum conservation law [Eq. (14.5)]
for the deformation vector

−→
d at the various nodes (Fig. 14.2), the algebraic formu-

lation for a three-node triangular element is presented here. For the volume �e and
surface �e of the element, the instantaneous momentum conservation [Eq. (14.5)]
for the element e is given as

⎛

⎝ d2

dt2

∫

�e

ρs
−→
d ed�e

⎞

⎠

n+1

=
∫

�e
c

σ n+1
c .n̂d�e

c =
∫

�e
in

(
D

e,n+1Se,n+1
)
.n̂d�e

in (14.24)

where the L.H.S of the above equation corresponds to the unsteady term d
dt

(M−→u )

and R.H.S to the surface force term
−→
F e

s . Also, note that the above equation for the
force is first represented with reference to the current (instantaneous) configuration−→
F e

s,c and then with reference to the initial (t = 0) configuration
−→
F e

s,in. Here, ρs is

the density of the solid and
−→
d e is the displacement vector of the element.

−→
F e

s,c is
presented above as the surface integral of the Cauchy stress stress σ that is with
reference to the deformed or current configuration. Its conversion with reference
to the initial configuration (with surface area �e

in) results in a product of De and
Se and corresponds to deformation gradient and second Piola–Kirchhoff’s stress,
respectively. They are given in 2D Cartesian coordinate system as

D
e = I +

(
∇−→

d e
)T =

[
1 + de

x,x de
x,y

de
y,x 1 + de

y,y

]
and Se =

[
Se

xx Se
xy

Se
yx Se

yy

]
(14.25)

Here, the components of Se are presented in a matrix form as Se = DEe, where Se

is the element stress matrix, D is the stress–strain relationship matrix, and Ee is the
element Green strain matrix. Using St. Venant–Kirchhoff’s model for a plain-strain
case, the matrix form of stress–strain relationship is given as

Se = DEe ⇒
⎡

⎣
Se

xx
Se

yy

Se
xy

⎤

⎦ =
⎡

⎣
C1 C2 0
C2 C1 0
0 0 C3

⎤

⎦

⎡

⎢⎢⎢⎢
⎢
⎣

de
x,x + 0.5

[(
de

x,x

)2 +
(

de
y,x

)2]

de
y,y + 0.5

[(
de

x,y

)2 +
(

de
y,y

)2]

de
x,y

(
1 + de

x,x

)+ de
y,x

(
1 + de

y,y

)

⎤

⎥⎥⎥⎥
⎥
⎦

(14.26)

where C1 = E(1−νs)/(1+νs)(1−2νs), C2 = Eνs/(1+νs)(1−2νs), and C3 = E/2(1+νs). Here, E is
Young’s modulus and νs is Poisson’s ratio of the solid material. Further, the suffix
after the comma for de above represents the derivative, i.e. de

x,x = d
dx de

x .
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Using the Gauss divergence theorem, Eq. (14.24) is given as

ρs,in

⎛

⎜
⎝

d2

dt2

∫

�e
in

−→
d ed�e

in

⎞

⎟
⎠

n+1

=
∫

�e
in

∇.
(
D

e,n+1Se,n+1) d�e
in (14.27)

Using a bilinear interpolation with
−→
d e = a−→x + b−→y + c for the element e, the

constants a, b, and c are obtained as f
(−→x 1,

−→x 2,
−→x 3,

−→
d e

1,
−→
d e

2,
−→
d e

3

)
, which after

certain rearrangements results in a function form of the displacement vector for the
element e as

−→
d e = N e

1
−→
d e

1 + N e
2
−→
d e

2 + N e
3
−→
d e

3

where,

⎡

⎣
N e
1

N e
2

N e
3

⎤

⎦ = 1
∣
∣∣∣∣∣

1 xe
1 ye

1
1 xe

2 ye
2

1 xe
3 ye

3

∣
∣∣∣∣∣

⎡

⎣
xe
2ye

3 − xe
3ye

2 + (
ye
2 − ye

3

)
x + (

xe
3 − xe

2

)
y

xe
3ye

1 − xe
1ye

3 + (
ye
3 − ye

1

)
x + (

xe
1 − xe

3

)
y

xe
1ye

2 − xe
2ye

1 + (
ye
1 − ye

2

)
x + (

xe
2 − xe

1

)
y

⎤

⎦ (14.28)

Here, N e
1 , N e

2 , and N e
3 are called as shape functions of the element e with respect to

the nodes 1, 2, and 3, respectively (Fig. 14.5). Substituting
−→
d e from Eqs. (14.28) to

(14.27), we get

ρs,in

⎡

⎢
⎣

d2

dt2

∫

�e
in

(
N e
1
−→
d e

1 + N e
2
−→
d e

2 + N e
3
−→
d e

3

)
d�e

in

⎤

⎥
⎦

n+1

=
⎡

⎢
⎣
∫

�e
in

∇.
(
D

eSe
)
d�e

in

⎤

⎥
⎦

n+1

(14.29)

Nodal Equations:

For conversion of the above element equation to a nodal equation, the geometric
nonlinear Galerkin FEM (as compared to other FEMs) involves multiplication of the

Fig. 14.5 A triangular
element with three nodes
considered for the geometric
nonlinear Galerkin
FEM-based algebraic
formulation for an element
“e”
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integrand of the above equation with the shape functions of the corresponding nodes.
Using this operation, Eq. (14.29) results in a nodal for node i as

ρs,in

⎡

⎢
⎣

d2

dt2

∫

�e
in

(
N e
1
−→
d e

1 + N e
2
−→
d e

2 + N e
3
−→
d e

3

)
N e

i d�
e
in

⎤

⎥
⎦

n+1

=
⎡

⎢
⎣
∫

�e
in

(
D

eSe
)

N e
i .n̂d�e

in

⎤

⎥
⎦

n+1

−
⎡

⎢
⎣
∫

�e
in

(
D

eSe
)
.∇ (N e

i

)
d�e

in

⎤

⎥
⎦

n+1

(14.30)

where the first surface integral term (obtained after applying the Gauss divergence
theorem) on the R.H.S above represents the surface force acting on node i,

−→
F e

i .
Furthermore, substituting D

e and Se from Eq. (14.25), the integrand of the second
term in the R.H.S of the above equation is presented in matrix form. They are given
as

⎡

⎢
⎣
∫

�e
in

(
D

eSe
)

N e
i .n̂d�e

in

⎤

⎥
⎦

n+1

=
[

Fe
xi

Fe
yi

]
,

(
D

eSe
)
.∇ (N e

i

) =
[
1 + de

x,x de
x,y

de
y,x 1 + de

y,y

] [
Se

xx Se
xy

Se
yx Se

yy

] [
N e

i,x
N e

i,y

]

=
([

BL,e
i

]T +
[
BNL,e

i

]T
)
Se (14.31)

where BL,e
i and BNL,e

i are the linear and nonlinear deformation matrices for node i,
given as

BL,e
i =

⎡

⎣
N e

i,x 0
0 N e

i,y

N e
i,y N e

i,x

⎤

⎦ ,BNL,e
i =

⎡

⎣
N e

i,xde
x,x N e

i,xde
y,x

N e
i,yde

x,y N e
i,yde

y,y

N e
i,xde

x,y + N e
i,yde

x,x N e
i,xde

y,y + N e
i,yde

y,x

⎤

⎦ (14.32)

Here, the suffix after the comma for N e
i above represents the derivative, i.e. N e

i,x =
d
dx N e

i . Further, the element stress matrix Se in Eq. (14.31) is represented in terms of

BL,e and modified deformation matrix Bme, by substituting Eq. (14.28) for
−→
d e into

Eq. (14.26) for Se, given as

Se = D
(
BL,e + Bme

)
de

where BL,e = [BL,e
1 BL,e

2 BL,e
3

]
and Bme = [

Bme
1 Bm

e
2 Bm

e
3

]
(14.33)

where Bme
i and de (nodal displacement vector of the element e) are given as
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Bme
i = 0.5

⎡

⎣
N e

i,xde
x,x N e

i,xde
y,x

N e
i,yde

x,y N e
i,yde

y,y

2N e
i,yde

x,x 2N e
i,xde

y,y

⎤

⎦ ,de =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

de
x1

de
y1

de
x2

de
y2

de
x3

de
y3

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(14.34)

Substituting Eqs. (14.31)–(14.30), taking all the terms to the R.H.S, and using
generalised Newmark algorithm (Zienkiewicz et al. 1977) [with a second-degree
polynomial approximation for time variation and second-order accuracy (GN22)],
the residual vector � of an element e with respect to node i for (n + 1)th time instant
is given as

�
e,n+1
i =

[
Fe

xi
Fe

yi

]
−
⎡

⎢
⎣
∫

�e
in

([
BL,e

i

]T +
[
BNL,e

i

]T
)
Sed�e

in

⎤

⎥
⎦

n+1

−

2ρs,in

�t2

∫

�e
in

[
N e
1 0 N e

2 0 N e
3 0

0 N e
1 0 N e

2 0 N e
3

]
N e

i d�e
in

[
de,n+1 − de,n + �t × ue,n

] = 0

(14.35)

where ue,n is the nodal velocity vector of the element e at nth time instant. Since the
above equation is nonlinear, an iterative method is used for the solution. Using the
Newton–Raphson method, the residual vector at (k + 1)th iterative step is obtained
by a Taylor series expansion, given as

�
e,n+1,k+1
i ≈ �

e,n+1,k
i + ∂�

e,n+1,k
i

∂de,n+1
dde,n = 0 (14.36)

where dde,n is the increment to the displacement vector, given as

dde,n = de,n+1,k+1 − de,n+1,k (14.37)

Thus, the final equation for the three nodes of a triangular element—called as
nodal equation—is given as

Ke
i dde,n = �

e,n+1k
i where Ke

i = −∂�
e,n+1,k
i

∂de,n+1
and i = 1, 2, 3 (14.38)

Here, Ke
i is the element stiffness matrix for the element e with respect to node i and

the associated derivative of �
e,n+1,k
i [Eq. (14.35)] with respect to de,n+1, given as

Ke
i = 0 + (

Ke
m,i + Ge

i

)+ 2Me
i

�t2
(14.39)
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where the derivative of Eq. (14.35) with respect to de,n+1 for the surface force
−→
F e

i
is zero, differentiation in parts for the stress term results in the terms shown above
inside the bracket, and that for the unsteady term results in 2Me

i /�t2. Ke
m,i, G

e
i , and

Me
i in the above equation are called as material tangent matrix, geometric stiffness

matrix, and mass matrix, respectively. The material tangent matrix is given as

Ke
m,i =

∫

�e
in

([
BL,e

i

]T +
[
BNL,e

i

]T
)n+1 d

dde,n+1
Se,n+1d�e

in (14.40)

Substituting Se from Eq. (14.33) and using d
dde,n+1

([
BL,e

i

]T
)

= 0, we get

d

dde,n+1
Se,n+1 = DBe,n+1 where Be = BL,e + BNL,e

=⇒ Ke
m,i =

([
Be

i

]T)n+1
DBe,n+1�e

in (14.41)

Further, using d
dde,n+1

([
BL,e

i

]T
)

= 0, the geometric stiffness matrix Ge
i is given as

Ge
i =

∫

�e
in

d

dde,n+1

([
BL,e

i

]T +
[
BNL,e

i

]T
)n+1

Se,n+1d�e
in

⇒ Ge
i =

[
Ge

i,1 0 Ge
i,2 0 Ge

i,3 0
0 Ge

i,1 0 Ge
i,2 0 Ge

i,3

]
�e

in where

Ge
i,j = N e

i,xSe,n+1
xx N e

j,x + N e
i,xSe,n+1

xy N e
j,y + N e

i,ySe,n+1
xy N e

j,x + N e
i,ySe,n+1

yy N e
j,y (14.42)

The mass matrix Me
i is given as

Me
i = ρs,in

∫

�e
in

[
N e
1 0 N e

2 0 N e
3 0

0 N e
1 0 N e

2 0 N e
3

]
N e
1d�e

in (14.43)

Element equations:

Combining the nodal equations for all the three nodes [Eq. (14.38)], the system of
equations for an element e is presented in matrix form as

Kedde,n,k = �e,n+1,k where Ke =
⎡

⎣
Ke

1
Ke

2
Ke

3

⎤

⎦ and �e =
⎡

⎣
�e

1
�e

2
�e

3

⎤

⎦ (14.44)

Here, Ke is the element stiffness matrix and �e,n+1,k is the residual of the element e
for (n + 1)th time step, given as
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�e,n+1,k =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

Fe
x1

Fe
y1

Fe
x2

Fe
y2

Fe
x3

Fe
y3

⎤

⎥⎥⎥⎥
⎥⎥
⎦

−
([
Be
]T)n+1

Se,n+1�e
in − 2Me

�t2
[
de,n+1 − de,n + �t × ue,n

]
,

Ke = Ke
m + Ge + 2Me

�t2
(14.45)

For the element e, the various matrices in the above equation are given as

Ke
m =

([
Be
]T)n+1

D
[
Be
]n+1

�e
in,

Ge = �e
in

⎡

⎢⎢⎢⎢
⎢⎢
⎣

Ge
1,1 0 Ge

1,2 0 Ge
1,3 0

0 Ge
1,1 0 Ge

1,2 0 Ge
1,3

Ge
2,1 0 Ge

2,2 0 Ge
2,3 0

0 Ge
2,1 0 Ge

2,2 0 Ge
2,3

Ge
3,1 0 Ge

3,2 0 Ge
3,3 0

0 Ge
3,1 0 Ge

3,2 0 Ge
3,3

⎤

⎥⎥⎥⎥
⎥⎥
⎦

,Me = ρs,in�
e
in

12

⎡

⎢⎢⎢⎢
⎢⎢
⎣

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(14.46)

14.3.2.3 Solution Methodology: Global Equations

For CSD development, solution methodology corresponds to solution of a global
system of linear algebraic equations that is obtained by a summation of the element
equation [Eq. (14.44) for ne number of elements], given as

ne∑

e=1

Kedde,n,k =
ne∑

e=1

�e,n+1,k ⇒ KGddG,n,k = �G,n+1,k (14.47)

where KG is the global stiffness matrix, ddG is the global displacement-increment
vector, and �G is the global residual vector. The global KG , ddG , and �G are
expressed in terms of the respective elemental equations, given as

KG
2i+p−2,2j+q−2 =

ne∑

e=1

Ke
2l+p−2,2m+q−2, if Re,l = i; Re,m = j;

for
i = 1, 2, . . . , ns; j = 1, 2, . . . , ns

l = 1, 2, 3; m = 1, 2, 3
p = 1, 2; q = 1, 2

(14.48)
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ddG,n
2i+p−2 = dde,n

2l+p−2, if i = Re,l , for

e = 1, 2, . . . , ne

i = 1, 2, . . . , ns

l = 1, 2, 3
p = 1, 2

(14.49)

�
G,n+1,k
2i+p−2 = fG2i+p−2 −

ne∑

e=1

�
e,n+1,k
2l+p−2 if i = Re,l , for

i = 1, 2, . . . , ns

l = 1, 2, 3
p = 1, 2

(14.50)

where fG2i+p−2 represents the external forces acting on the node i (in x-direction for
p = 1 and y-direction for p = 2), i.e. fG2i+p−2 = ∑ne

e=1 f e
2l+p−2. Here, K

G , ddG , and

�G are computed with respect to the global node numbering from 1 to ns. In order to
relate global node numbering with the element node numbering, a node relationship
matrix is defined as

Re,l = 3e − 3 + l where e = 1, 2, . . . , ne; l = 1, 2, 3 (14.51)

The global displacement vector dG is also related to the element displacement
vector de in the same way. For the present iterative step, dG,n+1,k+1 is obtained as

dG,n+1,k+1 = dG,n+1,k + ddG,n,k (14.52)

Solution algorithm:

1. Generate unstructured mesh, resulting in the position vector of all the nodes and
global as well as local node numbering.

2. Compute node relationship matrix Re,l [Eq. (14.51)].
3. Initialise dG = 0 and compute the geometric parameters.
4. Assume dG,n+1,k = dG,n and set k = 1.
5. Update the displacement matrix dG,n+1,k+1 = dG,n+1,k and set k = k + 1.
6. Compute global stiffness matrix KG [Eq. (14.48)] and global residual vector

�G,n+1,k [Eq. (14.50)].
7. Solve Eq. (14.47) to obtain ddG,n,k and update dG,n+1,k+1 using Eq. (14.52).
8. Check for the convergence. If

∣∣Ψ n+1,k+1
∣∣ < ε

∣∣Ψ n+1,1
∣∣, continue to next time step

and go to step 2, else set k = k + 1 and go to step 2.

14.3.3 Implicit Coupling Between CFD and CSD Solvers

The fluid dynamics and structural dynamics co-occur in an FSI problem. Thus, both
CFD solver and CSD solver are coupled. The coupling is achieved by using the
continuity condition presented in Sect. 14.2.3, which can be either explicit or implicit.
Explicit coupling leads to a time lag between the fluid and structural solver, while
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Fig. 14.6 Normal and shear
stress on a node NA on the
solid surface

an iterative procedure is used in the implicit coupling to remove the time lag. The
implicit coupling has better numerical stability characteristics and is essential for
large deformation; thus, the implicit coupling is used in the present HLE method
(Thekkethil and Sharma 2019) and presented below.

For the fluid domain, the body velocity obtained from theCSD solver is used as the
boundary condition for the two-way coupled CFSD problem. For the CSD solver, the
fluid dynamic forces obtained from theCFDsolver are used as the boundary condition
on the surface of the solid, for the two-way coupledCFSDproblem.Figure14.6 shows
the fluid dynamics forces acting on a node NA on the solid surface. The normal and
shear stresses acting on the node are given as follows:

σ =
[
−p + μf

∂un

∂n

]

NA

; τ =
[
μf

∂uτ

∂n

]

NA

(14.53)

Here, the pressure p at node NA is computed using quadratic interpolation from the
neighbouring nodes. The normal derivatives of normal and tangential velocities at
node NA are computed as

[
∂un

∂n

]

NA

= un,NB − un,NA

δ
;
[
∂uτ

∂n

]

NB

= uτ,NB − uτ,NA

δ
(14.54)

where NB is a point along the normal at the node NA at a distance δ, which is equal
to the finest grid size considered in the fluid domain. The normal and tangential
velocities at NB, un,NB , and uτ,NB are computed using quadratic interpolation from the
nearest fluid cells. From the normal and tangential stresses, the stresses along x- and
y-directions are obtained as

σx = σ cos θ + τ sin θ; σy = −σ sin θ + τ cos θ (14.55)
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where θ is the angle of the normal at node NA, given as

θ = tan-1

⎡

⎣

(
∂ψ

∂y

)

(
∂ψ

∂x

)

⎤

⎦ (14.56)

For the implicit coupling between the fluid and structural solvers, the solution is
obtained iteratively until a convergence criterion is achieved for the interface vari-
ables, i.e. x-position xint, y-position yint, x-velocity uint, y-velocity vint, x-acceleration
ax,int, and y-acceleration ay,int. The convergence criteria correspond to maximum of
residual that is given as

R =max
(

Rn+1,new
xint , Rn+1,new

yint , Rn+1,new
uint , Rn+1,new

vint , Rn+1,new
ax,int

, Rn+1,new
ay,int

)
< ε (14.57)

Here, Rn+1,new
χint

is the root mean square of the residuals of all the interface nodes for
the present iteration, given as

Rn+1,new
χint

=
√√√√ 1

ns

ns,int∑

i=1

(
rn+1,new
χint,i

)2
, where rn+1,new

χint,i
= χ

n+1,new
int,i − χ

n+1,old
int,i (14.58)

Here, the superscripts represent the new and old iterations. For each iteration, the
interface variables are updated using an under-relaxation factor to ensure conver-
gence. For faster convergence, Aitken’s acceleration method (Degroote et al. 2010)
is used for the under-relaxation factor after certain (three here) iterative steps, given as

ωn+1,new
χint

= ωn+1,old
χint

(
rn+1,old
χint

)T (
rn+1,new
χint

− rn+1,old
χint

)

∥
∥∥rn+1,new

χint − rn+1,old
χint

∥
∥∥
2 (14.59)

where ω is the under-relaxation factor and rχint is the interface residual vector. Using
the under-relaxation factor, the updated interface variables are obtained as

χ
n+1,new
int,i = χ

n+1,old
int,i + ωn+1,new

χint
rn+1,new
χint,i

(14.60)

For a two-way coupledCFSDproblem,Fig. 14.7 shows aflowchart for the implicit
coupling between the CFD and CSD solvers. For the first iteration, the interface
position, velocity, and acceleration in the present time instant are considered equal
to that at the previous time instant for the CFD solver. After the solution of CFD
solver, the structure equations are solved using the forces obtained at the fluid–solid
interface. Using the solution obtained from theCSD solver, the interface variables are
updatedwith an under-relaxation factor [Eq. (14.60)]. Further, the fluid flow is solved
using the updated interface variables. The procedure is continued until convergence
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Fig. 14.7 Flow chart for the
implicit coupling between
the CFD and CSD solvers,
for a two-way coupled CFSD

is obtained for the residual [Eq. (14.57)]. An order of accuracy study was presented
in our recent study (Thekkethil and Sharma 2019), where the order of accuracy of
the present HLE method was demonstrated as second order.

14.4 HLE Method-Based CFSD Application and Analysis

OurHLEmethod-basedCFSDapplication and analysis are presented here in separate
subsections for rigid and flexible structure-based FSD problems.

14.4.1 CFSD Application and Analysis for Fluid–Rigid
Structure Dynamics

For the one-way coupled fluid–rigid structure dynamics, CFSD application and anal-
ysis are presented here first for 2D flow across a transversely oscillating cylinder and
2D as well as 3D hydrodynamics study on fish-like propulsion of fish-like undulating
foil. For the fish-like locomotion, the 2D study is presented for both tethered propul-
sion and self-propulsion of a fish-like pitching/undulating NACA0012 hydrofoil;
the 3D study is presented for tethered propulsion of a batoid fish-like locomotion.
The tethered propulsion is simulated by a constant velocity u∞-based free-stream
cross-flow, while a time-wise varying velocity u∞ (t) is used for the self-propulsion;
both the velocities correspond to the propulsion velocity up of the foil that is con-
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stant up = u∞ for the tethered propulsion and time-varying up (t) = u∞ (t) for the
self-propulsion. Here, up (t) is obtained from the instantaneous thrust force, using
Newton’s II law of motion. The non-dimensional computational set-ups for all the
one-way coupled CFSD problems are shown in Fig. 14.8.

14.4.1.1 Free-Stream Flow Across a Transverse Oscillating Cylinder

The transverse oscillating circular cylinder in a free-stream flow is a classical bench-
mark problem to test numerical methods for fluid flow across moving solid. The
transverse oscillation is given as ye = Aesin (2π fet), where Ae is the amplitude and
fe is the frequency of oscillation. The non-dimensional parameters for the problem
are the Reynolds number Re = ρf u∞D/μf , the non-dimensional amplitude Ae/D,
and the frequency ratio fe/fo. Here, fo is the natural frequency of vortex shedding.

For Re = 185, Ae/D = 0.2, and fe/fo = 1.0, Fig. 14.9 shows an excellent agree-
ment between our and published (Guilmineau and Queutey 2002) results for vor-
ticity contours and streamlines. Furthermore, our results for mean thrust coefficient
CTm = 0.432 and RMS value of lift force coefficient CLrms = 1.548 match very well
with respective values of 0.410 and 1.503 reported in the literature (Guilmineau and
Queutey 2002).

14.4.1.2 2D Hydrodynamic Study for Tethered Propulsion and
Self-propulsion of Anguilliform and Carangiform Fishes-Like
Undulating Hydrofoil

LS-IBM-based hydrodynamic analysis of fishes-like tethered propulsion study of a
2D NACA0012 hydrofoil was presented in our recent study (Thekkethil et al. 2018).
A fish body is modelled by the foil of chord length c, and a unified kinematic model
was proposed. The model is based on the wavelength λ of a travelling wave moving
along the foil. The travellingwave-based unified kinematics is represented by a lateral
displacement of the centreline of the foil �y, given as

�y = a(x) sin

(
2πx

λ
− 2π ft

)
where a (x) = amax

x

c
(14.61)

The wave equation consists of amplitude a(x) (varying from head to tail of the foil),
wavelength λ, and frequency f of the travelling wave. A linear amplitude varia-
tion is considered from head to tail, with maximum amplitude at the tail as amax.
The non-dimensional parameters for the problem are the non-dimensional wave-
length λ∗ (≡ λ/c), non-dimensional frequency St

(≡ 2famax/up
)
, non-dimensional

maximum amplitude Amax (≡ amax/c), and Reynolds number Reup = ρf upc/μf .
The unified kinematic model [Eq. (14.61)] represents various types of fishes-like
kinematics—anguilliform fishes-like kinematics for the smaller non-dimensional
wavelength (λ∗ < 1), caudal fin motion thunniform fishes-like kinematics for the
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Fig. 14.8 Non-dimensional computational set-up for a free-stream flow across a transversely oscil-
lating circular cylinder, b tethered/self-propulsion of fish-like undulating 2DNACA0012 hydrofoil,
and c tethered propulsion of 3D batoid fish-like body
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Fig. 14.9 a, b Streamlines and c, d pressure contours obtained from the a, c LS-IBM and b, d
literature (Guilmineau and Queutey 2002), for the transverse oscillating cylinder in a free-stream
flow at a time instant corresponding to maximum upward displacement of the cylinder, for constant
Re = 185, Ae/D = 0.2, and fe/fo = 1.0

Fig. 14.10 Instantaneous vorticity contour and velocity vector during a anguilliform fishes-like
undulation at λ∗ = 0.8 and b carangiform fishes-like pitching at λ∗ = ∞ for tethered propulsion
of NACA0012 hydrofoil at St = 0.4, Amax = 0.1, and Reup = 5000

largerwavelength (λ∗ → ∞), and hypothetical fishes-like kinematics that is a combi-
nation of the anguilliform and thunniform fishes-like kinematics for the intermediate
values of λ∗.

Figure14.10 shows a reverse von Karman vortex street as a signature of thrust
generation. Further, for smaller λ∗ as compared to larger λ∗, the vortices are weaker
and laterally stretched as compared to larger λ∗. The flow pattern results in a larger
thrust force (efficiency) for larger (smaller) λ∗-based carangiform (anguilliform)
fishes-like kinematics (Thekkethil et al. 2018).

For self-propelled anguilliform and carangiform fishes-like locomotion in our
recent study (Thekkethil 2019) at a constant Reynolds number based on the frequency
Ref

(≡ ρf famaxc/μf
)
, Fig. 14.11 shows a temporal variation of vorticity contours and

velocity vectors. For the initial time duration, the figure shows that λ∗ results in a
dipole formation with a strong lateral jet flow that leads to a larger hydrodynamic
force and maximum stream-wise acceleration of the foil. Further, the figure shows a
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Fig. 14.11 Temporal variation of vorticity contours and velocity vectors during second, third, and
fifth cycles of self-propulsion of NACA0012 hydrofoil for a–c anguilliform fishes-like undulation
with λ∗ = 0.8 and d–f carangiform fishes-like pitching with λ∗ = ∞, at Ref = 1000 and Amax =
0.1

decrease in the jet strength with time (due to the increase in the vortex spacing) that
leads to a reduction in the hydrodynamic force. At the dynamic steady state, a zero
net thrust force is obtained, resulting in a constant propulsion velocity.

14.4.1.3 3D Hydrodynamics Study for Tethered Propulsion of a Batoid
Fishes-Like Body

Hydrodynamic analysis of various types of 3D batoid fishes-like locomotion was
presented in our recent work (Thekkethil 2019). The batoid type of fishes uses a bat-
like flapping of pectoral fin along with fishes-like undulation of body. The combined
motion leads to a 3D kinematics. Figure14.12 shows the shape of the batoid-like
body considered in our recent study (Thekkethil 2019). The body has a hydrofoil
cross section in the x-z plane with chord length c in the x-direction and an elliptical
cross section in x-y and y-z planes with a span of b in the y-direction. The kinematics
is a combination of the wavy motion in the x-z plane and symmetric pitching (a
bird-like flapping) motion in the y-z plane. The combination of motions in the x-z
and y-z planes can be represented by the transverse displacement of the body with
respect to the x-y plane in dimensional form as

�z = amax

cb/2
x|y|sin

[
2π
( x

λ
− ft

)]
where, x = [0, c] and y = [−b/2, b/2]

(14.62)
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Fig. 14.12 3D view of the batoid-like body

Fig. 14.13 Instantaneous Q-criterion-based vortex structure during a tethered propulsion of the
batoid fishes-like body for a λ∗ = 0.8 and b λ∗ = 4.0, at AR = 0.75, St = 0.5, Amax = 0.15, and
Reup = 10,000

Here, amax is the maximum possible amplitude at x = c and |y| = b/2. The wave-
length of undulation λ and frequency of undulation f are similar to the 2D hydrofoil.
For the 3D fishes-like locomotion, aspect ratio AR (≡ b/c) is an additional non-
dimensional parameter. The various λ∗ and AR represent different types of batoid
fishes-like locomotion.

For tethered propulsion of or constant propulsion-velocity-based free-stream flow
across various types of 3D batoid fishes-like undulating hydrofoils, Fig. 14.13 shows
instantaneous Q-criterion-based vortex structure. The figure shows a double pair of
vortex rings with each pair on the front and backside connected by the vortex contrail
for smaller λ∗. The two vortex rings are formed due to the symmetric pitchingmotion
on both sides of the plane of symmetry. For the larger wavelength (λ∗ = 4.0), a
horseshoe vortex structure connecting the two vortex rings is present in addition to
the vortex rings. This results in larger hydrodynamic forces for the larger λ∗.
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14.4.2 CFSD Application and Analysis for Fluid–Flexible
Structure Dynamics

As discussed above, for the fluid–flexible structure dynamics, the interaction between
fluid dynamics and structural dynamics is two-way coupled—the fluid flowand struc-
ture motion/deformation are dependent on each other. In this section, the application
of the present HLE method is presented for three problems: first, a lid-driven cavity-
based flow across a flexible plate; second, a Poiseuille flow across a rigid cylinder
with a flexible splitter plate; and third, tethered-propulsion-based free-stream flow
across a flexible hydrofoil. The first problem is a computationally efficient bench-
mark problem, recently proposed by us (Thekkethil and Sharma 2019), the second
problem is also a commonly used benchmark problem, and the third problem is an
extension of our study on hydrodynamics during fishes-like locomotion. The non-
dimensional computational set-ups for the two-way coupled CFSD problems are
shown in Fig. 14.14.

14.4.2.1 Lid-Driven Cavity Flow-Based Benchmark Problem
for Fluid–Flexible Structure Dynamics

We recently proposed (Thekkethil and Sharma 2019) a computationally efficient and
easy-to-set up lid-driven cavity flow-based benchmark problem along with bench-
mark solutions for the two-way coupled FSD. The problem considers a square lid-
driven cavity, with cavity length L, and both top and bottom wall act as a lid moving
with a constant velocity. A flexible plate, of length 0.5L and thickness 0.05L hinged
at the centre of the cavity, gets deformed due to the lid-driven cavity flow-based
hydrodynamic force. In addition to the Reynolds number Re, the two-way coupled
FSD problem considers the non-dimensional Young’s modulus E∗, density ratio ρr ,
and Poisson’s ratio νs as non-dimensional governing parameters.

Figure14.15 shows the steady-state streamlines and pressure as well as vorticity
contours. The lid-driven flow creates circular flows near the top and bottom bound-
aries of the cavity, which results in symmetric bending of the plate, as shown in the
figure. The computational time taken for this problem is very small as compared to
many benchmark problems reported in the literature.

14.4.2.2 Poiseuille Flow Across a Flexible Splitter Plate Behind
a Cylinder

The problem corresponds to a hydrodynamically fully developed flow across a rigid
circular cylinder of diameter D with a flexible splitter plate (of a thickness of 0.2D
and length 3.5D attached behind it) in a channel. The problem was first proposed by
Turek and Hron (2006) and is widely used as a benchmark problem in the literature.
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Fig. 14.14 Non-dimensional computational set-up for a the benchmark problem on the classical
lid-driven cavity flow-induced deformation of a hinged vertical plate, b a rigid circular cylinder
with a flexible splitter plate in a Poiseuille flow, and c tethered propulsion of structurally flexible
hydrofoil subjected to pitching motion
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Fig. 14.15 Steady-state a vorticity contours and streamlines and b pressure contours, for hinged
plate in a top and bottom lid-driven cavity at Re = 100, E∗ = 100, ρr = 10, and νs = 0.3

Fig. 14.16 Instantaneous vorticity contour obtained from the a LS-IBM and b literature (Bhardwaj
and Mittal 2012), for the channel flow across flexible splitter plate attached behind rigid circular
cylinder at a time instant t = 76, for constant Re = 100, E∗ = 1400, ρr = 10, and νs = 0.4

Figure14.16 shows an excellent agreement between our (Thekkethil 2019) results
and published (Bhardwaj and Mittal 2012) results for a periodic state. Due to the
time-wise periodic hydrodynamic forces acting on the body, the plate is subjected to
vibration and the periodic state is obtained after a certain number of vortex shedding
cycles.

14.4.2.3 2D Hydrodynamics Study for Tethered Propulsion
of a Fish-Like Pitching Flexible Hydrofoil

The arrangement of the flexible hydrofoil is shown in Fig. 14.14c. This was proposed
in an experimental work (Marais et al. 2012) and was studied numerically in our
recent work (Thekkethil 2019).
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Fig. 14.17 Instantaneous a–c stream-wise velocity contours and d–f vorticity contours for the free-
streamflow across pitching flexible hydrofoil with a,d largely flexible (E∗ = 5000),b, emoderately
flexible (E∗ = 30,000), and rigid (E∗ = ∞) hydrofoils, at St = 0.5, Re = 5000, θro,max = 8o, ρr =
1.0, and νs = 0.4

For the tethered-propulsion-based free-stream flow across the flexible pitching
hydrofoil, Fig. 14.17 shows the vorticity contours and stream-wise velocity contours.
The figure shows a single straight-jet flow (straight reverse vonKarman vortex street)
for the largely flexible foil, inclined jet flow (inclined von Karman vortex street) for
the rigid foil, and inclined jet flow along with a straight-wake (inclined reverse von
Karman vortex street with straight von Karman vortex street) for the moderately
flexible foil. The moderate (large) flexibility results in maximum (minimum) thrust
generation.

14.5 Closure

This chapter is presented in two parts: first, CFSD development, and second, CFSD
application and analysis. For the first part on CFSD development, a detailed numer-
ical methodology in two-dimensional Cartesian coordinate system is presented for
the partitioned approach-based hybrid Lagrangian–Eulerian (HLE) method. The
methodology is based on physical law-based FVM and level-set-based IBM for CFD
development and geometric nonlinearGalerkin FEM-basedCSDdevelopment, along
with an implicit coupling between the CFD and CSD solvers that is numerically sta-
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ble for large deformation. The second part demonstrates the HLE method-based
CFSD application (with the help of computational set-up) and analysis (of hydrody-
namic results) on a variety of rigid and flexible structure-based one-way and two-way
coupled CFSD problems, respectively.
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