
Chapter 1
Immersed Boundary Projection Methods

Benedikt Dorschner and Tim Colonius

1.1 Overview of the Immersed Boundary Method

Most conventional numerical methods to simulate complex fluid–structure interac-
tion problems utilize body-conforming discretizations, where the fluid–solid inter-
face conditions are imposed as boundary conditions. In its most general formulation,
the fluid–structure interface can both be moving and deforming as a result of the two-
way coupling between fluid and structure. Common body-fitted approaches include
arbitrary Lagrangian–Eulerian formulations (Hirt et al. 1974; Ahn and Kallinderis
2006) or space–time finite element methods (Tezduyar et al. 1992, 2006).

The generation of body-fitted meshes for complex, possibly moving and deform-
ing geometries, is computationally expensive and requires sophisticated procedures
to avoid severe mesh distortion and preserve accuracy (Thompson et al. 1998; Her-
mansson and Hansbo 2003; Tezduyar et al. 2006; Nakata and Liu 2012). An alter-
native is the use of non-conforming meshes, the most widely used example being
the immersed boundary method (IB). The IB method was first proposed in Peskin
(1972) to simulate blood flow inside a heart with flexible valves. In the IB method,
the flow field is described on a non-conforming Eulerian grid. The immersed surface
is represented in a Lagrangian framework, and the surface traction is determined by
imposing the no-slip boundary condition on the Eulerian velocity field interpolated
to the surface. In the continuous setting, the surface traction is a singular function
(defined only on the surface) and is discretized by a smeared, discrete delta function
that regularizes the forcing effect over the neighboring Eulerian grid cells.
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In the original IBmethod (Peskin 1972), the heart valves were modeled as flexible
membranes, and Hooke’s law was used as a constitutive relation to relate the forcing
function to the motion of the Lagrangian points. Later, this scheme was extended to
rigid bodies by taking large values for the spring constants (Beyer and LeVeque 1992;
Lai and Peskin 2000). In addition, the concept of feedback control to compute the
force on the rigid immersed surface was introduced by Goldstein et al. (1993), where
the difference between the velocity solution and the boundary velocity is used in a
proportional-integral controller. Note that for techniques using constitutive relations
tomodel the flow over rigid bodies, the choice of gain (stiffness) is a tuning parameter
whose value must be heuristically chosen to simultaneously avoid a restrictive time
step size (large stiffness) and slip error (small stiffness).

Constitutive relations are eliminated in direct forcing methods and its variants
(Mohd-Yusof 1997; Fadlun et al. 2000), where the momentum forcing is obtained by
penalization of the slip at the surface. However, the no-slip condition is only enforced
on an intermediate velocity field and hence requires iterations to approximate the no-
slip condition on the final velocity fields. While the slip has been reported to be small
(Fadlun et al. 2000), it cannot be estimated in a systematic fashion.

An alternative approach is to consider the boundary force as a Lagrangemultiplier
that is determined to enforce the no-slip condition (Glowinski et al. 1998; Taira and
Colonius 2007; Colonius and Taira 2008; Kallemov et al. 2016). In this formulation,
the discretized, incompressible Navier–Stokes equations (NSE) can be formulated
in an analogous manner to the classical fractional step method by introducing appro-
priate regularization and interpolation operators. In addition, a modified Poisson
equation, where the force and the pressure are lumped together, can be solved to
determine the pressure and force unknowns. We refer to these methods as immersed
boundary projection methods (IBPM). The advantage of IBPM is that continuity and
no-slip conditions can be satisfied implicitly and with arbitrary accuracy at each time
step. The Courant number is further only limited by the choice of the time-marching
algorithm. With typical splitting methods (fractional step methods), one can achieve
second-order accuracy uniformly in time and the matrices arising from the implicit
treatment of the viscous terms as well as the modified Poisson equation can be made
symmetric and positive definite. The resulting linear system can be solved with an
efficient conjugate-gradient solver.

While the standard implementation with discrete delta functions is only first-order
accurate in space, there have been efforts to improve the accuracy of IB methods in
order to efficiently tackle higher Reynolds number flows. These include so-called
sharp-interface and cut-cell approaches (Seo andMittal 2011). In particular, standard
IBs such as ghost-cell methods do not in general conserve mass or momentum at
the interface, which manifests in spurious pressure oscillations (Mittal and Iaccarino
2005) and becomes particularly problematic for compressible flows or when coupled
with large-eddy simulations and alike. A remedy was found in cut-cell methods,
which strictly enforce conservation by reshaping finite volume boundary cells to
locally conform with the geometry. A drawback of the cut-cell approach is that the
fluid volume fractions of cut cells can become small, necessitating stabilization of the
underlying time-stepping scheme using cell-merging (Ye et al. 1999), cell-linking
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(Kirkpatrick et al. 2003) or flux redistribution techniques (Hu et al. 2006; Colella
et al. 2006). Additionally, cut-cell methods inherit many of the complications of
body-fitted meshes and must be adapted dynamically for fluid–structure interaction
problems.

In discussing order of accuracy, we must tackle a misunderstanding that has per-
meated at least through part of the IB literature. Even for rigid bodies, the velocity
gradients are not continuous at an immersed surface, and the discretization must
account for the derivative singularity to achieve high-order accuracy. If the singular
traction is regularized without respect to the discretization (for example by using a
discrete delta function), the regularized solution will converge to the continuous one
at first order irrespective of the order of accuracy of the schemes used to treat the
derivative operators. The regularization error may in principle be made small inde-
pendently of the discretization error, but then the region over which the surface is
smeared must be made arbitrarily thin compared to the grid spacing. If the first-order
regularization error does not satisfy this restriction, then these “high-order” methods
simply converge to the incorrect, smeared solution faster. An interesting approach
toward higher-order IB methods is presented in Stein et al. (2017).

In this review, we take the alternative approach of accepting the first-order error
near the immersed surface, as this allows mimetic discretizations that achieve other
desirable properties, such as stability, discrete conservation, and computational effi-
ciency. It may be possible to achieve second-order accuracy while maintaining these
other characteristics in the future.

In what follows, we will introduce the immersed boundary projection method
as proposed in Taira and Colonius (2007), Colonius and Taira (2008). We will also
present a strongly coupled fluid–structure interaction algorithm as in Goza and Colo-
nius (2017), which is then applied to simulate the flow past an inverted flexible flag.
Subsequently, an immersed boundary method based on Lattice Green’s functions is
introduced, and examples ranging from inclined rotating disks to turbulent flow past a
sphere are shown. Finally, some perspectives to further increase theReynolds number
and inclusion of explicit turbulence models within the filtered NSE are provided.

1.2 Immersed Boundary Projection Method

The IB formulation for the incompressible Navier–Stokes equations with an addi-
tional singular boundary force f � in the momentum equation reads as :

∂u
∂t

+ u · ∇u = −∇ p + 1

Re
∇2u +

∫

�(t)

f �(X(ξ , t), t)δ(X(ξ , t) − x)dξ , (1.1a)

∇ · u = 0, (1.1b)∫

�

u(x)δ(x − X(ξ , t))dx = u�(ξ , t) = ∂X(ξ , t)

∂t
, (1.1c)
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where u = u(x, t), p(x, t), and Re denote the fluid velocity, pressure, and the
Reynolds number, respectively. We assume that the equations have already been
made non-dimensional with respect to characteristic length and velocity scales, and
the (constant) fluid density.

The Dirac delta function is indicated by δ and � is the Eulerian domain. The
immersed body surface� is described inLagrangian coordinates X = X(ξ , t), where
ξ is the surface parametrization, and u�(ξ , t) = ∂X(ξ ,t)

∂t is the boundary velocity. The
body force f � is chosen such that the no-slip condition on the immersed surface, as
prescribed by Eq. (1.1c), is satisfied. This step is agnostic to anymodel for themotion
of the surface based on the fluid forces acting on it, which in general determines the
position of the surface, which can be moving with respect to the underling Eulerian
domain.

The convolution with the Dirac delta function Eq. (1.1a) and Eq. (1.1c) couples
the immersed surface with the Eulerian grid �. The velocity field u as well as
the pressure are defined for all x ∈ � and satisfy the far field boundary conditions
u(x, t) → u∞(t) as |x| → ∞.

An issue with this formulation based on surfaces is that it is assumed that fluid
resides on either side of the immersed surface. When this is not the case, i.e., the
immersed surface comprises a substantial closed volume, there are wasted points
in the “ghost fluid” inside the body. Moreover, it is important to remember that the
fluid inside the body can exert a force on the body when the surface is accelerated.
For example, the added mass on a fluid-filled hollow sphere is different from that
of a solid sphere. To the extent that the fluid inside the surface is moving as a rigid
body, the additional force can readily be tabulated and used to correct the IB results
to non-hollow bodies. For the more general case involving deformation of the IB,
this formulation is only directly applicable to thin structures.

1.2.1 Discretization

The spatial discretization may be obtained via a second-order mimetic finite volume
method (Nicolaides and Wu 1997; Nicolaides 1992; Perot 2000; Zhang et al. 2002)
on a staggeredmeshQ := {V,E,F ,C}, which consists of verticesV, edgesE, faces
F , and cellsC (see Fig. 1.1). Scalar quantities reside at cell centers and vertices, while
faces and edges contain vector flow quantities. Grid functions with values on Q are
denoted by R

Q and functions with vector values at the Lagrangian grid points are
denoted by R

� . The semi-discrete form of Eq. (1.1) reads as

M
du

dt
+ N (u, t) = −Gp + 1

Re
LF u + R(t) f (1.2a)

D̄u = 0 (1.2b)

R(t)u = u�, (1.2c)
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Fig. 1.1 Staggered cell object as used in the IBLGF method. Reprinted from Liska and Colonius
(2016) with permission

where u ∈ R
F and p ∈ R

C are the discrete velocity and pressure variables at time
t > 0. The mass matrix is denoted by M . The discrete gradient, divergence, and
Laplace operators are denoted by G, D, and L and, if ambiguous, a subscript is used
to identify storage location. The set of discrete vector operators used in the following
is given by:

Gradient G : RC → R
F , Ḡ : RC → R

F , (1.3)

Curl C : RF → R
E, C̄ : RE → R

F . (1.4)

Divergence D : RE → R
V, D̄ : RF → R

C, (1.5)

Laplace L : RQ → R
Q. (1.6)

The convection term u · ∇u is approximated by the nonlinear operator N (u, t). Dif-
ferent choices for this discretization lead to different (conservation) properties (Perot
2000). The discrete surface functions f (i, t) and u�(i, t) denote the force and the
velocity of the i th Lagrangian marker at X(ξi , t) where i ∈ [1, NL ]. The interpola-
tion and regularization operators E(t) and R(t) are time-dependent and constructed
by regularizing the δ-function convolutions of Eq. (1.1a) and Eq. (1.1c), i.e., R(·)
and E(·) are discretizations of ∫

�
(·)δh(X (ξ , t) − x)dξ and

∫
�
(·)δh(X (ξ , t) − x)dx,

respectively (see also Sect. 1.2.3). The interpolation and regularization operators are
adjoints under the standard inner product such that E = (�x)3R†.

The scheme is second-order accurate and by using a staggered Cartesian grid
conserves momentum and either kinetic energy or circulation, depending on the
discretization for N (u, t), in the limit of vanishing viscosity and time-stepping errors
(Lilly 1965; Morinishi et al. 1998; Perot 2000). Note that the operators G and D can
be formulated such thatG = −D†. Explicit expression for all operators can be found
in Liska and Colonius (2017), Colonius and Taira (2008). For a uniform mesh, the
mass matrix M is a constant multiple of the identity.
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With these definitions, we can write Eq. (1.2) as a system of algebraic equations
as ⎡

⎣A G −R
D 0 0
E 0 0

⎤
⎦
⎡
⎣u

n+1

p
f

⎤
⎦ =

⎡
⎣ rn

0
un+1

�

⎤
⎦+

⎡
⎣bc1bc2

0

⎤
⎦ , (1.7)

where the submatrix A is the result of the implicit velocity treatment. Here, it is
obtained by the implicit trapezoidal rule on the viscous term yielding A = 1

�t M −
1
2 L . The convection term is discretized by the second-order Adams–Bashforth
method, leading to the right-hand side rn = [ 1

�t M − 1
2 L]un + 3

2N (un) − 1
2N (un−1).

The inhomogeneous terms bc1, bc2 depend on the particular boundary conditions,
which are discussed later. Using the above properties of the submatrices, Eq. (1.7)
can be rewritten as

⎡
⎣ A G E†

G† 0 0
E 0 0

⎤
⎦
⎡
⎣u

n+1

p
f̃

⎤
⎦ =

⎡
⎣r

n + bc1
−bc2
un+1

�

⎤
⎦ , (1.8)

where f̃ is the scaled boundary force, which accounts for the scaling factor when
expressing R with E†. The form of Eq. (1.8) is the Karush–Kahn–Tucker (KKT)
system, where (p, f̃ ) is the set of Lagrange multipliers to satisfy a set of kinematic
constraints. These constraints are purely algebraic, and there is no need for the
pressure and boundary force to be distinguished anymore. Thus, we can group the
Lagrangemultipliers and the submatrices asλ = [p, f̃ ] and Q = [G, E†]. The above
system is algebraically identical to traditional discretizations of the NSE and allows
the use of standard solvers. Here, the (projection) fractional step algorithm is applied
to Eq. (1.8), which can be expressed as an approximate LU decomposition of the left
side matrix (Perot 2000), which yields the immersed boundary projection method
(IBPM):

Au∗ = r1, (Solve for intermediate velocity) (1.9)

Q†A‡
j Qλ = Q†u∗ − r2, (Solve modified Poisson equation) (1.10)

un+1 = u∗ − A‡
j Qλ (Projection step), (1.11)

where A‡
j is the j th order Taylor series expansion of A−1 with respect to �t , and

the explicit terms on the right-hand side are denoted by r1 and r2. Note that in
Taira and Colonius (2007), A and Q†A‡

j Q are constructed to be symmetric positive-
definite operators such that the system can be solved efficiently with the conjugate-
gradient method. Thus, the no-slip boundary condition is enforced on the solution
by projecting the intermediate velocity field into the solution space that satisfies both
divergence-free and no-slip constraints.
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The IBPM is found to be second-order in time and first-order accurate in space.1

There is no need for a constitutive relation to compute the boundary force. The
IBPM therefore does not have any stability restrictions associated with the immersed
surface, and the time step restrictions are imposed only by the choice of the marching
scheme.

1.2.2 Nullspace Method for the Immersed Boundary Method

The nullspace or discrete streamfunction approach was originally proposed for solv-
ing Eq. (1.2) without the immersed boundary (Hall 1985; Chang et al. 2002), where
only the incompressibility constraint needs to be satisfied. Using the discrete stream-
function s such that

u = Cs, (1.12)

where the discrete curl operatorC is constructed with column vectors corresponding
to the basis of the nullspace of D. It follows that

DC = 0, (1.13)

which automatically satisfies the incompressibility constraint for all times.
In addition, left-multiplication of the momentum equation with C† removes the

pressure term and thus reduces to a single equation to be solved per time step

C†ACsn+1 = C†(rn1 + bc1). (1.14)

Note that solution of the pressure Poisson equation is not required here and therefore
the most expensive part of the fractional step method is eliminated, while exactly
satisfying the continuity equation. In addition, the errors from the approximate LU
decomposition are eliminated, which is why this scheme is also called the exact
fractional step method (Chang et al. 2002).

Furthermore, a second-order approximation of the circulation is obtained by γ =
C†q.

Especially in two-dimensional problems, where the streamfunction and vorticity
have a single nonzero component, this can lead to a more efficient algorithm, even in
the presence of an IB. For 2D problems, including the immersed boundary formalism
into the nullspace approach leads to the KKT system (Colonius and Taira 2008)

[
C†AC C†E†

EC 0

] [
sn+1

f̃

]
=
[
C†rn1
un+1

�

]
. (1.15)

1Typically, the first-order errors that are associated with the regularization of the delta functions are
limited to a finite region near the surface, and this results in better than first-order accuracy in the
L2 norm.
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The left-hand side matrix is symmetric but in general indefinite, which limits the effi-
ciency for direct solutions. However, with the projection (fractional step) approach,
we obtain

C†ACs∗ = C†Rn
1 (1.16)

EC(C†AC)−1(EC)† f̃ = ECs∗ − un+1
� (1.17)

sn+1 = s∗ − (C†AC)−1(EC)† f̃ . (1.18)

A direct solution of the above system requires a nested iteration to solve the mod-
ified Poisson equation. For stationary bodies, however, one can compute a Cholesky
factorization of EC(C†AC)−1(EC)† once, since the system size scales with the
number of the immersed boundary points. Then, a system of equations of the form
C†ACx = b needs to be solved only once per Lagrangian force.

In Colonius and Taira (2008), it was shown that for a uniform grid with simple
boundary conditions, a similar system to Eq. (1.9) can be solved efficiently using
fast sine transforms. Assuming that the velocity outside the computational domain is
known, simple Dirichlet boundary conditions can be applied to the velocity normal
to the sides of the domain, while Neumann boundary conditions are imposed on the
velocity tangent to the sides.

No-penetration boundary conditions for the normal component of the velocity
and a zero vorticity (or no-stress) condition for the tangent components are natural
boundary conditions for external flows, given a sufficiently large domain. With these
simplifications, one can write the semi-discrete momentum equation as

dγ

dt
= C†E† f̃ = −βC†Cγ + C†N (u) + bc + γ, (1.19)

where Lq = −βCC†u = −βCγ has been used. Here, β = 1/�x2Re is constant.
Under the aforementioned assumptions, the matrix −βC†C corresponds to the stan-
dard discrete Laplace operator with zero Dirichlet boundary conditions for γ . This
discrete Laplacian can be diagonalized by a sine transform, where the sine transform
pair is denoted by

γ̂ = Sγ ↔ γ = Sγ̂ , (1.20)

and (·̂) indicates Fourier coefficients. In addition, we use 
 = SC†CS, where 


is a diagonal matrix with the eigenvalues of C†C , which are positive and known
analytically.

Using the same time-marching scheme as above, the system becomes

S

(
I + β�t

2



)
Sγ ∗ =

(
I − β�t

2
C†C

)
γ n + �t

2

(
3C†N (un) − C†N (un−1)

)
+ �tbcγ ,

(1.21)
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EC

(
S
−1

(
I + β�t

2



)−1
S

)
(EC)† f̃ = ECS
−1Sγ ∗ − un+1

� , (1.22)

γ n+1 = γ ∗ − S

(
I + β�t

2



)−1
S(EC)† f̃ . (1.23)

The velocity un can then be found by

un = Csn + bcu, sn = S
−1Sγ n = bcs, (1.24)

where each of the boundary conditions involve the assumed known values at the
velocity edge.

Note that in the transformed system only one linear system associated with a
symmetric positive-definite operator, Eq. (1.22), needs to be solved. In addition, the
matrix dimensions are now N f × N f , a drastic reduction compared to the original
modified Poisson equation Eq. (1.10). A corresponding order of magnitude speedup
was measured numerically in Colonius and Taira (2008). Further, if the body is
stationary, the modified Poisson equation for the force can be solved efficiently
using a triangular Cholesky decomposition.

To conclude, for a uniform grid and simple boundary conditions it is preferable to
solve Eqs. (1.21)–(1.23). However, for simulations of external flows the simplified
boundary conditions require large computational domains. Since the grid is also
required to be uniform, this constraint quickly outweighs its benefits. However, the
multi-domain approach as proposed in Colonius and Taira (2008) was found to be an
effective solution to approximate the free-space boundary conditions. In Sect. 1.3, an
IB method based on lattice Green’s function is presented, which alleviates the need
of far-field approximation and satisfies the free-space boundaries exactly.

1.2.3 Accurate Calculation of Surface Stresses and Forces

In this section,wewill present a procedure to accurately calculate surface stresses and
forces in the context of IB methods as proposed in Goza et al. (2016). In particular,
we will focus on the set of IB methods that solve for surface stresses by imposing
velocity boundary conditions. This is, for example, the case in the IBPM above, but
in contrast to the original IB method of Peskin (1972), where the surface stresses are
derived from specific constitutive laws. Velocity-based IB methods have been shown
to suffer from inaccurate surface stresses andmay also exhibit spurious oscillations in
time traces, which originate from the ill-posedness of the first-kind integral equation
for the surface stresses. It is important to note that the velocity is typically convergent
in spite of the poor accuracy of the surface stresses. Thus, the following procedure
is important for either post-processing the stress data or when the IB method is used
in conjunction with a structural solver (see Sect. 1.2.4).
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To understand the origin of the spurious oscillations, we consider the Poisson
equation in two dimensions with an unknown singular source term f that takes
nonzero values only on the immersed surface � as a model problem:

∇2ϕ(x) = −
∫

�

f (X(ξ))δ(x − X(ξ))dξ,

ϕ(x) = ϕ∂�(x), x ∈ ∂�,∫

�

ϕ(x)δ(x − X(ξ))dx = ϕ�(X(ξ)).

(1.25)

While numerical solutions of this equation and their errors have been analyzed for
prescribed source terms f (Tornberg and Engquist 2004; Zahedi and Tornberg 2010),
it is explicitly solved for in what follows by incorporating the third equation as
a boundary constraint in order to mimic velocity-based IB method as closely as
possible.

The immersed boundary � is taken to be a circle of radius 1/2 in a unit square and
is centered at x = 0,ϕ∂�(x) = 1 − 1

2 log(2|x|), and ϕ�(X) = 1. The exact solution
to (1.25) is given by

ϕex(x) =
{
1 |x| ≤ 1

2 ,

1 − 1
2 log(2|x|) |x| > 1

2 ,
(1.26)

fex(X) = 1. (1.27)

Similar to the integrated surface force in the context of IB, we also define
Fex = ∫

�
fex(X(ξ))dξ = π . As was done in previous sections, the delta function

is replaced with a smeared delta function, δh(x − X(ξ)), which is continuous with
nonzero but compact support and is defined in terms of the grid spacing �x . The
numerical solution for a given grid spacing approximates

ϕ(x) = −
∫

�

∫

�

f (X(ξ ′))δh(x′ − X(ξ ′))GL(x; x′)dξ ′dx′, (1.28)

where GL(x; x′) denotes the Green’s function of the Poisson problem, and δh indi-
cates the smeared delta function (see also Sect. 1.3 for further details). To obtain
the unknown source term f , Eq. (1.28) is multiplied by δh and integrated over the
domain �:
∫

�

∫

�

∫

�

f (X(ξ ′))δh(x′ − X(ξ ′))GL(x; x′)δh(x − X(ξ))dξ ′dx′dx = −ϕ�(X(ξ)),

(1.29)
and ϕ(x) may be obtain upon substitution f into Eq. (1.28). Note that since δh is
continuous, the kernel in the integral equation Eq. (1.29) is continuous and has finite
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support, which makes the integral operator compact and with a formally unbounded
inverse (Kress 2014). A direct consequence is that discretizations of this equation
lead to inaccurate surface source terms.

Examples of smeared delta functions include

• A 2-point hat function:

δhath (r) =
{

1
�x − |r |

�x2 , |r | ≤ �x

0, |r | > �x
(1.30)

• A 3-point function:

δ3h(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
3�x

(
1 +
√
1 − 3

(
r

�x

)2)
, |r | ≤ �x

2

1
6�x

(
5 − 3|r |

�x −
√
1 − 3

(
1 − |r |

�x

)2)
, �x

2 ≤ |r | ≤ 3�x
2

0, |r | > 3�x
2

(1.31)

• A 4-point cosine function:

δcosh (r) =
{

1
4�x

(
1 + cos

(
πr
2�x

))
, |r | ≤ 2�x

0, |r | > 2�x
(1.32)

• A Gaussian function:

δGh (r) =
{√

π
36�x2 e

−π2r2

36�x2 , |r | ≤ 14�x

0, |r | > 14�x
(1.33)

Discretization of Eq. (1.25) yields

Lϕ = −R f + bL , (1.34)

Eϕ = ϕ�, (1.35)

and combining Eq. (1.34) and Eq.1.35 results in

EL−1R f = −ϕ� + EL−1bL , (1.36)

which is a discretization of the integral equation (1.29).
In Goza et al. (2016), Eq. (1.36) was solved numerically using a finite difference

approximation. In the following, nb and ng are used to denote the number of points
on the immersed body and the computational domain, respectively. In Fig. 1.2, it is
apparent that the source term f does not converge with grid refinement, whereas
the integrated source term F and the solution ϕ do converge at first order to their
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Fig. 1.2 Errors in f̃ , F , and ϕ versus grid spacing (h) for the Poisson problem. ◦: δhath , �: δ3h , �:
δcosh , �: δGh , --: first-order convergence. Reprinted from Goza et al. (2016) with permission

10−3 10−2 10−1
10−4

10−2

100

Δx

EL− 1R( f−fex ∞
EL− 1Rfex ∞

10−3 10−2 10−1

10−1

101

103

Δx

R( f−fex ∞
Rfex ∞

Fig. 1.3 Errors in R f and EL−1R f versus grid spacing (h) for the Poisson model problem. ◦ :δhath ,
�: δ3h ,�: δcosh ,�: δGh , --: first-order convergence. Reprinted fromGoza et al. (2016) with permission

exact solutions. Convergence of F is a consequence of solving Eq. (1.36). This is
in contrast to other velocity-based IB methods, which only approximately enforce
the boundary constraint. Such methods introduce inaccuracies in F (Uhlmann 2005;
Huang and Sung 2009; Zhang andZheng 2007), althoughYang et al. (2009) proposed
improvements.

From Fig. 1.3, it is also apparent that R f does not converge to R fex but EL−1R f
converges to EL−1R fex. Thus using the exact force fex to enforce the boundary
condition, would not produce ϕ� exactly, but rather converge to it at first order (see
also Tornberg and Engquist 2004).

InGoza et al. (2016), the convergence behaviorwas studied further using a singular
value decomposition (SVD) of EL−1 = U�V †.Using this decomposition, R fex may
be written as a projection onto the basis of vectors formed by V :

R fex =
nb∑
j=1

αex
j v j . (1.37)

Similarly, EL−1R fex may be expressed as
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EL−1R fex =
nb∑
j=1

αex
j σ j u j (1.38)

where σ1, . . . , σnb are the singular values, and the left (right) singular vectors are
denoted by u j (v j ) corresponding to σ j . The coefficients are defined as αex

j :=
(vTj R fex).

Analogous expressions can bewritten for R f by replacing fex with f in (1.37) and
(1.38). It was shown in Goza et al. (2016) that the sum

∑nb
j=1 α j does not converge to∑nb

j=1 αex
j under grid refinement, but converges when scaled by the σ j . Since EL−1

is a discrete integral operator, the σ j decay to small values (Hansen 1998) and the
error is thus caused by high-index coefficients α j corresponding to small σ j .

Hence, smeared delta functions with rapidly decaying αex are favorable as spu-
rious high-index coefficients can be filtered out effectively without loss of physical
information. In contrast, delta functions with slow decay may lead to loss of physical
information and thus inaccurate source terms due to inaccurate high-index coeffi-
cients.

An efficient filtering can be achieved by penalizing the spurious components of f .
This can be done by pre-multiplying the source termwith Ê R using a weighted inter-
polant Ê = EW , which interpolates the smeared source term R f onto the immersed
body while preserving its integral value. The filtered source term is then f̂ = Ê R f .

In particular, W can be defined by a diagonal matrix with entries given by

Wii =
{
1/(R1)i , (R1)i = 0

0, else,
(1.39)

where 1 = [1, 1, . . . , 1]T ∈ R
ng×1 and (R1)i is the i th entry in the vector R1. Note

that the weights are only nonzero within the support of the smeared delta function.
The source term is redistributed by the filter Ê R by convolution with a kernel of
smeared delta functions.

The rate of filtering of Ê R is proportional to the smoothness of the smeared delta
function. This is a consequence of Ê R being an integral operator, for which the decay
rate of its singular values is determinedby the smoothness of its kernel (Hansen1998).
Applying this filtering technique yields more accurate source terms f as shown in
Fig. 1.4. Indeed, the infinitely differentiable δGh shows first-order convergence to fex,
whereas the slow decay of the coefficients α j hinders convergence for δhath , δ3h , and
δcosh . Finally, it is worth mentioning that filtering does not affect F by construction
of Ê R, and the solution ϕ is also unchanged since filtering is a post-processing step.

The extension of this filtering technique to the Navier–Stokes equation is straight-
forward. In particular, multiplication by the smeared delta and integration over the
domain yields:
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Fig. 1.4 Errors in f̂ , F , and ϕ versus grid spacing (h) for the Poisson problem. ◦: δhath , �: δ3h ,
�: δcosh , �: δGh , --: first-order convergence. Reprinted from Goza et al. (2016) with permission

∫

�

∫

�

f(X(ξ ′, t))δh(x − X(ξ , t))δh(x − X(ξ ′, t))dξ ′dx

=
∫

�

[(
∂

∂t
− 1

Re
∇2

)
u(x) + u · ∇u + ∇ p

]
δh(x − X(ξ , t))dx

(1.40)

Analogous to the example above, the integral operator ofEq.1.40has anunbounded
inverse because it contains a continuous kernel for any �x . Hence, the same logic
applies as above, and filtering is required to obtain accurate results. In the next
section, this filtering approach is used for fully coupled fluid–structure interaction
simulations.

1.2.4 Strongly Coupled Fluid–Structure Interaction

In this section, we present the extension of the IBPM to a strongly coupled fluid–
structure interaction (FSI) solver for thin elastic structures (Goza andColonius 2017).

In general, for FSI simulations, one can distinguish between monolithic and par-
titioned methods. In the monolithic approach, the fluid and structural equations are
described with one system of equations using the same discretization scheme, which
is solved by a single solver. By construction, consistent fluid–structure interface
conditions are imposed in monolithic solvers. On the other hand, the partitioned
approach uses individual solvers for the fluid and the structural equations, which
are then coupled via appropriate boundary conditions to satisfy the solid–fluid inter-
face conditions. This is a modular approach, which enjoys popularity for industrial as
well as academic applications since separately optimized solvers for the fluid and the
solid domain can be utilized. On the other hand, the main challenge of partitioned
approaches is that the solid–fluid interface conditions are not implicitly satisfied.
Hence, within the context of partitioned approaches, there is yet another distinction
regarding the coupling methodology, namely between weakly and strongly coupled
FSI schemes. While weakly coupled methods do not enforce the (nonlinear) fluid–
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solid interface constraints at each time step, strongly coupled methods do converge
to the monolithic equations using subiterative schemes.

On the one hand, this makes strongly coupled methods computationally more
expensive. On the other hand, the staggered nature of weakly coupled schemesmakes
them susceptible to the so-called added-mass effect, where spurious energy is gen-
erated at the solid–fluid interface (Piperno and Farhat 2001). In particular for small
solid–fluid density ratios, this can lead to fatal instabilities (Causin et al. 2005; Boraz-
jani et al. 2008; Le Tallec 2001; Förster et al. 2007; Li and Favier 2017). For that
reason we restrict ourselves to strongly coupled methods.

To impose the nonlinear interface constraint, most strongly coupled methods
require the solution of a large nonlinear system. The block Gauss–Seidel method is
a commonly used iterative procedure for solving the nonlinear system of equations,
though it requires a relaxation parameter (often chosen heuristically) and typically
converges slowly for small structural densities. Another common nonlinear solver is
the Newton–Raphson method, which removes the relaxation parameter and typically
converges rapidly even for small density ratios. However, this approach involves lin-
ear systems with large Jacobian matrices that cannot be solved directly, necessitating
the use of large matrix-vector products in the context of some iterative solution pro-
cess (Degroote et al. 2009; Mori and Peskin 2008; Hou et al. 2012). Among others,
these strategies are reviewed in Sotiropoulos and Yang (2014).

In the following, we focus on thin elastic structures and solve the nonlinear alge-
braic system using the Newton–Raphson method. However, we avoid the need to
solve a large linear system (without introducing any additional approximation into
the solution process) by employing a block-LU factorization of the linearized system
(Goza and Colonius 2017). The fluid part of the system is treated with the IBPM as
outlined above.

For the coupled fluid–structure problem, the governing equations in Eq. (1.1) are
extended by the structural equation as

∂u
∂t

+ u · ∇u = −∇ p + 1

Re
∇2u +

∫

�(t)

f �(X(ξ , t), t)δ(X(ξ , t) − x)dξ , (1.41a)

∇ · u = 0, (1.41b)

ρs

ρ f

∂2X(ξ , t)

∂t2
= 1

ρ f U 2∞
∇ · σ + g(X) − f �(X), (1.41c)

∫

�

u(x)δ(x − X(ξ , t))dx = u�(ξ , t) = ∂X(ξ , t)

∂t
, (1.41d)

where the solid and fluid density are denoted by ρs and ρ f , respectively. The Cauchy
stress is denoted by σ , g is a body force, and the characteristic velocity is U∞. The
time derivative in the above is understood to be Lagrangian and the Cauchy stress is
related to the second Piola–Kirchhoff stress Ss by
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Ss = J F−1σ sF−T , (1.42)

where J = det(F) and F denotes the deformation gradient

F = I + ∇us, (1.43)

and us is the displacement field of the solid. The second Piola–Kirchhoff stress is
here defined as

Ss = C : E (1.44)

where

E = 1

2
(FT F − I) = 1

2
(∇us + ∇uT

s + ∇uT
s ∇us) (1.45)

is the Green–Lagrangian strain tensor and the stiffness tensorC is related to Young’s
modulus Es , the bulk shear modulus, and Poisson’s ratio νs .

The governing equations for the fluid region are discretized as above, and the
solid equations can be discretized using a standard finite element procedure for thin
elastic beams in a co-rotational formulation (see Goza and Colonius 2017; De Borst
et al. 2012 for details), yielding the semi-discrete equation for the solid:

Ms Ẍ + Ks(X) = Fs(g + Ws(X) f ), (1.46)

where the mass matrix Ms , the stiffness matrix Ks , and load Fs are given by

Ms = ρs

ρ f

Nel∑
j

∫

�0
j

B†BdX0, Ks(X) = 1

ρ f U 2∞

Nel∑
j

∫

�0
j

B†
EσsdX0 (1.47)

Fs =
Nel∑
j

∫

�0
j

B†BdX0 = ρ f

ρs
Ms . (1.48)

Here, the j th element of � in the undeformed domain is indicated by �0
j and the

shape functionmatrix as well as their derivatives are given by B and BE , respectively.
This formulation is expressed in the co-rotational frame and therefore accounts for
geometrical nonlinearity and assumes small strains (large strains can be incorporated
into Ks without affecting the algorithm). For further details, we refer to standard finite
element textbooks (De Borst et al. 2012; Bathe 1996).

Using the discretizations above, the fully coupled FSI equations can be written as
a first-order system of differential-algebraic equation as
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C†Cṡ = −N (u) + C†LCs − C†E† f̃ , (1.49)

Msu̇� = −Ks(X) + Fs(g + W f (X) f̃ ), (1.50)

Ẋ = u�, (1.51)

ECs − uγ = 0. (1.52)

An Adams–Bashforth and Crank–Nicolson time-marching scheme is applied for
the nonlinear term and the diffusive term, respectively, for Eq. (1.49) and an implicit
Newmark scheme is used for Eqs. (1.50)–(1.51). Equation (1.52) is evaluated at the
current time step. This yields the following nonlinear system of algebraic equations:

C†ACsn+1 + C†E† f̃ n+1 = rnf , (1.53)

4

�t2
MsX

n+1 + Ks(X
n+1) − FsW

n+1 f̃ n+1 = rnu�
, (1.54)

2

�t
Xn+1 − un+1

� = rnX , (1.55)

ECsn+1 − un+1
� = 0, (1.56)

where A = 1
�t I − 1

2 L , r f
n = ( 1

�t C
TC + 1

2C
T LC)sn + 3

2C
T N (Csn) − 1

2C
T

N (Csn−1), rnu�
= M( 4

�t2 X
n + 4

�t u� + u̇n�) + Qg, and r Xn = u� + 2
�t X

n .
To solve the nonlinear system, an iterative procedure is applied and the solution

at time step n is used to initialize the iterative procedure at k = 0. During the kth
iteration, the variables are updated as Xn+1

k+1 = Xn+1
k+1 + �X and un+1

�,k+1 = un+1
�,k + �u� ,

which yields the following system:

⎡
⎢⎢⎣
CT AC 0 0 CT E†

0 0 4
�t2 M + Kk −FsW

n+1
k

0 −I 2
�t I 0

EC −I 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
sn+1

�u�

�X
f̃ n+1
k+1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

r f
n + O(�t)

rnu�
− 4

�t2 MXn+1
k − Ks(X

n+1
k ) + O(�t)

r Xn − 2
�t X

n+1
k + un+1

�,k

un+1
�,k + O(�t)

⎤
⎥⎥⎦ :=

⎡
⎢⎢⎣

r f
n

ru�,k

rX,k

rc,k

⎤
⎥⎥⎦ , (1.57)

where Kk = dKs/dX |X=Xn+1
k

. For flags, the stiffness matrix has well known analyt-
ical expressions (De Borst et al. 2012; Bathe 1996). The linear system Eq.(1.57) can
be factored using a block-LU decomposition, which yields
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s∗ = (CT AC)−1r f
n (1.58)[

Bn+1
k I

− 2
�t FsW

n+1
k K̂k

] [
f̃ n+1
k+1

�u�

]
=
[
ECs∗ − rc,k
2

�t ru�,k − rX,k

]
(1.59)

�X = �t

2
(�u� + rX,k) (1.60)

sn+1 = s∗ − (CT AC)−1CT E† f̃ n+1, (1.61)

where K̂k := 4
�t2 Ms + Kk and Bn+1

k := EC(C†AC)−1CT E†. The LU-factorized
equations (1.58)–(1.61) are analogous to the previous factorizations but now include
the fully coupled FSI scheme. Note that Eq. (1.58) does not depend on variables at
time n + 1 and thus must only be solved once per time step. Moreover, sn+1 is only
updated after Eqs. (1.59)–(1.60) have converged in the iterative process. Hence, the
iterations are restricted to Eqs. (1.59)–(1.60) which have dimensions of the order of
number of body points rather then the entire flow domain.

The Poisson-like problems arising from Eq. (1.58), Eq. (1.61) and from each
matrix-vector multiply with Bn+1

(k) can be solved efficiently with fast Fourier trans-
forms (FFT). In Goza and Colonius (2017), it was also argued that since the floating
point operations of the FFT scale with the number points in the flow domain, it may
be favorable to compute and store (K̂k)

−1. In that case, an analytical block Gaussian
elimination of Eq. (1.59) may be performed to arrive at

(
Bn+1
k + 2

�t
(K̂k)

−1FsW
n+1
k

)
f̃ n+1
(k+1) = ECs∗ − rc,k − 2

�t
(K̂k)

−1ru�,k + rX,k

(1.62)

�u� = 2

�t
(K̂k)

−1(ru�,k + FsW
n+1
k f̃ n+1

k ) − rX,k (1.63)

Equation (1.62) can then be solved with a BICGSTAB scheme, which typically
converges in a few iterations. In Goza and Colonius (2017), it was also shown that
this iteration procedure typically converges in a few iterations and does not rely on
heuristic relaxation parameters as for Gauss–Seidel-based approaches.

1.2.5 Example: The Inverted Flag Problem

Flow past a flag that is clamped at its leading edge is a canonical problem (Taneda
1968) and serves as an important benchmark problem for the development of numer-
ical schemes (see Shelley and Zhang 2011 for a review). By contrast, when the flag
is inverted, i.e., the trailing edge is clamped, only a few studies can be found in the
literature (Kim et al. 2013; Gurugubelli and Jaiman 2015; Ryu et al. 2015). This con-
figuration, however, is of interest due to its rich dynamical behavior, which includes
small-deflection flapping, large-amplitude flapping, and chaotic flapping. From a
numerical perspective, this setup is particular challenging as these regimes span a
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large range of solid–fluid density ratios and exhibit large deformations that require a
strongly coupled FSI solver. In Goza et al. (2018), this setup was investigated using
the approach described in the previous sections. In addition to validating the numer-
ics, these studies show that the IB method can be readily adapted for use in stability
and bifurcation analysis. A steady-state solver employing a Newton–Raphson itera-
tion was used to determine (potentially unstable) equilibria of the full fluid–structure
system, and linearizations of the discretized equations lead to large, sparse systems
of algebraic equations whose stability properties were efficiently determined using
Arnoldi methods.

For the inverted flag, there are three independent non-dimensional parameters that
govern the system. These are the Reynolds number Re = U∞L

νs
, the mass ratio Mρ =

ρs h
ρ f L

, and the bending stiffness KB = D
ρ f U 2∞L3 , where ρ f (ρs) is the fluid (structure)

density, U∞ is the free-stream velocity, L is the flag length, h is the flag thickness,
and the flexural rigidity is given by D = Eh3/(12(1 − ν2)) with Young’s modulus
E . In what follows, we consider the case of Re = 200 and Mρ = 0.05 and present
the effect of decreasing the flag’s stiffness KB . More configurations and thorough
analysis can be found in Goza et al. (2018).

With decreasing KB , the flag undergoes a transition from the undeformed equi-
librium (I) regime to the deformed equilibrium (II) through a divergence instability.
With decreasing stiffness, the deformed equilibrium is associated with an increas-
ingly large tip deflection and transitions from stable to unstable regimes. In particular,
the small-deflection flapping regime (III) is reached by a supercritical Hopf bifurca-
tion of the deformed equilibrium state. Decreasing the flag’s stiffness further leads
to large-amplitude flapping (IV, see also Fig. 1.5), which can be associated to clas-
sical vortex-induced vibration for the small density ratios as presented here. This
is in contrast to heavier flags, for which large-amplitude flapping is not a classical
vortex-induced vibration. For a stiffness of KB = 0.32, snapshots of one flapping
period are shown in Fig. 1.5 by means of vorticity contours.

Fig. 1.5 Vorticity contours at four snapshots of aflappingperiodof aflag in large-amplitudeflapping
for Mρ = 0.05. The Reynolds number and flag flexibility were chosen as Re = 200, KB = 0.32.
Contours are in 18 increments from −5 to 5. Reprinted from Goza et al. (2018) with permission
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Fig. 1.6 Bifurcation
diagram of inverted flag
dynamics at Re = 200,
showing tip deflection δti p as
a function of inverse stiffness
(1/KB ). Regimes are
denoted as I: undeformed
equilibrium, II: deformed
equilibrium, III:
small-deflection deformed
flapping, IV: large-amplitude
flapping, V: chaotic flapping,
VI: deflected mode.
Reprinted from Goza et al.
(2018) with permission

With decreasing stiffness, the system transitions to the chaotic flapping regime
(V), and finally to the deflected mode regime (VI), where oscillations are primarily
driven by vortex shedding. The chaotic regime is characterized by a strange attractor
that alternatively samples regimes IV and VI.

These phenomena are summarized in the bifurcation diagram in Fig. 1.6 as
obtained through nonlinear simulations. The simulations were started with an unde-
flected flag and an impulsively started flow at free-stream velocity U∞. During the
initial transient, a small body force was used to trigger any instabilities in the system.
All simulations were run for at least 15 flapping cycles except for the chaotic state
which requires 55 cycles. The first several cycles were neglected to avoid accounting
for initial conditions. In Fig. 1.6, a set of markers at a given stiffness represents the
tip deflection values δtip from a single nonlinear simulation when the flag changes
direction. That is, the markers correspond to the zero-tip-velocity Poincaré sections
of a velocity–displacement phase portrait of the leading edge. In addition, solid and
dashed lines represent stable and unstable equilibria, respectively.

1.3 Fast Lattice Green’s Function for External Flows

In this section, the immersed boundary lattice Green’s function (IBLGF) method as
proposed in Liska and Colonius (2017) is presented. The IBLGF is based on the
unbounded domain lattice Green’s function (LGF) flow solver (Liska and Colonius
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2016) and the distributed Lagrange multiplier method to impose the no-slip bound-
ary condition. The governing Navier–Stokes equations are spatially discretized on
an unbounded staggered Cartesian grid, which retains crucial conservative, com-
mutative, orthogonality, and symmetry properties of standard staggered Cartesian
discretizations of infinite domains.

The advantage, however, is the use of the lattice Green’s function technique,
which implicitly satisfies the natural free-space boundary condition and allows block-
adaptive grids to restrict the computation to a finite region (set of grid points) where
the vorticity is nonzero (exceeds a small threshold). This is in contrast to common
IB methods, which employ spatially truncated domains with approximate free-space
boundaries. These approximations introduce blockage errors, which affect accuracy
and may even change the dynamics of the flow (Tsynkov 1998; Colonius 2004;
Pradeep and Hussain 2004). Thus, large computational domains in combination with
stretched grids (Taira and Colonius 2007; Yun et al. 2006; Wang and Zhang 2011),
local refinement (Roma et al. 1999; Griffith et al. 2007), and far-field approximations
(Colonius and Taira 2008) are required to limit influence of the approximate free-
space boundary condition (see alsoSect. 1.2). In contrast, due to the natural free-space
boundary inherent to IBLGF, an adaptive domain snugly conforming to regions of
non-negligible vorticity and free of free-space boundary errors may be used for
IBLGF.

By using a viscous integrating factor half-explicit Runge–Kutta scheme (IF-
HERKS) in combination with an approximation-free nested projection technique
and exploiting the aforementioned algebraic properties of the discrete operators,
the projection steps reduce to simple discrete elliptic problems. These can in turn
be solved efficiently using parallel lattice Green’s function fast multipole methods
(LGF-FMM) (Liska and Colonius 2014).

The operators satisfy the following topological and mimetic properties:

Symmetry D̄ = −G†, Ḡ = −D†, C̄ = C† (1.64)

Orthogonality Null(C) = Im(G),Null(D) = Im(G) (1.65)

Mimetic LC = −G†G, LF = −GG†, LE = −D†D, LV = −DD† (1.66)

Commutativity LFG = GLC (1.67)

1.3.1 Time Integration

In incompressible flow solvers, it is typical to use split time-stepping schemes where
the viscous terms are advanced with an implicit method (alleviating any viscous
time step constraint), whereas the advective terms are advanced with an explicit
method which, despite introducing a CFL constraint on the time step, avoids iterative
solution of nonlinear equations. A variety of specialized splitting methods have been
employed, typically achieving second-order temporal accuracy. These schemes must
also be cognizant of the kinematic constraints, which in general include enforcing a
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divergence-free velocity field but in the case of IBmethods, also include enforcing the
no-slip condition. In other words, the spatially discretized incompressible Navier–
Stokes equations comprise a discrete algebraic equation of index 2 (DAE-i2). The
CN-AB2 scheme used in the previous sections is a particularly common choice for
tackling such systems.

In theLGFapproach, there is an opportunity to improve the time-marching scheme
because the viscous terms can be integrated exactly using an integrating factor, which
in turn can be done efficiently using anLGF.Once this is done, the time stepper for the
remaining DAE system need no longer be split, meaning that explicit Runge–Kutta
methods for DAE systems suffice, which in turn enables a wide variety of tailored
schemes (low dissipation, low memory, etc.) to be employed. In particular, a family
of half-explicit Runge–Kutta (HERK) methods are derived in Liska and Colonius
(2016). Note that the “half-explicit” terminology refers to the solution of ODEs and
algebraic constraints—not to any viscous/inviscid splitting.

The discrete integrating factor EQ(t) is the solution of the discrete heat equa-
tion dh

dt = κLQh. Hence, for a given u at time τ and the integrating factor HQ =
EQ

(
t−τ

(�x)2Re

)
, Eq.(1.2) for t > τ is given by

dv

dt
+ [HF (t)]Ñ ([H−1

F (t)]v, t) = −Gb − [HF (t)][E(t)]† f̃ , (1.68a)

G†v = 0, (1.68b)

[E][H−1
F (t)]v = u, (1.68c)

where v = [HF (t)]u and b = [HC(t)]p. The above system constitutes a DAE-i2
that can be solved efficiently using an s-stage HERK scheme. The s-stages of the
HERK are defined using the superscript i and time tk = k�t with the time step �t
in indicated by subscript k. We now group the Lagrange multipliers, the right-hand
side and the operators together such that

λi
k =
[
pik
f̃ ik

]
, ζ i

k =
[

0
u(t ik)

]
, Qi = [G [E(t ik)]†

]
,∀i ∈ [1, s] (1.69)

and we introduce the following:

uik(n) =
[
EF

( −c̄�t

(�x)2Re

)]
vik(n), pik(n) =

[
EF

( −c̄�t

(�x)2Re

)]
bik(n). (1.70)

The kth time step of the IF-HERK(uk , tk) schemewith the shifted coefficients ãi, j and
the shifted nodes c̃i (Liska and Colonius 2016; Hairer et al. 2006) can be summarized
as follows:

1. Initialize: Set u0k = uk , t0k = tk
2. Multi-stage: for i = 1, 2, · · · , s solve the linear system:
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[
(Hi

F )−1 Qi−1
k

(Qi
k)

† 0

] [
uik
λi
k

]
=
[
r ik
ζ i
k ,

]
(1.71)

where

Hi
F = EF

(
(c̃i − c̃i−1)�t

(�x)2Re

)
, r ik = hik + �t

i−1∑
j=1

ãi, jw
i, j
k + gik (1.72)

gik = −ai,i�t Ñ (ui−1
k , t i−1

k ) t ik = tk + +c̃i�t. (1.73)

The variables hik and w
ki, j
k are recursively computed for i > 1 and j > i using

hik = Hi−1
F hi−1

k , h1k = 0 (1.74)

w
i, j
k = Hi−1

F w
i−1, j
k , w

i,i
k = (ãi,i�t)−1

(
Qi−1

k λ̂i
k

)
(1.75)

3. Finalize: Set uk+1 = usk , λk+1 = (ãs,s�t)−1λ̂s
k and tk+1 = t sk .

1.3.2 Linear Solver

The solution of Eq. (1.71) dominates the computational costs and is efficiently solved
using the exact projection technique. Note that in contrast to 2D discrete nullspace
(discrete streamfunction)methods (see, Sect. 1.2), the following formulation does not
express the discrete velocity–pressure equations as discrete streamfunction–vorticity
equations. In three dimensions, the resulting discrete Poisson problems are scalar
problems in the case of the velocity–pressure formulation but vector problems in
the case of streamfunction–vorticity formulation. Equation (1.71) can be rewritten
in terms of pik and f̃ ik

Mi
k

⎡
⎣u

i
k
p̂ik
f̃ ik

⎤
⎦ =

⎡
⎣(Hi

F )−1 G (Ei−1
k )†

G† 0 0
Ei
k 0 0

⎤
⎦
⎡
⎣u

i
k
p̂ik
f̃ ik

⎤
⎦ =

⎡
⎣r

i
k
0
uik

⎤
⎦ , (1.76)

where p̂ik/p
i
k = f̂ ik / f̃

i
k = ãs,s , uik = u(t ik), and Ei

k = E(t ik). Note that M
i
k is in gen-

eral not symmetric and cannot be symmetrized as the image of the regularization
operator and the interpolation operator are different. The asymmetry is inherent
to HERK integration of DAE systems of index 2 with time-dependent constraint
operators (Hairer et al. 2006; Brasey and Hairer 1993). Note, however, Mi

k retains
symmetry for flow past non-moving rigid bodies. The nested projection technique
for Eq. (1.76), obtained from an operator–block-LU decomposition of Mi

k can be
written in projection-like form
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Solve for intermediate velocity: (Hi
F )−1u∗ = r ik (1.77a)

Solve for intermediate pressure: G†HFGd∗ = G†u∗ (1.77b)

Solve for intermediate IB forces: Sik f
∗ = Ei

k[u∗ − Hi
FGd∗] − uik (1.77c)

Update forces: f̂ ik = f ∗ (1.77d)

Correct pressure: p̂ik = p∗ − (G†Hi
FG)−1G†Hi

F (Ei−1
k )† f̂ ik

(1.77e)

Correct velocity: uik = u∗ − Hi
F [G p̂ik + (Ei−1

k )† f̂ ik ] (1.77f)

where the force Schur complement of the LU decomposition of Eq. (1.76) Sik is given
by

Sik = Ei
k H

i
F [I − G(G†Hi

FG)−1G†Hi
F ](Ei−1

k )†, (1.78)

where the identity operator is indicated by I. By exploiting themimetic, orthogonality
and commutativity properties, the above can be rewritten in a computationally more
convenient way such as

LC p
∗ = −G†r ik (1.79a)

Sik f̂
i
k = Ei

k H
i
C[r ik − G† p∗] − uik (1.79b)

p̂ik = p∗ + L−1
C G†(Ei−1

k )† f̂ ik (1.79c)

uik = Hi
F [r ik − G p̂ik − (Ei−1

k )† f̂ ik ], (1.79d)

where the Schur complement simplifies to

Sik = Ei
k[Hi

F + G(Hi
C)−1LCG

†](Ei−1
k )†. (1.80)

Note that with the exception of f̂ ik , every term can efficiently be computed with
either the point-operator representation of discrete operators or the Lattice Green’s
function fast multipole method (LGF-FMM), which will be outlined in some detail
in the next section.

With regards to the solving the force Schur complement (1.79b), there exits either
the possibility to use dense linear algebra techniques or iterative methods. In case of
iterativemethods, the conjugate gradient is a suitable candidate for a symmetric Schur
complement, implying rigid and stationary immersed boundaries or more generally,
formoving or deforming geometries, Krylov solvers such asGMRESorBiCGSTAB.
Note that for the rigid and non-moving case, the dense linear algebra route is more
convenient since the construction of Sik needs to be done only once and a Cholesky
decomposition can be stored and used to evaluate the forces.
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1.3.3 Lattice Green’s Function Method

In this section, we focus on how to efficiently solve elliptic difference equations
with the lattice Green’s function method (Liska and Colonius 2014) in unbounded
domains as they occur in the IBLGFmethod. The solutionmay be obtained by convo-
lution of the fundamental solution of the discrete operator (lattice Green’s function)
with the source terms of the equation. The LGF can be derived from Fourier integrals
and approximated through its through its asymptotic expansion. A significant advan-
tage of the FLGF method is that the formally unbounded meshes may be truncated
such that only regions with non-negligible source are retained in the computational
domain, yielding an adaptive block-structured mesh as shown exemplary in Fig. 1.9.

In what follows, the three-dimensional Poisson equation will serve as a model
equation, which is defined as:

[�ϕ](x) = h(x), supp(h) ⊆ �, (1.81)

where x ∈ R
3 and � denotes a bounded domain in R

3. The target field ϕ can be
obtained by convolution of the fundamental solution of theLaplace operatorGL (x) =
−1/(4π |x|) with the source field h(x) such that

ϕ(x) = [GL ∗ h](x) =
∫

�

GL(x − ξ)h(ξ)dξ . (1.82)

In the discrete setting, Eq. (1.81) can be expressed as

[LQϕ](xi ) = h(xi ), supp(h) ⊆ �h, (1.83)

where ϕ, h ∈ R
Q, xi ∈ Z

3, and �h is a bounded domain in Z
3. The target can then

be obtained by discrete convolution such that

ϕ(xi ) = [GL ∗ h](xi ) =
∑
x j∈�h

GL(xi − x j )h(xi ), (1.84)

where GL indicates the LGF of the discrete 7-pt Laplacian. By diagonalizing the
Laplace operator LQ in Fourier space, an expression for GL(xi ) can be derived (see,
e.g., Delves and Joyce 2001; Glasser and Zucker 1977), yielding

GL(xi ) = 1

8π3

∫

[−π,π]3

exp (−ixiξ)

2cos(ξ1) + 2cos(ξ2) + 2cos(ξ3) − 6
dξ . (1.85)

In addition, Eq.(1.85) can equivalently be written as a one dimensional, semi-infinite
integral as
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GL(xi ) = −
∞∫

0

exp(−6t)Ix1(2t)Ix2(2t)Ix3(2t)dt, (1.86)

where Ik(t) is the modified Bessel function of first kind and order k. Note that
Eq.(1.86) can be evaluated using an adaptive Gauss–Kronrod quadrature or alike in
a straightforward manner, but it is typically more efficient to evaluate the Green’s
function through its asymptotic expansion in the far-field, i.e., large |xi |. In particular,
the target field ϕ can be written as

ϕ(xi ) = ϕnear(xi ) + ϕfar(xi ) + ε(xi ), (1.87)

where

ϕnear(xi ) =
∑

x j∈�near
h (xi )

GL(xi − x j )h(x j ) (1.88)

ϕfar(xi ) =
∑

x j∈�h\�near
h (xi )

Aq
G(xi − x j )h(x j ), (1.89)

and �near
h , ε(xi ) are the near field and the error due to approximating GL(xi ) with

Aq
G(xi ) in the far-field, respectively. The q-term asymptotic expansion of GL(xi ) is

defined such that GL(xi ) = Aq
G(xi ) + O(|xi |−2q−1) and for q = 2 it reads

A2
G(x) = − 1

4π |x| − x41 + x42 + x43 − 3x21 x
2
2 − 3x21 x

2
3 − 3x22 x

2
3

16π |x|7 . (1.90)

In practice, the results from direct integration of Eq.(1.86) are tabulated for the near-
field (|xi | ≤ 100), and the asymptotic expansionwith q = 3 and q = 2 can be used in
the far-fields for 100 < |xi | ≤ 600 and |xi | > 600, respectively. This ensures an error
bound of the asymptotic expansion compared to the direct integration of |ε| < 10−12.

1.3.3.1 Fast Convolutions

The direct evaluation of Eq.(1.84) requires O(N 2) amount of work for N degrees
of freedom and is therefore prohibitive for large computational domains. A remedy
is the fast multipole method (FMM), which reduces the computational complexity
from O(N 2) to O(N ). In particular, the FLGF method (Liska and Colonius 2014)
uses a kernel-independent interpolation-based fast multipole method to compute the
discrete convolutions in conjunction with block-wise FFT convolution. The FMM
achieves linear complexity O(N ) by leveraging the fact that, the solution is much
smoother in the far-field than in the near-field for an elliptic kernel. Thus, a low-
rank representation of the kernel is sufficient to accurately compute the contribution
of far-field, while only the near-field requires full-rank representation of the kernel.
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Using the generic interpolation function φ(x) and the coarse grained sampling points
x0, ..., xn−1, a low-rank approximation of the kernel K (x, y) may be obtained by

K̃ (x, y) =
n−1∑
i=0

n−1∑
j=0

φ(x)K (xi , yi )φ( y). (1.91)

The discrete convolution can then be approximated by

ϕ(xi ) ≈
M−1∑
j=0

K̃ (xi , y j )h( y j ) =
M−1∑
j=0

n−1∑
p=0

n−1∑
q=0

φ(xi )K (x p, yq )φ( y j )h( y j ) i = 0, ..., N − 1,

(1.92)

where N is the number of target points and M the number of source points. The
near- and far-field contributions are accounted for by constructing a hierarchical
decomposition of the domain for which Eq.(1.92) is evaluated recursively. Typically,
an octree structure T (quadtree in two dimensions) is used for this purpose. Let the
tree have a depth LB and the root is assumed to have level 0 and the base level LB − 1
corresponds to physical domain. The tree nodes are also referred to as octants and
octants without children are leaf nodes. The set of leafs on level l is indicated by
Bl
Leafs. In the context of the FLGF, each tree node corresponds to a region, which is

defined to be a Cartesian block of Nb = n3b cells. Further, the i th octant or block at

level l is denoted by Bl
i and the set of all octants at level l by Bl =⋃Nl

B
i=0 Bl

i , where
Nl

B is the number of octants on level l. The set of children and the parents are denoted
by C(Bl

i ) and P(Bl
i ), respectively.

The target field uLB−1
i , defined on the octant BLB−1

i , consist of both near- and far-
field contributions. The near-field contribution is given by the interaction, i.e., con-
volution, with regionN(BLB−1

i ), containing the octant itself and the nearest neighbor
octants on the finest tree level LB − 1. The far-field contributions are then evaluated
recursively for the levels l = LB − 1, . . . , 0 and are defined as the convolution with
octants in the influence regionI(Bl

i ) = {B̂l
i ∈ F (Bl

i ) \ F (Bl−1
i )}, which includes the

well-separated octants, i.e., F (Bl
i ) =⋃LB−1

l=0 Bl \ N(Bl
i ), but excludes the regions

well-separated from its parentsF (P(Bl
i )). Schematically, the domain decomposition

in near and far-field regions is depicted in Fig. 1.7.
In the FLGF method, the octants are defined to be Cartesian blocks and the con-

volution between each block and its influence list can be computed by block-wise
FFT-based convolutions, which reduces to a complex Hadamard product in Fourier
space (see Liska and Colonius 2014, for details on FFT-based convolutions). Note
that compared to a direct summation as in Eq.(1.84), the computational complexity
is reduced from O(N 2

b ) to O(Nb log Nb) for each block convolution.
It should be clear from the above that given a union of source blocks

Bs =⋃Ns−1
i=0 Bs,i and target blocks Bt =⋃Nt−1

i=0 Bt,i the convolution can be eval-
uated as the sum of the individual convolutions as



30 B. Dorschner and T. Colonius

= + +

Fig. 1.7 Schematic of the hierarchical domain composition of the far-field (red, left) for an octant
BLB−1
i (blue, left). While the near-field consist of the nearest neighbors only, the far-field is com-

posed out of the set of influence lists for all levels. For level l the influence list contains the children
of the nearest neighbors of Bl

i ’s parent, which are not contained in the near-field, i.e., are well
separated. Reprinted from (Dorschner et al. 2020) with permission

ϕi =
∑
j∈Bs

conv(GL
i− j , f j ), for i = 0, ..., Nt − 1, (1.93)

where the convolution operator is denoted as conv and GL
i− j is the vector containing

the unique values ofGL(xi − x j ) evaluated on the grid points x j and xi of the blocks
Bt, j and Bs,i , respectively.

With these definitions and the corresponding tree structure, the evaluation of
Eq.(1.92) can be split into three consecutive steps. The first step is the upward pass,
where the effective source terms are computed on each level by iterating bottom-
up through the tree. Second, for each level, the convolution of each octant with
its influence region is computed. This is called the level interaction. Finally, in the
downward pass (iterating from the root to the leafs), all contributions are interpolated
and accumulated on the next level. Schematically, the FLGF method is shown in
Fig. 1.8 and can be summarized by the following algorithm:

1. Upward pass: Compute effective source terms at interpolation nodes
For l = LB − 2, ..., 0 : For i = 0, ...Nl

B

Fig. 1.8 Schematic of the fast multipole method: Left: Upward pass—Source regularization .
Middle: Level interaction—Convolution of a block (blue) with its influence list (red). Right:Down-
ward pass—Compute and accumulate the induced fields at the interpolation nodes. Note that each
FMM cell corresponds to a Cartesian block in the FLGF. Reprinted from (Dorschner et al. 2020)
with permission
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ĥli =
∑

j∈C(Bl
i )

R̂l+1ĥ j , (1.94)

where the regularization operator R̂l+1 is the adjoint of the interpolation operator
Ê l+1(see below).

2. Level Interaction: FFT convolution with the octant in the influence region
For l = 0, ..., LB − 1 : For i = 0, ...Nl

B

v̂li =
∑

j∈I(Bl
i )

conv(GL
i− j , f j ), (1.95)

where conv(·) is the FFT convolution operator.
3. Downward pass: Compute and accumulate induced field at interpolation nodes

For l = 0, ..., LB − 1 : For i = 0, ...Nl
B

ϕ̂l
i = v̂li + Ê l−1

i ϕ̂l−1
i , (1.96)

where the interpolation operator Ê l interpolates from the parent onto the child
block.

Owing to the regularity of the Cartesian block mesh, the interpolation operators
are implemented using Lagrangian polynomials, and nI ≤ 10 interpolation nodes
are used to yield a relative interpolation error of ε ≈ 10−12 for an analytic function
approximation. The regularization operator is given by the adjoint of the interpolation
operator and often called anterpolation. In summary, the FLGFmethod combines the
fastest methods for regular meshes, while retaining the geometrical flexibility and
overall linear complexity inherent to FMM. Excellent computational rates and par-
allel performance have been reported in Liska and Colonius (2014) and (Dorschner
et al. 2020).

1.3.3.2 Domain Adaptivity

As mentioned previously, the LGF method may truncate the formally unbounded
computationally domain to regions with non-negligible source. When the LGF is
employed in the context of the IBLGF this translates to solving the NSE only in
regions that are dictated by the flow evolution and cells which, up to a prescribed
threshold, do not affect the flow evolution may be removed in the course of a simula-
tion. This is a direct consequence of the vorticity,ω = ∇ × u, decaying exponentially
at large distances form the immersed body. For instance, considering the solution of
Eq. (1.79a):

p∗(xi ) = [GL
C ∗ y](xi ), y(xi ) = [−G†r ik](xi ), (1.97)
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where G†r ik is a discrete approximation of the divergence of the Lamb vector ∇ ·
l , where l = ω × u, while xi denotes a discrete location. Since ω → 0 at large
distances from the body, it follows that also∇ · l and its discrete counterpart become
exponentially small. Thus, the domain on which the field is induced is finite and is
truncated when G†r ik is smaller than a given threshold ε. When using this procedure,
the discrete velocity needs to be refreshed using the discrete velocityw = Cu in order
to obtain a consistent velocity field. The domain adaptivity is implemented using the
block-structured mesh as outlined above. For further implementation details on the
domain adaptivity, the reader is referred to Liska and Colonius (2016).

1.3.4 Examples

1.3.4.1 Flow Past a Sphere

In this section, the benchmark simulation of the flow past an impulsively started
sphere at Reynolds number Re = 3700 (Liska and Colonius 2017) is summarized.
Additional benchmarks and validation studies can be found in Liska and Colonius
(2017), Mengaldo et al. (2017). The turbulent flow past a sphere at Re = 3700 is a
challenging, canonical benchmark problem and has thus been investigated by many
researchers both experimentally (Kim and Durbin 1988) and numerically (Yun et al.
2006; Rodriguez et al. 2011; Dorschner et al. 2016). The nominal velocity of the
sphere is (U, 0, 0) and a small, initial perturbation is introduced in the flow field
in order to break any symmetries. The flow is computed for 0 ≤ t∗/U ≤ 60 using
81,920 Lagrangian markers, where t∗ indicates initialization from a large-time solu-
tion of a sphere at Re = 1000. The sphere has unit radius and the grid spacing was
chosen conservatively as �x � 4.3 × 10−3 to resolve the thin boundary layer on the
surface of the sphere. The time step size is chosen such that the CFL number based
on the maximum point-wise velocity remains below 0.9. The time-averaged results
were obtained over the last five large-scale vortex shedding cycles (St = 0.215). A
snapshot of the vortical structures using the Q-criterion is shown in Fig. 1.9 and is in
line with what is reported in the literature. The adaptive nature of the grid is shown
in Fig. 1.9, where the computational domain is comprised of only regions, where the
vorticity is non-negligible. In this setup, the threshold for the grid adaptivity was
chosen as ε = 5 × 10−4 and verified to accurately capture the unbounded domain
flow. The flow is further characterized by the mean surfaces stresses and the net body
forces. First, we consider the mean skin friction coefficient Cf = τw/( 12ρU

2), where
τw is the local wall shear stress and the pressure coefficient Cp = (p − p∞)/( 12ρU ),
where p and p∞ are the local and the free-stream pressure, respectively. Note that
the raw point-wise values of the surface stress tensor are partially filtered using the
boundary force post-processing technique (Goza et al. 2016), to construct a smoothed
boundary forces. The time-averaged results of Cp and Cf along the polar angle θ are
shown in Fig. 1.10. Finally, the mean values for drag coefficient Cd, base pressure
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Fig. 1.9 Vortex cores in the wake of a sphere at Re = 3700 are illustrated by isosurfaces of constant
Q-value. Depicted are isosurface of QD2/U2 = 2 colored by radial distance from the centerline of
the sphere in the streamwise direction. The mesh is a cross-sectional cut of the block-wise adaptive
computational domain that have been coarsened by a factor of two in each direction for visualization
purposes. Reprinted from Liska and Colonius (2017) with permission

Fig. 1.10 Comparison of the time-averaged pressure (left) and skin friction (right) coefficients as
functions of the polar angle, θ , for a sphere at Re = 3700. Results are compared to values reported
by Rodriguez et al. (2011) (DNS at Re = 3700), Kim and Durbin (1988) (exp. at Re = 4200), and
Seidl et al. (1997) (DNS at Re = 5000). Reprinted from Liska and Colonius (2017) with permission

coefficientCpb, separation angle θ s, polar locations of the minimum surface pressure
θp,min and of the maximum skin friction θτ,max are reported in Table 1.1 and shows
good agreement with the literature values.

1.3.4.2 Flow Past an Inclined, Rotating, Circular Disk

As an outlook, this setup can easily be extended to rotating disks by prescribing
appropriate boundary velocities for the Lagrangian IB points. Such studies are of
interest for developing novel designs of unmanned air vehicles or alike.While spheres
and disks have both been studied extensively in literature, significant discrepancies
between numerical and experimental measurements for disks and flat cylinders of
large aspect ratio have fueled recent interest in further numerical investigations and
thus makes it a good benchmark for the IBLGF (Gao et al. 2018; Tian et al. 2017;
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Table 1.1 Turbulent flow past sphere at Re = 3700 and the comparison of the mean values for drag
coefficient Cd, base pressure coefficient Cpb, separation angle θ s, polar locations of the minimum
surface pressure θ p,min and of the maximum skin friction θτ,max with literature values

Contribution Re Cd Cpb θ s θp,min θτ,max

IBLGF DNS 3700 0.389 −0.230 88.9 73 47

Yun et al. (2006) LES 3700 0.355 −0.194 90 − −
Rodriguez et al. (2011) DNS 3700 0.394 −0.207 89.4 72 48

Dorschner et al. (2016) DNS 3700 0.383 −0.220 89.993 − −
Kim and Durbin (1988) exp. 4200 − −0.224 − − −
Seidl et al. (1997) DNS 5000 0.38 − 89.5 71 50

Chrust et al. 2015). In addition, an extension to rotating disks (e.g., Frisbees) will
be presented. The rotating disk has been suggested as a configuration for a micro-air
vehicle based on the stabilizing influence of rotation on the flight dynamics (Potts
and Crowther 2001, 2002; Lorenz 2007).

The Reynolds number is defined as Re = U∞D sin(α)

ν
, whereU∞ is the free-stream

velocity, α is the angle of attack, and D is the disk diameter, which is set to unity.
The Strouhal number is defined by St = f D sin(α)

U∞ , where f is the frequency of the
primary vortex shedding.

Mean drag and lift coefficients for various angles of attack and a fixed Reynolds
number of Re = 500 are compared to the numerical simulations of Tian et al. (2017)
in Fig. 1.11. The grid spacing was chosen to be �x = 0.012 and the time step is
set to �t = 0.004. The adaptivity threshold for the grid was set to ε = 5 × 10−4

unless stated otherwise. For simulations at lower Reynolds numbers the grid spacing
is chosen based on the estimated scaling of the boundary layer. With an expected
Re− 1

2 scaling of the laminar boundary layer thickness, the value of (�x)Re
1
2 is kept

approximately constant as in Liska and Colonius (2017). The CFL number based
on the maximum point-wise velocity is kept below 0.5 by setting �t/�x = 1/3.
While in Tian et al. (2017) the disk was modeled to have a thickness of 0.002D, the
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Fig. 1.11 Drag and lift coefficient for various angles of attack α at Re = 500
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IBLGF simulations assume an infinitely thin disk, which is in turn regularized on the
grid scale via the discrete delta function. Mean quantities are averaged over at least
170 convective time units for unsteady solutions (α ≥ 25◦) and 130 units for steady
solutions (α ≤ 20◦). Good agreement between both numerical simulations validates
the IBLGF. Exemplary, in Fig. 1.13 the vorticity isosurfaces for ωx along with a slice
of the computational mesh are shown for angles of attack of α = 20◦ and α = 70◦,
respectively. Note the disjoint computational mesh for α = 70◦, which reduces the
computational cost significantly compared to a uniform solver (Fig. 1.12).

In addition, the simulations are validated by comparison of the critical Reynolds
number and Strouhal number as the flow transitions from a steady state regime to
a periodic state through a supercritical Hopf bifurcation with increasing Reynolds
number and fixed angle of attack. In Fig. 1.12, the threshold of the Hopf instability
as a function of angle of attack is plotted in terms of critical Reynolds and Strouhal
number. The critical values for both Reynolds and Strouhal number are obtained
by extrapolating from unsteady cases run near the critical point as done in Ghaddar
et al. (1986), Pereira and Sousa (1993). As apparent from the plot, the critical values
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Fig. 1.12 Critical Reynolds number Rec and critical Strouhal number Stc for various angles of
attack α

Fig. 1.13 Isosurfaces of streamwise vorticity ωx for flow over an infinitely thin disk at Re = 500,
λ = 0. The grid of blocks is shown on the spanwise xy-plane through the centerline of the disk.
Each block consists of 10 × 10 × 10 cells. Adaptive threshold is set to ε = 5 × 10−5
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Fig. 1.14 Isosurfaces of vorticity for flow over an infinitely thin disk at Re = 500, an angle of
attack α = 0 and rotating at a tip-speed ratio of λ = 3. See also caption of Fig. 1.13

agree well with the numerical simulations of Gao et al. (2018), Chrust et al. (2015).
Note that while (Chrust et al. 2015) modeled an infinitely thin disk, the simulations
reported in Gao et al. (2018) modeled the disk to have a thickness of 0.02D. A
snapshot of a rotating disk with a tip-speed ratio of λ = 3 is shown in Fig. 1.14 as an
outlook of future studies.

1.3.5 Toward AMR

Note that while in the IBLGF the grid is adaptive, the resolution is uniform, which
can become limiting in many applications. In fact, while uniform Cartesian meshes
can significantly decrease the cost per degree of freedom (DoF), the total number
of DoF can be prohibitive for strongly anisotropic or inhomogeneous problems with
localized source regions. This issue is particularly prominent for, e.g., high Reynolds
number flows or problems where the range of scales is large. A particularly acute
challenge is for bluff bodieswhere onemust resolve thin attached laminar or turbulent
boundary layers at the same time as a broad wake. Here, adaptive mesh refinement
methods (AMR), pioneered by Berger and Colella (1989), Berger and Oliger (1984)
can be crucial. These methods adapt the local density of the computational elements
to the local spatial resolution requirements. In the context of the IB method, AMR
techniques have been embedded (Roma et al. 1999; Griffith et al. 2007; Vanella et al.
2014) and have shown to greatly reduce the computational costs of simulations. In
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addition, block-wise AMR has become popular compared to cell-wise refinement
(see Dubey et al. 2014 for a survey of popular block-structured mesh refinement
packages), since the overhead of the underlying data structure and load balancing
has shown to be significantly more efficient (Nissen et al. 2013; Dreher and Grauer
2005).

While the FLGF method discussed above is adaptive and utilizes a hierarchical
block-structured grid for the FMM solution, it is not an AMR technique. A natural
extension of the FLGF is thus to a block-structured AMR solver without additional
overhead of the underlying data structure. Note, however, that when refining the
physical domain by embedding locally refined grid patches within the computa-
tional domain, the free-space boundary conditions implied by the lattice Green’s
functions become problematic since the refinement patches itself do have a well
defined boundary condition, which is imposed by the surrounding domain and is not
the free space. A remedy was found in Dorschner et al. (2020), by projecting the
source field onto each level within its support by appropriate coarsening and inter-
polation operators and subsequent application of the FLGF method on each level
independently. The resulting multi-resolution scheme retains linear computational
complexity and second-order accuracy and additional allows for arbitrary block-wise
refinement by factors of two. An exemplary mesh topology of the multi-resolution
scheme is shown in Fig. 1.15 for a thin vortex ring.

While inDorschner et al. (2020) the groundwork toward amulti-resolution IBLGF
solver was laid, its incorporation into the full IBLGF solver is ongoing work.

Fig. 1.15 Mesh topology and vorticity field for a thin vortex ring and the numerical solution of the
streamfunction for five levels of refinement
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1.4 Summary and Future Directions

In this chapter, we have summarized a projection approach to the IB method that
exploits features of the underlying, uniform Cartesian mesh to achieve robust, effi-
cient solution of incompressible external flow problems. Extensions for fully coupled
FSI for thin elastic structures, and a novel fast lattice Green’s function for 3D prob-
lems were highlighted. Examples problems such as inverted flag flutter, and flow
past a sphere and rotating disks were presented to demonstrate the capabilities of the
numerics for complex flow problems.

The IBPM takes advantages of formulating the continuity and no-slip boundary
conditions as Lagrange multipliers to enforce these constraints to prescribed preci-
sion without the need of an artificial constitute relation. This formulation removes
any additional constraints on the CFL number for rigid bodies, which is then only
limited by the choice of the time-stepping algorithm. Through carefully chosen dis-
crete operators, a modified Poisson equation arises, which is symmetric and positive
definite and thus amenable to efficient numerical solvers such as conjugate-gradient
method. In addition, we reviewed appropriate filtering techniques to accurately com-
pute surfaces stresses and forces, which allowed the extension to strongly coupled
fluid interaction for thin elastic structures. The simplicity of the IBPM formulation
proves useful in finding (potentially unstable) steady equilibrium solutions of cou-
pled FSI problems, as well as solving associated global linear stability problems.
This capability was demonstrated on an inverted elastic flag setup.

When combined with a lattice Green’s function approach, the IB method can be
used for three-dimensional external flows while, at the same time, minimizing the
computational expense by restricting the computational domain to a snug region
near the immersed surface in which the vorticity is nonzero. The method naturally
incorporates exact free-space boundary conditions. By using a viscous integrating
factor half-explicit Runge–Kutta scheme in combination with the approximation-
free nested projection technique and exploiting mimetic properties of the discrete
operators, the projection steps reduce to simple discrete elliptic problems, which can
be solved efficiently with the FLGFmethod. The FLGFmethod is based on a kernel-
independent interpolation-based fast multipole method and therefore exhibits linear
computational complexity, while taking advantage of a block-structured Cartesian
mesh by using standard FFT routines for fast convolutions.

While the combined IBLGF approach has been demonstrated in benchmarks such
as the turbulent flow past a sphere or flow past an inclined rotating disk, its exten-
sion to higher Reynolds numbers requires further developments. While it is true
that uniform grids in general allow us to use efficient numerical solvers, the num-
ber of degrees of freedom becomes prohibitive for the large range of scales in high
Reynolds number flows. Thus, future efforts are directed toward a multi-resolution
IBLGF scheme. A block-structured multi-resolution algorithm based on LGFs for
elliptic difference equations, which retains favorable computational complexity and
necessary regularity has been detailed in Dorschner et al. (2020). Incorporation in the
IBLGF will be reported in future contributions. Such multi-resolution scheme will
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not only open the door for high Reynolds number direct numerical simulations but
also inclusion of explicit turbulence models such as wall-resolved or wall-modeled
large-eddy simulations (LES). In the context of IB, this has been successfully imple-
mented in Piomelli and Balaras (2002), Iaccarino and Verzicco (2003), Yang and
Balaras (2006), You et al. (2007), Catchirayer et al. (2018) (and references therein)
and therefore provides a promising path toward high Reynolds numbers and appli-
cations with engineering relevant complexity. In addition, by using Krylov solvers
such as GMRES, BIGSTAB, and their flexible extensions (Saad 1993; Chen et al.
2016) to solve the force Schur complement, the IBLGF scheme can be extended
to a fully coupled three-dimensional fluid–structure solver. This would retain the
benefits of IBLGF in terms of accuracy, scalability, and efficiency due to truncated
computational domain, while increasing the range of applications significantly.
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