
Chapter 10
A Higher-Order Cut-Cell Methodology
for Large Eddy Simulation of
Compressible Viscous Flow Problems
with Embedded Boundaries

Balaji Muralidharan and Suresh Menon

10.1 Introduction

The advantages of using embedded boundary (EB) methods for computational fluid
dynamics (CFD) applications are well known. The foremost being ease of grid gener-
ation for complex geometries and moving boundaries. In EB approaches, the domain
boundaries are not resolved by the numerical grid, rather the numerical schemes used
to solve the flow governing equations are modified appropriately to account for the
presence of physical boundaries. It is in this numerical treatment of the embedded
boundary the various EB approaches vary. An excellent overview of the existing
methods to represent embedded boundaries within the background mesh is provided
by Mittal and Iaccarino (2005). For the purposes of this study, we only consider the
cut-cell-based EB method in which regular mesh elements cut by the intersection of
the solid boundary are reshaped to conform to the shape of the interface. The cut-cell
approach is designed to satisfy the underlying conservation laws for the cells near
the interface. Strict global and local conservation of mass, momentum, and energy is
guaranteed by resorting to a finite volume discretization even for the cut-cells. The
Cartesian cut-cell finite volume methods (Clarke et al. 1986; Udaykumar et al. 1996;
Hartmann et al. 2011; Muralidharan and Menon 2016) are, therefore, in comparison
to finite difference ghost cell methods (Kim 2001; Majumdar 2001), attractive as
they enforce strict conservation and also can avoid the generation of spurious pres-
sure fluctuations that are observed typically with ghost fluid methods (Cecere and
Giacomazzi 2014; Mittal and Iaccarino 2005; Merlin et al. 2012).
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Oneof themotivations of developingEBmethods is to apply them to solve realistic
flow problems involving complex geometries. Due to highly turbulent nature of most
of the practical flows, resolving all scales of motion, as is done in a Direct Numerical
Simulation (DNS), is not possible due to the high computational costs involved.
The alternative is to employ large eddy simulation (LES) in which only the most
energy-containing eddies are resolved by the numerical grid and effect of small
scales of motion on the larger scales is modeled. Adaptive mesh refinement (AMR)
is another popular strategy for reducing computational cost by providing higher
grid resolution only in the regions of interest. AMR was originally proposed for
shock hydrodynamics (Berger and Colella 1989) and has been traditionally applied
to mainly inviscid flows to capture features such as shocks, contact discontinuities,
and expansions.

The introduction of unconventional numerical techniques such as embedded
boundarymethods andAMRcan complicate the closure problem forLES.Themajor-
ity of subgrid closures for LES have been developed for body-conformal, uniform
gridswithout local refinement. The behavior of the closuremodels for unconventional
methodologies such as dynamic mesh refinement (Berger and Colella 1989) and
embedded boundary techniques (Mittal and Iaccarino 2005) is not completely under-
stood. Additionally, a common problem with most EB methods is that they are of
lower-order accuracy near boundary. Besides, these methods also suffer from issues
such as mass loss and noisy reconstruction of flow solution quantities such as wall
shear stress and heat flux (Coirier and Powell 1996). In the context of turbulencemod-
eling using LES technique, the numerical errors at the boundary can strongly interact
with the subgrid closure models introducing a significant uncertainty in the simula-
tion results (Kravchenko and Moin 1997). Therefore, use of high-order EB schemes
with smooth behavior of flowquantities and their derivatives at the boundary becomes
particularly relevant for LES as the truncation errors from lower-order schemes can
exceed the magnitude of the subgrid-scale term (Kravchenko and Moin 1997).

To date, there have been only a few reported works on modeling turbulence using
the cut-cell-based EBmethods.Meyer et al. (2010) developed a conservative second-
order accurate immersed interfacemethod suitable for LES of high Reynolds number
incompressible flows. However, an implicit LES approach in the capacity of ALDM
approach was employed for the turbulence closure. Essentially, the numerical dissi-
pation of the scheme was assumed to mimic the physical dissipation due to action of
small-scale unresolved turbulence. In a recent article, Berger and Aftosmis (2012)
extensively analyzed modeling of steady viscous compressible flows using Carte-
sian cut-cell finite volume method. They explored the use of wall models for laminar
and turbulent flows to suppress numerical oscillations in the second derivatives used
for viscous flux computations. To the best of the author’s knowledge, there have
not been many studies in the area of LES with embedded boundary methods and
dynamic refinement for turbulent flow problems.

A high-order accurate adaptive Cartesian cut-cell method has been recently devel-
oped by Muralidharan and Menon (2016, 2018) that addresses most of the short-
comings of the previous approaches. A high-order solution was achieved by using a
k-exact reconstruction based on a piecewise polynomial approximation of the flow
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solution locally near the embedded boundary. A novel cell clustering approach was
employed that was based on previously established cell-linking approaches for deal-
ing with the ‘small cell’ problem afflicting all the cut-cell methods. One of the key
strengths of the cell clustering approach is that it preserves the order of accuracy of the
underlying numerical scheme both locally and globally. Additionally, the approach
ensured smooth reconstruction of quantities involving flow gradient such as the skin
friction coefficient. These features make this approach very suitable for LES of tur-
bulent flow problems. In an another recent study by the authors, a multi-level subgrid
closure for LES of compressible flow problem with local adaptive mesh refinement
was developed (Muralidharan and Menon 2019) (henceforth called as AMRLES).
Consistent and conservative behavior of the subgrid kinetic energy across the mul-
tiple levels was demonstrated using the AMRLES approach. The goal of this study
is to extend the multi-level closure for LES to problems with embedded boundaries.
Appropriate closure model corrections to AMRLES framework suited to the cut-
cell EB method are proposed. The cut-cell-AMRLES strategy is then assessed for
canonical flow problems. Detailed evaluation of the closure model coefficients is
performed and reported.

The organization of the paper is as follows. In the first section, the mathematical
formulation and the numerical approach are described. The details of the closure of
the subgrid-scale turbulence in the presence of a locally refined grid and embedded
boundary are also detailed in this section. The results for canonical turbulent flow
problems with the proposed cut-cell-AMRLES framework are reported in the next
section. Finally, summary of the work is presented along with future directions in
the conclusion section.

10.2 Mathematical Formulation and Numerical Approach

10.2.1 Governing Equations for Multi-level AMRLES

In the current study, block-structured adaptive mesh refinement is performed near
embedded boundaries to better resolve the near-wall flow features. To perform block-
based refinement, the flow solver is interfaced with BoxLib AMR library developed
at LBNL. Accordingly, the Favre-filtered compressible LES governing equations for
a multi-level AMR grid with l = 1, 2, . . . ,N levels of refinement as detailed in a
previous work (Muralidharan and Menon 2019) are given by:
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where ρ, ui,E, andp are the density, velocity components, total energy, and pressure,
respectively. τij is the viscous stress tensor, and qi is the thermal conductivity flux in
the ith direction. In the above equations, all the subgrid-scale terms, indicated with
a sgs superscript, are unclosed, and therefore, require modeling. The multi-level
filtering operation, denoted by l , can be defined as:

φ
l = Gl ∗ Gl+1 ∗ · · · ∗ GNφ. (10.2)

for any flow quantity φ. Gl is the filtering operator associated with level l which
can vary from l = 1, 2, . . . ,N with N being the maximum level of refinement. The
representation of the filtered quantity on a multi-level AMR grid is shown both
in the wavenumber space and in the physical hierarchical grid system in Fig. 10.1.
The wavenumber corresponding to each AMR level and the corresponding filtered
quantity at that level is indicated in the figure.

The closure models for each of the sgs, l terms are summarized below:
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(a) (b)

Fig. 10.1 Schematic of turbulent kinetic energy spectra in a physical space and b wavenumber
space. The multi-level filtering of a flow quantity φ and the associated wave number are also
indicated. Reprinted with permissions from Muralidharan and Menon (2019)
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The transport equation for the subgrid kinetic energy for a multi-level AMR grid
system is given by:
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with the different closure terms in the ksgs equation taking the following form:
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Equations (10.3–10.10) are in fact exact equivalents of a single-level ksgs transport
equation with single-level flow variables now replaced with their multi-level rep-
resentation. The coefficients, Cl

ν , Cl
ε , αl

pd , and Prlt , are computed still computed
dynamically for each level after employing a test filter with twice the local grid size
and using a least square approach (Génin and Menon 2010).

As detailed in the previous study (Muralidharan and Menon 2019), the sgs terms
in Eq. (10.1) are closed using the standard single-level closures for each level inde-
pendently. The only difference is in the treatment of the subgrid turbulent kinetic
energy ksgs,l for which an additional correction is performed as given by:

ρksgs,l = ρksgs
l + ρδ

sgs,l
, (10.11)

ρδ
sgs,l = ρuiui

l − ρui
l
ρui

l

ρ
l

. (10.12)

The multi-level correction procedure is illustrated in Fig. 10.2. For unrefined
regions, the single-level transport equation-based closure is employed. But for the
refined regions indicated by yellow and blue colors, the correction described by
Eq. (10.12) is applied. The multi-level formulation can be seen as a mixed model
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that employs, the transport equation-based sgs model at the finest resolution and
adding a correction based on the explicit filtering of represented turbulent kinetic
energy on the grid resolution finer than the current level.

10.2.2 Extension of the Multi-level AMRLES to Embedded
Boundaries

While in theory the multi-level formulation can be naturally extended for wall
bounded flows with embedded boundary representation, the procedure for dynami-
cally computing the coefficients becomes more complicated as test-level filtering is
not clearly defined at the embedded boundary. To overcome this problem, a two-layer
approach to the closure model is suggested. On the finest level comprising the wall
boundary, the flow is solved without any closure model (in a DNS mode) and away
from the boundary on the coarser underlying grids, the multi-level sgs closure is
employed. The multi-level correction from the finest (N ) to the coarser grid (N − 1)
injects the filtered subgrid turbulent kinetic energy (ksgs,N−1) which is then trans-
ported on the coarser grid levels. The two-layer sgs closure with EB is illustrated in
Fig. 10.2.

Fig. 10.2 Schematic of the multi-level correction for ksgs on a AMR mesh with EB
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10.2.3 Formulation and Implementation of Cut-Cell Method

ACartesian-based strictly conservative cut-cell method that is upto third-order accu-
rate for viscous problems with embedded boundaries has been developed in the past.
Readers are referred to a previously publishedwork of the authors (Muralidharan and
Menon 2016) for the detailed formulation and validation of the high-order cut-cell
method. A summary of the high-order cut-cell method is provided below.

Cut-cell method (Hartmann et al. 2008; Yang et al. 2000) is used in this work
to represent embedded boundaries on a Cartesian grid. Information for defining the
cut-cells at the embedded boundary is extracted from a levelset field description.
Levelset, as defined by Osher and Sethian (1988), Osher and Fedkiw (2003), is a
continuous scalar field having values φ > 0 in the fluid region, φ < 0 in the solid
region and φ = 0 at the interface. Once the levelset field is described completely, all
the cut-cell metrics can be computed.

To create a cut-cell, the levelset field is assumed to be piecewise linear in a cell
and is given as:

φ(x, y, z) =
1∑

p1=0

1∑
p2=0

1∑
p3=0

xp1yp2zp2ap1,p2,p3, (10.13)

(p1 + p2 + p3) ≤ 1

in which the coefficients, ap1,p2,p3, are determined based on the nodal values, φi, i =
1, 8 for a given computational cell. The embedded boundary surface is defined by
the function φ(x, y, z) = 0. The boundary equation along with the linear system of
equations representing the cut-cell edges is solved simultaneously to provide the
points of intersection of the boundary with the edges. The process of finding the cut
surface is illustrated in Fig. 10.3a. As shown, the embedded surface is approximated
by a planar cut in a given computation cell (i, j, k).

The main idea behind achieving a higher-order accuracy at the embedded bound-
aries is use of a piecewise high-order polynomial approximation of cell-centered
flow quantities as proposed by Ivan and Groth (2014). Accordingly, the following
reconstruction polynomial of order k for any conservative or primitive flow quantity
u in a given cell i is defined as follows:

uki (x, y, z) =
k∑

p1=0

k∑
p2=0

k∑
p3=0

(x − xc,i)
p1(y − yc,i)

p2(z − zc,i)
p3Dk

p1,p2,p3 ,

p1 + p2 + p3 ≤ k (10.14)

where (xc,i, yc,i, zc,i) are the cell center coordinates and Dk
p1,p2,p3 are coefficients

of kth-order approximation of u, which can be proved to be scalar multiples of
derivatives ofu usingTaylor series expansion.Once these coefficients are determined,
the above polynomial approximation in Eq. (10.14) can be employed to reconstruct,
anywhere within the cell i, the quantity u and its pth derivative with the order of
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(a) Cut-cell creation (b) Cut-cell definition

Fig. 10.3 Schematic of a three-dimensional cut-cell: a creation from levelset description φ with cut
surface described byφ(x, y, z) = 0.bVarious geometric variables for defining a cut-cell to represent
an embedded boundary. Reprinted with permissions from Muralidharan and Menon (2016)

accuracy (k + 1) and (k − p + 1), respectively. Using the volume-averaged values
of the current cell ui,

ui = 1

V

∫
v

k∑
p1=0

k∑
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p1,p2,p3dv, (10.15)

and the neighboring cell uj, the coefficientsDk
p1,p2,p3 can be found by solving a system

of linear equations defined as follows:

uj − ui =
k∑

p1=0

k∑
p2=0

k∑
p3=0

( ̂xp1yp2zp3)ijD
k
p1,p2,p3 | j = 1, . . . , np,

p1 + p2 + p3 ≤ k (10.16)

where np represents the number of neighbors that are required to solve the ith cell-
centered quantity and depends on the order of reconstruction. In Eq. (10.16), ̂xp1yp2zp3

is the geometric moment of jth cell about ith cell center given by:

( ̂xp1yp2zp3)ij =
∫
vj

(x − xc,i)
p1(y − yc,i)

p2(z − zc,i)
p3dv. (10.17)

More details on solving Eq. (10.17) can be found in a previous work by the authors
(Muralidharan and Menon 2016).
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10.2.4 Numerical Approach

The fluid solver is a finite volume, compressible, time-accurate LES code capable of
solving multi-phase, reacting, turbulent flows in both simple and complex geome-
tries using a structured, parallel multi-block schemewith second- and/or fourth-order
accuracy (Chakravarthy and Menon 2001; Génin and Menon 2010). Unless stated
otherwise, to evaluate the inviscid andviscousfluxes away from the embeddedbound-
ary, Mac-Cormack’s predictor–corrector (MacCormack 2003) method is employed
on the full cells. The finite volume version of the Mac-Cormack’s method couples
the time and spatial integration schemes. First-order or second-order extrapolation of
cell-averaged values that alternates between the downwind and the upwind directions
at each step is performed to compute the fluxes on the cell faces. This results in a
second-order accurate scheme in both time and space. A higher-order extrapolation
can increase the accuracy of the scheme to fourth order.

At the embedded boundary, the Central Essentially Non-Oscillating (CENO)
scheme using the k-exact reconstruction is used. The viscous fluxes are computed
using central finite difference, and the inviscid fluxes are evaluated by solving the
Riemann problem at the cell interfaces using the Hartmann-Lax-van Leer family of
approximate Riemann solvers (HLL and HLLC) (Toro 2009).

10.3 Results and Discussion

The goal of the following numerical case studies is to assess the multi-level cut-cell-
AMRLES subgrid closure for performing LES of flows with embedded boundaries.
To demonstrate the accuracy of the scheme, order of accuracy analysis for a Laplace
problem on a domain with embedded boundaries is reported. Results are then pre-
sented for LES of transitional flow past a cylinder and sphere.

10.3.1 Order of Accuracy Analysis for the Cut-Cell EB
Method

To demonstrate the accuracy of the cut-cell finite volume scheme, the following
Laplace’s problem:

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0, (10.18)

is solved on a series of successively refined grids and with two different orders
of reconstruction: k = 2 and k = 3. The exact solution of Eq. (10.18) is: ψexact =
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sin x exp y. Although a high-order accurate reconstruction of the flow-field quantities
and their derivatives iss obtained using the k-exact approach, the solution accuracy
degrades due to the aforementioned cell-mixing process. Particularly for viscous flow
problems, the classical cell-mixing method achieves numerical stability in compu-
tations but causes significant noise in the reconstruction of the derivative quantities,
e.g., shear stress and heat flux (Muralidharan and Menon 2016).

The cell clustering scheme is nowassessed for this Laplace’s problemon a domain,
D with a embedded boundary, 
. The boundary is defined by a levelset description
φ on a 1 × 1 unit domain given by:

φ1(x, y) = 1 −
√

(x − xc)2

r21
+ (y − yc)2

r22
, (10.19)

φ2(x, y) = 1 −
√

(x − xc)2

r22
+ (y − yc)2

r12
, (10.20)

φ(x, y) = min(φ1, φ2) (10.21)

where (xc, yc) is set at (0.5, 0.5) and r1 = 0.3, r2 = 0.5. The boundary represented
by the above levelset description is shown in the following Fig. 10.4.

Equation (10.18) is solvedusing thefinite volumeapproachdescribed inSect. 10.2.
All the conserved quantities are frozen, and an additional scalar equation is solved
for ψ with a Dirichlet boundary condition ψ(x
, y
) = ψexact imposed at the
immersed boundaries. The L1, L2, and L∞ norm of the errors are computed as

Lp(eψ) =
(

1∑
i vi

∑
i vi|eψ |p

) 1
p
with vi being the volume of cell, p is error norm, and

(a) (b)

Fig. 10.4 a Immersed domain for the Laplace’s problem represented using cut-cells. b Exact
solution to Laplace’s problem,ψexact = sin x exp y. Reprinted with permissions fromMuralidharan
and Menon (2016)
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Table 10.1 Error norms for solution to Laplace equation for different orders of k-exact reconstruc-
tion [Reprinted with permissions from Muralidharan and Menon (2016)]

Grid L1 Norm Order L2 Norm Order L∞ Norm Order

k = 2

402 2.03 ×
10−6

– 2.37 ×
10−6

– 4.173 ×
10−6

–

802 5.04 ×
10−7

2.01 5.90 ×
10−7

2.0 1.053 ×
10−6

1.99

1602 1.24 ×
10−7

2.02 1.46 ×
10−7

2.01 2.60 ×
10−7

2.02

3202 3.15 ×
10−8

1.98 3.70 ×
10−8

1.98 6.59 ×
10−8

1.98

k = 2

402 9.06 ×
10−8

– 1.14 ×
10−7

– 3.14 ×
10−7

802 1.0 × 10−8 3.17 1.26 ×
10−8

3.17 4.48 ×
10−8

2.81

1602 1.23 ×
10−9

3.03 1.54 ×
10−9

3.03 6.30 ×
10−9

2.83

3202 1.55 ×
10−10

2.99 1.95 ×
10−10

2.98 8.65 ×
10−10

2.86

The bold lettering in the table has been used to emphasize and highlight the order of accuracy of
the numerical scheme

Fig. 10.5 Error norms of ψ

for the solution to the
Laplace’s problem at
different grid resolutions for
the Laplace’s problem with
different orders of k-exact
reconstruction [Reprinted
with permissions from
Muralidharan and Menon
(2016)]

|eψ | = |ψ − ψexact|. The error norms are reported for different mesh sizes and for
k = 2 and k = 3 in Table10.1. The plot of the error norms along with the design
order of accuracy is shown in Fig. 10.5. To maintain consistency of the error analy-
sis, the k-exact-based CENO reconstruction is used for both the full and cut-cells to
evaluate the viscous fluxes.
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The error in the solution includes the effects of small cell clustering and mixing.
With the cell clustering algorithm, the design order of accuracy is achieved for both
k = 2 and k = 3. Previous studies employing cut-cell (Hartmann et al. 2011; Cecere
and Giacomazzi 2014) have only reported the reconstruction error which does not
account for the small cell effects. It is noted that in the current approach, the design
order of accuracy is achieved both locally and globally. This clearly indicates the
robustness of the proposed cell clustering approach in handling complex surface
topologies and still achieves higher order. The Laplace’s problem is representative
of the class of viscous flow problems since it involves elliptic, diffusion like term, and
therefore, the inferences made on order of accuracy for this simple problem should
be applicable to compressible viscous flow problems in general.

10.3.2 LES of Red = 3900 Flow Past a Cylinder

In this study, LES is employed to simulate the turbulent flow of Red = 3900 over a
cylinder of diameter, d. The simulations are performed in a large rectangular domain
of size (30d×30d× πd) with a base resolution of (150× 150× 20). As shown
in Fig. 10.6, six AMR levels are employed such that the effective resolution at the
cylinder surface is 0.003125d, which falls in at around y+ = 4, where + indicates
non-dimensionalization by the viscous length scale. The first point of the wall is
located at y+ = 2. The grid resolution is comparable to a previous study of the same

Fig. 10.6 Snapshot of local mesh refinement near cylinder surface for Red = 3900 flow past a
cylinder
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problem (Ranjan andMenon 2015). This problem has been extensively studied using
both body conformal and immersed boundary approaches in the past and therefore is
an ideal reference case for evaluating the current AMRLES closure with embedded
boundaries. Characteristic-based subsonic inflow is used in the left boundary, while
subsonic outflow condition is prescribed to the top, bottom, and right boundaries.
Front and back surfaces are prescribed with periodic boundary condition.

The stringentwall resolution requirement is due to lackof use of anywallmodeling
for performing AMRLES which makes this a wall-resolved LES. The coefficients
for the subgrid closure models are evaluated dynamically using the LDKM approach
(Génin and Menon 2010). The flow Mach number is set at M = 0.2 which is low
enough to avoid any compressibility effects. The time history of the drag and lift
coefficient plots is shown in Fig. 10.7.

The average drag coefficient of Cd ≈ 1 matches with the data from past studies
(Son and Hanratty 1969; Ranjan andMenon 2015). The amplitude changes in the lift
coefficient are due to vortex shedding events occurring downstream of the cylinder.
The vortex structures in the wake of the cylinder are identified by the iso-surface of
Q-criterion colored with streamwise velocity and are shown in Fig. 10.8. It can be
observed that the boundary layer separates around the top and bottom of cylinder
and forms shear layers which breaks up into coherent structures and eventually into
small-scale turbulence within a couple of diameters downstream of the cylinder.

The instantaneous snapshots of vorticity magnitude, subgrid kinetic energy, and
eddy viscosity ratio are shown in Fig. 10.9. An important observation from the sub-
grid kinetic energy plot is that the ksgs is generated in shear layer following the
coarsening of the finest AMR mesh covering the cylinder surface. As noted in the
grid turbulence case study discussed in a previous study (Muralidharan and Menon
2019), the generation of ksgs from a fine/coarse AMR interface occurs solely due
to the multi-level subgrid closure. The inflow is laminar and therefore in the free-

Fig. 10.7 Time history of
drag (Cd ) and lift (Cl )
coefficient of Red = 3900
flow past a cylinder

160 180 200 220 240 260
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Fig. 10.8 Vortex structures’ visualization by iso-surface of Q-criterion colored with streamwise
velocity

stream ksgs = 0. Without the correction, ksgs will remain zero in the wake resulting
in insufficient dissipation at small scales.

Statistics are collected for 100 non-dimensionalized time units, t = d/u∞ . In
Fig. 10.10, the average pressure coefficient Cp and the skin friction coefficient Cf

are plotted over the surface of the cylinder. The data was averaged in space and also
along the z-direction. Excellent agreement is obtained for the point of separation
and pressure coefficient data. The skin friction coefficient is also matching well with
the past data. Also, note the smoothness in the pressure and skin friction coefficient.
To the best of the author’s knowledge, such a smooth reconstruction, especially in
the skin friction coefficient has never been shown in any of the past IB studies.
Overall, the Cut-cell-AMRLES approach captures the near-wall solution very well.
There are some oscillations in the skin friction coefficient plot around 50◦. These
oscillations indicate that the flux reconstruction in the cell present in these regions is
not accurate. More investigation is needed to ascertain the source of these numerical
artifacts, but the current hypothesis is that the cell clustering and thus the polynomial
reconstruction are affected because of some degenerated small cells. Nevertheless,
in other regions, the skin friction coefficient distribution is smooth.

To further assess the performance of the subgrid closure, the time-averagedplots of
various flow- and closure-related quantities are presented in Fig. 10.11. The stream-
line plots along with the streamwise velocity contours clearly show two recirculation
bubbles in the back of the cylinder which are close to symmetric with respect to the
streamwise direction. The reattachment length from for bubble is around two diam-
eters which matches with observations from past experimental studies. From the
figure, the generation of ksgs in the free shear layer formed from the boundary layer
separation is clearly seen in the mean sense. The closure model parameters Cν , Cε
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Fig. 10.9 Instantaneous snapshot of a vorticity magnitude, b subgrid kinetic energy, and c eddy
viscosity ratio in the center x-y plane
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Fig. 10.10 Time and spatially averaged (in homogeneous direction) data of a pressure coefficient
Cp and b skin friction coefficient for Red = 3900 flow past cylinder. Block dots in a represent data
from a past experimental study (Norberg 1987) and b represent data from a body-fitted LES (Ranjan
and Menon 2015)
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Fig. 10.11 Time-averaged plots of a streamwise velocity, b subgrid kinetic energy, c LDKM
parameter Cν , and d LDKM parameter Cε in center x-y plane

that are computed dynamically show a wide variation, especially in the wake region.
As expected there is a significant increase in the value of parameter Cν in the wake
region where the large-scale vortex structures breakdown and flow become turbu-
lent. The increase in Cν in turn increases the contribution of the subgrid stress to
the momentum equation through Eq. (10.4). The plot of the time-averaged Cε shows
high values near the boundary and the shear layer. Downstream of the cylinder in the
turbulent wake, the value of theCε drops. Since this parameter is a scaling coefficient
for the model of dissipation of subgrid turbulent kinetic energy, a high value of Cε

implies increased subgrid dissipation in the near-wall region and shear layer.
The quality of thewake predictions by theCut-cell-AMRLESapproach is assessed

by comparing the mean streamwise velocity along the centerline of the cylinder with
previous data in Fig. 10.12. Overall, the velocity deficit and recovery post reattach-
ment is captured well in the current simulation. But it appears that the length of
the recirculation bubble is over-predicted which is causing a delayed reattachment.
Since the near-wall predictions are in excellent agreement with past data, the reason
for this discrepancy is suspected to be mainly because of lack of convergence of
the temporal statistics. A previous study (Ranjan and Menon 2015) performed time
averaging after 700 non-dimensionalized time units for an interval of 250 time units,
whereas in the current study, time statistics were collected after 150 time units for
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Fig. 10.12 Time-averaged
streamwise velocity along
the cylinder centerline. Blue
solid
line—Cut-cell-AMRLES,
black dotted
line—body-fitted LES
(Ranjan and Menon 2015),
black filled
dots—experimental (Shih
et al. 1993), black filled
triangles—experimental
(Ong and Wallace 1996)

0 1 2 3 4 5 6 7 8

X/D

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

u/
U

∞

only an additional 100 time units. The wake predictions are expected to improve with
collection of more time-averaged data.

10.3.3 LES of Red = 3700 Flow Past a Sphere

Simulations of flow past spheres can be quite challenging with traditional body-
conformal structured grid methods mainly because of the complexity involved in
generating a good quality mesh especially near the wake region. Here, the Cut-cell-
AMRLES approach is employed to simulate the turbulent flow of Red = 3700 over
a sphere of diameter, d. The simulations are performed in a rectangular domain of
size 30d×30d×30d with a base resolution of (150× 150×150). The AMR levels
and grid resolution are kept same as the previous Red = 3900 study as the Reynolds
numbers are comparable. The plot of the AMR refinement for the sphere is shown in
Fig. 10.13. Characteristic-based subsonic inflow is used in the left boundary, while
subsonic outflow condition is prescribed to all the other boundaries. DNS simulation
of the same Reynolds number has been performed in the past (Rodriguez et al. 2011)
using an body-conformal unstructured approach.

The time history of the drag and lift coefficient plots is shown in Fig. 10.14. The
average value of the drag coefficient is found to beCd = 0.38. This is close to the value
ofCd ,DNS = 0.39 predicted by the DNS study. To visualize the vortex structures in the
wake of the sphere, the iso-surface of Q-criterion colored with streamwise velocity
is shown in Fig. 10.15. Similar to the cylinder case, the boundary separates from
the sphere surface and forms shear layer envelope which breaks down rapidly into
small-scale turbulence within a couple of diameters downstream. Due to the three-
dimensional nature of the free shear layer, the break down to small-scale turbulence
is much faster compared to flow past a cylinder.
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Fig. 10.13 Snapshot of local mesh refinement near surface for Red = 3700 flow past a sphere

Fig. 10.14 Time history of
drag (Cd ) and lift (Cl )
coefficient of Red = 3700
flow past a sphere
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The instantaneous snapshots of subgrid kinetic energy and eddy viscosity ratio
are shown in Fig. 10.16. It can be seen from the figure that the behavior of the various
flow-field quantities is similar to the previous case of flow past cylinder. The multi-
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Fig. 10.15 Vortex structures visualization by iso-surface of Q-criterion colored with streamwise
velocity

Fig. 10.16 Instantaneous snapshot of a subgrid kinetic energy and b eddy viscosity ratio in the
center x-y plane

level closure injects ksgs when near-wall refinement ends into the shear layer. A jump
in the subgrid kinetic energy and the eddy viscosity is observed after a fine/coarse
AMR interface.

The data is time averaged over 100 non-dimensionalized time units. The plots
of the average pressure coefficient Cp and the skin friction coefficient Cf extracted
along themidplane of the sphere are presented in Fig. 10.17. The current results show
excellent agreement with the data from DNS and an experimental study for the Cp,
Cf , the back pressure and the point of separation. Again it has to be reiterated that
to the best of the author’s knowledge, such a good match has never been reported in
addition to smooth reconstruction of pressure and especially skin friction coefficient,
in any of the past studies employing an embedded boundary technique. The contour
plot of the pressure distribution on the sphere surface is shown in Fig. 10.18.
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Fig. 10.17 Time-averaged data of a pressure coefficient Cp and b skin friction coefficient for Red
= 3700 flow past cylinder. Solid blue line- Cut-cell-AMRLES Block dots in a represent data from
a past experimental study (Norberg 1987) and b represent data from a body-fitted LES (Ranjan and
Menon 2015)

Fig. 10.18 Smooth distribution of pressure on the sphere surface for Red = 3700 flow past a sphere

The wake predictions are assessed by comparing the mean streamwise velocity
and the RMS of streamwise velocity along the centerline with previous DNS results
in Fig. 10.19. The velocity deficit and recovery post reattachment are captured well in
the current simulation. The magnitude of the RMS of streamwise velocity is slightly
over-predicted, but the peak locations match well with the DNS data. As for the
cylinder study, the wake predictions are expected to improve with collection of more
time-averaged data.
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Fig. 10.19 Time-averaged streamwise velocity along the cylinder centerline. Blue—Cut-cell-
AMRLES, Black dots—Body-fitted unstructured DNS (Rodriguez et al. 2011)

10.4 Conclusions

We have presented a multi-level subgrid closure model suited to a cut-cell-based EB
approach for LES of compressible flow problems. In the proposed framework, the
multi-level formalism of the block-structured refinement is exploited to build a two-
layer closure model. At the finest level comprising of the cut-cells used to represent
the embedded boundary, all the turbulence length scales are resolved and therefore
no subgrid closure is employed. The multi-level correction recently developed for
AMRLES is then applied to provide the filtered subgrid kinetic energy to the under-
lying coarser grids. A key advantage of the approach is that the multi-level correction
of the subgrid kinetic energy (ksgs) naturally introduces subgrid turbulence into the
coarser grids thus facilitating essentially a multi-level boundary condition for ksgs

at the embedded boundaries. The cut-cell-AMRLES framework thus builds on the
earlier works of the authors (Muralidharan and Menon 2016, 2019) combining a
high-order cut-cell EB approach with the AMRLES subgrid closure.

To demonstrate the accuracy of the cut-cell method, grid convergence studies are
presented for a 2D elliptic problem. The error analysis performed indicates that the
method achieves the design order of accuracy both locally and globally. The cut-
cell-AMRLES approach is then applied to study transitional turbulent flow past a
cylinder and sphere. Results show that there is a good agreement of the pressure and
skin friction coefficient data with past studies. The streamwise velocity and its fluc-
tuation are also compared well with the past data. The detailed analysis of the various
turbulent model parameters presented indicates that the proposed model behavior is
consistent and addresses some of the problems faced in the past related to LES of
AMR with embedded boundaries. For high Reynolds number fully turbulent flow
problems, resolving the near-wall turbulent can become considerably more expen-
sive since the adaptive refinement is isotropic. To handle such high Reynolds number
flow regimes, integration of the cut-cell-AMRLES approach with wall-modeled LES
(WMLES) (Kawai and Larsson 2012) can be attempted is a part of the future work.
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