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Preface

Over the past two decades, immersed boundary (IB) methods have been constantly
gaining popularity and are increasingly expanding to new areas of applications in
computational mechanics. A common feature of all IB formulations is that the
requirement for the grid lines to conform to the boundary is relaxed. This greatly
simplifies grid generation but at the same time renders the implementation of
boundary conditions non-trivial. The no-slip boundary condition, for example, in
most IB variants is approximated by assuming either elastic or viscoelastic
properties on incompressible solids and deriving their equations of motion in a
continuum setting or imposing kinematic constraints on the surrounding Eulerian
points or the surface points themselves. The required forces to impose boundary
conditions are computed directly from the momentum equations or can be obtained
using Lagrange multipliers on the set of the equations governing the problem. An
attractive feature of IB methods in complex geometries is that the need for the
tedious grid generation step in boundary-conforming formulations is eliminated.
This is particularly beneficial for flows over moving/deforming boundaries, which
can now be tackled on structured grids utilizing highly efficient solvers with optimal
conservation properties.

Historically, the IB formulation was designed to simulate the complex fluid–
structure interaction (FSI) problem in the human heart by Prof. C. S. Peskin in early
1970s. In this pioneering implementation, the principle of virtual work in conser-
vative systems for a continuous elastic material subjected to the incompressibility
constraint was considered. The material was defined in curvilinear coordinates and
assumed elastic, while the equations of motion were derived in Eulerian coordinates
considering constrained virtual velocities. A limitation of this formulation is that it
requires the definition of elastic properties for an immersed solid, which can be
problematic when used in rigid body dynamical systems. Prof. Peskin’s group
proposed extension of the IB methods to rigid body systems in their later work at
the beginning of 21st century. Several variances of this class of methods, broadly
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known as continuous forcing schemes, have been proposed since. A new class of
methods was proposed at the same time by research groups at Sapienza University
of Rome, Polytechnic University of Bari and Los Alamos National Laboratory,
where they considered directly the discretized momentum equations to introduce
forcing such that the IB no-slip and no-penetration condition was approximated.
Practically, the approach is equivalent to a local reconstruction of the velocity at
points on the Eulerian grid near the boundary. Numerous variances of this for-
mulation have been proposed in the literature since, including methods where the
direct forcing function is computed on the Lagrangian grid defining the boundary
and then transferred to the Eulerian grid nodes, sharing some features with the
continuous forcing schemes.

Today, IB methods are considered a viable alternative to classical boundary-
conforming formulations, especially in cases of moving/deforming boundaries.
Depending on the application, however, there are still challenges to be addressed,
which are unique to the particular class of methods. Some formulations, for
example, trade the ease of implementation in existing structured solvers with a
limited class of boundary conditions one can consider. In a similar manner, certain
formulations are more appropriate for moving boundary, fluid–structure interaction
problems, or facilitate an accurate computation of the local traction forces, which is
non-trivial in IB methods. The plurality of IB formulations certainly drove the
constant proliferation of the approach into new application areas, but at the same
time it created a vast amount of the literature that one needs to consider when
selecting a cost-efficient formulation for a particular class of problems. This book
aims to be of the first of its kind to distill the vast information available and discuss
different IB implementations and applications for a range of problems.

In particular, the reader will find a balanced distribution of chapters covering
both incompressible and compressible flow implementations. For the former case, a
number of chapters are devoted to addressing fundamental issues, such as projec-
tion methods, mass conservation, spurious pressure oscillations, modeling of the
turbulent boundary layer, and FSI. Practical aspects related to computational effi-
ciency and utilization of modern hybrid computing platforms are discussed in a
separate chapter. Specific implementations for curvilinear mesh solvers and lattice
Boltzmann methods are also included. For the case of compressible flows, the
emphasis is placed on high-speed turbulent flows. The implementation of recon-
struction functions that mimic the turbulent wall laws is discussed, together with
strategies for the reconstruction of the temperature field, as well as sharp interface
formulations. Finally, practical examples for a wide range of applications are
included and cover areas as diverse as human locomotion, insect flight, and
high-speed compressible flow around an aircraft.
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We believe that this book is unique in nature and covers an extensive gamut of
topics on IB methods and applications from a group of authors that are interna-
tionally recognized in their respective fields. We hope that this will be of help to
graduate and undergraduate students, researchers, and managers in their quest to
explore and utilize IB methods.

Kharagpur, India Somnath Roy
somnath.roy@mech.iitkgp.ac.in

Kanpur, India Ashoke De
ashoke@iitk.ac.in

Washington, DC, USA Elias Balaras
balaras@gwu.edu
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Part I
Incompressible Flow Modeling



Chapter 1
Immersed Boundary Projection Methods

Benedikt Dorschner and Tim Colonius

1.1 Overview of the Immersed Boundary Method

Most conventional numerical methods to simulate complex fluid–structure interac-
tion problems utilize body-conforming discretizations, where the fluid–solid inter-
face conditions are imposed as boundary conditions. In its most general formulation,
the fluid–structure interface can both be moving and deforming as a result of the two-
way coupling between fluid and structure. Common body-fitted approaches include
arbitrary Lagrangian–Eulerian formulations (Hirt et al. 1974; Ahn and Kallinderis
2006) or space–time finite element methods (Tezduyar et al. 1992, 2006).

The generation of body-fitted meshes for complex, possibly moving and deform-
ing geometries, is computationally expensive and requires sophisticated procedures
to avoid severe mesh distortion and preserve accuracy (Thompson et al. 1998; Her-
mansson and Hansbo 2003; Tezduyar et al. 2006; Nakata and Liu 2012). An alter-
native is the use of non-conforming meshes, the most widely used example being
the immersed boundary method (IB). The IB method was first proposed in Peskin
(1972) to simulate blood flow inside a heart with flexible valves. In the IB method,
the flow field is described on a non-conforming Eulerian grid. The immersed surface
is represented in a Lagrangian framework, and the surface traction is determined by
imposing the no-slip boundary condition on the Eulerian velocity field interpolated
to the surface. In the continuous setting, the surface traction is a singular function
(defined only on the surface) and is discretized by a smeared, discrete delta function
that regularizes the forcing effect over the neighboring Eulerian grid cells.

B. Dorschner · T. Colonius (B)
Department of Mechanical and Civil Engineering, California Institute of Technology,
Pasadena, CA 91125, USA
e-mail: colonius@caltech.edu
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4 B. Dorschner and T. Colonius

In the original IBmethod (Peskin 1972), the heart valves were modeled as flexible
membranes, and Hooke’s law was used as a constitutive relation to relate the forcing
function to the motion of the Lagrangian points. Later, this scheme was extended to
rigid bodies by taking large values for the spring constants (Beyer and LeVeque 1992;
Lai and Peskin 2000). In addition, the concept of feedback control to compute the
force on the rigid immersed surface was introduced by Goldstein et al. (1993), where
the difference between the velocity solution and the boundary velocity is used in a
proportional-integral controller. Note that for techniques using constitutive relations
tomodel the flow over rigid bodies, the choice of gain (stiffness) is a tuning parameter
whose value must be heuristically chosen to simultaneously avoid a restrictive time
step size (large stiffness) and slip error (small stiffness).

Constitutive relations are eliminated in direct forcing methods and its variants
(Mohd-Yusof 1997; Fadlun et al. 2000), where the momentum forcing is obtained by
penalization of the slip at the surface. However, the no-slip condition is only enforced
on an intermediate velocity field and hence requires iterations to approximate the no-
slip condition on the final velocity fields. While the slip has been reported to be small
(Fadlun et al. 2000), it cannot be estimated in a systematic fashion.

An alternative approach is to consider the boundary force as a Lagrangemultiplier
that is determined to enforce the no-slip condition (Glowinski et al. 1998; Taira and
Colonius 2007; Colonius and Taira 2008; Kallemov et al. 2016). In this formulation,
the discretized, incompressible Navier–Stokes equations (NSE) can be formulated
in an analogous manner to the classical fractional step method by introducing appro-
priate regularization and interpolation operators. In addition, a modified Poisson
equation, where the force and the pressure are lumped together, can be solved to
determine the pressure and force unknowns. We refer to these methods as immersed
boundary projection methods (IBPM). The advantage of IBPM is that continuity and
no-slip conditions can be satisfied implicitly and with arbitrary accuracy at each time
step. The Courant number is further only limited by the choice of the time-marching
algorithm. With typical splitting methods (fractional step methods), one can achieve
second-order accuracy uniformly in time and the matrices arising from the implicit
treatment of the viscous terms as well as the modified Poisson equation can be made
symmetric and positive definite. The resulting linear system can be solved with an
efficient conjugate-gradient solver.

While the standard implementation with discrete delta functions is only first-order
accurate in space, there have been efforts to improve the accuracy of IB methods in
order to efficiently tackle higher Reynolds number flows. These include so-called
sharp-interface and cut-cell approaches (Seo andMittal 2011). In particular, standard
IBs such as ghost-cell methods do not in general conserve mass or momentum at
the interface, which manifests in spurious pressure oscillations (Mittal and Iaccarino
2005) and becomes particularly problematic for compressible flows or when coupled
with large-eddy simulations and alike. A remedy was found in cut-cell methods,
which strictly enforce conservation by reshaping finite volume boundary cells to
locally conform with the geometry. A drawback of the cut-cell approach is that the
fluid volume fractions of cut cells can become small, necessitating stabilization of the
underlying time-stepping scheme using cell-merging (Ye et al. 1999), cell-linking
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(Kirkpatrick et al. 2003) or flux redistribution techniques (Hu et al. 2006; Colella
et al. 2006). Additionally, cut-cell methods inherit many of the complications of
body-fitted meshes and must be adapted dynamically for fluid–structure interaction
problems.

In discussing order of accuracy, we must tackle a misunderstanding that has per-
meated at least through part of the IB literature. Even for rigid bodies, the velocity
gradients are not continuous at an immersed surface, and the discretization must
account for the derivative singularity to achieve high-order accuracy. If the singular
traction is regularized without respect to the discretization (for example by using a
discrete delta function), the regularized solution will converge to the continuous one
at first order irrespective of the order of accuracy of the schemes used to treat the
derivative operators. The regularization error may in principle be made small inde-
pendently of the discretization error, but then the region over which the surface is
smeared must be made arbitrarily thin compared to the grid spacing. If the first-order
regularization error does not satisfy this restriction, then these “high-order” methods
simply converge to the incorrect, smeared solution faster. An interesting approach
toward higher-order IB methods is presented in Stein et al. (2017).

In this review, we take the alternative approach of accepting the first-order error
near the immersed surface, as this allows mimetic discretizations that achieve other
desirable properties, such as stability, discrete conservation, and computational effi-
ciency. It may be possible to achieve second-order accuracy while maintaining these
other characteristics in the future.

In what follows, we will introduce the immersed boundary projection method
as proposed in Taira and Colonius (2007), Colonius and Taira (2008). We will also
present a strongly coupled fluid–structure interaction algorithm as in Goza and Colo-
nius (2017), which is then applied to simulate the flow past an inverted flexible flag.
Subsequently, an immersed boundary method based on Lattice Green’s functions is
introduced, and examples ranging from inclined rotating disks to turbulent flow past a
sphere are shown. Finally, some perspectives to further increase theReynolds number
and inclusion of explicit turbulence models within the filtered NSE are provided.

1.2 Immersed Boundary Projection Method

The IB formulation for the incompressible Navier–Stokes equations with an addi-
tional singular boundary force f � in the momentum equation reads as :

∂u
∂t

+ u · ∇u = −∇ p + 1

Re
∇2u +

∫

�(t)

f �(X(ξ , t), t)δ(X(ξ , t) − x)dξ , (1.1a)

∇ · u = 0, (1.1b)∫

�

u(x)δ(x − X(ξ , t))dx = u�(ξ , t) = ∂X(ξ , t)

∂t
, (1.1c)
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where u = u(x, t), p(x, t), and Re denote the fluid velocity, pressure, and the
Reynolds number, respectively. We assume that the equations have already been
made non-dimensional with respect to characteristic length and velocity scales, and
the (constant) fluid density.

The Dirac delta function is indicated by δ and � is the Eulerian domain. The
immersed body surface� is described inLagrangian coordinates X = X(ξ , t), where
ξ is the surface parametrization, and u�(ξ , t) = ∂X(ξ ,t)

∂t is the boundary velocity. The
body force f � is chosen such that the no-slip condition on the immersed surface, as
prescribed by Eq. (1.1c), is satisfied. This step is agnostic to anymodel for themotion
of the surface based on the fluid forces acting on it, which in general determines the
position of the surface, which can be moving with respect to the underling Eulerian
domain.

The convolution with the Dirac delta function Eq. (1.1a) and Eq. (1.1c) couples
the immersed surface with the Eulerian grid �. The velocity field u as well as
the pressure are defined for all x ∈ � and satisfy the far field boundary conditions
u(x, t) → u∞(t) as |x| → ∞.

An issue with this formulation based on surfaces is that it is assumed that fluid
resides on either side of the immersed surface. When this is not the case, i.e., the
immersed surface comprises a substantial closed volume, there are wasted points
in the “ghost fluid” inside the body. Moreover, it is important to remember that the
fluid inside the body can exert a force on the body when the surface is accelerated.
For example, the added mass on a fluid-filled hollow sphere is different from that
of a solid sphere. To the extent that the fluid inside the surface is moving as a rigid
body, the additional force can readily be tabulated and used to correct the IB results
to non-hollow bodies. For the more general case involving deformation of the IB,
this formulation is only directly applicable to thin structures.

1.2.1 Discretization

The spatial discretization may be obtained via a second-order mimetic finite volume
method (Nicolaides and Wu 1997; Nicolaides 1992; Perot 2000; Zhang et al. 2002)
on a staggeredmeshQ := {V,E,F ,C}, which consists of verticesV, edgesE, faces
F , and cellsC (see Fig. 1.1). Scalar quantities reside at cell centers and vertices, while
faces and edges contain vector flow quantities. Grid functions with values on Q are
denoted by R

Q and functions with vector values at the Lagrangian grid points are
denoted by R

� . The semi-discrete form of Eq. (1.1) reads as

M
du

dt
+ N (u, t) = −Gp + 1

Re
LF u + R(t) f (1.2a)

D̄u = 0 (1.2b)

R(t)u = u�, (1.2c)
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Fig. 1.1 Staggered cell object as used in the IBLGF method. Reprinted from Liska and Colonius
(2016) with permission

where u ∈ R
F and p ∈ R

C are the discrete velocity and pressure variables at time
t > 0. The mass matrix is denoted by M . The discrete gradient, divergence, and
Laplace operators are denoted by G, D, and L and, if ambiguous, a subscript is used
to identify storage location. The set of discrete vector operators used in the following
is given by:

Gradient G : RC → R
F , Ḡ : RC → R

F , (1.3)

Curl C : RF → R
E, C̄ : RE → R

F . (1.4)

Divergence D : RE → R
V, D̄ : RF → R

C, (1.5)

Laplace L : RQ → R
Q. (1.6)

The convection term u · ∇u is approximated by the nonlinear operator N (u, t). Dif-
ferent choices for this discretization lead to different (conservation) properties (Perot
2000). The discrete surface functions f (i, t) and u�(i, t) denote the force and the
velocity of the i th Lagrangian marker at X(ξi , t) where i ∈ [1, NL ]. The interpola-
tion and regularization operators E(t) and R(t) are time-dependent and constructed
by regularizing the δ-function convolutions of Eq. (1.1a) and Eq. (1.1c), i.e., R(·)
and E(·) are discretizations of ∫

�
(·)δh(X (ξ , t) − x)dξ and

∫
�
(·)δh(X (ξ , t) − x)dx,

respectively (see also Sect. 1.2.3). The interpolation and regularization operators are
adjoints under the standard inner product such that E = (�x)3R†.

The scheme is second-order accurate and by using a staggered Cartesian grid
conserves momentum and either kinetic energy or circulation, depending on the
discretization for N (u, t), in the limit of vanishing viscosity and time-stepping errors
(Lilly 1965; Morinishi et al. 1998; Perot 2000). Note that the operators G and D can
be formulated such thatG = −D†. Explicit expression for all operators can be found
in Liska and Colonius (2017), Colonius and Taira (2008). For a uniform mesh, the
mass matrix M is a constant multiple of the identity.
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With these definitions, we can write Eq. (1.2) as a system of algebraic equations
as ⎡

⎣A G −R
D 0 0
E 0 0

⎤
⎦
⎡
⎣u

n+1

p
f

⎤
⎦ =

⎡
⎣ rn

0
un+1

�

⎤
⎦+

⎡
⎣bc1bc2

0

⎤
⎦ , (1.7)

where the submatrix A is the result of the implicit velocity treatment. Here, it is
obtained by the implicit trapezoidal rule on the viscous term yielding A = 1

�t M −
1
2 L . The convection term is discretized by the second-order Adams–Bashforth
method, leading to the right-hand side rn = [ 1

�t M − 1
2 L]un + 3

2N (un) − 1
2N (un−1).

The inhomogeneous terms bc1, bc2 depend on the particular boundary conditions,
which are discussed later. Using the above properties of the submatrices, Eq. (1.7)
can be rewritten as

⎡
⎣ A G E†

G† 0 0
E 0 0

⎤
⎦
⎡
⎣u

n+1

p
f̃

⎤
⎦ =

⎡
⎣r

n + bc1
−bc2
un+1

�

⎤
⎦ , (1.8)

where f̃ is the scaled boundary force, which accounts for the scaling factor when
expressing R with E†. The form of Eq. (1.8) is the Karush–Kahn–Tucker (KKT)
system, where (p, f̃ ) is the set of Lagrange multipliers to satisfy a set of kinematic
constraints. These constraints are purely algebraic, and there is no need for the
pressure and boundary force to be distinguished anymore. Thus, we can group the
Lagrangemultipliers and the submatrices asλ = [p, f̃ ] and Q = [G, E†]. The above
system is algebraically identical to traditional discretizations of the NSE and allows
the use of standard solvers. Here, the (projection) fractional step algorithm is applied
to Eq. (1.8), which can be expressed as an approximate LU decomposition of the left
side matrix (Perot 2000), which yields the immersed boundary projection method
(IBPM):

Au∗ = r1, (Solve for intermediate velocity) (1.9)

Q†A‡
j Qλ = Q†u∗ − r2, (Solve modified Poisson equation) (1.10)

un+1 = u∗ − A‡
j Qλ (Projection step), (1.11)

where A‡
j is the j th order Taylor series expansion of A−1 with respect to �t , and

the explicit terms on the right-hand side are denoted by r1 and r2. Note that in
Taira and Colonius (2007), A and Q†A‡

j Q are constructed to be symmetric positive-
definite operators such that the system can be solved efficiently with the conjugate-
gradient method. Thus, the no-slip boundary condition is enforced on the solution
by projecting the intermediate velocity field into the solution space that satisfies both
divergence-free and no-slip constraints.
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The IBPM is found to be second-order in time and first-order accurate in space.1

There is no need for a constitutive relation to compute the boundary force. The
IBPM therefore does not have any stability restrictions associated with the immersed
surface, and the time step restrictions are imposed only by the choice of the marching
scheme.

1.2.2 Nullspace Method for the Immersed Boundary Method

The nullspace or discrete streamfunction approach was originally proposed for solv-
ing Eq. (1.2) without the immersed boundary (Hall 1985; Chang et al. 2002), where
only the incompressibility constraint needs to be satisfied. Using the discrete stream-
function s such that

u = Cs, (1.12)

where the discrete curl operatorC is constructed with column vectors corresponding
to the basis of the nullspace of D. It follows that

DC = 0, (1.13)

which automatically satisfies the incompressibility constraint for all times.
In addition, left-multiplication of the momentum equation with C† removes the

pressure term and thus reduces to a single equation to be solved per time step

C†ACsn+1 = C†(rn1 + bc1). (1.14)

Note that solution of the pressure Poisson equation is not required here and therefore
the most expensive part of the fractional step method is eliminated, while exactly
satisfying the continuity equation. In addition, the errors from the approximate LU
decomposition are eliminated, which is why this scheme is also called the exact
fractional step method (Chang et al. 2002).

Furthermore, a second-order approximation of the circulation is obtained by γ =
C†q.

Especially in two-dimensional problems, where the streamfunction and vorticity
have a single nonzero component, this can lead to a more efficient algorithm, even in
the presence of an IB. For 2D problems, including the immersed boundary formalism
into the nullspace approach leads to the KKT system (Colonius and Taira 2008)

[
C†AC C†E†

EC 0

] [
sn+1

f̃

]
=
[
C†rn1
un+1

�

]
. (1.15)

1Typically, the first-order errors that are associated with the regularization of the delta functions are
limited to a finite region near the surface, and this results in better than first-order accuracy in the
L2 norm.
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The left-hand side matrix is symmetric but in general indefinite, which limits the effi-
ciency for direct solutions. However, with the projection (fractional step) approach,
we obtain

C†ACs∗ = C†Rn
1 (1.16)

EC(C†AC)−1(EC)† f̃ = ECs∗ − un+1
� (1.17)

sn+1 = s∗ − (C†AC)−1(EC)† f̃ . (1.18)

A direct solution of the above system requires a nested iteration to solve the mod-
ified Poisson equation. For stationary bodies, however, one can compute a Cholesky
factorization of EC(C†AC)−1(EC)† once, since the system size scales with the
number of the immersed boundary points. Then, a system of equations of the form
C†ACx = b needs to be solved only once per Lagrangian force.

In Colonius and Taira (2008), it was shown that for a uniform grid with simple
boundary conditions, a similar system to Eq. (1.9) can be solved efficiently using
fast sine transforms. Assuming that the velocity outside the computational domain is
known, simple Dirichlet boundary conditions can be applied to the velocity normal
to the sides of the domain, while Neumann boundary conditions are imposed on the
velocity tangent to the sides.

No-penetration boundary conditions for the normal component of the velocity
and a zero vorticity (or no-stress) condition for the tangent components are natural
boundary conditions for external flows, given a sufficiently large domain. With these
simplifications, one can write the semi-discrete momentum equation as

dγ

dt
= C†E† f̃ = −βC†Cγ + C†N (u) + bc + γ, (1.19)

where Lq = −βCC†u = −βCγ has been used. Here, β = 1/�x2Re is constant.
Under the aforementioned assumptions, the matrix −βC†C corresponds to the stan-
dard discrete Laplace operator with zero Dirichlet boundary conditions for γ . This
discrete Laplacian can be diagonalized by a sine transform, where the sine transform
pair is denoted by

γ̂ = Sγ ↔ γ = Sγ̂ , (1.20)

and (·̂) indicates Fourier coefficients. In addition, we use 
 = SC†CS, where 


is a diagonal matrix with the eigenvalues of C†C , which are positive and known
analytically.

Using the same time-marching scheme as above, the system becomes

S

(
I + β�t

2



)
Sγ ∗ =

(
I − β�t

2
C†C

)
γ n + �t

2

(
3C†N (un) − C†N (un−1)

)
+ �tbcγ ,

(1.21)



1 Immersed Boundary Projection Methods 11

EC

(
S
−1

(
I + β�t

2



)−1
S

)
(EC)† f̃ = ECS
−1Sγ ∗ − un+1

� , (1.22)

γ n+1 = γ ∗ − S

(
I + β�t

2



)−1
S(EC)† f̃ . (1.23)

The velocity un can then be found by

un = Csn + bcu, sn = S
−1Sγ n = bcs, (1.24)

where each of the boundary conditions involve the assumed known values at the
velocity edge.

Note that in the transformed system only one linear system associated with a
symmetric positive-definite operator, Eq. (1.22), needs to be solved. In addition, the
matrix dimensions are now N f × N f , a drastic reduction compared to the original
modified Poisson equation Eq. (1.10). A corresponding order of magnitude speedup
was measured numerically in Colonius and Taira (2008). Further, if the body is
stationary, the modified Poisson equation for the force can be solved efficiently
using a triangular Cholesky decomposition.

To conclude, for a uniform grid and simple boundary conditions it is preferable to
solve Eqs. (1.21)–(1.23). However, for simulations of external flows the simplified
boundary conditions require large computational domains. Since the grid is also
required to be uniform, this constraint quickly outweighs its benefits. However, the
multi-domain approach as proposed in Colonius and Taira (2008) was found to be an
effective solution to approximate the free-space boundary conditions. In Sect. 1.3, an
IB method based on lattice Green’s function is presented, which alleviates the need
of far-field approximation and satisfies the free-space boundaries exactly.

1.2.3 Accurate Calculation of Surface Stresses and Forces

In this section,wewill present a procedure to accurately calculate surface stresses and
forces in the context of IB methods as proposed in Goza et al. (2016). In particular,
we will focus on the set of IB methods that solve for surface stresses by imposing
velocity boundary conditions. This is, for example, the case in the IBPM above, but
in contrast to the original IB method of Peskin (1972), where the surface stresses are
derived from specific constitutive laws. Velocity-based IB methods have been shown
to suffer from inaccurate surface stresses andmay also exhibit spurious oscillations in
time traces, which originate from the ill-posedness of the first-kind integral equation
for the surface stresses. It is important to note that the velocity is typically convergent
in spite of the poor accuracy of the surface stresses. Thus, the following procedure
is important for either post-processing the stress data or when the IB method is used
in conjunction with a structural solver (see Sect. 1.2.4).
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To understand the origin of the spurious oscillations, we consider the Poisson
equation in two dimensions with an unknown singular source term f that takes
nonzero values only on the immersed surface � as a model problem:

∇2ϕ(x) = −
∫

�

f (X(ξ))δ(x − X(ξ))dξ,

ϕ(x) = ϕ∂�(x), x ∈ ∂�,∫

�

ϕ(x)δ(x − X(ξ))dx = ϕ�(X(ξ)).

(1.25)

While numerical solutions of this equation and their errors have been analyzed for
prescribed source terms f (Tornberg and Engquist 2004; Zahedi and Tornberg 2010),
it is explicitly solved for in what follows by incorporating the third equation as
a boundary constraint in order to mimic velocity-based IB method as closely as
possible.

The immersed boundary � is taken to be a circle of radius 1/2 in a unit square and
is centered at x = 0,ϕ∂�(x) = 1 − 1

2 log(2|x|), and ϕ�(X) = 1. The exact solution
to (1.25) is given by

ϕex(x) =
{
1 |x| ≤ 1

2 ,

1 − 1
2 log(2|x|) |x| > 1

2 ,
(1.26)

fex(X) = 1. (1.27)

Similar to the integrated surface force in the context of IB, we also define
Fex = ∫

�
fex(X(ξ))dξ = π . As was done in previous sections, the delta function

is replaced with a smeared delta function, δh(x − X(ξ)), which is continuous with
nonzero but compact support and is defined in terms of the grid spacing �x . The
numerical solution for a given grid spacing approximates

ϕ(x) = −
∫

�

∫

�

f (X(ξ ′))δh(x′ − X(ξ ′))GL(x; x′)dξ ′dx′, (1.28)

where GL(x; x′) denotes the Green’s function of the Poisson problem, and δh indi-
cates the smeared delta function (see also Sect. 1.3 for further details). To obtain
the unknown source term f , Eq. (1.28) is multiplied by δh and integrated over the
domain �:
∫

�

∫

�

∫

�

f (X(ξ ′))δh(x′ − X(ξ ′))GL(x; x′)δh(x − X(ξ))dξ ′dx′dx = −ϕ�(X(ξ)),

(1.29)
and ϕ(x) may be obtain upon substitution f into Eq. (1.28). Note that since δh is
continuous, the kernel in the integral equation Eq. (1.29) is continuous and has finite
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support, which makes the integral operator compact and with a formally unbounded
inverse (Kress 2014). A direct consequence is that discretizations of this equation
lead to inaccurate surface source terms.

Examples of smeared delta functions include

• A 2-point hat function:

δhath (r) =
{

1
�x − |r |

�x2 , |r | ≤ �x

0, |r | > �x
(1.30)

• A 3-point function:

δ3h(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
3�x

(
1 +
√
1 − 3

(
r

�x

)2)
, |r | ≤ �x

2

1
6�x

(
5 − 3|r |

�x −
√
1 − 3

(
1 − |r |

�x

)2)
, �x

2 ≤ |r | ≤ 3�x
2

0, |r | > 3�x
2

(1.31)

• A 4-point cosine function:

δcosh (r) =
{

1
4�x

(
1 + cos

(
πr
2�x

))
, |r | ≤ 2�x

0, |r | > 2�x
(1.32)

• A Gaussian function:

δGh (r) =
{√

π
36�x2 e

−π2r2

36�x2 , |r | ≤ 14�x

0, |r | > 14�x
(1.33)

Discretization of Eq. (1.25) yields

Lϕ = −R f + bL , (1.34)

Eϕ = ϕ�, (1.35)

and combining Eq. (1.34) and Eq.1.35 results in

EL−1R f = −ϕ� + EL−1bL , (1.36)

which is a discretization of the integral equation (1.29).
In Goza et al. (2016), Eq. (1.36) was solved numerically using a finite difference

approximation. In the following, nb and ng are used to denote the number of points
on the immersed body and the computational domain, respectively. In Fig. 1.2, it is
apparent that the source term f does not converge with grid refinement, whereas
the integrated source term F and the solution ϕ do converge at first order to their
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Fig. 1.2 Errors in f̃ , F , and ϕ versus grid spacing (h) for the Poisson problem. ◦: δhath , �: δ3h , �:
δcosh , �: δGh , --: first-order convergence. Reprinted from Goza et al. (2016) with permission
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Fig. 1.3 Errors in R f and EL−1R f versus grid spacing (h) for the Poisson model problem. ◦ :δhath ,
�: δ3h ,�: δcosh ,�: δGh , --: first-order convergence. Reprinted fromGoza et al. (2016) with permission

exact solutions. Convergence of F is a consequence of solving Eq. (1.36). This is
in contrast to other velocity-based IB methods, which only approximately enforce
the boundary constraint. Such methods introduce inaccuracies in F (Uhlmann 2005;
Huang and Sung 2009; Zhang andZheng 2007), althoughYang et al. (2009) proposed
improvements.

From Fig. 1.3, it is also apparent that R f does not converge to R fex but EL−1R f
converges to EL−1R fex. Thus using the exact force fex to enforce the boundary
condition, would not produce ϕ� exactly, but rather converge to it at first order (see
also Tornberg and Engquist 2004).

InGoza et al. (2016), the convergence behaviorwas studied further using a singular
value decomposition (SVD) of EL−1 = U�V †.Using this decomposition, R fex may
be written as a projection onto the basis of vectors formed by V :

R fex =
nb∑
j=1

αex
j v j . (1.37)

Similarly, EL−1R fex may be expressed as



1 Immersed Boundary Projection Methods 15

EL−1R fex =
nb∑
j=1

αex
j σ j u j (1.38)

where σ1, . . . , σnb are the singular values, and the left (right) singular vectors are
denoted by u j (v j ) corresponding to σ j . The coefficients are defined as αex

j :=
(vTj R fex).

Analogous expressions can bewritten for R f by replacing fex with f in (1.37) and
(1.38). It was shown in Goza et al. (2016) that the sum

∑nb
j=1 α j does not converge to∑nb

j=1 αex
j under grid refinement, but converges when scaled by the σ j . Since EL−1

is a discrete integral operator, the σ j decay to small values (Hansen 1998) and the
error is thus caused by high-index coefficients α j corresponding to small σ j .

Hence, smeared delta functions with rapidly decaying αex are favorable as spu-
rious high-index coefficients can be filtered out effectively without loss of physical
information. In contrast, delta functions with slow decay may lead to loss of physical
information and thus inaccurate source terms due to inaccurate high-index coeffi-
cients.

An efficient filtering can be achieved by penalizing the spurious components of f .
This can be done by pre-multiplying the source termwith Ê R using a weighted inter-
polant Ê = EW , which interpolates the smeared source term R f onto the immersed
body while preserving its integral value. The filtered source term is then f̂ = Ê R f .

In particular, W can be defined by a diagonal matrix with entries given by

Wii =
{
1/(R1)i , (R1)i = 0

0, else,
(1.39)

where 1 = [1, 1, . . . , 1]T ∈ R
ng×1 and (R1)i is the i th entry in the vector R1. Note

that the weights are only nonzero within the support of the smeared delta function.
The source term is redistributed by the filter Ê R by convolution with a kernel of
smeared delta functions.

The rate of filtering of Ê R is proportional to the smoothness of the smeared delta
function. This is a consequence of Ê R being an integral operator, for which the decay
rate of its singular values is determinedby the smoothness of its kernel (Hansen1998).
Applying this filtering technique yields more accurate source terms f as shown in
Fig. 1.4. Indeed, the infinitely differentiable δGh shows first-order convergence to fex,
whereas the slow decay of the coefficients α j hinders convergence for δhath , δ3h , and
δcosh . Finally, it is worth mentioning that filtering does not affect F by construction
of Ê R, and the solution ϕ is also unchanged since filtering is a post-processing step.

The extension of this filtering technique to the Navier–Stokes equation is straight-
forward. In particular, multiplication by the smeared delta and integration over the
domain yields:



16 B. Dorschner and T. Colonius

10−3 10−2 10−1
10−4

10−3

10−2

10−1

Δx

ϕ−ϕexact ∞
ϕexact ∞

10−3 10−2 10−1
10−3

10−2

10−1

100

Δx

f̃−fexact ∞
fexact ∞

10−3 10−2 10−1
10−4

10−2

100

Δx

F −Fexact

Fexact

Fig. 1.4 Errors in f̂ , F , and ϕ versus grid spacing (h) for the Poisson problem. ◦: δhath , �: δ3h ,
�: δcosh , �: δGh , --: first-order convergence. Reprinted from Goza et al. (2016) with permission

∫

�

∫

�

f(X(ξ ′, t))δh(x − X(ξ , t))δh(x − X(ξ ′, t))dξ ′dx

=
∫

�

[(
∂

∂t
− 1

Re
∇2

)
u(x) + u · ∇u + ∇ p

]
δh(x − X(ξ , t))dx

(1.40)

Analogous to the example above, the integral operator ofEq.1.40has anunbounded
inverse because it contains a continuous kernel for any �x . Hence, the same logic
applies as above, and filtering is required to obtain accurate results. In the next
section, this filtering approach is used for fully coupled fluid–structure interaction
simulations.

1.2.4 Strongly Coupled Fluid–Structure Interaction

In this section, we present the extension of the IBPM to a strongly coupled fluid–
structure interaction (FSI) solver for thin elastic structures (Goza andColonius 2017).

In general, for FSI simulations, one can distinguish between monolithic and par-
titioned methods. In the monolithic approach, the fluid and structural equations are
described with one system of equations using the same discretization scheme, which
is solved by a single solver. By construction, consistent fluid–structure interface
conditions are imposed in monolithic solvers. On the other hand, the partitioned
approach uses individual solvers for the fluid and the structural equations, which
are then coupled via appropriate boundary conditions to satisfy the solid–fluid inter-
face conditions. This is a modular approach, which enjoys popularity for industrial as
well as academic applications since separately optimized solvers for the fluid and the
solid domain can be utilized. On the other hand, the main challenge of partitioned
approaches is that the solid–fluid interface conditions are not implicitly satisfied.
Hence, within the context of partitioned approaches, there is yet another distinction
regarding the coupling methodology, namely between weakly and strongly coupled
FSI schemes. While weakly coupled methods do not enforce the (nonlinear) fluid–
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solid interface constraints at each time step, strongly coupled methods do converge
to the monolithic equations using subiterative schemes.

On the one hand, this makes strongly coupled methods computationally more
expensive. On the other hand, the staggered nature of weakly coupled schemesmakes
them susceptible to the so-called added-mass effect, where spurious energy is gen-
erated at the solid–fluid interface (Piperno and Farhat 2001). In particular for small
solid–fluid density ratios, this can lead to fatal instabilities (Causin et al. 2005; Boraz-
jani et al. 2008; Le Tallec 2001; Förster et al. 2007; Li and Favier 2017). For that
reason we restrict ourselves to strongly coupled methods.

To impose the nonlinear interface constraint, most strongly coupled methods
require the solution of a large nonlinear system. The block Gauss–Seidel method is
a commonly used iterative procedure for solving the nonlinear system of equations,
though it requires a relaxation parameter (often chosen heuristically) and typically
converges slowly for small structural densities. Another common nonlinear solver is
the Newton–Raphson method, which removes the relaxation parameter and typically
converges rapidly even for small density ratios. However, this approach involves lin-
ear systems with large Jacobian matrices that cannot be solved directly, necessitating
the use of large matrix-vector products in the context of some iterative solution pro-
cess (Degroote et al. 2009; Mori and Peskin 2008; Hou et al. 2012). Among others,
these strategies are reviewed in Sotiropoulos and Yang (2014).

In the following, we focus on thin elastic structures and solve the nonlinear alge-
braic system using the Newton–Raphson method. However, we avoid the need to
solve a large linear system (without introducing any additional approximation into
the solution process) by employing a block-LU factorization of the linearized system
(Goza and Colonius 2017). The fluid part of the system is treated with the IBPM as
outlined above.

For the coupled fluid–structure problem, the governing equations in Eq. (1.1) are
extended by the structural equation as

∂u
∂t

+ u · ∇u = −∇ p + 1

Re
∇2u +

∫

�(t)

f �(X(ξ , t), t)δ(X(ξ , t) − x)dξ , (1.41a)

∇ · u = 0, (1.41b)

ρs

ρ f

∂2X(ξ , t)

∂t2
= 1

ρ f U 2∞
∇ · σ + g(X) − f �(X), (1.41c)

∫

�

u(x)δ(x − X(ξ , t))dx = u�(ξ , t) = ∂X(ξ , t)

∂t
, (1.41d)

where the solid and fluid density are denoted by ρs and ρ f , respectively. The Cauchy
stress is denoted by σ , g is a body force, and the characteristic velocity is U∞. The
time derivative in the above is understood to be Lagrangian and the Cauchy stress is
related to the second Piola–Kirchhoff stress Ss by
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Ss = J F−1σ sF−T , (1.42)

where J = det(F) and F denotes the deformation gradient

F = I + ∇us, (1.43)

and us is the displacement field of the solid. The second Piola–Kirchhoff stress is
here defined as

Ss = C : E (1.44)

where

E = 1

2
(FT F − I) = 1

2
(∇us + ∇uT

s + ∇uT
s ∇us) (1.45)

is the Green–Lagrangian strain tensor and the stiffness tensorC is related to Young’s
modulus Es , the bulk shear modulus, and Poisson’s ratio νs .

The governing equations for the fluid region are discretized as above, and the
solid equations can be discretized using a standard finite element procedure for thin
elastic beams in a co-rotational formulation (see Goza and Colonius 2017; De Borst
et al. 2012 for details), yielding the semi-discrete equation for the solid:

Ms Ẍ + Ks(X) = Fs(g + Ws(X) f ), (1.46)

where the mass matrix Ms , the stiffness matrix Ks , and load Fs are given by

Ms = ρs

ρ f

Nel∑
j

∫

�0
j

B†BdX0, Ks(X) = 1

ρ f U 2∞

Nel∑
j

∫

�0
j

B†
EσsdX0 (1.47)

Fs =
Nel∑
j

∫

�0
j

B†BdX0 = ρ f

ρs
Ms . (1.48)

Here, the j th element of � in the undeformed domain is indicated by �0
j and the

shape functionmatrix as well as their derivatives are given by B and BE , respectively.
This formulation is expressed in the co-rotational frame and therefore accounts for
geometrical nonlinearity and assumes small strains (large strains can be incorporated
into Ks without affecting the algorithm). For further details, we refer to standard finite
element textbooks (De Borst et al. 2012; Bathe 1996).

Using the discretizations above, the fully coupled FSI equations can be written as
a first-order system of differential-algebraic equation as
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C†Cṡ = −N (u) + C†LCs − C†E† f̃ , (1.49)

Msu̇� = −Ks(X) + Fs(g + W f (X) f̃ ), (1.50)

Ẋ = u�, (1.51)

ECs − uγ = 0. (1.52)

An Adams–Bashforth and Crank–Nicolson time-marching scheme is applied for
the nonlinear term and the diffusive term, respectively, for Eq. (1.49) and an implicit
Newmark scheme is used for Eqs. (1.50)–(1.51). Equation (1.52) is evaluated at the
current time step. This yields the following nonlinear system of algebraic equations:

C†ACsn+1 + C†E† f̃ n+1 = rnf , (1.53)

4

�t2
MsX

n+1 + Ks(X
n+1) − FsW

n+1 f̃ n+1 = rnu�
, (1.54)

2

�t
Xn+1 − un+1

� = rnX , (1.55)

ECsn+1 − un+1
� = 0, (1.56)

where A = 1
�t I − 1

2 L , r f
n = ( 1

�t C
TC + 1

2C
T LC)sn + 3

2C
T N (Csn) − 1

2C
T

N (Csn−1), rnu�
= M( 4

�t2 X
n + 4

�t u� + u̇n�) + Qg, and r Xn = u� + 2
�t X

n .
To solve the nonlinear system, an iterative procedure is applied and the solution

at time step n is used to initialize the iterative procedure at k = 0. During the kth
iteration, the variables are updated as Xn+1

k+1 = Xn+1
k+1 + �X and un+1

�,k+1 = un+1
�,k + �u� ,

which yields the following system:

⎡
⎢⎢⎣
CT AC 0 0 CT E†

0 0 4
�t2 M + Kk −FsW

n+1
k

0 −I 2
�t I 0

EC −I 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
sn+1

�u�

�X
f̃ n+1
k+1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

r f
n + O(�t)

rnu�
− 4

�t2 MXn+1
k − Ks(X

n+1
k ) + O(�t)

r Xn − 2
�t X

n+1
k + un+1

�,k

un+1
�,k + O(�t)

⎤
⎥⎥⎦ :=

⎡
⎢⎢⎣

r f
n

ru�,k

rX,k

rc,k

⎤
⎥⎥⎦ , (1.57)

where Kk = dKs/dX |X=Xn+1
k

. For flags, the stiffness matrix has well known analyt-
ical expressions (De Borst et al. 2012; Bathe 1996). The linear system Eq.(1.57) can
be factored using a block-LU decomposition, which yields
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s∗ = (CT AC)−1r f
n (1.58)[

Bn+1
k I

− 2
�t FsW

n+1
k K̂k

] [
f̃ n+1
k+1

�u�

]
=
[
ECs∗ − rc,k
2

�t ru�,k − rX,k

]
(1.59)

�X = �t

2
(�u� + rX,k) (1.60)

sn+1 = s∗ − (CT AC)−1CT E† f̃ n+1, (1.61)

where K̂k := 4
�t2 Ms + Kk and Bn+1

k := EC(C†AC)−1CT E†. The LU-factorized
equations (1.58)–(1.61) are analogous to the previous factorizations but now include
the fully coupled FSI scheme. Note that Eq. (1.58) does not depend on variables at
time n + 1 and thus must only be solved once per time step. Moreover, sn+1 is only
updated after Eqs. (1.59)–(1.60) have converged in the iterative process. Hence, the
iterations are restricted to Eqs. (1.59)–(1.60) which have dimensions of the order of
number of body points rather then the entire flow domain.

The Poisson-like problems arising from Eq. (1.58), Eq. (1.61) and from each
matrix-vector multiply with Bn+1

(k) can be solved efficiently with fast Fourier trans-
forms (FFT). In Goza and Colonius (2017), it was also argued that since the floating
point operations of the FFT scale with the number points in the flow domain, it may
be favorable to compute and store (K̂k)

−1. In that case, an analytical block Gaussian
elimination of Eq. (1.59) may be performed to arrive at

(
Bn+1
k + 2

�t
(K̂k)

−1FsW
n+1
k

)
f̃ n+1
(k+1) = ECs∗ − rc,k − 2

�t
(K̂k)

−1ru�,k + rX,k

(1.62)

�u� = 2

�t
(K̂k)

−1(ru�,k + FsW
n+1
k f̃ n+1

k ) − rX,k (1.63)

Equation (1.62) can then be solved with a BICGSTAB scheme, which typically
converges in a few iterations. In Goza and Colonius (2017), it was also shown that
this iteration procedure typically converges in a few iterations and does not rely on
heuristic relaxation parameters as for Gauss–Seidel-based approaches.

1.2.5 Example: The Inverted Flag Problem

Flow past a flag that is clamped at its leading edge is a canonical problem (Taneda
1968) and serves as an important benchmark problem for the development of numer-
ical schemes (see Shelley and Zhang 2011 for a review). By contrast, when the flag
is inverted, i.e., the trailing edge is clamped, only a few studies can be found in the
literature (Kim et al. 2013; Gurugubelli and Jaiman 2015; Ryu et al. 2015). This con-
figuration, however, is of interest due to its rich dynamical behavior, which includes
small-deflection flapping, large-amplitude flapping, and chaotic flapping. From a
numerical perspective, this setup is particular challenging as these regimes span a
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large range of solid–fluid density ratios and exhibit large deformations that require a
strongly coupled FSI solver. In Goza et al. (2018), this setup was investigated using
the approach described in the previous sections. In addition to validating the numer-
ics, these studies show that the IB method can be readily adapted for use in stability
and bifurcation analysis. A steady-state solver employing a Newton–Raphson itera-
tion was used to determine (potentially unstable) equilibria of the full fluid–structure
system, and linearizations of the discretized equations lead to large, sparse systems
of algebraic equations whose stability properties were efficiently determined using
Arnoldi methods.

For the inverted flag, there are three independent non-dimensional parameters that
govern the system. These are the Reynolds number Re = U∞L

νs
, the mass ratio Mρ =

ρs h
ρ f L

, and the bending stiffness KB = D
ρ f U 2∞L3 , where ρ f (ρs) is the fluid (structure)

density, U∞ is the free-stream velocity, L is the flag length, h is the flag thickness,
and the flexural rigidity is given by D = Eh3/(12(1 − ν2)) with Young’s modulus
E . In what follows, we consider the case of Re = 200 and Mρ = 0.05 and present
the effect of decreasing the flag’s stiffness KB . More configurations and thorough
analysis can be found in Goza et al. (2018).

With decreasing KB , the flag undergoes a transition from the undeformed equi-
librium (I) regime to the deformed equilibrium (II) through a divergence instability.
With decreasing stiffness, the deformed equilibrium is associated with an increas-
ingly large tip deflection and transitions from stable to unstable regimes. In particular,
the small-deflection flapping regime (III) is reached by a supercritical Hopf bifurca-
tion of the deformed equilibrium state. Decreasing the flag’s stiffness further leads
to large-amplitude flapping (IV, see also Fig. 1.5), which can be associated to clas-
sical vortex-induced vibration for the small density ratios as presented here. This
is in contrast to heavier flags, for which large-amplitude flapping is not a classical
vortex-induced vibration. For a stiffness of KB = 0.32, snapshots of one flapping
period are shown in Fig. 1.5 by means of vorticity contours.

Fig. 1.5 Vorticity contours at four snapshots of aflappingperiodof aflag in large-amplitudeflapping
for Mρ = 0.05. The Reynolds number and flag flexibility were chosen as Re = 200, KB = 0.32.
Contours are in 18 increments from −5 to 5. Reprinted from Goza et al. (2018) with permission
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Fig. 1.6 Bifurcation
diagram of inverted flag
dynamics at Re = 200,
showing tip deflection δti p as
a function of inverse stiffness
(1/KB ). Regimes are
denoted as I: undeformed
equilibrium, II: deformed
equilibrium, III:
small-deflection deformed
flapping, IV: large-amplitude
flapping, V: chaotic flapping,
VI: deflected mode.
Reprinted from Goza et al.
(2018) with permission

With decreasing stiffness, the system transitions to the chaotic flapping regime
(V), and finally to the deflected mode regime (VI), where oscillations are primarily
driven by vortex shedding. The chaotic regime is characterized by a strange attractor
that alternatively samples regimes IV and VI.

These phenomena are summarized in the bifurcation diagram in Fig. 1.6 as
obtained through nonlinear simulations. The simulations were started with an unde-
flected flag and an impulsively started flow at free-stream velocity U∞. During the
initial transient, a small body force was used to trigger any instabilities in the system.
All simulations were run for at least 15 flapping cycles except for the chaotic state
which requires 55 cycles. The first several cycles were neglected to avoid accounting
for initial conditions. In Fig. 1.6, a set of markers at a given stiffness represents the
tip deflection values δtip from a single nonlinear simulation when the flag changes
direction. That is, the markers correspond to the zero-tip-velocity Poincaré sections
of a velocity–displacement phase portrait of the leading edge. In addition, solid and
dashed lines represent stable and unstable equilibria, respectively.

1.3 Fast Lattice Green’s Function for External Flows

In this section, the immersed boundary lattice Green’s function (IBLGF) method as
proposed in Liska and Colonius (2017) is presented. The IBLGF is based on the
unbounded domain lattice Green’s function (LGF) flow solver (Liska and Colonius
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2016) and the distributed Lagrange multiplier method to impose the no-slip bound-
ary condition. The governing Navier–Stokes equations are spatially discretized on
an unbounded staggered Cartesian grid, which retains crucial conservative, com-
mutative, orthogonality, and symmetry properties of standard staggered Cartesian
discretizations of infinite domains.

The advantage, however, is the use of the lattice Green’s function technique,
which implicitly satisfies the natural free-space boundary condition and allows block-
adaptive grids to restrict the computation to a finite region (set of grid points) where
the vorticity is nonzero (exceeds a small threshold). This is in contrast to common
IB methods, which employ spatially truncated domains with approximate free-space
boundaries. These approximations introduce blockage errors, which affect accuracy
and may even change the dynamics of the flow (Tsynkov 1998; Colonius 2004;
Pradeep and Hussain 2004). Thus, large computational domains in combination with
stretched grids (Taira and Colonius 2007; Yun et al. 2006; Wang and Zhang 2011),
local refinement (Roma et al. 1999; Griffith et al. 2007), and far-field approximations
(Colonius and Taira 2008) are required to limit influence of the approximate free-
space boundary condition (see alsoSect. 1.2). In contrast, due to the natural free-space
boundary inherent to IBLGF, an adaptive domain snugly conforming to regions of
non-negligible vorticity and free of free-space boundary errors may be used for
IBLGF.

By using a viscous integrating factor half-explicit Runge–Kutta scheme (IF-
HERKS) in combination with an approximation-free nested projection technique
and exploiting the aforementioned algebraic properties of the discrete operators,
the projection steps reduce to simple discrete elliptic problems. These can in turn
be solved efficiently using parallel lattice Green’s function fast multipole methods
(LGF-FMM) (Liska and Colonius 2014).

The operators satisfy the following topological and mimetic properties:

Symmetry D̄ = −G†, Ḡ = −D†, C̄ = C† (1.64)

Orthogonality Null(C) = Im(G),Null(D) = Im(G) (1.65)

Mimetic LC = −G†G, LF = −GG†, LE = −D†D, LV = −DD† (1.66)

Commutativity LFG = GLC (1.67)

1.3.1 Time Integration

In incompressible flow solvers, it is typical to use split time-stepping schemes where
the viscous terms are advanced with an implicit method (alleviating any viscous
time step constraint), whereas the advective terms are advanced with an explicit
method which, despite introducing a CFL constraint on the time step, avoids iterative
solution of nonlinear equations. A variety of specialized splitting methods have been
employed, typically achieving second-order temporal accuracy. These schemes must
also be cognizant of the kinematic constraints, which in general include enforcing a
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divergence-free velocity field but in the case of IBmethods, also include enforcing the
no-slip condition. In other words, the spatially discretized incompressible Navier–
Stokes equations comprise a discrete algebraic equation of index 2 (DAE-i2). The
CN-AB2 scheme used in the previous sections is a particularly common choice for
tackling such systems.

In theLGFapproach, there is an opportunity to improve the time-marching scheme
because the viscous terms can be integrated exactly using an integrating factor, which
in turn can be done efficiently using anLGF.Once this is done, the time stepper for the
remaining DAE system need no longer be split, meaning that explicit Runge–Kutta
methods for DAE systems suffice, which in turn enables a wide variety of tailored
schemes (low dissipation, low memory, etc.) to be employed. In particular, a family
of half-explicit Runge–Kutta (HERK) methods are derived in Liska and Colonius
(2016). Note that the “half-explicit” terminology refers to the solution of ODEs and
algebraic constraints—not to any viscous/inviscid splitting.

The discrete integrating factor EQ(t) is the solution of the discrete heat equa-
tion dh

dt = κLQh. Hence, for a given u at time τ and the integrating factor HQ =
EQ

(
t−τ

(�x)2Re

)
, Eq.(1.2) for t > τ is given by

dv

dt
+ [HF (t)]Ñ ([H−1

F (t)]v, t) = −Gb − [HF (t)][E(t)]† f̃ , (1.68a)

G†v = 0, (1.68b)

[E][H−1
F (t)]v = u, (1.68c)

where v = [HF (t)]u and b = [HC(t)]p. The above system constitutes a DAE-i2
that can be solved efficiently using an s-stage HERK scheme. The s-stages of the
HERK are defined using the superscript i and time tk = k�t with the time step �t
in indicated by subscript k. We now group the Lagrange multipliers, the right-hand
side and the operators together such that

λi
k =
[
pik
f̃ ik

]
, ζ i

k =
[

0
u(t ik)

]
, Qi = [G [E(t ik)]†

]
,∀i ∈ [1, s] (1.69)

and we introduce the following:

uik(n) =
[
EF

( −c̄�t

(�x)2Re

)]
vik(n), pik(n) =

[
EF

( −c̄�t

(�x)2Re

)]
bik(n). (1.70)

The kth time step of the IF-HERK(uk , tk) schemewith the shifted coefficients ãi, j and
the shifted nodes c̃i (Liska and Colonius 2016; Hairer et al. 2006) can be summarized
as follows:

1. Initialize: Set u0k = uk , t0k = tk
2. Multi-stage: for i = 1, 2, · · · , s solve the linear system:
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[
(Hi

F )−1 Qi−1
k

(Qi
k)

† 0

] [
uik
λi
k

]
=
[
r ik
ζ i
k ,

]
(1.71)

where

Hi
F = EF

(
(c̃i − c̃i−1)�t

(�x)2Re

)
, r ik = hik + �t

i−1∑
j=1

ãi, jw
i, j
k + gik (1.72)

gik = −ai,i�t Ñ (ui−1
k , t i−1

k ) t ik = tk + +c̃i�t. (1.73)

The variables hik and w
ki, j
k are recursively computed for i > 1 and j > i using

hik = Hi−1
F hi−1

k , h1k = 0 (1.74)

w
i, j
k = Hi−1

F w
i−1, j
k , w

i,i
k = (ãi,i�t)−1

(
Qi−1

k λ̂i
k

)
(1.75)

3. Finalize: Set uk+1 = usk , λk+1 = (ãs,s�t)−1λ̂s
k and tk+1 = t sk .

1.3.2 Linear Solver

The solution of Eq. (1.71) dominates the computational costs and is efficiently solved
using the exact projection technique. Note that in contrast to 2D discrete nullspace
(discrete streamfunction)methods (see, Sect. 1.2), the following formulation does not
express the discrete velocity–pressure equations as discrete streamfunction–vorticity
equations. In three dimensions, the resulting discrete Poisson problems are scalar
problems in the case of the velocity–pressure formulation but vector problems in
the case of streamfunction–vorticity formulation. Equation (1.71) can be rewritten
in terms of pik and f̃ ik

Mi
k

⎡
⎣u

i
k
p̂ik
f̃ ik

⎤
⎦ =

⎡
⎣(Hi

F )−1 G (Ei−1
k )†

G† 0 0
Ei
k 0 0

⎤
⎦
⎡
⎣u

i
k
p̂ik
f̃ ik

⎤
⎦ =

⎡
⎣r

i
k
0
uik

⎤
⎦ , (1.76)

where p̂ik/p
i
k = f̂ ik / f̃

i
k = ãs,s , uik = u(t ik), and Ei

k = E(t ik). Note that M
i
k is in gen-

eral not symmetric and cannot be symmetrized as the image of the regularization
operator and the interpolation operator are different. The asymmetry is inherent
to HERK integration of DAE systems of index 2 with time-dependent constraint
operators (Hairer et al. 2006; Brasey and Hairer 1993). Note, however, Mi

k retains
symmetry for flow past non-moving rigid bodies. The nested projection technique
for Eq. (1.76), obtained from an operator–block-LU decomposition of Mi

k can be
written in projection-like form
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Solve for intermediate velocity: (Hi
F )−1u∗ = r ik (1.77a)

Solve for intermediate pressure: G†HFGd∗ = G†u∗ (1.77b)

Solve for intermediate IB forces: Sik f
∗ = Ei

k[u∗ − Hi
FGd∗] − uik (1.77c)

Update forces: f̂ ik = f ∗ (1.77d)

Correct pressure: p̂ik = p∗ − (G†Hi
FG)−1G†Hi

F (Ei−1
k )† f̂ ik

(1.77e)

Correct velocity: uik = u∗ − Hi
F [G p̂ik + (Ei−1

k )† f̂ ik ] (1.77f)

where the force Schur complement of the LU decomposition of Eq. (1.76) Sik is given
by

Sik = Ei
k H

i
F [I − G(G†Hi

FG)−1G†Hi
F ](Ei−1

k )†, (1.78)

where the identity operator is indicated by I. By exploiting themimetic, orthogonality
and commutativity properties, the above can be rewritten in a computationally more
convenient way such as

LC p
∗ = −G†r ik (1.79a)

Sik f̂
i
k = Ei

k H
i
C[r ik − G† p∗] − uik (1.79b)

p̂ik = p∗ + L−1
C G†(Ei−1

k )† f̂ ik (1.79c)

uik = Hi
F [r ik − G p̂ik − (Ei−1

k )† f̂ ik ], (1.79d)

where the Schur complement simplifies to

Sik = Ei
k[Hi

F + G(Hi
C)−1LCG

†](Ei−1
k )†. (1.80)

Note that with the exception of f̂ ik , every term can efficiently be computed with
either the point-operator representation of discrete operators or the Lattice Green’s
function fast multipole method (LGF-FMM), which will be outlined in some detail
in the next section.

With regards to the solving the force Schur complement (1.79b), there exits either
the possibility to use dense linear algebra techniques or iterative methods. In case of
iterativemethods, the conjugate gradient is a suitable candidate for a symmetric Schur
complement, implying rigid and stationary immersed boundaries or more generally,
formoving or deforming geometries, Krylov solvers such asGMRESorBiCGSTAB.
Note that for the rigid and non-moving case, the dense linear algebra route is more
convenient since the construction of Sik needs to be done only once and a Cholesky
decomposition can be stored and used to evaluate the forces.
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1.3.3 Lattice Green’s Function Method

In this section, we focus on how to efficiently solve elliptic difference equations
with the lattice Green’s function method (Liska and Colonius 2014) in unbounded
domains as they occur in the IBLGFmethod. The solutionmay be obtained by convo-
lution of the fundamental solution of the discrete operator (lattice Green’s function)
with the source terms of the equation. The LGF can be derived from Fourier integrals
and approximated through its through its asymptotic expansion. A significant advan-
tage of the FLGF method is that the formally unbounded meshes may be truncated
such that only regions with non-negligible source are retained in the computational
domain, yielding an adaptive block-structured mesh as shown exemplary in Fig. 1.9.

In what follows, the three-dimensional Poisson equation will serve as a model
equation, which is defined as:

[�ϕ](x) = h(x), supp(h) ⊆ �, (1.81)

where x ∈ R
3 and � denotes a bounded domain in R

3. The target field ϕ can be
obtained by convolution of the fundamental solution of theLaplace operatorGL (x) =
−1/(4π |x|) with the source field h(x) such that

ϕ(x) = [GL ∗ h](x) =
∫

�

GL(x − ξ)h(ξ)dξ . (1.82)

In the discrete setting, Eq. (1.81) can be expressed as

[LQϕ](xi ) = h(xi ), supp(h) ⊆ �h, (1.83)

where ϕ, h ∈ R
Q, xi ∈ Z

3, and �h is a bounded domain in Z
3. The target can then

be obtained by discrete convolution such that

ϕ(xi ) = [GL ∗ h](xi ) =
∑
x j∈�h

GL(xi − x j )h(xi ), (1.84)

where GL indicates the LGF of the discrete 7-pt Laplacian. By diagonalizing the
Laplace operator LQ in Fourier space, an expression for GL(xi ) can be derived (see,
e.g., Delves and Joyce 2001; Glasser and Zucker 1977), yielding

GL(xi ) = 1

8π3

∫

[−π,π]3

exp (−ixiξ)

2cos(ξ1) + 2cos(ξ2) + 2cos(ξ3) − 6
dξ . (1.85)

In addition, Eq.(1.85) can equivalently be written as a one dimensional, semi-infinite
integral as



28 B. Dorschner and T. Colonius

GL(xi ) = −
∞∫

0

exp(−6t)Ix1(2t)Ix2(2t)Ix3(2t)dt, (1.86)

where Ik(t) is the modified Bessel function of first kind and order k. Note that
Eq.(1.86) can be evaluated using an adaptive Gauss–Kronrod quadrature or alike in
a straightforward manner, but it is typically more efficient to evaluate the Green’s
function through its asymptotic expansion in the far-field, i.e., large |xi |. In particular,
the target field ϕ can be written as

ϕ(xi ) = ϕnear(xi ) + ϕfar(xi ) + ε(xi ), (1.87)

where

ϕnear(xi ) =
∑

x j∈�near
h (xi )

GL(xi − x j )h(x j ) (1.88)

ϕfar(xi ) =
∑

x j∈�h\�near
h (xi )

Aq
G(xi − x j )h(x j ), (1.89)

and �near
h , ε(xi ) are the near field and the error due to approximating GL(xi ) with

Aq
G(xi ) in the far-field, respectively. The q-term asymptotic expansion of GL(xi ) is

defined such that GL(xi ) = Aq
G(xi ) + O(|xi |−2q−1) and for q = 2 it reads

A2
G(x) = − 1

4π |x| − x41 + x42 + x43 − 3x21 x
2
2 − 3x21 x

2
3 − 3x22 x

2
3

16π |x|7 . (1.90)

In practice, the results from direct integration of Eq.(1.86) are tabulated for the near-
field (|xi | ≤ 100), and the asymptotic expansionwith q = 3 and q = 2 can be used in
the far-fields for 100 < |xi | ≤ 600 and |xi | > 600, respectively. This ensures an error
bound of the asymptotic expansion compared to the direct integration of |ε| < 10−12.

1.3.3.1 Fast Convolutions

The direct evaluation of Eq.(1.84) requires O(N 2) amount of work for N degrees
of freedom and is therefore prohibitive for large computational domains. A remedy
is the fast multipole method (FMM), which reduces the computational complexity
from O(N 2) to O(N ). In particular, the FLGF method (Liska and Colonius 2014)
uses a kernel-independent interpolation-based fast multipole method to compute the
discrete convolutions in conjunction with block-wise FFT convolution. The FMM
achieves linear complexity O(N ) by leveraging the fact that, the solution is much
smoother in the far-field than in the near-field for an elliptic kernel. Thus, a low-
rank representation of the kernel is sufficient to accurately compute the contribution
of far-field, while only the near-field requires full-rank representation of the kernel.
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Using the generic interpolation function φ(x) and the coarse grained sampling points
x0, ..., xn−1, a low-rank approximation of the kernel K (x, y) may be obtained by

K̃ (x, y) =
n−1∑
i=0

n−1∑
j=0

φ(x)K (xi , yi )φ( y). (1.91)

The discrete convolution can then be approximated by

ϕ(xi ) ≈
M−1∑
j=0

K̃ (xi , y j )h( y j ) =
M−1∑
j=0

n−1∑
p=0

n−1∑
q=0

φ(xi )K (x p, yq )φ( y j )h( y j ) i = 0, ..., N − 1,

(1.92)

where N is the number of target points and M the number of source points. The
near- and far-field contributions are accounted for by constructing a hierarchical
decomposition of the domain for which Eq.(1.92) is evaluated recursively. Typically,
an octree structure T (quadtree in two dimensions) is used for this purpose. Let the
tree have a depth LB and the root is assumed to have level 0 and the base level LB − 1
corresponds to physical domain. The tree nodes are also referred to as octants and
octants without children are leaf nodes. The set of leafs on level l is indicated by
Bl
Leafs. In the context of the FLGF, each tree node corresponds to a region, which is

defined to be a Cartesian block of Nb = n3b cells. Further, the i th octant or block at

level l is denoted by Bl
i and the set of all octants at level l by Bl =⋃Nl

B
i=0 Bl

i , where
Nl

B is the number of octants on level l. The set of children and the parents are denoted
by C(Bl

i ) and P(Bl
i ), respectively.

The target field uLB−1
i , defined on the octant BLB−1

i , consist of both near- and far-
field contributions. The near-field contribution is given by the interaction, i.e., con-
volution, with regionN(BLB−1

i ), containing the octant itself and the nearest neighbor
octants on the finest tree level LB − 1. The far-field contributions are then evaluated
recursively for the levels l = LB − 1, . . . , 0 and are defined as the convolution with
octants in the influence regionI(Bl

i ) = {B̂l
i ∈ F (Bl

i ) \ F (Bl−1
i )}, which includes the

well-separated octants, i.e., F (Bl
i ) =⋃LB−1

l=0 Bl \ N(Bl
i ), but excludes the regions

well-separated from its parentsF (P(Bl
i )). Schematically, the domain decomposition

in near and far-field regions is depicted in Fig. 1.7.
In the FLGF method, the octants are defined to be Cartesian blocks and the con-

volution between each block and its influence list can be computed by block-wise
FFT-based convolutions, which reduces to a complex Hadamard product in Fourier
space (see Liska and Colonius 2014, for details on FFT-based convolutions). Note
that compared to a direct summation as in Eq.(1.84), the computational complexity
is reduced from O(N 2

b ) to O(Nb log Nb) for each block convolution.
It should be clear from the above that given a union of source blocks

Bs =⋃Ns−1
i=0 Bs,i and target blocks Bt =⋃Nt−1

i=0 Bt,i the convolution can be eval-
uated as the sum of the individual convolutions as
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= + +

Fig. 1.7 Schematic of the hierarchical domain composition of the far-field (red, left) for an octant
BLB−1
i (blue, left). While the near-field consist of the nearest neighbors only, the far-field is com-

posed out of the set of influence lists for all levels. For level l the influence list contains the children
of the nearest neighbors of Bl

i ’s parent, which are not contained in the near-field, i.e., are well
separated. Reprinted from (Dorschner et al. 2020) with permission

ϕi =
∑
j∈Bs

conv(GL
i− j , f j ), for i = 0, ..., Nt − 1, (1.93)

where the convolution operator is denoted as conv and GL
i− j is the vector containing

the unique values ofGL(xi − x j ) evaluated on the grid points x j and xi of the blocks
Bt, j and Bs,i , respectively.

With these definitions and the corresponding tree structure, the evaluation of
Eq.(1.92) can be split into three consecutive steps. The first step is the upward pass,
where the effective source terms are computed on each level by iterating bottom-
up through the tree. Second, for each level, the convolution of each octant with
its influence region is computed. This is called the level interaction. Finally, in the
downward pass (iterating from the root to the leafs), all contributions are interpolated
and accumulated on the next level. Schematically, the FLGF method is shown in
Fig. 1.8 and can be summarized by the following algorithm:

1. Upward pass: Compute effective source terms at interpolation nodes
For l = LB − 2, ..., 0 : For i = 0, ...Nl

B

Fig. 1.8 Schematic of the fast multipole method: Left: Upward pass—Source regularization .
Middle: Level interaction—Convolution of a block (blue) with its influence list (red). Right:Down-
ward pass—Compute and accumulate the induced fields at the interpolation nodes. Note that each
FMM cell corresponds to a Cartesian block in the FLGF. Reprinted from (Dorschner et al. 2020)
with permission
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ĥli =
∑

j∈C(Bl
i )

R̂l+1ĥ j , (1.94)

where the regularization operator R̂l+1 is the adjoint of the interpolation operator
Ê l+1(see below).

2. Level Interaction: FFT convolution with the octant in the influence region
For l = 0, ..., LB − 1 : For i = 0, ...Nl

B

v̂li =
∑

j∈I(Bl
i )

conv(GL
i− j , f j ), (1.95)

where conv(·) is the FFT convolution operator.
3. Downward pass: Compute and accumulate induced field at interpolation nodes

For l = 0, ..., LB − 1 : For i = 0, ...Nl
B

ϕ̂l
i = v̂li + Ê l−1

i ϕ̂l−1
i , (1.96)

where the interpolation operator Ê l interpolates from the parent onto the child
block.

Owing to the regularity of the Cartesian block mesh, the interpolation operators
are implemented using Lagrangian polynomials, and nI ≤ 10 interpolation nodes
are used to yield a relative interpolation error of ε ≈ 10−12 for an analytic function
approximation. The regularization operator is given by the adjoint of the interpolation
operator and often called anterpolation. In summary, the FLGFmethod combines the
fastest methods for regular meshes, while retaining the geometrical flexibility and
overall linear complexity inherent to FMM. Excellent computational rates and par-
allel performance have been reported in Liska and Colonius (2014) and (Dorschner
et al. 2020).

1.3.3.2 Domain Adaptivity

As mentioned previously, the LGF method may truncate the formally unbounded
computationally domain to regions with non-negligible source. When the LGF is
employed in the context of the IBLGF this translates to solving the NSE only in
regions that are dictated by the flow evolution and cells which, up to a prescribed
threshold, do not affect the flow evolution may be removed in the course of a simula-
tion. This is a direct consequence of the vorticity,ω = ∇ × u, decaying exponentially
at large distances form the immersed body. For instance, considering the solution of
Eq. (1.79a):

p∗(xi ) = [GL
C ∗ y](xi ), y(xi ) = [−G†r ik](xi ), (1.97)
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where G†r ik is a discrete approximation of the divergence of the Lamb vector ∇ ·
l , where l = ω × u, while xi denotes a discrete location. Since ω → 0 at large
distances from the body, it follows that also∇ · l and its discrete counterpart become
exponentially small. Thus, the domain on which the field is induced is finite and is
truncated when G†r ik is smaller than a given threshold ε. When using this procedure,
the discrete velocity needs to be refreshed using the discrete velocityw = Cu in order
to obtain a consistent velocity field. The domain adaptivity is implemented using the
block-structured mesh as outlined above. For further implementation details on the
domain adaptivity, the reader is referred to Liska and Colonius (2016).

1.3.4 Examples

1.3.4.1 Flow Past a Sphere

In this section, the benchmark simulation of the flow past an impulsively started
sphere at Reynolds number Re = 3700 (Liska and Colonius 2017) is summarized.
Additional benchmarks and validation studies can be found in Liska and Colonius
(2017), Mengaldo et al. (2017). The turbulent flow past a sphere at Re = 3700 is a
challenging, canonical benchmark problem and has thus been investigated by many
researchers both experimentally (Kim and Durbin 1988) and numerically (Yun et al.
2006; Rodriguez et al. 2011; Dorschner et al. 2016). The nominal velocity of the
sphere is (U, 0, 0) and a small, initial perturbation is introduced in the flow field
in order to break any symmetries. The flow is computed for 0 ≤ t∗/U ≤ 60 using
81,920 Lagrangian markers, where t∗ indicates initialization from a large-time solu-
tion of a sphere at Re = 1000. The sphere has unit radius and the grid spacing was
chosen conservatively as �x � 4.3 × 10−3 to resolve the thin boundary layer on the
surface of the sphere. The time step size is chosen such that the CFL number based
on the maximum point-wise velocity remains below 0.9. The time-averaged results
were obtained over the last five large-scale vortex shedding cycles (St = 0.215). A
snapshot of the vortical structures using the Q-criterion is shown in Fig. 1.9 and is in
line with what is reported in the literature. The adaptive nature of the grid is shown
in Fig. 1.9, where the computational domain is comprised of only regions, where the
vorticity is non-negligible. In this setup, the threshold for the grid adaptivity was
chosen as ε = 5 × 10−4 and verified to accurately capture the unbounded domain
flow. The flow is further characterized by the mean surfaces stresses and the net body
forces. First, we consider the mean skin friction coefficient Cf = τw/( 12ρU

2), where
τw is the local wall shear stress and the pressure coefficient Cp = (p − p∞)/( 12ρU ),
where p and p∞ are the local and the free-stream pressure, respectively. Note that
the raw point-wise values of the surface stress tensor are partially filtered using the
boundary force post-processing technique (Goza et al. 2016), to construct a smoothed
boundary forces. The time-averaged results of Cp and Cf along the polar angle θ are
shown in Fig. 1.10. Finally, the mean values for drag coefficient Cd, base pressure
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Fig. 1.9 Vortex cores in the wake of a sphere at Re = 3700 are illustrated by isosurfaces of constant
Q-value. Depicted are isosurface of QD2/U2 = 2 colored by radial distance from the centerline of
the sphere in the streamwise direction. The mesh is a cross-sectional cut of the block-wise adaptive
computational domain that have been coarsened by a factor of two in each direction for visualization
purposes. Reprinted from Liska and Colonius (2017) with permission

Fig. 1.10 Comparison of the time-averaged pressure (left) and skin friction (right) coefficients as
functions of the polar angle, θ , for a sphere at Re = 3700. Results are compared to values reported
by Rodriguez et al. (2011) (DNS at Re = 3700), Kim and Durbin (1988) (exp. at Re = 4200), and
Seidl et al. (1997) (DNS at Re = 5000). Reprinted from Liska and Colonius (2017) with permission

coefficientCpb, separation angle θ s, polar locations of the minimum surface pressure
θp,min and of the maximum skin friction θτ,max are reported in Table 1.1 and shows
good agreement with the literature values.

1.3.4.2 Flow Past an Inclined, Rotating, Circular Disk

As an outlook, this setup can easily be extended to rotating disks by prescribing
appropriate boundary velocities for the Lagrangian IB points. Such studies are of
interest for developing novel designs of unmanned air vehicles or alike.While spheres
and disks have both been studied extensively in literature, significant discrepancies
between numerical and experimental measurements for disks and flat cylinders of
large aspect ratio have fueled recent interest in further numerical investigations and
thus makes it a good benchmark for the IBLGF (Gao et al. 2018; Tian et al. 2017;
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Table 1.1 Turbulent flow past sphere at Re = 3700 and the comparison of the mean values for drag
coefficient Cd, base pressure coefficient Cpb, separation angle θ s, polar locations of the minimum
surface pressure θ p,min and of the maximum skin friction θτ,max with literature values

Contribution Re Cd Cpb θ s θp,min θτ,max

IBLGF DNS 3700 0.389 −0.230 88.9 73 47

Yun et al. (2006) LES 3700 0.355 −0.194 90 − −
Rodriguez et al. (2011) DNS 3700 0.394 −0.207 89.4 72 48

Dorschner et al. (2016) DNS 3700 0.383 −0.220 89.993 − −
Kim and Durbin (1988) exp. 4200 − −0.224 − − −
Seidl et al. (1997) DNS 5000 0.38 − 89.5 71 50

Chrust et al. 2015). In addition, an extension to rotating disks (e.g., Frisbees) will
be presented. The rotating disk has been suggested as a configuration for a micro-air
vehicle based on the stabilizing influence of rotation on the flight dynamics (Potts
and Crowther 2001, 2002; Lorenz 2007).

The Reynolds number is defined as Re = U∞D sin(α)

ν
, whereU∞ is the free-stream

velocity, α is the angle of attack, and D is the disk diameter, which is set to unity.
The Strouhal number is defined by St = f D sin(α)

U∞ , where f is the frequency of the
primary vortex shedding.

Mean drag and lift coefficients for various angles of attack and a fixed Reynolds
number of Re = 500 are compared to the numerical simulations of Tian et al. (2017)
in Fig. 1.11. The grid spacing was chosen to be �x = 0.012 and the time step is
set to �t = 0.004. The adaptivity threshold for the grid was set to ε = 5 × 10−4

unless stated otherwise. For simulations at lower Reynolds numbers the grid spacing
is chosen based on the estimated scaling of the boundary layer. With an expected
Re− 1

2 scaling of the laminar boundary layer thickness, the value of (�x)Re
1
2 is kept

approximately constant as in Liska and Colonius (2017). The CFL number based
on the maximum point-wise velocity is kept below 0.5 by setting �t/�x = 1/3.
While in Tian et al. (2017) the disk was modeled to have a thickness of 0.002D, the
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Fig. 1.11 Drag and lift coefficient for various angles of attack α at Re = 500
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IBLGF simulations assume an infinitely thin disk, which is in turn regularized on the
grid scale via the discrete delta function. Mean quantities are averaged over at least
170 convective time units for unsteady solutions (α ≥ 25◦) and 130 units for steady
solutions (α ≤ 20◦). Good agreement between both numerical simulations validates
the IBLGF. Exemplary, in Fig. 1.13 the vorticity isosurfaces for ωx along with a slice
of the computational mesh are shown for angles of attack of α = 20◦ and α = 70◦,
respectively. Note the disjoint computational mesh for α = 70◦, which reduces the
computational cost significantly compared to a uniform solver (Fig. 1.12).

In addition, the simulations are validated by comparison of the critical Reynolds
number and Strouhal number as the flow transitions from a steady state regime to
a periodic state through a supercritical Hopf bifurcation with increasing Reynolds
number and fixed angle of attack. In Fig. 1.12, the threshold of the Hopf instability
as a function of angle of attack is plotted in terms of critical Reynolds and Strouhal
number. The critical values for both Reynolds and Strouhal number are obtained
by extrapolating from unsteady cases run near the critical point as done in Ghaddar
et al. (1986), Pereira and Sousa (1993). As apparent from the plot, the critical values
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Fig. 1.12 Critical Reynolds number Rec and critical Strouhal number Stc for various angles of
attack α

Fig. 1.13 Isosurfaces of streamwise vorticity ωx for flow over an infinitely thin disk at Re = 500,
λ = 0. The grid of blocks is shown on the spanwise xy-plane through the centerline of the disk.
Each block consists of 10 × 10 × 10 cells. Adaptive threshold is set to ε = 5 × 10−5
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Fig. 1.14 Isosurfaces of vorticity for flow over an infinitely thin disk at Re = 500, an angle of
attack α = 0 and rotating at a tip-speed ratio of λ = 3. See also caption of Fig. 1.13

agree well with the numerical simulations of Gao et al. (2018), Chrust et al. (2015).
Note that while (Chrust et al. 2015) modeled an infinitely thin disk, the simulations
reported in Gao et al. (2018) modeled the disk to have a thickness of 0.02D. A
snapshot of a rotating disk with a tip-speed ratio of λ = 3 is shown in Fig. 1.14 as an
outlook of future studies.

1.3.5 Toward AMR

Note that while in the IBLGF the grid is adaptive, the resolution is uniform, which
can become limiting in many applications. In fact, while uniform Cartesian meshes
can significantly decrease the cost per degree of freedom (DoF), the total number
of DoF can be prohibitive for strongly anisotropic or inhomogeneous problems with
localized source regions. This issue is particularly prominent for, e.g., high Reynolds
number flows or problems where the range of scales is large. A particularly acute
challenge is for bluff bodieswhere onemust resolve thin attached laminar or turbulent
boundary layers at the same time as a broad wake. Here, adaptive mesh refinement
methods (AMR), pioneered by Berger and Colella (1989), Berger and Oliger (1984)
can be crucial. These methods adapt the local density of the computational elements
to the local spatial resolution requirements. In the context of the IB method, AMR
techniques have been embedded (Roma et al. 1999; Griffith et al. 2007; Vanella et al.
2014) and have shown to greatly reduce the computational costs of simulations. In
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addition, block-wise AMR has become popular compared to cell-wise refinement
(see Dubey et al. 2014 for a survey of popular block-structured mesh refinement
packages), since the overhead of the underlying data structure and load balancing
has shown to be significantly more efficient (Nissen et al. 2013; Dreher and Grauer
2005).

While the FLGF method discussed above is adaptive and utilizes a hierarchical
block-structured grid for the FMM solution, it is not an AMR technique. A natural
extension of the FLGF is thus to a block-structured AMR solver without additional
overhead of the underlying data structure. Note, however, that when refining the
physical domain by embedding locally refined grid patches within the computa-
tional domain, the free-space boundary conditions implied by the lattice Green’s
functions become problematic since the refinement patches itself do have a well
defined boundary condition, which is imposed by the surrounding domain and is not
the free space. A remedy was found in Dorschner et al. (2020), by projecting the
source field onto each level within its support by appropriate coarsening and inter-
polation operators and subsequent application of the FLGF method on each level
independently. The resulting multi-resolution scheme retains linear computational
complexity and second-order accuracy and additional allows for arbitrary block-wise
refinement by factors of two. An exemplary mesh topology of the multi-resolution
scheme is shown in Fig. 1.15 for a thin vortex ring.

While inDorschner et al. (2020) the groundwork toward amulti-resolution IBLGF
solver was laid, its incorporation into the full IBLGF solver is ongoing work.

Fig. 1.15 Mesh topology and vorticity field for a thin vortex ring and the numerical solution of the
streamfunction for five levels of refinement
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1.4 Summary and Future Directions

In this chapter, we have summarized a projection approach to the IB method that
exploits features of the underlying, uniform Cartesian mesh to achieve robust, effi-
cient solution of incompressible external flow problems. Extensions for fully coupled
FSI for thin elastic structures, and a novel fast lattice Green’s function for 3D prob-
lems were highlighted. Examples problems such as inverted flag flutter, and flow
past a sphere and rotating disks were presented to demonstrate the capabilities of the
numerics for complex flow problems.

The IBPM takes advantages of formulating the continuity and no-slip boundary
conditions as Lagrange multipliers to enforce these constraints to prescribed preci-
sion without the need of an artificial constitute relation. This formulation removes
any additional constraints on the CFL number for rigid bodies, which is then only
limited by the choice of the time-stepping algorithm. Through carefully chosen dis-
crete operators, a modified Poisson equation arises, which is symmetric and positive
definite and thus amenable to efficient numerical solvers such as conjugate-gradient
method. In addition, we reviewed appropriate filtering techniques to accurately com-
pute surfaces stresses and forces, which allowed the extension to strongly coupled
fluid interaction for thin elastic structures. The simplicity of the IBPM formulation
proves useful in finding (potentially unstable) steady equilibrium solutions of cou-
pled FSI problems, as well as solving associated global linear stability problems.
This capability was demonstrated on an inverted elastic flag setup.

When combined with a lattice Green’s function approach, the IB method can be
used for three-dimensional external flows while, at the same time, minimizing the
computational expense by restricting the computational domain to a snug region
near the immersed surface in which the vorticity is nonzero. The method naturally
incorporates exact free-space boundary conditions. By using a viscous integrating
factor half-explicit Runge–Kutta scheme in combination with the approximation-
free nested projection technique and exploiting mimetic properties of the discrete
operators, the projection steps reduce to simple discrete elliptic problems, which can
be solved efficiently with the FLGFmethod. The FLGFmethod is based on a kernel-
independent interpolation-based fast multipole method and therefore exhibits linear
computational complexity, while taking advantage of a block-structured Cartesian
mesh by using standard FFT routines for fast convolutions.

While the combined IBLGF approach has been demonstrated in benchmarks such
as the turbulent flow past a sphere or flow past an inclined rotating disk, its exten-
sion to higher Reynolds numbers requires further developments. While it is true
that uniform grids in general allow us to use efficient numerical solvers, the num-
ber of degrees of freedom becomes prohibitive for the large range of scales in high
Reynolds number flows. Thus, future efforts are directed toward a multi-resolution
IBLGF scheme. A block-structured multi-resolution algorithm based on LGFs for
elliptic difference equations, which retains favorable computational complexity and
necessary regularity has been detailed in Dorschner et al. (2020). Incorporation in the
IBLGF will be reported in future contributions. Such multi-resolution scheme will
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not only open the door for high Reynolds number direct numerical simulations but
also inclusion of explicit turbulence models such as wall-resolved or wall-modeled
large-eddy simulations (LES). In the context of IB, this has been successfully imple-
mented in Piomelli and Balaras (2002), Iaccarino and Verzicco (2003), Yang and
Balaras (2006), You et al. (2007), Catchirayer et al. (2018) (and references therein)
and therefore provides a promising path toward high Reynolds numbers and appli-
cations with engineering relevant complexity. In addition, by using Krylov solvers
such as GMRES, BIGSTAB, and their flexible extensions (Saad 1993; Chen et al.
2016) to solve the force Schur complement, the IBLGF scheme can be extended
to a fully coupled three-dimensional fluid–structure solver. This would retain the
benefits of IBLGF in terms of accuracy, scalability, and efficiency due to truncated
computational domain, while increasing the range of applications significantly.
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Chapter 2
Direct Lagrangian Forcing Methods
Based on Moving Least Squares

Marcos Vanella and Elias Balaras

2.1 Introduction

Immersed boundary methods have emerged as an option to represent a stationary
or moving body in a fluid flow simulation, where the primitive variables of the
flow (pressure and velocity in case of incompressible flow) are evolved using fast
solvers on logically Cartesian grids. A common feature of all immersed boundary
methods is that grid lines need not be aligned with body surfaces. The effect of
the boundaries on the fluid is approximated by a forcing function or local velocity
reconstructions. Their efficiency has been particularly exploited over the years in
cases of moving bodies and fluid–structure interactions (FSI). The representation of
an immersed body is usually done using unstructured surface meshes. The objective
of all immersed boundary variants is to approximate the no-slip boundary condition
on the immersed surface. They either assume elastic or viscoelastic properties on
incompressible solids, and derive their equations of motion in a continuum setting
(Peskin 1972, 1977; Goldstein et al. 1993; Peskin 2003; Griffith et al. 2007), or
impose kinematic constraints on the surrounding Eulerian velocity collocation points
(direct Eulerian forcing; Mohd-Yusof 1997; Fadlun et al. 2000; Balaras 2004; Mittal
and Iaccarino 2005), or the surface control points themselves (direct Lagrangian
forcing; Uhlmann 2005; Vanella and Balaras 2009; Pinelli et al. 2010; Kempe and
Frohlich 2012; Krishnan et al. 2017).

The specified forces to impose boundary conditions are computed directly from
the momentum equations or can be obtained using Lagrange multipliers on the set
of equations governing the FSI problem (Glowinski et al. 1999, 2000; Colonius and
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Taira 2008). In general, a surface control (marker) point, l, is related to a set Eulerian
grid points, eIJ , as shown in Fig. 2.1. The body surface �s divides the solid region
�s from the fluid region �f. Depending on the implementation, marker velocity and
location are compared to their Eulerian counterparts and used to define a suitable
force density or velocity to be imposed on the stencil points. The immersed boundary
formulation proposed by Peskin (1977, 2003) considers the principle of least action
(virtual work for conservative systems) for a continuous elastic material subject to
the incompressibility constraint. The material is defined in curvilinear coordinates
(ξ, η, ψ) and assumed elastic in a subset of these. The equations ofmotion are derived
in Eulerian coordinates considering constrained virtual velocities. It is important to
note that the elastic body motion is described in terms of an Eulerian velocity field:

ρs(x, t)
Du(x, t)

Dt
= f(x, t) (2.1)

where ρs is the solid’s density, Du/Dt is the material time derivative of the solid’s
spatial velocity field and f is the elastic force density, which includes the pressure
gradient term and tangential stresses along the curvilinear directions; the latter are
functions of shearing strains, dependent on the displacement field. The incompress-
ible viscous flow equations have analogous form to Eq. (2.1), with the addition of a
viscous term, μ�u, where μ is the fluid viscosity. In these equations, the Eulerian
quantities ρs and f are related to their material counterpart employing the definition
of the Dirac delta function:

ρs(x, t) =
∫

M (ξ, η, ψ)δ(x − X(ξ, η, ψ, t))dξ dη dψ (2.2)

f(x, t) =
∫

F(ξ, η, ψ, t)δ(x − X(ξ, η, ψ, t))dξ dη dψ (2.3)

Fig. 2.1 Lagrangian and Eulerian meshes: fluid �f and solid �s regions divided by discretized
body surface �s. a Example support domain in direct Eulerian forcing. Forcing point eIJ lays in
normal direction to surface point l. b Example support domain for direct Lagrangian forcing, a
force density is computed in marker l and redistributed to the associated Eulerian stencil
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where M and F are the Lagrangian counterparts to ρs and f . In addition,

∂X
∂t

= U(X, t) =
∫

u(x, t)δ(x − X(ξ, η, ψ, t))dx. (2.4)

Equations (2.2)–(2.4) provide strict mathematical means to transfer the density, force
and velocity fields between Eulerian and material descriptions. All integrals make
use of the same kernel function, δ(x − X). This formulation assumes that the incom-
pressible solid material is confined by a closed manifold surface within the three-
dimensional space,which depends on a set of surface coordinates (ξ, η). Then, a set of
sufficiently dense markers is used together with this discrete kernel to interpolate the
velocities defined by Eq. (2.4) from the Eulerian stencil to each marker, or to spread
back to the Eulerian stencil the resulting mass and force densities in Eqs. (2.2) and
(2.3). In numerical simulations, the continuum equations are discretized, and inter-
action among Lagrangian and Eulerian grids has to be defined by the use of a smooth
approximation to the Dirac delta function δh. The choice of this approximation is
constrained by the need to preserve mass, force and moments among the two sets of
grids, while δh(x) → δ(x) as h → 0. A common definition of δh is:

δh(x) = pc �

(
x1
hx

,
x2
hy

,
x3
hz

)
, (2.5)

where pc is a normalization factor and � is a function of the coordinates x1, x2, x3 of
point x and Eulerian cell sizes hx, hy, hz . In several implementations, the expression
of � has been further simplified:

�

(
x1
hx

,
x2
hy

,
x3
hz

)
= φ

(
x1
hx

)
φ

(
x2
hy

)
φ

(
x3
hz

)
, (2.6)

effectively reducing the interpolation to the dimension by dimension application of
a scalar function φ(ς). The properties of φ are found from the constraints previously
named for δh. The interpolation function φ(ς) is assumed continuous, and must have
partition of unity and zero first moment properties to conservemomentum and torque
transfer (Peskin 2003). The method described above requires the definition of elastic
properties for an immersed solid, which can be problematic when used in rigid body
dynamical systems (Balaras 2004; Mittal and Iaccarino 2005; Lai and Peskin 2000).

Alternatively one can consider directly the discretized momentum equations and
introduce forcing such that the immersed boundary no-slip and no-penetration condi-
tion is approximated (Mohd-Yusof 1997; Fadlun et al. 2000). Consider, for example,
the two-dimensional setting of Fig. 2.1a. A forward Euler time discretization from
time step n to n + 1 gives:
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ud
IJ − un

IJ

�t
= rhs

(
un, pn

) + fIJ (2.7)

fIJ = ud
IJ − ũIJ

�t
, ũIJ = un

IJ + �t rhs
(
un, pn

)
(2.8)

where udIJ is the velocity prescribed on an Eulerian point eIJ at the time level n + 1.
The explicit rhs contains viscous, advective and pressure gradient terms, and fIJ is
the force density required to approximate un+1

IJ with ud
IJ . Also, ũIJ is the intermediate

velocity field used in fractional step or pressure-correction methods (Perot 1993;
Armfield and Street 2002). Note that fIJ can be computed directly from Eq. (2.7),
only when all terms are treated explicitly. When no wall-modeling is employed, the
velocity ud

IJ is generally interpolated from a stencil utilizing points on the immersed
body surface, ul , and external Eulerian points (fluid points):

ud
IJ = φd

l ul +
∑
α,β

φI+α,J+βun+1
I+α,J+β (2.9)

where the subscript l and indexes α, β ⊂ {0,±1,±2, . . .} s.t. |α| + |β| > 0 iden-
tify the Lagrangian marker and external fluid points that compose the stencil.
φd
l , φI+α,J+β are interpolation functions. Note that in fractional step methods, the

velocities un+1
I+α,J+β on the fluid stencil are not known a priori when defining the force

field fIJ , so in general intermediate velocities are used. In FSI problems, ul is com-
puted from the equations governing the dynamics of the body (i.e., Hou et al. 2012;
Yang et al. 2008; Vanella et al. 2010). The Eulerian grid points where the velocity
(and in some cases pressure) field is reconstructed can be defined immediately out-
side the object as shown in Fig. 2.1a (Fadlun et al. 2000; Balaras 2004; Yang and
Balaras 2006), inside the object (Mittal et al. 2008), or both (Yang and Balaras 2006;
Luo et al. 2012). Reviews on Eulerian forcing methods can be found in Mittal and
Iaccarino (2005) and Hou et al. (2012).

Lagrangian direct-forcing schemes have also been proposed (Uhlmann 2005;
Vanella and Balaras 2009; Pinelli et al. 2010). Here, the direct-forcing function
is computed on Lagrangian markers, rather than on the Eulerian grid nodes. Equa-
tion (2.8) is now defined in material coordinates:

Fl = Ud
l − Ũl

�t
, Ũl = Un

l + �t RHS(un, pn), (2.10)

where the upper case symbols denote the same variables as in Eq. (2.8), but at the
surface marker points. Ũl is the Lagrangian counterpart of the intermediate velocity
ũIJ . The force density Fl plays the role of a penalization force similar to the elastic
force density (Eq.2.3) in Peksin’s formulation (Peskin 1977, 2003). However, its
derivation is based on a kinematic constraint given by the no-slip condition on the
solid boundary. Discrete transfer operators Ih,Th for interpolation and spreading are
also required:
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Ũl = Ih(̃uI+α,J+β) (2.11)

fI+α,J+β = Th(Fl), (2.12)

where index pairs α and β refer to the Eulerian interpolation stencil related to each
marker l. In Fig. 2.1b, a Lagrangian marker l associated with a sample five-point
kernel stencil is shown. The closest point eIJ to l is used to define the stencil. The
requirements on these operators are similar to the continuum case: Ih should be mean
preserving and accurate to the order of the spatial discretization, and ideally volume-
conserving; Th should be smooth, force and torque preserving, have compact support
and low transpiration across the body surface. Assuming the interpolation stencil is
composed of ne Eulerian grid points, then the interpolation operator, Ih, for the scalar
field, v, can be defined by the sums:

Vl =
ne∑
k=1

φl
k(xk ,Xl)vk , (2.13)

where l refers to a Lagrangian surface marker, vk are the values of v on the sten-
cil points (k → IJ in Fig. 2.1) and the φl

k are a set of interpolation functions. The
spreading operator Th for a field f from a set of Lagrangian markers to an Eulerian
point k can also be defined as:

fk =
nl∑
l=1

ϕl
k(xk ,Xl)Fl, (2.14)

where the ϕl
k(xk ,Xl) are a set of spreading coefficients, and nl is the number of

Lagrangian markers related to the grid point k. The discrete transfer operations given
by Eqs. (2.13) and (2.14) should be constructed in a way that the requirements for
Ih, Th discussed above are satisfied. To this end, several schemes have been proposed
on the literature. Uhlmann (2005) used the regularized delta functions δh introduced
in Peskin (1972) as kernels for interpolation and spreading of variables between the
Eulerian and Lagrangian grids. The overall implementation was targeted to rigid
spherical particle suspensions in a laminar and turbulent flows. Other options for
building interpolation and transfer functions are based on meshless techniques and
scattered data approximation (Li and Liu 2004; Liu and Gu 2005). These include the
use of the reproducing kernel particle method (RKPM) (Pinelli et al. 2010), moving
least squares (MLS) (Vanella and Balaras 2009; de Tullio and Pascazio 2016; Le
and Khoo 2017; Wang et al. 2019) and inverse distance interpolation (ID) (Krishnan
et al. 2017). In next section, we describe amethodology to build the transfer functions
using moving least squares interpolation in Cartesian grids.
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2.2 Defining Lagrangian Forcing Transfer Functions Using
Moving Least Squares

2.2.1 Building the Transfer Kernels

We construct our transfer operators using MLS shape functions with compact sup-
port (Lancaster and Salkauskas 1981; Liu andGu2005). For eachLagrangianmarker,
we: (i) Identify the closest Eulerian grid node. Referring to Fig. 2.2a, a marker la is
associated with the grid node xa, which is in the center of a cell with dimensions
hx and hy in the x- and y-directions, respectively. Marker lb is associated with the
grid node xb and so on. Note that more than one Lagrangian markers from the same,
or different immersed bodies, can be associated with the same Eulerian grid point.
(ii) Define a support domain around each Lagrangian marker, in which the shape
functions will be constructed. In our case, the support domain is a rectangular box
of size 2Hx × 2Hy × 2Hz centered at the location of the marker. Hx, Hy and Hz are
different for each marker and are proportional to the local Eulerian grid. We use
Hx = 1.2hx, Hy = 1.2hy and Hz = 1.2hz found to be a good compromise on struc-
tured grids (Vanella and Balaras 2009). (iii) Associate a volume, �V l = Alhl (Al is
the area of the body surface associated with marker l, and hl is a local thickness to
be defined) to each marker point.

In Fig. 2.2a, the associated volumes �V la and �V lb for markers la and lb are
shown. There is no overlapping between successive volumes, �V l , and the sum of
all local Al is equal to the total area of the immersed object surface. We define the

Fig. 2.2 a Definition of the support domain for two neighboring Lagrangian markers, lA and
lB, which are color coded for clarity. XA and XB denote the closest Eulerian nodes to lA and lB,
respectively. The corresponding volumes �V are also shown (dashed line). b The normal probe
defined by the Lagrangian marker l and point, e is shown together with the support domain used in
the MLS approximation. Figure reprinted with permission from Vanella and Balaras (2009)
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transfer operator to interpolate the component Ũ l
i (i = 1, 2, 3) of velocity Ũl , from

corresponding velocity components ũki of the stencil ũI+α,J+β , given by Eq. (2.11).
Using the MLS method, Ũ l

i for each Lagrangian marker, l, can be approximated in
its support domain as follows:

Ũ l
i (x) =

m∑
j=1

pj(x)aj(x) = pT (x)a(x), (2.15)

where pT (x) is the basis functions vector of length m, a(x) is a vector of coef-
ficients and x = (x, y, z) is a position within the interpolation stencil region (we
are interested in the position of the Lagrangian marker Xl). We use a linear basis,
pT (x) = [ 1 x y z ], which is a cost-efficient choice and represents the field variation
at minimum linearly. To obtain the coefficient vector, a(x), the following weighted
L2-norm is defined:

J =
ne∑
k=1

W
(
x − xk

) [
pT (xk)a(x) − ũki

]2
, (2.16)

where xk is the position vector of the Eulerian point k in the stencil, ũki is the inter-
mediate velocity in direction i for grid point k and W (x − xk) is a weight function
defined below. ne is the total number of grid points in the interpolation stencil, which
for the linear basis, involves five and seven points in two- and three-dimensions,
respectively. We set the closest point to the Lagrangian marker to be the center point
in the stencil. Minimizing J with respect to a(x) leads to:

A(x) a(x) = B(x) ũki with,

A(x) =
ne∑
k=1

W (x − xk)p(xk)pT (xk),

B(x) = [W (x − x1)p(x1) · · · W (x − xne)p(xne)], and

ũki = [ũ1i · · · ũnei ]T . (2.17)

The size of matrix A(x) depends on the size of the basis vector, p(x), and it is 3 × 3
in two-dimensions and 4 × 4 in three-dimensions, while B(x) is of size 3 × ne in
two-dimensions or 4 × ne in three-dimensions. Combining Eqs. (2.15) and (2.17)
one can write Ũ l

i as follows:

Ũ l
i (x) =

ne∑
k=1

φl
k(x)ũ

k
i = �T (x)ũki (2.18)

where �(x) = p(x) A(x)−1 B(x) is a column vector with length ne, containing the
shape function values for marker point l. Cubic splines are used for the weight
functions, W (x − xk), above, which can be written as:
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W (x − xk) = Ws(x − xk)Ws(y − yk)Ws(z − zk) (2.19)

Ws(xi − xki ) =
⎧⎨
⎩
2/3 − 4rk

2 + 4rk
3 for rk ≤ 0.5

4/3 − 4rk + 4rk
2 − 4/3rk

3 for 0.5 ≤ rk ≤ 1.0
0 for rk > 1.0

(2.20)

where rk = |xi − xki |/Hi, and xi = x, y, z. These functions aremonotonically decreas-
ing and are sufficiently smooth in the support domain. The resulting shape functions
reproduce exactly the linear polynomial contained in their basis and possess the parti-
tion of unity property

∑ne
i=1 φi(x) = 1 (Liu and Gu 2005). Also, the field approxima-

tion is continuous on the global domain as theMLS shape functions are compatible.
Note that in practice, to avoid ill conditioning of the matrix A(x), the origin of the
coordinate system is shifted to the location of the Lagrangian markerXl (Liu and Gu
2005). Equation (2.18) gives Ũ l

i , which can be substituted into the left of Eq. (2.10)
to obtain the volume force Fi on Lagrangian markers. To transfer Fi to the Eulerian
points associated with each marker l, the same shape functions φl

k are used properly
scaled by a factor cl , determined later. The forces on the Eulerian grid nodes are:

f ki =
nl∑
l=1

clφ
l
kF

l
i , (2.21)

where f ki is the volume force in the Eulerian point k, direction i, φl
k is the shape

function relating variables between grid point k and marker l, and Fl
i is the force

in marker l. To properly rescale the shape functions, we require that the total force
acting on the fluid is not changed by the transfer:

nte∑
k=1

f ki �V k =
ntl∑
l=1

Fl
i �V l (2.22)

where�V k = (hx × hy × hz) is the volume associatedwith the Eulerian grid point k,
and �V l = Alhl is the volume associated with the marker l, with hl = 1/3

∑ne
k=1 φl

k
(hx + hy + hz). nte and ntl are the total number of forced grid points and total number
of Lagrangian markers, respectively. Also, the area Al for marker l is obtained by
a simple angle averaging process. Substituting Eq. (2.21) into Eq. (2.22) and rear-
ranging the sums in the left hand side in terms of the total number of markers we
get:

ntl∑
l=1

ne∑
k=1

φl
k�V kclF

l
i =

ntl∑
l=1

�V ElclF
l
i =

ntl∑
l=1

Fl
i �V l (2.23)

where �V El is the averaged Eulerian grid volume associated with the Lagrangian
marker l. For Eq. (2.23), to hold the scaling factor cl needs to be set to:



2 Direct Lagrangian Forcing Methods Based on Moving Least Squares 53

cl = �V l

�V El
= Alhl

�V El
, (2.24)

One can also show that the above scheme guarantees the equivalence of total torque
between the Eulerian and Lagrangian meshes (Vanella and Balaras 2009).

The computational cost of building the transfer functions φl
k is mainly related

to the inversion of matrix A(x). Strategies to speedup this step have been recently
presented in the literature (Li et al. 2015; Spandan et al. 2018). It should be noted
that the selected stencil size will define the forcing band size and the sharpness
of the boundary representation. Lagrangian forcing methods have in general first-
order overall asymptotic accuracy (Li and Ito 2006), although numerical evidence of
higher accuracy in selected tests problems has been reported in the literature forMLS
transfer kernels (Vanella and Balaras 2009; Li et al. 2015; de Tullio and Pascazio
2016; Krishnan et al. 2017), as well as the ID interpolation scheme (Krishnan et al.
2017). It is important to note that the immersed boundary force constructed does not
span the interior of solids. This is computationally efficient (no need to know which
cells are inside and which are outside of a complex volume, and force interior cells),
specially in moving object problems and FSI. This may result, however, in higher
flow penetration into the object than seen in Eulerian forcing methods, but strategies
to minimize it can be found in the literature (Kempe and Frohlich 2012). Another
important consideration is the marker density on the solid surface, which has to be
such that continuity of the forcing band is assured. This is not trivial to achieve, in
particular, in cases where the body is allowed to translate across different Eulerian
grid resolutions. In Sect. 2.3, we will discuss this issue in detail and present a method
to perform Lagrangian mesh adaptivity.

2.2.2 Estimating Surface Forces from Linearized Fields

The local hydrodynamic force per unit area on a surface element,

f Hi = τjinj =
[
−pδij + μ

(
∂ui
∂xj

+ ∂uj
∂xi

)]
nj, (2.25)

is computed directly from the flow field around the body (where f Hi is the hydrody-
namic surface force in the xi direction, τji is stress tensor, and nj is the direction cosine
of the normal unit vector in xj direction). The use of Eq. (2.25) requires estimating
p and ∂ui/∂xj on the body surface. For each Lagrangian marker, l, on the body we
create a normal probe by locating an external point, e, at distance hn from the surface
(see Fig. 2.2b). The distance hn can be set to: hn = (

hx + hy + hz
)
/3. To compute the

surface pressure at marker, l, we first compute the pressure, pe, at point e, using the
MLS interpolation described previously. The support domain in this case is centered
around point e as shown in Fig. 2.2b. Next, the value of ∂p/∂n is obtained from the
momentum equation normal to the boundary (Yang and Balaras 2006):
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∂p

∂n
= −Du

Dt
· n, (2.26)

where n is the normal unit vector passing through the marker l, and Du
Dt is the accel-

eration of the marker. The value of the pressure at the surface is then obtained from:

pl = pe − ∂p

∂n
hn (2.27)

The velocity derivatives, ∂Ui/∂xj, at the location e for each Lagrangian marker,
l, are computed by differentiating Eq. (2.18):

∂Ui

∂xj
=

ne∑
k=1

∂φk

∂xj
ui, (2.28)

where ∂φk/∂xj comes from the solution of an additional system of equations similar
to (2.17) (see Liu and Gu 2005). As hn is of the order of the local grid size, and
assuming a linear velocity variation near the body, the derivatives, ∂Ui/∂xj, defined
in Eq. (2.28) are good approximations for the derivatives ∂ui/∂xj, at the surface.
As we will demonstrate in the example below, the normal probe approach utilizing
Eq. (2.25) results in accurate prediction of the surface forces when the grid resolution
is sufficiently high to resolve the local velocity gradients near the immersed boundary.
For high Reynolds numbers, where this condition cannot be satisfied due to cost
considerations, a model-based enhancement strategy is discussed in Sect. 2.4.

2.2.3 Example: Oscillating Cylinder in a Cross-Flow

In this example, we consider the case of a transversely oscillating cylinder in a
cross-flow. The dominant parameters are the Reynolds number Re = U∞D/ν (U∞
is the inflow velocity), forcing frequency, fe and amplitude, a0 of the oscillation.
When fe varies around the natural shedding frequency, f0, interesting phenomena
occur due to the complex energy transfer between the fluid and the body (Gu
et al. 1994; Guilmineau and Queutey 2002). Capturing the detailed flow physics
for this problem requires an accurate reproduction of the vorticity dynamics on the
cylinder surface and is a stringent test for non-boundary-conforming schemes. We
use the parametric space from experiments (Gu et al. 1994), boundary-conforming
simulations (Guilmineau and Queutey 2002) and computations using an Eulerian
direct-forcing scheme (Yang and Balaras 2006). The motion of the cylinder is given
by y(t) = a0 sin(2π fet). We consider three cases with Re = 185, a0 = 0.2D and
fe/f0 = 1.0, 1.1, 1.2, respectively. For all cases the computational domain was set to
50D × 30D in the streamwise and cross-stream directions, respectively; the cylin-
der located at 10D from the inflow. Free-slip conditions are used at the freestream
boundaries and a convective condition at outflow boundary (Orlanski 1976).We used
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two stretched grids with resulting cell sizes around the cylinder�x = �y = 0.008D
and �x = �y = 0.004D. A series of tests for flow over a stationary cylinder was
first conducted to examine the sensitivity of the results to the grid resolution. Mean
and root-mean-square (rms) values of the drag and lift coefficients on the fine grid
were CD = 1.377, Crms

D = 0.0296 and Crms
L = 0.461, and the corresponding values

on the coarser grid are within 1.5% of the above, showing grid independence of the
results.

The temporal evolution of the lift and drag coefficients for the case of the oscil-
lating cylinder are shown in Fig. 2.3a, b. Note the scheme gives a smooth variation
of the force coefficients. In Fig. 2.3c, a comparison of CD, Crms

D and Crms
L for the

different excitation frequencies is shown with the corresponding results from the
named references. A comparison for the phase angle between the lift and transverse
displacement is shown in Fig. 2.3d. The largest discrepancy appears in CD and is of
the order of 3.5%. We note that the grid resolution around the cylinder used here is
comparable to the one in the reference computations, where �x ∼ 0.005D.

Next, we assess local forces. In Fig. 2.4, the distributions of surface pressure and
skin friction coefficients, Cp and Cf, are shown for a time level corresponding to the
extreme upper position. Results for both grids are included from our computations
and are compared with corresponding results from Guilmineau and Queutey (2002)

Fig. 2.3 Drag and lift coefficients as a function of time for the case of cylinder oscillating in a cross-
flow for a fe/f0 = 1.0, and b fe/f0 = 1.2 (— CD and - - CL). c Comparison of force coefficients.
◦ CD, � Crms

D , Crms
L are the present results for the fine grid; — CD, - - Crms

D , -·- Crms
L from

Guilmineau and Queutey (2002), and +CD,×Crms
D , � Crms

L from Yang and Balaras (2006). d Phase
angle between lift force and vertical displacement. � are the present results on the fine grid; - -
Guilmineau and Queutey (2002) and × Yang and Balaras (2006). Figure reprinted with permission
from Vanella and Balaras (2009)
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Fig. 2.4 Distribution of the pressure and skin friction coefficientsCp andCf for the case of a cylinder
oscillating in a cross-flow. The cylinder is located at the extreme upper position. -.- present results
for �x = 0.008D, — present results for �x = 0.004D, ◦ body-fitted computations in Guilmineau
and Queutey (2002), - - non-boundary-conforming computations in Yang and Balaras (2006).
a fe/f0 = 1.0; b fe/f0 = 1.2. Figure reprinted with permission from Vanella and Balaras (2009)

and Yang and Balaras (2006). The higher sensitivity ofCf to grid resolution results in
slightly lower peak values on our coarse grid computations. A method for improving
shear stresses at the wall will be presented in Sect. 2.4. The finer grid results agree
well with the reference data. We note in this and other following examples that Cp

is less sensitive to the grid resolution.

2.3 Introducing Lagrangian Mesh Adaptivity

2.3.1 Overview

In the class of methods described above the equations of fluid motion are solved
on a fixed Eulerian grid, and the immersed body is represented by a set of surface
nodes and elements, defining a Lagrangian grid. The relation between these two
grids is important to the accuracy, robustness and efficiency of the method. The
criteria, however, for designing either one are usually very different. In the case of
the Lagrangian grid, for example, the number and size of surface elements are guided
by the complexity and local curvature of the surface, while for the Eulerian grid is
guided by velocity and pressure gradients. The sensitivity to the relation between the
two grids also depends on the specifics of the forcing scheme. For example, direct-
forcing schemes, where the solution is reconstructed around an Eulerian grid node
in the neighborhood of the body (i.e., Balaras 2004), are less sensitive compared to
schemes where a forcing function is computed at the Lagrangian markers, such as
the ones considered here.
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In particular, one of the main requirements in all Lagrangian forcing schemes is
that the Lagrangian and Eulerian grids need to be of comparable resolution to ensure
proper transfer of forces fromone grid to the other. An examplewhere the Lagrangian
grid is fine enough to maintain the continuity of the forcing band across the Eulerian
grid is sketched in Fig. 2.5a, while a case where a breakdown of continuity of the
forcing field happens is shown in Fig. 2.5b. The latter scenario is common in practical
applications as the Eulerian grid is refined in areas of high-velocity gradients, and
Lagrangian grid is refined in areas with high curvature. Even in simple geometrical
configurations, it is difficult to enforce both constraints simultaneously. Consider,
for example, high Reynolds number flow around a sphere. The boundary layers
originating from the stagnation point in the front are very thin, requiring a fine
Eulerian grid to resolve them. As the Reynolds number increases, the Eulerian grid
needs to be refined accordingly. To ensure that the forcing is properly transferred
(no-slip condition correctly approximated), similar refinement needs to be done to
the Lagrangian grid, although the geometry is already represented by a sufficient
number of elements.

It is, therefore, conceivable that some form of local adaptive refinement/de-
refinement of the Lagrangian grid, to satisfy the constraints coming from neigh-
boring Eulerian nodes, will improve the accuracy and robustness of most immersed
boundary approaches. An h-refinement strategy, however, where local refinement is
achieved by splitting existing surface elements into several smaller ones, or by locally
introducing additional nodes, will significantly increase the cost as well as the imple-
mentation complexity. A logical option is distributing Lagrangian markers on each
triangle surfaces such that their local density is commensurate with the Eulerian grid
size. For example, in Spandan et al. (2018), where markers are defined in triangles
centroids, local Lagrangian refinement is achieved by subdividing the triangles by
splitting their edges. The procedure is dynamic without information storage on the

Fig. 2.5 Immersed boundary forcing stencils for single Lagrangian grid and two different staggered
Eulerian grids: �f and �s are the fluid and solid regions, respectively, separated by a surface �s. a
Two marker points l1, l2 are sufficient to marginally cover the forcing band on an Eulerian grid of
cell size h. b Regions with no force imposition (holes) are left for the same Lagrangian markers on
a finer Eulerian grid of cell size h/2. Figure reprinted with permission from Posa et al. (2017)
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refined elements. Likewise, below we will discuss a strategy based on isoparametric
surface element mapping, which locally refines the Lagrangian grid by surface ele-
ment without altering the existing triangulation data structure or increasing storage
requirements.

2.3.2 Dynamic Lagrangian Mapping

Figure2.6a shows the surface of a solid body, which is represented by a tessellation,
	, composed of the union of triangular subdomains {ε} ⊂ 	. The vertex points for this
mesh are the set of nodes, ℵι, and the information for the local nodes, nι, ι = 1, 2, 3,
of every element, ε, is readily known, using a connectivity list typical of finite element
data-structures (Hughes 2000; Bathe 2007). Kinematical information of these nodes,
Xnι , Unι , U̇nι , may be prescribed in time, or driven dynamically by equations of
motion of the solid. Linear interpolation functions are used to define the location of
marker points Xε,l within the triangle ε. A master element of unitary side length in
the direction of the natural coordinates, ξ, η (see Fig. 2.6b) can be considered. The
interpolation functions for this linear triangle are:

N1 = 1 − ξ − η; N2 = ξ ; N3 = η (2.29)

Fig. 2.6 Triangulation 	 representing the IB surface inside a Cartesian Eulerian grid: a a particular
element ε has vertices n1, n2, n3 in local numbering, defining the triangle geometric quantities (area
Aε , normal n̂ε). b The natural coordinate system is used to represent the master triangle and map
points within it to physical coordinates. The linear shape functions are N1,N2,N3. Figure reprinted
with permission from Posa et al. (2017)
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The physical location of a particular point l within the triangle, defined by natural
coordinates ξ, η is given by,

Xε,l =
3∑

ι=1

N ε,l
ι Xnι (2.30)

The transformation from natural to planar coordinates x1, x2 for this linear triangle
is characterized by a Jacobian matrix of the form:

[J] =
[

∂x1
∂ξ

∂x2
∂ξ

∂x1
∂η

∂x2
∂η

]
(2.31)

The Jacobian J = det(J) defines the ratio of physical to natural areas dx1 dx2 =
Jdξ dη and can be used for the area integration on isoparametric elements. Several
different mapping methods can be devised to distribute Lagrangian markers within
the triangle. A possible choice is illustrated in Fig. 2.7a in natural coordinates. In
order to locate the set of points within the triangle, a variable ϕ defining the distance
to corners in ξ and η is used. Here, ϕ = a�ξ , where �ξ = 1/mξ . Note that

mξ = hε

c�
+ 1. (2.32)

Fig. 2.7 Mapping A, evenly distributed points across the element: a distribution of marker points
on the master element, the number of markers in the natural η direction Nη is always equal to the
Nξ points on ξ . Positioning and distance variables are the same in both directions. Here, Nξ = 4
for illustration. b A regular set of triangles in physical coordinates x1, x2 with their corresponding
mapped Lagrangian points, again Nξ = 4. Figure reprinted with permission from Posa et al. (2017)
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where hε is a characteristic length for triangle, ε and � are the local characteristic
length of the Eulerian grid. The constant c < 1 defines the ratio of the distance
between markers within the element to the local cell size. The factor a determines
the marker location with respect to the triangle corners. A value a = 1/2 produces
a fairly uniform marker paving on a regular patch of triangles in physical space (see
Fig. 2.7b for a two-dimensional case). The method for point distribution is exactly
the same for ξ or η. The first line of markers is positioned at a distance ξst = ϕ from
the origin, and the last marker at a location ξend = 1 − 2ϕ. The distance between
points is obtained as:

�ξp = ξend − ξst

(mξ − 1)
= 1 − 3ϕ

(mξ − 1)
. (2.33)

As expected �ηp = �ξp. The paving algorithm consists of a double loop, first in
index j (from 1 to mη) and then in index i (1 to mξ + 1 − j), using lower triangular
limits. The index of a particular point (ε, l) can be obtained by the formula,

l = i + (j − 1)mξ − (j − 1)(j − 2)

2
, (2.34)

and the position of the marker in physical coordinates is given by the corresponding
interpolation:

ξi = ϕ + (i − 1)�ξp (2.35)

ηj = ϕ + (j − 1)�ηp (2.36)

Xε,l = N ε,l
1 Xn1 + N ε,l

2 Xn2 + N ε,l
3 Xn3 , (2.37)

where the shape functions associated with the mapped point are N ε,l
1 = 1 − ξi − ηj,

N ε,l
2 = ξi and N ε,l

3 = ηj. Velocities Uε,l and accelerations U̇ε,l are computed in the
samemanner. In cases of general rigid bodymotion, both velocity and acceleration of
the markers can also be defined analytically, using for example, the markers location
respect to the body center of mass and the rigid kinematics equations.

This mapping scheme facilitates the decoupling of the resolution requirements
between the Lagrangian and Eulerian grids. The immersed body is always described
by a set of triangles that properly captures the local curvature, but when the size of an
element is larger than the local Eulerian grid, then the proper number of Lagrangian
markers is introduced to preserve the continuity and smoothness of the forcing field.
Most importantly, all the information related to position and kinematics of marker
points is not stored in memory, as it can be dynamically recomputed using the map-
ping processes with a small computational overhead.
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2.3.3 Adaptive Reconstruction

The adaptive MLS scheme simply adds an extra step in the process outlined in
Sect. 2.2, where interpolation is now modified looping over the ε triangles. The
mapping scheme described previously is applied on each triangle to generate data
of Lagrangian marker (ε, l) (Xε,l , Uε,l , Al

ε at time level n + 1). For surface marker
(ε, l), interpolate Ũ ε,l

i from surrounding Eulerian stencils using Eq. (2.11), and one
of the methods to construct Ih (Uhlmann 2005; Vanella and Balaras 2009; Pinelli
et al. 2010).

Once the position of a given marker (ε, l) is computed and the associated Eulerian
point stencil defined, the intermediate velocities can be interpolated to the marker
using the following operator:

Ũ ε,l
i =

ne∑
k=1

φ
ε,l
k

(
xk − Xε,l

)
ũki (2.38)

where φ
ε,l
k is a set of interpolation functions defined using MLS. Then, Eq. (2.10) is

used to compute the forcing field, Fε,l
i , with the interpolated intermediate velocities,

Ũ ε,l
i , and the markers velocity components U ε,l

i , i = 1, 2, 3, as input. Finally, this
forcing field is transferred back to the Eulerian grid:

f ki =
∑

(ε,l) ⊂ nl

cε,l φ
ε,l
k

(
xk − Xε,l

)
Fε,l
i (2.39)

where cε,l are scaling factors defined to ensure conservation of total force and torque
during transfer, and nl refers to the set of mapped markers related to the Eulerian
point k. The coefficient cε,l is computed by requiring that:

nte∑
k=1

f ki �V k =
∑
ε⊂	

mε∑
l=1

Fε,l
i �V l

ε (2.40)

where nte is the total number of Eulerian nodes, mε the total number of mapped
markers in element ε,�V k = (hxhyhz)k the volume of the cell from Eulerian point k
and�V l

ε = Al
εh

l
ε. As we discussed in Sect. 2.2, the local thickness, h

l
ε, can be defined

as follows:

hlε =
ne∑
k=1

φ
ε,l
k

(hx + hy + hz)k
3

. (2.41)

We should note that the above definition for hlε works well for isotropic grids. In the
case of highly anisotropic, stretched grids, however, it can lead to forcing that lacks
smoothness. To alleviate this issue, one can define hlε as follows:
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hlε = �V El∑
(ε,l) ⊂ nl A

l
ε

, (2.42)

where the denominator is the sum of all areas of the Lagrangian markers associated
with the Eulerian node in consideration. Finally, the transfer coefficient, cε,l that
satisfies Eq. (2.40) can be defined as:

cε,l = �V l
ε

�V El
= Al

εh
l
ε

�V El
, (2.43)

where �V El = ∑ne
k=1 φ

ε,l
k �V k .

2.3.4 Example: Flow Around an Oscillating Sphere

We will use the oscillating sphere problem to illustrate the use of the adaptive MLS
scheme and to stress its importance in maintaining proper marker particle density for
accurate IB reconstructions. The sphere has a diameter, D, oscillates in an otherwise
quiescent fluid. The vertical motion of the sphere is given by the harmonic function
U (t) = Uo cos(ωt), where Uo is a reference velocity, and ω is the oscillation angu-
lar frequency. The non-dimensional parameters important in this flow case are the
Reynolds, Re = UoD/ν, and Stokes, ε = (ωR2/2ν)1/2 numbers, where R = D/2,
and ν is the fluids kinematic viscosity. We consider a case with Re = 100 and ε = 5
(period of oscillation, T = π ). Computations are conducted on uniform grids with
32, 48, 64, 96, 128 cubed cells in the diameter, D, of the sphere. The number of
marker particles introduced by the adaptive scheme varied between 9 and 80K. In
Fig. 2.8a, a force comparison between the present computation and the reference
results reported in Yang and Balaras (2006) is shown. The agreement is excellent
for both the pressure and viscous components for the same grid resolution (64 cells
along D). In Fig. 2.8b, the predicted drag force is compared for different resolutions.
As expected the viscous component converges slower when compared to the pressure
contribution.

2.4 Enhanced Surface Force Estimation

2.4.1 Overview

The computation of the hydrodynamic forces on an immersed body is a great chal-
lenge, particularly for Lagrangian forcing schemes. In early implementations of this
approach for spherical particles, the momentum balance approach was utilized (see
Uhlmann 2005; Kempe and Frohlich 2012), where the total force was estimated as
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Fig. 2.8 Transversely oscillating sphere at Re = 100, ε = 5. a pressure drag; viscous
drag; total drag; Symbols are corresponding reference results for the same configuration
and grid resolution reported in Yang and Balaras (2006). Note that force coefficient curves are
offset by a factor of 3 for clarity. bGrid convergence for the adaptive scheme. Figure reprinted with
permission from Posa et al. (2017)

the sum of the immersed boundary forcing term and the fluid acceleration inside the
solid body:

FN ,h = −
∫
V
fdV + d

dt

∫
V
udV, (2.44a)

MN ,h = −
∫
V
r × fdV + d

dt

∫
V
r × udV, (2.44b)

where FN ,h andMN ,h are the hydrodynamic force and moment, respectively. V is the
volume occupied by the solid body on the Eulerian grid. f is the immersed boundary
forcing term on the Eulerian grid, and r is the position vector with respect to the
object’s center of mass. The first term on the right side of Eqs. (2.44a) and (2.44b)
is computed by adding the immersed boundary forcing term and its moment on the
Lagrangian points, as the transfer functions between Eulerian and Lagrangian grids
are designed to preserve the total force and moment. In spherical particle cases, the
second term on the RHS of Eq. (2.44a) can be approximated using the acceleration of
the center of mass, u̇c, and particle volume Vc (Uhlmann 2005), d

dt

∫
V udV ≈ Vcu̇c,

or evaluated numerically using the diameter of the sphere to identify the particle
volume (Uhlmann 2005; Kempe and Frohlich 2012). For a particle of arbitrary shape,
this method requires the identification the Eulerian cells within the domain occupied
by the particle and the volume fraction of the boundary cells to correctly compute
the integral. Moreover, the use of Eqs. (2.44a) and (2.44b) does not provide the
distribution of hydrodynamic forces on the surface, and does not provide sufficient
hydrodynamic force information in cases of deformable particles, or when statistics
of the hydrodynamic surface stress are needed.
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Amore general approach to compute the hydrodynamic forces is by direct numer-
ical integration of stresses along the body surface:

FN ,h =
∫

∂V
τ · ndS, (2.45a)

MN ,h =
∫

∂V
r × (τ · n)dS, (2.45b)

where ∂V is the particle surface, n is the unit vector in the normal direction and
τ = −pI + (∇u + ∇uT )/Re is the hydrodynamic stress tensor. This approach can
provide both the total hydrodynamic forces and the distribution of the hydrodynamic
stress acting on the particle surface. In Sect. 2.2.2, the surface hydrodynamic stresses
are computed using the normal probe approach, where a linear reconstruction for
velocities and pressure along the normal direction is done. This approach requires
very fine grids to accurately resolve the velocity gradients within the boundary layer
rendering it very expensive when applied to turbulent flows with finite-size particles,
for example. Both the above methods should yield similar hydrodynamic forces if
the grid is fine enough to resolve the boundary layers, which in most cases comes
with a high computational cost. In the following section, we will discuss a strategy
to compute the hydrodynamic forces on coarse grids, where the boundary layer
approximation is utilized to compensate for the lack of grid resolution.

2.4.2 Model-Based Enhancement of Surface Force
Prediction

Theviscous layer close to the body surface canbe approximatedby theboundary layer
equations in a local orthogonal curvilinear coordinate system, ξ − η (see Fig. 2.9):

Fig. 2.9 Schematic of the
local curvilinear coordinate
system and the external point
array. Figure reprinted with
permission from Wang et al.
(2019)
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∂uξ

∂t
+ uξ

hξ

∂uξ

∂ξ
+ uη

∂uξ

∂η
= − 1

hξ

∂p

∂ξ
+ 1

Re

∂2uξ

∂η2
, (2.46a)

∂hξ

∂η
u2ξ = ∂p

∂η
, (2.46b)

where p is the pressure, and uξ and uη are velocity components in the streamwise (ξ )
and normal (η) directions, respectively. Here, the rectilinear axis η is defined in the
normal direction to the solid surface (into thefluid region). The curvilinear ξ is defined
by the intersectionbetween the plane spannedbyη and the relative velocity of thefluid
at the external point ewith respect to pointm, and the surface of the body. According
to the axis definition, the scale factor hη is 1 and hξ depends on the surface curvature.
In contrast to flat-plate boundary layer flows, the momentum balance expressed by
Eq. (2.46b), indicates that surface curvature generates a pressure gradient in the
normal direction. Ideally, the local discretization and solution of Eqs. (2.46a) and
(2.46b) can be employed to obtain the surface stresses (Posa and Balaras 2014;
Balaras et al. 1996). However, for bodies of arbitrary shape and orientation with
respect to the fluid grid, the implementation of such a scheme can be very complex
leading to costly computations. To avoid direct numerical solution of the above
equations we utilize Eq. (2.46b), which governs the pressure variation along the
normal direction for the flow over a curvilinear boundary. The pressure gradient
along a line ξ = const. can be expressed in a general form:

∂p

∂η

∣∣∣∣
ξ=const.

= g(η), (2.47)

where g(η) is a function of normal coordinate η. The function g(η) depends on
the coupled effect of the surface curvature and the near flow field and does not
admit a universal expression. Assuming as a first-order approximation that g(η)

varies linearly within the boundary layer, the pressure gradient and pressure near the
particle surface are given by:

∂p

∂η
= bp + apη, (2.48a)

p = cp + bpη + 1

2
apη

2, (2.48b)

where ap, bp and cp are coefficients to be determined by the local pressure information
p|e, ∂p/∂η|e, and ∂p/∂η|m. Here, p|e is the pressure at an external point e along
the normal direction (as shown in Fig. 2.9). ∂p/∂η|m and ∂p/∂η|e are the pressure
gradient in the normal direction at the pointm on the particle surface and the external
point e, respectively. The pressure at the external point e can be interpolated from
the Eulerian grid:

p|e =
ne∑
i=1

φe
i pi, (2.49)
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where ne is the number of Eulerian points in the support domain of external point
e. Note that φe

i are the shape functions relating point e to its interpolation stencil.
The pressure gradient in the normal direction at point m can be estimated from the
momentum equation:

∂p

∂η

∣∣∣∣
m

=
(

−Du
Dt

+ 1

Re
∇2u

)
· n

∣∣∣∣
m

≈ −Du
Dt

· n
∣∣∣∣
m

, (2.50)

where Du/Dt is the material derivative of velocity and n is the unit normal vector at
point m on the surface of the body. The viscous force term (1/Re)∇2u at the surface
can be ignored, considering that it mainly contributes to the forces in the tangential
direction. The computation of the pressure gradient ∂p/∂η at point e, defined in the
curvilinear system ξ − η, is discussed below. Finally, the pressure on the surface of
the particle can be estimated by:

p|m = p|e − 1

2

(
∂p

∂η

∣∣∣∣
m

+ ∂p

∂η

∣∣∣∣
e

)
h, (2.51)

where h is the distance between points m and e.
The viscous stress on the surface of the body can be evaluated using Eq. (2.46a),

which can be simplified by ignoring the effect of inertia and convective terms as
suggested in Posa and Balaras (2014). Equation (2.46a) reduces to,

1

Re

∂2uξ

∂η2
= 1

hξ

∂p

∂ξ
. (2.52)

The effect of curvature on the variation of ∂p/∂ξ in the normal direction can be
investigated by taking the derivative ∂/∂ξ on Eq. (2.46b),

∂

∂η

(
∂p

∂ξ

)
= ∂

∂ξ

(
∂hξ

∂η
u2ξ

)
, (2.53)

where the relation ∂
∂ξ

(
∂p
∂η

)
= ∂

∂η

(
∂p
∂ξ

)
is used. It is seen from the last equation that

the surface curvature causes a variation of ∂p/∂ξ along the normal direction. Similar
to the pressure, the variation of pressure gradient ∂p/∂ξ depends on the coupled
effect of curvature and the flow conditions within the boundary layer, not admitting
a universal exact expression. The linear function, ∂p/∂ξ = b + aη, can serve as a
first-order approximation for the variation of ∂p/∂ξ in the normal direction. In this
scenario, Eq. (2.52) reduces to,

1

Re

∂2uξ

∂η2
= b + aη (2.54)
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where a and b are two coefficients to be determined by the local flow information.
Integrating Eq. (2.54), an analytical expression for the velocity profile at ξ = const.
can be obtained:

uξ (η) = d + cη + b

2
η2 + a

6
η3, (2.55)

where again, the c, d coefficients must be determined from the local flow state
(i.e., non-slip condition at the boundary point m and the flow information at the
external local point e). The details can be found in Wang et al. (2019). The local
pressure and velocity distribution resulting from Eqs. (2.51) and (2.55), respectively,
can now be used to compute the local forces on the body. In three-dimensional
boundary layers, the curvilinear term of the momentum balance equation in the
normal direction, Eq. (2.46), will be given by a more complex form involving the
curvature in the direction normal to the ξ − η plane. However, the pressure gradient
within the boundary layer can still be modeled by the linear functions in Eqs. (2.48a)
and (2.54). Thus, the proposed hydrodynamic stress model is applicable to both two-
and three-dimensional boundary layers.

2.4.3 Example: Flow Over a Circular Cylinder

To demonstrate the features of the force enhancement discussed above, we will con-
sider a circular cylinder of diameter, D, fixed in a uniform cross-flow with velocity
U , at Reynolds number Re = UD/ν = 40. The flow is steady and two-dimensional.
The uniform upstream flow is specified at the inlet, and a convective boundary condi-
tion is used at the outlet. The free-slip boundary condition is set at the bottom and top
boundaries. The non-slip boundary condition is enforced at the cylinder surface. The
flow around a cylinder at this Reynolds separates and forms a steady ‘dead water’
region, as shown in Fig. 2.10. The separation point θ , geometrical measurements of
the ‘dead water’ region (L, a and b as shown in Fig. 2.10) and the drag coefficient,
CD, will be compared to reference data in the literature. To quantify the sensitiv-
ity of the hydrodynamic forces to grid resolution when computed using the normal
probe approach for the MLS direct-forcing scheme discussed above, we conducted
a series of computations with increasing resolution. In each case, the grid around the
cylinder was approximately uniform and in the range of, D/384 < dh < D/24. The
resulting distribution of pressure coefficient,Cp, and the tangential velocity gradient,
∂uξ /∂η, on the cylinder’s surface are shown in Fig. 2.11. The pressure coefficient is
fairly insensitive to the grid resolution, and all grids are within 2% of the reference
solution. The tangential velocity gradient along the wall-normal direction, one the
other hand, is clearly under-predicted on the coarser grids. To quantify the difference
with the reference solution, we list the computed

∣∣∂uξ /∂η
∣∣ at θ = 130◦ on different

grids on Table2.1. Approximately 192 grid points across the diameter of the cylinder
are needed for the error to be less than 5%, while on the coarsest grid, dh = D/24,
the error is 33.7%.
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Fig. 2.10 Pressure and streamlines around a stationary circular cylinder at Re = 40. The contours
for pressure range from −0.5 (blue) to 0.5 (red) with 10 equal intervals. Figure reprinted with
permission from Wang et al. (2019)

Fig. 2.11 a Pressure coefficient, Cp; b velocity gradient, ∂uξ /∂η, on the cylinder’s surface at
Re = 40. The color lines shows the results computed by the normal probe approach based on
different grid sizes. The grid sizes are dh = D/24, dh = D/48, dh = D/96, dh = D/192 and dh =
D/384, respectively. The pressure coefficients are shifted by different constants for the simulations
with different grids. The black line shows the reference results by Braza et al. (1986). Figure
reprinted with permission from Wang et al. (2019)

The prediction of the hydrodynamic force follows a similar trend. Table2.1 also
lists the drag force estimated by the normal probe approach for all grids. As expected
the error in the viscous drag is higher than that on the pressure drag. For the coarsest
grid, (dh = D/24) these errors are 14.8% and 2%, respectively. The grid resolution
has to be increased at least 8 times (to dh = D/192) in each direction, to keep the
errors within 5% when computing the viscous drag and within 2% in computing the
total drag. These results are consistent with the findings in Tenneti et al. (2011) on
the convergence of hydrodynamic forces in IB methods.

We should also note that the errors in the computation of the hydrodynamics
forces utilizing a normal probe approach depend on the details of the IB formulation
as well as the position of the probe. In the present Lagrangian, direct forcing, MLS-
based IB approach the kernel width of 2.4dh and the probe extends 2.0dh from the
wall. For implementations with wider or narrower support domains and/or the use of
higher-order interpolations, the force convergence may be different. The proposed
model, which is practically equivalent to a physics-based correction on the forces
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Table 2.1 Sensitivity of the tangential velocity gradient and drag force estimated with the normal
probe approach for the flow around a circular at Re = 40. DT: total drag; DP: pressure drag; DV:
viscous drag

Grid
length

∣∣∂uξ /∂η
∣∣ Diff % DT Diff % DP Diff % DV Diff %

D/24 7.98 33.7 0.73 −6.4 0.50 −2.0 0.23 −14.8

D/48 9.57 20.6 0.75 −3.8 0.50 −2.0 0.25 −7.4

D/96 10.59 12.1 0.76 −2.6 0.50 −2.0 0.25 −7.4

D/192 11.45 4.9 0.77 −1.3 0.51 0.0 0.26 −3.7

D/384 11.82 1.9 0.78 0.0 0.51 0.0 0.27 0.0

Braza
et al.
(1986)

12.05 – 0.78 – 0.51 – 0.27 –

The reference results are computed from Braza et al. (1986) and the difference for a variable, φ, is
defined as (φcomp − φref)/φref × 100%

Fig. 2.12 a Pressure coefficient, Cp; b velocity gradient, −∂uξ /∂η, on the cylinder’s surface at
Re = 40. Reference results by Braza et al. (1986);• Proposed model on h = D/24; the
normal probe approach on different grids: dh = D/24; � dh = D/192. Figure reprinted
with permission from Wang et al. (2019)

predicted by the normal probe approach, should be applicable to most direct forcing,
immersed boundary methods in a straightforward manner. Depending on the support
domains for the transfer functions of the specific formulation, however, the location
of the external point, e and grid resolution may have to be adjusted.

To investigate the level of improvement when the model above is utilized, compu-
tations on the coarsest of the grids considered above (dh = D/24) with and without
the model were conducted. Figure2.12 shows the predicted pressure and shear stress
distribution on the cylinder’s surface with and without utilizing the proposed model.
The reference results in Braza et al. (1986), where a boundary-conforming solver is
used, are also included for comparison. It can be seen that the pressure distribution
is predicted fairly accurately by both schemes and is less sensitive to grid resolution.
The wall stress is captured accurately by the proposed method and is under-predicted
when the model is switched off. The predicted separation point, geometrical mea-
surements of the ‘dead water’ region, L, a and b (as defined in Fig. 2.10) and the drag
coefficient, CD, are excellent agreement with the literature (see Wang et al. 2019 for
details) despite the coarse grid resolution.
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Fig. 2.13 Flow around a circular cylinder at Re = 40. a Iso-contours of the pressure (range: 0.5 red
to −0.5 blue, with an equal interval of 0.05); b iso-contours of the streamwise velocity (range 1.15
red to −0.1 blue with an equal interval of 0.05). – ·– coarse grid computation (dh = D/24) with
the proposed model; fine grid (dh = D/384) computation. The dash-dotted circle indicates
the position of the external point e, at D/12 from the wall. Figure reprinted with permission from
Wang et al. (2019)

To better understand the near-wall behavior of themodel, the pressure and velocity
fields obtained with the proposed model on dh = D/24 are compared to a high-
resolution computation on very fine grid with dh = D/384. Isolines of the pressure
and velocity distribution in the vicinity of the cylinder are shown in Fig. 2.13. The
coarse grid solution consists of two parts: the outer flow computed on the Eulerian
grid with dh = D/24, and the near-wall flow predicted by the model. The boundary
between the two is indicated by the dashed line in the figure. The agreement is very
good.

2.5 Examples

2.5.1 Free Longitudinal Flight of a Fly Model

In this section,wewill present results of free longitudinal flight for a flymodel created
from digital images of a Musca Domestica. The model is composed of one pair of
rigid wings, RW and LW , hinged to a rigid body, RB1, which represents the insect’s
head and thorax, and another body,RB2, representing the insect’s abdomen. The latter
is also articulated to RB1 (see Fig. 2.14). The coordinate transformations among the
different body reference frames with respect to the inertial frame, N , are defined
in terms of Euler angle sequences. For the case of longitudinal flight considered
here, the lateral motion and rotations around axes in the insects symmetry plane are
neglected. The wing kinematics and inertia properties are symmetric.

The head-abdomen length of the model is LTA = 1.03b, where b is the one
wingspan (hinge to tip). The wings have a thickness of 0.025b. A simple set of wing
kinematics, representative of Diptera wing motion is prescribed in all simulations.
For the right wing, for example, we set:
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Fig. 2.14 Four-rigid body model for the full insect. Rigid body RB1, head-thorax, is represented
by the tracking frame B attached to its center of mass. Rigid body RB2, the abdomen, is hinged
to RB1 at point D where its respective body frame is defined. The wing bodies RW and LW are
articulated to RB1 at points R and L, respectively, where their tracking frames are defined. Figure
reprinted with permission from Vanella et al. (2018)

φ3(t) = Aφ sin
(
ωf t + α

)
, θ3(t) = 0, ψ3(t) = ψm + Aψ cos

(
ωf t

)
, (2.56)

where Aφ = π/4 is the amplitude of the wing-thorax relative angle of attack, and
α = π/6 (advanced rotation) is the phase. The mean stroke angle is ψm = −π/36,
and the stroke amplitude Aψ = 55π/180. The reference velocity UR used is the
mean wing tip velocity given by UR = ψ̇3meanb, where ψ̇3mean = 2Aψωf /π . The
Reynolds number is Re = URb/ν = 500. The left wing angles were defined such
that symmetric flapping occurs. The RB1 orientation angle on an initial prescribed
kinematics simulation was set to θ = π/3, and the stroke plane was aligned to the
horizontal plane. The details on the inertia and material properties can be found in
Vanella et al. (2018).

A unitary dimensionless torsion stiffnessKT was employed at the abdomen hinge,
keeping the relative angle between RB1 and RB2 within a 5◦ amplitude. Also, an
advanced mean stroke angle of, ψm = 5.5π/180 was used. A slight pitch up motion
was found along the simulation. It is important to note that, in several flapping wing
systems, both hovering and forwardflight have been found to be dynamically unstable
through linear stability analysis (i.e., Sun andXiong 2005; Taylor and Thomas 2003).
Therefore, it is expected that the solution will eventually diverge as the integration
progresses.

In Fig. 2.15a, the values of the state variables x(t), y(t), θ(t) and θ2(t) as a function
of integration time are shown. The vertical position z(t) is seen to increase throughout
the calculation consistentwith the fact that themean resulting vertical force is directed
upwards. The horizontal coordinate of the center of mass of RB1 takes oscillating
positive values, which diminish as the calculation progresses. This is due to the fact
that the orientation angle θ(t) (and stroke plane angle) of RB1 increases, introducing
a horizontal force component along the −x direction. The oscillatory component of
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Fig. 2.15 a Variation of positions x(t), z(t) and angular coordinates θ(t) (blue), θ2(t) (red) with
time for the free longitudinal flight; b variation of force coefficients Cx(t), Cz(t) and CN (t) (force
normal to stroke plane) with time for the free longitudinal flight: (blue) RB1, (dashedmagenta)RB2,
(red) RW , and (•) LW . The green curves correspond to Cx(t), Cz(t) and CL(t) from the prescribed
kinematics simulation. Figure reprinted with permission from Vanella et al. (2018)

x(t) is about 0.1b, which is consistent with the data reported in Wu et al. (2009)
for a Manduca Sexta hawkmoth model with similar wing to body mass ratio. The
orientation angle θ(t) increases steadily, due to moment imbalance. A lower value
of ψm is required to reduce this effect. Also, θ(t) oscillates with a peak to peak
amplitude of 4◦ similarly to what is reported in Wu et al. (2009).

In Fig. 2.15b, the time variation of force coefficients in the horizontal, x, and ver-
tical, z, directions, and also in a direction normal to the stroke plane (lift direction
for the prescribed kinematics simulation) are shown. It is seen that due to the stroke
plane rotation,Cx andCz vary significantly as time increases. The coefficients result-
ing from the prescribed kinematics calculation are plotted on the same figures for
comparison. All force coefficients take lower values than the fixed body calculation.
This bodymotion effect results in lower ability of the wings to transfer momentum to
the fluid. As a consequence, the flight performance of the flapping system is reduced.

The instantaneous flow fields at different simulation times are shown in Fig. 2.16.
Here, an isocontour of the second invariant of the velocity gradient tensor,Q, colored
by the vorticity, ωy, shows the evolution of the large coherent structures, namely the
leading-edge and tip vortices. The leading-edge vortices attached to eachwing detach
in the vicinity of the tips (see Fig. 2.16a, b), where the vorticity is reoriented forming
the wingtip vortices. Vorticity is also shed from the regions of the wing proximal
to the bodies. As a result, two vortical structures are being generated on each wing
as shown in Fig. 2.16c, d. The secondary vortices are dependent on the planform
geometry of the wings used. The sequence visualized in Fig. 2.16 shows the vertical
displacement of the model due to lift force.
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Fig. 2.16 Q isocontour colored by vorticity on the y direction. 40 contours of ωy from −20 to 20
are used. a–f t/T = 0.75, 1, 1.25, 1.5, 1.75, 2. Figure reprinted with permission from Vanella et al.
(2018)

2.5.2 Turbulence Interacting with Finite-Size Particles

The interaction of forced isotropic turbulence with spheres and ellipsoids is pre-
sented. Turbulence is generated in a domain with dimensions, [−π, π ] × [−π, π ] ×
[−π, π ], using a linear forcing method (Carroll and Blanquart 2013). The spherical
particles have a diameter of D = π/8, while ellipsoidal particles have a major axis
of a = π/4, and two minor axes of b = c = π/8. For both cases, the density ratio
between the particles and the fluid is 1.02 and the volume fraction 0.2%. The contact
model byWan and Turek (2007) is used to deal with particle–particle collisions. The
simulations are conducted on a 2563 grid at Reynolds number of Reλ = 116.

Typical flow structures are shown in Fig. 2.17, where the particles are larger than
the Kolmogorov scale. The shear flows generated near the surface of the particles
are visible. These shear flows may reduce velocity fluctuations by increasing the
energy dissipation. At the same time, the wakes produced by the particles enhance
the production of the turbulent kinematic energy and increase the velocity fluctua-
tions (Bellani et al. 2012). The effects of the particle type on turbulence can be quanti-
fied by computing the probability density function (PDF) of the velocity fluctuations
(see Fig. 2.18a). We sampled 100 realizations over a time period of 240 � t < 390,
resulting in Np = 100 × 256 × 256 × 256. The extreme velocity events are damped
by the particles, especially the spherical particles. The damping of the extreme veloc-
ity events can be clearly seen in Fig. 2.18a where the turbulence fluctuations with
spherical particles decay faster when ξ > 3. The ellipsoidal particles generate more
energetic wakes than the spherical particles and as a result the velocity fluctuations
decrease with a lower rate.

The PDFs of the angular velocity of the particles is an important quantity in
characterizing this complex interaction and are shown in Fig. 2.18b. To compute
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Fig. 2.17 Particle–turbulence interaction, a vortex structures around spherical particles, b vortex
structures around ellipsoidal particles, c vorticity magnitude around one spherical particle, from 0
(blue) to 100 (red), 10 intervals, d vorticity magnitude around one ellipsoidal particle, from 0 (blue)
to 100 (red), 10 intervals. Figure reprinted with permission from Wang et al. (2019)

this quantity, the rotational velocity of each particle is saved at each time step in
the simulation. In this case, the number of sample points, Np, used to compute the
PDF of rotational velocity is, Np = Nt · np, where np is the number of the particles
(np = 9 for ellipsoids, and np = 18 for spheres), andNt is the number of discrete time
levels used in the sampling. The resulting PDF shown in Fig. 2.18b uses Nt × NP =
(8.33 × 105) × 18 points for spherical particles and Nt × NP = (8.33 × 105) × 9
points for ellipsoidal particles, where Nt = 8.33 × 105 is within the simulation time
interval of 250 < t < 500 with dt = 3.0 × 10−4.
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Fig. 2.18 aNormalized probability density function of the turbulencewith different particles.bThe
probability density function of the particle’s rotating speed. normal distribution, −− single
phase, − · − ellipsoidal particles with model, − · ·− spherical particles with model, � ellipsoidal
particles, normal probe approach,� spherical particles with model, normal probe approach. Figure
reprinted with permission from Wang et al. (2019)

Both spherical and ellipsoidal particles show similar behavior when the angular
velocity is low (�∗2 < 5). At higher rotation speeds (�∗2 > 5), the PDF of ellip-
soidal particles takes lower values when compared to that of the spherical particles,
likely due to the fact that ellipsoidal particles are less prone to rotation at the speeds
defined in this particular problem setup. This is intuitively expected, given the same
level of turbulent forcing on both sets of simulations, but higher rotational inertia
of the ellipsoids. Another reason might be that the ellipsoidal particles tend to align
preferentially with the principal axis of the fluid strain. Overall the effects of the
particle types on turbulence, as demonstrated in by the statistics above, is consistent
with the experimental observations by Bellani et al. (2012), even though the current
simulations are conducted at lower Reynolds numbers.

We have also conducted the simulations without the proposed model. There is no
apparent difference on the PDF of the fluid phase, as shown in Fig. 2.18a. However,
the rotation of the particles will be over-predicted because of the under-prediction
of the shear stress if the proposed model is not used, as shown in Fig. 2.18b. The
differences between the model and normal probe approach in the PDF of the velocity
fluctuations are small, probably caused by the relatively low Reynolds number in the
simulation. However, the PDFs of the particle rotation speed are different and reflect
a higher rate for the case of the normal probe approach. This is consistent with the
trend by this approach to under-predict the shear stress on the particle surface.

2.6 Outlook and Perspective

CFD simulations in complex flows of practical interest have been traditionally car-
ried out utilizing low-order, finite-volume solvers based on unstructured grids. More
recently, the development of high-order techniques, such as discontinuous Galerkin
and spectral-element methods, that arguably combine high accuracy with flexibility
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in dealing with complex geometries, is constantly gaining ground. In addition, the
whole spectrum of methodologies is nowadays within reach of the community by
the availability of open-source software (e.g., OpenFOAM, Gerris, Nek5000, PyFR,
etc.). As a result, there is a growing interest in exploring the cost/efficiency of vari-
ous approaches and solvers in different application regimes. Within this framework,
immersed boundary methods can be viewed as means of extending the reach of effi-
cient/conservative structured solvers to complex geometrical configurations. They
have a particular advantage in problems involving large boundary motion and/or
deformation, because addressing the latter within classical boundary-conforming
formulations usually comes with increased complexity and cost. We should note,
however, that direct comparisons of immersed boundary and boundary-conforming
methods in terms of cost for fixed accuracy are sparse and would be an interesting
topic for future research.

Improving the efficiency of immersed boundary methods, especially for high
Reynolds numbers flows, hinders upon the availability of wall-modeling strategies
for this class of methods. Turbulent, high Reynolds number flows pose stringent
resolution requirements to all methods, but are particularly restrictive to immersed
boundary formulations on structured grids due to the lack of flexibility to selectively
distribute points in areas of high-velocity gradients near solid boundaries. Increas-
ing the wall-normal resolution, for example, to resolve the thin boundary layers at
high Reynolds numbers usually requires simultaneous refinement in all coordinate
directions—rather than only the wall-normal in boundary fitted grids. Direct exten-
sion of classical wall-modeling strategies for boundary-conforming solvers is not
trivial and as of today, few examples can be found in the literature. It is worth men-
tioning the recent work by Sih et al. (2019), where a wall-modeling strategy for the
class of methods discussed above is proposed. They reported promising results for
the case of the flow around an axisymmetric body of revolution. The development
of robust wall-modeling strategies for immersed boundary methods is a critical step
in expanding in a whole new area of applications.
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Chapter 3
Mass Conservation in Sharp Interface
Immersed Boundary Method—A
GPGPU Accelerated Implementation

Manish Kumar, Apurva Raj, and Somnath Roy

3.1 Introduction

Immersed boundary method (IBM) is an attractive option for simulation of viscous
flow over complex and moving boundaries as it allows the use of a regular structured
mesh, and furthermore, the method is inherently very simple to implement. Peskin
first proposed this method back in 1972 to study biological flows (Peskin 1972), and
in the past few decades IBM has been extensively used in studying wide ranges of
applications involving flows observed over complex, moving and deforming bodies
(Mittal and Iaccarino 2005; Mittal et al. 2008; Picano et al. 2015). The statisti-
cal comparison and computational efficiency of IBM schemes when compared to the
conventional body-fitted numerical approaches are also well reported (Verzicco et al.
2000; The Immersed Boundary Approach to Fluid Flow Simulation 2020). Although
the sharp interface variant of the IBM is efficient as well as simple to implement,
it is posed with difficulties in satisfying the mass conservation in the vicinity of
the immersed surface. Unphysical pressure oscillations are also generally observed
near the surface boundary, especially in the cases involving moving boundaries in
incompressible flows. The mass loss is attributed to the violation of geometric con-
servation law at the intercepted/immersed cells (Kamakoti and Shyy 2004). Hou and
Shi observe that the area loss can be as large as 23% in the immersed cells, and the
finite difference discretization needs a very small time step to avoid the significant
loss of mass (Hou and Shi 2008). Additionally, in most of the numerical techniques
dealing with incompressible flow simulations, pressure correction is computed to
ensure a divergence-free velocity field. Therefore, the violation of mass conserva-
tion in the intercepted cells leads to spurious pressure fluctuations. The spurious
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pressure fluctuations perceived near the interface in IBM further intensify in case of
handling moving or deforming bodies because mass conservation is hampered by
the continuously changing fluid volume and continuous changes in the status of the
nodes (from solid to fluid and vice versa) in the intercepted cell near the boundary.

The difficulty in ensuring mass conservation and the associated pressure fluctu-
ations near the immersed surface hinder the application of IBM in accurately com-
puting the heat transfer, mixing parameters and dynamic forces over the immersed
surface. In case of heat transfer and mixing calculations, the improper mass conser-
vation results in an erroneous prediction of energy and/or species (Hartmann et al.
2006; Roy andAcharya 2012; Lee et al. 2010); whereas, the incorrect dynamic forces
lead to imprecise quantification of drag, lift and other forces over themoving surface.
Most crucially, the unphysical and inaccurate forces over the surface of the immersed
body translate into an incorrect prediction of the trajectories or shape of the body
in the next time step, and as the solution marches in time, the achieved simulation
results diverge from the realistic behavior.

In context to the abovementioned key challenges in IBM, various researchers
have proposed different approaches to overcome them (Ye et al. 1999; Udaykumar
et al. 2001; Seo and Mittal 2011; Liu and Hu 2014). These approaches can be clas-
sified largely as (i) cut cell approach (Udaykumar et al. 2001; Ye et al. 1999) and
(ii) using high grid density (Liu and Hu 2014). A strict adherence to the geometric
conservation is attempted to evade the improper mass conservation and associated
spurious pressure fluctuations in both the approaches. However, it is reported that the
cut cell method results in matrix stiffness issue and involves numerical complexities
while handling geometric irregularities (especially for 3D bodies) (Ye et al. 1999;
Udaykumar et al. 2001; Seo and Mittal 2011). In case of the implementations using
higher grid density, the computational load is significantly high, and these schemes
are generally inefficient in solving complex moving body problems. Based on a cut
cell method, Seo and Mittal developed a new variant of sharp interface IBM (Seo
and Mittal 2011), which accounts for the mass in/out of the cut cell adjacent to
the moving and thereby strongly imposes the mass conservation. The smaller cut
cells are merged with the regular cells to avoid ill-conditioning. This scheme fur-
ther suppresses the pressure fluctuations and evades the stiff equations as well but
the numerical complexities are more involved. Liu and Hu proposed a local grid
refinement method with a higher time step size and modified interpolation schemes
coupled with dynamic weight functions (Liu and Hu 2014) to check the spurious
pressure oscillations. A novel local grid refinement method is proposed which uses a
marker paving algorithm based on iso-parametric mapping (Posa et al. 2017). Also,
the divergence-free continuum Lagrangian velocity field is obtained by defining
an edge-centered discrete vector potential using a staggered grid discretization and
interpolating it in the conventional IB fashion (Bao et al. 2017). The spurious force
oscillations are avoided using a smaller computing cell by a novel diffuse interface
IBM technique (De 2018). Further, some other techniques are also used to address
these issues. These involve using smoother delta functions (Yang et al. 2009; Taira
and Colonius 2007), constraining the velocities at the immersed cells (Muldoon and
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Acharya 2008), optimizing the interpolation functions for divergence minimization
(Kang et al. 2009) and reconstructing of the interpolated solution at the intercepted
cells using an extra set of equations (Liao et al. 2010). However, the inability to
represent sharp interfaces, application of periodic boundary conditions, higher com-
putational cost and much increased implementation efforts are associated with these
reported special treatments to overcome improper mass conservation and unphysi-
cal pressure fluctuations. Therefore, it is important to discuss a simple and efficient
scheme which can address these issues.

Themajority of incompressible IBM-based flow solvers satisfymass conservation
by solving the Poisson equation for pressure or pressure correction. It is a compu-
tationally expensive process, and this step consumes a maximum amount of time in
the whole calculation. In an IBM implementation, the other expensive steps are the
search for intercepted cells and the velocity reconstruction steps. Therefore, large-
scale simulations using IBM must be augmented with high-performance computing
implementations. So,we have also included a discussion on the general-purpose com-
puting on graphics processing units (GPGPU) implementation of the IBM solvers
in this chapter. Earlier, computational fluid dynamics (CFD) codes for atmospheric
flows and wind forecasting have been accelerated using GPU clusters (DeLeon and
Felzien 2012) with a dual-level parallel implementation interleaving Message Pass-
ing Interface (MPI) with CUDA (2020). In one of the pioneeringwork of accelerating
IBM codes in GPU, the open-source CUSP (2020) and Thrust libraries (2020) are
used by Layton et al. (2011) to solve the 2D incompressible viscous flows using the
GPU. The efficacy of OpenACC (2020), minimizing the programming effort, has
been exploited by Kraus et al. (2014) to accelerate the flow solver ZFS on GPUs.
They have reported that the OpenACC implementation shows a speedup of 2.44×
as compared to a parallel MPI-based implementation. GPUs using CUDA are used
to obtain high performance for a direct forcing IBM by Tutkun and Edis (2017).

The present chapter discusses a simple but efficient implementation of mass con-
serving sharp interface immersed boundary method for incompressible flows and
also shows its acceleration in GPUs using OpenACC.

3.2 Immersed Boundary Method

The idea of using a Eulerian grid not conforming to the immersed body is first devel-
oped by Peskin for simulating cardiovascular flows (Peskin 1972). In this method,
the entire simulation is carried out on a regular structured Cartesian grid, which
is generated without considering the location of the curved or moving geometries
residing within its bounds. The geometry, which is immersed in the flow domain,
is represented by a separate Lagrangian description. The Eulerian flow grid is static
irrespective of the state ofmotion of the geometry. Thismethod is depicted in Fig. 3.1.
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a b

Fig. 3.1 a General representation of domain over which flow is to be computed. b Depiction of
the basic principle of immersed boundary method for the considered flow domain

Since a nonconforming body grid is used for discretizing the flow equations, the
application of boundary conditions through the Lagrangian surface marker points
separates one IBM technique from another. Generally, the boundary conditions are
applied by introducing the necessary forcing terms in the governing equations or
by velocity or momentum interpolations. The near boundary grid points are identi-
fied first, and then, the forcing/interpolation is applied at those points. This indirect
way of considering boundaries helps in avoiding complexities associated with the
body-fitted approaches for arbitrary, moving and deforming geometries. IBM helps
in reducing the costly dynamicmeshing, and the issues associated with large deform-
ing mesh and the solution interpolation steps can be bypassed. It can also help in
achieving better computational efficiency because the domain decomposition and
load balancing steps for the parallel processes are much simpler to implement in a
Cartesian mesh framework (Yildirim et al. 2013; Anupindi et al. 2013).

As discussed above, the IBM uses a Cartesian structured mesh (Eulerian grid)
framework on which the flow equations are solved. The immersed surface is repre-
sented by an unstructured triangular mesh in the three-dimensional space. The nodes
that lie inside the geometry on the Cartesian grid are denoted as solid nodes, whereas
the nodes lying outside the surface are called fluid nodes. The cells are identified
as solid and fluid if all the nodes of a cell are inside or outside the immersed body,
respectively. The cells encapsulating the immersed boundary have both solid and
fluid corner nodes, and these cells are termed as intercepted (or immersed) cells. The
fluid and solid nodes of intercepted cells are termed as immersed and ghost nodes,
respectively. Figure3.2 shows the cells and nodes as per the discussed nomenclature.

Although the method is simple and potentially efficient, the issues like conserving
mass near the vicinity of immersed surface and the unphysical oscillations in pressure,
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Fig. 3.2 Representation of the immersed body in the 3D view and different terminology associated
with IBM. Reproduced with permission from Kumar and Roy (2016)

etc., are observedwhen the geometry is moving. It is important to resolve these issues
to ensure the fidelity and accuracy of the IBM. In this regard, a simple and efficient
MAC-SOLA-based sharp interface IBM (Kumar et al. 2016; Kumar and Roy 2016)
is devised.

3.3 Computational Methodology

The present IBM implementation is based on a discrete forcing approach. At first,
the fluid, solid and intercepted cells are segregated, and afterward, the Navier–Stokes
momentum equations are solved on the fluid cells only. The velocity interpolation
(forcing) is used to accordingly reconstruct the velocities at the intercepted cells
(Fig. 3.3).



86 M. Kumar et al.

Fig. 3.3 Discrete forcing-based IBM

3.3.1 Governing Equations and Solution Methodology

The Navier–Stokes momentum and continuity equations for incompressible viscous
flows of Newtonian fluids in the non-dimensional form, given by Eqs. 3.1 and 3.2,
are solved on a Cartesian grid, where u is the velocity, p is the pressure, t is the time,
and Re is the Reynolds numbers.

∂ui
∂t

+ ∂

∂x j
uiu j = − ∂p

∂xi
+ 1

Re

∂

∂x j

∂

∂x j
ui (3.1)

∂u j

∂x j
= 0 (3.2)

A Marker and Cell (MAC)-based projection method is used to discretize the
momentum Eq. 3.3 on a staggered grid, and projected velocity, ũ, is computed at
n + 1 time step from the known values at n and n − 1 time steps.

ũn+1
i = uni − δt

(
dp

dx

)n

i

− 0.5δt{3(conv. − diff.)ni − (conv. − diff.)n−1
i } (3.3)

where conv. are the convective terms discretized using a second-order upwind
scheme, whereas a second-order central difference scheme is used to discretize the
diffusive terms, diff. The temporal marching of the solution is accomplished by
explicit Adams–Bashforth method.

The correct velocity is obtained by evoking the continuity equation which results
in pressure correction Poisson equation given by Eq.3.4.
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Once the pressure correction, p′, is computed, pressure and velocity are corrected
as follows:

pn+1 = pn + p′ (3.5)

un+1 = ũn+1 − δt
∂p′

∂xi
(3.6)

Specifying the boundary conditions for the fixed Cartesian boundaries, boundary
conditions are trivial but it is challenging near the immersed surface.

3.3.2 Search Algorithm (Tagging)

Identification of the intercepted, fluid and solid cells on the Cartesian grid, based on
the location of the immersed body, is the first step in using IBM.This can be viewed as
an alternative of the grid generation step in a body conformal grid solution technique.
In this step, the complex geometry (Lagrangian grid) is mapped onto the rectangular
(Eulerian) grid. The Eulerian domain has to be marked as inside or outside based
on the position of geometry. Two of the most commonly used algorithms to map the
geometry are (i) the ray-tracing (Khalighi et al. 2020) and (ii) normal-position vector
dot product method (Kumar et al. 2016). The normal-position vector dot product
method has edge over ray-tracing algorithm as ray-tracing often fails to accurately
map the geometry in the cases of complex shapes (Problems in ray tracing 2020).

Since the geometry does not conform to the Cartesian grid, at first, a separate
triangular mesh description (a B-Rep representation) is obtained to define the geom-
etry. This can be done through CAD software. Now, the triangular mesh is considered
as immersed in the Cartesian grid. The surface normal-position vector dot product
method has been used to identify whether an Eulerian grid point is inside or outside
of the triangular mesh. It is to be noted that this process is computationally inten-
sive and demands an efficient search algorithm as both the meshes may comprise
105–106 nodes. The cell identification algorithm can be described in steps as follows
(Fig. 3.4):

1. Calculate the unit normal vector (n) for each triangular element
2. For each node, based on the minimum length of the position vector (p) joining

the node with the centroid of the surface triangular element, identify the closet
triangular element

3. Determine p · n for that node
4. Mark nodes as Solid if p · n ≤ 0, else, Fluid
5. Mark the cells as fluid (if all eight corner nodes are fluid), solid (if all eight corner

nodes are solid) and intercepted cells (if corner nodes comprise both solid and
fluid).
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Fig. 3.4 Search
algorithm—normal and
position vector to a fluid
mesh point from the
immersed surface

In the case of moving boundaries, the search algorithm is executed at time step,
which is obtained using a confined search. Selective retagging is used on theCartesian
grid after first time step. This retagging algorithm stores the location of the intercepted
cells at every time iteration and performs search through the next two cells (in each
direction) adjacent to the intercepted cell (as depicted in Fig. 3.5). It is to bementioned
that tagging (for moving or fixed cases) is done separately for all flow component
variables of the staggered mesh system.

Further, while solving internal flows (like flow in S-bend pipe, cardiovascular
flows, etc.) with high solid to fluid nodes ratio, unnecessary computational overheads
due to large number of redundant solid nodes are considered as another bottleneck
in the IBM (Anupindi et al. 2013; de Zélicourt et al. 2009). These solid nodes are
redundant in case the solid is a rigid body, however, for internal flows in curved
geometries, they can be very high in number. Therefore, it is desirable to opt out
these redundant nodes completely from participating in the computations. One direct
way to achieve this is to use if-else statements, but this simple logical operation adds
significant computational overheads in case of large number of redundant nodes
(de Zélicourt et al. 2009). Kumar et al. (2016) proposed a simple idea of reducing
redundant nodes while solving internal flow by listing down the desirable nodes in
a separate file and allowing the solution to loop over these nodes only (depicted in
Fig. 3.6). For moving bodies, the list file is updated at the beginning of each time
iteration using a fresh search (using the selective retagging as discussed previously)
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Fig. 3.5 Search algorithm—scheme depicting the short listing of nodes for retagging at the next
time step in moving boundary problem

Fig. 3.6 Schematic representation of the scheme: listing the nodes in file over which solution loop
is carried out
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for fluid and immersed/ghost nodes. This implementation reduces the overallmemory
requirements and the floating-point operations significantly.

3.3.3 Implementation of Boundary Condition

This step is also termed as reconstruction of solutions (i.e., field variables) at the
intercepted cells using interpolation/ extrapolation. Different strategies are recom-
mended by the different authors for solution reconstruction (Iaccarino and Verzicco
2003; Tyagi and Acharya 2005; Gilmanov and Sotiropoulos 2005; Choi et al. 2007).
In this work, a simple quadratic function ( f (n) = an2 + bn + c), where n is the
coordinate along the surface normal direction (Fig. 3.7) while f is the flow vari-
able: u, v,w or p along the surface normal is used for interpolation/extrapolation at

Fig. 3.7 Solution reconstruction scheme (i.e., interpolation) in three dimension
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the immersed/ghost nodes. In the present scheme, the solutions are constructed at
both faces of the intercepted cell, i.e., both in the fluid and solid (ghost) parts of the
intercepted cell. The interpolation/extrapolation ensures that the velocity satisfies
no-slip conditions on the solid surface (triangular mesh), and the pressure satisfies
the following condition (Gresho and Sani 1987):

∂p

∂n
= −n

Du
Dt

(3.7)

3.3.4 Coupled MAC-SOLA Solver

The divergence-free velocity is obtained by solving the pressure correction Poisson
equation (Eq.3.4).

While solving Poisson equation (Eq.3.4), pressure correction values at the neigh-
boring nodes are needed, and hence, the requirement of specifying pressure bound-
ary conditions near the edges of the flow domain arises, which are not available as
these points lie inside the solid. Whereas, Hirt et al. (1975) proposed SOLA, which
assumes that the pressure in the neighboring cells is correct and velocities are iter-
atively updated based on local divergence only. Here, the pressure correction for a
particular cell can be found out iteratively from the divergence of the local cell only
(Eq.3.8).

p′ = − ω
∂u

′
i

∂xi

2δt ( 1
δx2 + 1

δy2 + 1
δz2 )

(3.8)

where ω is the over-relaxation factor. As a result, in this approach, the needs of
the boundary conditions in the pressure of pressure correction (i.e., pressure in the
neighboring solid cells) are avoided. Hence, this method can be easily deployed for
arbitrarily intercepted cells in an IBM approach.

Therefore, a coupled MAC-SOLA scheme (Kumar et al. 2016; Kumar and Roy
2016) (in which MAC is applied in the fluid cells, for which neighboring pressure
correction is available, while SOLA is applied at the intercepted cells) is a better
option. In the coupled MAC-SOLA, at first, modified accelerated SOLA (Algorithm
1) is applied to obtain pressure correction, corrected pressure and velocity at the
intercepted cells.
Algorithm 1—SOLA at intercepted cells
For each intercepted cell
compute divergence from projected velocity
compute pressure correction from Eq. 3.8
update pressure using Eq. 3.9
update velocity components at the interfaces using Eqs. 3.10 and 3.11

End For
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pn+1 = pn + p′ (3.9)
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In Eqs. 3.10 and 3.11, γ is a parameter based on the spatial steps. As the pressure
and velocities are updated iteratively, an over-relaxation factor 1 < ω0 < 2 is used
for fast convergence given by Eq.3.12.

γ = − ω0

2δx( 1
δx2 + 1

δy2 + 1
δz2 )

(3.12)

MAC (Algorithm 2) is applied afterward to find the pressure correction and
updated flow variables at the fluid cells.
Algorithm 2—MAC at fluid cells
apply pressure correction boundary conditions
compute divergence for each fluid cell
solve pressure correction Poisson equation Eq. 3.4
update pressure using Eq. 3.9
update velocity components at the interfaces using Eqs. 3.10 and 3.11
apply velocity boundary condition

The above MAC-SOLA computations are iteratively performed until maximum
divergence in the intercepted cells (obtained through SOLA steps) is less than the set
tolerancewithin a time step. Pressure is enforced at the nodes of intercepted cell using
the interpolation scheme discussed before. It has to be mentioned that as the pressure
correction is obtained for the fluid cells and intercepted cells using local velocity
divergence, the corrected velocity field satisfies mass conservation and the pressure
field is also free from unphysical fluctuations. Figure3.8 shows the flowchart of the
solver.

3.3.5 Computational Efficiency of MAC-SOLA

As the SOLA loops are iterative in nature, its convergence may add to the com-
putational overhead of the coupled MAC-SOLA scheme. So, it will be important to
benchmark the performance of aMAC-SOLAscheme (i.e., mass conserving scheme)
over a straightforward MAC-based reconstruction scheme (without mass conserva-
tion). Kumar and Roy (2016) investigate several cases involving fixed and moving
IBM simulation with andwithout mass conservation and infer thatMAC-SOLA does
not show reduced efficiency as compared with a MAC simulation. Furthermore, as
the mesh size increases, the mass conserving MAC-SOLA scheme shows slightly
improved computational efficiency than the MAC scheme (Fig. 3.9). This can be
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Fig. 3.8 Schematic representation of the scheme: listing the nodes in file over which solution loop
is carried out

Fig. 3.9 Comparison of
computational time required
for different grid sizes with
implementation of MAC
(without mass conservation)
and MAC-SOLA (with mass
conservation) solver for flow
over a moving sphere inside
a cubic enclosure.
Reproduced with permission
from Kumar and Roy (2016)

attributed to the fact that as the intercepted pressure correction values are specified
at the intercepted cell, the conditioning of the pressure correction factor improves,
and hence, convergence is faster.
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3.4 GPGPU Acceleration of IBM Solver

TheMAC-SOLA IBMuses a SOLA loop overMAC computations. In case of incom-
pressible flow solvers, the solution of Poisson equation of pressure or pressure cor-
rection is observed to be most expensive in the entire calculation. Further, the initial
search and the forcing add to the computational cost. Therefore, it is necessary to
use parallelization techniques if some real-life problem with large number of nodes
needs to be simulated. The present section discusses the GPGPU acceleration of
MAC-SOLA IBM solver using OpenACC. The parallelization strategy and the opti-
mization steps used for accelerating the legacy code are discussed in detail by Raj
et al. (2018).

Graphical processing units (GPUs) have found the niche in computational research
over the last decade as general-purpose highly parallel computing units.GPUs consist
of a large number of streaming multiprocessors (SM), each of which is a set of
computing cores having a fixed number of registers. Each SM has a fast on-chip
memory shared among its cores, whereas a slower off-chip memory, with a much
larger capacity, known as devicememory is shared across different SMs. The general-
purpose computing on GPUs (GPGPU) uses GPU as a device and CPU as a host. A
kernel is the part of or a program itself that is executed on GPU device using large
number of threads organized into thread blocks and grids.

OpenACC is a compiler directive-based programming model. It facilitates quick
porting of existing applications to accelerators like GPUs and multicore CPUs with-
out significant programming effort. An additional information is provided to the
compiler through these directives enabling the code optimization within the direc-
tives for a specific accelerator. OpenACC also allows the compilation of the same
code for different accelerators. The two types of directives provided by OpenACC
broadly are data directives and compute directives. More details on the OpenACC
directives can be found in the OpenACC Programming and Best Practices Guide
2015) and the OpenACC specifications document (2020).

In the present implementation, GPGPUacceleration ofMAC-SOLA legacy solver
is accomplished via OpenACC. At first, all the variables are first copied to the GPU
(device side), and necessary update clauses are used wherever necessary to move the
data between host and device. This step ensures that the data copy between host and
device is minimized. The parallelization of few important functionalities is discussed
in the below subsections.

3.4.1 OpenACC Acceleration of Search Algorithm

The search algorithm is discussed before and like earlier, at first time step, the sur-
face mesh file is read sequentially before classifying the cells as fluid, solid or inter-
cepted. Once the grid/Cartesian and Lagrangian nodes are read from the input file
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sequentially, OpenACC parallel loop constructs and the collapse clauses are used to
parallelize the search algorithm at first time step.

In the case of moving boundaries, selective retagging is used after the first time
step, and update clause is used for the array storing the cell id. The clause is used so
that the data is updated on the host side which is required while runningMAC-SOLA
computations.

3.4.2 OpenACC Acceleration of MAC-SOLA Algorithm

The MAC algorithm is used to calculate the pressure correction for every fluid cell.
It is solved using basic iterative methods—Jacobi and successive over-relaxation,
whereas SOLA is applied as the boundary conditions at the intercepted cells itera-
tively. MAC computations are independent across each MAC-SOLA iteration and
can be executed in parallel.

In the case of Jacobi method, the degree of parallelism is maximized, and a good
occupancy is maintained by using the collapse clause of OpenACC. It is used to
collapse the three dimensions (i, j, k) of the 3D mesh and distribute each iteration
among the GPU threads. The convergence value is computed in parallel using the
max reduction clause. The SOR method has a faster convergence than the Jacobi but
is difficult to parallelize.

SOLA has data dependency on pressure correction, hence parallelization is not
possible and the SOLA is run on CPU. Afterward, the update clause is used to update
the variables on GPU.

Figure3.10 shows the strategy used for accelerating the coupleMAC-SOLA algo-
rithm.

3.5 Results and Discussions

3.5.1 Mass Conservation and Pressure Fluctuation

3.5.1.1 Mass Conservation

To present the effectiveness of MAC-SOLA scheme in mass conservation, both
the global and local mass conservation results are presented here. For global mass
conservation, flow through a conical nozzle is simulated at Re equal to 30 (based
on inlet diameter and velocity). The uniform inlet and Orlanski outflow boundary
(Orlanski 1976) conditions are implemented at the inlet and outlet of the nozzle,
respectively. The difference between mass flow rates through the inlet and outlet
sections is quantified as the global mass loss. In Fig. 3.11, global mass loss versus
volume mesh width (�h) plots are depicted in a logarithmic scale, which shows a
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Fig. 3.10 GPU acceleration strategy for coupled MAC-SOLA scheme

Fig. 3.11 Mass loss study for flow inside the conical channel—log (�h) versus log (mass loss).
Reproduced with permission from Kumar and Roy (2016)
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Fig. 3.12 Difference between mass in and out of each cell for transverse oscillation of cylinder
inside a channel: at two time instants. Reproduced with permission from Kumar and Roy (2016)

good control in global mass conservation, and the order of accuracy lies between
second and third as well. Further, in order to more critically investigate the mass
conservation, the local mass loss (i.e., mass flow rates through the inlet faces minus
mass flow rate through outlet faces of each intercepted cells) for the flow past a
transversely oscillating cylinder is tested. The cylinder is oscillating in transverse
direction using y(t) = yc + 0.125(1 − cos 2π t) as equation of motion. In Fig. 3.12,
local mass losses at two different time instants are shown. The results reveal that the
maximummass loss in an individual cell is of the order of 10−4. The global mass loss
(i.e., difference of mass loss between inlet and outlet cross section of the channel) is
also of the order of 10−4. Further, other moving cylinder cases (like in-line oscillation
of cylinder: inside enclosed square and a channel) also showed a similar small value
of mass loss (local or global).

Therefore, it can be inferred that for both moving and fixed boundary problems,
the present scheme shows good mass conserving properties.

3.5.1.2 Pressure Fluctuation

To present the performance of coupled MAC-SOLA in concern to spurious pres-
sure fluctuations, the time history of the average pressure drag over the in-line
is plotted with different time steps and/or grid sizes, respectively (Fig. 3.13). The
cases are simulated with and without mass conservation in the intercepted cell. In
case of in-line oscillating cylinder, the cylinder is allowed to oscillate according to
equation of motion: x(t) = xc(0) + A(1 − cos 2π f t), where amplitude A = 0.05D
and D is the diameter of the oscillating cylinder. The Reynolds number, Re = u0D

ν

where u0 = 2π f A and Strohal number St = f D/uo are set equal to 78.5 and 1.27,
respectively. The further setup details (like boundary condition, etc.) can be seen in
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Fig. 3.13 a Time history of CPD with different grid size keeping time step equal to 0.002. b Time
history of CPD with different time step keeping grid size equal to D/�x =16. Reproduced with
permission from Kumar and Roy (2016)

Kumar and Roy (2016). The behavior of time history of the pressure drag coeffi-
cient (CPD = FD

0.5ρD3 f 2 ) with four different grid sizes and time steps is presented in
Fig. 3.13. Figure3.13 shows that the coupled MAC-SOLA scheme (i.e., with mass
conservation in intercepted cells) controls the spurious pressure fluctuation better
than a scheme in which mass conservation at the intercepted cell (through SOLA
steps) is not insured. Further, a smooth Fourier curve is fitted over the temporal
variation of the pressure drag, and the root means square of the difference from the
observed value is computed. The variation of this root mean square error (RMSE)
is presented in Fig. 3.14. It is observed that the mass conserved scheme is able to
reduce the RMSE approximately by five times in comparison with non-conserving
scheme Fig. 3.14.

Overall, it inferred that better control over pressure fluctuations is achieved with
mass conserving coupled MAC-SOLA scheme.
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Fig. 3.14 RMSE of CPD for different a grid size and b time step. Reproduced with permission
from Kumar and Roy (2016)

3.5.2 Performance Results

3.5.2.1 Performance of Search Algorithm

The performance of search algorithm execution on single core Intel(R)Xeon(R) CPU
E5-2620v4@2.10GHz is comparedwith code execution onTesla P100-PCIE- 12GB
GPU. The compilers used are GNU for the CPU execution and pgf90 for the code
execution on GPU. Figure3.15 shows the comparison of search algorithm for both
fixed and oscillating cylinder cases in a 35× 10D box (D = cylinder diameter). The
Eulerian grid size used in the problem is 511× 211× 11. An in-house grid generator
is used to generate a non-uniform grid with dense clustering of nodes in the vicinity
of cylinder. In case of confined search, a 31× 41× 11 bounding box around the
cylinder is used. It can be observed that speedup for both full and confined search in
case of flow past a fixed cylinder is promising, but the performance degrades when
the cylinder is oscillating. Since the search algorithm for moving body uses selective
retagging, the scope of parallelism in performing search is minimized. Also, the time
taken for the data copy/movement between GPU and CPU becomes significant. It is
noted that OpenACC directives provide a speedup of more than≈ 10× in performing
search.

3.5.2.2 Performance of MAC-SOLA Algorithm

The pressure correction Poisson equation to satisfy the mass conservation is solved
using Jacobi and ω-SOR. Figure3.16 compares the IB solver times for both the
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Fig. 3.15 Performance of search algorithm

Fig. 3.16 Performance of MAC-SOLA algorithm. Reproduced with permission (Raj et al. 2018)

methods for flow past a cylinder on a Cartesian grid of size 462× 352× 9. We see
that the sequential IB solver with the SOR method for ceqcp is 2.9× faster than the
one with the Jacobi method. However, SOR is not easily amenable to parallelization
(Pang et al. 2015). In SOR, there is a dependency of the (i, j,k) iteration on (i−1, j−1,
k−1) in a way that parallelism is limited to along the diagonals (in a diagonal scan).
This limited degree of parallelism does not saturate the memory bandwidth, and the
parallelized SOR solver performs worse than the parallel Jacobi solver. Hence, in
the accelerated solver, we continue to use the Jacobi method for solving the mass
continuity equations.

3.5.2.3 Performance of MAC-SOLA IBM Solver

The performance of the OpenACC accelerated IB solver on both multicore CPU and
GPU architectures is analyzed. To compile the solver for a multicore CPU, we use
the compilation flag -ta=multicore, while to compile for a GPU (Tesla P100), we
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Fig. 3.17 Performance of MAC-SOLA IBM solver. Reproduced with Permission from Raj et al.
(2018)

use the flag -ta=tesla:cc60. Our experiments are executed on a node with an Intel
Xeon E5-2698 v3@2.3 GHz, dual socket 16 core CPU with 256 GB RAM, running
CentOS 7.2. The CUDA and PGI versions used are CUDA 9.0.176 and PGI 17.10,
respectively. We run our tests on three GPU architectures: Tesla P100, Tesla V100
and Tesla K80. Figure3.17 shows the performance of the accelerated solver on GPU
and multicore CPU architectures in comparison with the sequential solver. We see
that accelerated solver run on the Tesla P100 GPU is 70x faster than the sequential
solver. The solver run on the P100 GPU is also 10x faster than the accelerated solver
run on the multicore CPU. The IB solver is memory intensive (memory operations
are twice as many as flops). The large speedups of the GPU accelerated solver over
the sequential solver are due to both the larger flops and memory bandwidth offered
by the GPU. As the theoretical peak memory bandwidth of the Tesla P100 (720
GB/s) is about 10x more than the peak memory bandwidth of Intel Xeon E5-2698
(68 GB/s), we see large speedups on the GPU as compared to the multicore CPU.

3.5.3 Fixed: Flow Inside an S-bend Pipe

The three-dimensional flow inside a S-bend pipe having sweep angles of 22.5◦
(depicted in Fig. 3.18) is simulated Kumar et al. (2016). The simulation was run
under the following conditions: Re = 790 (based on pipe diameter); uniform inlet
velocity; no-slip conditions at enclosing wall; Orlanski outflow condition at outlet
and grid size of D/40. The axial velocity profiles along the curvature plane at the
three different cross sections (i.e., sections: AA, BB and CC) of the S-bend channel
are plotted and compared with the corresponding results of Taylor et al. (2020) in
Fig. 3.19. The computed results are in better agreement and present the efficacy of
the coupled MAC-SOLA scheme.
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Fig. 3.18 Configuration of S-bend pipe with two successive bends with sweep angles of 22.5◦ over
which simulation is performed. Reproduced with permission from Kumar et al. (2016)

Fig. 3.19 Comparison of the axial velocity profiles in the curvature plane of S-bend with 22.5◦
sweep angle with experimental result (Taylor et al. 2020). Reproducedwith permission fromKumar
et al. (2016)
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Fig. 3.20 Vorticity contours for oscillating airfoil at: α = 19.48◦ and α = 7.68◦. Reproduced
with permission from Kumar and Roy (2016)

3.5.4 Moving: Oscillating Airfoil

In order to assess the efficacy of MAC-SOLA scheme, its performance in case of
moving boundary problem is needed to be studied. For this, Mehta’s experimental
simulation over oscillating airfoil is simulated Mehta (1976). The oscillation of air-
foil is governed by α = 10◦ − 10◦cosωt , where ω = 2ku∞

c , k = 0.5, and it oscillates
around the one-fourth chord axis. The Re is kept equal to 5000. The coefficients
of lift at α = 19.48◦ and α = 7.68◦ are computed as 1.446 and 0.978, respectively,
which are comparable toMehta’s reported values of 1.453 and 0.973. This agreement
in the values of unsteady lift coefficient also affirms the the utility of this scheme in
controlling the spurious pressure fluctuation over accelerating bodies. Further, it also
exhibits the capability of present MAC-SOLA based IBM implementation in predic-
tion of the unsteady aerodynamics. The vorticity iso-contours during upstroke and
downstroke are shown in Fig. 3.20. The results also depict the formation of leading
edge vortex during upstroke and subsequent departure of vortex while downstroke
(also known as dynamic stall).

3.6 Conclusions

This chapter has presented a detailed discussion on implementation of the sharp
interface immersed boundary method in which boundary conditions are accurately
implemented over the complex/moving boundary while strongly enforcing the mass
conservation at the intercepted cells. A coupled MAC-SOLA algorithm is presented
which is simple to implement yet does not add any extra computational overhead.
Accuracy in terms of global and local mass conservation is demonstrated. We further
show that this algorithm can efficiently control the spurious pressure oscillations in
the vicinity of the immersed surface even when using a coarse mesh and finer time
steps. Further, the parallelization of the scheme is discussed. We have demonstrated
optimization of the solver using GPGPU acceleration through OpenACC directives.
Parallelizations of the computed heavy parts like IBM search or tagging and pressure
correction solvers are discussed in detail.
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Chapter 4
Coupling the Curvilinear Immersed
Boundary Method with Rotation-Free
Finite Elements for Simulating
Fluid–Structure Interaction: Concepts
and Applications

Anvar Gilmanov, Henryk Stolarski, and Fotis Sotiropoulos

4.1 Introduction

Unsteady fluid–structure interaction (FSI) problems taking place in geometrically
complex domains and involving large deformations of three-dimensional, thin struc-
tures are encountered in a broad range of engineering and biological problems
across a range of Reynolds numbers and flow regimes. Examples range from inflat-
ing parachutes and flow-activated energy harvesting devices, to swimming aquatic
organisms, to native as well as prosthetic heart valves, to name a few. The inherent
complexity of such problems along with the highly nonlinear nature of the ensuing
FSI, which is associated primarily with the large deformations of the solid, present
unique challenges to numerical methods. Such challenges arise from, among others:
(i) the need tomodel geometric and constitutive nonlinearities of the solid bodies; (ii)
the often arbitrary complexity of the dynamically evolving flow domains, due to the
arbitrarily large amplitude of the deformation thin flexible structures may undergo;
and (iii) the challenges in obtaining robust and efficient FSI algorithms, especially in
problems with low mass ratios (Sotiropoulos and Yang 2014; Baek and Karniadakis
2012) which are commonly encountered in cardiovascular flow simulations. These
challenges along with recently developed approaches for tackling them constitute
the main focus of this chapter.

There are two general approaches typically used for simulating complex flows
with deformable boundaries: (1) the boundary conforming arbitrary Lagrangian
Eulerian (ALE) approach; and (2) immersed boundary (IB) methods. The ALE
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approach (Hirt et al. 1974; Donea et al. 1982) is well suited for resolving near-
wall viscous regions in high Reynolds number flows due to its inherent body-fitted
mesh structure that conforms to boundaries at all times. However, for significant
movement of the boundaries, ALE methods are cumbersome to apply to problems
with large deformations since they require frequent remeshing in order to prevent
the mesh from becoming severely distorted. The remeshing procedure is computa-
tionally expensive making ALE methods inefficient in complex three-dimensional
problems. Fixed, non-boundary conforming, grid methods provide another alterna-
tive to solving problems with deformable boundaries and complex geometry. Such
methods are generally referred to as immersed boundary (IB) methods and are espe-
cially attractive for simulations of complex flows in engineering and biology because
they do not require remeshing and can readily handle arbitrarily large deformations
of the structures. The various types of IB methods have been recently reviewed by
Sotiropoulos and Yang (2014). The interested reader is referred to this paper as well
as the earlier review byMittal and Iaccarino (2005) for details. Promising approaches
that enhance the capabilities of IB methods in the simulation of fluid flow interacting
with moving/deformable bodies at high Re numbers are methods involving adaptive
mesh refinements (Vanella et al. 2010; Angelidis et al. 2016).

In this chapter, we focus our review of the literature exclusively on IB numerical
approaches proposed for handling FSI of flexible structures in complex domains.
We pay special attention to the distinction between discretization techniques used to
handle the flow and those applied to structural governing equations, since a range
of formulations have been proposed in the past. These include pure finite-difference
(FD) (Griffith et al. 2009; Wiens and Stockie 2015; Zhu and Peskin 2002; Le et al.
2009; Luo et al. 2008) or finite element (FE) (Dettmer and Períc 2006; Barker andCai
2010; Bazilevs et al. 2012) methods for both the flow and structural equations as well
as mixed formulations combining FD (or finite volume) discretization for the flow
with FE for the structural equations (Zheng et al. 2010; Farhat and Lakshminarayan
2014).

Diffused interface IB methods use FD for both the fluid and structural solvers
(Griffith et al. 2009). In this approach, the loading on the structural surface, due to
interaction with the fluid, is introduced by appropriately defined body forces in the
momentum fluid equations. A number of successful applications of such methods,
whichwe shall refer to herein as IB-FD-FDmethods for their use of FD discretization
for both the fluid and solid equations, have been reported over the years (Wiens and
Stockie 2015; Zhu and Peskin 2002; Le et al. 2009). The accuracy of such methods
can be improved by incorporating local mesh refinement as was done in Griffith
et al. (2009). One potential difficulty with this class of methods, however, arises
from treating the solid surface as diffused interface, which complicates the accurate
calculation of the wall shear stress field on the surface. Yet, such detailed calcu-
lations may be required in cardiovascular flow problems, such as heart valve flow
simulations, in which complex wall shear stress patterns on the valve leaflets have
been linked with increased potential for aortic valve diseases and other aortopathies
(Ge and Sotiropoulos 2010).
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A sharp interface IB method using FD formulations for both the flow and struc-
tural equations was proposed by Luo et al. (2008). This method was formulated for
linear viscoelastic solids and applied to simulate two-dimensional FSI in laryngeal
aerodynamics. The same formulation was later modified to incorporate a FE formu-
lation for the structural equations and applied to simulate FSI of a high mass ratio
3D flapping wing at very low Reynolds number (Re = 50) (Luo et al. 2010). Tian
et al. (2014) further extended this method to simulate several complex FSI problems
at low Reynolds numbers (Re ∼ 102). An ALE formulation utilizing the so-called
embedded boundary approach was proposed by Farhat and Lakshminarayan (2014)
for solving compressible FSI problems for external aerodynamics applications at
high Reynolds numbers. This approach employs finite volume discretization for the
fluid equations with finite elements for the structural equations. While this approach
can work well for structures in unbounded domains, remeshing difficulties may
arise when the structure is embedded within a complex confined domain. A pure
finite-element-based formulation, for both the flow and the structural equations, was
recently proposed by Kamensky et al. (2015). This method employs the immersoge-
ometric FSI approach and was applied to simulate FSI of a bioprosthetic heart valve
in a straight aorta.

In FSI simulations of biological tissues, e.g., heart valve leaflet interaction with
blood flow, it is critical to use a relevant and efficient structural model that is able
to realistically represent the deformation of the tissue under loads imposed by the
pulsatile blood flow. Such undertaking, however, is not a trivial task since the large
deformations of the tissue and its concomitant geometric nonlinearity pose major
modeling challenges. To circumvent these challenges recent studies attempting to
simulate FSI of tissue valves chose to either use simplified membrane-like materials
(Borazjani 2013) or treat the valve leaflets as thick bodies (Tian et al. 2014). However,
biological tissues of leaflets are normally thin and they exhibit significant bending.
Therefore, a shell model for the solid body is a more appropriate choice (Kamensky
et al. 2015; Sacks et al. 2009). Most finite element (FE) methodologies for handling
shells, however, are computationally very demanding as they employ two or three
nodal rotations alongside with three nodal translations, i.e., 5 or 6 degree of freedom
per node. An exhaustive review of this large body of literature is beyond the scope
of this chapter, but the reader is referred to a number of recent review papers on
the topic (Stolarski et al. 1995; Gal and Levy 2006). Note that the efficiency of
the FE shell model becomes of paramount concern in FSI simulations of complex
problems where the need to couple the fluid and structural solvers together can
dramatically increase the computational cost per time step. For that, in our work we
have selected to adapt and incorporate in the FSImethodology a previously developed
nonlinear, rotation-free triangular shell element formulation (Stolarski et al. 2013),
which has already been shown to provide accurate and robust solutions of various thin
shell FE problems. We have successfully coupled such an approach with the sharp
interface curvilinear IB (CURVIB) method, previously developed by our group (Ge
and Sotiropoulos 2007) to simulate FSI problems (Gilmanov et al. 2015, 2018). In
this chapter, we review the basic features of this novel CURVIB-FE-FSI formulation.
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The CURVIB method employs second-order accurate, central finite differenc-
ing discretization for the flow equations along with an efficient fractional step
approach for satisfying the discrete continuity equation to machine zero in curvi-
linear grids. This method has also been extended to carry out large-eddy simula-
tion (LES) of turbulent flows using wall models for reconstructing boundary con-
ditions at the immersed boundary nodes (Kang et al. 2011). The LES version of
the CURVIB method has been validated extensively for a broad range of complex
turbulent flows. Some recent examples include: turbulent flow past an axial flow
turbine in an open channel (Kang et al. 2014); open-channel turbulence interacting
with a mobile sediment bed (Khosronejad and Sotiropoulos 2014), and complex
rigid structures interacting with a free surface (Calderer et al. 2014). As such the
CURVIB method provides an efficient and accurate approach for simulating geo-
metrically complex flows across a range of Reynolds numbers. Furthermore, since
the CURVIBmethod employs unstructured triangular meshes to discretize immersed
boundaries, the method is ideally suited for coupling it with our efficient rotation-
free FE shell model (Stolarski et al. 2013), which is ideally suited for handling FSI
problems involving arbitrarily large deformations. To enable this coupling, we report
herein on a number of algorithmic advances and significant improvements of our pre-
viously developed methodology. Our FE solver is highly efficient and versatile for
thin bodies—it can be applied in analysis of a variety of structures including engi-
neering structures such as shells, plates, beams and may incorporate various material
properties, including those characterizing biological tissues such as heart valves and
arterial walls.

In this chapter, we present the recently developed methodology and demonstrate
its ability to simulate very challenging FSI problems involving large amplitude oscil-
lations. The first problem is that of an inverted elastic flag, recently studied experi-
mentally by Kim et al. (2013), which is especially challenging because: (1) the flow
occurs at high Reynolds number and requires implementing the resulting CURVIB-
FE-FSI formulation in conjunction with LES; and (2) depending on the elasticity of
the flag the FSI problem exhibits dynamically rich variety of solutions (Kim et al.
2013). To the best of our knowledge, the first numerical solution of that problem
was reported in Gilmanov et al. (2015). Here, we report simulations for a set of
parameters under which the flag undergoes periodic oscillations and show that the
computed motion of the flag is in excellent agreement with the measurements. In
the second application problem, we demonstrate the ability of the coupled CURVIB-
FE-FSI method to simulate the FSI of a tri-leaflet valve in an anatomic aorta. Our
simulations capture the rich 3D vorticity dynamics during the opening and closing
of the valve leaflets.

The chapter is organized as follows. In Sect. 4.2, we describe the governing
equations for both fluid and solid structures. In Sect. 4.3, we present the numerical
approach used to solve the coupled system of fluid and solid equations with appro-
priate boundary conditions. In Sect. 4.4, the flapping of an inverted flag is presented.
In this section, we also demonstrate the applicability of the proposed FSI approach to
simulate pulsatile blood flow in an anatomic aorta with a tri-leaflet heart valve using
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both isotropic and nonlinear anisotropic materials (Gilmanov et al. 2018). Finally,
in the Sect. 4.5, we summarize the major features of he presented approach.

4.2 Governing Equations

Weconsider FSI of a deformable body�s submerged in an incompressible fluid occu-
pying a volume�f bounded by ∂�f, the method is applicable to multiple deformable
thin bodies but for the ease of presentation and without loss of generality we present
the method for a single body.

In what follows, we use bold symbols for vectors and bold underlined symbols for
tensors andmatrices. The regular and italic symbols are reserved for scalar and tensor
components, respectively. The overbar notation indicates known and/or prescribed
values.

4.2.1 The Equations for the Fluid Domain

In general, fluid boundaries can be presented as consisting of three non-overlapping
parts: ∂�f = �N

f ∪ �D
f ∪ �fsi. Here, �D

f and �N
f are the stationary boundaries in

which Dirichlet and/or Neumann boundary conditions are specified. �fsi is the inter-
face between the fluid domain and the solid domain, i.e., the moving interface the
configuration of which needs to be determined by solving the FSI problem.

The equations governing the motion of Newtonian incompressible fluid in a
domain �f the Navier–Stokes and continuity equations, which read in vector/tensor
notation as follows:

ρf
dv
dt

= ∇ · σ f in�f,

∇ · v = 0 in�f. (4.1)

In the above equations, ρf is the mass density of the fluid, d/dt is the material or
Lagrangian time derivative, v is the fluid velocity vector, and σ f is the fluid stress
tensor. The above equations are subjected to various boundary conditions for the
velocity v on the various segments comprising the fluid boundary. For example, on
the Dirichlet portion of the boundary �D

f Dirichlet boundary conditions and on the
Neumann segment of the boundary �N

f , a stress boundary condition of the following
form may be applied:

v = v̄ on�D
f σ f · nf = t̄ f on�N

f (4.2)

where v̄ and t̄ f are known functions, nf is the normal unit vector to the �N
f boundary.

For FSI problems, the immersed deformable body has its own displacement field u,
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velocity field u̇, and stress field σ s. On �fsi the velocity field and the normal stress
field must be continuous. This physical requirement gives rise to the following set
of boundary conditions on the FSI segment of the fluid boundary:

v = u̇, σ f · nf = σ s · ns on�fsi (4.3)

Here, nf and ns are the local normal unit vectors on the fluid and solid interfaces,
respectively. Note, therefore, that on the �fsi segment of the boundary both Dirichlet
and Neumann conditions must be satisfied (given by Eq. 4.3) so that the problem
is well posed and the Navier–Stokes Eqs. (4.1) supplied with boundary conditions
(4.2) on �D

f and �N
f can be solved.

To facilitate the subsequent presentation of the FSI algorithm, we denote the
governing equations for the fluid domain as an operatorF , which receives the input
information from the boundary conditions and yields the pressure p and velocity field
v inside the fluid domain �f as follows:

(p, v) = F(
v̄, t f, u̇, σ s

)
in�f (4.4)

here u̇ and σ s are applied at the boundary �fsi. Equation (4.4), therefore, should be
viewed as the operator notation for Eqs. (4.1–4.3).

4.2.2 The Equations for the Solid Domain

In the solid domain, we use the Lagrangian viewpoint to describe the motion of
the solid undergoing large deformations. In this approach, the current position r of
a material point at time t is related to its position R at the reference configuration
by the mapping �:r = Φ(R). The gradient of that transformation (the so-called
deformation gradient) is therefore: F = ∂Φ/∂R. The displacement and velocity of
a material point are defined as:

u = r − R, u̇ = du/dt (4.5)

The momentum equations for the solid part, formulated in the current configura-
tion, have the following form (Kang et al. 2011):

ρs
du̇
dt

= ∇ · σ s in�s, (4.6)

where ρs is the current mass density of the material. Here, σ s is the Cauchy stress
tensor for the solid structure, with the symbol ∇ representing the gradient operator
in the current configuration. The boundary of the solid structure can be represented
as sum of non-overlapping parts ∂�s = �N

s ∪ �D
s ∪ �fsi, where the indices D and N

denote boundaries with Dirichlet and Neumann conditions, respectively:
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u̇ = ¯̇u on �D
s , σ s · ns = t̄s on �N

s (4.7)

where �D
s and �N

s represents the portions of the surface of the body in its current
configuration where Dirichlet and Neumann conditions are applied, respectively, t̄s
is a traction vector acting on the surface, ns is a unit normal to the boundary and ¯̇u
is the velocity prescribed on the surface.

For FSI problems, additional boundary conditions must be implemented on the
�fsi:

u̇ = v on�fsi, σ s · ns = t f on�fsi (4.8)

here �fsi is part of the moving structure surface the configuration of which needs to
be determined by solving the FSI problem, t f = σ f · nf is a traction vector which
acts on this part of surface from the fluid, σ f and nf are the stress tensor and surface
normal unit vector from the fluid. We will discuss later how to define the traction
vector for thin surfaces.

The solid momentum equations and the boundary conditions can be recast in
terms of an operatorH, which incorporates both the (kinematic and dynamic) bound-
ary conditions and constitutive equations to yield the velocity u̇ and displacement
field u

(u, u̇) = H
(
v̄, t̄, v, t f

)
in�s, (4.9)

here v and t f are applied at the boundary �fsi .

4.3 Numerical Algorithms for Fluid–Structure Interaction

A sharp interface IB algorithm for solving FSI problems with thin deformable
structures embedded in a fluid domain requires developing and integrating the fol-
lowing algorithmic components: (1) an algorithm for solving the fluid flow equa-
tions (Sect. 4.3.1); (2) an algorithm for solving the thin shell structural equations
(Sect. 4.3.2); (3) an approach for defining the action from the thin shell onto the sur-
rounding fluid by identifying the IB nodes in the vicinity of the body where boundary
conditions need to reconstructed (Sect. 4.3.3); (4) an approach for calculating the
action from the fluid to the thin shell body computing the forces due to pressure and
shear (Sect. 4.3.4); and (5) an algorithm that integrates the fluid and solid solvers
into a coupled FSI formulation. In this section, we discuss the approaches we adopt
in this work to develop these algorithmic components (Sect. 4.3.5).
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4.3.1 The Fluid Solver F

The fluid solver is based on theCURVIB approach (Ge and Sotiropoulos 2007)which
uses the hybrid stagger/non-staggered approach originally proposed by Gilmanov
and Sotiropoulos (2005) to solve the governing equations in generalized curvilinear
grids (Ge and Sotiropoulos 2007). The Navier–Stokes and continuity equations (4.1)
are partially transformed in generalized curvilinear coordinates and read in tensor
form (repeated indices j = 1, 3 assumes summation) as follows:

∂

∂ξ j

(
V j

J

)
= 0,

∂vq
∂t

+ C
(
vq

) + Gq(p) − 1

Re
D

(
vq

) = 0, q = 1, 2, 3, (4.10)

where the Cartesian velocity vector is denoted as v(v1, v2, v3), p, the pressure divided
by the density ρf, V j = vrξ

j
xr is the jth contravariant velocity component in the

general curvilinear coordinate system ξ(ξ1, ξ2, ξ3), J is the Jacobian of the geometric
transformation J = ∂(ξ1, ξ2, ξ3)/∂(x1, x2, x3), and grm = ξ r

xq ξ
m
xq is the contravariant

metric tensor. The convectiveC
(
vq

)
, gradientGq(p), and viscous D

(
vq

)
operators in

Eq. (4.10) are defined in curvilinear coordinates as (the repeated indexes r, m imply
summation over the values 1, 2, 3):

C
(
vq

) = J
∂

∂ξ r

(
V r

J
vq

)
, q = 1, 2, 3,

D
(
vq

) = J
∂

∂ξ r

(
grm

J

∂vq
∂ξm

)
,

Gq(p) = J
∂

∂ξ r

(
ξ r
xq

J
p

)
. (4.11)

The above equations are discretized via a hybrid staggered/non-staggered
approach using three-point central differencing for all spatial derivatives and inte-
grated in time via a second-order accurate fractional step, pressure projectionmethod.
The momentum equations are solved with a Jacobian-free solver, while flexible gen-
eralized minimal residual (FGMRES) method with multigrid pre-conditioner is used
to solve the Poisson equation to satisfy the discrete continuity equation to machine
zero (see Ge and Sotiropoulos 2007 for details).

Complex immersed boundaries are handled using a sharp interface IBmethodwith
velocity reconstruction along the local normal to the body (Ge andSotiropoulos 2007;
Gilmanov and Sotiropoulos 2005; Borazjani et al. 2008). Some details concerning the
reconstruction method for thin flexible boundaries will be provided in a subsequent
section of this chapter.

The CURVIB method has been recently extended to carry out LES of turbulent
flows in geometrically complex domains. The details of the LES version of our
flow solver can be found in Kang et al. (2011, 2014). Here, it suffices to mention
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that the dynamic Smagorinsky model (Germano et al. 1991) is used for subgrid-
scale closure with three-point central, second-order accurate finite differencing for
the convective terms. Boundary conditions at IB nodes in the vicinity of complex
immersed boundaries are reconstructed using a wall model approach adapted for
the CURVIB method by Kang et al. (2011). In this chapter, we will report the first
application of the LES version of method to simulate FSI of a flexible structure at
high Reynolds number.

4.3.2 The Solid SolverH: Finite Element Model for Thin
Shells

Themomentumequations for the solid (Eq. 4.6) can be expressed in variousweak for-
mulations using the principle of virtual work. In this work, we select the Lagrangian
version of the weak form, which is related to the initial configuration, uses the second
Piola–Kirchhoff stress tensor S and the variation of theGreen–Lagrange strain tensor
E. By virtue of how they appear in the principle of virtual work given below, these
two tensors constitute a dual set in the reference configuration representing volume
V0 bounded by the surface boundary A0. This version of the weak form reads as
follows:

˚

V0

(
δETS + δuTρsü

)
dV0 −

¨

A0

δuT t0dA0 = 0. (4.12)

In the above equation, ρs is the constant density of the solid in the original config-
uration, t0 represent the surface loads in that configuration, and ü is the acceleration.
To focus on the essential features of the algorithm in the illustrative examples pre-
sented in this chapter the Neo–Hookean (Macosko 1994) constitutive equation is
used. Thus, in any fixed, local coordinate system the stress and strain tensors are
related as follows:

Sloc = DlocEloc (4.13)

with

Dloc = Y

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤

⎦, (4.14)

where Y is the Young’s modulus and ν is the Poisson’s ratio, index loc indicates that
constitutive equation is described in a local Cartesian system. Having the stresses
defined in that specific system, they can be transformed to any other system by the
usual transformation roles for tensors.
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Although, to simplify our exposition of the concepts, in the examples presented
here the constitutive equations defined above are used, the overall methodology
described here has been recently combined with complex material behavior, more
appropriate for biological applications.Gilmanov et al. (2016) incorporated a general,
hypereleastic constitutive model in the rotation-free, large deformation, shell finite
element (FE) formulation and applied it to dynamic simulations of an aortic heart
valve. In a forthcoming paper (Gilmanov et al. 2018), we incorporate the rotation-
free thin shell FE method for nonlinear, anisotropic, hyperplastic tissues (Gilmanov
et al. 2016) in the CURVIB-FE-FSI framework (Gilmanov et al. 2015). The main
goal of that paper was to provide quantitative illustrations of the significant effects
that the material properties of the heart valve leaflets have on hemodynamics.

We consider only thin shell models for the solid domain. In the Kirchhoff–Love
model of thin shells (Timoshenko andWoinowsky-Krieger 1959) the position vector
R of any point within the volume of the shell in the reference configuration is defined
in terms of the surface curvilinear coordinates and the local normal distance ζ to the
middle surface, with −h0/2 ≤ ζ ≤ h0/2, and h0 being the thickness of the shell.
The position of the points in the current configuration of the shell r is defined in the
same way and can be mapped back to the reference configuration using the same
local normal distance to the middle surface ζ . For the Kirchhoff–Love model of thin
shells the components of the Green–Lagrange strain tensor in the entire volume of
the shell can be expressed via the deformation of the shell’s middle surface as follows
(Stolarski et al. 2013):

Ei j = Em
i j + ζ Eb

i j . (4.15)

Here Em
i j are the membrane and Eb

i j the bending components of the strain tensor.
We adopt here the model developed by Stolarski et al. (2013), which employs

triangular finite elements and approximates the shell curvature tensor without using
the rotational degrees of freedom. To accomplish that the curvature of a given ele-
ment is associated with nodal displacements of that element as well as with nodal
displacements of the three surrounding elements, this permits definition of a com-
plete quadratic polynomial, representing configuration of that group of four elements
(called “the patch”) in a moving with the shell rectilinear coordinate system. This
polynomial, simply by its differentiation, permits for simple, and accurate, approxi-
mations of the element curvature tensor at any stage of the large deformation process.
Most importantly, since the above approach is used only to compute the bending
strains within the element and the computation of the membrane strains is based on
the flat geometry of the element, the non-physical membrane locking is automati-
cally avoided. For the derivation and the details of the method the reader is referred
to Stolarski et al. (2013).

The outlined approach leads to the discretized FE version of the governing equa-
tions for the structure. By virtue of Eq. (4.15), the weak formulation of Eq. (4.6) can
be written in the following form, containing the sum over all elements e = 1, . . . , E
of the triangulated domain:
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E∑

e=1

⎛

⎝
˚

_V0

(
δuT

e

(
Bm + ζ Bb

)T
S − δuT

e ρsb + δuT
e ρsüe

)
dV0 −

¨

A0

δuT
e tdA0

⎞

⎠ = 0,

(4.16)

where ue, üe are the displacement and acceleration within the element e, Bm and
Bb are membrane and bending strain-displacement matrices, respectively. Thus, the
vector of internal forces is

f inte =
˚

V0e

[(
Bm

)T
TTDlocT Em + ζ 2

(
Bb

)T
TTDlocT Eb

]
dV0, (4.17)

where superscript indices (m) and (b) indicate membrane and bending-related matri-
ces in the curvilinear coordinate system on the surface (Stolarski et al. 2013), while
matrix T represents the necessary transformation of tensors to make the representa-
tion of the stresses and strains in the correctly related coordinate systems. Because
of the space restrictions, the detailed formulation of all matrices we employ is not
given here. Instead, we refer the Readers to the recently published paper (Stolarski
et al. 2013), where all such details of the formulation are presented.

The element vector of the nodal external forces f exte and the element mass matrix
Me resulting from the presented formulation take the following form

f exte =
¨

A0e

NT tdA0, Me =
˚

V0e

ρsNTNdV0, (4.18)

where t is a traction vector, and N is a vector of linear basis functions (Stolarski et al.
2013). Here, the external forces f exte (u, t) depend both on structure displacements
u and the applied fluid traction t. Assembly of the above vectors and matrices leads
to the following final form of the structural domain equations:

f int(u) + Mü = f ext(u, t). (4.19)

In this chapter, three types of boundary conditions for the shell are used: free,
hinged, and fixed boundary conditions. Detailed description and implementation of
these boundary conditions one can find in Stolarski et al. (2013).

In the numerical integration of some dynamic, nonlinear problems with high
frequency modes, a dissipative mechanism is needed in Eq. (4.19) to dump spurious
oscillations and help get converged solutions (Smith andGriffith 2004). If dissipation
is to be included in the system, a term related to the velocities has to be added in
Eq. (4.19) as follows:

f int(u) + Mü + Du̇ = f ext(u, t), (4.20)

where the matrix D defines the dissipation term.
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The detailed description of the solid solver algorithm with all matrices can be
found in Stolarski et al. (2013). A short description of this algorithm is presented
below.

We employ the Newmark time integration algorithm (Newmark 1959) to solve
solid structure Eq. (4.20), which is formulated as follows:

u̇n+1 = u̇n + 
t(1 − γ )ün + 
tγ ün+1
,

un+1 = un + 
tun + 
t2
(
1

2
− ω

)
ün + 
t2ωün+1

, (4.21)

where
t is the time step, subscript n, n+1 indicates time level tn+1 = tn +
t , and
γ, ω are parameters that determine the stability and accuracy of the scheme. Implicit
schemes are unconditionally stable for 2ω ≥ γ ≥ 0.5. The Newmark scheme has
second-order accuracy for γ = 0.5, ω = 0.25 (Smith and Griffith 2004). From
Eq. (4.21), one gets the following formulas for the velocity and acceleration vectors

ün+1 = 1

ω
t2
(
un+1 − un

) − 1

ω
t
u̇n −

(
1

2ω
− 1

)
ün

,

u̇n+1 = γ

ω
t

(
un+1 − un

) −
(γ

ω
− 1

)
u̇n − 
t

( γ

2ω
− 1

)
ün

, (4.22)

which, when inserted in Eq. (4.20), yield

f int
(
un+1

) + M
[

1

ω
t2
(
un+1 − un

) − 1

ω
t
u̇n −

(
1

2ω
− 1

)
ün

]

+ D
[ γ

ω
t

(
un+1 − un

) −
(γ

ω
− 1

)
u̇n −

( γ

2ω
− 1

)
ün

]
= f ext. (4.23)

When the unknown un+1 is retained in the left-hand side of the equation and the
known variables are gathered in the right-hand side, the following discrete equation
is obtained

f int
(
un+1

) + 1

ω
t2
Mun+1 + γ

ω
t
Dun+1

= M
[

1

ω
t2
un + 1

ω
t
u̇n +

(
1

2ω
− 1

)
ün

]

+ D
[ γ

ω
t
un +

(γ

ω
− 1

)
u̇n + 
t

( γ

2ω
− 1

)
ün

]
+ f ext. (4.24)

The last equation constitutes a nonlinear system of algebraic equations that has
to be solved at each time step. This system is solved using the Newton linearization
approach. Denoting by un+1

i the value of un+1 at iteration i, the following equation
is obtained by linearizing f int

(
un+1
i

) = f int
(
un+1
i−1 + 
un+1

i

)
:

f int
(
un+1
i

) ≈ f int
(
un+1
i−1

) + K n+1
i−1 
un+1

i = 0, (4.25)
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where K is the tangent stiffness matrix. The increment 
un+1
i between the iteration

i − 1 and i is the solution of the following system of linear algebraic equations,
resulting from Eq. (4.24).

(
K + 1

ω
t2
M + γ

ω
t
D

)n+1

i−1


un+1
i = Rn+1

i−1 , (4.26)

with the residual

Rn+1
i−1 = − f int

(
un+1
i−1

) −
[

1

ω
t2
M + γ

ω
t
D

]
un+1
i−1

+ Mn+1
i−1

[
1

ω
t2
un
i−1 + 1

ω
t
u̇n
i−1 +

(
1

2ω
− 1

)
ün
i−1

]

+ Dn+1
i−1

[ γ

ω
t
un
i−1 +

(γ

ω
− 1

)
u̇n
i−1 + 
t

( γ

2ω
− 1

)
ün
i−1

]
+ f ext, (4.27)

in which the forces f ext(un, tn), f int(un) are computed according to the explicit
formulas presented in the preceding sections. The matrix D presented in Eq. (4.20)
can be independently defined as linear combination of mass and stiffness matrices
M, K (the so-called proportional damping)

D = fmM + fkK , (4.28)

where fm and fk are constants and are called “Rayleigh” damping coefficients (Smith
and Griffith 2004).

The solutionof the above linear equations,
un+1
i , is used to update displacements,

velocities, and accelerations as follows:

un+1
i = un+1

i−1 + 
un+1
i ,

u̇n+1
i = γ

ω
t

(
un+1
i − un

i

) −
(γ

ω
− 1

)
u̇n
i − 
t

( γ

2ω
− 1

)
ün
i ,

ün+1
i = 1

ω
t2
(
un+1
i − un

i

) − 1

ω
t
u̇n
i −

(
1

2ω
− 1

)
ün
i . (4.29)

The iterative process is declared converged when a specified tolerance of the
iterative process is met, and the algorithm is advanced to the next time level.

The conjugate gradient (CG) method (Smith and Griffith 2004) is used to solve
the linear system of Eq. (4.26). Overall, the cost of using CG is relatively low. The
overall computational cost, however, depends on the number of Newton iterations
to update the displacement, velocity, and acceleration of the nodal points of the
structural mesh.
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4.3.3 Representation of Immersed Thin Structures
in the Fluid Domain

A key feature of our method is that it employs a FE formulation for thin shells in
which the structural equations are formulated in terms of variables defined on its
mid-surface (see Sect. 4.3.2). This approach is accurate and, thus, appropriate for
analysis of thin structures, but it also augments the efficiency of the overall FSI
methodology.

Whether or not the thickness of the structures is accounted for in the FSI analysis
presents important algorithmic challenges for the CURVIB method. This is because
the CURVIB method is designed to use normal vectors to the immersed surface
to: (i) identify the position of background grid nodes relative to the fluid/structure
interface by finding fluid nodes (IB nodes) in the immediate proximity of the interface
as illustrated in Fig. 4.1; (ii) reconstruct velocity boundary conditions at immersed
boundary (IB) nodes along the local normal to the boundary; and (iii) calculate the
loads on the structure imparted by fluid stresses for FSI problems (see Sect. 4.3.4).
Bodies with nonzero thickness, which have been handled in all previous applications
of the CURVIB method, are closed surfaces (i.e., the topologically equivalent to
a sphere). This implies that at every point on the surface of the body there is a
unique normal vector that points toward the fluid side of the interface, namely the

Fig. 4.1 The background grid where the governing equations for the fluid are solved along with the
thin body immersed and associated IB nodes. Solid circles and solid line are vertices and elements
of the solid structure, respectively. Open circles are IB nodes from positive side and open circles
with small primes are IB nodes from negative side of the surface. The red line marks the interface
between the fluid domain and the layer of IB nodes surrounding the thin structure. Figure reprinted
with permission from Gilmanov et al., Journal of Computational Physics, 300, 814–843 (2015).
Copyright 2015, American Institute of Physics
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Fig. 4.2 Two different approaches for considering thin immersed body in the fluid. a A closed
body for which only the outward normal vector points toward the fluid side of the interface. The
standard CURVIB formulation has been developed for such bodies. b A surface with boundary
(the mid-surface of the thin structure). A two-side surface for which both the positive and negative
surface normal vectors point toward the fluid side of the interface. In both sketches open circles
denote background grid nodes (IB marks the immersed boundary nodes where boundary conditions
are reconstructed), closed circles are Lagrangian points discretizing the body, and e is the center of
a structure shell element. Dashed lines indicate the direction of the searching algorithm from the
background (fluid) grid node A(i, j, k) to the adjacent points B(i ± 1, j ± 1, k ± 1). The points
IB+ and IB− in (b) indicate IB nodes from positive and negative side of the surface, respectively.
Figures reprinted with permission from Gilmanov et al., Journal of Computational Physics, 300,
814–843 (2015). Copyright 2015, American Institute of Physics

positive wall normal vector (see Fig. 4.2a). On the other hand, when the structure is
represented only by its mid-plane, as in the present FE thin shell model, the resulting
surface is what is referred to in topological terms as a surface with boundary (i.e.,
the topological equivalent of a disk). For such a case, it is readily apparent from
Fig. 4.2b that at each point on the surface both the positive and negative wall normal
vectors point toward the fluid side of the interface. Consequently, the standard node
classification and boundary condition reconstruction algorithms used in the CURVIB
method (Borazjani et al. 2008) cannot be readily applied and need to be modified.
In this section, we describe the algorithmic changes we have implemented to the
CURVIB method to enable its coupling with the thin shell FE formulation.

At each triangular element e on the mid-surface of the thin structure, we calculate
the positive n+

e and negative n−
e surface normal vectors to identify the positive and

negative, respectively, sides of the surface. The normal vectors are calculated at the
center of the element e, and the positive normal is defined as the outward normal
of the triangle with clockwise nodal numbering. It is thus evident that n+

e = −n−
e .

The triangulated surface is tracked with a set of Lagrangian points (the nodes of the
triangles), which are used to define the boundary conditions (position and velocity
of each Lagrangian node) for the fluid solver.

To find the IB nodes for a given configuration of the thin structure mid-surface
we begin by checking the intersection between the lines connecting the centers of
fluid cells in the vicinity of the body (dashed lines) and the surface (solid lines) as
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shown in Fig. 4.2b. In three dimensions, the intersection is found by checking six
surrounding grid lines from the local grid point A(i, j, k) and the adjacent points
B(i ± 1, j ± 1, k ± 1) (Fig. 4.2b). A fluid node is also considered as an IB node if
the distance between the point and the center of an element e is less than one grid
cell size 
h, i.e.,

∣∣
r ib,e
∣∣ < min 
h, where 
r ib,e = (rib − re), r ib is the position

of the IB node and re is the position vector of the center of the triangular element
(see Fig. 4.2b). The IB node is assigned to correspond to the surface element e on
the solid surface.

To implement this algorithm in parallel computing, we utilize the bounding box
search approach (Borazjani et al. 2008) in order to reduce the involvement of unnec-
essary surface triangles in the searching algorithm. We cover the entire structure
with a volume of size [xmin − xmax; ymin − ymax; zmin − zmax]. This volume is fur-
ther divided into Ni × N j × Nk smaller bounding boxes uniformly. The choice of
Ni , N j , Nk depends on the number of triangulated elements and the number of grid
points per processors. In our simulations, Ni , N j , Nk are typically chosen to be less
than 50. Our line intersection strategy above is applied only for fluid points and
triangulated elements that belong to the same bounding box or adjacent ones.

To handle the aforementioned difficulty arising in our thin body approach, due to
the fact that both positive and negative wall normal vectors at every element point
toward the fluid, we separate the IB nodes in two categories: (i) positive IB+ and (ii)
negative IB− nodes. Note that this type of separation is crucial for the load calculation
discussed in Sect. 4.3.4. To determine whether an IB node is on the positive (+) or
negative (−) side of the surface, we compute the dot product of the positive local
normal vector with the vector connecting the center of the triangular surface element
with the closest IB node: if

(
n+
e · 
r ib,e

)
> 0 then the IB node is located on the

positive side, otherwise it is on the negative side (see Fig. 4.2b). We also note that
the relationship between an IB node and the corresponding surface element e is not
unique as there could be several IB nodes that correspond to the same solid surface
element. This is particularly true when the background fluid grid size is much smaller
than the triangulated cell of the solid surface. In the subsequent section, we discuss
how we handle surface elements that do not have a unique IB node associated with
them insofar as the calculation of the forces acting on that element is concerned.

For Reynolds numbers for which the grid spacing is sufficiently fine to resolve the
near wall flow, velocity boundary conditions are reconstructed at the IB nodes using
linear interpolation along the local normal of the solid surface (Gilmanov et al. 2003).
In our fractional step method for solving Eq. (4.1) (Ge and Sotiropoulos 2007), this
relationship is implicitly incorporated into the nonlinear momentum equation and is
enforced at all times. For high Reynolds number simulations a wall model is used to
reconstruct boundary conditions at the IB nodes as described in Kang et al. (2014).
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4.3.4 Calculation of Loads on the Interface Γ fsi

To enable the coupling of the fluid and structural domains in our FSI algorithm,
the flow imparted loads must be calculated on the solid surface in order to properly
define the problem for the structural solver.

A major challenge in load calculation is the need to efficiently calculate the trac-
tion vector t f on the fluid–solid interface in parallel environment since the solid body
can span across partitioned computational domains, which are assigned to different
processors. It is thus necessary to develop a scalable algorithm to collectively com-
pute the local loading at each processor and assemble all the information to have a
complete loading distribution t f on the interface �fsi. Here, we utilize the layer of
the IB nodes discussed in Sect. 4.3.3 above and illustrated in Fig. 4.1. We calculate
separately the pressure and viscous forces on this layer of IB nodes for each processor
and the final loading condition on the IB nodes is assembled from all portions of all
processors.

Since the fractional step method we employ only requires velocity boundary
conditions at the IB nodes (Ge and Sotiropoulos 2007), the pressure p at these nodes
is not available. For that we calculate pressure at the IB nodes using interpolation
along the normal direction in the similar fashion for the velocity components as
reported in Gilmanov and Sotiropoulos (2005).

We note that we fully retain the sharp interface nature of our method in the
calculation of the traction vectors even though the thin body is represented by its
mid-surface. This is accomplished by using the previously discussed positive and
negative wall normal vectors to independently calculate and store the forces acting
on the (+) and (−) sides of each element on the interface using one-sided interpolation
directed from the element toward the respective (+) or (−) side of the fluid nodes.
Consequently, the so-calculated + and − traction vectors at each surface element
exhibit a discontinuity across the thin body, which is an important physical feature of
the problem preserved by this approach. The shear stress tensor components τ f,i j are
evaluated locally at every fluid node using the second-order differencing to compute
the velocity gradients:

τ f,i j = μ

(
∂vi
∂x j

+ ∂v j
∂xi

)
. (4.30)

Depending on the grid resolution, the components of the shear stress tensor τ f

are interpolated along the normal direction n± in similar fashion as the pressure
(Gilmanov and Sotiropoulos 2005) or reconstructed using a wall model (Kang et al.
2012) to obtain values at the IB± nodes τ±

ib. Finally, the fluid stress tensor σ±
ib at the

IB± nodes is evaluated as follows:

σ±
ib = −p±

ib I + τ±
ib, (4.31)
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where I is the unit tensor. After the fluid stress tensor σ±
ib has been obtained, a one-

sided projection procedure, from the corresponding + or − IB nodes to the actual
solid surface is required to find the stress tensor on�fsi. This procedure is described as
follows. We already mentioned above in the Sect. 4.3.3 that the relationship between
IB nodes and a surface element e is not unique as there could be several IB nodes
(say N

±
e such nodes exist) that are associated with the same surface element e. Note

that only either positive or negative IB nodes are involved in the load calculation
process of positive or negative stresses, correspondingly. Therefore, for such cases
and in order to calculate the fluid stress tensor σ±

e on the surface of the body �fsi an
interpolation procedure is implemented from the surrounding IB± nodes to the solid
surface element as follows:

σ±
e =

N
±
e∑

ib=1

σ±
ib/

∣∣
r±
ib,e

∣∣/
N

±
e∑

ib=1

1/
∣∣
r±

ib,e

∣∣. (4.32)

Finally, the net loading at each triangular element on the thin structuremid-surface
is defined as the sum of loads from both sides of the middle surface te = t+e + t−e ,
where t±e = σ±

e · n±
e (see Fig. 4.3). Note that the total traction vector of the load te

is calculated using all (positive and negative) IB nodes associated with the center of
the triangular element e. In our FE solver, however, the traction vector is required
at the vertices of the triangular elements tv. Thus, an interpolation procedure is
implemented to transfer the traction vector from the elements to the nodes using

Fig. 4.3 The thin structure in our formulation is treated as a sharp interface.The schematic illustrates
that at each element e on the surface, two traction vectors are computed from the positive t+e and
negative t−e sides of the interface. The total traction vector te = t+e + t−e is used to compute the local
load imparted by the flow on the structure on each surface element. Figure reprinted with permission
from Gilmanov et al., Journal of Computational Physics, 300, 814–843 (2015). Copyright 2015,
American Institute of Physics
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distance weighted average: tv = I(te) = ∑ē
e=1

(
te/

∣∣
rv,e
∣∣)/

∑ē
e=1

(
1/

∣∣
rv,e
∣∣),

where the summation is implemented over all elements e adjacent to the vertex v and∣∣
rv,e
∣∣ is a distance from the vertex v to the center of the element e.

4.3.5 The Algorithm for Coupling the Fluid F and Solid H
Solvers

The governing equations of the fluid (Eq. 4.1) and solid (Eq. 4.6) domains as well as
the continuity conditions on the interface constitute a modularly partitioned fluid–
structure interaction problem, which can be solved by coupling together two inde-
pendent solvers: the fluid solver F and the solid solver H. We use the conventional
Dirichlet–Neumann partition (Felippa et al. 2001) to couple the system of fluid–
solid equations. This means that the fluid equations are solved by enforcing Dirichlet
boundary condition, while the solid equations are solved by prescribing the load on
the interface �fsi (Fernandez et al. 2007). The need to enforce the continuity of the
velocity and the normal stresses on the interface �fsi requires that both the displace-
ment and velocity of the solid body u and u̇ must be tracked. We define Q as the
solution of solid solver H (Eq. 4.9):

Q = (u, u̇) (4.33)

From Eq. (4.4) and (4.9), the FSI coupling can be formulated as a fixed-point
operator for Q:

Q = H ◦ F(Q) (4.34)

To facilitate the description of the FSI algorithm, let us assume, without loss of
generality, that the pressure and velocity fields vn , pn for the fluid alongside with
the displacements and velocities of the solid structure un , u̇n are known at time
step n. The fluid and structural equations, Eqs. (4.35–4.36), are solved to obtain the
structural displacement and velocity as well as the fluid pressure and velocity fields
at time step tn+1 with the current boundary conditions on �N

f ∪�D
f ∪�fsi via a series

of subiterations (l) to satisfy Eq. (4.34). We seek the solution of the discrete fluid
operator F at time step tn+1 as:

F(
vn+1, pn+1, un+1, u̇n+1) = 0, in�f, (4.35)

and the solution of the discrete solid operator H as follows:

H
(
un+1, u̇n+1, tn+1

) = 0, in�s, (4.36)
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where tn+1 = L(
vn+1, pn+1

)
is the traction vector imparted by the fluid on the body

surface �fsi. The function L(
vn+1, pn+1

)
represents the loading on the structure

surface from the pressure and velocity fields in fluid. The approach we employ to
calculate L in the discrete space is described in Sect. 4.3.4, Eqs. (4.30–4.32). The
fixed-point subiteration procedure to find Q at time steps n + 1 can thus be written
as follows:

Qn+1
l+1 = Hn+1 ◦ Fn+1(Qn+1

l

)
, (4.37)

where l + 1 is the new iterate of Qn+1. In our fixed-point iteration, the fluid solver
F uses displacements and velocity of the solid structure un+1

l , u̇n+1
l and gives new

fluid velocity vn+1
l+1 and pressure field pn+1

l+1 by solving Eq. (4.35). The solid solverH
in turn uses the so updated fluid velocities, and pressure field to advance the solution
of displacements and velocity of the solid structure un+1

l+1 , u̇n+1
l+1 . Subiterations (l) are

implemented every time step to satisfy the coupled system of equations and advance
the solution to time step n + 1:

(
vn+1
l+1 , pn+1

l+1

) = F(
vn+1
l , pn+1

l , un+1
l , u̇n+1

l

)
,

(
un+1
i+1 , u̇n+1

i+1

)
l+1 = H

((
un+1
i , u̇n+1

i

)
l , t

n+1
l

)
, l = 0, 1, 2, . . . ; i = 1, 2, 3 . . .

(4.38)

where index l is the number of fixed-point iteration and all variables at level l = 0 are
at the previous time step n, index i is the number of Newton iteration for structural
equations. The subiterations continue until an appropriate norm of the error of the
flow and structural variables between levels l + 1 and l has been reduced to a desired
tolerance and the above equations have been satisfied at level n + 1. The above
procedure is generally described as a strongly coupled FSI algorithm and ensures
that the continuity of the stress at the fluid–structure interface is satisfied within
the desired convergence threshold. If we just apply the above algorithm for one
subiteration (l = 0), the requirement for the continuity of the stress is enforced only
within an error that depends on the accuracy of the temporal discretization scheme.
Such an algorithm is generally far more efficient than the strongly coupled approach
and is referred to as loosely coupled iteration.Generally, loosely coupledFSI schemes
are robust for problems involving large mass ratio (structural density considerably
larger than the fluid density) while strongly coupled iterations are required to enhance
robustness for problems with mass ratios of order one or lower (Sotiropoulos and
Yang 2014; Baek and Karniadakis 2012).

For mass ratio problems of order one (ρf/ρs ≈ 1), which arise in simulations
of heart valves, the Aitken nonlinear relaxation technique is also implemented to
accelerate the convergence of the strongly coupled FSI algorithm (Borazjani et al.
2008; Küttler and Wall 2008). The convergence tolerance for the structural and
strongly coupled FSI solvers is of order 10−8 in terms of the L∞ norm.

We note that for all the cases we simulate in this work, although the underlying
FSI dynamics is complex, the degrees of freedom (DOF) for the structural mesh
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are quite low (in the order of thousands) compared to the fluid DOFs (in the order
of millions) since the structures are relatively small and simple. Thus, the cost for
solving the solid equations is small in comparison with the fluid equations. For that
the solid solver is implemented as a serial code possessed by the root processor. All
processors involved in the solution of the fluid equations receive the same image Q
of the structure from the root processor.

Our code is parallelized and uses the Petsc Library. The simulations we report
herein have been carried out on a cluster with dual 8-core AMD6112. To estimate the
efficiency of the code, we report the CPU time per node of the computational grid,
per processor, and per time step. For the inverted flag problemwe report in Sect. 4.4.2
below this quantity is equal to tCPU/(Nodes · Procs · n time) ≈ 3 × 10−2 μs.

4.4 Application to Complex FSI Problems

In this section, we demonstrate the predictive capabilities of the proposed CURVIB-
FE-FSI algorithm by applying it to simulate two quite challenging both involving
FSI with thin flexible structures. The first is the large amplitude vibrations of an
inverted flexible flag, which has been studied experimentally by Kim et al. (2013). In
the second example, we demonstrate the ability of the CURVIB-FE-FSI algorithm
to simulate pulsatile, physiologic flow through a tri-leaflet aortic valve placed in an
anatomic aorta. This second problem is more challenging because it is geometrically
more complex, is characterized by low mass ratio (ρs/ρf ∼ 1) and imposes a more
stringent overall test for the stability and robustness of the FSI solver. Note that both
of these problems were first presented in Gilmanov et al. (2015).

4.4.1 Oscillations of a Flapping Inverted Flag

The computational challenges in this problem are related to the large amplitude
oscillations of the flag as well as to high Reynolds number of the flow. This problem
was also investigated in recently published laboratory experiment (Kim et al. 2013).
The problem is referred to as the inverted flag because the flag, a thin flexible sheet
of length L, is mounted on its trailing edge with its leading edge free to move in
response to a uniform incoming flow u∞ (see Fig. 4.4a). Kim et al. (2013) carried
out a series of experiments by varying u∞ and/or the structural properties of the flag
and identified a dynamically rich phase space of flag responses. They showed that
the non-dimensional parameter that governs the dynamics of the FSI problem is the
nondimensional bending stiffness β = B/ρfu2∞L3, where B is a flexural rigidity
B = Yh30/12

(
1 − ν2

)
of the flag, ρf is the fluid density, Y is the Young’s modulus, ν

is the Poisson’s ratio, and h0 is the thickness of the plate. Kim et al. (2013) identified
three regimes of flag response as a function of β: (1) the straight mode, where the
flag is too rigid to be deflected by the flow and remains straight (large values of β);
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Fig. 4.4 a Computational domain used to simulate the inverted flag problem. The side xmin and
all four sides ymin, ymax, zmin, zmax are Dirichlet boundaries with inflow u = u∞ and no-slip
boundary conditions v = 0, respectively. On the boundary xmax Neumann condition ∂v/∂n = 0 is
implemented; bComparison of calculated (solid line) andmeasured (Khosronejad and Sotiropoulos
2014) time histories of the flag leading edge displacements for flapping mode with β = 0.1. Open
circles are experimental data. Figures reprinted with permission from Gilmanov et al., Journal of
Computational Physics, 300, 814–843 (2015). Copyright 2015, American Institute of Physics

(2) the flapping mode, where the flag undergoes large amplitude flapping oscillations
(intermediate values ofβ); and (3) the deflectedmode,where theflag is soflexible that
it is deflected by the flow toward one side and remains fixed at this position at all times
(small β values). Here, we report simulations for β = 0.1, which is in the flapping
regime. This regime is quite challenging from the FSI simulation standpoint as it
involves very large amplitude oscillations. The specific β value is selected because
for this value the experiment of Kim et al. (2013) revealed a complex dynamic
response of the flag characterized by rich flapping dynamics including several local
minima and maxima of the flag leading edge position during the cycle of flapping
motion. We carry out simulations for the following values of the various governing
parameters for this problem: Y = 2.38 × 109 Pa, ν = 0.38, ρs = 1.2 × 103 kg/m3,
h0 = 8×10−4 m, H = L = 0.3 m, u∞ = 6.7 m/s, μ = 1.92×10−5 Pa s, ρf = 0.98
kg/m3, hence B = 0.118 N m and β = 0.1. The corresponding Reynolds number,
based on the inflow velocity and flag length, is Re = u∞ρfL/μ = 99,505, and,
therefore, the massively separated flow in the wake of the flapping flag is expected
to be turbulent. For that we employ the CURVIB-FE-FSI method in LES mode with
three-point central differencing for the convective terms in the flow equations, the
dynamic Smagorinsky subgrid-scale model (Germano et al. 1991) for closure, and
the wall model of (Wang and Moin 2002) to reconstruct boundary conditions on the
flag as adapted for the CURVIB method by Calderer et al. (2014). The plate surface
is discretized with 206 triangle elements and the background fluid grid is discretized
with a uniform Cartesian mesh with 561× 201× 201 in the stream wise (x), vertical
(y), and transverse (z) directions, respectively. The non-dimensional time step is
equal to 
̃t = 0.01.

Figure 4.4b compares themeasured (Kim et al. 2013) and computed time histories
of the flag leading edge deflection. It is seen that the computed results are in excellent
agreementwith the experimentalmeasurements. The simulations not only capture the
amplitude and period of oscillationswith good accuracy but also resolve the two local
deflectionmaxima (minima) that occur in the vicinity ofmaximum (ymin or ymax) flag
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Fig. 4.5 Snapshots of the simulated inverted flag flow fields during a half period of oscillation.
Contours are the out-of-plane vorticity component (z-vorticity) are plotted at various instants in
time. The corresponding flag shape is also shown and the corresponding time instant is marked
with a red dot in the inset. Light blue circle indicates the fixed trailing edge and the arrow indicates
direction of moving leading edge. Figures reprinted with permission from Gilmanov et al., Journal
of Computational Physics, 300, 814–843 (2015). Copyright 2015, American Institute of Physics

deflection. A more quantitative comparison with the measurements reveals that the
maximum discrepancy between experiments and simulations, which occurs around
maximum and minimum tip deflection, does not exceed 7% of the measured values.

Figure 4.5 depicts the calculated instantaneous out of plane vorticity field at var-
ious instants during the flapping cycle. These snapshots as well as video animations
of the vorticity field (not shown herein) clearly show that the flapping dynamics is
correlated with the formation of a large leading edge vortex as the flag tip approaches
maximum deflections. The vortex begins to form as the flagmoves upward as a result
of shear-layer roll-up and leads to massive separation and shedding of vorticity in
the wake at maximum deflections. The resulting wake is very complex and exhibits
a large-scale meandering motion as a result of the continuous flapping motion of the
flag. The computed results shown in Fig. 4.5 are in good overall qualitative agree-
ment with the flow visualizations reported by Kim et al. (2013) and their overall
description of the underlying wake dynamics as obtained in their experiments.

To elucidate the three-dimensional structure of this highly unsteady andmassively
separated wake, we plot in Fig. 4.6 several snapshots of the Q-criterion (Hunt et al.
1988). It is evident from this figure that the flow is dominated by shear-layer roll-up
off the sharp edges of the flag, which leads to the formation of an arch vortex along
the leading edge and intertwined spiral vortex tubes shed off the two sides of the flag.
These structures separate from the flag and break up into small-scale turbulence in
the wake.
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Fig. 4.6 Snapshots of Q-criterion iso-surfaces (Hunt et al. 1988) at three time instants showing
the inverted flag near the maximum (ymax) deflection. These snapshots elucidate the 3D coherent
structures in the wake of the flapping flag. The red dot in the inset of each figure identifies the corre-
sponding instant. Figures reprinted with permission fromGilmanov et al., Journal of Computational
Physics, 300, 814–843 (2015). Copyright 2015, American Institute of Physics

To our knowledge the results reviewed herein Gilmanov et al. (2015) elucidated
for the first time the three-dimensional structure of the wake of a flapping inverted
flag and clearly illustrated the ability of our CURVIB-FE-FSI method to solve a
very complex, high Reynolds number problem involving complex large amplitude
vibrations of a thin structure. Even though not shown herein, we have carried out
simulations for values of β in all three experimentally identified flag response regions
and our results are in very good agreement with the experiments of Kim et al. (2013).

4.4.2 FSI Simulation of Tri-leaflet Aortic Valve

In this section, we demonstrate the ability of the method to simulate physiologic flow
through a tri-leaflet aortic valve located in an anatomically realistic aorta. The flow
through the aorta is driven by a prescribed physiologic flow wave form at the aorta
inlet, the response of the valve leaflets and associated flow field are simulated by the
new CURVIB-FE-FSI algorithm.

We consider a tri-leaflet aortic heart valve and model it as a thin shell using the
rotational free FE formulation of Stolarski et al. (2013) as described in Sect. 4.3.2
above. We use in these simulations a model suitable for a prosthetic polymeric aortic
valve with isotropic material and the Neo–Hookean constitutive equation. The geo-
metric and material characteristics of the valve are specified from values available in
the literature to correspond to a prosthetic polymeric valve (Carmody et al. 2006) and
are as follows: valve diameter d0 = 0.0254 m, leaflet thickness h0 = 6.0× 10−4 m,
YoungmodulusY = 1MPa, Poisson coefficient ν = 0.35, and densityρs = 1.2×103

kg/m3. As shown in Fig. 4.7a the valve is placed in an anatomic aorta, which has
been reconstructed from patient-specific MRI data.

The pulsatile flow wave form we prescribe as inflow boundary condition at the
inlet of the aorta domain is shown in Fig. 4.7a. The corresponding heart beat is
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Fig. 4.7 a Computational domain for the FSI simulations of a tri-leaflet heart valve in an anatomic
aorta.At inflowpulsatile physiological flowshown in (a) is simulated; at outflowNeumannboundary
condition ∂v/∂n = 0 is implemented; on the aorta wall no-slip boundary condition is implemented;
b physiological incoming flow wave form specified at the inlet of the aorta. Figures reprinted
with permission from Gilmanov et al., Journal of Computational Physics, 300, 814–843 (2015).
Copyright 2015, American Institute of Physics

equal to 70 bpm, which gives a period of the cardiovascular cycle T = 0.857 s.
The valve diameter d0 is used as the characteristic length scale and the peak systolic
velocity of U0 = 0.8 m/s is used as the velocity scale. Using the viscosity of blood
μ = 3.52 × 10−3 Pa s, and blood density ρf = 1050 kg/m3, gives a peak systolic
Reynolds number Re = 6000, which well within the physiologic range (Carmody
et al. 2006). The characteristic time scale is equal to T0 = d0/U0 = 3.1×10−2 s and
thus the non-dimensional period of cardiac cycle is T̃ = T/T0 = 0.857/3.1×10−2 =
27.6 non-dimensional time units. The non-dimensional time step for the simulations
is set equal to t̃ = 0.01, which corresponds to discretizing the cardiac cycle with
Ntime = T̃ /t̃ = 2760 computational time steps. Since the density ratio for this
problem is of order one, the strong coupling FSI iteration is required for stable and
robust simulations. In all subsequently presented simulations 4–10 strong coupling
iterations are sufficient to reduce the residuals by 8 orders of magnitude.

The overall computational setup is shown in Fig. 4.7a and consists of (a) the
anatomic aorta, (b) the flexible tri-leaflet prosthetic heart valve, (c) the rigid valve
support structure, and (d) housing. A curvilinear boundary-fitted grid is used to
discretize aorta domain with 101×101×601, in the two transverse and stream wise
directions, respectively. The valve leaflets are discretized with 476 triangle elements.

The flow wave form shown in Fig. 4.7b, which corresponds to the systolic phase
of the cardiac cycle during which the aortic valve opens and closes, is used to specify
time-dependent Dirichlet conditions for the velocity at the inlet. At the outlet of the
aorta zero-gradient Neumann condition ∂v/∂n = 0 is applied for all three velocity
components alongwith a correction of the so-resulting velocity field to enforce global
mass conservation. No-slip and no-flux boundary conditions are applied on all solid
surfaces.

We note that in our numerical method the discrete continuity equation is satisfied
to machine zero at each time step, thus preserving the incompressible nature of the
flow locally and globally. This is accomplished by solving the Poisson equation in
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Fig. 4.8 Instantaneous contours of vorticity magnitude on a plane through the aorta plane of
symmetry during systolic phase showing the opening and closing process of the aortic heart valve.
The red dot in the inset of each figure identifies the corresponding instant during the cardiac cycle.
Figures reprinted with permission from Gilmanov et al., Journal of Computational Physics, 300,
814–843 (2015). Copyright 2015, American Institute of Physics

the projection step of the fractional step method with the residual reaching machine
zero at every physical time step. For more details, we refer the reader to Kang et al.
(2011).

The calculated flow fields for one simulated systolic cardiac cycle are shown in
Fig. 4.8. Contours of instantaneous vorticity magnitude are plotted in this figure
on a plane passing through the center of the aorta. As seen in this figure, a well-
defined vortex ring forms as soon as the valve opens at early systole (Fig. 4.8a).
Shear layers connecting the aortic valve vortex ring with the valve leaflets are also
evident in Fig. 4.8a. As the valve leaflets continue to open, the vortex ring advances
and impinges on the curved aorta wall and breaks up. The valve leaflet shear layers
intensify as the flow rate through the valve increases and the flow in the wake of
the valve leaflets is seen to break up into small-scale turbulence at approximately
halfway within the accelerating phase of the cardiac cycle (Fig. 4.8c). By the time
the peak systolic flow is reached and the valve has opened fully, the flow in the aorta
is seen to have transitioned to a fully turbulent state downstream of the valve leaflets
(Fig. 4.8d). This state persists even after the valve closes and the flow structures in
the aorta gradually decay (Fig. 4.8f).

The results shown in Fig. 4.8 reveal significant differences between the simulated
flow patterns reported in Le and Sotiropoulos (2013) for a mechanical bi-leaflet
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Fig. 4.9 Instantaneous iso-surfaces of the Q-criterion (Hunt et al. 1988) at various instant in
time during valve opening. The red dot in the inset of each figure identifies the corresponding
instant during the cardiac cycle. Figures reprinted with permission from Gilmanov et al., Journal
of Computational Physics, 300, 814–843 (2015). Copyright 2015, American Institute of Physics

heart valve (MBHV) in the same anatomic aorta. More specifically, when a MBHV
is implanted in the aortic position the turbulent state downstream of the valve leaflets
does not emerge until shortly after peak systole. For the tri-leaflet valve, however,
Fig. 4.8 clearly shows that the flow transitions to turbulence well before peak systole
is reached. This finding should be attributed to the complex vortex dynamics induced
by the shape of the tri-leaflet valve orifice as it opens and the interaction of the aortic
valve vortex ring with the aorta wall.

To illustrate the three-dimensional dynamics of coherent structures as the valve
opens, we plot in Fig. 4.9 instantaneous snapshots of the Q iso-surface (Hunt et al.
1988). As seen in Fig. 4.9a, as the valve opens the shear layer from the valve leaflets
rolls up to form a three-lobed vortex ring that follows the shape of the valve orifice.
As the valve continues to open, this vortex ring becomes distorted as each one of
its three lobes, forming at the valve commissures, bends forward and propagates at
faster speed than the rest of the ring. This complex deformation of the aortic valve
ring is clearly evident in Fig. 4.9c where three distinct vortex loops are seen to have
formed. Each loop forms because of the faster propagation and associated stretching
of the corresponding lobe of the initial ring. Essentially the vortex interactions and
instabilities revealed by our simulations are similar to those observed in pulsatile
flow through corrugated nozzles (New and Tsovolos 2012). These instabilities along
with the subsequent impingement of the three-lobed aortic valve ring on the aorta
wall are ultimately responsible for the relatively early transition to turbulence of the
flow in the wake of a tri-leaflet valve.
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As mentioned earlier, in all of the above simulations, a linear, isotropic Saint-
Venant (StV) material model was used, which has been also employed in the past,
e.g., in Tepole et al. (2015) and may be applicable only to a certain type of prosthetic
valves. Recently, the May-Newman and Yin (MNY) model (May-Newman and Yin
1998) and its applicability to heart valve has been discussed in Gilmanov et al. (2016)
to simulate natural heart valves. However, the analysis presented in that paper did not
involve fluid flowand, consequently, no FSI algorithmwas used. Instead, the dynamic
behavior of leaflets was investigated by prescribing time-varying pressure loading
taken from experiments. For the set of parameters used, we found in Gilmanov et al.
(2016) that heart valve with the StV material model is more obstructive to the blood
flow in comparison with the heart valve with theMNYmaterial model. The complete
FSI simulations (Gilmanov et al. 2018) led to the same conclusion that the StV heart
valve is more obstructive to the blood flow and creates more complex blood flow
patterns. To qualitatively compare the opening kinematics of StV and MNY heart
valves and the associated differences in hemodynamic patterns, in Fig. 4.10 the results
of FSI simulations with StV and MNW heart valves are shown. The instantaneous
vorticity contours for the two considered cases (StV andMNY) are shown in the first
and second columns of Fig. 4.10. To illustrate the three-dimensional dynamics of the
coherent structures as the valve opens, we plot in Fig. 4.10 (third and fourth columns)
the instantaneous Q iso-surfaces (Hunt et al. 1988). Figure 4.10a shows that for the
time interval shown, the StV heart valve opens only partially and obstructs the blood
flow, causing significant vorticity generation downstream of the valve leaflets. At
exactly the same time, the MNY heart valve is fully open and vortices are shed from
the fully formed valve orifice (Fig. 4.10a–c). One can see that with the StV material,
the jet spreads into the aorta faster than that for theMNYvalve. Starting at t ≈ 0.12 s,
the large-scale coherent structures arising in the StV valve material disintegrate into
small turbulent structures (Fig. 4.10a). For the MNY material on the other hand, the
vortices remain coherent, which indicates that the MNY valve flow remains laminar
for a longer period of the cardiac cycle than the StV valve flow. In fact, only starting
at approximately t ≈ 0.192 s (Fig. 4.10c), the large-scale vortex structure arising in
the MNY valve disintegrates as it begins to interact with the aortic wall.

Helical flow patterns have been observed in the aortic arch, which are clearly
seen from the movies (not shown here) of Q-structures spreading into the aorta. As
mentioned earlier, these flow patterns are dependent on the kinematics of the valve
which, in the coupled FSI analysis, is dependent on the properties of the leaflet
material. We have shown that as the StV valve opens, the shear layer induced by the
valve leaflets rolls up to form a three-lobed vortex ring (Fig. 4.9), which corresponds
to the shape of the valve orifice. For the MNY valve, however, the opening process
is faster and the resistance to the blood flow is reduced, which leads to a toroidal
shape of the vortex. As the valve continues to open (Fig. 4.10b and c), the vortex
ring for the StV valve becomes distorted but for the MNY valve remains toroidal and
coherent. As discussed above, for the MNY valve, the coherent vortex ring begins
to get disorganized only later due to its interaction with aortic wall (Fig. 4.10c). It is
clearly seen that this large coherent structure produced by theMNY valve propagates
into the aorta along a helical path (Fig. 4.10).



4 Coupling the Curvilinear Immersed Boundary Method … 135

Fig. 4.10 Comparison of instantaneous contours of vorticity on a plane through the aorta during
systolic phase showing the opening process of the StV aortic valve (first column) and MNY aortic
valve (second column). The third and fourth columns are the instantaneous iso-surfaces of the Q-
criterion (Hunt et al. 1988) for StV andMNYmodels, respectively. The dot in the inset of each figure
identifies the corresponding instant during the cardiac cycle: a ta = 0.128 s, b tb = 0.16 s, and c
tc = 0.192 s. Figures reprinted with permission from Gilmanov et al., Journal of Biomechanical
Engineering, 140 (2018). Copyright 2018, American Institute of Physics

To our knowledge the results we have presented herein [originally reported in
Gilmanov et al. (2018)] represent the first FSI simulation of a tri-leaflet heart valve
whosematerial is nonlinear and anisotropic andwhich is interactingwith an anatomic
aorta at physiologic conditions. The ability of themethod to resolve the very complex
flow patterns and associated vorticity dynamics as the valve leaflets open and close
illustrates its potential as a powerful tool for patient-specific simulations of native
and prosthetic heart valves.

4.5 Conclusions

We have presented a recently developed computational approach for simulating
fluid–structure interaction (FSI) problems in complex domains with thin flexible
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solid structures. It is based on integrating the sharp interface CURVIB solver, pre-
viously developed for FSI problems with rigid structures (Borazjani et al. 2008),
with an accurate and efficient rotation-free FE formulation for thin shells (Stolarski
et al. 2013) into a coupled FSI framework that is able to handle very large deforma-
tions/displacements of thin shell structures. The inverted flag case in particular, which
to the best of our knowledge we simulated numerically for the first time (Gilmanov
et al. 2015), illustrates the ability of our method to simulate with LES a dynamically
rich, high-Reynolds number FSI problem. Comparisons with the measurements of
Kim et al. (2013) for this case revealed the ability of the method to capture even
subtle features of the flag kinematics, such as the existence of multiple local extrema
near the location of maximum deflection, and reproduce wake structures similar to
those visualized in the laboratory. We subsequently reviewed results from recent
application of our method (Gilmanov et al. 2015, 2018) to simulate the dynamics
of a tri-leaflet aortic heart valve placed in an anatomic aorta to demonstrate the
capability of the method to solve complex FSI problems in realistic cardiovascular
anatomies and at physiologic conditions. Our simulations elucidated the rich vortic-
ity dynamics during the opening of the valve leaflets. The differences for StV and
MNY valves’ motion and their deformation were shown to give rise to significantly
different hemodynamics both near the valve and in the ascending aorta. For the StV
valve, the vortex ring is seen to grow in complexity rapidly and ultimately break
into turbulence much sooner during the accelerating phase of systole than for the
MNY valve. Our simulations show that the heart valve with the StV material model
is more obstructive to the blood flow in comparison with the heart valve with the
MNY material model.
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n̂v Angle weighted pseudo-normal
n̂e Angle weighted edge normal
n̂s Outward surface normal
ᾱ Mean incidence
�α Angular amplitude
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t* Non-dimensional time
U∞ Free stream velocity
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IBM Immersed boundary method
NS Navier–Stokes
FVM Finite volume method
AMR Adaptive mesh refinement
LEV Leading edge vortex
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5.1 Introduction

5.1.1 General Overview

In recent times, non-boundary conforming approaches like immersed boundary
method enjoy widespread popularity for its ability to model flow past arbitrarily
complex geometries. A major task in such approaches is to inject the description
of immersed object onto the underlying background mesh (Cartesian grids). Based
on how the forcing is introduced to satisfy the boundary conditions at the immersed
interface, the approach can be broadly classified as continuous forcing (diffused inter-
face) (Kumar et al. 2015; Peskin 2002) or discrete forcing (sharp interface) (Choi
et al. 2007; Gilmanov and Sotiropoulos 2005; Kumar and Roy 2016; Udaykumar
et al. 2001). In the former, a forcing term is added to continuous Navier–Stokes
(NS) equation before discretization, while in the latter, the solution field near the
interface is directly reconstructed or the cells that are intercepted by immersed sur-
face is reconstituted into non-rectangular control volumes in order to enforce strict
conservation laws.

The forcing term indiffused interface approach ensures the satisfactionof interface
boundary condition by using Dirac delta function. This ends up spreading the force
term over several neighbouring grid nodes. This results in an increase in the effective
width of immersed body. Thus, capturing sharp features of geometry becomes dif-
ficult with this approach. On the other hand, the sharp interface approach (solution
reconstruction as well as cut cell strategy) allows for the exact imposition of bound-
ary condition. The focus of this study is on the solution reconstruction-based sharp
interface approach.

Solution reconstruction-based sharp interface approach because of its non-
intrusive character is emerging as an attractive class of immersed boundary approach
as it can be implemented on any existing flow solver with very little modification.
Unlike the cut cell-based approach which involves highly complex geometric oper-
ations (especially with regard to moving body problems as it needs to reconstitute
the boundary intercept cell at every time instance), flow reconstruction schemes are
much simpler in its implementation and formulation. It does not even lead to a signif-
icant increase in computational cost. Usually, the flow is reconstructed along surface
normal of the immersed object using various interpolation schemes (depending on
the flow physics). This class of approach too encounters issues when handling mov-
ing body problems. It suffers from spurious force and pressure oscillations. These
are attributed to abrupt forcing point role reversals as the immersed object moves
through the background mesh.
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5.1.2 Handling Thin/Sharp Bodies

Amajor difficulty in almost all variants of immersed boundary approach is to ensure
accurate representation of complex geometries. For instance, the diffused interface
approach discussed earlier will smear out the discontinuity around these sharp edges
over a number of grid cells (Zhu and Peskin 2002). This would alter the geometry,
change the pressure distribution. Kang et al. (2000) pointed out that such smeared
out pressure profiles can cause parasitic currents when it is used to make velocity
field divergence-free. Cut cell approach may get into stability-related problems as
thin/sharp geometries will lead to arbitrarily small cells. Ensuring conservation laws
for such small cells is difficult. The irregularity in flux stencils for such small cells
can lead to spurious oscillations of pressure and wall shear stresses. Thus, special
treatments like cell merging (Seo and Mittal 2011), cell clustering (Muralidharan
and Menon 2018) and hybrid of ghost cell and cut cell algorithms (Ji et al. 2008) are
proposed to address some of these issues.

In case of solution reconstruction-based approach, the challenge is twofold in
representing thin/sharp geometries,

1. Due to infinite curvature at sharp corners, accurate and consistent inside/outside
node classification becomes challenging.

2. Lacks enough number of nodes for accurately reconstructing the flowfield around
sharp corners. Capturing sharp discontinuities becomes difficult as lack of enough
number of points reducing order of accuracy of flux terms. Thus, demands more
grid resolution for resolving the flow field.

Several works have tried to address this issue. From the standpoint of accurately
representing the immersed surface, works of Gilmanov and Sotiropoulos (2005),
Choi et al. (2007), Yang and Stern (2013), Senocak et al. (2015), have provided
detailed descriptions regarding algorithms that can be utilized for geometric pre-
processing. But most of the research work have tried to address issues from solver’s
standpoint. For instance, Das et al. (2018) suggest ad hoc corrections around sharp
corners, reducing order of accuracy of reconstruction schemes. Ghias et al. (2007)
and Onishi et al. (2013) proposed arbitrary dummy cell approach which stores the
value of virtual ghost cell points which can be utilized in flux calculations, thereby
preserving the order of accuracy of the schemes. Balaras and Vanella (2009) and
Liu and Hu (2018) proposed adaptive mesh refinement strategies to improve grid
resolution near sharp boundaries.

5.1.3 Objective

The objective of the current study is to present a simple and robust set of procedure
that can be followed in order to efficiently handle sharp edges. Through a case study
involving dynamic stall in oscillating airfoil, the article tries to highlight the possible
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issues arising from the nature of the geometry, limitations of the algorithm (both
computational geometry as well as solution reconstruction) and possible errors at
the implementation level. To demonstrate the capability of our algorithm and also to
highlight issues described earlier, we contrast our results obtained with the help of
the algorithm proposed by Gilmanov and Sotiropoulos (2005) in his 2005 work.

5.2 Numerical Details

5.2.1 Flow Solver Details

An in-house density-based finite volume flow solver is used in the study. The 3D
unsteady Navier–Stokes equation is solved in generalized curvilinear co-ordinate
system using a co-located multiblock grid structure. For simulating incompressible
and low Mach number flow, a preconditioning strategy is adopted. Low-diffusion
flux-splitting scheme is used for discretizing convective fluxes and central difference
scheme for viscousfluxes. Timemarching is through a dual time stepping approach.A
second-order backward three-point differencing is used for discretizing physical time
step, while explicit Euler is used for local pseudo-time stepping. Parallel processors
communicate using MPI. Further details about the solver can be found in Das and
De (2015).

5.2.2 Immersed Boundary Pre-processing Procedure

Immersed Geometry Description
Immersed body is represented by unstructured triangular meshes. A shared list of
vertices and a list of triangular elements storing pointers for the vertices are a com-
mon way of representing the triangulations. File formats like STL and Neutral use
such element-vertex connectivity data structure. As long as meshes are static, this
minimum information is sufficient for most of the geometric operations.

In dealing withmoving body and fluid–structure interaction problemswhere large
deformation can lead to bad elements, gaps or cracks, sometime even fragmentation,
complexity level of geometric operations increases. These operations often require
adjacent queries to be answered, local mesh to be edited to discard bad elements
and so on. To perform them in an efficient and robust way, a comprehensive data
structure is needed.

Half-edge data structures are the most popular data structure among the avail-
able for two reasons: one for its fixed size (no dynamic arrays) and another for its
performance regarding all the adjacent related queries in constant time. We use a
compact array-based half-edge mesh data structure as proposed by Alumbaugh and
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Fig. 5.1 Representation of
half-edge data structure

Jiao (2005). This half-edge data structure augments and is constructed efficiently
from the standard element-vertex connectivity. Figure 5.1 shows the representation
of half-edge data structure. For a given half edge ‘e’, there is a twin in the adjacent
triangle that is oriented in opposite direction. Face containing half edge ‘e’ has two
other half edges, denoted as next and previous. Based on these informations, the
following adjacent queries can be answered.

1. For a given vertex, which triangle element uses it?
2. For a given vertex, which edges are incident on it?
3. For a given triangle, what are edges that border it?
4. For a given triangle, what are its adjacent triangles?
5. For a given edge, what are the triangles it shares its edge with?

Some of these queries are needed to efficiently calculate the angle weighted
pseudo-normal for vertices and edges which are crucial for treating sharp edges.
More on this can be found in Sect. 5.2.3.

Node Classification Algorithm
One of the crucial steps in immersed boundary approach is to accurately classify the
nodes as solid, fluid and immersed boundary nodes. In immersed boundary literature,
one can find two different approaches to classify the nodes: one, using signed distance
function (Choi et al. 2007; Gilmanov and Sotiropoulos 2005; Mittal et al. 2008) and
another using ray-casting algorithm (Borazjani et al. 2008; De Tullio et al. 2006).
For an immersed body which is closed, smooth and has orientable surfaces, one can
use the dot product between line projected from given point ‘P’ (see Fig. 5.2a) onto
the surface (at point ‘P0’) and its surface normal. Depending on the sign of the dot
product, a given node can be classified as solid or fluid node. But let us assume a
situation wherein the immersed boundary has sharp edges as in airfoil (shown in
Fig. 5.2a). Consider point A from the shaded region. In order to classify the node,
project a line from point ‘A’ to the surface. Notice that the line falls at the vertex
of the surface where the surface normal is discontinuous. The dot product between
surface normal n̂2 and the projected line are in the opposite direction, and thus
the exterior fluid point will be marked as interior solid point wrongly. The signed
distance approach to classify any point in the shaded region shown in Fig. 5.2a will
fail. It is worth to note that the triangular meshes are not C1 continuous at its vertex
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and edges, and thus, the normal is undefined at those points. On the other hand,
consider the ray-casting approach as shown in Fig. 5.2b, c. In this approach, a ray is
cast from a point (say F as in Fig. 5.2b), and the number of intersections it makes
with the surface is counted. In this study, we use Moller and Trumbore ray/triangle
intersection algorithm (Möller and Trumbore 2005) which solves a linear system
of equations to find the barycentric co-ordinates (u, v, w) (see Fig. 5.2c) and the
distance from the origin to point of intersection ‘P’. As long as the computed value
fulfils the barycentric criteria, the intersection point is within the bounds of the
triangle. Depending on whether the ray intersects the surface at odd or even number
of times, the nodes are classified as exterior or interior. An axis-aligned bounding
box (Fig. 5.2b) is implemented to reduce the number of intersection tests as a large
number of grid nodes are located outside it. All the nodes outside the bounding box
are classified as fluid nodes.

While both signed distance approach and ray-casting approach classifies the nodes
as fluid or solid, a separate algorithm is required to tag the immersed boundary nodes.
These nodes are the nearest neighbour fluid nodes to the surface onwhich the solution
reconstruction is performed. In the present study, in order to tag immersed boundary
nodes, a loop over all solid nodes is performed checking the status of immediate
neighbouring nodes. If the immediate neighbour is fluid, then this node is tagged as
immersed boundary nodes. Similarly, a loop over all the immersed boundary nodes
is performed to identify its immediate solid neighbours. Those solid neighbours are
tagged as ghost nodes, which will be used for field extension approach in case of
moving body problem.

Closest point computation
Once the classification is done and immersed boundary nodes are identified, an
important task is to find the closest surface point to the given immersed node. This
is carried out in two-step process. First step involves finding a minimum bounding
sphere for triangular element (see Fig. 5.3a) and storing its centre and radius. This
radius is then comparedwith the distance between grid node and centre of this sphere.
The one with minimum difference is chosen. In the next step, we use David Eberly’s
‘distance between point and triangle in 3D’ algorithm (Eberly 1999) which defines
a squared distance function (Q) for any point on the triangle, T to the point P.

Q(u, v,w) = |T (u, v,w) − P|2 (5.1)

This function is a quadratic in barycentric co-ordinates (u, v,w). The closest point
is given by the global minimum of Q which occurs when the gradient of Q equals
zero. The challenge is to find whether this point is closest to the edge (R2, R3 and
R4), vertex (R5, R6, R7) or to the actual face (R1) itself. In all the three cases, finding
distance from a point to triangle translates into finding distance to a line, a point or
plane, respectively. The index of the closest triangle face, edge or vertex is stored
along with point of intersection.
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Fig. 5.2 a Signed distance calculation for sharp edges. b Ray-casting approach for node
classification. c Ray cast from origin O passes through a number of triangles

5.2.3 Solution Reconstruction

Angle Weighted Pseudo-normals
Before moving further, we would like to re-emphasize few observations from the
above discussion.
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Fig. 5.3 a Triangle element (T ) bounded by minimum bounding sphere with radius OR and a
slightly larger sphere with radius OP. Here, P denotes the nearest neighbour grid node. b Seven
regions where the projected point from P could lie

1. For a given point, closest distance to a triangle could be a vertex, an edge or face
itself.

2. Except for triangle face, vertex or an edge has no well-defined normal as they
are not C1 continuous.

3. Apart from the mesh boundary, if the immersed object itself has concave regions,
its exact representation becomes further difficult.

While many of the sharp interface immersed boundary literature (Choi et al. 2007;
Yang and Stern 2013; Senocak et al. 2015) makes these observations, most of their
concerns are regarding improving the accuracy of node classification.When it comes
to solution reconstruction procedure, they apply their reconstruction stencil parallel
to surface normal alone irrespective of the fact that the immersed boundary node is
close to the edge or vertex. Thus, when sharp-edged regions are encountered, the
solution accuracy gets deteriorated as they do not have well-defined normal. Thus,
many of these studies tend to focus on improving flux accuracy (Onishi et al. 2013)
(by introducing dummy cells around the sharp edge regions), experimenting with
different interpolation schemes [linear (Gilmanov et al. 2003), quadratic (Gilmanov
and Sotiropoulos 2005), bilinear, trilinear (Mittal and Iaccarino 2005), logarithmic,
providing tangential correction (Choi et al. 2007)], adopting local/adaptive mesh
refinement (Balaras and Vanella 2009) approaches.

In this study, we define angle weighted pseudo-normal for vertices and edges of
all the triangles based on the work of Bærentzen and Aanaes (2005). These pseudo-
normal vectors augment the surface normal.Whenever the closest point on the surface
is computed, we also store the information regarding which edge/vertex/face is asso-
ciated with the immersed node with the help of half-edge data structure described
earlier in the immersed geometry description of Sect. 5.2.2. While solution recon-
struction stencils are applied, they are applied in the direction parallel to associated
face/edge/vertex normal.
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Fig. 5.4 Representation of a angle weighted Vertex normal, b angle weighted edge normal

Figure 5.4a shows the representation of angle weighted pseudo-normal of a vertex
which is defined as

n̂v =
∑

i αi n̂i∥
∥∑

i αi n̂i
∥
∥

(5.2)

where ‘i’ denotes the number of incident faces, and αi is the incident angle.
In case of an edge (see Fig. 5.4b) between face 1 and 2, the angle weighted normal

is defined as

n̂e = π n̂1 + π n̂2 (5.3)

Direction of Reconstruction Stencil
Figure 5.5 illustrates the direction along which the solution reconstruction stencil is
applied. The points P1, P2 and P3 are closest to with vertex V, edge e and face F of
the triangular elements, respectively. For reconstructing the solution at node P1, a
line parallel to angle weighted vertex pseudo-normal n̂v projected onto the surface
at P1′ is constructed. Similarly for P2, a line parallel to edge normal n̂e is projected
onto the surface at P2′. For P3, a line parallel to surface normal n̂s is constructed.

Reconstruction Stencils
Flow field variables such as pressure, velocity and temperature are reconstructed
at immersed boundary nodes as well as at ghost nodes (in case of moving body
problem). A quadratic stencil is applied on the line projected from these nodes to
the immersed surface such that it satisfies the boundary conditions at the immersed
surface (Seshadri and De 2018). Dirichlet boundary condition is applied for the
velocity, and Neumann boundary condition is applied for pressure and temperature.

Sharp interface immersed boundary approach encounters issues of mass con-
servation and spurious oscillations while modelling moving body problems as the
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Fig. 5.5 Representation of
direction along which
reconstruction stencil is
applied

approach fails to uphold geometric conservation law. As the immersed object moves
through the backgroundCartesianmesh, the role of theseCartesian grid nodes change
suddenly and abruptly at each time instance, i.e. from solid to fluid or fluid to solid.
This spatial and temporal discontinuity induces errors resulting in spurious, high-
frequency oscillations. In order to address this issue, solid nodes that are immediate
neighbour to the immersed surface are marked as ghost nodes, and solutions from
the outside field are extrapolated so that when the role change happens, there is a
continuity maintained.

5.3 Results and Discussion

In order to demonstrate the efficiency and robustness of our algorithm in handling
sharp edges, a detailed comparative study with respect to Gilmanov et al.’s (2005)
algorithm is presented in this section. A test case involving dynamic stall of an
oscillating airfoil is chosen for this purpose.

5.3.1 Algorithm 1: Gilmanov et al.’s Algorithm

The algorithm is summarized through the following pseudo-code.

1. Input: background Cartesian grid and triangulated surface geometry of
immersed body (STL/Neutral format)

2. Determine the face centres of triangular elements and outward surface normal.
3. Locate all Cartesian grid nodes that are in the immediate vicinity of immersed

body and within a small prescribed threshold search radius.
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4. Gilmanov et al. set search radius approximately equal to the near-body grid
spacing. This is found to be inadequate. By examining the grid spacing of the
cells that are adjacent to a given node, a maximum of grid spacing is set to be
the search radius.

5. For each near-body Cartesian grid nodes, locate the surrounding triangular
surface elements. Again within the sphere of search radius prescribed earlier.

6. For a given Cartesian grid node, calculate the signed distance to the face of the
associated surface elements.

7. Examine the signs to identify whether the Cartesian grid nodes are inside or
outside the immersed body.

8. After the classification of all near-boundary nodes into either immersed nodes
or solid nodes, nodes that are interior can also be easily identified by searching
along the grid lines. All nodes within two solid nodes will also be solid nodes.

9. For reconstructing solution field, the immersed nodes are projected on to the
surface parallel to the surface normal.

10. A quadratic interpolation stencil is imposed along the projected line to obtain
the solution field that satisfies the boundary conditions at the interface.

11. For moving body problems, the solution fields are extended inside the solid
body by populating the ghost nodes with the information from the fluid region
through extrapolation. Again, a quadratic stencil is imposed.

5.3.2 Algorithm 2: Our Present Algorithm

The summary of our algorithm presented here is given below

1. Input: background Cartesian grid and triangulated immersed surface
(STL/Neutral format).

2. Based on the element-vertex connectivity information obtained from the sur-
face mesh, establish a half-edge data structure that provides edge connectivity
information for robust geometric operations.

3. Determine face centres, surface normal, angle weighted vertex and edge-based
pseudo-normal.

4. In order to classify the Cartesian grid nodes as internal or external to the
immersed body, first compute bounding box that contains all the vertices
defining the immersed surfaces.

5. All nodes that fall outside the bounding box are fluid nodes.
6. Rays are cast from the Cartesian grid nodes that fall within the bounding box

to the end of the bounding box in a predefined chosen direction.
7. Check for ray–triangle intersection. If the rays cast from a given Cartesian grid

node which does not intersect with triangle, then it is classified as a fluid node.
8. If the ray intercepts with triangle, then the number of interceptions is counted.

If the count is odd, it is a solid node and if it is even it is a fluid node.
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9. The immersed nodes are identified as fluid nodes that are in the immediate
vicinity of solid nodes. The ghost nodes are identified as solid nodes that are in
the immediate vicinity of immersed boundary nodes.

10. In order tofind the closest surface point to theCartesiangrid node, first determine
the distance between Cartesian nodes and face centre of triangular elements.
As a first check, this distance is compared to the radius of minimum sphere
bounding each of those triangular elements.

11. The triangles which are closer to the nodes are chosen. A quadratic distance
function is constructed between the point and triangle. The closest point is
obtained by finding global minimum of the quadratic function.

12. The projected point can be close to the edge or vertex and many a times fall on
actual face itself. The minimum distance and location of the projected point are
stored along with the closest edge, vertex and face information.

13. For solution reconstruction, a line starting from immersed surface passing
through immersed node is constructed. This line is constructed such that it is
parallel to surface normal or angle weighted vertex or edge normal depending
on what is closest to the immersed node.

14. Quadratic interpolation and extrapolation (in case of moving body problems)
strategy is followed as described in case 1.

5.3.3 Dynamic Stall of an Oscillating Airfoil

A flow past NACA0012 airfoil pitching about its half chord (x/c = 0.5) is chosen
as a test case for demonstrating the capabilities of our present algorithm to handle
sharp edges even in case of moving body problems. The parameters are chosen from
the PIV study of Ohmi et al. (1991). The airfoil begins moving impulsively at t∗ = 0
(non-dimensional time, t∗ = tU∞/c) and ends at t∗ = 5.0. The Reynolds number
(based on chord length) is 3000. The flow is simulated at a free streamMach number
which is 0.3. The mean incidence ᾱ and angular amplitude �α of the airfoil are
30° and 15°, respectively. The expression gives the instantaneous angle of attack
governing the pitching motion is α = ᾱ − �α cos(2π f t). The reduced frequency of
the pitching oscillation f ∗ = f c/2U∞ is 0.1. The Eulerian fluid domain is of size
40c × 30c with 425 × 317 nodes in X–Y plane. The grid is uniformly refined locally
near the immersed boundary.

First column in Fig. 5.6 presents the results of Ohmi et al. (1991) obtained by
experimental study. The streamline pattern shows the time evolution of unsteady
wake past the pitching airfoil. The airfoil impulsively starts its pitching motion from
minimum incidence at t* = 0. As the airfoil pitches up, the flow remains attached
up to t* = 1. Then, the flow starts separating at the leading edge resulting in the
formation of leading edge vortex (LEV). This LEV grows till the airfoil reaches the
end of upstroke at t* = 2.5. As the stroke reverses, the growth of LEV stops and it
is shed when the airfoil reaches the end of its downstroke at t* = 5.0.
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Fig. 5.6 Time evolution of wake past a pitching NACA 0012 airfoil: first column shows PIV results
of Ohmi et al. (1991); second column shows Case 1: Gilmanov et al. formulation; third column
shows Case 2: present formulation
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Fig. 5.6 (continued)
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Comparing the results from Algorithm 1 and Algorithm 2 with that of Ohmi
et al. (1991), one can notice the dynamic stall phenomenon captured by our present
algorithm (Algorithm 2) is in excellent agreement with the experimental results.
Case 1 algorithm on the other hand fails from the first instance depicted in Fig. 5.6.
The flow separates at the trailing edge at t* = 0.5 itself, before it is expected to
separate at the leading edge after t*= 1. The flow separation slowly spreads towards
upper regions of trailing edge, and from t* = 1.5 onwards, one can notice leading
edge vortex which grows till t* = 2.5. As the downstroke begins, the leading edge
vortex stops growing and starts shedding. While all the leading edge phenomena are
captured well throughout the cycle, one can clearly notice that Algorithm 1 fails to
handle the sharp-cornered trailing edge region.

The following sections of the article try to explore the answers to two major ques-
tions: where does the Algorithm 1 fail? How does our present algorithm successfully
address those issues? The objective is not just to highlight possible sources of errors
arising from the limitations of algorithm but also to point out sources of errors arising
at the level of implementation.

Immersed Boundary Operations in Interblock Boundaries
Consider earlier observation of Algorithm 1 in Fig. 5.7 where the flow separation
at the trailing edge is shown in the instance corresponding to t* = 0.5. A genuine
reason for the flow separation could be erroneous handling of sharp corner. But amore
careful analysing of the flow field results reveals the flow which separates exactly at
the block boundary (as shown in Fig. 5.7a). The U andV contours shown in Fig. 5.7c,
d showkinks formed exactly at the block boundary interface. The corresponding plots
for the same time instance fromAlgorithm 2 show that the flow exactly re-attaches at
the trailing edge tip. The corresponding U and V contours show smooth distribution
without any kinks or disturbances near the trailing edge.

Figure 5.8a shows a streamline plot of pitching airfoil at t* = 0.5 but with fewer
block structure. Note that the flow here does not separate at the trailing edge but at
the mid-chord as shown in Fig. 5.8b. This observation confirms that the immersed
boundary treatment at the block boundaries is the source of the error. In parallel
multiblock structured flow solvers, the block boundaries contain layers of dummy
cells that exchange and retain information regarding the variables from the adjacent
block. This becomes necessary for maintaining order of accuracy of discretization
schemes near block boundaries. The number of dummy cell layers depends on the
order of discretization schemes involved.

In case of parallel immersed boundary treatment, apart from the information
regarding flow variables, additional information regarding tagging, distance function
needs to be supplied to these dummy layers. Note the fact that these informations are
calculated in every processor that contains blocks that overlap with immersed bound-
ary surface. Each block has access to the information about entire geometry.Although
the solution reconstruction is performed only for the physical domain, information
from dummy layers are sought for interpolation/extrapolation operations. Thus for an
accurate solution reconstruction procedure, the tagging and distance function infor-
mation provided to these dummy layers should strictly correspond to the values from
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Fig. 5.7 Time evolution of vortices in a pitching NACA 0012 airfoil: Algorithm 1: Gilmanov et al.
formulation; Algorithm 2: present formulation

adjacent block whose layer of cells overlaps with that of the dummy layers. Errors
from these block boundaries can arise because of two main reasons

1. Number of dummy layers is inadequate for immersed boundary operations which
reduce the accuracy of solution near block boundaries.

2. There is inconsistency in tagging, distance function information provided to the
dummy cell layers.

In present solver, five layers of dummy cells are shared between the block
boundaries which are adequate for implementing fifth-order discretization schemes.
Figure 5.8c shows that there is inconsistency in the classification of nodes in dummy
layer regions. The four encircled region shows that wherever there is an overlap of
adjacent block, there is inconsistency in tagging. Figure 5.9 provides a clearer view of
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Fig. 5.8 Pitching airfoil at
t* = 0.5; a fluid Domain
with fewer block structure,
b contour plot showing
distribution of nodes, c the
encircled regions show
inconsistent tagging

the region. Note that Fig. 5.9b where Algorithm 1 has tagged fluid nodes as IB nodes
and Fig. 5.9c shows the region where the algorithm fails to tag IB node, leading to the
hole generation. There could be two possibilities as to why is tagging inconsistent
near block boundaries. One, the classification algorithm fails at the block boundaries
or the search radius definition used is leading to erroneous tagging.

Figure 5.9d shows that the distribution of search radius near block boundaries is
inconsistent with the rest of the physical domain. Figure 5.9e shows 3D contour of
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Fig. 5.9 Tagging and search radius distribution in block boundaries
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search radius distribution. While distribution is uniform in the rest of the physical
domain, near the block boundaries it becomes inconsistent. This is in fact due to
the definition of the search radius adopted in Sect. 5.3.1. The number of adjacent
cells near block boundaries is less than the interior nodes. Hence, the maximum
grid spacing picked by the dummy layers as the search radius would be different
from that of the adjacent block layers from the physical domain that overlaps with
them. This suggests that search radius distribution in block corners would be more
chaotic as there are still lesser adjacent cells. This indeed is shown in Fig. 5.9f. The
discussion regarding the classification algorithm is taken up as a separate subsection
below. The accurate results from Fig. 5.7b, d, f show that Algorithm 2 which uses
minimumbounding sphere strategy to determine the search radius provides consistent
definition.

Periodic Boundary Condition
The periodic boundary condition is employed in the solver by rebuilding the con-
nectivity information of the grid such that the periodic faces are considered to be
neighbour faces making the periodic boundary treatment implicit. When the block
containing periodic face contains the immersed body, as it happens in simulating 2D
flows by considering unit span in Z-direction, the immersed boundary treatment on
the periodic face becomes not so straight forward. This is mainly because the dummy
cell layers populating the periodic faces do not have overlapping immersed body as
shown in Fig. 5.10. This is unlike the dummy cell layers that overlap the physical
domain where the information regarding the immersed body is available (DC-2 and 3
in Fig. 5.10). A 2D flow demands that information on every section in Z-plane is the
same. Thus, the tagging and distance function information calculated for physical
boundaries can be copied to the dummy cell layers of periodic faces.

Node Classification Algorithm and Hole Generation
Figure 5.11a shows the flow field of a pitching airfoil at t* = 1.5. Apart from early
flow separation, the solution accuracy away from the trailing edge too is deteriorated.
Figure 5.11c shows that fluid nodes near trailing edge are being tagged as solid
nodes incorrectly. Figure 5.11e provides enlarged view of the tail section. Remember
that Algorithm 1 suggests that if for at least one node within the search radius, the
computed scalar dot product between surface normal and line drawn from itself to
immersed surface is greater than zero, then the node is outside the surface. But this
logic fails near sharp edges as discussed in Sect. 5.2.2. The line drawn from a given
point to the triangular mesh surface can fall on edge or vertex where the surface
normal is not continuous. Especially near sharp corners, one can have the same
distance to two triangles from a given point, but the direction of surface normal need
not be the same. This makes the sign of dot product, which is calculated with surface
normal, ambiguous. On the other hand, Algorithm 2 with its Moller–Trumbore ray-
casting algorithm alongwithwinding algorithmprovides a robust node classification.
Figure 5.11b shows a smooth flow field. The tagging distribution corresponding to
that time instance shown in Fig. 5.11d, f is clean without any holes or gaps.
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Fig. 5.10 Schemetics showing implementation of periodic boundary conditions

Direction adopted for Solution Reconstruction
To emphasize on the importance of the direction adopted for imposing reconstruction
stencil, the pitching airfoil test case is simulated again now with an improvised
Algorithm 1. Improvisation is done on two aspects.

1. Without changing the definition of the search radius, the variable is shared across
its block boundary from physical domain of adjacent block to the dummy lay-
ers of a given block like any other flow variable which is shared in a parallel
environment.

2. A strict conservative bounding box is imposed to avoid any hole or gap formation
near its trailing edge.
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Fig. 5.11 Contrasting signed distance node classification (Algorithm 1) with ray-casting approach
(Algorithm 2)

The results from the improvised algorithm are compared with the literature at
three instances t* = 1.5, 2.5 and 4.0. Figure 5.12 corresponding to time instance
t* = 1.5 shows that the improvised Algorithm 1 provides much better results com-
pared to previous results. It is able to predict the formation of trailing edge vortex
just below the mid-chord region. This result is almost identical with Algorithm 2 and
Ohmi et al.’s (1991) experimental results. Also, these improvised results are better
in its capturing of trailing edge vortex formation than Kumar and Roy (2016) whose
results are based on sharp interface IB approach using incompressible flow solver or
Akbari and Price (2003) work which is based on boundary confirming approach.

At time instance t* = 2.5 (shown in Fig. 5.13), it is expected from Ohmi et al.’s
(1991) results that trailing edge vortex and leading edge vortex almost coalesces
into a big vortex when it reaches its peak amplitude. The results from improvised
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Fig. 5.12 Streamline plots of pitching airfoil at t* = 1.5

Algorithm 1 show the trailing edge vortex which is still strong and has not started
interacting with the leading edge vortex. Algorithm 2 shows that the trailing edge
vortex is almost engulfed by the leading edge vortex. Since no trailing edge vortex is
formed in Kumar and Roy (2016), the leading edge vortex formed grows to occupy
the entire chord. Akbari and Price (2003) results show the presence of trailing edge
vortex.

At the time instance t* = 4.0 (shown in Fig. 5.14), the downstroke motion has
led to the shedding of leading edge vortex. From Ohmi et al.’s (1991) results, one
can notice the presence of leading edge vortex, a triangular vortex at mid-chord and
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Fig. 5.13 Streamline plots of pitching airfoil at t* = 2.5

a trailing edge vortex. Algorithm 2 and Akbari and Price (2003) results agree well
with the experimental observations. But the results of improvised Algorithm 1 do
not. The trailing edge vortex is too small. The mid-chord vortex has moved away
from the surface and is coalescing with the shed vortex. The leading edge vortex is
much broader. Kumar and Roy (2016) results on the other hand show the presence
of mid-chord vortex and leading edge vortex. But the vortex near the trailing edge is
not on the surface but in the wake.

Figure 5.15 shows the velocity contour plot corresponding to the three time
instances we discussed above. At t* = 1.5 and t* = 2.5, the results from impro-
vised Algorithm 1 show that the wake region is chaotic even though the flow field
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Fig. 5.14 Streamline plots of pitching airfoil at t* = 4.0

around the body is captured accurately. At t* = 1.5, Fig. 5.15a shows an unphysical
patch of low-velocity region at the trailing edge tip. Flow field corresponding to
t* = 4.0 (Fig. 5.15e) is comparable with the results from Algorithm 2 (Fig. 5.15f).

Figure 5.16 shows the pressure co-efficient distribution around the leading edge of
the airfoil at t* = 2.5. Results of Algorithm 1 show that airfoil surface is not sharply
represented just like its trailing edge part. The immersed body is actually larger than
the actual geometry of the airfoil. In case of Algorithm 2, the geometry is sharply
represented. Though the solution reconstruction stencil adopted is the same for both
the algorithm, there is a drastic difference in the quality of solutions obtained between
these two algorithms. This is true not just in the near-body region but also in wake
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Fig. 5.15 U-V contour plot at time instances t* = 1.5, 2.5 and 4.0

Fig. 5.16 Pressure contour plot corresponding to t* = 2.5
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region. This difference is attributed to the direction along which those reconstruction
stencils are adopted. In case of Algorithm 1, it is parallel to the direction of surface
normal. In case of Algorithm 2, it can be parallel to the direction of surface or vertex
or edge normal depending on where the closest point in triangle lie. This enhances
the accuracy of geometry representation especially in modelling sharp edges.

5.4 Conclusion

In this study, we have presented our simple and robust algorithm to handle the
representation of sharp edges while adopting sharp interface immersed boundary
approach. By appreciating the nature of sharp-edged geometries as well as the inher-
ent limitations of representing immersed body with triangular meshes, we have
adopted a set of computational geometry procedures that takes care of even the
extreme situations when dealing with node classification or exact close point in the
triangle, without any ambiguity. With the help of a pitching airfoil test case, we
have systematically presented the important role played by such geometry process-
ing algorithms. Their role is not just restricted to geometry pre-processing step as
is the case in most of the immersed boundary approach. They play a crucial role in
the solution reconstruction procedure as well. The versatile nature of our algorithm
is successfully demonstrated by comparing the test case results with the algorithm
adopted by Gilmanov et al.
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Chapter 6
Ghost Fluid Lattice Boltzmann Methods
for Complex Geometries

Arpit Tiwari, Daniel D. Marsh, and Surya P. Vanka

6.1 Lattice Boltzmann Method

Lattice Boltzmann method (LBM) (Chen and Doolen 1998; Luo 2000) has emerged
as a powerful alternate computational tool for simulating microscopic and macro-
scopic flows in complex configurations. In conventional computational fluid dynam-
ics (CFD) methods, the Navier–Stokes equations describing the continuum behavior
of fluid flows are solved numerically. The equations describing the conservation
of mass, momentum and energy are solved to determine the macroscopic variables
(velocity, pressure and temperature). On the other hand, LBM is ameso-scalemethod
which solves reduced versions of the microscopic Boltzmann kinetic equations for
particle distribution functions. Simplified kinetic models are developed that retain
only specific details of themolecularmotion sufficient to recovermacroscopic hydro-
dynamic behavior. LBM is, therefore, an intermediate approach between the contin-
uum and the more fundamental approach of molecular dynamics (MD) simulations.

LBM evolved from lattice gas automata (LGA), in which a simplified kinetic
model is constructed for simulating fictitious particles in discrete lattice space and
time. The LGAmodel proposed by Frisch et al. (1986) consists of a two-dimensional
equilateral triangular lattice space with hexagonal symmetry. Particles point toward
the nearest lattice site; the kinetic model consists of collision and streaming based on
certain rules. LGA is based on Boolean operation, thus suffers from statistical noise.
This problem was cured by replacing Boolean particle distribution variables with
ensemble-averaged particle distribution functions (McNamara and Zanetti 1988),
which formed the basis of LBM. However, the primitive formulations of LBM were
computationally inefficient because of the complexity of the collision operator in
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the ensemble form. The major breakthrough in efficiency was achieved through the
linearization of the collision operator (Higuera and Jiménez 1989) assuming local
equilibrium. This was further simplified using the Bhatnagar–Gross–Krook (BGK)
approximation (Bhatnagar et al. 1954) of single relaxation time toward equilibrium
leading to the lattice Bhatnagar–Gross–Krook (LBGK) model; the local equilibrium
functions are chosen such thatmacroscopic equations are recovered (Qian et al. 1992;
Chen et al. 1992).

SinceLBMis an intermediate approach between themacroscopic andmicroscopic
methods, the Navier–Stokes equations can be obtained by carrying out multi-scale
expansion of the LB equations (Chen and Doolen 1998; Luo 2000). Similarly, LB
equations canbederived from the continuumBoltzmannBGKequations, inwhich the
equilibrium distribution is described by the Boltzmann–Maxwellian function. Low
Mach number reduction of Boltzmann BGK equations leads to LB equations (Chen
and Doolen 1998; Luo 2000). There is an extensive literature on analysis and
advancement of LBM for various applications.

6.1.1 Basic Formulation of LBM

In LBM, particle distribution functions are advanced in time via two processes:
collision and streaming. Various advanced formulations have been developed over
the years for these processes (e.g., multi-relaxation-time LBM and entropic LBM).
However, since the focus of this book in on boundary conditions, for conciseness,
we present a widely used basic formulation of LBM here—the single relaxation-
time D2Q9 model. As the name suggests, it is a two-dimensional model, in which
the collision process employs a single relaxation-time parameter, and particles are
restricted to move along nine velocity vectors during streaming, as shown in Fig. 6.1

Fig. 6.1 D2Q9 model of
LBM
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(see Sect. 6.4.3 for a three-dimensional LBM implementation). The discrete equation
governing these processes is

fi (x + c vi�t, t + �t) − fi (x, t) = −�i , i = 0, 1, . . . , 8, (6.1)

in which, the left- and right-hand sides represent streaming and collision processes,
respectively. fi is the discrete particle distribution function, x is the spatial location
vector, vi is the particle velocity, t is time and �t is the time step. c = �x/�t is the
lattice speed, where�x is the lattice spacing.�i denotes discrete collision operation.
The nine velocities are given by

vi =

⎧
⎪⎨

⎪⎩

(0, 0) for i = 0,

(cos((i − 1)π/2), sin((i − 1)π/2)) for i = 1 to 4,√
2(cos((i − 5)π/2 + π/4), sin((i − 5)π/2 + π/4)) for i = 5 to 8.

(6.2)

The collision term �i can take various forms provided the conservation laws are
obeyed; the linearized collision function based on BGK approximation takes the
form

�i = fi − f eqi
τ

, (6.3)

where τ is a relaxation-time parameter, and f eqi is the equilibriumparticle distribution
function:

f eqi = wiρ

(

1 + c vi · u
c2s

+ (c vi · u)2

2c4s
− u2

2c2s

)

, (6.4)

where cs = c/
√
3 is the lattice speed of sound and wi is the weighing function:

wi =

⎧
⎪⎨

⎪⎩

4/9 for i = 0,

1/9 for i = 1 to 4,

1/36 for i = 5 to 8.

(6.5)

ρ and u are the density and flow velocity, respectively, obtained from the particle
distribution functions and velocities using

ρ =
∑

fi and ρ u =
∑

c fi vi . (6.6)

Applying a Chapman–Enskog procedure on the LB equations, macroscopic conti-
nuity and momentum equations can be derived in the low Mach number limit, with
pressure (p) and kinematic viscosity (ν) given by p = ρ c2s and ν = (τ − 1/2) c2s �t .
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6.1.2 Advantages of LBM

LBM offers a number of advantages compared to the conventional CFD methods.
The simplified kinetic model utilized in LBM has a linear streaming operator, while
Navier–Stokes equations have a nonlinear convection term. The nonlinearity asso-
ciated with the collision operator in LBM is localized, which makes it highly suited
for parallelization (see Sect. 6.4.4 for a discussion on parallelization using GPUs).
In LBM, pressure variations are implicitly expressed as a function of density varia-
tions, thus eliminating the well-known pressure–velocity coupling issue that needs
special treatment in conventional incompressible CFD solvers. Furthermore, since
LB equations are obtained by reducing Boltzmann equations, (1) micro-scale multi-
phase physics are easier to incorporate in LBM and (2) coupling with molecular
dynamics (MD) simulations is straightforward (discussed in Sect. 6.4.5). It is thus
widely used in the analysis of complex fluids and multi-phase flows. Conventional
solvers need special care in dealing with multi-phase flows (Shukla et al. 2010; Ti-
wari et al. 2013). LBM also offers advantages compared to molecular simulations.
In LBM, the simplified kinetic model utilizes a small set of velocities in the phase
space. This makes computations significantly faster compared to solving the Boltz-
mann equations of molecular motion derived from the kinetic theory utilizing the
Boltzmann–Maxwellian equilibrium distribution function, where the phase space is
continuous and infinite.

6.2 Boundary Conditions in LBM

Accurate implementation of boundary conditions is challenging in LBM due to the
difficulty in obtaining particle distribution functions from the prescribed hydrody-
namic conditions at the boundaries. This is because the number of unknown particle
distribution functions is typically more than the number of hydrodynamic bound-
ary conditions. For stationary walls, the basic implementation of the well-known
bounce-back condition simply inverts the particle velocities at the wall. However,
it is only first-order accurate, and not applicable to moving walls. Several advance-
ments have been proposed to improve its applicability and accuracy (Ziegler 1993;
Ladd 1994; Filippova and Hänel 1998; Mei et al. 1999; Ginzburg and d’Humieres
2003; Lallemand and Luo 2003; Yu et al. 2003).

In the so-called hydrodynamic boundary implementation (Noble et al. 1995), the
unknown (incoming) particle distribution functions are obtained from the prescribed
hydrodynamic conditions at the boundaries using Eq. (6.6). The original implemen-
tation was only limited to those LBM models in which the number of unknown
distribution functions is equal to the number of hydrodynamic boundary conditions.
This limitation was addressed later by proposing additional rules to handle LBM
models in which the number of missing functions is more than the prescribed bound-
ary conditions (Maier et al. 1996; Zou and He 1997). Chen et al. (1996) proposed an
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extrapolation approach, inwhich the incoming distribution functions are extrapolated
from the interior distribution functions, and the equilibrium distribution functions
at the boundaries are computed from the prescribed hydrodynamic boundary con-
ditions using Eq. (6.4). Guo et al. (2002) developed an extension of this method by
splitting the incoming distribution functions into equilibrium and non-equilibrium
parts. Equilibrium parts are computed using Eq. (6.4), while the non-equilibrium
parts are extrapolated from the interior functions.

All the boundary approaches mentioned above need special care when dealing
with complex geometries. For conventionalCFDmethods, immersed boundarymeth-
ods (IBM) are now widely used to deal with curved boundaries. Since its first in-
troduction by Peskin (1972), there has been an extensive amount of research on
IBM. Among the approaches developed are forcing via deformation of elastic re-
gion tracked by Lagrangian points (Peskin 1972; Goldstein et al. 1993; Lai and
Peskin 2000; Lee and LeVeque 2003), forcing via Lagrange multipliers (Glowinski
et al. 1999; Taira and Colonius 2007), direct forcing by modifying discrete momen-
tum equations (Mohd-Yusof 1997; Fadlun et al. 2000; Balaras 2004; Gilmanov and
Sotiropoulos 2005; Uhlmann 2005), direct boundary implementation using Carte-
sian grid method (Ye et al. 1999) and direct boundary implementation using ghost
cells (Majumdar et al. 2001; Tseng and Ferziger 2003). In the ghost-cell technique,
hypothetical (ghost) cells are placed outside the fluid domain such that each cell has
at least one neighbor inside the domain. Various options have been developed to
extrapolate values to these cells to enforce boundary conditions. One widely used
implementation obtains values via locating image points inside the fluid domain
along the boundary normal (Majumdar et al. 2001).

IBMhas been implemented into LBMaswell. The original IB formulation of forc-
ing via deformation of elastic regionwas coupledwithLBMbyFeng andMichaelides
(2004). The same authors later employeddirect-forcing IB formulation inLBM(Feng
and Michaelides 2005). An alternative way of calculating the forcing term was de-
veloped by Niu et al. (2006) via the momentum exchange method of Ladd (1994).
Several researchers have extended/improved forcing function-based IBM for vari-
ous applications (Peng et al. 2006; Zhang et al. 2007; Dupuis et al. 2008; Tian et al.
2011; Kang and Hassan 2011). A drawback of this approach is that the no-slip con-
dition is not strictly enforced at the walls. Wu and Shu (2009) proposed a velocity
correction method to solve this issue. Another way of implementing strict boundary
conditions is using the ghost cells-based IB method. Tiwari and Vanka (2012) first
coupled this method with LBM and demonstrated its efficiency, accuracy, general-
ity and ease of implementation. This approach and the subsequent research works
toward its applications and improvements are discussed in the following sections.

6.3 Ghost Fluid LBM

Here, we describe a ghost fluid immersed boundary lattice Boltzmann method (GF-
IB-LBM) developed by Tiwari and Vanka (2012), which imposes hydrodynamic
boundary conditions via ghost nodes, rather than using the forcing concept. A gen-
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eral approach using extrapolation along boundary normal is employed to obtain
hydrodynamic values at the ghost nodes, which are then used to obtain equilibrium
particle distribution functions. The non-equilibrium particle distribution functions
are simply extrapolated from the fluid domain. The two contributions are then added
to obtain particle distribution functions at the ghost nodes.

6.3.1 Algorithm and Implementation

For conciseness, we restrict our focus towall (stationary aswell asmoving) boundary
conditions in curved geometries. (Themethoddetailed belowcanbe extended to other
types of boundary conditions in a straightforward fashion). The implementation in
two dimensions (see Sect. 6.4.3 for three-dimensional extension) briefly involves the
following steps.

1. Ghost node and corresponding image point identification: Before streaming op-
eration, ghost nodes adjacent to a boundary are identified such that each ghost
node has at least one neighboring node in the fluid domain. For each ghost node,
an image point is located inside the fluid domain along the boundary normal. This
is shown in Fig. 6.2.

2. Density and velocity determination at image points: A special bilinear interpo-
lation procedure is developed by Tiwari and Vanka (2012) to obtain hydrody-
namic values at the image points. A four-point interpolation is used when all the
surrounding nodes are interior (Fig. 6.2a). If a surrounding node is not interior
(Fig. 6.2b), then it is replaced by the point of intersection of the normal from that
node with the boundary curve. For velocity, the values at the wall intersection
points are simply the prescribed boundary values. These points are used along
with the interior nodes to obtain velocities at image points. This approach to obtain
bilinear coefficients can be expressed using this general formula:

Fig. 6.2 Interpolation at image points: a all neighboring nodes inside, and b two inside and two
outside nodes (Tiwari and Vanka 2012)
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a x j + b y j + c x j y j + d = u j if node j is inside,

a x ′
j + b y′

j + c x ′
j y

′
j + d = u′

j otherwise,

where j = 1:4 denote the four surrounding nodes, a to d are the bilinear coeffi-
cients, (x j , y j ) and u j are the spatial Cartesian coordinates and velocity, respec-
tively, at node j and (x ′

j , y′
j ) and u′

j are the spatial Cartesian coordinates and
velocity, respectively, at the wall intersection point of node j . For density, the
interpolation formula is modified such that it utilizes the zero normal gradient
condition at the wall intersection points. This can also be expressed using this
general formula:

a x j + b y j + c x j y j + d = ρ j if node j is inside,
a nx j + b nyj + c (x j nyj + y j nx j ) = 0 otherwise,

where (nx j , nyj ) denotes the boundary normal from node j , and ρ j is the density
at node j .

3. Density and velocity determination at ghost nodes: Velocity and density values at
the image points are extrapolated to the ghost points along the normal direction
such that the prescribed velocity and zero density gradient conditions are satisfied
at the wall.

4. Particle distribution function determination at ghost nodes: The equilibrium part
( f eqi ) is obtained from density and velocity values at the ghost nodes using
Eq. (6.4). The non-equilibrium part ( f neqi = fi − f eqi ) is obtained analogous to
density computation using the aforementioned special interpolation procedure.
The two contributions are then summed to obtain particle distribution functions
at the ghost nodes, which are then streamed inside the fluid domain during stream-
ing operation. Note that second-order accuracy of the equilibrium part is ensured
by the second-order accurate bilinear interpolation of density and velocity. How-
ever, the simple extrapolation of non-equilibrium part is only first-order accurate.
Overall, second-order accuracy is attained because the non-equilibrium part cor-
responds to the first-order term in the asymptotic expansion of the particle distri-
bution functions (Tiwari and Vanka 2012; demonstrated in Sects. 6.4.1 and 6.4.2).

6.3.2 Advantages

The overall approach is simple and efficient and preserves second-order accuracy for
curved boundaries.Amajor advantage is its generality—applicable to inflow/outflow,
moving wall, symmetric and periodic boundary conditions (including Dirichlet as
well as Neumann conditions; Tiwari and Vanka 2012). An illustration is presented in
Sect. 6.4.2. Furthermore, the method by design imposes hydrodynamics conditions
strictly at the boundaries. Boundary enforcement is local, hence preserves high par-
allelism of LBM (discussed in Sect. 6.4.4). It also enables straightforward coupling
withmolecular dynamics simulations via ghost nodes, as demonstrated in Sect. 6.4.5.
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6.4 Application of GF-IB-LBM

We first demonstrate the accuracy of GF-IB-LBM on four test problems involving
curved andmoving boundaries. Then, we discuss its couplingwithmolecular dynam-
ics in a GPU-parallelized framework. For conciseness, only key results are presented
here; we refer to Tiwari and Vanka (2012), Tiwari et al. (2009) and Marsh (2010) for
more details.

6.4.1 One-Dimensional Problem

Wefirst consider cylindrical Couette flow problem to (1) compare results with analyt-
ical solution and (2) demonstrate the importance of extrapolation of non-equilibrium
distribution function in achieving second-order accuracy. The flow is assumed lam-
inar, which makes this problem inherently one dimensional, which we solve using
a two-dimensional lattice for demonstration (Tiwari and Vanka 2012). We consider
an inner cylinder of radius r1 rotating with an angular velocity ω and a stationary
outer cylinder of radius r2. Angular velocity is chosen such that Reynolds num-
ber based on the inner cylinder’s diameter and tangential speed is 50. Figure6.3
shows good agreement of velocity (u) variation along the radial (r ) direction with
the analytical solution. In Fig. 6.4a, the L2 error norm (‖e‖N ) of velocity along the
radial direction is plotted against grid spacing to demonstrate second-order accuracy
of the method. We also plot in Fig. 6.4b, the results obtained without extrapolating
the non-equilibrium part ( f neqi ), which shows a slope ≈ 1.4. This demonstrates the
importance of extrapolation of the non-equilibrium part.

Fig. 6.3 Comparison of
radial velocity profile for
cylindrical Couette flow
using a 321 × 321 grid in a
2.5r2 × 2.5r2 square domain
with analytical solution for
two aspect ratios
(A = (r2 − r1)/r1) (Tiwari
and Vanka 2012)
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(a) with fneq
i extrapolation (GF-IB-LBM) (b) without fneq

i extrapolation

Fig. 6.4 Variation of L2 error norm (‖e‖N ) of radial velocity with grid spacing (�x) for cylindrical
Couette flow for two aspect ratios (A = (r2 − r1)/r1); m denotes slope (Tiwari and Vanka 2012)

6.4.2 Two-Dimensional Problems

We next consider flow between two rotating eccentric cylinders (Fig. 6.5a). Due to
a misalignment in their rotation axes, the flow between them is two dimensional.
This configuration is included here to show second-order accuracy of GF-IB-LBM
for a two-dimensional problem. Tiwari and Vanka (2012) considered four different
combinations of eccentricity, radius ratio and rotational speeds. For conciseness, we
present here grid convergence of two cases: (1) inner cylinder rotating and (2) outer
cylinder rotating. Figure6.5b demonstrates second-order accuracy of the method.

(a) schematic (b) error norm

Fig. 6.5 Schematic of the domain considered and variation of L2 error norm (‖e‖N ) of radial
velocity with grid spacing (�x) for two cases of flow between rotating eccentric cylinders: case
1 has inner cylinder rotating and case 2 has outer cylinder rotating; m denotes slope (Tiwari and
Vanka 2012)
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We next consider flow over a cylinder in a channel. The previous two problems
had only wall boundaries, therefore, this problem is chosen to demonstrate generality
of the method for other types of boundary conditions. In this problem, parabolic
velocity boundary condition is applied at the inlet, and constant pressure as well
as fully developed conditions are separately considered at the outlet (Tiwari and
Vanka 2012). This is a widely used verification problem; extensive benchmarking
data exists (Schäfer et al. 1996). Reynolds number based on average inlet velocity and
cylinder diameter is 20 for the simulated configuration. We consider three uniformly
spaced lattices with n = 16, 32 and 64, where n denotes the number of nodes across
the diameter. Figure6.6a shows streamlines in the recirculation zone, and Fig. 6.6b
shows variation of pressure coefficient cp with cylinder angle θ using GF-IB-LBM
(n = 64) with constant pressure boundary condition at the outlet. The drag and lift
coefficients compare well with those reported by the high-resolution study of Schäfer
et al. (1996) in Table6.1.
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Fig. 6.6 Streamlines in the recirculation zone and variation of pressure coefficient with cylinder
angle for flow over a cylinder using GF-IB-LBM with n = 64 (Tiwari and Vanka 2012)

Table 6.1 Comparison of drag and lift coefficients (Tiwari and Vanka 2012) with Schäfer et al.
(1996)

Coefficient n = 16 n = 32 n = 64 Schäfer et al. (1996)

Drag 5.3203 5.4772 5.5799 5.5700–5.5900

Lift 0.0488 0.0141 0.0101 0.0104–0.0110
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6.4.3 Three-Dimensional Problem

We demonstrate the extension of the approach to three dimensions in this section.
Single relaxation-time D3Q27 LBM model is used here. As the name suggests, it
consists of a three-dimensional lattice with particles restricted to move along 27
directions. The ghost fluid technique described in Sect. 6.3 is extended to three di-
mensions via tri-linear interpolation. In this case, an image point is surrounded by
eight neighboring nodes; during interpolation, the outside nodes are replaced with
the intersection of normal from those nodes with the boundary, analogous to the two-
dimensional implementation. For demonstration, we simulate Taylor–Couette flow
between cylinders (Fig. 6.7) using this approach (Tiwari et al. 2009). We consider
the following configuration: radius ratio (inner radius/outer radius) is 0.5 and aspect
ratio (height/inner radius) is 3.8. Rotational speed is chosen such that the Reynolds
number based on the gap between the annulus and the tangential speed is 100. The
generation of toroidal vortices due to flow instability at high Reynolds number is
well known and widely studied (Wereley and Lueptow 1998) for the Taylor–Couette
problem.Tiwari et al. (2009) simulated this configuration usingGF-IB-LBM;Fig. 6.7
shows generation of vortices with a 125 × 125 × 95 lattice.

Fig. 6.7 Schematic, velocity
vectors and contours of
horizontal velocity
component obtained by
simulating Taylor–Couette
problem using
three-dimensional
GF-IB-LBM (Tiwari et al.
2009)
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6.4.4 Parallelization Using Graphical Processors

Lattice Boltzmann method is inherently highly parallelizable, hence significant
speed-up can be obtained by utilizing graphical processing units (GPUs). One of the
advantages of GF-IB-LBM is that it preserves the locality of the underlying LBM
model—only needs information of the nodes surrounding the image points to enforce
boundary conditions. Marsh (2010) developed a parallel implementation of LBM on
GPUs and highlighted that parallelization of the ghost fluid techniquewas straightfor-
ward. They used Compute Unified Device Architecture (CUDA) (NVIDIA: https://
developer.nvidia.com/cuda-zone), which is the melding of hardware and software
that NVIDIA has provided to allow scientific applications to be more easily written
and executed on an NVIDIA GPU. CUDA operates by executing threads on mul-
tiprocessors contained within the GPU. They reported 50–75 times speed-up on a
modern GPU compared to a modern central processing unit (CPU) for their test
problems using GF-IB-LBM.

6.4.5 Coupling with Molecular Dynamics

We next discuss the applicability of ghost fluidmethod in coupling LBMwithmolec-
ular dynamics (MD) simulations. MD is an atomistic method, which has been used
in computational studies for a long time, but has only recently become feasible for
many applications due to its high computational cost. One of the target areas of
MD simulations is nano- and micro-scale flows, where the flow behavior is not well
described by the Navier–Stokes equations. MD examines physical phenomena on
the atomistic scale by considering individual molecules and their interactions with
each other. Extensive literature exists on interaction potentials (Allen et al. 2004);
the Lennard-Jones potential is often used:

Vi j (ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

, (6.7)

where Vi j and ri j are the potential and distance, respectively, between molecules i
and j . The two parameters ε and σ are used to characterize the interaction strength
and length scale, respectively.

Coupling molecular dynamics with a non-atomistic CFD code such as lattice
Boltzmann is advantageous when boundary wall effects are important to capture at
the atomistic resolution, but the computational penalty of such high fidelity in the
bulk flow is not desired. For example, consider a simple two-dimensional, planar
channel flow as shown in Fig. 6.8. Marsh (2010) decomposed it into three domains
for coupling: an MD domain near walls, an LBM domain for bulk flow and an
overlap domain. They used Schwarz alternating method (SAM) (Dolean et al. 2015)
to couple the two methods. This approach decouples both time and length scales

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
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Fig. 6.8 Schematic of LBM-MD coupling in a planar channel (Marsh 2010)

Fig. 6.9 Velocity halfway
through channel flow in the
overlap region (Marsh 2010)

allowing for a fully hybrid scheme. LBM andMD individually solve their respective
domains including the overlap region. SAM operates by first advancing LBM by one
time step (�t). Boundary conditions are then applied to the atomistic region via the
overlap region. In this step, the velocity of amolecule in the overlap region is set to the
fluid velocity at the nearest lattice node.MD is then advanced viamultiple (p) smaller
time steps (δt) such that�t = p δt . Boundary conditions are then applied to the bulk
region.GF-IB-LBMoffers straightforward enforcement of boundary conditions from
MD to LBM in this step. It just requires using the averaged values from MD and
imposing them on the appropriate ghost nodes. Marsh (2010) developed a parallel
implementation of the coupling approach on GPUs (as discussed in Sect. 6.4.4), and
simulated the aforementioned channel flow configuration. For demonstration, we
show in Fig. 6.9 the velocity vectors near wall obtained from the coupled simulation;
we refer to Marsh (2010) for more details.
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6.5 Recent Advances

Khazaeli et al. (2013) implemented ghost fluid technique on thermal LBM. Their ap-
proach uses interpolation–extrapolation methodology based on image points similar
to Tiwari and Vanka’s (2012) GFM. Thermal LBM contains an additional distribu-
tion function for internal energy, whose values they obtain at ghost nodes analogous
to the particle distribution function calculation via extrapolation from image points.
They used an inverse distance-weighing approach for interpolation and demonstrated
second-order accuracy for several problems with curvilinear boundaries.

Chen et al. (2013) investigated pressure oscillations that appear due to boundary
implementation inLBM.Their investigation focusedon theghost fluid IBmethod (Ti-
wari and Vanka 2012), for which, they implemented a cut-cell-based weighting strat-
egy to enforce geometric conservation to suppress these oscillations. They tested this
method on four problems and demonstrated that the modified GFM reduces pres-
sure oscillations while preserving its accuracy. Chen et al. (2014) compared different
bounce-back and IB schemes and concluded that the unified-interpolation bounce-
back of Yu et al. (2003), the direct-forcing approach of Kang and Hassan (2011) and
the ghost fluid approach of Tiwari and Vanka (2012) are best suited for the acoustic
problems they considered.

Kaneda et al. (2014) developed a multi-relaxation-time extension of the single
relaxation-time GFM (Tiwari and Vanka 2012). They compared their results with
the standard bounce-back scheme and confirmed that GFM has better accuracy, but
found a defect in density calculation at image points. They attributed this to a larger
predicted pressure and proposed an improvement by implementing a normal moment
relation (the balance of centrifugal force and pressure) for the estimation of density
distribution functions at the boundaries. Jahanshaloo et al.’s (2016) review provides
an overview of several approaches developed to impose boundary conditions in LBM
(including thermal LBM).

Mozafari-Shamsi et al. (2016a) developed an extension ofGFM(Tiwari andVanka
2012) for thermal LBM and implemented it for Dirichlet as well as Neumann ther-
mal boundary conditions. As mentioned earlier, thermal LBM contains an additional
equation to evolve internal energy distribution functions. Internal energy distribution
functions at the ghost nodes are obtained analogous to the calculation of particle dis-
tribution functions as described in Sect. 6.3; they employedGFM’s inherent feature of
computing gradient of the macroscopic variables normal to the curved boundaries to
formulate heat flux (Neumann) boundary conditions. In a later study, they (Mozafari-
Shamsi et al. 2016b) used this GFM approach to formulate conjugate heat transfer
boundary conditions at curved interfaces of two materials having different thermal
properties. Boundary conditions for conjugate heat transfer are difficult to impose
because heat fluxes must match in addition to imposing a common temperature value
at the boundary points. Here, again, GFM’s (Tiwari andVanka 2012) normal gradient
calculation makes it suitable to enforce such interface conditions. They verified the
accuracy and stability of GFM computations on three test problems and confirmed
its second-order accuracy.
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Li et al. (2016) developed a quadratic interpolation (QGFM) variant of bilinear
interpolation GFM (BGFM) (Tiwari and Vanka 2012). They compared them with
Guo et al.’s (2002) extrapolation method, linear interpolation bounce-back (LIBB)
method and quadratic interpolation bounce-back (QIBB) method. They found that
LIBB, QIBB, Guo et al.’s scheme and BGFM are comparable in efficiency for the
problems simulated, but QGFM takes about 10% more computation time due to a
larger stencil construction. As expected, they observed that quadratic interpolation
schemes (QGFM and QIBB) are more accurate compared to their linear counterparts
(BGFMandLIBB). However, they found that the conventional bounce-back schemes
are more accurate than ghost fluid interpolation schemes for the problems studied.
They also compared these techniques for boundary pressure oscillations in LBM
and found that oscillations are best suppressed by Guo et al.’s scheme. The authors
also studied the influence of different collision models, refilling techniques and force
evaluation methods in suppressing pressure oscillations.

Xu et al. (2018) recently proposed a forcing-based IB-LBM scheme for fluid–
structure interaction problems. To improve numerical stability, their scheme approx-
imates the feedback coefficient explicitly and splits Lagrangian force into traction
from surrounding flow and inertial force from boundary acceleration. They also
developed a dynamic geometry-adaptive grid refinement strategy, which improves
the efficiency of the coupled solution by having fine resolution only near the fluid–
structure interfaces.
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Chapter 7
A Levelset-Based Sharp-Interface
Modified Ghost Fluid Method
for High-Speed Multiphase Flows
and Multi-Material Hypervelocity
Impact

Pratik Das, Nirmal K. Rai, and H. S. Udaykumar

7.1 Introduction

The dynamic response of multi-material interfaces under high-speed flow conditions
is important in awidevariety of engineering applications. For example, the interaction
between gas–liquid interfaces and high-speed flows plays an important role in under-
water explosions and droplet combustion in gas-turbine engines and rocket motors
(Powell et al. 2001;Mayer and Tamura 1996). Shock interactionwith gas–solid inter-
faces is important in shock-induced dispersal of granular material after explosions
(Boiko et al. 1997), high-speed coating technologies (Dongmo et al. 2008), shock
processing of powders (Thadhani 1988), shock wave lithotripsy (Jamaluddin et al.
2011), etc. The hypervelocity interaction between two solid interfaces is important
in the high-speed impact penetration scenarios seen during high-velocity machining
processes (Marusich and Ortiz 1995), high-velocity geological impacts (Artemieva
and Shuvalov 2008), and munition–target interaction (Bürger et al. 2012). In such
high-speed multi-material flow problems, severe topological change of the multi-
material interfaces can occur. The interfaces may suffer extreme deformation (high-
speed machining), fragmentation (droplet break-up), and collapse (shock-induced
bubble or void collapse in solid or liquid); new interfaces can be created (cavitation
in liquid or damage in solid material). The situation is further complicated by the
interaction of high-speed nonlinear waves (e.g., shocks, tensile waves, or detonation
fronts) in the material with the interfaces. The complex physics associated with the
interfacial dynamics makes compressible multi-material flow problems numerically
challenging. In this chapter, we describe a generic numerical framework for solv-
ing problems involving the interaction of multi-material interfaces with high-speed
flows.

P. Das · N. K. Rai · H. S. Udaykumar (B)
Department of Mechanical Engineering, The University of Iowa, Iowa City, IA, USA
e-mail: hs-kumar@uiowa.edu

© Springer Nature Singapore Pte Ltd. 2020
S. Roy et al. (eds.), Immersed Boundary Method, Computational Methods
in Engineering & the Sciences, https://doi.org/10.1007/978-981-15-3940-4_7

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3940-4_7&domain=pdf
mailto:hs-kumar@uiowa.edu
https://doi.org/10.1007/978-981-15-3940-4_7


188 P. Das et al.

Numerical methods for solving high-speed multi-material flow problems are
broadly classified under two approaches: Lagrangian and Eulerian. Lagrangian
approaches are popular for solving high-speed multi-material flow problems, espe-
cially in solid mechanics. The computational mesh in Lagrangian methods follows
the material points. In high-strain rate problems, extreme deformation of the mate-
rial may cause entanglement of the initial Lagrangian mesh and frequent re-meshing
may be required, which renders the numerical solution of such problems compu-
tationally challenging. The numerical challenges of mesh entanglement with large
deformation in the Lagrangian methods are ameliorated to some extent in the arbi-
trary Lagrangian–Eulerian (ALE) methods. In the ALE method, the mesh conforms
to the contours of the deforming object, but the mesh is not attached to the material
points. Nonetheless, re-meshing is still required in ALE to handle large deformation
of interfaces and objects in high-speed flow problems. An alternative approach for
such problems is the Eulerian method. In the Eulerian frameworks, the mesh is fixed,
and the material is allowed to “flow through” the mesh. Eulerian formulations are
preferred for solving problems in fluid mechanics, but the Eulerian framework can
also be used to solve the high-speed problems in solid mechanics. In the Eulerian
formulations for solid mechanics, spurious elastic dissipation may occur as the elas-
tic part of strain is not fully recovered because of nonintegrability in the elasticity
model. Nevertheless, under high-strain rate conditions, the elastic strains are negligi-
ble compared to the plastic strain. Furthermore, a unifying feature of broad spectrum
of problems under high-speed and/or high-strain rate conditions is the hyperbolic
nature of the governing equations, which can be cast under the umbrella of a general
Eulerian framework.

In the fixed-grid Eulerian methods, there is no explicit definition of the inter-
faces between different materials or phases. The interfaces do not align with the
fixed background mesh; instead, the interfaces are embedded in the fixed-grid. The
interfaces are tracked implicitly either through a progress variable/field variable or
Lagrangian marker point. For example, the levelset methods (Osher and Sethian
1988; Sethian and Smereka 2003; Sussman et al. 1998) uses a signed distance field
on the Eulerian grid to track the evolution of the interface. Similarly, in the volume
of fluid method (VOF) (Hirt and Nichols 1981), a marker function is defined as
the volume of a certain phase at a given computational cell of the Eulerian grid to
keep track of the interfaces. The front tracking methods (Unverdi and Tryggvason
1992) use Lagrangian marker points to trace the location of the interfaces embed-
ded within the Eulerian grid. Among these methods, levelset-based sharp-interface
tracking methods are attractive for solving high-speed multi-material flow problems.
In the levelset-based approach, zero-levelset contours sharply define the interfaces
embedded in the background mesh. Therefore, in the levelset-based approach, the
definition of the sharp interface is readily available from the levelset field, whereas,
in VOF or front tracking methods, the sharp interface is reconstructed from the
volume fraction field or the Lagrangian marker points, respectively. Also, with the
levelset-based approach, the extreme deformation, collision, merging, and fragmen-
tation of the interface is naturally incorporated through the advection of the levelset
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field. Therefore, levelset-based sharp-interface tracking is attractive for high-speed
multi-material flows where extreme deformation of the interfaces is commonplace.

The major challenges of Eulerian sharp-interface methods lie in applying bound-
ary conditions at the interfaces because in such methods the embedded interface
does not align with the background mesh. The ghost fluid method (GFM), origi-
nally developed by Fedkiw et al. (1999), has been successfully used to prescribe
appropriate boundary conditions at the embedded interfaces. In the GFM approach
(Sambasivan and UdayKumar 2009; Shiv Kumar and UdayKumar 2009), a band of
computational cells around the interface is defined as ghost points corresponding to
each phase of the interacting media. The ghost band, when supplied with appropriate
flow conditions, together with the respective real fluid, constitutes a single flow field.
The success of the GFM approach largely depends on the accuracy with which the
ghost states are populated. The ghost states, in turn, are derived based on the material
enclosed by the embedded interfaces. Thus, in the GFM framework, the treatment of
embedded interfaces essentially boils down to suitably defining the ghost states such
that the material properties and the interface conditions are represented accurately.
The interfacial conditions imposed at the interface through the GFM depends on
the materials/phases separated by the interfaces. The numerical implementations of
the interfacial conditions for different multi-material interfaces are discussed in this
chapter.

In the following sections of this chapter, first, the unified governing equations for
multi-material flows along with the strategies for material modeling cast in a Carte-
sian grid-based Eulerian framework is presented in Sects. 7.2.1 and 7.2.2. Following
that the numerical methods for solving the governing equations are discussed in
Sect. 7.2.3. The interfacial treatment through the levelsets and GFM are described in
Sects. 7.2.4, 7.2.5, and 7.2.6. Results obtained from several different multi-material
flow problems are presented in Sect. 7.3. At the end, the concluding remarks and the
scopes for future work are discussed in Sect. 7.4.

7.2 Methods

A Eulerian sharp-interface multiphase framework to perform reactive mesoscale
simulations involving different phases, i.e., solid, liquid, or gas under shock loading
is presented. A detailed description of the governing equations, constitutive models
and numerical algorithms are discussed in this section.

7.2.1 Governing Equation

The governing equations for compressible multiphase systems are solved in the
following form:

∂

∂t
(ρYk) + ∂

∂x j

(
ρu j Yk

) = ∂

∂x j

(−Jj,k
)+ .

ωk (7.1)
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∂

∂t
(ρui ) + ∂

∂x j

(
ρui u j − σi j

) = Mi (7.2)

∂

∂t
(ρE) + ∂

∂x j

[
u j
(
ρE − σi j

)] = ∂

∂x j

(−q j
)+ SE (7.3)

where ρ, ui , σi j , q j , and E are the density, velocity components, Cauchy stress
tensor, heat flux, and the specific total energy (kinetic and internal), respectively.
The subscript k is an index for identifying species in the multicomponent system. Yk ,
Jj,k , and

.
ωk are the mass fraction, diffusion mass flux, and the rate of production or

destruction of the mass of the kth species. The source terms Mi and SE account for
the exchange of momentum and energy between the different phases due to phase
change at the sharp interface. The Cauchy stress tensor σi j is decomposed into the
deviatoric τi j and dilatational part pδi j as,

σi j = −pδi j + τi j (7.4)

The definition of the deviatoric τi j and dilatational part pδi j changes with the
phase description. A detailed description of the constitutive models for different
phases is presented next.

7.2.2 Constitutive Models

Constitutive models for Solids
For the compressible flow of deformable solid materials, the dilatational part of the
stress, i.e., pressure in Eq. (7.4) is described using Mie–Gruneisen equation of state
(Meyers 1994) form as:

p(e, V ) = pc(V ) + �(V )
(e − ec(V ))

V
(7.5)

where V = 1/ρ is the specific volume, pc is the cold curve, and ec is the energy
along the isotherm and � is the Gruneisen parameter. For metals which feature in
the applications presented in the results section, such as nickel and aluminum, pc is
expressed as,

pc(V ) = ρ0c20η

1 − sη2
(7.6)

where η = 1 − V
V0
, ρ0 is the speed of sound, and s is the material parameter. The

values for the material parameters used in the current analysis are provided in the
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previous work (Sambasivan et al. 2013). The energy on the isotherm ec is obtained
as,

ec(V ) = e0 −
V∫

V0

pc(V )dV (7.7)

where e0 is the reference energy at 0 K (usually set to 0).
The deviatoric response of the solid materials (exhibiting elastoplastic behavior)

τi j is modeled using a hypo-elastic formulation where the rate of deviatoric stress
tensor τ̇i j is related to the rate of change of strain rate tensor Di j which is expressed
in terms of velocity components as,

Di j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
(7.8)

The response of elastoplastic materials to high intensity (shock/impact) loading
conditions are modeled by assuming the additive decomposition:

Di j = De
i j + D p

i j (7.9)

where De
i j and D p

i j are the elastic and plastic strain rate components, respectively, ui

and u j are the velocity components. Assuming isochoric plastic flow (tr(D p
i j ) = 0),

the volumetric or dilatational response is governed by an equation of state (Eq. 7.5)
while the deviatoric response follows the conventional theory of plasticity. Using
Eq. (7.10), the rate of change of deviatoric stress component can be modeled using
a hypo-elastic stress-strain relation:

τ
∧

i j = 2G
(

Di j − D p
i j

)
(7.10)

where G is the modulus of rigidity, τ
∧

i j is the Jaumann derivative, and Di j is the
deviatoric strain rate component.

The Jaumann derivative is used to ensure the objectivity of the stress tensor with
respect to rotation and expressed as,

τ
∧

i j = τ̇i j + τik
k j − 
ikτk j (7.11)

where 
i j is the spin tensor:


i j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
(7.12)

The deviatoric strain rate component in Eq. (7.10) is given by:
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Di j = Di j − 1

3
Dkkδi j (7.13)

The isochoric plastic strain rate component
(

D p
i j = D

p
i j

)
in Eq. (7.10) is modeled

assuming a coaxial flow theory (Drucker’s postulate) for strain hardening material
(Khan and Huang 1995):

D p
i j = ΛNi j (7.14)

where Ni j = τi j/
√

τklτkl is the outward normal to the yield surface and� is a positive
scalar factor called the consistency parameter (Ponthot 2002).

To update the stress state of the elastoplastic solid materials, first, an elastic
predictor step is performed by solving the stress equation,

∂

∂t

(
ρτi j

)+ ∂

∂x j

(
u jτi j

) = 2G
(
Di j
)+ 
ikτk j − τik
k j (7.15)

along with the conservation of mass, momentum, and energy equations (Eqs. 7.1–
7.3). After the elastic update, the plastic deformation of the material is incorporated
using the radial return algorithm given by Ponthot (2002), where the elastic stress is
brought back to the yield surface. The Johnson–Cookmodel defined the yield surface
as,

σY = [
A + B

(
ε̄ p
)n]
[
1 + C ln

( ˙̄ε p

˙̄ε p

)][
1 − θm

]
(7.16)

where σY is the yield stress, ε̄ p is the effective plastic strain, ˙̄ε p is the effective plastic
strain rate, A, B, C, n, m, and ˙̄ε p

0 are the model constants and θ = T −T0
Tm−T0

(T is the
temperature, T0 and Tm are the reference and melting temperature).

The details regarding the calculation of ε̄ p and ˙̄ε p from the radial return algorithm
is presented in the previous work (Sambasivan et al. 2013). The temperature T is
calculated as,

T = T0 + e − e0
CV

(7.17)

where e is the specific internal energy obtained from the energy equation (Eq. 7.3),
e0 is the reference energy, and CV is the specific heat at constant volume for the solid
material.

Constitutive models—for Liquids and Gas
For the liquid and gaseous phase, the dilatational part, i.e., pressure in Eq. (7.4) is
obtained based on the different equation of state models available in the literature.
Tait equation of state [ref] is used for water and liquid aluminum. Air and vapor are
modeled using the ideal gas equation of state. The JWL equation of state (Massoni
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Table 7.1 Initial conditions for the simulationof shock-induced combustionof an aluminumdroplet

ρ
(
kg/m3

)
P (Pa) u (m/s) T (K)

Pre-shocked air (x ≥ 8.64 m) 1.2 101,325.0 0.0 291.5

Post-shocked air (x < 8.64 m) 5.13 1431,216.0 225.91 966.5

Droplet 2030.0 181,582.8 0.0 2743.0

et al. 1999) is used for the gaseous mixture formed after decomposition of energetic
materials such asHMX.The expressions for the different equation of states are briefly
discussed below.

Tait equation of state for liquids:
The Tait EOS in the following form is used to obtain p in the liquid phase:

p = B

[(
ρ

ρ0

)N

− 1

]

+ A (7.18)

where A, B, N, and ρ0 are physical constants and depend on the material (Liu et al.
2005; Houim and Kuo 2013). The values of physical constants used in this work for
water and liquid aluminum are shown in Table 7.1.

JWL equation of state for reaction products for HMX:
The JWL equation of state is used for the reaction products obtained from the
decomposition of solid HMX:

p = A

[
1 − ωV0

V R1

]
exp(−R1V/V0) + B

[
1 − ωV0

V R2

]
exp(−R2V/V0) (7.19)

where V = 1/ρ is the specific volume, ω is the Gruneisen parameter, and A, B, R1,
and R2 are material parameters obtained from the work of Massoni et al. (1999).

For the liquid phase, the deviatoric or the viscous stress tensor in Eq. (7.4) is given
by:

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μ

∂u j

∂x j
δi j (7.20)

where μ is the viscosity of the liquid.
It is important to note that for the liquid and gas phases, the stress update equation

is not solved (unlike solids) and the deviatoric stress is obtained after solving the
mass, momentum, and the energy equations (Eqs. 7.1–7.3).

Constitutive models—Thermal and Species Diffusion
The heat fluxes due to thermal diffusion and species diffusion effects are obtained
from:
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qj =
N∑

k=1

Jj,khk − ∂(kT )

∂xj
(7.21)

where N is the total number of species in the gaseous phase. hk is the specific
enthalpy of kth,μ and k are the mixture averaged viscosity and thermal conductivity.

The diffusion mass flux
(
Jj,k
)
of the kth species is obtained from:

Jj,k = ρYkv j,k (7.22)

where v j,k is the diffusion velocity of the kth species along the j th direction. The
diffusion velocities are first calculated from:

v j,k
∧ = − Dk,mix

Xk

(
∂ Xk

∂x j
+ (Xk − Yk)

∂(ln p)

∂x j

)
(7.23)

where Xk is the mole fraction of the kth species. The mixture averaged diffusion
coefficient Dk,mix is obtained from binary diffusion coefficients Dkl using:

Dk,mix = 1 − Yk
∑N

l=1,k �=l Xl/Dkl

(7.24)

The diffusion velocities of the kth species are then corrected to ensure mass
conservation (Powell et al. 2001):

v j,k = v j,k
∧−

N∑

k=1

Ykv j,k
∧

(7.25)

The source term in the species transport Eq. (7.1),
.

ωk accounts for the vapor added
to the gaseous phase at the interface and the change in species concentration:

.
ωk = ω̇k,evap + ω̇k,react (7.26)

ω̇k,evap accounts the change in vapor mass fraction at the grid points near the droplet
surface due to evaporation and ω̇k,react accounts for the change in the mass fraction
of all the species involved in the chemical reaction.

ω̇k,evap is computed from the following equation:

ω̇k,evap =
{
0, for k = 1
ṁ ′′ Aint

V , for k = 2
(7.27)

where Aint is the area of the interface within a computational cell. V is the volume
occupied by the gaseous phase in a cell. Aint and V are computed using algorithms
described in Mousel (2012), Scardovelli and Zaleski (2000). ṁ ′′ is the evaporation
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mass flux at the gas–liquid interface and is computed from the Scharge-Knudsen
equation (Houim and Kuo 2013):

ṁ ′′ = 2C

2 − C

√
Mwk

2π Ru

(
Psat√

Tl
− Pv√

Tg

)

(7.28)

where

C =
{

1 −
(

ρg

ρl

) 1
3

}

exp

(

− 1

2
(
ρl/ρg

)1/3 − 2

)

where Ru is the universal gas constant and Mwk is the molecular weight of the kth
species.

For problems involving shock-induced chemical reactions, the source term ω̇k,react

in Eq. (7.26) is obtained using the Arrhenius-based chemical kinetic model. For
instance, energetic materials such as HMX can undergo decomposition depending
on the temperature rise. To model the chemical decomposition of HMX, a three
steps Arrhenius model given by Tarver et al. (1996) defines the ω̇k,react. Gas-phase
combustion of aluminum vapor in the air is modeled using a 11 equation reaction
model (Huang et al. 2009).

The source terms Mi represent the momentum exchange between the gas and the
liquid phase due to the phase change at the interface. Mi is calculated from:

Mi = ṁ ′′ Aint

V
ui (7.29)

The source term in the energy equation, SE , represents the total energy associated
with the phase changes and is calculated from:

SE =
N∑

k=1

ṁ ′′ Aint

V

⎡

⎣

⎛

⎝h f,k +
T∫

T o

C p,k(τ )dτ

⎞

⎠− Ru

Mwk
T

⎤

⎦ (7.30)

where h f,k is the specific enthalpy of formation of the kth species at the reference
state (T 0 = 298 K). Ck

p(T ) is the specific heat capacity at a constant pressure of the
kth species, at a temperature T. C p,k(T ) is a polynomial function of temperature T
in the absolute scale and taken from (Burcat’s Thermodynamic Data).

In the problems involving chemical reactions or phase changes, each of the Eule-
rian computation grid cells defines the mixture average pressure of the grid point,
i.e.:

p =
n∑

k=1

pk (7.31)



196 P. Das et al.

where pk is the partial pressure of the kth component of the gaseous mixture.
The average temperature (T ) of the mixture is obtained by solving the following

equation for total specific energy (E) of the system using the Newton-Raphson
method:

E(T ) =
n∑

k=1

⎡

⎣Yk

⎛

⎝h f,k +
T∫

T o

C p,k(τ )dτ

⎞

⎠− Ru

Mwk
T

⎤

⎦+ u2 + v2 + w2

2
(7.32)

7.2.3 Numerical Schemes

The numerical schemes to solve the system of equations described in Sects. 7.2.1 and
7.2.2 are briefly discussed in this section. Since there are different timescales involved
in thegoverning equations for convection, thermal, and species diffusion and reaction,
the numerical scheme for the governing equations is based on an operator splitting
algorithm. The splitting of the operators is decided based on the relative timescales of
the physical process which can be determined a priori using the material parameters
relevant for the physical processes. For instance, the species, momentum and thermal
diffusion coefficients can inform about the relative time scales. Depending on the
operators, the numerical schemes can vary.

The hyperbolic terms in the governing equations are first integrated using a
third-order Runge–Kutta (TVD-RK) (Gottlieb and Shu 1998) scheme to obtain an
intermediate solution state U* at the nth timestep:

U∗ = H�t
(
Un
)

(7.33)

where Un is the solution state at the end of the nth timestep. H�t () is the lin-
earized operator for integrating the hyperbolic terms in the governing equations. The
parabolic terms in the governing equations are integrated using the Runge–Kutta–
Chebyshev (RKC) explicit time integration scheme (Verwer et al. 2004) to obtain a
second intermediate state U∗∗ from U∗:

U∗∗ = P�t
(
U∗) (7.34)

where P�t () is the operator for integrating the parabolic terms.
Finally, the source terms are integrated using a fifth-order explicit Runge–Kutta–

Fehlberg scheme to obtain the solution at the n + 1th timestep:

Un+1 = S�t
(
U∗∗) (7.35)

The timestep size �t is from the CFL number:
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�t = CFL

[
�x

u + a

]

min
,where CFL ≤ 1 and a is the wave speed (7.36)

A third-order accurate ENO-LLF (Shu and Osher 1989) scheme is used for spatial
discretization of the hyperbolic terms in the governing equations. A fourth-order
accurate finite difference scheme (Das 2017) is used to discretize the parabolic terms.

7.2.4 Interface Tracking Using Levelsets

The levelset method (Osher and Sethian 1988; Sethian and Smereka 2003) is used
in this work to define the interface between the gaseous and the liquid phases. The
zero-levelset contour defines the location of the sharp interface between the liquid
and the gaseous phases. A narrow-band levelset field provides the signed normal
distance to the nominal interface from any point in a band around the sharp interface.
The levelset field is advected to capture the evolution of the interface as the flow
evolves in time:

∂φ

∂t
+ un · ∇φ = 0 (7.37)

where φ represents the levelset field. un is the normal velocity of the interface. The
levelset field is advected at the end of eachflow timestep to capture the evolution of the
gas–liquid interface. The third-order TVD-Runge–Kutta method is used to perform
the time integration. The fifth-order WENO scheme (Jiang and Shu 1996) is used for
spacial discretization of Eq. (7.37). The high-order discretization scheme maintains
the accuracy of the levelset advection and mitigates the mass-conservation error
caused by numerical diffusion. The levelset field is reinitialized (Sussman et al. 1994)
every five timesteps to ensure that it remains a signed distance function. The different
materials separated by the zero-levelset contours are coupled using a modified ghost
fluid method (GFM), which is described next.

7.2.5 Boundary Conditions at the Interface

The flow calculations in the different materials or phases separated by the sharp
interfaces are coupled through the appropriate boundary conditions. The boundary
conditions or the interfacial jump conditions depend on the materials separated by
the interface. The appropriate boundary conditions for different types of interfaces
are described in the following sub-sections.

Boundary treatment of solid–solid interfaces:
In problems where deformable solids interact with each other on parts of the inter-
face, continuity of normal stress components and the continuity of normal velocity
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components are enforced. No constraint is applied to the tangential components of
stress and velocity fields.

The velocity field and stress states are transformed in the local normal and
tangential directions at each grid points as,

un = |	un| = 	u.n̂ (7.38)

us = |	us | = 	u.ŝ (7.39)

where 	u is the velocity vector in the Cartesian coordinates, 	un and 	us are the normal
and tangential velocity vectors.

The total stress tensor in the normal and tangential coordinates is given by

σ̃ = Jσ J T (7.40)

where J =
(

nx ny

sx sy

)
is the Jacobian matrix and n̂ and ŝ are local normal and

tangential vectors defined at the interface.
The coupling of the normal component of stress and velocity and decoupling of

the tangential components ensures frictionless sliding between the materials. Thus,
at the interfaces:

[	u.n̂
] = 0 (7.41)

[̃σnn] = 0 (7.42)

[̃σns] = 0 (7.43)

[P] = 0 (7.44)

where σ̃nn and σ̃ns are the normal components of the stress tensor, P is pressure, and
	u is the velocity vector.

Boundary treatment of solid–void interfaces:
This type of interfacial condition arises whenever the deformable solid interface
interacts with a surrounding void, i.e., at a free surface. Conditions corresponding
to physically consistent wave reflection phenomena are enforced at all free surfaces.
Therefore, zero-traction conditions on the normal stress components are enforced on
those portions of the interface that are free surfaces, viz.:

σ̃nn = 0 (7.45)

σ̃ns = 0 (7.46)
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Boundary treatment of fluid–rigid solid interfaces:
Interfaces between fluid and rigid solids are encountered in the simulations of
particle-laden flows. In such calculations, the particles are assumed as rigid solids,
i.e., particle deformation is neglected, and a no-slip and no-penetration boundary
conditions are enforced at the fluid–rigid solid interfaces. A Dirichlet boundary con-
dition is applied for the velocity components in the fluid. The velocity of the fluid
at the interface is set to the velocity of the solid–fluid interface representing the
embedded rigid object (uI).

For pressure and density, Neumann boundary conditions are enforced at the solid–
fluid interface. The density boundary condition is as follows:

∂ρ

∂n
= 0 (7.47)

A normal force balance at the interface provides the pressure boundary condition:

∂p

∂n
= ρsu2

I,t

R
− ρsan (7.48)

where uI,t is the magnitude of the tangential component of velocity of the fluid at
the interface and an is the magnitude of the normal component of acceleration of the
solid–fluid interface (a�).
Boundary treatment of fluid-fluid interfaces:
Fluid–fluid interfaces are encountered in problems involving bubbles or droplets
suspended in a gas. The interactions of the gas and liquid at the interface are further
complicated by the effects of surface tension and phase change. The interaction of
the two fluids at the interface is described by the following jump conditions:

[un] = ṁ ′′
[
1

ρ

]
(7.49)

[p] = −γ κ − ṁ ′′[un] − [τnn] (7.50)

[τns] = −dγ

ds
(7.51)

[
q̇ ′′
cond

] = −ṁ ′′[h] + [τnnun] + [τnsus] (7.52)

where the operator [ ] represents:

[χ ] = χg − χl

χ is anyflowvariable of interest. The subscripts g and l represent the flowvariables
at the interface in the gaseous and the liquid phase, respectively. The subscripts n
and s represent the directions normal and tangential to the interface. γ is the local
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surface tension at the gas–liquid interface. κ is the local curvature at the interface
and is calculated from the levelset field (Sussman et al. 1994).

Equation (7.49) accounts for the jump in the normal velocity of the two phases at
the interface caused by vaporization or condensation. Equation (7.50) describes the
jump in pressure at the interface due to surface tension (−γ κ), vaporization (ṁ[un]),
and jump in the normal component of viscous stress (τnn). The jump in the tangential
components of the deviatoric stress tensor ([τns]) in Eq. (7.51) represents the effect
of Marangoni stresses at the interface. The jump in the heat flux

([
q̇ ′′
cond

])
is given by

Eq. (7.52). It accounts for the latent heat of evaporation (ṁ[h]) and the work done
by the viscous stresses ([σnnun], [σnsus]).

The above-mentioned jump conditions for the different types of interfaces are
implemented through the ghost fluid method to couple the flow fields of different
materials at the sharp interface. The implementation of the GFM for these different
types of boundary conditions is described in the following section.

7.2.6 The Ghost Fluid Method

The ghost fluid method is used to supply appropriate boundary conditions at the
sharp interface. The ghost fluid method was originally proposed by Fedkiw et al.
(1999). In GFM, extra few layers of computational cells, defined as ghost layers,
are added beyond the sharp-interface boundary for each phase. Figure 7.1 shows a
schematic of a computational grid with an embedded interface to demonstrate the
categorization of the computational points into the “bulk points” in the material and
the “ghost points” within the ghost layer around the interface. The number of ghost
layers depends on the stencil size and order of the discretization scheme. The ghost
points provide the boundary conditions for the flow calculations at the computational
cells of their corresponding phase near the interface. The “ghost layer” is populated
such that the appropriate boundary condition at the sharp interface is imposed. There
are two steps in populating the ghost points with the ghost values. In the first step,
first, the flow field near the interface is reconstructed from the data available at the
bulk points in the vicinity of the interface to estimate the flow variables near the
interface. In the second step, the flow variables near the interface obtained from the
reconstructed flow field are used to estimate the ghost value for any flow variables at
the ghost point such that the boundary condition/interfacial jump condition for that
variable at the interface is satisfied.

Estimation of the flow variables near the interface:
Flow variables near the interface are estimated to extend the flow field from the
bulk points to the ghost points. However, in the Cartesian grid-based sharp-interface
methods, the grid points often do not align with the location of the interface. There-
fore, to obtain the values of the flow variables near the interface, the flow field is
reconstructed along the interface normal direction.
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Fig. 7.1 Categorization of the computational cells

The numerical methods for obtaining the flow variables near the interface in the
current levelset-based framework is explained through the following example of a
typical ghost point with respect to material 1 IG in Fig. 7.2. The flow variables near
the interface are obtained by probing the material 1 at a distance 1.5�x from the
interface in the gaseous phase. To probe for values of the field variables, first, the
normal projection of IG on the interface, (point labeled I in Fig. 7.2) is obtained. The
location of I is obtained from the following equation:

XI = XI G − φI G ∗ nI G (7.53)

where φI G is the magnitude of the levelset field at the point G and nI G is the unit
vector normal to the interface computed at G from the levelset field (Sussman et al.
1998). X I and XI G are the locations of the points I and IG, respectively. Following
this, a probe is inserted in the material 1. The probe is 1.5�x away from the point I
on the interface. The location of the probe is given by the following equations:

XF = XI + 1.5�x ∗ nI G (7.54)

where XF is the position of the endpoint of the probe F. A convex hull is formed
around F using neighboring grid points in the vicinity, as shown in Fig. 7.2. The
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Fig. 7.2 Numerical method for reconstructing the flow field near the interface

flow variables, e.g., pressure (pF ), density (ρF ), and velocity (uF ) at F are obtained
using bilinear interpolation from values at the grid points forming the convex hull.
The field variables at F interpolated from the computational grid are extended to the
ghost point IG while imposing appropriate boundary conditions at the interface.

Calculation of the ghost values from the flow variables estimated near the interface
The ghost values of the flow variables at the ghost points are calculated from the
reconstructed flow field near the interface. The ghost values are computed such
that the appropriate boundary conditions/interfacial jump conditions are satisfied.
The boundary conditions depend on the type of interface. The numerical method
for implementing the appropriate boundary conditions for solid–solid, solid–void,
fluid–rigid solid, fluid–fluid, and solid–solid interfaces are described in the following
sub-sections.

Solid– solid interface
The interaction between twodeformable solids ismodeled by populating ghost values
that satisfy the continuity of normal velocity, pressure, and normal component of the
stress tensor as described in Sect. 7.2.5. The ghost point for material 1 in material 2,
i.e., the point IG, is populated with the following conditions for the field variables,
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The density field is supplied using a zero gradient, i.e., Neumann condition:

ρIG = ρF (7.55)

The continuity of pressure is enforced at the ghost node IG in material 2 by simply
injecting the node with the real value of the pressure in material 2 as,

pI G = preal
I G (7.56)

Similar to the pressure, the continuity of normal velocity is applied by initializing
the normal component of the velocity vector with the real value (from material 2) of
the normal velocity component at node IG:

un,I G = ureal
n,I G (7.57)

The tangential velocity component at IG is extended using the zero-gradient
condition,

us,I G = ut,F (7.58)

The stress tensor at the ghost node IG is reconstructed by enforcing the zero-
gradient condition for the tangential components and continuity of normal stress
components,

σ̃I G =
(

σ̃ real
ns σ̃ real

ns

σ̃ real
ns σ̃ss,F

)
(7.59)

Solid–void interface:
For the solid–void interface, conditions corresponding to the physically correct wave
reflections are enforced. For instance, at the free surface, a compressive wave is
reflected back as a tensile wave and vice versa. Therefore, zero-traction conditions
for the normal stress components are enforced. The other field variables, i.e., density
and velocity components are initialized with the zero-gradient conditions.

The field variables at the ghost node, IG for the solid–void interface is populated
as,

ρI G = ρF (7.60)

un,I G = un,F (7.61)

us,I G = us,F (7.62)

pI G = pF (7.63)
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The zero-traction conditions, i.e., zero value of the normal stress components at
the interface are applied at the ghost node IG,

σ̃I G =
(−σ̃nn,F −σ̃nn,F

−σ̃nn,F σ̃ss,F

)
(7.64)

Fluid–rigid solid interface:
The no-slip boundary condition is applied at the fluid–rigid solid interface. The ghost
values for the flow variables at a typical ghost point IG (Fig. 7.2) for a fluid–rigid
solid interface are described in this section. A Neumann boundary condition for the
pressure and density are imposed at the interface by setting

pI G = pF (7.65)

and

ρI G = ρF (7.66)

where ρI G and ρI G are the ghost values of pressure and density at the ghost point IG.
A no-slip boundary conditions for velocity is used. For that uF is first decomposed
into the components normal and tangent to the interface, as given below:

(
un,F
us,F

)
=
[

nx ny

ny −nx

](
u
v

)
(7.67)

where un,F and us,F are the components of uF along the normal and the tangential
direction of the interface. u and v are the components of uF along the x- and y-
axis, respectively. nx and ny are the x and y components of nIG , respectively. The
ghost values of the velocity components at IG

(
un,I G, us,I G

)
are calculated from the

velocity of the gaseous phase and the velocity of the solid–gas interface using linear
interpolation, as follows:

un,I G = un,I (φI G + 1.5�x) − φI Gun,F

1.5�x
(7.68)

us,I G = us,I (φI G + 1.5�x) − φI Gus,F

1.5�x
(7.69)

where un,I and us,I are the components of velocity of the interface along the normal
and the tangential direction of the interface.

GFM treatment of the fluid–fluid interface:
Ghost values for the fluid–fluid interfaces are obtained such that Eqs. (7.49)–(7.52)
are satisfied. However, only satisfying Eqs. (7.49)–(7.52) while computing the ghost
values is not sufficient to ensure the coupling of the two phases at the interfaces. Equa-
tions (7.49)–(7.52) are coupled with a local 1D Riemann problem at the interface to
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allow the characteristics waves in the bulk material to travel across the interfaces.
However, solving Eqs. (7.49), (7.50), and (7.51) simultaneously in conjunction with
an interfacial Riemann problem is computationally expensive. To avoid this prob-
lem, the interfacial jump conditions are decoupled and solved separately during the
hyperbolic step and the parabolic step within an overall single flow timestep. The
following 1D local Riemann problem along with the following interfacial jump con-
ditions are solved to populate the ghost points before integrating the hyperbolic terms
in the governing equations:

[un] = ṁ ′′
[
1

ρ

]
(7.70)

[p] = −γ κ − ṁ ′′[un] (7.71)

The contributions from the parabolic terms for the two phases at the interface
are coupled by populating the ghost points such that the following interfacial jump
conditions are imposed at the interface:

[τnn] = 0 (7.72)

[τns] = −dγ

ds
(7.73)

[
q̇ ′′
cond

] = −ṁ ′′[h] + [τnnun] + [τnsus] (7.74)

The methods adopted to obtain the ghost values for the hyperbolic and the
parabolic steps are described in the following two sub-sections.

Treatment of interface for hyperbolic terms
An interfacial Riemann problem is solved to obtain p, ρ and un at the interfacial
ghost points. Figure 7.3 shows a schematic to illustrate the numerical method for
constructing a local 1D Riemann problem at a typical interfacial ghost point labeled
IG. A local Riemann problem normal to the interface is constructed at the ghost point
G. The initial conditions for the local Riemann problem are obtained from the flow
variables (ρ, un, p) in the gaseous

(
ρg, un,g, pg

)
and the liquid

(
ρl , un,l , pl

)
phases

near the interface.
A 1D Riemann problem is solved to obtain the intermediate (*) states from the

flow variables in the gaseous phase
(
ρg, un,g, pg

)
and the liquid phase

(
ρl, un,l , pl

)

at the interface. The intermediate (*) states are used as the ghost values at the ghost
points for each phase. In this formulation, the jumps in pressure and normal velocity
of the intermediate (*) states across the contact discontinuity given by the following
equations:

[
u∗

n

] = u∗
n,g − u∗

n,l = ṁ ′′
[
1

ρ

]
(7.75)
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Fig. 7.3 Schematic for computing the ghost values during the hyperbolic step of the multi-step
integration process

[
p∗] = p∗

g − p∗
l = −γ κ − ṁ ′′[un] (7.76)

are incorporated in the 1D Riemann problem. The Riemann problem takes the
following algebraic form:

fl
(

p∗
l , pl , ρl , un,l

)+ fg
(

p∗
g, pg, ρg, un,g

)+ un,g − un,l + [un] = 0 (7.77)

where

fg =

⎧
⎪⎨

⎪⎩

(
p∗

g − pg
)√ Ag

p∗
g−Bg

, when p∗
g > pg

2ag

γ−1

[(
p∗

g

pg

) γ−1
2γ − 1

]
, when p∗

g < pg
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Ag = 2

(γ + 1)ρg

Bg = γ − 1

γ + 1

(
Pg + B

)

ag =
√

γ Pg

ρg

and

fl =

⎧
⎪⎨

⎪⎩

(
p∗

l − pl
)√ Al

(p∗
l +B)−Bl

, when p∗
l > pl

2al
N−1

[(
p∗

l +B

pl+B

) N−1
2N − 1

]
, when p∗

l < pl

Al = 2

(N + 1)ρl

Bl = N − 1

N + 1

(
pl + B

)

al =
√

N ∗ (pl + B
)

ρl

B = B − A

The Newton-Raphson method is used to solve Eq. (7.77). ρ∗
g , ρ∗

l , u∗
n,g , and u∗

n,l
are obtained from the following equations:

ρ∗
g =

⎧
⎪⎪⎨

⎪⎪⎩

ρg

√
p∗

g
pg

+ γ−1
γ+1

γ−1
γ+1

p∗
g

pg
+1

, when p∗
g > pg

ρg

(
p∗

g

pg

) 1
γ

, when p∗
g < pg

(7.78)

ρ∗
l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρl

√√√√
p∗
l +B

pl +B
+ N−1

N+1

γ−1
γ+1

p∗
l +B

pl +B
+1

, when p∗
l > pl

ρl

(
p∗

l +B

pl+B

) 1
N
, when p∗

l < pl

(7.79)

u∗
g = ug + ul

2
+ fg − fl

2
+

ṁ ′′
[
1
ρ

]

2
(7.80)

u∗
l = ug + ul

2
+ fg − fl

2
−

ṁ ′′
[
1
ρ

]

2
(7.81)
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ρ∗
g , u∗

n,g , and p∗
g are obtained by solving the 1D interfacial Riemann problem at I

and are used as the ghost values for the gaseous phase. Similarly, ρ∗
l , u∗

n,l , and p∗
l ,

computed from the 1D interfacial Riemann problem are used as ghost values at the
interfacial ghost points with respect to the fluid phase. These ghost values for density,
velocity, and pressure at the interfacial ghost points are extrapolated to the interior
ghost points using a PDE-based multidimensional extrapolation approach (Meyers
1994).

The GFM for the parabolic terms
TheGFM treatment at the interface for the parabolic terms in the governing equations
is different from the hyperbolic terms. The ghost values for velocity and temperature
are calculated separately before integrating the parabolic terms in the governing
equation such that Eqs. (7.72)–(7.74) are satisfied.

Calculation of the velocity field in the ghost fluid region
The numerical method for computing the ghost values of velocity components for
coupling the parabolic terms at the interface is described in this section in the context
of a typical ghost point IG in Fig. 7.3. The ghost values of the velocity at IG are
obtained by solving Eqs. (7.72) and (7.73). which can be written in the following
forms:

[τnn] =
[
2μ

∂un

∂n
− 2

3
μ

(
∂un

∂n
+ ∂us

∂s

)]
= 0 (7.82)

[τns] =
[
μ

(
∂us

∂n
+ ∂un

∂s

)]
= −dγ

ds
(7.83)

where un and us are the components of velocities of the fluid phases along the
normal and the tangential direction of the interface calculated using Eq. (7.67).
The derivatives of un and us in Eqs. (7.82) and (7.83) can be approximated from
the reconstructed velocity field of the corresponding phases around the interface.
Now, the velocity of the two phases at the interface is not readily available because
the Cartesian grid does not align with the interface. The velocity of the fluids at
the interface can be obtained solving Eqs. (7.82) and (7.83) along with the jump
conditions for the velocity field at the interface given by the following equations:

un,I,g − un,I,l = [
un,I

] = ṁ ′′
[
1

ρ

]
(7.84)

us,I,g − us,I,l = [
us,I

]
(7.85)

where un,I and us,I are the components uI along the normal and the tangential direc-
tion of the interface.un,I,g and us,I,g are the velocity components of the gaseous phase
along n and s at the point I in Fig. 7.3. un,I,l and us,I,l are the velocity components
of the liquid phase along n and s at the point I.

The ghost values of the velocity at IG
(
uI G |ghost

)
are extrapolated from the velocity

of the gaseous phase at the interface
(
uI,g

)
and the point G (uG), so that:
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uI G |ghost = uI,g(φI G + 1.5�x) − φI GuG

1.5�x
(7.86)

Similarly, the velocity at the ghost points with respect to the liquid phase can also
be calculated by solving Eqs. (7.82)–(7.85).

Calculation of the temperature field in the ghost fluid region:
The ghost value for the temperature at IG is calculated such that the jump condition
in the heat flux given by Eq. (7.74) is satisfied. The jump in heat flux between the
gaseous and the liquid phase is cast in the following form:

−kg
∂T

∂n

∣∣
∣∣
g

+ kl
∂T

∂n

∣∣
∣∣
l

= [
q̇ ′′
cond

]
(7.87)

where kg and kl are the thermal conductivity of the gas and the liquid, respectively,
at the interface.

(
∂T
∂n

)
g
and

(
∂T
∂n

)
l
are the thermal gradients in the gaseous and the

liquid phase at the interface, in the direction normal to the interface. For a typical
ghost point IG, shown in Fig. 7.3a,

(
∂T
∂n

)
g
and

(
∂T
∂n

)
l
are estimated from the following

relations:

∂T

∂n

∣∣
∣∣
g

= TG − TI,g

1.5�x
(7.88)

∂T

∂n

∣∣∣
∣
l

= −TL − TI,l

1.5�x
(7.89)

where TG and TL are the temperature at the points G and L in Fig. 7.3a. Similar to the
velocity components, TG and TL are estimated from the temperature at the nearest
four grid points using bilinear interpolation. TI,g and TI,l are the temperature of the
gaseous and liquid phases, respectively, at the interface. The jump in temperature at
the interface is given by:

TI,g − TI,l = [TI ] (7.90)

In this work, the temperature is assumed to be continuous at the interface.
Therefore, [TI ] = 0.

Equations (7.88) and (7.89) are substituted in Eq. (7.87) to obtain:

−kg
TG − TI,g

1.5�x
− kl

TL − TI,l

1.5�x
= [

q̇ ′′
cond

]
(7.91)

Equations (7.90) and (7.91) are solved to obtain TI,g and TI,l as given below:

TI,g = kgTG + kl TL + kl[TI ] + 1.5�x
[
q̇ ′′
cond

]

kg + kl
(7.92)
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TI,l = kgTG + kl TL − kg[TI ] + 1.5�x
[
q̇ ′′
cond

]

kg + kl
(7.93)

Once TI,g and TI,l are obtained, the ghost value of the temperature at IG, TG |ghost,
is obtained by linear extrapolation:

TI G |ghost = TI,g(φI G + 1.5�x) − φI G TG

1.5�x
(7.94)

Further detail of the current GFM can be found in Das and UdayKumar (2019).

7.3 Results and Discussion

The above numerical framework has been validated against several benchmark exper-
imental and numerical studies in the previous work (Sambasivan and UdayKumar
2009; Shiv Kumar and UdayKumar 2009; Das 2017; Das et al. 2018a, b). In this
section, we demonstrate the extent of the capabilities of the current sharp-interface
methods in solving high-speed multi-material flow problems through the follow-
ing numerical example involving fluid–solid, fluid–fluid, solid–solid, and solid–void
interfaces.

7.3.1 Fluid–Rigid Solid Interface: Shock-Induced
Lift-off of a Rigid Cylinder in a Shock Tube

A numerical study of shock-induced lift-off of a rigid cylinder is performed using
the current method (Das 2017). The trajectory of the center of the cylinder calculated
from the current calculations is compared with a benchmark result. The length of
the computational domain is selected as the reference length scale and is taken to
be 1.0. The height of the domain is 0.2 and the diameter of the cylinder is 0.1 non-
dimensional units. The cylinder center is initially at (0.15, 0.05), i.e., the cylinder is
placed close to the bottom wall of the shock tube. The non-dimensional values of
the pressure and density of the un-shocked fluid are 1.4 and 1, respectively. The non-
dimensionalized density of the cylinder is 10.77. The Reynolds number calculated
based on the flow conditions behind the traveling shock wave is 240. A shock wave
of Ma = 3.0 is located initially at x = 0.08 and is allowed to evolve until time t
= 0.3 s. A reflective boundary condition is applied at the top and the bottom edges
of the computation domain. Neumann boundary condition is applied at the east and
the west edges of the computation domain. In this study, a uniform Cartesian grid is
used. Five different grid resolutions are considered, corresponding to 50, 100, 150,
200, and 400 points across diameter for the grid convergence study. The numerical
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Schlieren plots presented in Fig. 7.4 are obtained from themeshwith a grid resolution
of 200 points across the diameter of the cylinder.

The numerical Schlieren fields computed at different time instances (t = 0.0, 0.1,
0.3 s) are shown in Fig. 7.4. As the flow evolves, the incident shock interacts with the
cylinder and reflects from the cylinder surface. The reflected shock travels outward
from the cylinder surface and interactswith the bottomwall. The shockwave reflected
from the bottom wall of the computational domain interacts with the cylinder again,
producing a non-zero lift on the cylinder. The non-zero lift causes the cylinder to
move up from the bottom edge of the computational domain. The locus of the center
of the moving cylinder is compared with the benchmark results (Shiv Kumar and
UdayKumar 2009; Meyers 1994) in Fig. 7.5. The trajectory of the cylinder center
obtained from the current study is in good agreement with the results of previous
studies. It is also observed that the lift-off height of the cylinder is somewhat lower
in the current viscous flow simulation, i.e., viscous effects suppress the lift-off of the

a)

b)

c)

Fig. 7.4 Shock-induced (Ms = 3.0) lift-off of a rigid cylinder in shock tube
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Fig. 7.5 a Locus of the center of the rigid cylinder during the shock-induced lift-off. b The
decreasing L2 error in the locus of the cylinder with grid refinement

cylinder. This effect is modest in the present case since the length over which the
lift-off occurs is small. Thus, although the flow features differ noticeably between the
viscous and inviscid cases, the differences in the particle motion are not significant
for the current cylinder lift-off problem, at least for the duration of the simulation
(Fig. 7.5).

A convergence study is performed for the above moving boundary problem; the
convergence evaluation is based on the errors in tracking the locus of the cylinder
center. The L2 error in the locus of the cylinder is computed from:

ε =

√√√√√
√

∫T
0

(
xfine grid

ci − xCoarse grid
ci

)2
dt

∫T
0

(
xfine grid

ci

)2
dt

(7.95)

The error is seen to monotonically decrease with grid refinement in Fig. 7.5a.
Results obtained from the simulation of cylinder lift-off caused by shock impinge-

ment in a shock tube show that the current GFM is adequate for viscous simulations
of moving boundary problems in supersonic flow.

7.3.2 Fluid–Rigid Solid Interactions: Mach 5 Shock
Interaction with a Cluster of Particles

A resolved simulation of shock interaction with a cluster of randomly arranged
cylindrical particles is demonstrated. In this simulation, the shock Mach number
(Ms) is 5. A cluster of 62 randomly arranged aluminum particles of uniform diameter
is used in this simulation. The volume fraction (φ) of the particles in the cluster is
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5%. Reynolds number of the post-shock incoming flow with respect to each particle
(ReD) is 1000.

A uniform Cartesian grid used in the current calculation. The solid–fluid inter-
faces of the particles are tracked sharply using the current levelset-based approach.
No-slip boundary condition is applied at the interface. The particles in this calcula-
tion are resolved using 100 mesh points across the diameter to capture the viscous
boundary layer on the particles. The diameter of the particles (D) is selected as the
characteristic length scale in this calculation. The initial configuration of the par-
ticle cloud immersed in a quiescent fluid is shown in Fig. 7.6a. Outflow boundary
conditions are applied on all sides of the computational domain.

The sequence of numerical Schlieren in Fig. 7.6a–c shows the evolution of the
unsteady flow field and the intricate shock structures during the interaction of incom-
ing shock waves with the particles. As the incident shock interacts with the particle
cluster, the reflections of the incident shock from the front row of the particles coa-
lesce to form an effectively planar reflected shock, as seen in Fig. 7.6b, c. A part of
the incident shock is also transmitted through the cluster of particles. The reflected
and transmitted shock waves are seen in Fig. 7.6c. The transmitted shock loses its
strength as it travels through the cluster of particles. The attenuation of the strength
of the transmitted shock wave has been observed previously by Chaudhury et al.
(2013).

As the transmitted shock wave propagates through the cluster, multiple internal
reflections of the shocks lead to an unsteady flow field. The vorticity contour plot
of the shocked flow field at t ∗ Us

D = 57.0 in Fig. 7.7 exhibits this unsteadiness.
Baroclinic vortices generated in the slip lines combine with wake vortices caused by
separated shear layers form the coherent structures observed in the vorticity contour
plot. Vorticity concentrations are also seen in inviscid flow calculations of shocks
traversing particle clusters (Das 2017; Regele et al. 2014). In the present case, viscous
effects augment the inviscid vorticity generation mechanisms leading to increased
magnitudes of vorticity in the cluster (Das 2017).

Significant movement of the particles during the interaction with the incoming
shock wave is not observed in the current simulation. This is because the timescale
of the current simulation is significantly smaller than the timescale of the movement
of the particles (Das 2017; Mehta et al. 2016). However, it is worth mentioning that
the particle cluster gets compressed inhomogeneously during the interaction with the
shock. The sequence of numerical Schlieren in Fig. 7.7 shows that the displacement of
the particles in the downstreampart of the cloud is less than the particles in the front of
the cloud. As the shock passes over the cloud, the particles located at the leading edge
begin to equilibrate with the flow even before the shock has reached the downstream
end of the cloud. Owing to this, the particles at the front-end start moving before
the shock reaches the trailing end of the cloud. This leads to enhanced clustering
at the leading edge of the cloud, i.e., the local volume fraction of the particles at
the front-end of the cloud becomes higher relative to the rear-end. Therefore, even
within the short period of the shock passage, movement of the particles changes the
local solid volume fraction in the cloud.
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a)

b)

c)

Fig. 7.6 Mach 5 shock interaction with a cluster of 62 rigid cylindrical particles
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Fig. 7.7 Vorticity contours during Mach 5 shock interaction with a cluster of particles of 10%
volume fraction

The results obtained from the current simulation show that the levelset-based
approach in conjunction with the current GFM can capture the intricate features of
theflowfields, such as the viscous boundary layer over the particles and themovement
of the particles due to shock interaction. The current results and the previous studies
(Khan and Huang 1995; Massoni et al. 1999; Houim and Kuo 2013) have shown that
the current levelset-based approach is suitable for studying shock interaction with
particle clouds through resolved simulations.

7.3.3 Gas–Liquid Interfaces: Mach 3.5 Shock Interaction
with an Aluminum Droplet

The shock-induced combustion of a cylindrical droplet is studied using the current
levelset-based sharp-interface method. For this study, the interaction of a Mach 3.5
shock wave with a cylindrical aluminum droplet of 4 µm in diameter is simulated.
The initial computational setup for the simulation is shown in Fig. 7.8. Reflective

Fig. 7.8 Initial condition for
2D simulation of Mach 3.5
shock interaction with an
aluminum droplet of 4
micron in diameter
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boundary conditions are used at the north and the south boundaries of the compu-
tational domain. An outflow boundary condition is used at the east and the west
boundaries. The initial conditions for the simulation are as in Table 7.1.

The vaporization of the aluminum droplet at the surface and the combustion
of the evaporated aluminum in the air are modeled in this calculation. An 11-step
reduced-order reaction model for aluminum combustion in the air is used for this
current calculation (Huang et al. 2009). The material properties for the gas and the
liquid phases such as viscosity, thermal conductivity, and surface tension used in
the current simulation can be found in Houim (2011). With the given values for the
material properties and the flow conditions, the non-dimensional numbers are ReD =
1000 and WeD = 31.56. The grid resolution of 200 mesh points across the diameter
is used for this study.

The interaction of Mach 3.5 shock with the aluminum droplet is shown through
multiple snapshots of numerical Schlieren and pressure contours in Fig. 7.9. The
initial interaction of the incident shockwith the droplet is demonstrated inFig. 7.9a–c.
The high temperature and the impulsive vaporization of themolten aluminum droplet
initiate a shock wave at the droplet surface as seen in Fig. 7.9a. The interaction of
the incident shock with the gas–liquid interface produces a reflected shock in the gas
and a transmitted shock in the liquid. The reflected and transmitted waves are seen
in Fig. 7.9a. The transmitted wave travels faster through the liquid than the incident
wave in the air as the speed of sound is higher in the liquid than in air. The transmitted
shock wave travels further through the droplet and reaches the gas–liquid interface
at the leeward side of the droplet, as shown in Fig. 7.9b. Figure 7.9c shows that the
transmitted wave reflects back from the interface at the leeward end into the droplet
as a strong expansion wave. Therefore, the numerical Schlieren and the pressure
contours in Fig. 7.9a–c demonstrate that the physical behavior of nonlinear wave
interaction with the gas–liquid interface is captured by the current sharp-interface
method. The higher pressure observedwithin the droplet is due to the effect of surface
tension. This shows that the current GFM incorporates the effects of surface tension
while accurately propagating the characteristic waves from one medium to another
at the interface.

Figure 7.9d, e show, as the flow evolves further, the shock wave travels past the
droplet and the droplet starts to deform. The vaporized aluminum accumulated in the
wake starts to react with air in the wake of the droplet. The chemical reaction induces
strong unsteadiness and asymmetry in the wake even at the low ReD . The contours
of temperature and the species mass fractions are shown in Fig. 7.10. Figure 7.10a
shows that an unsteady diffusion flame forms in the wake of the droplet. The highest
temperature occurs in the shear layers, close to the boundary layer detachment points
behind the droplets. This is because of the high concentration of the aluminum
vapor in the shear layer behind the droplets, as seen in Fig. 7.10b. The aluminum
vapor generated at the front side droplet surface is mostly contained within the
thin boundary layer on the droplet surface. As the boundary layer detaches from
the surface at the leeward side of the droplet, the aluminum vapor accumulated in
the boundary layer flows into the post-detachment shear layer. However, Fig. 7.10b
shows that there in a very little amount of aluminum vapor in the recirculation region
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a)

b)

c)

d)

e) 

Fig. 7.9 Sequence of contour plot obtained from the simulation of Mach 3.5 shock interacting
with and aluminum droplet (Red = 1000). The left column shows the numerical schlieren images.
Pressure contours are shown in the right column
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Fig. 7.10 Contours of temperature (a) and mass fractions of aluminum vapor (b), Al2O2 (c), and
Al2O3 (d) during the Mach 3.5 shock-induced combustion of an aluminum droplet

behind the droplet. This is due to the fact that most of the evaporated aluminum gets
oxidized in the shear layer. The evaporated aluminum in the shear layer reacts with
the oxygen in the freestream and the high-temperature diffusion flame is formed.
The combustion products such as Al2O2 and Al2O3 flow into the recirculation region
behind the droplets. Figure 7.10c, d shows the accumulations of the combustion
products within the recirculation bubble.

The results presented in this section show that the current sharp-interface method
coupled with the compressible reacting flow solver successfully resolves the nuances
of droplet combustion in a shocked flow. The current GFM allows the characteristic
waves to travel across the gas–liquid interfaces without generating numerical arti-
facts. The effects of surface tension and vaporization at the liquid surface are also
incorporated using the current sharp-interface method. The reacting flow simulation
shows that the current method is suitable for interface-resolved simulation of droplet
combustion in shocked flows.

7.3.4 Solid–Void Interactions: Reactive Pore Collapse
in HMX Under 1000 m/s Shock Load

The capability of the current framework to handle shock-induced chemical reaction
is analyzed by studying the initiation and growth of reaction in a porous energetic
material, HMX. In porous energetic materials, the collapse of pores under shock
load leads to the formation of localized heated regions called hotspots (Field John
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Fig. 7.11 Cylindrical void of diameter 10 µm embedded in the HMX domain of size 45 × 45 µm
shock load is applied as a velocity boundary condition in the form of a pulse of duration 3 ns. The
east, south, and north faces of the domain are supplied with outlet boundary condition

1992). Depending on the temperature and size of the hotspot, chemical reactions
can initiate and grow in the material. To understand the behavior of hotspots in
porous HMX, reactive pore collapse simulations are performed for a 10µmdiameter
pore impacted under a sustained shock of particle speed, 1000 m/s as shown in
Fig. 7.11. Shock load is applied from the west face of the domain boundary. The east,
north, and south boundaries are supplied with zero-gradient boundary conditions.
The reaction initiation in the hotspot is modeled using Arrhenius kinetics-based
three steps decomposition mechanism proposed by Tarver et al. (1996). The reaction
initiation in the hotspot region leads to the decomposition of solid HMX to gaseous
reaction products. To define the mixture pressure, the Birch–Murnaghan equation of
state is used for the HMX and JWL equation of state is implemented for the final
gaseous products.

Figure 7.12 shows the temperature and mass fraction of the final gaseous species
contours obtained from the reactive pore collapse analysis. Figure 7.12c, d shows
that material jet impact forms near the pore interface and leads to the formation of
the blast wave along with the symmetrical secondary lobes. The blast wave leads to
the collapse of the secondary lobes is seen in Fig. 7.12f. The temperature at the lobe
collapse locations is high enough to initiate the chemical reaction (Fig. 7.12f). As
the collapse of the secondary lobes progresses, a further rise in temperature takes
place which is also augmented by energy released because of chemical reactions.
Eventually, the complete collapse of the secondary lobes takes place and ignites the
HMXmaterial at the secondary lobe locations. The reaction zone grows from the lobe
collapse locations to its surrounding under the combined influence of convection and
diffusion. It is interesting to note that for the applied shock, the rise in the temperature
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(a) Temperature (K) at t (b) Final species mass fraction at t 

(c) Temperature (K) at t 

(e) Temperature (K) at t 

(g) Temperature (K) at t 

(d) Final species mass fraction at t 

(f) Final species mass fraction at t 

(h) Final species mass fraction at t 

Fig. 7.12 Contour plots of temperature and mass fraction of the final species at different instances
of time for reactive single void collapse analysis under shock loading of 1000 m/s. The grid size
for the current simulation corresponds to 700 grid points across the void diameter of 10 µm
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because of the initial jet impact is not enough to initiate the reaction. Instead, reaction
initiates at the offset locations where secondary lobes are collapsed.

The current analysis shows the numerical framework can predict the initiation
and growth of chemical reaction in porous energetic materials.

7.3.5 Solid–Solid Interactions: Shock Compaction
of Metallic Particles Mixture

To demonstrate the ability of the current framework to handle compaction of large
clusters of particles, shock compaction of Ni/Al metallic mixtures is performed.
The numerical setup consists of a collection of spherical particles (Al-Ni mixture)
impacted by a copper flyer plate at the velocity of 1 km/s. The volume fraction
of particles is 60%, with the rest being void space. The particles have a diameter
of 20 µm and a frictionless contact is imposed at the interface. The computational
domain is 200 × 200 µm. The north and south domain boundaries are frictionless
walls. The copper plate is modeled as a piston that extends indefinitely to the left.
Thus, the west boundary ismodeledwith a constant velocity of 1 km/s. Themesh size
is set to have 50 grid cells across the diameter of a particle. Each particle interface is
modeled by a separate levelset function to allow for full contact-separation treatment
(Rai et al. 2014). Frictionless contact (sliding) condition is imposed between all
particles.

Figure 7.13 shows the density and temperature profiles at time t = 40 ns, t = 70 n,
and t = 90 ns. As seen in the figure, the Al particles undergo more deformation than
the Ni particles. The nickel particles tend to form clusters. This preferential flow
of Al through the Ni matrix and the clustering of Ni are observed in experiments
(Eakins and Thadhani 2008) as well as in other simulations (Eakins and Thadhani
2008). As can be observed, the focused flows of aluminum pinched between other
particles create jets of material with localized high temperature and velocity. The
flows cause the formation of small breakaway particulate material that detaches from
their original particle, as observed in previous simulations using CTH (Eakins and
Thadhani 2008). The particle fragments are at high temperature and can be ejected
from compacted particles with high velocity.

Vortex flows are also observed in our calculations, as in other experimental and
simulation work (Nesterenko et al. 1994; Tamura andHorie 1998). A detailed view at
time t = 74 ns is presented in Fig. 7.14. Aluminum particles form a focused flow that
encounters nickel particles. The aluminum ismelted and swirls around a void forming
a vortex pattern. This vortex is mostly composed of aluminum; the deformability of
globular Ni is too low to effectively mix with Al in this vortex, which explains the
inertness of Ni-Al mixtures (Eakins and Thadhani 2009). Thus, despite the high
mixing of the particles in such vortical flows, in mixtures with large differences in
deformability (such as in Ni-Al systems), vortical flows do not contribute to the
triggering of the chemical reaction. The compaction of spherical-shaped particles
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Fig. 7.13 Density and temperature fields for a Ni/Al mixture impacted by a copper flyer plate at
1 km/s at time t = 40 ns, t = 70 ns, and t = 90 ns

was found to present less contact area and mass mixing between aluminum and
nickel particles, and thus to be less sensitive to shock-initiated chemical reaction
(Eakins and Thadhani 2008). Flake Ni particles mixed with Al were found to yield
more intimate mixing (Eakins and Thadhani 2006). Thus, particle morphology plays
a significant role in initiating reactions.

Therefore, the current analysis shows that the current Eulerian framework can
efficiently handle contact and impact situation leading to the large deformation of
deformable solids that exhibit elastoplastic behavior under shock loading.
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Fig. 7.14 Density and temperature fields for a Ni/Al mixture impacted by a copper flyer plate at
1 km/s at time t = 74 ns. Detail of the particle compaction

7.4 Conclusions

A versatile sharp-interface Eulerian method is presented for the interface-resolved
simulations of high-speed multi-material flows. The levelset method is used to track
the large deformation of the material interfaces. A modified ghost fluid method is
used to supply the appropriate boundary conditions to the corresponding materials
at the interfaces. The current method allows for a broad-range of high-speed multi-
material flow problems involving interactions between solid and fluid phases in a
generic Cartesian grid-based Eulerian framework.

The generality of the current framework is owing to the hyperbolic nature of
the governing equations and the sharp-interface method for capturing the complex
interfacial dynamics. The hypo-elasticmodel for stress-train relations under the high-
strain rate assumptions allows us to cast the governing equations for solidmaterials in
an Eulerian framework. Therefore, a unified Eulerian framework is used for solving
the governing equation for both solid and fluid phases under high-speed conditions.

The multi-material interfaces embedded in the fixed Eulerian grid are tracked
sharply using levelset methods. The levelset method allows us to track extreme topo-
logical changes in the material interfaces with ease and robustness. The simulations
presented in the results section demonstrate that the levelset method can be used to
track extreme deformation of multiple closed interfaces within a single simulation.
The levelset-based sharp-interface tracking coupled with current GFM is used to
couple the field variables of different materials at the interfaces accurately. Different
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interfacial flow phenomenon such as nonlinear wave interaction with the interfaces,
the effects of phase change and surface tension at the interface are modeled using the
current GFM. The current GFM is suitable for imposing the appropriate boundary
conditions at the interfaces separating different materials and/or phases.

The capability of the current framework to handle large deformation, phase
change, and chemical reactions is demonstrated using a wide variety of prob-
lems involving high-speed multi-material interactions between the solid, liquid, and
gaseous phases. The interactions of rigid solid–fluid, fluid–fluid, and deformable
solid–void interfaces are demonstrated through three different problems in the results
section, i.e., shock-induced lift-off a rigid cylinder and combustion of aluminum
droplet under aMach 3.5 shock, and pore collapse-induced reaction initiation in ener-
getic materials under shock load. Shock interactions with multi-material interfaces
are captured accurately in the current method. The simulation of shock interactions
with an aluminum droplet demonstrates that the current Riemann solver-based GFM
allows the nonlinear wave to travel across the gas–liquid interfaces without incurring
any artificial numerical artifact. The sharp-interface multiphase framework is shown
to efficiently handle the large deformation involved in the collapse of the pore in
HMX to form hotspot. The multiphase framework allows to track the reaction ini-
tiation and expansion of the reaction products from the hotspots to the surrounding
involving the decomposition of solid HMX. Therefore, the three problems demon-
strate the robustness of the sharp-interface multiphase framework to handle large
deformation, phase change, and chemical reactions in wide variety of materials.

The robustness and efficiency of the current framework to handle process scale
simulations are demonstrated by solving two problems involvingmany particles, i.e.,
shock interaction of cluster of rigid particles and the compaction of Ni/Al metallic
powder under shock load. Each particle is defined using the narrow-band levelset
approach. The simulations of shock interaction of particle cluster demonstrate the
capabilities of the current numerical method to perform resolved simulations of
particle-laden flows. The current method is used in Das et al. (2018) to develop sur-
rogate models for drag on particles in shocked flows from resolved 3D simulations.
In the simulation of shock-induced compaction of Ni/Al powder, the definition of
the particles using different levelsets allows to model the physics governing the com-
paction between the Ni/Al particles accurately. The sharp-interface tracking of the
particles is shown to handle the localized extreme deformation situations efficiently
that arise during the compaction of the metallic powder bed. Therefore, these sim-
ulations demonstrate the capability of the current framework to perform large scale
simulations relevant to real-world engineering applications.
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Chapter 8
Development and Application
of Immersed Boundary Methods
for Compressible Flows

Santanu Ghosh and Anand Bharadwaj S

8.1 Introduction

The advent of immersed boundary methods can be traced back to the work of
Peskin (1972), which was devised for the simulation of blood flow through the
mitral valves in the heart. The initial formulation of the method was used for solv-
ing the incompressible Navier–Stokes equations past immersed objects, which were
treated as elastic massless and volumeless entities, and geometrically rendered as a
set of connected line segments. The effect of the embedded or immersed boundary
was introduced as a singular body force in the Navier–Stokes equation. The forces
were calculated by determining the deformation of the elastic immersed boundary
and using Hookes’ law. The deformation of the immersed boundary, from an ini-
tial undeformed state, happens as the immersed boundary is made to obey a no-slip
condition. Both the application of the no-slip constraint on the immersed boundary
and the distribution of the body force in the neighbouring fluid nodes of the im-
mersed boundary made use of semi-discrete Dirac delta functions. In addition to
the constraint that the immersed object needed to have elastic boundaries, another
drawback of this approach was that the immersed interface ‘appeared’ effectively
smeared to the rest of the flow—an effect of spreading of the boundary force over
multiple grid nodes, which is why these methods are also known as diffuse inter-
face methods. The next two decades witnessed advances in the development and
application of the immersed boundary approach; notable among these was the exten-
sion of Peskin’s method by Goldstein et al. (1993) for simulating flow past almost
rigid immersed boundaries. Goldstein’s method employed feedback forcing where
the forcing function was given by f (xs, t) = α

∫ t
0 U (xs, t′)dt′ + βU (xs, t′), where α
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and β are tunable parameters, and U (xs, t′) is the velocity of the embedded surface.
This method was applied to simulate turbulent flow in ribbed channels. However,
the method suffered from a severe constraint in the allowable time step for stable
integration of the solution, which made its use somewhat impractical. Fadlun et al.
(2000) employed a method of direct forcing, unlike the continuous forcing employed
by Peskin (1972), and Goldstein et al. (1993), that did not suffer from the time step
restriction of Goldstein’s method and was used to simulate the turbulent flow in an
IC piston/cylinder assembly. This method did not need require an explicit addition
of the forcing term in the momentum equation, but relied on the reconstruction of the
velocity field in the neighbourhood of the immersed surface using interpolations, that
implicitly made the solution obey the no-slip boundary condition at the immersed
surface.

Subsequently, a lot of work has been done in the development of sharp-interface
immersed boundary methods for incompressible flows. These methods primarily
differed in their mode of solution reconstruction—with some methods adopting re-
construction at the fluid nodes in the immediate neighbourhood (outside) of the
immersed surface (Yang and Balaras 2006; Choi et al. 2007), while other methods
(Tseng and Ferziger 2003) relied on a ghost cell approach.

In contrast, immersed boundary methods for compressible flows have been de-
veloped more recently. The earliest work involving immersed boundary method for
compressible flow applications was published by De Palma et al. (2006). In this
work, they employed the direct-forcing approach of Fadlun et al. (2000) for the re-
construction of the flow variables. Their formulation was designed to solve flow at
all speeds, for which they used preconditioning of the pseudo-time-derivative. The
turbulence model used in their work was the k − ω model of Wilcox (1994). They
presented results, which included contour plots, surface pressure coefficients and
integrated drag coefficients, for a wide range of test cases. The results compared
well with values reported in literature and computations on body-fitted grids done
as part of their work. Ghias et al. (2007) subsequently developed a ghost-cell-based
IB approach for subsonic compressible flows. In this particular study, the authors
presented 2D and 3D flow simulations using their immersed boundary approach for
flow past stationary objects. The method resulted in sharp resolution of interfaces
and could be used for both Cartesian and general curvilinear mesh topologies. In the
same year, de Tullio et al. (2007) presented a Cartesian grid-based immersed bound-
ary method for simulation of compressible turbulent flows past stationary objects in
which they used a local grid refinement (LGR) strategy to avoid the use of globally
high-density meshes for the simulation of turbulent flows. The method was shown to
be formally second-order accurate. Investigations of shock–obstacle interactions for
stationary and moving shocks were presented by Chaudhuri et al. (2011), in which
they proposed a quadratic reconstruction of the solution near the immersed surface
in a direct-forcing framework. Their results showed good agreement with literature
for complex shock interactions using the immersed boundary approach.

In the recent past, Tran and Plourde (2014) have developed a compressible im-
mersed boundary method, with the aim to use it for combustion-related problems
and hypersonic flows. This method implements wall-slip- and wall-injection-type
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boundary conditions and does not include a no-slip formulation. This method also
uses a 2n tree-typemesh refinement strategy for localmesh refinement.More recently,
Brehm et al. (2015) have developed a second-order accurate immersed boundary
method suitable for compressible viscous flows with improved stability on Carte-
sian grids. The method improves the stability by investigating the finite difference
coefficients involved in the solution reconstruction at the irregular fluid nodes in the
immediate (external) neighbourhood of the IB.

The challenges of formulating an immersed boundary method that can be used for
compressible, high Reynolds number flows with turbulence modelling include sharp
capturing of shock waves andmodelling the energising effects of turbulence onmean
velocity profile. While the former requires that the immersed boundary method is
sharp-interface type (Ghias et al. 2007; De Palma et al. 2006; de Tullio et al. 2007),
the latter ideally requires high grid resolution, with wall-normal spacings of the order
of wall units (De Palma et al. 2006), for application with turbulence models that re-
solve the near-wall turbulent boundary layer (Wilcox 1994; Menter 1994). Although
using such grid spacing is commonplace with body-fitted grids, such high resolution
can lead to the construction of large grids when used with immersed geometries, as
the internal volume of the embedded geometry is also gridded in such cases. The
alternative approach is to use adaptive mesh refinement with unstructured Cartesian
mesh and/or devise the solution forcing in an ingenious manner such that the energis-
ing effects of a turbulent boundary layer is reproduced without the need to accurately
resolve the boundary layers in the immediate neighbourhood of the immersed sur-
face. The method presented here (Ghosh et al. 2010) is, to the best knowledge of
the authors, the earliest approach wherein a power-law reconstruction of the velocity
combined with law-of-the-wall type forcing of the turbulence variables—turbulence
kinetic energy, k, and specific dissipation rate, ω (Menter 1994)—was combined
to mimic the energising effects of a turbulent boundary layer in compressible high
Reynolds number flows on curvilinear grids. The IBM of Ghosh et al. (2010) has
been validated and used extensively for the simulation of boundary layer control
devices in supersonic turbulent flows (Ghosh 2010; Varma and Ghosh 2017; Sharma
et al. 2016; Roy et al. 2017; Sandhu et al. 2018). Subsequent efforts along these lines
include the works of Capizzano (2011), wherein a two-layer model of the flow—with
separate governing equations for each layer—was adopted, Bernardini et al. (2016),
which made use of modified wall functions near the immersed surface, and Tamaki
et al. (2017), in which the authorsmodified the boundary conditions for the tangential
velocity profile and turbulence model (Spalart and Allmaras 1992) in the vicinity of
the immersed surface.

8.2 Computational Methodology

The immersed boundary method outlined in this work is integrated into a finite
volume solver for compressible turbulent flows on block-structured grids. A brief
description of the flow solver and the immersed boundary method are presented in
this section.
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8.2.1 Flow Solver

The immersed boundary method outlined in this work is built into the framework
of a finite volume solver for compressible turbulent flows on multi-block-structured
grids (Roy and Edwards 2000). The density-weighted Reynolds-averaged Navier–
Stokes equations are solved by discretising the equations on curvilinear grids. A
flux-splitting method, the low-diffusion flux-splitting scheme (LDFSS) (Edwards
1997), is used to construct the inviscid convective flux and pressure flux, whereas
central-difference-basedmethods are used for the determination of the viscous fluxes.
Higher-order solution reconstruction at the cell interfaces is achieved using the piece-
wise parabolic method of Colella andWoodward (1984). A first-order Euler-implicit
time integration with local time stepping is performed for steady flows and the
second-orderCrank-Nicolson scheme is used for time-accurate simulations.Menter’s
k − ω/SST (Menter 1994) turbulence model is used for the steady RANS compu-
tations and a hybrid large eddy simulation (LES)/RANS method, as outlined in the
work of Choi et al. (2011), is used for time-accurate computations. The solver is
designed for parallel execution using message passing interface (MPI) paradigm for
data communication across processor cores. Extensive details of the solver can be
found in the work of Varma and Ghosh (2017).

8.2.2 Discrete Solution Forcing

In this work, the surface of the immersed object is rendered using a cloud of points,
wherein the local outward unit normal to the surface is also specified. The unit normal
provides information about the surface orientation and classification of the fluidmesh
into external and internal cells. A signed distance function, φ, is used for this purpose
as defined in Eq.8.1,

� = (
sgn(xC − xS) · n̂) |xS − xC| (8.1)

where x represents the position vector of a point designated by its subscript; here,
subscriptsC and S refer to the cell centres of a fluid cell and any surface point respec-
tively, as shown in Fig. 8.1. The nearest surface point toC is then determined using an
approximate nearest neighbour algorithm (Arya et al. 1998), and the corresponding
signed distance is stored. For closed immersed surfaces, the signed distance returns
a positive value for cells external to the immersed surface, which are termed as field
cells, and negative value for the cells internal to the immersed surface, which are
termed as internal cells accordingly. In addition, any field cell, which has an internal
cell as any of its neighbours that share a node with it, is termed as a band cell. Ad-
ditionally, a sharp Heaviside step function G[�(xc, t)] is defined such that it takes a
value of unity for interior and band cells, and zero for field cells. A schematic of the
classification described above is given in Fig. 8.1.
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Fig. 8.1 Classification of
cells: field cells (white),
band cells (light grey) and
interior cells (dark grey).
Reproduced from Varma and
Ghosh (2017) (copyright
held by author Santanu
Ghosh)

The solution is forced or reconstructed using neighbouring field cell data in the
band cells in a manner which implicitly enforces the boundary condition at the
immersed surface—which results in what is termed as direct forcing. In order to
determine the properties in a band cell, an interpolation stencil is first determined by
choosing the immediate neighbours of a band cell; these are cells that share at least
a node with the band cell. A point along the normal to the nearest surface point to
the band cell is then constructed; this point is referred to as the ‘interpolation’ point.
The determination of the location of the interpolation point and the flow properties
at that location are determined using inverse distance weights (Choi et al. 2007).

At the interpolation point and band cell centre, the velocity relative to the velocity
at the nearest surface point is split into two components—one normal to the immersed
surface (uN) and the other tangential to the surface (uT)—as shown in Eq. 8.2

u − us = uT(n) + uN(n) (8.2)

where u is the velocity at the band cell centre or interpolation point, us is velocity at it
the surface point closest to the band cell centre, and n denotes the coordinate normal
to the surface. The tangential component of the relative velocity at the band cell
(uT(dB)) is then constructed using a power-law function of the distance d from the
nearest surface point (Eq. 8.3a), whereas the normal component (uN(dB)) is chosen
to satisfy a discrete continuity condition (Ghosh 2010) as shown in Eq. 8.3

uT(dB) = uT(dI )
(
dB
dI

)k

(8.3a)

uN(dB) = uN(dI )g
′(ρ, dI , dB) (8.3b)

where,

uN(dI ) = {[u(dI ) − u(s)].ns}ns (8.4a)

uT(dI ) = [u(dI ) − u(s)] − uN(dI ) (8.4b)

In Eq. 8.3, subscripts I and B represent the interpolation and band points, respec-
tively. The choice of the power-law index k allows the model to mimic the effects a
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turbulent velocity profile (k = 1/7 or k = 1/9) or a laminar profile (k = 1). A value
of k = 1 is also used for turbulent flows if the wall-normal grid resolution to the IB
surface is sufficient to resolve the laminar sub-layer. Here, g′ is a scaling function
obtained from solving a discrete continuity equation near the surface (Ghosh et al.
2010). For an adiabatic wall, g′ is given by:

g′ = 1

ρ̃

⎛

⎝
dB
dI
d−ρ̃−

dB
dI
d−ρ̃− +

(
1 − dB

dI

)
d+ρ̃+

⎞

⎠ (8.5)

where,

d+ =
(
dI + dB
2dI

)k

, d− =
(
dB
2dI

)k

1

ρ̃
= 1 + r(γ − 1)

2γRT(dI )
[uT(dI ) · uT(dI )]

(

1 −
(
dB
dI

)2k
)

1

ρ̃+ = 1 + r(γ − 1)

2γRT(dI )
[uT(dI ) · uT(dI )]

(
1 − (d+)2

)

1

ρ̃− = 1 + r(γ − 1)

2γRT(dI )
[uT(dI ) · uT(dI )]

(
1 − (d−)2

)
(8.6)

The temperature in the band cell is reconstructed using Walz’s relation (Wilcox
1994) for temperature distribution within a compressible boundary layer on an adi-
abatic or isothermal wall as given in Eq. 8.7. Here, r is the recovery factor, and
[uT(dI )]2 represents the kinetic energy associated with the tangential velocity at the
interpolation point.

TB
T (dI )

= 1 + r(γ − 1)

2γRT(dI )
[uT(dI ) · uT(dI )]

[

1 −
(
dB
dI

)2k
]

(adiabatic wall)

(8.7a)

TB
T (dI )

= Tw
T (dI )

+
(

1 − Tw
T (dI )

+ r(γ − 1)

2γRT(dI )
[uT(dI ) · uT(dI )]

)(
dB
dI

)k

− r(γ − 1)

2γRT(dI )
[uT(dI ) · uT(dI )]

(
dB
dI

)2k

(isothermal wall) (8.7b)

The density in the band cells can be obtained using two different approaches: by
integrating the continuity equation in the band cells using the reconstructed velocity
and temperature or through the equation of state using the interpolated values of
pressure and temperature at the band cell. For the latter approach, the pressure at the
band cell is extrapolated from the interpolation point.

The turbulence variables in the band cells are computed using law-of-the-wall-
type functions as given in Eq. 8.8.
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kB = u2τ√
Cμ

, ωB = uτ(√
CμκdB

) : d+ > 10.934

kB = k(dI )

(
dB
dI

)2

, ωB = 60νw
0.075d2

B

: d+ < 10.934 or k = 1

d+ = uτdB
νw

, uτ = |uT(dI )|
ln(d+)

κ
+ 5.1

(iterative solution) (8.8)

The residual vector,R, at any band cell is then constructed by blending theNavier–
Stokes residual and an additional source term as,

Rn+1,l = [1 − G(�n+1)]Rn+1,l
NS + G(�n+1)

[
Vn+1,l − VB

n+1,l

�t

]

(8.9)

where l is a sub-iteration index, andV = [ρ, u, v,w,T , k, ω] is the primitive variable
vector. The solution (interpolated values) in the band cells are obtained by implicitly
solving the system of equations in band cells, with the residual as defined in Eq. 8.9,
coupled with other cells using sub-iterations.

8.2.3 Data Reconstruction on Immersed Surfaces

Pressure and shear stress (and/or heat flux) at the immersed surfaces in a flow field
are often needed for conjugate stress analysis, FSI problems (Borazjani et al. 2008;
Miller and Peskin 2009; Zheng et al. 2010; Sotiropoulos and Yang 2014; Brehm
et al. 2015), load estimation (Zastawny et al. 2012), etc. However, surfaces treated as
immersed boundaries, in general, do not coincide with grid points, unlike the case of
body-fitted grids wherein the grid conforms to all surfaces. The data at the immersed
surface, therefore, has to be reconstructed using the solution in the underlying grid
(nodes or cell centres) to the points on the immersed surface. Here, we present an
approach for interpolation of pressure and shear stress using inverse distances, that
has been developed by the authors (Bharadwaj S and Ghosh 2018).

The data reconstruction procedure starts with the construction of interpolation
stencil(s) for every point on the immersed surface. Using the solution in the cells
in the stencil(s), we first estimate the pressure and the component of velocity—
tangential to the local surface—at specific points inside the stencil, referred to as
interpolation points, and then proceed to reconstruct the pressure and shear stresses
at the immersed surface using the values at the interpolation point(s) and the surface
point (in case of shear stress estimation).

8.2.3.1 Stencil Construction

In the interpolation methods we consider here, two interpolation stencils are required
for every point on the immersed surface as shown in Fig. 8.2. The first interpolation
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Fig. 8.2 Interpolation
stencil

stencil is built by finding the cell centre (A) that lies closest to the surface point
(P). Using this cell centre, a 3 × 3 stencil is built by considering all neighbouring
cells that share a grid node with this cell. The cell centres of this stencil are shown
by circles. Using the field and band cells of this stencil, the first interpolation point
(IP1) is constructed. The second stencil is built by finding the cell centre (B) in the
first stencil that lies closest to the first interpolation point. Using the second stencil,
marked as squares, a second interpolation point (IP2) is determined.

8.2.3.2 Interpolation Point: Location and Properties

In Fig. 8.3, the circles represent the cell centres of the stencil that are used to determine
the location and properties at the interpolation point (IP). Consider a cell centre B.
The perpendicular distance from B to the normal at the immersed surface is given by
d1,i. The distance, d2,i, is the projection of the distance from B to the surface point
P, along the normal.

The distance of the interpolation point from the immersed surface,measured along
the normal to the surface, is determined as:

dIP =
∑

i d2,i/d1,i∑
i 1/d1,i

(8.10)

where the summation holds over the field and band cells of the stencil. Any general
property, φ, at the interpolation point is also interpolated in a similar way:

φIP =
∑

i φi/d1,i∑
i 1/d1,i

(8.11)
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Fig. 8.3 Interpolation point
location and properties

Thus, using Eq.8.11, we interpolate pressure and velocity components at the inter-
polation point.

8.2.3.3 Pressure Reconstruction

With the interpolated pressures at IP1 and IP2, the pressure at the immersed surface
(point P) is reconstructed as:

PP = PIP1dIP2 − PIP2dIP1
dIP2 − dIP1

(8.12)

where PIP1 , PIP2 are the pressures at the two interpolation points and dIP1 , dIP2 are
their respective distances from the immersed surface. Equation8.12 is obtained by
assuming a linear variation of pressure along the normal to the surface.

8.2.3.4 Shear Stress Reconstruction

The velocity at the interpolation points relative to the velocity at the local surface
(point P in Fig. 8.3) is first decomposed into components tangential (Vτ ) and normal
(Vn) to the local surface. We assume a quadratic variation of the relative tangential
velocity component along the normal to the surface, given by:

Vτ = an2 + bn + c (8.13)

where n is the coordinate in the direction of the outward normal. The coefficients a,
b and c are constants that are determined by using the following three conditions:
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Vτ |n=0 = 0

Vτ |n=dIP1
= Vτ,IP1

Vτ |n=dIP2
= Vτ,IP2

(8.14)

where Vτ,IP1 and Vτ,IP2 are the respective tangential velocities at the interpolation
points, IP1 and IP2, measured with respect to the surface velocity. Using Eq.8.13,
the gradient of the tangential velocity in the normal direction can be determined as:

∂Vτ

∂n
= 2an + b (8.15)

which implies that, at the wall,
∂Vτ

∂n

∣
∣
∣
∣
n=0

= b (8.16)

The shear stress at the wall is therefore given by:

τP = μP
∂Vτ

∂n

∣
∣
∣
∣
n=0

= μPb (8.17)

where μP is the molecular viscosity at the surface, which is either assumed as a
constant for low-speed flows or calculated using the surface temperature and Suther-
land’s law (Wilcox 1994). The surface temperature in this case can be determined
using a similar approach as outlined here for the reconstruction of pressure at the
surface.

8.3 Results

Results are presented from simulations of compressible turbulent flows past a flat
plate, a wedge-shaped micro-vortex generator (μVG) and for laminar flow past a
NACA 0012 airfoil at 10◦ angle of attack. Further, comparisons of surface pressure
and shear stress, and force coefficients with values from literature are also presented
for the laminar flow test case. The flow andmesh details for the simulations are listed
in Table8.1.

Table 8.1 Flow and computation details

IB Mach number Re nx × ny × nz k

Flat plate 0.2 5.0 million 280 × 192 × 1 1, 1/7

Micro VG 2.5 30 million/m 747 × 200 × 90 1/7

NACA 0012 airfoil 0.8 500 800 × 400 × 1 1
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8.3.1 Flat-Plate Simulation

This test case is listed at https://turbmodels.larc.nasa.gov/flatplate.html for the veri-
fication of flow solvers developed for compressible turbulent flows. Table8.1 lists the
flowMach number and Reynolds number, and the free-stream pressure and tempera-
ture are 1atm and 300K respectively. In this work, this case is simulated to compare
the predictions of mean velocity and turbulence variables in turbulent boundary lay-
ers by the IBM outlined in this work with those obtained using a body-conforming
grid.

The domains used for the simulation with a body-fitted grid and and immersed
boundary approach are shown in Fig. 8.4; the boundary conditions used for the
simulations are also indicated in this plot. As can be observed in Fig. 8.4b, in order
to treat the flat plate as an immersed boundary, a sub-domain is created below it to
ensure proper cell classification, which is required for the implementation of solution
forcing. The extents of the (main) domain are fromX = −0.333330m toX = 2.0m,
and Y = 0m to Y = 1m. The grid for the body-fitted grid simulation has the same
distribution in the wall-normal direction as the secondmost refined grid provided in
the NASA archive. The grids for the IB simulation are obtained by starting with the
mesh used for the body-fitted grid (and adding a sub-domain below the flat plate
along its streamwise extent) and alternately removing points along both X and Y
directions. The number of mesh cells in the grids used for the IB simulations along
with the spacing at the wall are listed in Table8.2, wherein L0 is the finest mesh and
L4 is the coarsest mesh. The body-fitted grid and L4 grid for the IB simulation are
shown in Fig. 8.5. In Fig. 8.5, the flat plate is treated as an immersed boundary and
is rendered as a point cloud. A power law of k = 1 is used for the IB simulations.
The depth of the sub-domain (beneath the flat plate) used for the IB simulations is
0.05m.

Profiles of normalised velocity, normalised turbulent kinetic energy and nor-
malised turbulence frequency are plotted atX = 0.7146m for the body-fitted grid and
IB simulations in Fig. 8.6. A log scale is used for the wall-normal distance in all cases

(a) Bodyfitted grid simulation. (b) IB simulation.

Fig. 8.4 Domains for simulation of Mach 0.2 turbulent flow past flat plate

https://turbmodels.larc.nasa.gov/flatplate.html
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Table 8.2 Grid details for IB simulations of Mach 0.2 flow past flat plate

Grid level nx × ny × nz �ymin (m) Average �y(m)

L0 280 × 192 × 1 1.0e−06 0.2

L1 140 × 96 × 1 2.0e−06 0.4

L2 70 × 48 × 1 4.0e−06 0.8

L3 35 × 24 × 1 8.3e−06 1.6
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(a) Bodyfitted grid simulation.
X [m]

Y
 [

m
]

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(b) IB simulation: L4; IB shown in red.

Fig. 8.5 Grids for simulation of Mach 0.2 turbulent flow past flat plate
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profile.

Fig. 8.6 Comparison of results at X = 0.7m for Mach 0.2 turbulent flow past a flat plate

and also for plotting the normalised turbulence frequency. Here, uinf = 69.68m/s is
the free-stream velocity, aref = 384.404m/s is the reference speed of sound and
μref =1.6286e−5Ns/m2 is the reference dynamic viscosity. It can be observed from
Fig. 8.6a that the velocity profiles obtained using the IBM on the L0 and L1 grids,
and even to an extent the L2 grid, virtually coincide with that predicted by the body-
fitted grid solution, whereas that obtained on the L3 grid has discernible differences.
A somewhat similar trend is observed for the normalised turbulence kinetic energy
(TKE) profiles, wherein the maximum difference in the profiles predicted by the
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IBM(L0 grid) and the body-fitted grid do not exceed 5% of the value obtained from
the body-fitted grid solution. The profiles of normalised turbulence frequency show
strong differences as one approaches the wall. It is apparent from these comparisons
that IBM presented here does not provide satisfactory solution of the near-wall tur-
bulence frequency, even for very refined grids. However, the effect of this on the
mean velocity profile appears minimal and considering the fact that the near-wall
flow is modelled, the results are more than satisfactory. It is apparent from these
set of computations, that when the near-wall grid is well resolved, with average Y+
values of about unity, use of the IBM (Ghosh et al. 2010) with a power law of unity
can give good results of mean flow properties.

In order to determine whether the use of a power law of 1/7 can mimic the
energising effects of a turbulent boundary layer without sufficient near-wall grid
resolution, the flat-plate simulation was also performed on a set of coarser grids.
Grids L4, L5 and L6 were designed such that the average Y+ are 20, 40 and 80,
respectively. Figure8.7 shows the u-velocity profile obtained on grids L4, L5 and L6,
compared to that of the body-fitted grid simulation. It is seen that theu-velocity profile
of the grid with Y+ of 80 renders the closest match with that of the body-fitted grid
simulation. In all cases though, the velocity profile shows a fullness characteristic
of turbulent boundary layers, which is achieved without adequate near-wall grid
resolution required to resolve the boundary layers.

8.3.2 Mach 2.5 Flow Past a Micro VG

A micro- or sub-boundary layer vortex generator is a device that can generate pairs
of co- or counter-rotating vortices and has height much less than the local boundary
layer thickness. The streamwise vortices bring in high-momentum fluid away from
the wall to the near-wall region, producing fuller near-wall velocities in this process.

Fig. 8.7 Comparison of
u-velocity profile at
X = 0.7m for power law
k = 1/7
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Experiments involving the effects of standard micro-VGs (Anderson et al. 2006)
on a Mach 2.5 supersonic stream and an oblique shock–boundary layer interaction
control have been performed at Cambridge University by Babinsky et al. (2009). The
experiments included flow past single μVGs of size 3 and 6mm, as well as arrays
of μVGs. In the former case, the flow is without any additional shock generator,
whereas the latter includes a shock generator that produces an oblique shock, which
impinges on the boundary layer developing on the lower and sidewalls of the wind
tunnel and causes separation. The flow details are mentioned in Table8.1. The test
section of the wind tunnel is 90mm high and 110mm wide.

In this chapter, we present results from numerical simulations of flow past single
wedge-shaped micro-VGs placed in a Mach 2.5 supersonic stream (Ghosh et al.
2010; Sharma et al. 2016); the flow conditions are based on the experiments of
Babinsky et al. (2009). The computational studies presented here render a part of the
aforementioned test section (Babinsky et al. 2009) and is shown in Fig. 8.8 with the
extents in streamwise, spanwise and wall-normal directions marked; the boundary
conditions used for the simulation are also indicated in the figure. Two different VG
types are presented here, a baseline or standard VG (Anderson et al. 2006) and a
slotted VG (Sharma et al. 2016). The dimensions of the VGs are as prescribed by
Anderson et al. (2006) and a schematic of baseline VG is shown in Fig. 8.9a, where
2W = 5.84h and φ = 66◦. The slotted VG, shown in Fig. 8.9b, additionally has a
semi-circular slot running through its base. An advantage of the immersed boundary
approach in this context is that the complexity of the IB geometry has no effect on
the grid, which made it possible to use the same grid for the computations using both
the baseline and slotted VGs. Results are first presented for flow past a single 6mm
baseline VG and then the for slotted vortex generator.

Fig. 8.8 Computational
domain with boundary
conditions for Mach 2.5 flow
past a 6mm VG. Reproduced
from Sandhu et al. (2018)
(copyright held by author
Santanu Ghosh)
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Fig. 8.9 Isometric view of a vortex generator. Reproduced from Sandhu et al. (2018) (copyright
held by author Santanu Ghosh)

The numerical simulations for flow past the 6mm baseline VG were per-
formed for both Reynolds-averaged Navier–Stokes (RANS) and hybrid large eddy
simulation/Reynolds-averaged Navier–Stokes (LES/RANS) turbulence closures in
this case and uses the immersed boundary method outlined in this work to render
the vortex generator. A power law of 1/7 was used for the computations and both
the approaches for determining the density in the band cell—using interpolation and
solving the continuity equation—were used for the RANS simulations for this case.
The hybrid LES/RANS simulation used the latter approach for calculating density
in the band cell.

Figure 8.10 shows the formationof the counter-rotatingvortexpair as the incoming
flow moves past the baseline vortex generator. The streamlines in black are closer
to the lower wall compared to those in red. It can be observed that as the flow
moves over the upper surface of the VG and past its edges, it gets entrained in the
low pressure wake behind the VG, forming a swirling flow that defines the primary
counter-rotating vortex pair. The vortex pair entrains higher velocity flow from outer
parts of the boundary layer and energises the flow near the wall, potentially making
the resultant flow profile more resistant to separation.

Profiles of streamwise velocity are compared in Fig. 8.11 with experimental data
obtained using laser Doppler anemometry (LDA) (Babinsky et al. 2009) at two
streamwise stations downstream of the vortex generator, wherein the distances in-
dicated are measured from the trailing edge of the VG; results from a body-fitted
grid simulation is also included. The results show that the LES/RANS computations
provide the most accurate results, wherein the energising effects of the streamwsie
vortices are best captured. The results from the RANS calculations show that the IB
simulations tend to under predict the energising effect of the streamwise vortices and
over predict thewake effect—a consequence of themomentum sink effect introduced
due to the IB rendition of the VG (Ghosh et al. 2010). In an overall sense, the results
were satisfactory and showed promise for parametric studies using different VG ge-
ometries and layouts vis-a-vis flow control. The IB method has been subsequently
used in RANS computations for the design (Sharma et al. 2016) and comparative
analysis (Sandhu et al. 2018) of vortex generators.
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Fig. 8.10 Stream lines past a 6mmVG inMach 2.5 flow showing formation of streamwise counter-
rotating vortices. Reproduced from Ghosh et al. (2008) with permission of Dr. Jack R. Edwards
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Fig. 8.11 Streamwise velocity profiles downstream of the VG trailing edge; experiment: Babinsky
et al. (2009), (+): continuity equation integrated in band cells
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Fig. 8.12 Evolution of streamwise vortices past standard ramp-type VG (left) and slotted VG
(right); vortex cores are shown in black lines. Reproduced from Sharma et al. (2016) (copyright
held by author Santanu Ghosh)

The evolution of the flow downstream of a slotted and a baseline vortex generator,
showing the vortex centres, is plotted in Fig. 8.12. It can be observed from the figure
that the immersed boundary approach is capable of capturing both the primary and
secondary vortices. Further, it can be seen that the lift-off of the primary vortex is
reduced when the vortex generator has a slot.

The formation of the streamwise primary vortex pair has an energising effect on
the near-wall flow, which results in fuller velocity profiles. Near-surface streamwise
velocities downstreamof theVG trailing edge are presented in Fig. 8.13 for the slotted
and baseline vortex generators of different sizes. It is clear from this figure that the
patches of the flow along the span show higher velocities, when compared to values
upstream of the device leading edge, an effect of the induced flow entrainment by the
primary vortices. This effect is stronger in the case of the slotted vortex generator.

8.3.3 Mach 0.8 Laminar Flow Past NACA 0012 Airfoil

The extents of the domain in this case are from X = −10m to X = 16.5m and
Y = −10m to Y = 10m as shown in Fig. 8.14a. Figure8.14b shows the Cartesian
grid in which NACA 0012 airfoil is embedded as a cloud of points. The grid points
are densely distributed within an inner box that almost circumscribes the airfoil. The
grid is isotropic near the leading and trailing edges, with a spacing of 0.001m, and
stretches out as one moves away from the airfoil (immersed) surface.
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(a)

(b)

(c)

Fig. 8.13 Comparison of near-surface streamwise velocity contours for supersonic flow over a
VG; contour plots for VGs with height (a) 4mm, (b) 3mm, and (c) 2mm. r = 0.6h (slotted VG).
Reproduced from Sharma et al. (2016) (copyright held by author Santanu Ghosh)

The laminar flow at Mach 0.8 past NACA 0012 airfoil at 10◦ angle of attack is
expected to produce a large separation bubble on the suction side of the airfoil as
presented in Qiu et al. (2016) and also shown in Fig. 8.15.

Figure8.16 shows the Cp plots obtained for three grids, wherein the coarse grids
are obtained by removing alternate grid lines from the immediate refined grid. It
can be observed that the noise in the reconstructed surface pressure reduces with
grid refinement, as is common in most immersed boundary methods that impose a
velocity boundary condition at the immersed surface and mentioned by Goza et al.
(2016).

Figure8.17 shows the Cp and Cf plots of the finest grid compared with literature
(Qiu et al. 2016). The Cp and Cf plots are obtained by performing the pressure and
shear stress reconstruction elaborated in Sect. 8.2.3.3 and 8.2.3.4.

Table8.3 compares Cl and Cd with that available in literature. It is seen that there
is a good agreement in the values.
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Fig. 8.14 Domain and grid for Mach 0.8 laminar flow past NACA 0012 airfoil

Fig. 8.15 Mach number
contours for Mach 0.8 flow
past NACA 0012 airfoil;
streamlines show the large
separation bubble on the
airfoil
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8.4 Conclusions

Thework presented in this chapter discusses the detailed formulation of an immersed
boundary method which was designed for compressible turbulent flows and presents
results from test cases of varying complexity. Results using the immersed boundary
method are compared to either simulations using a body-fitted grid or experimental
data and show fair to good agreement. It is shown for the simple test case of turbulent
flow past a flat plate that the power-law-based forcing of the solution in the immersed
boundarymethod presented here can lead to near-wall velocity profiles thatmimic the
solution obtained using a body-fitted grid, with or without adequate grid resolution,
by just suitably adjusting the power-law coefficient. Streamline patterns presented
for flow past a wedge-shaped vortex generator and NACA 0012 airfoil shows that the
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Fig. 8.17 Comparison of pressure and shear stress reconstructed at immersed surfacewith literature
Qiu et al. (2016)

near-(immersed) surface flow obeys the no-penetration conditions satisfactorily and
captures the flowphysics. Additionally, amethod based on inverse distanceweights is
discussed for the determination of pressure and shear stress on the immersed surface.
Themethod reconstructs the pressure and surface-parallel velocity as functions of the
coordinate normal to any point on the immersed surface, and uses values of pressure
and velocity (component parallel to the local surface) interpolated at two points on
the surface normal to determine the value of pressure and shear stress at the surface.
The predictions of surface pressure and shear stress calculated using this approach
for transonic flow past a NACA 0012 airfoil are compared with computational results
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Table 8.3 Coefficient of lift and drag for Mach 0.8 flow past NACA 0012 airfoil

References Cl Cd

Jawahar and Kamath (2000) 0.49394 0.27216

Dervieux (2013) 0.4145–0.517 0.243–0.2868

Qiu et al. (2016) 0.4323 0.2822

Present 0.4687 0.2795

from literature and are shown to agree well. Integrated quantities of lift and drag are
also presented and shown to compare favourably with values computed earlier in
literature.
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Chapter 9
A Sharp-Interface Immersed Boundary
Method for High-Speed Compressible
Flows

Shuvayan Brahmachary , Ganesh Natarajan , Vinayak Kulkarni,
and Niranjan Sahoo

9.1 Introduction

Numerical simulation of flow past bodies offers several challenges especially when
the geometry is complex in nature. Ensuring a good quality body-conformal mesh
for the underling geometry is not a trivial proposition and demands user expertise
while also being time-consuming. The challenge of creating a good quality body-
conformalmesh becomes evenmore severewhen the geometries undergomotion. For
such scenarios, Cartesian grid-based methods offer a significant advantage because
of the ease with which the complex bodies can be treated on a simple orthogonal grid.
This reduces the cost and time associated with grid generation and can be extended in
a straightforward manner for moving body problems. The use of a fixed background
grid provides the user with significant leverage by avoiding mesh movement and
re-meshing that would be necessitated on flow solvers with conformal meshes. One
of the approaches in this class is the “cut–cell” method that has been used quite
extensively (Clarke et al. 1986; Udaykumar and Shyy 1995; Ye et al. 1999). However,
this approach suffers from stability issues due to small cells near the boundary that
limit the time step and requires cell-merging strategies to overcome this problem.
Another class of Cartesian grid-based methods that have gained popularity in the
last few years is the immersed boundary method, originally proposed by Peskin in
his seminal work in 1972 (Peskin 1972). Over the last two decades, there have been
several variants of the immersed boundary methods, although the development of
these techniques for fluid flows and heat transfer has been largely for incompressible
flows. A good and comprehensive review of IB methods can be found in Mittal and
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Iaccarino (2005) and Sotiropoulos andYang (2014), with the latter highlighting some
of the interesting applications of IB techniques for complex incompressible flows.

The use of IB approaches for compressible flows has not been as widespreadwhen
compared to its incompressible counterparts. The earliest studies in this direction
were carried out by Ghias et al. (2007) and de Palma et al. (2006). While the former
discussedmostly low subsonic flows using ghost-cell IBmethods, the latter extended
the IB methodology to low supersonic flows. This was followed by the work on
sharp-interface IB methods for transonic flows using local grid refinement by de
Tullio et al. (2007). Cho et al. (2007) employed the Brinkman penalisation method,
which belongs to the class of “diffuse" interface IB methods for compressible flows
over a wide range of Mach numbers. Studies using a hybrid Cartesian immersed
boundary (HCIB) method in the subsonic and transonic regimes were carried out
by Zhang and Zhou (2014). Sambasivan and Udayakumar devised a sharp-interface
variant for multi-material compressible flows (Sambasivan and UdayKumar 2010),
and ghost-cell immersed boundary approaches have been employed to study shock
diffraction and explosion with moving bodies (Mo et al. 2016). There have also
been efforts to develop higher-order finite difference IB methods for compressible
flow (Brehm et al. 2015) but most studies have been targeted at flows in the high
subsonic and low supersonic flow regimes. Furthermore, while most studies have
addressed Euler flows, only a few efforts concentrate on viscous compressible flows
(Palma et al. 2006; de Tullio et al. 2007; Ghosh et al. 2010; Pu and Zhou 2018).
Importantly, there have been only a handful of studies that have attempted to use the
IB approach for high Mach number flows. In particular, the recent studies of Das
et al. (2017) and Qu et al. (2018) have employed immersed boundary methods for
shocked particle-laden flows and moving rigid bodies, respectively. Nevertheless,
even these studies in high-speed viscous flows do not address the issue of resolution
of the thin boundary layers and consequently the prediction of wall heat flux and skin
friction. To the best of the authors’ knowledge, only the studies of Arslanbekov et
al. (2011) and Sekhar and Ruffin (2013) have attempted to study the stagnation heat
flux estimation using IB methods. While their investigations discussed hypersonic
flows, the Reynolds numbers in their studies were quite moderate. An important
aspect of immersed boundary approaches that also has not been deeply probed is
the issue of discrete conservation. Unlike cut-cell-based methods, IB approaches are
clearly not discretely conservative and there have been no major efforts to look into
the conservation errors particularly in compressible flows.

The literature survey presented herein, while not exhaustive, clearly points to the
need to assess the class of immersed boundarymethods for hypersonic laminar flows.
Thismotivates our studies detailed in this chapterwherewe focus on the development
of a sharp-interface immersed boundary method in the finite volume framework and
discuss its ability to accurately compute hypersonic inviscid and laminar flows. We
specifically discuss the aspects of discrete conservation as well as the efficacy of the
IB approach for computing heat flux and skin friction distribution in viscous flows
past canonical configurations. The remainder of the chapter is organised as follows.
Sections9.2 and 9.3 describe the numerical framework in details. The investigations
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pertaining to conservation errors, Euler flows as well as viscous flow computations
form the subject matter of Sect. 9.4. We summarise the salient findings from the
present study in Sect. 9.5, where a few recommendations for future research are also
outlined.

9.2 Finite Volume Solver for Compressible Flows

In this section, we describe the details of the finite volume flow solver which forms
the basic workhorse of the numerical investigations detailed later in this chapter. The
immersed boundary method, to be discussed in the following section, is integrated
with this flow solver. Based on an unstructured data framework, the flow solver solves
the Navier–Stokes equations for a perfect gas which in the conservative form (in two
dimensions) reads,
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where the vectors SI and SV are the inviscid and viscous source terms, respectively,
and are relevant only for axisymmetric flows. These may be expressed as,
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where,

τθθ = μ
(
−

2
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)
+

4v
3y

)

We set α = 1 for axisymmetric simulations while for planar two-dimensional
studies α = 0. Here, U represents the vector of conserved variables (mass, momen-
tum and energy) and FI and GI represent the inviscid fluxes while FV and GV

represent the viscous fluxes. The components of heat flux are represented by qx and
qy while τxx, τyy and τxy are the components of the symmetric viscous stress ten-
sor. Integrating these vector conservation laws over an arbitrary control volume and
applying the Gauss divergence theorem yield the semi-discrete form of the governing
equations. The semi-discrete form of the conservation laws in a compact form reads,

dUi
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= −
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ΔSJ − αSi = R(Ui)
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where u⊥ = unx + vny, θx = uτxx + vτxy − qx, θy = uτyx + vτyy − qy.
The quantity Ωi is the volume of the ith cell, ΔS is the face area and nx and ny

are the components of the outward unit normal to the face. The summation is over
all faces J of a cell i, and the convective and viscous fluxes at a face are evaluated at
the face mid-points using a single-point Gauss quadrature. A second-order accurate
linear reconstruction proposed by Barth and Jesperson (2001) is employed to deter-
mine the states required for convective flux computations. The convective fluxes are
determined usingAUSM scheme (Liuo and Steffen 1993), unless otherwise specified
and the Venkatakrishnan limiter (Blazek 2001) is used to ensure monotonicity of the
solution. Green–Gauss reconstruction (Blazek 2001) is employed to determine the
gradients required for viscous flux computations. Time advancement is realised using
a five-stage Runge–Kutta scheme (Blazek 2001), although a single-stage RK scheme
(equivalent to explicit Euler) is employed for steady flow computations where tem-
poral accuracy is unimportant. This finite volume (FV) solver has been extensively
validated in previous work on several problems involving inviscid and viscous com-
pressible flows (John and Kulkarni 2014). The flow solver, being based on unstruc-
tured data, is also capable of handling adaptive grids which are constructed by an
isotropic refinement strategy (Natarajan 2009) that divides each “parent” cell into
four “children” with the regions where adaptation is effected identified by the user
apriori.
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9.3 Hybrid Cartesian Immersed Boundary Method

The details and implementation of the sharp-interface hybrid Cartesian immersed
boundary (HCIB) method are discussed in this section. The HCIB approach was
first proposed by Gilmanov and Sotiropoulos (2005) for incompressible fluid flows.
The present work is an extension of their methodology to compressible inviscid
and viscous flows. In the technique, the solid body is immersed into an underlying
Cartesian mesh. The solid boundary is discretised using linear line segments in two
dimensions (or surface triangulated in three dimensions). Unlike traditional body-
conformal CFD solvers, the mesh does not conform to the geometry, and therefore,
the accurate calculation of the near-wall numerical solution is critical. The HCIB
approach has been implemented in the finite volume framework described previously
in Sect. 9.2 and constitutes two distinct stages that are described below.

9.3.1 Cell Classification

The first stage in the HCIB approach is the classification of the cells (or control
volumes) of the underlying Cartesian mesh into three categories. Cells whose cell
centres lie inside the solid are classified as solid cells (denoted as S) while the
remaining cells are termed as fluid cells (denoted as F). This is effected using a ray-
casting algorithm.All F cellswhich share at least one facewith aS cell are then termed
as immersed cells (denoted by I cells). The procedure behind this classification step
is shown in Fig. 9.1 and distinguishes the regions where the solution is sought (F and
I cells) from those where the solution is not necessary (S cells). For stationary cases,
it is easy to see that the classification is a one-time affair whereas for moving body
problems, it must be repeated at every time step.

Approximated Immersed Boundary

Actual boundary

Fluid cell (F)

Immersed cell (I)

Solid cell (S) Solid region

Fluid region

Fig. 9.1 Classification of cells
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9.3.2 Solution Reconstruction

The second stage in the HCIB approach involves solution reconstruction where the
numerical solution in the near vicinity of the solid body is obtained by enforcing
the boundary conditions while preserving the sharp interface of the geometry. The
numerical solution needs to be only computed in the F and I cells with those in the
F cells obtained by solving the Navier–Stokes equations. The solution in I cells is
however obtained using some form of algebraic reconstruction as detailed in this
section.

We now describe the solution reconstruction for viscous compressible flows for
geometries with adiabatic as well as isothermal walls. The solution reconstruction
is an interpolation along the direction locally normal to the interface as shown in
Fig. 9.2. The boundary conditions are enforced directly at the sharp interface in this
study. To do so, we first identify the nearest face on the solid boundary for each
I cell. Following this, we identify points b and f on the body surface and in the
fluid domain, respectively, which lie along the normal n̂ to the nearest face and also
contain the centroid of the I cell. The point b is the intersection point of the local
normal with the geometric boundary while point f is the closest point on this line
that cuts a connector joining two F cells (see Fig. 9.2). The boundary condition on
the body surface is used to determine the primitive variables at b while we adopt
linear interpolation of the solutions at F1 and F2 to evaluate the fluid properties at f.

φf =
φF1d2 + φF2d1

d1 + d2
(9.1)

Fig. 9.2 Reconstruction for
obtaining φ at immersed
cells

b

f

I

F1

F2

n

F1 & F2

b
I

f
Fluid cells

Body point
Immersed cell

Fluid point

Outward normal

n
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where d1 and d2 refer to distances of the point f from the centroid of cells F1 and F2.
The primitive variables at the I cells are then obtained by a suitable interpolation at
b and f points. The choice of this reconstruction can be either a polynomial or non-
polynomial interpolation, and it need not necessarily be identical for all primitive
variables. The specific details of this reconstruction strategy when both isothermal
and adiabatic surfaces are involved are now discussed.

Assuming that the solution varies linearly and denoting the variable of interest as
φ, one can write its variation along the normal direction as,

φ = C1r + C2 (9.2)

where r is the distance measured from the b point on the sharp interface along the
direction of the outward local normal. Subsequently, if the unknowns C1 and C2 can
be uniquely determined from two independent conditions then the value at the I cell
may be computed as,

φI = C1rbI + C2 (9.3)

The constants C1 and C2 are typically evaluated using the boundary conditions at
“b” and the interpolated solution at “f”.

9.3.3 Reconstruction for Velocities

For viscous flows, the solid wall satisfies both the no-slip as well as the impermeable
wall boundary condition, i.e. u||b = 0 and u⊥b = 0, respectively. The quantities u||

and u⊥ denote the components of velocity vector along the local tangential and local
normal directions, respectively, and may be determined as,

u|| = ufny − vfnx (9.4)

u⊥ = ufnx + vfny (9.5)

where nx and ny now refer to the components of the normal to the interface along
which the one-dimensional solution reconstruction is effected. The values of these
velocity components at the f point may be computed using Eq. (9.1) where φ is
chosen as u|| or u⊥. The use of the known values at b and f points helps to compute
the values of u|| and u⊥ at the I cells using Eq. (9.3) and one can obtain the Cartesian
velocity components at the cell centres using the reverse transformation that reads,

uI = (u||I ny) − (u⊥I nx) (9.6)

vI = (−u||I nx) − (u⊥I ny) (9.7)
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For moving bodies whose motion is induced by the flow, the velocity components of
the body are nonzero and are evaluated by solving the second-order ODEs describing
Newton’s second law of motion. This gives,

uk+1
b = uk

b +
Δt

Mb
Fk

x

vk+1
b = vk

b +
Δt

Mb
Fk

y

(9.8)

where k and k + 1 represent the present and next time step, respectively, and Mb

is the mass of the body. The terms (Fx, Fy) represent the force components and are
determined from the wall pressure and wall shear stresses. We choose the contour of
integration for this purpose as the approximated immersed boundary as highlighted
in Fig. 9.1, which leads to an approximated domain stair-step representation as also
in Mizuno et al. (2015).

9.3.4 Reconstruction for Pressure

The pressure at the cell I is obtained by invoking the boundary layer approximation
that strictly holds for non-separated flows. This gives ∂p

∂r = 0, and as a result, one
can impose the pressure outside the boundary layer on the surface. We thus have
pb = pI = pf, with pf obtained using Eq. (9.1). While this condition would be
strictly valid only for thin layers and unseparated flows, they have been used for
inviscid flows (Brahmachary et al. 2018) and appear to work even in scenarios with
flow separation (as shall be shown in studies in Sect. 9.4.6).

9.3.5 Reconstruction for Temperature

The value of temperature at the point b depends on whether the wall boundary is
adiabatic or isothermal. For isothermal walls, the wall temperature Tw is known
and is constant which results in Tb = Tw. The temperature at the immersed cell TI

can then be obtained using Eq.9.3. It is also possible to employ nonlinear and non-
polynomial interpolation (Ghosh et al. 2010) although this has not been considered
in the present study.

9.3.6 Reconstruction for Density

The density at I cells follows from the equation of state (EOS) for a perfect gas and
is computed as,
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ρI =
pI

RTI
(9.9)

where R is the gas constant and pI as well as TI follow from suitable reconstruc-
tion approaches as described in Sects. 9.3.4 and 9.3.5. This methodology of one-
dimensional solution reconstruction along the local normal direction closely resem-
bles the extended extrapolation technique in Zhao et al. (2010) except that the normal
velocity varies linearly in our approach as opposed to the quadratic variation in the
extended extrapolation method.

9.3.7 Calculation of Wall Pressure, Shear Stress and Heat
Flux

For viscous computations, the major quantities of interest are the surface distribution
of pressure, heat transfer and viscous stresses. We provide a concise description of
the computation of these parameters in the IB-FV solver to enable reproducibility of
results in the following sections.

The pressure at the wall, by virtue of the homogeneous Neumann BC, is
pw = pI = pf and may also be quantified using the coefficient of pressure defined
by,

Cp = (pw − p∞)/(0.5ρ∞V2
∞)

The wall heat flux is related to the temperature gradients at the wall and is defined
as,

qw = kw
∂T

∂r

∣∣∣
w

where kw is the fluid thermal conductivity at the wall and is a function of the wall
temperature Tb (obtained from Sutherland’s law). Simple finite differencing may
be employed for linear solution variation of temperature gradient in the near-wall
region. The heat flux on the surface then follows as,

qw = kw
TI − Tw

rbI

A non-dimensional wall heat flux may also be defined in terms of Stanton number
(St),

St = qw/(0.5ρ∞V∞cp(To − Tw))

where To is the total temperature of the freestream and cp is the constant pressure
specific heat capacity.

Like the wall heat flux, the wall shear stress is a scalar quantity whose distribution
over the surface is estimated to obtain the viscous drag acting on the body. The wall
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shear stress is obtained by adding up all components of the viscous force along the
local tangential direction as,

τw = (τxxnx + τxyny)tx + (τxynx + τyyny)ty

where tx = ny and ty = −nx denote the components of the local tangent vector and
nx and ny are the components of the local normal to the surface. The conventional
representation is to use the non-dimensional wall shear stress, which is referred to
as the skin friction coefficient (or simply skin friction), Cf defined as,

Cf = τw/(0.5ρ∞V2
∞)

The computation of Cf warrants the estimation of viscous stress components at
the body faces. These may be obtained by first identifying a neighbourhood of F cells
associated with each b point (and therefore a unique I cell) and then using an inverse
distance weighted averaging of the velocity gradients in these F cells to obtain an
estimate at the b point [for further details refer to Brahmachary et al. (2018)]. These
estimates are consequently employed to calculate the viscous stresses.

9.3.8 Reconstruction for Euler Flows

It is important to highlight the differences and/or simplifications in the reconstruction
approach discussed herein for compressible inviscid flows. In case of Euler flows, the
only boundary condition available at b is u⊥b = 0 while the values for all remaining
quantities (u||, pb and ρb) and their gradients are obtained using inverse distance
weighting (IDW) as described in Eqs. (9.10) and (9.11),

φb =

∑i=n
i=1 wiφi∑i=n

i=1 wi

(9.10)

∇φb =

∑i=n
i=1 wi∇φi∑i=n

i=1 wi

(9.11)

wherewi = 1/|di|, |di| being the distance between the centroids of the ith neighbour
(which is a F cell) and b. Here, n represents the total number of node-sharing cells
in the neighbourhood of the immersed cell.

In the following section, we shall explore the efficacy and versatility of the IB-FV
solver that employs this HCIB strategy in an unstructured finite volume framework
to estimate aerodynamic forces and heat loads in high-speed flows.
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9.4 Numerical Investigations

This section is devoted to the numerical studies using the IB-FV solver for com-
pressible inviscid and viscous flows. The importance of the interpolation strategy on
the accuracy of the solution is investigated through a number of test cases involving
simple moving bodies and complex stationary geometries on canonical problems
in inviscid and laminar hypersonic regimes. We discuss the role of solution recon-
struction on conservation errors in compressible flows. One of the critical issues
related to non-conformal approaches is that of discrete conservation. Due to the
non-conservative nature of the solution reconstruction performed in the I cells (as
opposed to the solutions obtained at F cells by solving discrete form of the conser-
vation laws), there is an inherent lack of conservation in IB approaches. This issue
has not been addressed at length in the compressible flow regime, and we probe this
aspect using two different test problems.

9.4.1 Transonic Flow Past Bump

The first test case is the transonic flow past a 10% thick bump. The computational
domain is 3 × 1, and the associated boundary conditions are shown in Fig. 9.3. The
inflow is at a freestream Mach number M∞ = 0.675 while the pressure at the outlet
is fixed, Pout = 0.737. This test case Ni (1982) leads to a normal standing shock
nearly three quarters from the leading edge of the bump. We carry out simulations
on four meshes, viz. 150× 50, 225× 75, 300× 100 and 450× 150 using the IB-FV
solver. Computations have also been performed using a FV solver on body-fitted
meshes of equivalent grid resolution. In Fig. 9.4a–d, we show the comparison of
the solutions obtained using the non-conformal IB-FV solver along with the body-
conformal FV solver. One can clearly observe that not only is the shock diffused in
the coarsest grid, its location has also been inaccurately estimated with the IB-FV
solver. With grid refinement, the shock location approaches that estimated using the
FV solver, which is indeed conservative. One can notice that the shock location from
all FV solutions is same (except the shock is diffused on coarser grids). We also see
the differences between the two solvers from the pressure distributions in Fig. 9.5a
and b where the average shock location using IB-FV approach depends on the grid
resolution and agrees with those estimated by the FV solver only on the finest mesh
and the computed results from Luo et al. (2006).
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Fig. 9.3 Computational domain for transonic flow past bump along with boundary conditions
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Fig. 9.4 Mach contours depicting normal standing shock for different mesh resolutions a 150 ×
50, b 225 × 75, c 300 × 100 and d 450 × 150 (Min: 0.1, Δ: 0.1, Max: 1.5) (Top: IB-FV solver;
Bottom: FV solver on body-fitted mesh)

These observations confirm that the solutions obtained using the IB-FV solver
are not discretely conservative but the conservation errors diminish with grid refine-
ment. We further investigate these discrete conservation errors by considering the
supersonic flow past a wedge.
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Fig. 9.5 Pressure distribution on the surface of the body from a FV solver on conformal grid and
b IB-FV solver on non-conformal grid and its comparison with Luo et al. (2006)

9.4.2 Supersonic Flow Past Wedge

We numerically simulate the supersonic flow past a wedge with a semi-vertex angle
of 20◦ and a freestream Mach number M∞ = 2. This configuration is however not
aligned with the underlying Cartesian mesh nor is the oblique shock that is the
flow feature of interest. For this test problem as well, we simulate the flow on four
different meshes in a domain of size 0.1× 0.15. The details of the mesh are provided
in Table9.1. We compute the mass defect on every mesh as,

Δm =
∑

ρf U⊥,f ΔSf (9.12)

where the summation is over all the boundary faces of the domain as well as the
interior faces shared by S and I cells, i.e. the summation is performed along the stair-
step representation in Fig. 9.1. For the FV solver on body-fitted meshes, the mass
defect would be of the order of the steady-state residuals, which is a result of the
discrete mass conservation. Since the IB-FV framework has been shown to be not
discretely conservative, we expect a finite mass defect larger than the steady-state

Table 9.1 Mass defect Δm on different grids

Grid Characteristic length scale, h Mass defect, Δm

100 × 150 1/100 0.115

150 × 225 1/150 0.075

200 × 300 1/200 0.057

250 × 375 1/250 0.045



264 S. Brahmachary et al.

Fig. 9.6 Variation of mass
defect Δm with grid
refinement
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residuals on every mesh. This is confirmed in Table9.1 which shows the mass defect
on the four different meshes. The errors are three orders of magnitude higher than the
residuals, but decrease as the grid is refined. From Fig. 9.6, one can see that the mass
error falls at a rate close to unity i.e. mass defect fall linearly with grid refinement.
Thus, one can remark that there is a finite O(h) conservation error for the IB-FV
approach similar to the observations made for a class of mesh-free methods (Sridar
and Balakrishnan 2003) and the framework is strictly conservative only in the limit
as grid spacing tends to zero.

9.4.3 Hypersonic Flow Past Double Ellipse

To demonstrate the ability of the IB-FV solver in handling hypersonic Euler flows
past complex configuration, we study the high-speed high angle-of-attack flow past
a double-ellipse configuration (Gustaffson et al. 1991). The freestream Mach num-
ber is M∞ = 8.15 and the angle of attack of 30◦ makes it challenging to accurately
simulate the flow as well as estimate the surface pressure distribution. The dou-
ble ellipse is immersed into two different Cartesian meshes with a total number of
cells nc = 36,000 in a computational domain of [−0.1, 0.1] × [−0.1, 0.1]—while
one employs a uniform grid (see Fig. 9.7a) with equal grid spacing the other utilises
a non-uniform spacing (see Fig. 9.7b) which is finer near the canopy region.

The significance of the mesh in the context of non-conformal IB-FV solver can
be understood from Fig. 9.8a where the surface distribution of pressure coefficient
Cp is shown for both the uniform and non-uniform meshes. It can be observed that
while results computed on both these meshes yield an overall fair agreement with the
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Fig. 9.7 a Uniform, b non-uniform Cartesian grid employed in IB-FV solver for flow over double
ellipse
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Fig. 9.8 a Pressure distribution and b Mach contours for hypersonic flow past double ellipse (Min:
0, Δ: 0.5, Max: 8.15)

numerical data of Gustafsson et al. (1991), the uniform mesh is not very accurate in
resolving the pressure jump across the weak canopy shock. The non-uniform mesh
clustering however accurately captures the weak canopy shock and hints towards the
need for selectivemesh refinement in regionswhere sharp gradients in flow are likely.
Figure9.8b depicts the Mach contours that show the strong detached bow shock as
well as the weak canopy shock. We can, therefore, remark that the IB-FV solver
is capable of accurately computing flows with sharp flow gradients but necessitates
sufficient local mesh resolution to also resolve the complex geometries.
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9.4.4 Cylinder Lift-Off

To highlight the applicability of the IB-FV solver for moving body problems, we
simulate the supersonic flow past a cylinder initially at rest but “lifts-off” due to the
aerodynamic forces. The test case consists of a rectangular domain of size 0.1 × 0.2
with a cylinder of radius 0.05m and density ρc = 10.77kg/m3 placed at the bottom
wall (0.15, 0.05), as shown in Fig. 9.9. The pre-shock condition is maintained as
ρ=1.4kg/m3 and p = 1Pa, whereas the left boundary is assigned as post-shock state.
The cylinder is considered rigid and the influence of gravity is neglected and we
compare our solutions with available numerical results in the literature that make the
same assumptions. Studies were conducted on uniform Cartesian grids whose details
are provided in Table9.2 which also contains the position of the centre of mass of the
cylinder at a final time of t ∼ 0.3s. It can be observed that while there are differences
in the position of the cylinder when compared with the results in Arienti et al. (2003),
these differences tend to diminish with increasingmesh resolution. These differences
can also be attributed to the fact that the reconstruction strategy in the I cells in the
present work are different from those in Arienti et al. (2003). Figure9.10 shows the
pressure contours at two different time instances which clearly depict the complex
unsteady flow phenomena. We also compare the time history of the trajectory of the
cylinder with those computed by Sambasivan and UdayKumar (2009) in Fig. 9.11
and a good agreement in the results is further proof of the ability of the proposed
IB-FV framework in computing high-speed Euler flows accurately.

In the test case to follow, we shall investigate the efficacy of the present IB-FV
flow solver for scenarios involving laminar hypersonic flows with an emphasis on
the accurate prediction of wall heat flux and skin friction.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2
t = 0.0 s S

upersonic
outlet

S
upersonic

inflow

Initial shock location

Fig. 9.9 Location of body and shock at time t = 0 s

Table 9.2 Position of centre of mass of cylinder (in m) at time t ∼ 0.3s

IB-FV Arienti et al. (2003)

Characteristic
grid scale, h

Xc Yc Xc Yc

1/500 0.721 0.144 – –

1/1000 0.697 0.147 0.625 0.145

1/1600 0.684 0.148 – –
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Fig. 9.10 Pressure contours at a t = 0.16 s (Min: 0, Δ: 0.4, Max: 19.22), b t = 0.3 s (Min: 0, Δ:
0.4, Max: 19.22) on 1000 × 200 grid

Fig. 9.11 Trajectory of the
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cylinder on 1000 × 200 grid
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9.4.5 Hypersonic Flow Past a Flat Plate

Wefirst numerically simulate the viscous compressible flow past a flat plate of length
L = 0.5334m at a freestreamMach numberM∞ = 6. Although the geometry is sim-
ple, the high freestream Reynolds number Re∞ = 1.4 × 107 makes it an interesting
test case to test the ability of the IB-FV solver in accurately predicting the wall prop-
erty distributions. The freestream pressure and temperature areP∞ = 2211.56Pa and
T∞ = 65 K, respectively, and the surface of the flat plate is maintained at a constant
temperature Tw = 100 K. We consider a computational domain of size 0.1× 0.5334
which is divided into a total number of control volumes nc = 50,000, with 250 grid
points along the length of the body and 200 grid points normal to it. The grid is
non-uniform with clustering near the wall surface and a minimum grid spacing of
Δymin = 4 × 10−6 m is chosen to ensure that the boundary layers arewell-resolved.
The computations have also been performed using the FV solver as well for the sake
of comparison.

Figure9.12a shows the comparison of the pressure distribution along the surface
of the flat plate obtained from the IB-FV and the FV solvers. The pressure distri-
butions from both the solvers are in excellent agreement as is also the distribution
of wall Stanton number in Fig. 9.12b. It is also interesting to note that the heat flux
distribution computed suing the IB-FV solver also agrees well with the numerical
data of Lillard and Dries (2005). Although the flat plate geometry conforms to the
Cartesian grid, the IB-FV solver computes the near-wall quantities using a linear
reconstruction as opposed to the FV solver which solves the conservation laws. The
excellent comparison of wall pressure and Stanton number distributions is a testi-
mony to the fact that the linear reconstruction suffices to accurately estimate the wall
heat fluxes on simple geometries even at high Reynolds numbers.
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Fig. 9.12 Distribution along the surface of the wall for a wall pressure and b Stanton number with
numerical data of Lillard and Dries (2005)
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9.4.6 Hypersonic Flow Past a Compression Ramp

In order to consider non-aligned geometries, we numerically investigate the flow past
a compression ramp which has been studied in the past both numerically as well as
experimentally (Holden 1978). Figure9.13a describes the configuration consisting of
a straight rampof lengthL = 0.4394manda semi-vertex angle of 15◦. The freestream
conditions are taken the same as that of the experimental study with M∞ = 11.63
and Re∞ = 552,216/m. The freestream temperature is T∞ = 67.05 K with the ramp
surface kept at a constant temperature of Tw = 294.38 K. The computational domain

0 0.70

0.12

Flat plate Ramp

Flat plate Ramp

Fig. 9.13 a Ramp geometry (schematic, not to scale), b locally adapted grid and c pressure contour
for flow past compression ramp (Min: 0, Δ: 51.66, Max: 620)
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is initially divided into nc = 67,500 volumes with a minimum grid spacing of Δy =
3.2 ×10−4 m. This initial resolution was improved to properly capture the boundary
layer by selective adaptation and the final adapted mesh shown in Fig. 9.13b had
229,338 control volumes with a minimum grid spacing of Δy = 2×10−5 m. This
corresponds to a cell Reynolds number (based on freestream conditions and local
grid resolution) around 11 and is shown to be sufficient to resolve the boundary layer.

Figure9.13c shows the pressure contours where the leading edge shock emanating
near the compression corner strikes the ramp and this region corresponds to the max-
imum pressure on the ramp surface. Figure9.14a compares the surface distribution
of coefficient of pressureCp which shows an excellent agreement with experimental
data. The comparison of wall skin friction and Stanton number in Fig. 9.14b and c
also agrees quite well with the experimental observations. These results demonstrate
that the IB-FV solver is fairly accurate even when the geometries are not conforming
to the underlying mesh, provided the mesh resolution near the boundary is sufficient
enough. This demands a low value for the cell Reynolds number and can be achieved
using selective adaptive refinement as in this study.
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9.4.7 Hypersonic Flow Past a Cylinder

As afinal test case,we consider the laminar hypersonic flowpast a blunt configuration
that has been studied experimentally in the past. This is a canonical configuration
representative of the nose cone of re-entry geometries, and the test case is an ideal
one to assess the IB-FV framework for high Reynolds number compressible flows
past blunt geometries. The configuration is a circular cylinder of radius 0.0381m (see
Fig. 9.15a) in a hypersonic flow with freestream Mach number of M∞ = 8.03 and
freestreamReynolds number ofRe∞ =1.835×105. The cylinderwalls aremaintained
at Tw = 294.44 K while the freestream temperature is T∞ =124.94 K, following the
experimental study by Wieting (1987). The computational domain of size 0.07 m ×
0.14 m is initially discretised by a uniform Cartesian mesh with a grid spacing of
2.3×10−4 m, into which the cylinder is immersed. This grid resolution is improved
significantly by four levels of localmesh refinement resulting in afinal grid of 244,433
control volumes that have a near-wall resolution of 1.43×10−5 m.

Figure9.15b shows the pressure contours from the steady-state solution where the
detached bow shock is clearly visible. The surface pressure distribution in Fig. 9.16
is in excellent agreement with the experimental data of Wieting (1987) (for both
initial and final grids), indicating that the grid resolution is not critical in predicting
the wall pressures. However, one can observe from Table9.3 that this is not the case
for stagnation point heat flux, which is severely under-predicted when compared

-0.07 0
-0.07

0

0.07

R = 0.0381 m

Fig. 9.15 a Cylinder geometry and b pressure contour for flow past cylinder (Min: 0, Δ: 5087,
Max: 71,220)
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Fig. 9.16 Pressure distribution along the cylinder and its comparison with experimental data
(Wieting 1987)

Table 9.3 Comparison of stagnation point heat flux qo

Method qo (W/cm2)

Wieting (Wieting 1987) (Exp) 72

IB-FV (initial grid) 0.876

IB-FV (adapted grid) 5.58

to the experimental data. Surprisingly, the estimates of stagnation point wall heat
flux showed little improvement with local adaptation. This is in stark contrast to the
performance of the solver for the test case in Sect. 9.4.6 where the Stanton number
distribution on the ramp surface was quite accurately predicted. The inaccurate pre-
dictions of the wall heat flux raise concerns regarding the reconstruction strategy
and recent studies in Brahmachary (2019) point to the need to evolve physics-driven
reconstruction with possibly non-linear/non-polynomial interpolants for velocities
and temperature.

9.5 Conclusions

The present work is directed towards the development and assessment of a sharp-
interface immersed boundary/finite volume approach for high-speed compressible
flows in an unstructured Cartesian mesh framework. The methodology adopts a one-
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dimensional linear reconstruction that preserves the sharp geometric interface and
the framework is rigorously tested for both inviscid and viscous flows. We show
that the framework is not discretely conservative but the conservation errors are
found to decrease with grid refinement, pointing to the consistency of the approach.
Numerical investigations on inviscid test problems with stationary and moving bod-
ies show that the IB-FV solver can quite accurately predict the wall pressures and
aerodynamic forces. However, the numerical framework was not entirely accurate
for laminar hypersonic flow problems. While the IB-FV solver could compute the
wall pressures accurately for the three geometric configurations studied herein at
high Reynolds number, it could compute the surface heat fluxes accurately only for
non-blunt geometries. On blunt configurations, the IB-FV solver significantly under-
estimated the stagnation point heat flux and these estimates were largely unaffected
by increasing grid resolution. The source of these errors in heat flux predictions
clearly lies in the reconstruction accuracy and conservation errors, and a thorough
diagnostic analysis (Brahmachary 2019) needs to be undertaken to uncover the defi-
ciencies of the sharp-interface IB-FV solver and improve its performance for high
Reynolds number hypersonic flows.
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Chapter 10
A Higher-Order Cut-Cell Methodology
for Large Eddy Simulation of
Compressible Viscous Flow Problems
with Embedded Boundaries

Balaji Muralidharan and Suresh Menon

10.1 Introduction

The advantages of using embedded boundary (EB) methods for computational fluid
dynamics (CFD) applications are well known. The foremost being ease of grid gener-
ation for complex geometries and moving boundaries. In EB approaches, the domain
boundaries are not resolved by the numerical grid, rather the numerical schemes used
to solve the flow governing equations are modified appropriately to account for the
presence of physical boundaries. It is in this numerical treatment of the embedded
boundary the various EB approaches vary. An excellent overview of the existing
methods to represent embedded boundaries within the background mesh is provided
by Mittal and Iaccarino (2005). For the purposes of this study, we only consider the
cut-cell-based EB method in which regular mesh elements cut by the intersection of
the solid boundary are reshaped to conform to the shape of the interface. The cut-cell
approach is designed to satisfy the underlying conservation laws for the cells near
the interface. Strict global and local conservation of mass, momentum, and energy is
guaranteed by resorting to a finite volume discretization even for the cut-cells. The
Cartesian cut-cell finite volume methods (Clarke et al. 1986; Udaykumar et al. 1996;
Hartmann et al. 2011; Muralidharan and Menon 2016) are, therefore, in comparison
to finite difference ghost cell methods (Kim 2001; Majumdar 2001), attractive as
they enforce strict conservation and also can avoid the generation of spurious pres-
sure fluctuations that are observed typically with ghost fluid methods (Cecere and
Giacomazzi 2014; Mittal and Iaccarino 2005; Merlin et al. 2012).
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Oneof themotivations of developingEBmethods is to apply them to solve realistic
flow problems involving complex geometries. Due to highly turbulent nature of most
of the practical flows, resolving all scales of motion, as is done in a Direct Numerical
Simulation (DNS), is not possible due to the high computational costs involved.
The alternative is to employ large eddy simulation (LES) in which only the most
energy-containing eddies are resolved by the numerical grid and effect of small
scales of motion on the larger scales is modeled. Adaptive mesh refinement (AMR)
is another popular strategy for reducing computational cost by providing higher
grid resolution only in the regions of interest. AMR was originally proposed for
shock hydrodynamics (Berger and Colella 1989) and has been traditionally applied
to mainly inviscid flows to capture features such as shocks, contact discontinuities,
and expansions.

The introduction of unconventional numerical techniques such as embedded
boundarymethods andAMRcan complicate the closure problem forLES.Themajor-
ity of subgrid closures for LES have been developed for body-conformal, uniform
gridswithout local refinement. The behavior of the closuremodels for unconventional
methodologies such as dynamic mesh refinement (Berger and Colella 1989) and
embedded boundary techniques (Mittal and Iaccarino 2005) is not completely under-
stood. Additionally, a common problem with most EB methods is that they are of
lower-order accuracy near boundary. Besides, these methods also suffer from issues
such as mass loss and noisy reconstruction of flow solution quantities such as wall
shear stress and heat flux (Coirier and Powell 1996). In the context of turbulencemod-
eling using LES technique, the numerical errors at the boundary can strongly interact
with the subgrid closure models introducing a significant uncertainty in the simula-
tion results (Kravchenko and Moin 1997). Therefore, use of high-order EB schemes
with smooth behavior of flowquantities and their derivatives at the boundary becomes
particularly relevant for LES as the truncation errors from lower-order schemes can
exceed the magnitude of the subgrid-scale term (Kravchenko and Moin 1997).

To date, there have been only a few reported works on modeling turbulence using
the cut-cell-based EBmethods.Meyer et al. (2010) developed a conservative second-
order accurate immersed interfacemethod suitable for LES of high Reynolds number
incompressible flows. However, an implicit LES approach in the capacity of ALDM
approach was employed for the turbulence closure. Essentially, the numerical dissi-
pation of the scheme was assumed to mimic the physical dissipation due to action of
small-scale unresolved turbulence. In a recent article, Berger and Aftosmis (2012)
extensively analyzed modeling of steady viscous compressible flows using Carte-
sian cut-cell finite volume method. They explored the use of wall models for laminar
and turbulent flows to suppress numerical oscillations in the second derivatives used
for viscous flux computations. To the best of the author’s knowledge, there have
not been many studies in the area of LES with embedded boundary methods and
dynamic refinement for turbulent flow problems.

A high-order accurate adaptive Cartesian cut-cell method has been recently devel-
oped by Muralidharan and Menon (2016, 2018) that addresses most of the short-
comings of the previous approaches. A high-order solution was achieved by using a
k-exact reconstruction based on a piecewise polynomial approximation of the flow
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solution locally near the embedded boundary. A novel cell clustering approach was
employed that was based on previously established cell-linking approaches for deal-
ing with the ‘small cell’ problem afflicting all the cut-cell methods. One of the key
strengths of the cell clustering approach is that it preserves the order of accuracy of the
underlying numerical scheme both locally and globally. Additionally, the approach
ensured smooth reconstruction of quantities involving flow gradient such as the skin
friction coefficient. These features make this approach very suitable for LES of tur-
bulent flow problems. In an another recent study by the authors, a multi-level subgrid
closure for LES of compressible flow problem with local adaptive mesh refinement
was developed (Muralidharan and Menon 2019) (henceforth called as AMRLES).
Consistent and conservative behavior of the subgrid kinetic energy across the mul-
tiple levels was demonstrated using the AMRLES approach. The goal of this study
is to extend the multi-level closure for LES to problems with embedded boundaries.
Appropriate closure model corrections to AMRLES framework suited to the cut-
cell EB method are proposed. The cut-cell-AMRLES strategy is then assessed for
canonical flow problems. Detailed evaluation of the closure model coefficients is
performed and reported.

The organization of the paper is as follows. In the first section, the mathematical
formulation and the numerical approach are described. The details of the closure of
the subgrid-scale turbulence in the presence of a locally refined grid and embedded
boundary are also detailed in this section. The results for canonical turbulent flow
problems with the proposed cut-cell-AMRLES framework are reported in the next
section. Finally, summary of the work is presented along with future directions in
the conclusion section.

10.2 Mathematical Formulation and Numerical Approach

10.2.1 Governing Equations for Multi-level AMRLES

In the current study, block-structured adaptive mesh refinement is performed near
embedded boundaries to better resolve the near-wall flow features. To perform block-
based refinement, the flow solver is interfaced with BoxLib AMR library developed
at LBNL. Accordingly, the Favre-filtered compressible LES governing equations for
a multi-level AMR grid with l = 1, 2, . . . ,N levels of refinement as detailed in a
previous work (Muralidharan and Menon 2019) are given by:
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where ρ, ui,E, andp are the density, velocity components, total energy, and pressure,
respectively. τij is the viscous stress tensor, and qi is the thermal conductivity flux in
the ith direction. In the above equations, all the subgrid-scale terms, indicated with
a sgs superscript, are unclosed, and therefore, require modeling. The multi-level
filtering operation, denoted by l , can be defined as:

φ
l = Gl ∗ Gl+1 ∗ · · · ∗ GNφ. (10.2)

for any flow quantity φ. Gl is the filtering operator associated with level l which
can vary from l = 1, 2, . . . ,N with N being the maximum level of refinement. The
representation of the filtered quantity on a multi-level AMR grid is shown both
in the wavenumber space and in the physical hierarchical grid system in Fig. 10.1.
The wavenumber corresponding to each AMR level and the corresponding filtered
quantity at that level is indicated in the figure.

The closure models for each of the sgs, l terms are summarized below:

τ
sgs,l
ij = −2ρ

l
ν l
t

(
˜̃Sl

ij −
1

3
˜̃Sl

kkδij

)
+ 2/3ρ

l
k
sgs,l

δij, (10.3)

ν l
t = Cl

ν

√
ksgs,l	l, (10.4)

(a) (b)

Fig. 10.1 Schematic of turbulent kinetic energy spectra in a physical space and b wavenumber
space. The multi-level filtering of a flow quantity φ and the associated wave number are also
indicated. Reprinted with permissions from Muralidharan and Menon (2019)
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and
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The transport equation for the subgrid kinetic energy for a multi-level AMR grid
system is given by:
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with the different closure terms in the ksgs equation taking the following form:
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Dksgs,l = ρ
l
Cl

ε

(
ksgs,l

)3/2
/	l . (10.10)

Equations (10.3–10.10) are in fact exact equivalents of a single-level ksgs transport
equation with single-level flow variables now replaced with their multi-level rep-
resentation. The coefficients, Cl

ν , Cl
ε , αl

pd , and Prlt , are computed still computed
dynamically for each level after employing a test filter with twice the local grid size
and using a least square approach (Génin and Menon 2010).

As detailed in the previous study (Muralidharan and Menon 2019), the sgs terms
in Eq. (10.1) are closed using the standard single-level closures for each level inde-
pendently. The only difference is in the treatment of the subgrid turbulent kinetic
energy ksgs,l for which an additional correction is performed as given by:

ρksgs,l = ρksgs
l + ρδ

sgs,l
, (10.11)

ρδ
sgs,l = ρuiui

l − ρui
l
ρui

l

ρ
l

. (10.12)

The multi-level correction procedure is illustrated in Fig. 10.2. For unrefined
regions, the single-level transport equation-based closure is employed. But for the
refined regions indicated by yellow and blue colors, the correction described by
Eq. (10.12) is applied. The multi-level formulation can be seen as a mixed model
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that employs, the transport equation-based sgs model at the finest resolution and
adding a correction based on the explicit filtering of represented turbulent kinetic
energy on the grid resolution finer than the current level.

10.2.2 Extension of the Multi-level AMRLES to Embedded
Boundaries

While in theory the multi-level formulation can be naturally extended for wall
bounded flows with embedded boundary representation, the procedure for dynami-
cally computing the coefficients becomes more complicated as test-level filtering is
not clearly defined at the embedded boundary. To overcome this problem, a two-layer
approach to the closure model is suggested. On the finest level comprising the wall
boundary, the flow is solved without any closure model (in a DNS mode) and away
from the boundary on the coarser underlying grids, the multi-level sgs closure is
employed. The multi-level correction from the finest (N ) to the coarser grid (N − 1)
injects the filtered subgrid turbulent kinetic energy (ksgs,N−1) which is then trans-
ported on the coarser grid levels. The two-layer sgs closure with EB is illustrated in
Fig. 10.2.

Fig. 10.2 Schematic of the multi-level correction for ksgs on a AMR mesh with EB
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10.2.3 Formulation and Implementation of Cut-Cell Method

ACartesian-based strictly conservative cut-cell method that is upto third-order accu-
rate for viscous problems with embedded boundaries has been developed in the past.
Readers are referred to a previously publishedwork of the authors (Muralidharan and
Menon 2016) for the detailed formulation and validation of the high-order cut-cell
method. A summary of the high-order cut-cell method is provided below.

Cut-cell method (Hartmann et al. 2008; Yang et al. 2000) is used in this work
to represent embedded boundaries on a Cartesian grid. Information for defining the
cut-cells at the embedded boundary is extracted from a levelset field description.
Levelset, as defined by Osher and Sethian (1988), Osher and Fedkiw (2003), is a
continuous scalar field having values φ > 0 in the fluid region, φ < 0 in the solid
region and φ = 0 at the interface. Once the levelset field is described completely, all
the cut-cell metrics can be computed.

To create a cut-cell, the levelset field is assumed to be piecewise linear in a cell
and is given as:

φ(x, y, z) =
1∑

p1=0

1∑
p2=0

1∑
p3=0

xp1yp2zp2ap1,p2,p3, (10.13)

(p1 + p2 + p3) ≤ 1

in which the coefficients, ap1,p2,p3, are determined based on the nodal values, φi, i =
1, 8 for a given computational cell. The embedded boundary surface is defined by
the function φ(x, y, z) = 0. The boundary equation along with the linear system of
equations representing the cut-cell edges is solved simultaneously to provide the
points of intersection of the boundary with the edges. The process of finding the cut
surface is illustrated in Fig. 10.3a. As shown, the embedded surface is approximated
by a planar cut in a given computation cell (i, j, k).

The main idea behind achieving a higher-order accuracy at the embedded bound-
aries is use of a piecewise high-order polynomial approximation of cell-centered
flow quantities as proposed by Ivan and Groth (2014). Accordingly, the following
reconstruction polynomial of order k for any conservative or primitive flow quantity
u in a given cell i is defined as follows:

uki (x, y, z) =
k∑

p1=0

k∑
p2=0

k∑
p3=0

(x − xc,i)
p1(y − yc,i)

p2(z − zc,i)
p3Dk

p1,p2,p3 ,

p1 + p2 + p3 ≤ k (10.14)

where (xc,i, yc,i, zc,i) are the cell center coordinates and Dk
p1,p2,p3 are coefficients

of kth-order approximation of u, which can be proved to be scalar multiples of
derivatives ofu usingTaylor series expansion.Once these coefficients are determined,
the above polynomial approximation in Eq. (10.14) can be employed to reconstruct,
anywhere within the cell i, the quantity u and its pth derivative with the order of
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(a) Cut-cell creation (b) Cut-cell definition

Fig. 10.3 Schematic of a three-dimensional cut-cell: a creation from levelset description φ with cut
surface described byφ(x, y, z) = 0.bVarious geometric variables for defining a cut-cell to represent
an embedded boundary. Reprinted with permissions from Muralidharan and Menon (2016)

accuracy (k + 1) and (k − p + 1), respectively. Using the volume-averaged values
of the current cell ui,

ui = 1

V

∫
v

k∑
p1=0

k∑
p2=0

k∑
p3=0

(x − xc,i)
p1(y − yc,i)

p2(z − zc,i)
p3Dk

p1,p2,p3dv, (10.15)

and the neighboring cell uj, the coefficientsDk
p1,p2,p3 can be found by solving a system

of linear equations defined as follows:

uj − ui =
k∑

p1=0

k∑
p2=0

k∑
p3=0

( ̂xp1yp2zp3)ijD
k
p1,p2,p3 | j = 1, . . . , np,

p1 + p2 + p3 ≤ k (10.16)

where np represents the number of neighbors that are required to solve the ith cell-
centered quantity and depends on the order of reconstruction. In Eq. (10.16), ̂xp1yp2zp3

is the geometric moment of jth cell about ith cell center given by:

( ̂xp1yp2zp3)ij =
∫
vj

(x − xc,i)
p1(y − yc,i)

p2(z − zc,i)
p3dv. (10.17)

More details on solving Eq. (10.17) can be found in a previous work by the authors
(Muralidharan and Menon 2016).
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10.2.4 Numerical Approach

The fluid solver is a finite volume, compressible, time-accurate LES code capable of
solving multi-phase, reacting, turbulent flows in both simple and complex geome-
tries using a structured, parallel multi-block schemewith second- and/or fourth-order
accuracy (Chakravarthy and Menon 2001; Génin and Menon 2010). Unless stated
otherwise, to evaluate the inviscid andviscousfluxes away from the embeddedbound-
ary, Mac-Cormack’s predictor–corrector (MacCormack 2003) method is employed
on the full cells. The finite volume version of the Mac-Cormack’s method couples
the time and spatial integration schemes. First-order or second-order extrapolation of
cell-averaged values that alternates between the downwind and the upwind directions
at each step is performed to compute the fluxes on the cell faces. This results in a
second-order accurate scheme in both time and space. A higher-order extrapolation
can increase the accuracy of the scheme to fourth order.

At the embedded boundary, the Central Essentially Non-Oscillating (CENO)
scheme using the k-exact reconstruction is used. The viscous fluxes are computed
using central finite difference, and the inviscid fluxes are evaluated by solving the
Riemann problem at the cell interfaces using the Hartmann-Lax-van Leer family of
approximate Riemann solvers (HLL and HLLC) (Toro 2009).

10.3 Results and Discussion

The goal of the following numerical case studies is to assess the multi-level cut-cell-
AMRLES subgrid closure for performing LES of flows with embedded boundaries.
To demonstrate the accuracy of the scheme, order of accuracy analysis for a Laplace
problem on a domain with embedded boundaries is reported. Results are then pre-
sented for LES of transitional flow past a cylinder and sphere.

10.3.1 Order of Accuracy Analysis for the Cut-Cell EB
Method

To demonstrate the accuracy of the cut-cell finite volume scheme, the following
Laplace’s problem:

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0, (10.18)

is solved on a series of successively refined grids and with two different orders
of reconstruction: k = 2 and k = 3. The exact solution of Eq. (10.18) is: ψexact =
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sin x exp y. Although a high-order accurate reconstruction of the flow-field quantities
and their derivatives iss obtained using the k-exact approach, the solution accuracy
degrades due to the aforementioned cell-mixing process. Particularly for viscous flow
problems, the classical cell-mixing method achieves numerical stability in compu-
tations but causes significant noise in the reconstruction of the derivative quantities,
e.g., shear stress and heat flux (Muralidharan and Menon 2016).

The cell clustering scheme is nowassessed for this Laplace’s problemon a domain,
D with a embedded boundary, . The boundary is defined by a levelset description
φ on a 1 × 1 unit domain given by:

φ1(x, y) = 1 −
√

(x − xc)2

r21
+ (y − yc)2

r22
, (10.19)

φ2(x, y) = 1 −
√

(x − xc)2

r22
+ (y − yc)2

r12
, (10.20)

φ(x, y) = min(φ1, φ2) (10.21)

where (xc, yc) is set at (0.5, 0.5) and r1 = 0.3, r2 = 0.5. The boundary represented
by the above levelset description is shown in the following Fig. 10.4.

Equation (10.18) is solvedusing thefinite volumeapproachdescribed inSect. 10.2.
All the conserved quantities are frozen, and an additional scalar equation is solved
for ψ with a Dirichlet boundary condition ψ(x, y) = ψexact imposed at the
immersed boundaries. The L1, L2, and L∞ norm of the errors are computed as

Lp(eψ) =
(

1∑
i vi

∑
i vi|eψ |p

) 1
p
with vi being the volume of cell, p is error norm, and

(a) (b)

Fig. 10.4 a Immersed domain for the Laplace’s problem represented using cut-cells. b Exact
solution to Laplace’s problem,ψexact = sin x exp y. Reprinted with permissions fromMuralidharan
and Menon (2016)
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Table 10.1 Error norms for solution to Laplace equation for different orders of k-exact reconstruc-
tion [Reprinted with permissions from Muralidharan and Menon (2016)]

Grid L1 Norm Order L2 Norm Order L∞ Norm Order

k = 2

402 2.03 ×
10−6

– 2.37 ×
10−6

– 4.173 ×
10−6

–

802 5.04 ×
10−7

2.01 5.90 ×
10−7

2.0 1.053 ×
10−6

1.99

1602 1.24 ×
10−7

2.02 1.46 ×
10−7

2.01 2.60 ×
10−7

2.02

3202 3.15 ×
10−8

1.98 3.70 ×
10−8

1.98 6.59 ×
10−8

1.98

k = 2

402 9.06 ×
10−8

– 1.14 ×
10−7

– 3.14 ×
10−7

802 1.0 × 10−8 3.17 1.26 ×
10−8

3.17 4.48 ×
10−8

2.81

1602 1.23 ×
10−9

3.03 1.54 ×
10−9

3.03 6.30 ×
10−9

2.83

3202 1.55 ×
10−10

2.99 1.95 ×
10−10

2.98 8.65 ×
10−10

2.86

The bold lettering in the table has been used to emphasize and highlight the order of accuracy of
the numerical scheme

Fig. 10.5 Error norms of ψ

for the solution to the
Laplace’s problem at
different grid resolutions for
the Laplace’s problem with
different orders of k-exact
reconstruction [Reprinted
with permissions from
Muralidharan and Menon
(2016)]

|eψ | = |ψ − ψexact|. The error norms are reported for different mesh sizes and for
k = 2 and k = 3 in Table10.1. The plot of the error norms along with the design
order of accuracy is shown in Fig. 10.5. To maintain consistency of the error analy-
sis, the k-exact-based CENO reconstruction is used for both the full and cut-cells to
evaluate the viscous fluxes.
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The error in the solution includes the effects of small cell clustering and mixing.
With the cell clustering algorithm, the design order of accuracy is achieved for both
k = 2 and k = 3. Previous studies employing cut-cell (Hartmann et al. 2011; Cecere
and Giacomazzi 2014) have only reported the reconstruction error which does not
account for the small cell effects. It is noted that in the current approach, the design
order of accuracy is achieved both locally and globally. This clearly indicates the
robustness of the proposed cell clustering approach in handling complex surface
topologies and still achieves higher order. The Laplace’s problem is representative
of the class of viscous flow problems since it involves elliptic, diffusion like term, and
therefore, the inferences made on order of accuracy for this simple problem should
be applicable to compressible viscous flow problems in general.

10.3.2 LES of Red = 3900 Flow Past a Cylinder

In this study, LES is employed to simulate the turbulent flow of Red = 3900 over a
cylinder of diameter, d. The simulations are performed in a large rectangular domain
of size (30d×30d× πd) with a base resolution of (150× 150× 20). As shown
in Fig. 10.6, six AMR levels are employed such that the effective resolution at the
cylinder surface is 0.003125d, which falls in at around y+ = 4, where + indicates
non-dimensionalization by the viscous length scale. The first point of the wall is
located at y+ = 2. The grid resolution is comparable to a previous study of the same

Fig. 10.6 Snapshot of local mesh refinement near cylinder surface for Red = 3900 flow past a
cylinder
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problem (Ranjan andMenon 2015). This problem has been extensively studied using
both body conformal and immersed boundary approaches in the past and therefore is
an ideal reference case for evaluating the current AMRLES closure with embedded
boundaries. Characteristic-based subsonic inflow is used in the left boundary, while
subsonic outflow condition is prescribed to the top, bottom, and right boundaries.
Front and back surfaces are prescribed with periodic boundary condition.

The stringentwall resolution requirement is due to lackof use of anywallmodeling
for performing AMRLES which makes this a wall-resolved LES. The coefficients
for the subgrid closure models are evaluated dynamically using the LDKM approach
(Génin and Menon 2010). The flow Mach number is set at M = 0.2 which is low
enough to avoid any compressibility effects. The time history of the drag and lift
coefficient plots is shown in Fig. 10.7.

The average drag coefficient of Cd ≈ 1 matches with the data from past studies
(Son and Hanratty 1969; Ranjan andMenon 2015). The amplitude changes in the lift
coefficient are due to vortex shedding events occurring downstream of the cylinder.
The vortex structures in the wake of the cylinder are identified by the iso-surface of
Q-criterion colored with streamwise velocity and are shown in Fig. 10.8. It can be
observed that the boundary layer separates around the top and bottom of cylinder
and forms shear layers which breaks up into coherent structures and eventually into
small-scale turbulence within a couple of diameters downstream of the cylinder.

The instantaneous snapshots of vorticity magnitude, subgrid kinetic energy, and
eddy viscosity ratio are shown in Fig. 10.9. An important observation from the sub-
grid kinetic energy plot is that the ksgs is generated in shear layer following the
coarsening of the finest AMR mesh covering the cylinder surface. As noted in the
grid turbulence case study discussed in a previous study (Muralidharan and Menon
2019), the generation of ksgs from a fine/coarse AMR interface occurs solely due
to the multi-level subgrid closure. The inflow is laminar and therefore in the free-

Fig. 10.7 Time history of
drag (Cd ) and lift (Cl )
coefficient of Red = 3900
flow past a cylinder

160 180 200 220 240 260

tU∞/D

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

C
d
,C

l



290 B. Muralidharan and S. Menon

Fig. 10.8 Vortex structures’ visualization by iso-surface of Q-criterion colored with streamwise
velocity

stream ksgs = 0. Without the correction, ksgs will remain zero in the wake resulting
in insufficient dissipation at small scales.

Statistics are collected for 100 non-dimensionalized time units, t = d/u∞ . In
Fig. 10.10, the average pressure coefficient Cp and the skin friction coefficient Cf

are plotted over the surface of the cylinder. The data was averaged in space and also
along the z-direction. Excellent agreement is obtained for the point of separation
and pressure coefficient data. The skin friction coefficient is also matching well with
the past data. Also, note the smoothness in the pressure and skin friction coefficient.
To the best of the author’s knowledge, such a smooth reconstruction, especially in
the skin friction coefficient has never been shown in any of the past IB studies.
Overall, the Cut-cell-AMRLES approach captures the near-wall solution very well.
There are some oscillations in the skin friction coefficient plot around 50◦. These
oscillations indicate that the flux reconstruction in the cell present in these regions is
not accurate. More investigation is needed to ascertain the source of these numerical
artifacts, but the current hypothesis is that the cell clustering and thus the polynomial
reconstruction are affected because of some degenerated small cells. Nevertheless,
in other regions, the skin friction coefficient distribution is smooth.

To further assess the performance of the subgrid closure, the time-averagedplots of
various flow- and closure-related quantities are presented in Fig. 10.11. The stream-
line plots along with the streamwise velocity contours clearly show two recirculation
bubbles in the back of the cylinder which are close to symmetric with respect to the
streamwise direction. The reattachment length from for bubble is around two diam-
eters which matches with observations from past experimental studies. From the
figure, the generation of ksgs in the free shear layer formed from the boundary layer
separation is clearly seen in the mean sense. The closure model parameters Cν , Cε
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Fig. 10.9 Instantaneous snapshot of a vorticity magnitude, b subgrid kinetic energy, and c eddy
viscosity ratio in the center x-y plane
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Fig. 10.10 Time and spatially averaged (in homogeneous direction) data of a pressure coefficient
Cp and b skin friction coefficient for Red = 3900 flow past cylinder. Block dots in a represent data
from a past experimental study (Norberg 1987) and b represent data from a body-fitted LES (Ranjan
and Menon 2015)
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Fig. 10.11 Time-averaged plots of a streamwise velocity, b subgrid kinetic energy, c LDKM
parameter Cν , and d LDKM parameter Cε in center x-y plane

that are computed dynamically show a wide variation, especially in the wake region.
As expected there is a significant increase in the value of parameter Cν in the wake
region where the large-scale vortex structures breakdown and flow become turbu-
lent. The increase in Cν in turn increases the contribution of the subgrid stress to
the momentum equation through Eq. (10.4). The plot of the time-averaged Cε shows
high values near the boundary and the shear layer. Downstream of the cylinder in the
turbulent wake, the value of theCε drops. Since this parameter is a scaling coefficient
for the model of dissipation of subgrid turbulent kinetic energy, a high value of Cε

implies increased subgrid dissipation in the near-wall region and shear layer.
The quality of thewake predictions by theCut-cell-AMRLESapproach is assessed

by comparing the mean streamwise velocity along the centerline of the cylinder with
previous data in Fig. 10.12. Overall, the velocity deficit and recovery post reattach-
ment is captured well in the current simulation. But it appears that the length of
the recirculation bubble is over-predicted which is causing a delayed reattachment.
Since the near-wall predictions are in excellent agreement with past data, the reason
for this discrepancy is suspected to be mainly because of lack of convergence of
the temporal statistics. A previous study (Ranjan and Menon 2015) performed time
averaging after 700 non-dimensionalized time units for an interval of 250 time units,
whereas in the current study, time statistics were collected after 150 time units for
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Fig. 10.12 Time-averaged
streamwise velocity along
the cylinder centerline. Blue
solid
line—Cut-cell-AMRLES,
black dotted
line—body-fitted LES
(Ranjan and Menon 2015),
black filled
dots—experimental (Shih
et al. 1993), black filled
triangles—experimental
(Ong and Wallace 1996)
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only an additional 100 time units. The wake predictions are expected to improve with
collection of more time-averaged data.

10.3.3 LES of Red = 3700 Flow Past a Sphere

Simulations of flow past spheres can be quite challenging with traditional body-
conformal structured grid methods mainly because of the complexity involved in
generating a good quality mesh especially near the wake region. Here, the Cut-cell-
AMRLES approach is employed to simulate the turbulent flow of Red = 3700 over
a sphere of diameter, d. The simulations are performed in a rectangular domain of
size 30d×30d×30d with a base resolution of (150× 150×150). The AMR levels
and grid resolution are kept same as the previous Red = 3900 study as the Reynolds
numbers are comparable. The plot of the AMR refinement for the sphere is shown in
Fig. 10.13. Characteristic-based subsonic inflow is used in the left boundary, while
subsonic outflow condition is prescribed to all the other boundaries. DNS simulation
of the same Reynolds number has been performed in the past (Rodriguez et al. 2011)
using an body-conformal unstructured approach.

The time history of the drag and lift coefficient plots is shown in Fig. 10.14. The
average value of the drag coefficient is found to beCd = 0.38. This is close to the value
ofCd ,DNS = 0.39 predicted by the DNS study. To visualize the vortex structures in the
wake of the sphere, the iso-surface of Q-criterion colored with streamwise velocity
is shown in Fig. 10.15. Similar to the cylinder case, the boundary separates from
the sphere surface and forms shear layer envelope which breaks down rapidly into
small-scale turbulence within a couple of diameters downstream. Due to the three-
dimensional nature of the free shear layer, the break down to small-scale turbulence
is much faster compared to flow past a cylinder.
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Fig. 10.13 Snapshot of local mesh refinement near surface for Red = 3700 flow past a sphere

Fig. 10.14 Time history of
drag (Cd ) and lift (Cl )
coefficient of Red = 3700
flow past a sphere

220 230 240 250 260 270 280 290 300 310

tU∞/D

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

C
d
,C

l

The instantaneous snapshots of subgrid kinetic energy and eddy viscosity ratio
are shown in Fig. 10.16. It can be seen from the figure that the behavior of the various
flow-field quantities is similar to the previous case of flow past cylinder. The multi-
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Fig. 10.15 Vortex structures visualization by iso-surface of Q-criterion colored with streamwise
velocity

Fig. 10.16 Instantaneous snapshot of a subgrid kinetic energy and b eddy viscosity ratio in the
center x-y plane

level closure injects ksgs when near-wall refinement ends into the shear layer. A jump
in the subgrid kinetic energy and the eddy viscosity is observed after a fine/coarse
AMR interface.

The data is time averaged over 100 non-dimensionalized time units. The plots
of the average pressure coefficient Cp and the skin friction coefficient Cf extracted
along themidplane of the sphere are presented in Fig. 10.17. The current results show
excellent agreement with the data from DNS and an experimental study for the Cp,
Cf , the back pressure and the point of separation. Again it has to be reiterated that
to the best of the author’s knowledge, such a good match has never been reported in
addition to smooth reconstruction of pressure and especially skin friction coefficient,
in any of the past studies employing an embedded boundary technique. The contour
plot of the pressure distribution on the sphere surface is shown in Fig. 10.18.
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Fig. 10.17 Time-averaged data of a pressure coefficient Cp and b skin friction coefficient for Red
= 3700 flow past cylinder. Solid blue line- Cut-cell-AMRLES Block dots in a represent data from
a past experimental study (Norberg 1987) and b represent data from a body-fitted LES (Ranjan and
Menon 2015)

Fig. 10.18 Smooth distribution of pressure on the sphere surface for Red = 3700 flow past a sphere

The wake predictions are assessed by comparing the mean streamwise velocity
and the RMS of streamwise velocity along the centerline with previous DNS results
in Fig. 10.19. The velocity deficit and recovery post reattachment are captured well in
the current simulation. The magnitude of the RMS of streamwise velocity is slightly
over-predicted, but the peak locations match well with the DNS data. As for the
cylinder study, the wake predictions are expected to improve with collection of more
time-averaged data.



10 A Higher-Order Cut-Cell Methodology for Large Eddy … 297

0 2 4 6 8 10 12 14
X/D

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
u/
U

∞

0 2 4 6 8 10 12 14
X/D

0.00

0.05

0.10

0.15

0.20

0.25

u r
m
s/
U

∞

Fig. 10.19 Time-averaged streamwise velocity along the cylinder centerline. Blue—Cut-cell-
AMRLES, Black dots—Body-fitted unstructured DNS (Rodriguez et al. 2011)

10.4 Conclusions

We have presented a multi-level subgrid closure model suited to a cut-cell-based EB
approach for LES of compressible flow problems. In the proposed framework, the
multi-level formalism of the block-structured refinement is exploited to build a two-
layer closure model. At the finest level comprising of the cut-cells used to represent
the embedded boundary, all the turbulence length scales are resolved and therefore
no subgrid closure is employed. The multi-level correction recently developed for
AMRLES is then applied to provide the filtered subgrid kinetic energy to the under-
lying coarser grids. A key advantage of the approach is that the multi-level correction
of the subgrid kinetic energy (ksgs) naturally introduces subgrid turbulence into the
coarser grids thus facilitating essentially a multi-level boundary condition for ksgs

at the embedded boundaries. The cut-cell-AMRLES framework thus builds on the
earlier works of the authors (Muralidharan and Menon 2016, 2019) combining a
high-order cut-cell EB approach with the AMRLES subgrid closure.

To demonstrate the accuracy of the cut-cell method, grid convergence studies are
presented for a 2D elliptic problem. The error analysis performed indicates that the
method achieves the design order of accuracy both locally and globally. The cut-
cell-AMRLES approach is then applied to study transitional turbulent flow past a
cylinder and sphere. Results show that there is a good agreement of the pressure and
skin friction coefficient data with past studies. The streamwise velocity and its fluc-
tuation are also compared well with the past data. The detailed analysis of the various
turbulent model parameters presented indicates that the proposed model behavior is
consistent and addresses some of the problems faced in the past related to LES of
AMR with embedded boundaries. For high Reynolds number fully turbulent flow
problems, resolving the near-wall turbulent can become considerably more expen-
sive since the adaptive refinement is isotropic. To handle such high Reynolds number
flow regimes, integration of the cut-cell-AMRLES approach with wall-modeled LES
(WMLES) (Kawai and Larsson 2012) can be attempted is a part of the future work.
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Chapter 11
Recent Developments on Employing
Sharp-Interface Immersed Boundary
Method for Simulating Fluid–Structure
Interaction Problems

Rajneesh Bhardwaj

11.1 Introduction

Understanding fluid–structure interaction (FSI) in several engineering and biological
systems is crucial for their design and innovation. In engineering, vortex-induced or
flow-induced vibration (VIV or FIV) of a structure subjected to a fluid flow could be
used in several energy-harvesting devices. In biology, FIV of vocal folds in larynx,
cardiac hemodynamics, fish propulsion, insect flying, etc., are some examples. The
secondary flows generated due to the FSI could be useful to augment heat transfer
in certain systems. Thermoregulation in elephants via flapping of their large ears is
one such example.

The above-mentioned FSI problems are computationally challenging. In partic-
ular, such problems involve the treatment of moving fluid–structure interface in
the fluid domain and complex three-dimensional shape of the structure and/or fluid
domain. The moving interface is a result of large-scale flow-induced deformation.
Structure modeling may involve geometric and/or material nonlinearity. For high-
speed flows, the boundary layer on the deforming interface should be adequately
resolved.

In general, Arbitrary-Eulerian-Lagrangian (ALE) and immersed boundary
(referred to as IB, hereafter) methods have been used to tackle the computa-
tional challenges mentioned earlier. ALE utilizes body-fitted grids while IB uses
a fixed/Cartesian grid, as compared in Fig. 11.1. The main difference between the
two approaches is as follows. A distorted grid needs to remesh in the former method
due to the large-scale motion of the structure while the fluid domain grid remains
fixed in the IB method. In the IB method, the motion of the structure is tracked
through marker points on the structure using a Lagrangian framework. Since the grid
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Fig. 11.1 a A structure conformal finite-element grid for ALE method. b A non-conformal
Cartesian grid for IB method

generation ismuch easier in the IBmethod and theALEmethod is prone to numerical
errors due to the inherent remeshing procedure, the IB method is an attractive choice
to simulate FSI problems. As mentioned in a notable review by Mittal and Iaccarino
on the IB method (Mittal and Iaccarino 2005), the implementation of the boundary
condition at the interface is realized by continuous forcing or discrete forcing. The
forcing term is added as a source term in the Navier–Stokes equations before the
discretization in the former approach. On the other hand, the forcing is applied after
the discretization in the latter, also known as the sharp-interface IB method.

In this brief review, we discuss the applications of the sharp-interface IB method
for computing challenging FSI problems. The layout of this chapter is as follows.
A brief review of the sharp-interface IB method and coupling scheme of flow and
structural solvers are presented in Sects. 11.2 and 11.3, respectively. We discuss the
vortex-induced vibration of a cylinder in Sect. 11.4. FSI benchmarks of an elastic
and viscoelastic splitter plate attached on a cylinder, involving large-scale flow-
induced deformation, have been presented in Sects. 11.5 and 11.6, respectively. We
discuss thermal augmentation in the FSI benchmark in Sect. 11.7. The flow-induced
deformation of a thin elastic plate due to blast loading has been presented in Sect. 11.8
and concluding remarks are present in Sect. 11.9.

11.2 Sharp-Interface Immersed Boundary Method

In a typical IB method, the governing equations of the flow domain are solved on
a fixed Cartesian (Eulerian) grid while the movement of the immersed structure
surfaces is tracked in the Lagrangian framework. The flow is governed by unsteady,
viscous and incompressible Navier–Stokes equations, expressed as follows,

∂vi
∂xi

= 0,
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∂vi
∂t

+ ∂vi v j
∂x j

= − ∂p

∂xi
+ 1

Re

∂2vi
∂x2j

, (11.1)

where i, j = 1, 2, 3, and vi, t, p and Re are velocity components, time, pressure
and Reynolds number, respectively. In a series of papers (Luo et al. 2008; Mittal
et al. 2008, 2011; Zheng et al. 2010), Mittal and co-workers developed a multi-
dimensional ghost-cell methodology in which the immersed structure boundary is
represented using an unstructured grid with triangular elements in Cartesian volume
grid of the flow domain. The following numerical methodology was adapted to solve
the above governing equations in their work (Luo et al. 2008;Mittal et al. 2008, 2011;
Zheng et al. 2010). The equations are discretized in space using a cell-centered,
collocated (non-staggered) arrangement of primitive variables vi, p and a second-
order, central-difference scheme is used for all spatial derivatives. The unsteady
Navier–Stokes equation is marched in time using a fractional-step scheme which
involves two steps: solving an advection–diffusion equation followed by a pressure
Poisson equation. During the first step, the convective terms are discretized using
second-order Adam-Bashforth method while the viscous terms are treated implicitly
using the Crank-Nicolson scheme to improve numerical stability. In this step, the
modified velocity is given by (Mittal et al. 2008),

u∗
i − uni
�t

+ 1

2
(3Nn

i − Nn−1
i ) = − 1

Re

δpn

δxi
+ 1

2
(D∗

i + Dn
i ), (11.2)

where N i and Di are convective and diffusive terms, respectively. In the second step,
the pressure Poisson equation is solved with the constraint that the final velocity is
divergence-free. Once the pressure is obtained, the velocity field is updated to its
final value in the final sub-step.

In this method (Luo et al. 2008; Mittal et al. 2008, 2011; Zheng et al. 2010), the
surface of the immersed body is represented by an unstructured surface mesh which
consists of triangular elements. Cells whose centers are located inside the structure
are identified as body-cells and the other cells outside the structure are identified as
fluid-cells (Fig. 11.2). A body-cell which has at least one fluid-cell as a neighbor is
called a ghost-cell (Fig. 11.2). The kinematic boundary condition at the interface is
prescribed by specifying an appropriate value at this ghost-cell.

While tackling a moving fluid–structure interface, the sharp-interface IB methods
are generally prone to spurious pressure oscillations. As described in the literature
(Mittal et al. 2008; Seo andMittal 2011), these oscillations result from fresh and dead
cells. The fresh (dead) cells are those fluid (solid) cells which were solid (fluid) cells
in the previous time step. In order to tackle these oscillations, an extrapolationmethod
for surface pressure has been utilized in the previous reports (Yang andBalaras 2006).
In this context, Seo andMittal (2011) employed a cut-cell-based discretization only to
the pressure Poisson equation and velocity correction equations in a finite-difference-
based sharp-interface IBmethod. The time step (�t) is limited by the maximumCFL
number (CFLmax), which is taken as 0.6 in the simulations. The expression of �t is
as follows,
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Fig. 11.2 Schematic of the ghost-cell method representing the fluid-cells, solid-cells and ghost-
cells, originally described by Mittal et al. (2008). Reprinted with permission from Mittal et al.
(2008). Copyright Elsevier (2008)

(
u1

�x1
+ u1

�x1
+ u1

�x1

)
�t ≤ CFLmax (11.3)

11.3 Coupling of Flow and Structural Solver

The governing equations for the structure are the Navier equations (momentum bal-
ance equation in the Lagrangian form) and are written in non-dimensional form
as:

ρs
∂2di
∂t2

= ∂σi j

∂x j
+ fi , (11.4)

where i and j range from 1 to 3, ρs is the dimensionless density of the structure with
respect to the fluid density, di is the displacement component in the i direction, t is
time, σ is the Cauchy stress tensor and f i is component of the body force per unit
volume in i direction. The coupling of flow and structural solver could be achieved
by a monolithic or partitioned approach. As discussed by Bailoor et al. (2017), the
governing equations for the flow and structure domains are discretized together in
the former approach and the nonlinear system of equations is solved as a whole. In
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Fig. 11.3 a Partitioned approach, b data exchange between flow and solid solver and c algorithm
of FSI solver. Reprinted with permission from Bhardwaj et al. (2014). Copyright Springer (2014)

the partitioned approach, an existing IBmethod could easily be coupled with another
existing structural solver (Fig. 11.3a). The data exchange between the two solvers
and a possible algorithm are shown in Fig. 11.3b, c, respectively. This approach
was employed by Bhardwaj and Mittal (2012) and Bailoor et al. (2017). Both stud-
ies utilized an open-source finite-element solver Tahoe© as a structural solver and
employed an implicit or two way coupling (Bhardwaj and Mittal 2012), which is
numerically stable at low structure-fluid density ratio. In general, the implicit cou-
pling is used if density ratio of structure to that of fluid is small. On the other hand,
one way or explicit coupling is suited for the problem for which the density ratio is
large and is computationally inexpensive.

11.4 Vortex-Induced Vibration (VIV) of a Cylinder

Vortex-induced vibration (VIV) of a cylinder is a classical FSI system, in which
an elastically mounted cylinder oscillates due to vortex shedding past the cylinder.
The coupled physics and associated characteristics of such a system are described
in a notable review by Williamson and Govardhan (2004). Depending upon the
application, VIV needs to be suppressed or agitated. The latter is useful in harnessing



308 R. Bhardwaj

Fig. 11.4 Schematic of the
VIV problem considered by
Garg et al. (2018) Cold plate

Hot plate

Cylinder 

Uniform inflow

g

Spring

ambient wind or hydrokinetic energy. The modeling of VIV has been attempted
successfully in the available reports. Yang et al. (2008) presented an embedded-
boundary formulation with a strong coupling between the flow and structure solvers,
andpredictedVIVcharacteristicswith a reasonablefidelitywith the developed solver.
Borazjani and Sotiropoulos (2009) successfully reported VIV characteristics of two
tandem cylinders by using the IB method. Recently, Griffith and Leontini (2017)
used a sharp-interface IB method for simulating the VIV. In their study, the spurious
pressure oscillations decreasedwith an increase in grid refinement and increasedwith
the cylinder velocity. Recently, Garg et al. (2018) used a sharp-interface IB method
for a VIV system shown in Fig. 11.4 and demonstrated that the VIV of an elastically
mounted cylinder can be achieved at a very low Reynolds number (Re) by invoking
thermal buoyancy. The thermal buoyancy was invoked by two cold and hot parallel
plates, kept in the direction of flow and symmetrically placed around the cylinder
(Fig. 11.4). They showed that in the absence of the thermal buoyancy, the VIV does
not occur for Re = 20 due to stable shear layers. By contrast, the thermal buoyancy
induces flow instability and the vortex shedding helps to achieve the VIV at Re =
20 (Fig. 11.5). In a series of papers (Garg et al. 2018, 2019), authors showed that a
significantly larger vibration amplitude of the cylinder over a wide range of reduced
velocity can be obtained in the presence of the thermal buoyancy, as compared to
that in the absence of the thermal buoyancy.

11.5 Flow-Induced Vibration (FIV) of a Thin Elastic Plate
Attached to a Circular Cylinder

AFSI benchmark involving large-scale flow-induced deformation was first proposed
by Turek and Hron (2006), in which an elastic plate is attached to the lee side of a
rigid cylinder, as shown in Fig. 11.6a. The fluid is Newtonian and incompressible,
while the structure is elastic and compressible. In this benchmark, the constitutive
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Fig. 11.5 Adapted from Garg et al. (Garg et al. 2018). a Vorticity field computed for an elastically
mounted cylinder in the absence of the thermal buoyancy, b vorticity field and temperature field
in the presence of the thermal buoyancy at Re = 20, Pr = 7.1, and Ri = 1, and c comparison of
time-varying lift coefficient in the presence of the thermal buoyancy for different cases of distance
between the two plates (HP = 2 and HP = 3). Reprinted with permission from Garg et al. (2018).
Copyright American Institute of Physics (2018)

model for the structure is Saint Venant–Kirchhoff material and plane strain condition
is considered. The computational domain and boundary conditions are shown in
Fig. 11.6a. A parabolic inflow velocity profile is prescribed at the left boundary of
the channel. No-slip boundary conditions are applied at the top and bottom walls.
Zero normal gradient of velocity is applied at the outflow. The Reynolds number
and dimensionless Young Modulus are defined as follows, Re = UmeanD/v and E
= E*/ρfU2

mean, where Umean is mean inflow velocity, D is cylinder diameter, v is
kinematic viscosity of the fluid [m2s−1] and E* is the Young Modulus [Nm−2].
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Fig. 11.6 Adapted fromBhardwaj andMittal (2012). a Schematic and boundary conditions (BC) of
the benchmark problem.All numbers shown are dimensionlesswith respect to the cylinder diameter.
The inset shows the finite-element mesh for the plate. b The vorticity field and deformation of
the elastic plate shown at different times for the baseline case. c Temporal variation of X and Y
displacements of the tip of the plate. Reprinted with permission from Bhardwaj and Mittal (2012).
Copyright Prof. R. Mittal (2011)

Bhardwaj and Mittal (2012) used a sharp-interface IB method to simulate the
FSI benchmark proposed by Turek and Hron (2006) at Re = 100 and E = 1400.
Figure 11.6b shows the calculated vorticity field and deformation of the plate at
different time instances, reproduced from Bhardwaj andMittal (2012). Vortices shed
from the tip of the plate, with the frequency on the order of the oscillation frequency
of the plate. The time-varying Y and X displacements of the tip of the plate are shown
in Fig. 11.6c, which shows that the plate attains self-sustained periodic oscillation
with plateau amplitude after a short time.
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11.6 Flow-Induced Vibration (FIV) of a Thin Viscoelastic
Plate Attached to a Circular Cylinder

Recently, Mishra et al. (2019) used a sharp-interface immersed boundary method to
simulate the response of a viscoelastic plate attached on a circular cylinder (Fig. 11.7,
top). Extending the FSI benchmark by Turek and Hron (2006), authors used the stan-
dard linear solid (SLS) model is used to represent the viscoelasticity of the plate.
They showed the effect of two parameters on the response of the plate, namely,
ratio of non-equilibrium to equilibrium Young’s modulus (R) and ratio of dimen-
sionless material damping to dimensionless non-equilibrium Young’s modulus (τ ).
The dimensionless amplitude of the tip displacement is found to be a non-monotonic

Fig. 11.7 Adapted from Mishra et al. (2019). (Top) Schematic of flow domain with details of
boundary conditions. The FSI benchmark, proposed by Turek and Hron (2006), was extended to
account for viscoelasticity of the plate. (Bottom) Variation of amplitude of the tip of the viscoelastic
plate with τ. Reprinted with permission from Mishra et al. (2019). Copyright Elsevier (2019)
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function of τ (Fig. 11.7, bottom). Their numerical results show that these two param-
eters could help either to suppress or to agitate the plate displacement. The latter has
applications in designing energy-harvesting devices.

11.7 Thermal Augmentation Using FIV of a Thin Flexible
Plate

The secondary flows generated during the interaction of flexible structures with the
fluid flow could be used to improve heat transfer between the fluid and a heated solid.
Such a method does not require any active control of the structure and could improve
the thermal performance of an FSI system. Soti et al. (2015) employed a sharp-
interface IB method to numerically demonstrate large-scale flow-induced deforma-
tion as an effective passive heat transfer enhancement technique. They showed several
validations of convective heat transfer module of the FSI solver, which utilizes the
IB method. They considered convective heat transfer in the FSI benchmark problem,
proposed by Turek and Hron (2006). Figure 11.8 (top and bottom) plots the vortic-
ity and isotherms in the channel with the heated walls at different time instances,
respectively. Soti et al. (2015) pointed out that the wake vortices generated due to
the self-sustained motion of the plate sweep higher sources of vorticity generated on
the heated walls in the bulk of the fluid [Fig. 11.8 (top)]. This causes an effective
mixing in the bulk fluid and thereby improves convective heat transfer at the wall.

11.8 Blast Loading on a Thin Flexible Plate

Coupled physics of the loading or interaction of a blast wave with human eyes or
brain is crucial to understand the mechanism of injury and associated risks to the
eyes or brain. The sharp-interface IB method has been successfully employed to
simulate the blast loading on the human eye by Bhardwaj et al. (2014), wherein a
partitioned approach was used to strongly couple the IB flow solver with an open-
source finite-element structure dynamics solver. In a follow-up study, Bailoor et al.
(2017) proposed an FSI solver based on the sharp-interface IB method for the inter-
action of compressible flow with a flexible structure. The flow solver was based on a
higher-order finite-differencemethod using a Cartesian grid and employed ghost-cell
methodology. Authors showed higher-order accuracy near the immersed boundary
by combining the ghost-cell approach with a weighted least squares error method
and validated the solver with previous measurement of displacement of a thin elastic
steel panel subjected to blast loading in a shock tube (Giordano et al. 2005), as shown
in Fig. 11.9a, b. The oscillating behavior of the tip of the panel and the computed
shockwave propagation (Fig. 11.9c)was found in good agreementwith the published
results.
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Fig. 11.8 Adapted from Soti et al. (2015). Vorticity contours (top) and isotherms (bottom) in a
channel with a cylinder attached to an elastic plate at different time instances for Re= 100. The time
instances are shown in the inset as black dots on the time-varying position of the tip of the plate,
during a typical cycle of the plate oscillation. Reprinted with permission from Soti et al. (2015).
Copyright Elsevier (2015)

11.9 Conclusions

A brief review of recent developments on employing a sharp-interface immersed
boundary method for simulating fluid–structure interaction (FSI) problems was
presented. First, a brief comparison of Arbitrary-Eulerian-Lagrangian (ALE) and
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Fig. 11.9 Adapted fromBailoor et al. (2017). aComputational domain used in the simulation setup
for the FSI benchmark problem, proposed byGiordano et al. (2005). bNon-uniformCartesianmesh
with grid stretching in the downstream direction employed. A finite-element mesh used in the panel
and its surrounding Cartesian mesh are shown in the inset. c Computed shock propagation during
the shock impact on the elastic panel. Snapshots of the contours of the magnitude of computed
density gradient (numerical schlieren) are shown. Reprinted with permission from Bailoor et al.
(2017). Copyright Elsevier (2017)

immersed boundary (IB) method was discussed. A general framework of sharp-
interface IB method and scheme to strongly couple flow and structural solvers were
presented. The following applications were discussed: Vortex-induced vibration of
a cylinder (VIV), FSI benchmark of an elastic splitter attached on a cylinder involv-
ing large-scale flow-induced deformation, an extension of the FSI benchmark to a
viscoelastic plate, convective heat transfer augmentation in the FSI benchmark and
flow-induced deformation of a thin plate by blast loading. Overall, the sharp-interface
IB method can handle large-scale flow-induced deformation of the structure and is
able to successfully simulate the coupled fluid and structural dynamics of an FSI
system with reasonable fidelity.
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Chapter 12
Study of Momentum and Thermal Wakes
Due to Elliptic Cylinders of Various Axes
Ratios Using the Immersed Boundary
Method

Immanuvel Paul, Venkatesh Pulletikurthi, K. Arul Prakash,
and S. Vengadesan

12.1 Introduction

Fluid flow over the bluff bodies is studied to understand the fundamentals of the
fluid mechanics. Such fundamental understanding is necessary for flow control and
to achieve heat transfer increase and drag reduction. Laminar flow over canonical
bodies like circular cylinders is an orthodox problem to understand the balance
between the inertial and viscous forces. Researchers show interest on non-canonical
bodies like elliptic cylinders because of their closeness to the real-life applications.
The ratio of minor axis to the major axis is given as axis ratio (AR). An elliptic
cylinder of AR = 1 is the circular cylinder.

Besides axis ratio, Reynolds number (Re) and angle of attack (AOA) also deter-
mine the flow behavior behind the elliptical cylinders. With increase in Reynolds
number, the flow changes from laminar to turbulence. In this study, we focus on
the laminar flow over elliptic cylinder. In laminar flows, the interesting phenomenon
is the vortex shedding. The imbalance between the momentum and viscous effects
leads to the separation of the boundary layer. The shear layer thus formed between
the high momentum and low momentum fluid forms a pair of vortices. These vor-
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tices shed alternatively from either sides of the cylinder. The shedded vortices form a
vortex pair street behind the cylinder called as von Karman vortex street (Fig. 12.1).

The imbalance between momentum and viscous forces is determined by the
critical Reynolds number (Recr). The frequency of vortices is defined by the non-
dimensional critical Strouhal number (Stcr). Taneda (1959) observed that the vortex
streets which are convected downstream break down because of the instability of
mean velocity profile. The shedded vortices rearrange themselves parallel to each
other and shed even far downstream to form a secondary vortex shedding similar
to von Karman vortex street Inoue and Yamazaki (1999). Aref and Siggia (1981),
Cimbala et al. (1988), Najjar and Balachandar (1998) studied this secondary vortex
street behind the circular cylinder and flat plate.

Johnson et al. (2001) used two-dimensional spectral element method to study
vortex structures behind elliptical bodies for Reynolds number range of 30 to 200.
With the decrease in axis ratio, the shedding behind the elliptic cylinder changed from
steady Karman vortex shedding to a surprisingly different flow with two distinct
regions. The first region situated directly behind the cylinder contained two rows
of vortices rolling up from the cylinder with a region of relatively dead flow in
between. Johnson et al. (2004) carried out direct numerical simulation (DNS) for
elliptic cylinders (flat plate to circular cylinder) for Re range of 75–175. They found
out that the inception point of the low-frequency vortices in the far wake occurs
closer to elliptical cylinder with increasing Re or decreasing in axis ratio (AR). From
these, they suggested the low-frequency unsteadiness behind normal flat plates does
not need to be due to the vortex interaction, but, rather, can result from the presence
of a two-dimensional instability of the mean wake. Saha (2007) carried out a direct
numerical simulation for a plate of AR, 0.125 for Re 30–175. It was concluded that
the flow with unsteady near wake and far wake at Re = 35 shows an unsteady near
wake but steady far wake for 75 ≤ Re ≤ 140. The flow in the far wake is seen to
undergo a transition when the Reynolds number is increased to Re = 145 and results
in the secondary vortex structures. At Re = 150, the low-frequency vortex street in
the far wake undulates at a very low frequency, which increases with increasing the
Reynolds number, giving rise to a tertiary vortex pattern.

Thompson et al. (2014) documented the critical Reynolds numbers and Strouhal
frequencies for the initial transition to unsteady periodic flow which have been
accurately determined for elliptical cylinders of different aspect ratios for the two-
dimensional shedding regime. They observed that as the cylinder axis ratio is

Fig. 12.1 A typical Karman vortex street behind an elliptic cylinder. Adapted from Kundu and
Cohen (2008)
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decreased, below 0.25, the wake deviates further from the standard Benard–von Kar-
man state. For still smaller axis ratios, another three-dimensional quasi-periodicmode
becomes unstable, leading to a different transition scenario. Ota et al. (1983) con-
ducted experimental studies and observed that the average Nusselt number increases
with Re andAR, but decreaseswithAOA.However, the relation between themomen-
tum and thermal wakes is not clearly established. In this study, we aim to understand
the relation between momentum and thermal wakes of an elliptic cylinder for var-
ious axis ratios using immersed boundary method. The reason for using the IBM
is because of its ease in analyzing the flow for different axis ratios without much
variation in the grid. Here, we show that the immersed boundary method effectively
captures the flow physics not only for fluid structure interactions but also for flow
over rigid bodies.

This chapter is organized as follows. Section12.2 describes the immersed bound-
ary method we used to simulate the flow and corresponding numerical details in
subsections. The results are discussed in Sect. 12.3.

12.2 Immersed Boundary Method

Fluid flow past bluff bodies are simulated using the body-fitted grid methods
(BFGM). The disadvantages of the BFGM are due to its time-consuming process
in the grid generation and also the grid needs to be generated at every iteration for
moving boundary problems. In order to address these issues, Cartesian grid methods
(CGM) were introduced. In this method, the equations are solved in the Cartesian
domain unlike BFGM. One such CGM is the immersed boundary method (IBM).
This method was first used by Peskin (1972) to simulate cardinal flows. In IBM,
Eulerian frame of reference is considered to solve the equations in fluid domain
and the solid body is immersed on the Cartesian grid using Langrangian mark-
ers placed along the body. The effect of the solid body is incorporated using the
forcing terms in the governing equations. The details of the equations and algo-
rithm are given in Sect. 12.2.1. Though many variants of IBM are available now
(Mittal and Iaccarino 2005; Pacheco et al. 2005; Su et al. 2007; Kim et al. 2001), the
method adopted for this study uses a finite difference discretization on a staggered
grid. An Eulerian grid is used for the fluid domain, and a set of Lagrangian marker
points are used to represent the solid body. Interaction between Eulerian domain and
Lagrangian marker points is achieved through a Dirac delta function. The solid body
is modeled by a forcing termwhich is added to the governing equations of flow given
as,

∇ · u = 0, (12.1)

∂u

∂τ
+ (u · ∇)u = −∂p

∂x
+ 1

Re
∇2u + f, (12.2)
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∂T

∂τ
+ (u · ∇)T = 1

RePr
+ ∇2T + q, (12.3)

where f and q represent forcing terms for velocity and temperature for the solid
boundary, τ—dimensionless time, Re—Reynolds number, Pr—Prandtl number =
cpμ
kt
, kt is the coefficient of thermal conductivity of fluid, cp is the heat capacity, u and

T are non-dimensional velocity vector and temperature, where u = u
u∞ , p = p

ρu2∞
, and

T = (t − t∞)/(tw − t∞) for isothermal case, t is non-dimensionalized by qwdH/μ,
where u∞—free stream velocity, ρ—density of fluid, μ—viscosity of fluid, and
dH is the hydraulic diameter of elliptic cylinder. Hydraulic diameter is taken as the
characteristic length, which is defined as, dH = 4A/P , where A is the area and P is
the perimeter of the elliptic cylinder.

To impose boundary conditions on solid body, singular forces are applied on each
Lagrangian marker points in such a way that, forcing will result in enforcement of
required boundary condition. These singular forces are then distributed to the nearby
Eulerian points so that the presence of solid body will be felt in the fluid domain.
Thus, the singular forces applied on Lagrangian marker points determine the forcing
term which is added to the governing equations.

12.2.1 Numerical Method

In the present study, an in-house solver based on immersed boundary method (IBM)
is used to solve bluff body flow problem. The force due to the body is calculated
using implicit method developed by Su et al. (2007). The Eulerian and Langrangian
variables interaction is calculated using the 4-point regularized delta function. The
algorithm and application of the Dirichlet boundary condition for one time step is as
follows:

1. The momentum equation given in Eq.12.2, was solved without considering the
immersed boundary and the intermediate velocities, u∗(x), at the Eulerian grid
points are calculated as follows,

u∗ − un

∇τ
= −3

2
∇h(uu)n + 1

2
∇h(uu)n−1 − ∇h P

n + 1

2Re
∇2

h (u
∗ + un). (12.4)

The convective and diffusive terms in momentum equation are discretized using
Adams–Bashforth and Crank–Nicholson schemes, respectively, which provide
overall second-order accuracy.

2. The velocities, u∗(x1), at the Lagrangian points are interpolated using nearby
Eulerian points using the equation,

u∗
l (xl) =

∑

x

u∗(x)δh(x − xl)h
2. (12.5)
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3. The Langrangian forces, f ∗
l (xl), are calculated as,

M∑

j=1

(
∑

x

δh(x − xl)δh(x − (xl) j )

)
f ∗
l (xl) = un+1

l (xl) − u∗
l (xl)

�τ
, (12.6)

whereM is the total number of Lagrangian points and is calculated from the pre-
scribed boundary velocity, un+1

l , at each time step and the interpolated velocity
is calculated in step 2.

4. The Lagrangian forces, f ∗
l (xl), are distributed to nearby Eulerian points, f ∗(x),

f ∗(x) =
M∑

k=1

f ∗
l ((xl)k)δh(x − (xl)k)�S, (12.7)

where �S is the distance between adjacent Lagrangian points.
5. Intermediate velocities, u∗(x), are corrected using the distributed force to get

another intermediate velocity, u∗∗,

u∗∗ − u∗

�τ
= f ∗. (12.8)

6. Solve the pressure Poisson equation

∇2
h p

∗ = (∇h .u∗∗)
∇τ

(12.9)

The algebraic system of equations resulting from discretization of the pressure
Poisson equation is solved using BiCGSTAB(2) (Van Der Vorst 2002), one of
the most efficient elliptic equation solvers.

7. Correct the pressure, p, and velocities (Brown et al. 2001)

pn+1 = pn + p∗ − 1

2Re
∇h .u

∗∗ (12.10)

un+1 − un

∇τ
= −∇h p

∗ (12.11)

8. Now, the energy equation is solved using the velocities obtained from the above
steps. The intermediate temperature, T ∗(x), at the Eulerian grid points (without
considering immersed body boundary) are calculated as follows:

T ∗ − T n

∇τ
= −3

2
SnT + 1

2
Sn−1
T + 1

2RePr
∇2

h (T
∗ + T n) (12.12)

ST = (u · ∇h)T (12.13)
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Like momentum equations, the convective and diffusive terms in energy equa-
tions are discretized using Adams–Bashforth and Crank–Nicolson schemes,
respectively, which provide overall second-order accuracy.

9. The temperature at the Langrangian points, T ∗
l (xl), is interpolated using nearby

Eulerian points
T ∗
l (xl) =

∑

x

T ∗(x)δh(x − xh)h
2 (12.14)

10. The Lagrangian fluxes, q∗
l (xl), are calculated from prescribed boundary temper-

ature, T n+1l(xl), and interpolated temperature is calculated in step 9.

M∑

j=1

[
∑

x

δh(x − (xl)k)δh(x − xl)

]
q∗
l (xl) = T n+1

l (xl) − T ∗
l (xl)

∇τ
(12.15)

11. The Lagrangian fluxes are distributed to nearby Eulerian points

q∗(x) =
M∑

k=1

q∗
l ((xl)k)δh(x − xl)�S (12.16)

where �S is the distance between adjacent Lagrangian points.
12. Intermediate temperature, T ∗(x), is corrected using distributed flux.

T n+1 − T ∗

∇τ
= q∗ (12.17)

In the above formulation, δ is the Dirac delta function which is employed to
transfer the quantities between Eulerian and Lagrangian domains, effectively.

δ = 1

h2
φ(

x

h
)φ(

y

h
) (12.18)

where h is the Eulerian mesh width, x and y are Cartesian components of x . φ is
the hat function, and we use 4-point delta function in our calculation Shin et al.
(2008))

φ(r) =

⎧
⎪⎨

⎪⎩

1
8 (3 − 2|r | + √

1 + 4|r | − 4r2) if 0 ≤ |r | ≥ 1
1
8 (5 − 2|r | + √−7 + 12|r | − 4r2) if 1 ≤ |r | ≥ 2

0 otherwise

(12.19)

For implementing the Neumann boundary condition, an additional layer of grid
points is defined and placed one-grid spacing (h) distance outside the physical
Lagrangian points (Zhang and Zheng 2007). The number of virtual points on
this additional layer is same as the number of Lagrangian points on the body and
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aligned in the surface normal direction. Therefore, for any pair of Lagrangian
and virtual points,

Q = −dT

dh
= Tl(xk) − Tv(xk)

h
(12.20)

Tv—temperature at the virtual point. First, the temperature at the virtual layer
is interpolated using the method discussed in step 9, and then temperature at
Lagrangian point is calculated by using the following expression

T n+1
l (xk) = −h

dT

dh
+ T n

v (xk) (12.21)

when a body is immersed in the fluid, aerodynamic forces act on the body. These
forces are due to the distribution of pressure and shear stress over the body.
Pressure acts normal to the body surfaces, whereas shear stress acts tangential to
the body surface. In IBM, these aerodynamic forces are calculated by integrating
the Lagrangian forces over the whole immersed boundary as given below:

FL = −
L∫

0

Fyds, FD = −
L∫

0

Fxds (12.22)

where FL is the lift force acting on the body, FD is the drag forces acting on
the body, Fx is the horizontal component of Lagrangian force, Fy is the vertical
component of Lagrangian force, ds is the distance between any two successive
Lagrangian points, and L is the perimeter of the body.

12.2.2 Computational Domain and Grid Details

Figure12.2 shows the computational domain used for simulation with the imposed
boundary conditions. A uniform streamwise velocity profile and fully developed
flow conditions are imposed at the inlet and outlet of the computational domain,
respectively. Free-slip boundary conditions are imposed on the top and bottomwalls.
The elliptic cylinder is discretized with 315 Lagrangian marker points. The Eulerian
domain is discretized with a non-uniform grid with 1271 and 845 grid points along
x and y directions. A uniformly spaced grid is embedded around the elliptic cylinder
for the effective use of forcing function and to resolve the shear layer. The size of
the uniform grid-sized computational domain is −1D ≤ x ≤ 1D and −1D ≤ y ≤
1D with the mesh size of �x = �y = 0.003. The size of the computational domain
is chosen as −8dh ≤ x ≤ 100dh and −8dh ≤ y ≤ 8dh . The detailed validation of
the solver for several critical fluid and heat transfer parameters have been reported
in Paul et al. (2013, 2014a, b, 2016), Paul (2013), and Pulletikurthi et al. (2014).
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Langrangian points

No-slip wall:
u = 0

v = 0

Inlet:
u = 1

v = 0

dp/dx = 0

8DH

8DH

x, u
y, v

Eulerian domain

Outlet:
du/dx = 0

dv/dx = 0

p = 0

8DH 100DH

Free slip wall:du/dy = 0; v = 0; dp/dy = 0 

Free slip wall:du/dy = 0; v = 0; dp/dy = 0 

Fig. 12.2 Computational domain with boundary conditions

12.3 Results

This section presents the main results of this paper. First, we compute the critical
Reynolds numbers at which flow separation and vortex shedding occur. Then, in the
shedding regime, we analyze the different frequencies present in the wake. We show
that the elliptic cylinder wakes exhibit low-frequency unsteadiness even in the near
wake of the cylinder. Finally, we do thermal analysis of the thermal wake.We present
an unusual mean temperature rise for the elliptic wake. This is accompanied with a
secondary rise in the Nusselt number profile around the elliptic cylinder.

12.3.1 Computation of Laminar Separation Reynolds
Number

As defined earlier, the critical laminar separation Reynolds number is at which the
flow starts separating from the cylinder. There are various methods available in the
literature to compute this quantity as discussed in Paul et al. (2014b). In this paper,
we consider one of the methods called wake recirculation length method.

We know that when the flow separates, it forms a mean separation bubble at the
lee surface of the cylinder. For instance, on the left image of Fig. 12.3, which is
depicted for flow around a cylinder at Re = 6, there is no mean recirculation bubble
is found as the flow does not separate at this Re. On the right image, however, we
can clearly see the mean separation bubble for Re=7 which means that the critical
laminar separation bubble is in between 6 and 7.
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Fig. 12.3 Streamline contours of flow around a circular cylinder (AR = 1.0) at Re = 6 (left) and
Re = 7 (right)

Fig. 12.4 aMeasurement ofwake lengths from u-velocity profiles for flow around circular cylinder,
bWake length method for circular cylinder (AR = 1.0)

In order to compute this critical Re accurately, we compute the mean recirculation
length using the mean streamwise velocity profiles as shown in Fig. 12.4a. The mean
recirculation length is the distance between the backward stagnation point and the
streamwise distance at which the streamwise mean velocity becomes zero. This is
illustrated in Fig. 12.4a. Once these values are computed for a range of Reynolds
number, they are plotted against the Reynolds number as seen in Fig. 12.4b. The
curve would usually be a straight line. Therefore, by plotting a linear square fit on
the data we have, we can know the Reynolds number at which the mean recirculation
length becomes larger than zero. For the circular cylinder, this critical Reynolds
number is obtained as 6.27 which is in good agreement with the previous studies on
circular cylinders (Paul et al. 2014b).

The critical laminar separation Reynolds numbers obtained for all axis ratios are
tabulated in Table12.1. As one can see, the flow separates at negligible Reynolds
number when the axis ratio is small. Note that this is the first time such a set of
values are reported in the literature. It seems that immersed boundary methods have
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Table 12.1 Values of critical laminar separation and vortex shedding Reynolds numbers obtained
for all simulations

Axis ratio Critical laminar separation Re Critical vortex shedding Re

0.1 0.90 23.48

0.4 2.31 28.50

0.6 3.11 31.34

0.8 5.08 36.26

1.0 6.27 48.34

the capacity to predict laminar separation accurately given that the mesh near the
wall surface is properly resolved.

12.3.2 Estimation of Vortex Shedding Reynolds Number

It is well-known that the separation bubble that forms at the lee of the cylinder is
unstable with respect to the Reynolds number. At a particular Reynolds number,
Hopf bifurcation occurs and the separation bubble starts undulating and shed into
the wake. This is widely known as von Karman vortex shedding in the literature.
Having computed the Reynolds number at which the separation of flow occurs, this
section focuses on computing the Reynolds number at which the vortex shedding
starts in the wake.

There are different techniques available in the literature in order to compute
this second critical Reynolds number. In this work, however, we will consider a
method called saturation amplitude analysis. This analysis makes use of the lift

Fig. 12.5 a Signal with decaying amplitude. b Signal with saturated amplitude (�sat)
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Fig. 12.6 Saturation
amplitude analysis for
circular cylinder

signal obtained from the cylinder surface. These signals show different behaviors
according to whether there is a shedding or not. For non-shedding flows, the mag-
nitude of the signal continually decreases in time and becomes zero at large time as
shown in Fig. 12.5a. On the other hand, when there is vortex shedding, the magni-
tude of the lift curve increases from zero steadily to a constant value. The magnitude
of lift signal at this saturation stage is called saturation magnitude (�sat). A typical
saturation magnitude is marked in Fig. 12.5b for the circular cylinder.

We simulate flow around cylinders for a fixed range of Reynolds number. More
details on the way this range is fixed can be found in Paul et al. (2014b). Once the
range is fixed, we compute �sat for each case. Then, the square of these values (i.e.,
�2

sat) is plotted against the Reynolds number. The curve �2
sat—Re is a straight line,

and therefore,we can perform the least square fit on the data as shown inFig. 12.6. The
least square curve passes the y = 0 line and the Re value associated at this juncture
can be confidently called as the second critical Reynolds number. Our saturation
amplitude analysis yields the critical vortex shedding Reynolds number for circular
cylinder as 48.34 which is in good agreement with the literature.

We repeat the aforementioned procedure for all axis ratios considered in this study
to compute the second critical Reynolds number. The obtained values are listed in
Table 12.1. Again, the observations are similar to what was noted for the first crit-
ical Reynolds number. The vortex shedding starts at smaller Reynolds number for
smaller axis ratio when the axis ration is kept perpendicular to the fluid flow. These
results were never computed in the literature. We have demonstrated the capabil-
ity of immersed boundary methods in predicting these values which are in general
cumbersome to obtain accurately.
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12.3.3 Low-Frequency Unsteadiness in the Near Wake

Having discussed the first and second critical Reynolds numbers of the flow, we turn
our attention to the wake regimes where shedding is present. One of the important
features of shedding wakes is the low-frequency unsteadiness. However, this phe-
nomenon was noted only in the very far wake of a circular cylinder in the previous
studies (Roshko 1954; Tritton 1959; Berger 1964; Inoue and Yamazaki 1999).

We first analyze the circular cylinder wakes. Since our computational domain is
100 diameters length in the streamwise direction from the back stagnation point, we
could not note any low-frequency unsteadiness. Figure12.7a, which represents flow
around circular cylinder at Re = 180, shows the FFT of cross-stream velocity plotted
along the different locations in the centerline of the wake. As can be seen from this
figure, all the energy of flow is concentrated at one particular frequency (i.e., primary
frequency of 0.13). This frequency is equivalent to the Strouhal number of the flow.
The secondary low frequency was not detected here as it usually occurs for x/D >

150 (Johnson et al. 2004).
Now, we analyze the data for flow around an elliptic cylinder of axis ratio 0.4

at Re = 100. As usual, we monitor the flow along the wake centerline at different
locations. Figure12.7b shows the result. In the near wake, we see something similar
to the circular cylinder. That is, there is only one frequency which is equivalent to
the shedding frequency. Things, however, change quite drastically even in the near
wake of the elliptic cylinder. As can be seen in the figure, even around x/D ≈ 18,
we start seeing a secondary frequency, although at this location its m magnitude is
very small. As we move further along the streamwise direction from this point, we
start seeing this secondary low frequency becoming more prominent. In fact, in the

Fig. 12.7 FFT analysis of velocity signals taken at different downstream locations for a circular
cylinder. b Elliptic cylinder
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Fig. 12.8 Mean temperature profile along the wake centerline for a circular cylinder. b Elliptic
cylinder

far wake (i.e., around x/D > 70), we have an absolute dominant low frequency.
Thus, the elliptic cylinder wakes are unique in their characteristics that they exhibit
low-frequency unsteadiness even in the near wake. Moreover, we have shown that
the immersed boundary methods are capable of predicting such phenomenon.

12.3.4 Heat Transfer Characteristics of the Thermal Wake

Having studied the momentum wakes in the shedding regime, finally, we study the
thermal wakes in the same shedding regime.

The target applications of this study include flow within a microprocessor or
micromixing devices where cylindrical objects are placed to increase mixing. Thus,
we are interested in the mean temperature evolution of the thermal wake.

The mean temperature profile downstream of the circular cylinder at Re=180 is
shown in Fig. 12.8a. As we heat the cylinder in this case, the temperature is higher
near the wall. However, as the vortices transport heat in the wake, the temperature
decreases drastically in the near wake and it reaches a near constant value further
downstream. This is due to the diffusion process associated with the flow that trans-
ports heat.

On the other hand, the elliptic cylinder thermal wakes exhibit completely differ-
ent behavior as reported in Fig. 12.8b. This Figure is plotted for axis ratio 0.4 and
Re = 100. Here also, the temperature is maximum near the cylinder surface due to
heating, and the magnitude of temperature falls sharply in the near wake. However,
we note a peculiar trend in the mean temperature profile here. The temperature does
not reach a saturation stage after drastically getting reduced in the near wake. Rather,
it starts increasing in the wake and the magnitude of increase is roughly 20%. Such
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Fig. 12.9 Nusselt number distribution around a circular cylinder. b Elliptic cylinder. Mean stream-
lines are plotted in the background

a profile will significantly affect the mixing characteristics if an elliptic cylinder is
employed in microfluidic devices. Paul et al. (2016) has shown that the reason for
this increase in mean temperature within the wake is the different shedding type that
occurs for elliptic cylinder of axis ration 0.4 at Re = 100 where the regular von Kar-
man vortex street breaks down and forms into two parallel chain of same magnitude
vortices. This process brings two vortices closer and thus causing an increase inmean
temperature.

Finally, we study the Nusselt number distribution around the cylinder. The other
target application of cylinders is the heat exchanger design where one is interested in
exporting hot gas with less drag. Many studies have shown that the elliptic cylinders
have smaller drag coefficient. Therefore, it is tempting to use them as heat exchanger
tubes. For this reason, we must know the Nusselt number distribution around the
cylinder tube.

Figure12.9a shows the Nusselt number distribution for circular cylinder at
Re = 100. Here, the maximum Nu is at the front stagnation point. This is because
the cold flow touches first the cylinder at the front stagnation point, and therefore,
it takes away much heat from the cylinder and thus resulting in higher heat trans-
fer coefficient. This can also seen in the mean streamlines plot shown in Fig. 12.9a.
Following this, now, a warmer fluid with temperature higher than the free stream
temperature passes over the cylinder. Because of this, the heat transfer transfer rate
decreases continuously from the front stagnation point. This decrease is aggravated
further around 100◦ as at this juncture the flow separates to form a recirculation
region which brings even more warmer fluid toward the cylinder. Therefore, for cir-
cular cylinder, there is only one maximum Nu point at the front stagnation region
which is followed by a continual decrease.

The Nusselt number profile for heat transfer around an elliptic cylinder of axis
ration 0.4 at Re = 100 is shown in Fig. 12.9b. We see an important difference here
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compared with the Nu profile for the circular cylinder. Here, for the elliptic cylinder,
we also note a secondary peak as noted as red colored arrow in Fig. 12.9b. This
secondary peak is due to the nature of separation that elliptic cylinder wakes exhibit.
Here, there are two counter-rotating vortices that are formed in the lee of the cylinder
as seen in the mean streamlines plot of Fig. 12.9b. The implication of this is that,
although the first vortex that lies between 95◦ and 120◦ transports more hot fluid
toward the surface of the cylinder, the nearby vortex that lies between 125◦ and
180◦ is counter-rotating to the other vortex and thus it brings more cold fluids to
the cylinder. As a result, the heat transfer rate increasing around 125◦ leading to
a secondary maximum. Again, we have established that the immersed boundary
methods can be effectively used to model thermal wakes and heat transfer from
cylinders of different shapes.

12.4 Conclusion

The main objective of this work is to develop immersed boundary methods to model
fluid flow and heat transfer around differently shaped cylinders. We considered ellip-
tic cylinders of five different axis ratio whose major axes are kept perpendicular to
the incoming flow direction.

We developed immersed boundary method based Navier–Stokes solver utilizing
the direct forcing method. We have also shown the extension of the fluid solver to
simulate thermal wakes behind the cylinder. The cylinder surface is modeled as a set
of Lagrangian marker points. The information about the surface is then spread to the
underlying Eulerian mesh through the use of Dirac delta function. We implemented
both the constant temperature and constant heat flux boundary conditions. The solver
has been validated extensively for various flow and thermal quantities.

We then applied the solver we developed to study fundamental physics of momen-
tum and thermal wakes. We accurately computed the first and second critical
Reynolds numbers at which the flow starts separating from the cylinder and at which
the flow starts shedding, respectively. Then,we turned our attention to the flow regime
where shedding was present. We showed that elliptic cylinder wakes are unique such
that they exhibit low-frequency unsteadiness even in the near wake. We also studied
the heat transfer characteristics. In particular, we demonstrated an unusual evolution
of mean temperature in the wake of an elliptic cylinder. Finally, the elliptic cylinders
are shown to have a secondary peak on the Nusselt number profiles due to their novel
flow separation characteristics. In all these results, immersed boundary method was
proven to be adequate to study flow and thermal physics.
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Chapter 13
Investigation of the Unsteady
Aerodynamics of Insect Flight:
The Use of Immersed Boundary Method

Srinidhi Nagarada Gadde, Y. Sudhakar, and S. Vengadesan

13.1 Introduction

The current chapter summarizes the insect flight research carried out in the group
of Prof. S. Vengadesan at IIT Madras, with immersed boundary methods (IBM)
as the research tool. While most of the insects employ a symmetric wing motion
along a horizontal stroke plane (e.g., fruit-flies, bees, and beetles), a few insects
(e.g., dragonflies and hover-flies) translate their wings asymmetrically along a more
inclined stroke plane. Our work focuses on the unsteady aerodynamics involved in
the inclined stroke plane motions, and we address the following aspects of such a
flight with numerical simulations of idealized two-dimensional kinematics of insect
wings:

• Mechanism of vertical force generation
• Influence of multiple wings and their relative kinematics on force generation
• The effect of ground on vortex dynamics and force generation.
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13.1.1 Brief Review of Insect Aerodynamics

The study of insect flight is fascinating in its own right due to the underlying unsteady
aerodynamics.Moreover, the knowledge gained from such studieswill greatly benefit
the designing of micro-aerial vehicles (MAVs) which has potential applications in
military reconnaissance, weather monitoring, and information gathering. Here, we
provide a very brief review of the unsteady aerodynamics involved in the insect
flight. Extensive details can be found in the comprehensive reviews available in the
literature (Sane 2003; Platzer et al. 2008; Shyy et al. 2010).

By using high-speed photography, Ellington (1984a) found that a typical flapping
flight of an insect consists of two translational (upstroke and downstroke) and two
rotational (pronation and supination) motions. To explain the aerodynamics involved
in the aforementioned complex kinematics, classical potential flowaerodynamics and
quasi-steady-state theories have been proposed. Quasi-steady-state theories assume
that instantaneous forces on a flapping wing are equivalent to those for steadymotion
at the same instantaneous velocity and angle of attack. By comparing the theoretical
results with experimental observations, Ellington (1984b) proved that conventional
quasi-steady-state theories are insufficient to explain the enhanced lift force observed
in the flight of hovering insects. The failure of such theories strongly suggests that
unsteady aerodynamic mechanisms play a key role in the flapping flight. Previous
experimental and numerical studies have uncovered three important unsteady mech-
anisms in flapping flight:

• Delayed stall: Stable attached leading-edge vortices (LEVs) are formed over the
insect wings even when their angle of attack (AoA) is as high as 40◦ (Ellington
et al. 1996). These attached LEVs greatly enhance the lift force on flapping wings.

• Rotational circulation: The rotational motion of insect wings (pronation and
supination) induce additional circulation around the wing, leading to large lift
force (Dickinson et al. 1999).

• Wake capture: Insects interact favorably with the wake vortices that are shed in the
earlier cycles of flapping and this leads to additional aerodynamic forces (Dickin-
son et al. 1999; Birch et al. 2004).

The aforementioned unsteady aerodynamic mechanisms are responsible for the
observed high performance of flapping insect wings at low Reynolds numbers.

13.1.2 Tandem Wing Aerodynamics

In contrast to the aerodynamics of single-winged insects, flow structures involved
in tandem winged fliers are more complex. Dragonflies, nature’s most ubiquitous,
agile, and highly maneuverable fliers have tandem wings (a forewing and a hind-
wing). They generally flap their wings in a stroke plane that is 60◦ relative to the
horizontal (Norberg 1975). High maneuverability of dragonflies is due to the pres-
ence of fore and hindwings that move independently of each other (Alexander 1984).
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Multiple wings cause wing–vortex and wing–wing interactions resulting in complex
lift and drag variations. Lan and Sun (2001) studied the elliptical airfoils flapping
in tandem at phase differences ψ = 0◦, 90◦, and 180◦ by solving 2D incompress-
ible Navier–Stokes (N-S) equations on moving over-set grids. They reported that
in-phase stroking (ψ = 0◦) produces the maximum lift and ψ = 90◦ phase differ-
ence produces the minimum lift. Furthermore, computational fluid dynamics (CFD)
simulations of Wang and Sun (2005) show that the forewing–hindwing interaction
results in reduced lift forces. In addition, the simulations ofWang and Russell (2007)
show that a dragonfly uses out-of-phase flapping to minimize the power consump-
tion during hovering; and in-phase flapping during take-offs which requiremaximum
power. With the experiments on robotic wings, Usherwood et al. (2008) showed that
dragonflies employ wing phasing to remove swirl and improve the efficiency. In gen-
eral, the vortex wake contains swirl which reduces the aerodynamic efficiency of the
wings and the forewing–hindwing interaction can be either beneficial or detrimental
to the performance of the wings.

13.1.3 Ground Effect

Apart from the wing–wing and wing–vortex interactions, the presence of a wall can
influence the vortical structures and the vortex-induced forces. Gao and Lu (2008)
studied a model wing flapping in a horizontal stroke plane near the ground and
reported three force regimes, viz. force enhancement, force reduction, and force
recovery regimes with the conclusion that both shed and rebound vortices decide the
variation of the lift and drag forces. Liu et al. (2009) extended the study for clap and
fling kinematics, and De Rosis (2015) for symmetric wings flapping in tandem. By
high-resolution digital particle image velocimetry (DPIV), van Truong et al. (2013)
studied the vortical structures surrounding a beetle’swing during take-off and showed
that the ground enhances the size and shape of the LEV. Recently, Kolomenskiy et al.
(2016) with 3D CFD simulations using an immersed interface method studied the
take-off of an insect. Interestingly, whether the ground effect increases or decreases
the aerodynamic forces is dictated by the kinematics of flapping motion and fur-
ther investigations are necessary to improve our understanding of the ground–vortex
interactions.

13.1.4 Suitability of IBM to Study Insect Flight

The current state-of-the-art insect flight research involves two steps: (1) accuratemea-
surement of insect wing kinematics and flow field using high-speed imaging (Ennos
1989; Altshuler et al. 2005; Fry et al. 2005) and (2) replication of these kinematics
either in mechanical fliers or in a CFD simulation. While experiments give a reliable
estimate of forces, they provide only a limited information of the flow and obtaining
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the complete flow field information over the rapidly oscillating insect wings in a fully
non-intrusive manner is extremely challenging.

Numerical studies of insect flight necessitate the simulation of flow over rapidly
oscillating wings. Conventional CFDmethods require the generation of high-quality
body-fitted structured or unstructured grid over the immersed boundaries, which is
a daunting task in itself while dealing with flow past complex geometries. A poor
quality grid can negatively impact the accuracy, stability, and convergence properties
of the solver.Often, over complex geometries, the task of grid generation is carried out
by dividing the computational domain into various sub-domains and generating the
grid separately in these domains. Besides increasing the complexity of the solution
algorithm, the deterioration in grid smoothness at the interface of the sub-domains can
affect the stability of the solver. When the finite difference method is employed on a
structured grid, the transformation of governing equations from the physical domain
into the computational domain increases the per-grid-point operation count (Mittal
and Iaccarino 2005).

While simulating the moving boundary problems with the help of a body-fitted
grid, one encounters two difficulties:

• Transient re-meshing strategies are compulsory to accommodate the change in the
shape or orientation of the body in fluid flow.

• A stable algorithm is necessary to project the old solution onto the new grid.

In addition to increasing the computational cost, these steps restrict the maxi-
mum time-step size that can be used for stable computations. IBM (Mittal and Iac-
carino 2005) can be used to circumvent the aforementioned problems. IBM was first
proposed by Peskin (1972) to study the flow around heart valves; numerous modifi-
cations have been proposed to the method since then (Goldstein et al. 1993; Fadlun
et al. 2000; Kim and Choi 2006). In the past, IBM has been successfully used to sim-
ulate flows with complex moving boundaries such as flapping wings (Gilmanov and
Sotiropoulos 2005; De Rosis 2014; Sudhakar and Vengadesan 2010a; Srinidhi and
Vengadesan 2017a, b). IBM is particularly suited for flapping wing simulations due
to the ease with which the kinematics can be imposed on the wings, high accuracy,
and the computational advantage it provides. There are many variants of continuous
forcing IBM available in the literature, and we make use of the immersed boundary
projection method (IBPM) proposed by Taira and Colonius (2007).

In Sect. 13.2, the governing equations, the methodology of IBM solver, and a
brief note on the multi-processor implementation of the IBM solver are detailed. In
the subsequent sections, the IBM will be used to study the mechanism of vertical
force generation in inclined stroke plane kinematics of insect flight, the effect of
wing interference in the case of tandem wings, and the effect of ground on vortex
dynamics of the flapping flight.
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13.2 Governing Equations and the Numerical Method

We use the IBPM proposed by Taira and Colonius (2007) to develop a parallelized
IBM solver. IBPM considers boundary force as a Lagrange multiplier to satisfy the
no-slip condition; this is similar to the pressure acting as a Lagrange multiplier to
satisfy the divergence-free constraint. Poisson equation for the pressure is modified
to incorporate both divergence-free constraint as well as the no-slip constraint on
the body. In IBM, the N-S equations are solved on a non-body conforming grid
called Eulerian grid, D , and a set of discrete Lagrangian points, ξk , represent the
surface of a body, B. Similar to most IBM, the incompressible flow is initially
solved on an Eulerian grid, and the intermediate velocities are interpolated onto the
Lagrangian points using an interpolation operator. The interpolated velocities are
used to calculate the forces at the Lagrangian points and the forces are redistributed
(regularized) to the nearby Eulerian grid points. In IBM, the Lagrangian points do
not necessarily coincide with the underlying Eulerian grid. Hence, to interpolate the
quantities to the Lagrangian points, discrete delta functions are used to exchange
information between the Eulerian grid and the Lagrangian points.

The governing equations used are:

∂u
∂t

+ u · ∇u = −∇p + ν�u +
∫
S
f(ξ(s, t))δ(ξ − x)ds, (13.1)

∇ · u = 0, (13.2)

u(ξ(s, t)) =
∫
S
u(x)δ(x − ξ)dx = uB(ξ(s, t)), (13.3)

where x ∈ D , ξ(s, t) ∈ B, u represent the velocity vector, p is the pressure, ν is the
kinematic viscosity, ∇ is the gradient operator, � is the Laplacian operator, and f
represents the immersed boundary force. The boundaryB is parameterized by s and
moves at the velocity, uB(ξ(s, t)). The governing equations are solved on staggered
grids with pressure at the center of the cell and velocities located on the cell faces.
The viscous terms are discretized with implicit Crank-Nicholson scheme and the
second-order Adams-Bashforth scheme is used to discretize the nonlinear advective
terms. The schemes yield a formal second-order accuracy in space and first-order
accuracy in time.

The discretized governing equations can be written as:

⎛
⎝A G −H
D 0 0
E 0 0

⎞
⎠

⎛
⎝un+1

φ

f

⎞
⎠ =

⎛
⎝ rn

0
un+1
B

⎞
⎠ +

⎛
⎝ bc1

−bc2
0

⎞
⎠ , (13.4)

where Hf corresponds to the last term in Eq.(13.1) which is the regularization oper-
ation. φ represents the pressure. The interpolation operator E is used to enforce
the no-slip condition [Eq. (13.2)]; where, Eun+1 = un+1

B . A, D, and G represent the
implicit operator for velocity, discrete divergence, and gradient. rn, bc1, and bc2 are
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the explicit terms in the momentum equation, inhomogeneous terms resulting from
the boundary condition of Laplacian operator and from the divergence operator,
respectively. H and E represent the regularization and interpolation operators used
to exchange information between the Eulerian and Lagrangian grid points. The oper-
ators are constructed using discrete delta function proposed by Roma et al. (1999).
The present delta function is supported over three cells and has the form:

d(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
6�r

[
5 − 3 |r|

�r −
√

−3
(
1 − |r|

�r

)2 + 1

]
for 0.5�r ≤ |r| ≤ 1.5�r,

1
3�r

[
1 +

√
−3

(
r

�r

)2 + 1

]
for |r| ≤ 0.5�r,

0 otherwise,
(13.5)

where �r is the cell width. The delta function can only be used in uniform grids, so
the extent of the domain in which the bodies move is discretized uniformly, stretched
grids are used in the rest of the domain (Fig. 13.1).

Convolution of Eulerian background velocities with the delta function gives the
velocities at the Lagrangian points,

u(ξ) =
∫
x
u(x)δ(x − ξ)dx, (13.6)

the convolution yields:

uk = �x�y
∑
i

uid(xi − ξk)d(yi − ηk), (13.7)

Fig. 13.1 Body B, is
represented by the shaded
object immersed in a 2D
domain D discretized by a
staggered grid. Horizontal
and vertical arrows (→, ↑)
denote the u and v velocity
nodes, respectively. Pressure
is located at the center of
each cell depicted by circles
(•). Lagrangian points,
ξ k = (ξk , ηk ), are shown by
red circles
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If γ = �x�y, Eq. (13.7) can be simplified as,

Ek,i = γ d(xi − ξk)d(yi − ηk), (13.8)

The regularization operator H is also obtained by the convolution of Lagrangian
values with the delta function, and it is equal to −ET . We can formulate G and D
such that D = −GT .

⎛
⎝ A G ET

GT 0 0
E 0 0

⎞
⎠

⎛
⎝un+1

φ

f

⎞
⎠ =

⎛
⎝ rn

0
un+1
B

⎞
⎠ +

⎛
⎝ bc1

−bc2
0

⎞
⎠ , (13.9)

Considering both φ and f as Lagrange multipliers, we get:

Q ≡ [G,ET ], λ ≡
(

φ

f

)
, r1 ≡ rn + bc1, r2 ≡

(−bc2
un+1
B

)
. (13.10)

Using Eqs. (13.10), (13.9) can be simplified as below:(
A Q
QT 0

) (
qn+1

λ

)
=

(
r1
r2

)
, (13.11)

where scaling factors have been used to convert velocities, un+1, to fluxes, qn+1, at
cell faces. Thus, the steps in immersed boundary projection method are:

Aq∗ = r1 (Solve for intermediate velocity), (13.12)

QTBNQλ = QTq∗ − r2 (Solve the modified Poisson equation), (13.13)

qn+1 = q∗ − BNQλ (Projection step), (13.14)

where BN is an approximation of A−1. Additional details about the algorithm and
its implementation can be found in Taira and Colonius (2007). Major difference and
advantage of IBPM are that it calculates the body forces and pressure values in a
single step by solving Eq. (13.13).

Our code is based on the open-source code PetIBMdeveloped byKrishnan (2015).
We modified the code and added the capability to perform simulations with moving
bodies. The C++ based code is parallelized using the open-source parallel program-
ming library PETSc (Balay et al. 2019). Basic parallelization strategies and the nec-
essary details of the implementation are given in Krishnan (2015). Here, we focus
on the implementation details of the moving boundary simulations. In vector r2 of
Eq. (13.10), un+1

B = 0 for the flow over stationary bodies, and un+1
B 	= 0 for the flow

over moving boundaries. We created a parallel array to distribute Lagrangian points
to different processors. In simulations involving moving boundaries, the elements in
the modified Poisson matrix QTBNQ changes due to the change in the position of
Lagrangian points. This necessitates themodification of thematrix at the end of every
time step. The matrix QTBNQ and the parallel distribution vector corresponding to
the immersed boundary are destroyed and recreated after every time step. As the
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creation of a parallelized matrix in PETSc is time consuming; the aforementioned
step is the major bottleneck in the present implementation. Modification of Pois-
son matrix in IBPM increases the condition number of the matrix system. To solve
the ill-conditioned system, we use Krylov sub-space iterative solvers with multigrid
preconditioner.

13.3 The Mechanism of Force Generation
in Flapping Flight

Of the three unsteady aerodynamicmechanisms presented in Sect. 13.1, delayed stall,
i.e., enhanced force generation due to the attached LEVs is the most significant lift
generation mechanism for insect flight. For a fruit-fly, which uses horizontal wing
motion, the delayed stall generates enough force to support more than 85% of its
total weight (Wu and Sun 2004). However, the functional significance of delayed
stall in hovering insects which oscillate their wings along an inclined stroke plane
is still less evident. While horizontal stroke plane motions rely on lift, drag on the
wings in inclined stroke plane motions makes a significant contribution to support
the weight (Wang 2004). Given the different strategies of weight support inherent in
these horizontal plane and inclined plane wing motions, it is natural to expect that
aerodynamic force generation mechanism in lift-dependent horizontal stroke plane
wingmotions is different than in drag-dependent inclined stroke plane wingmotions.

In this work, we consider the following idealized wing kinematics for the flapping
motion of insect wings which is schematically shown in Fig. 13.5.

Translational velocity,

v(τ ) = − sin

(
2
c

A0
τ

)
, (13.15)

Angular velocity confined to stroke reversal,

ω(τ) = ω̄

[
1 − cos

(
2π(τ − τr)

�τr

)]
; τr ≤ τ ≤ (τ + �τr), (13.16)

where τ is the non-dimensional time, c is the chord length of the wing, A0 is the
stroke amplitude, τr is the time at which the rotation starts, �τr is the time required
to perform the rotation, ω̄ = �θ

�τ
is the average rotational speed, and�θ is the change

in AoA achieved in wing rotation.
Non-dimensional period of wing beat cycle (τc) can be found by the following

relation,
2
c

A0
τc = 2π. (13.17)

A flat plate of 2% thickness to chord ratio is used to model the wing cross section.
The plate is discretized with 102 Lagrangian points (�s = 0.02). The size of the
rectangular computational domain chosen is (−30c ≤ x ≤ 30c, −30c ≤ y ≤ 30c).
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Fig. 13.2 Close up view of
non-body conformal grid
around the wing
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A small area within the computational domain is discretized with uniform grid of
�x = �y = 0.02. The size of this area is chosen in such a way that the wing is
immersed within the uniform grid region throughout the stroke. The final size of
the Eulerian grid in x- and y-direction for 2.5 chord lengths travel is 397 and 438,
respectively. A picture of the wing immersed in the non-body conformal Cartesian
grid is shown in Fig. 13.2. Every flapping cycle is discretized with 2000 time steps
(�τr = τc/2000). All the results presented in the subsequent sections are for the
wing during its tenth cycle of flapping, by which time the forces and the flow reach
a periodic state. The instantaneous forces are non-dimensionalized with 0.5ρv2rmsc.
It has been confirmed that the results presented here are grid- as well as time-step
independent.

We simulate the flapping wing with the following typical kinematic parameters:
Reynolds number, Re(= vmaxc/ν) = 150 where ν is the kinematic viscosity, stroke
amplitude, A0 = 2.5c, rotational period is 20% of the period of wing beat cycle
(�τr = 0.2τc), and stroke plane angle, β = 62.8◦. The AoA during downstroke
and upstroke are 50.6◦ and 15◦, respectively. All these details are for the dragonfly
hovering, similar to the simulations of Wang (2004), except that in our study a flat
plate is used to model the cross section of the wing and the wing rotation in our study
is confined to stroke reversal.

The time history of vertical force coefficient CV = FV
1
2 ρvrms

2c
and horizontal force

coefficient CH = FH
1
2 ρvrms

2c
for one complete stroke is shown in Fig. 13.3; here, FV

and FV are the vertical and horizontal forces on the wing, respectively. The stroke
averaged horizontal force coefficient, CH is almost zero, which confirms that the
simulation is for hovering motion. Since CH is almost zero in other simulations
also, only the time history of CV is presented in the subsequent sections. As has been
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Fig. 13.3 Time history of force coefficients at Re = 150. The time between 0–0.5 is downstroke
and 0.5–1 is upstroke

explained, downstroke induces positive CV, and in upstroke negative CV is generated
over the flappingwing. The figure also shows the force peaks during thewing rotation
(pronation and supination).

In the downstroke, two attached vortices are formed on either side of the wing as
shown in Fig. 13.4a. The flow field is analogous to the flow past a bluff body in a
laminar steady-state regime. The pressure drag formed over the wing is very high, so
that the vertical force production is also high. The net aerodynamic force produced
during the downstroke is almost perpendicular to the wing (Fig. 13.4a), implying the
dominance of pressure forces over viscous forces. During upstroke, attached shear
layers are formed over the wings without vorticity roll-up. The aerodynamic force is
not perpendicular to the wing, but is more inclined to the wing surface (Fig. 13.4b),
implying that viscous forces are also important in upstroke. It is clear from Fig. 13.4
that the upward component of aerodynamic force produced during the downstroke is
much higher than the downward component of aerodynamic force generated during
the upstroke.

The above analysis reveals a remarkable feature of the inclined stroke plane kine-
matics: insects utilize their tiny wing as a bluff body during downstroke, producing
enormous pressure drag and as a streamlined body during upstroke, producing low
skin-friction drag and this difference in drag helps insects to hover. Additional anal-
yses (not discussed here) have confirmed that the delayed stall, which is the most
important aerodynamic mechanism in horizontal stroke plane motions has marginal
significance in inclined stroke plane kinematics (Sudhakar and Vengadesan, 2010b).

13.4 Wing Interference Effects

We discussed the mechanism of vertical force generation considering a single flap-
ping wing in the previous section. Insects like dragonflies have two wings in tandem.
To study the effect of wing interference, we consider tandemwings hovering in a qui-
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(a) Mid-downstroke

dipole-1

dipole-2

(b) Mid-upstroke

Fig. 13.4 Contours of vorticity and the instantaneous force acting on the wing during the middle
of the half-strokes for Re = 150

escent fluid. The study demonstrates the feasibility of IBM in the study flows involv-
ing multiple moving bodies. The computational domain, boundary conditions, and
the kinematics used in the study are shown in Fig. 13.5. We have used the following
kinematics proposed by Wang (Wang, 2004):

[x(t), y(t)] = A0

2c
cos(2π ft + ψ)(cosβsinβ), (13.18)

α(t) = α0 − αmsin(2π ft + φ + ψ), (13.19)

CH = FH
1
2ρU

2c
, CV = FV

1
2ρU

2c
, (13.20)

where [x(t), y(t)] is the position of the center of chord of the wing, α(t) is the angle
made by the chord with the stroke plane, β is the stroke plane angle, φ is the phase
difference between translation and rotation, f is the frequency of flapping, and A0/c
and αm are the amplitudes of translation and rotation, respectively.

Velocity scale, U = π(A0/c)f , is related to oscillating translation. Reynolds num-
ber, Re = Uc/ν = π fA0c/ν, is based on the maximum velocity of translation and
the chord length. T = 1/f is the time period of flapping. CH and CV represent the
horizontal and vertical force coefficients respectively and ψ is the phase difference
between flapping of forewing and hindwing. The size of the computational domain
is 20c × 20c. The wing is immersed in a uniform grid of size �x,�y = 0.01c
and stretched everywhere else. The corresponding grid size is 992 × 992. We
employ vorticity contours and backward finite-time Lyapunov exponent (FTLE)
ridges to explain the time-varying forces resulting from the vortex dynamics.
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a

b

Fig. 13.5 a Positions of the elliptical foil in a flapping cycle is shown here. Solid lines represent
the positions in downstroke and dashed lines represent the positions during upstroke. β = π/3 is
the stroke plane angle, A0/c = 2.5 stroke length, α0 = αm = π/4 is the maximum angle of attack,
and Re = 100 in the study. b Boundary conditions and the computational domain used in the study
are given here. Forewing and hindwing are represented by white and gray foils, respectively. The
perpendicular distance between the stroke planes of the two wings is represented by l/c

The visualization of hovering flapping wings are presented in the following section
to emphasize the importance of Lagrangian coherent structures (LCS) in the study
of unsteady vortex dynamics. Further information about the calculation of backward
FTLE can be found in Srinidhi and Vengadesan (2017b). The Reynolds number Re
is 100 and the ratio of minor axis to major axis of the ellipse is 0.25. LCS in Fig. 13.7
show the attracting dynamic structures in the flow which entrain the surrounding
fluid. Time-dependent behavior of individual vortices like stretching and merging
can be kept track of LCS.

13.4.1 Force Variation and Vortical Structures in Tandem
Wing Hovering

To study the effect of wing interference, the inter-wing distance and phase difference
are varied. Inter-wing distances of l = 1.1c, 1.2c, 1.3c, 1.5c, 1.7c, 1.9c 2.1c and
phase differences ψ = 0◦ and 180◦ were considered in the study. The variation of
CV reaches a periodic state in 4–5 flapping cycles and the forces are averaged over a
flapping cycle after the tenth cycle. The time-averaged vertical and horizontal force
coefficients are denoted by CV and CH, respectively. In hovering, the weight of the
insect is supported by the vertical force and as such we focus further discussions
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only on the variation of CV. In this section, the variation of time-averaged force with
inter-wing distance, the effect of wing kinematics on the force variation in a flapping
cycle and the effect of phase difference between the forewing and the hindwings are
presented.

13.4.1.1 In-Phase Stroking, ψ = 0◦

Figure13.6 shows that CV of the forewing is larger in magnitude than the CV of
a single wing. The presence of the forewing results in the decrease of the vertical
force on the hindwing; whereas, the converse is true in the case of the forewing
and the effects of the wing interference reduce as the inter-wing distance increases.
The vertical force generated by the flapping wings depends on the unsteady vortex
dynamics. The evolution of vorticity and the corresponding variation of CV at l =
1.1c for the same are shown in Figs. 13.7 and 13.8, respectively.

Hindwing constantly operates in thewakeof the forewing; due to the effect ofwake
on the LEV generation, CV of the hindwing is less compared to the forewing. In the
downstroke, the presence of trailing edge vortex of the forewing (TEVF, Fig. 13.7b)
has a detrimental effect on the growth of the LEV of the hindwing. In the upstroke,
the hindwing is nearly vertical and it constantly moves in the downwash created
by the forewing. The downwash increases the drag on the surface of the hindwing,
consequently, CV of the hindwing is less than a single-wing flapping system.

Figures13.8a, b show the time variation of CV at different inter-wing distances.
For the sake of comparison, CV variation of single-wing flapping is also plotted
(dashed line). From Fig. 13.6, it is clear that forewing generates more force than a
single flapping wing system, this shows that the presence of the hindwing enhances
the force generation of the forewing. In Fig. 13.8a, b, the initial peak in vertical force
at t/T ≈ 0.05 is due to the reaction force provided by the fluid due to acceleration

Fig. 13.6 CV versus l/c of
both fore and hindwing
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(a) t/T = 0.1 (b) t/T = 0.3 (c) t/T = 0.5 (d) t/T = 0.7

Fig. 13.7 Evolution of vorticity with time and LCS for l = 1.1c. Vorticity and LCS are plotted
in alternating rows. Subscripts F and H represent fore and hindwings, respectively. Subscript P
corresponds to the residual vorticity from the previous stroke or the shed vortex in the wake

Fig. 13.8 a and b Time-varying CV of forewing and hindwing, respectively

of the wings and rapid pitch-down rotation of the wings (Meng and Sun, 2016).
Also, the counterclockwise (CCW) wake vortex represented by TEVP (Fig. 13.8a,
subscript P represents vorticity from the previous cycle) interacts with the wing and
transfers momentum. This interaction, the so-called wake capture, also enhances the
force. As the wings continue their downstroke, clockwise (CW) LEV is developed
at the leading edge of the wings in accordance with the delayed stall mechanism
(Fig. 13.7c). TEVP is captured accurately in the LCS plot of Fig. 13.7a. At t/T ≈ 0.3,
TEVP interacts with the hindwing, this corresponds to the local maxima in CV of
the hindwing (Fig. 13.8b). LEVs and TEVs of the forewing and the hindwing are
represented by LEVF, TEVF and LEVH, TEVH, respectively. At t/T ≈ 0.5, TEV
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of the forewing is shed (TEVF in Fig. 13.7c), and it interacts with the hindwing.
As the wings start pitching up, due to the deceleration of the wings, CV reaches its
minimumvalue. The shed TEVof the forewingmerges with the TEVof the hindwing
(TEVF + TEVH in Fig. 13.7d). The phenomenon of vortex merging is captured with
finesse in the LCS contours. TEVF gets sheared, stretched, and ultimately merges
with TEVH. As the wings continue with the upstroke, merged TEVs, and shed LEVs
entrain surrounding fluid and transfer momentum. The jet created by the counter-
rotating vortices forms a part of the total vertical force in the upstroke and the
beginning of the downstroke.

Effect of inter-wing distance on force generation:

Figure13.6 shows the effect of inter-wing distance on the cycle averaged vertical
force. CV of the hovering single wing is 0.446 (dashed line). Figure13.9 presents
the vorticity contours at various inter-wing distances. As the inter-wing distance
increases, the effect of the forewing on the LEVgeneration of the hindwing decreases
and CV of the hindwing increases and reaches the CV value of single flapping wing.
When the wings are very close to each other, they act as a single system and the
added mass effect which depends on the shape of the body and the acceleration of
the fluid is prominent. As the separation between the wings increases, the added
mass effect decreases and consequently the initial peak in CV decreases (Fig. 13.8a,
b). Figure13.6 shows that CV of fore and hindwings asymptotically reach CV of the
single-wing values at large enough inter-wing distances. In the downstroke of the
wings, the maximum influence of the delayed stall mechanism on LEV generation
occurs between t/T = 0 and 0.5. As the inter-wing distance increases, the effect of
forewingdownwashon theLEVgeneration of the hindwingdecreases.Consequently,
LEV of the hindwing grows in size and the vertical force generated by the hindwing
increases. For l < 1.3c, the width of the wake increases as the l increases. For l >

1.3c, the width of the wake decreases as the inter-wing distance increases. Decrease
in the width of the wake reduces the force generation. It is clear from Fig. 13.7 that
LCS reveals structures which are otherwise hidden in vorticity plots.

(a) l = 1.3c (b) l = 1.5c (c) l = 1.7c (d) l = 1.9c

Fig. 13.9 Vorticity contours for different l at the end of the downstroke. As l increase size and
strength of LEV and TEV increases
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Fig. 13.10 CV of both
forewing and hindwing
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13.4.1.2 Counter-Stroking, ψ = 180◦

Figure13.10 shows that the phase difference of ψ = 180◦ reduces the variation of
time-averaged vertical with the increasing inter-wing distance. Figures13.11a, b
represent the time variation of CV for different l/c, for ψ = 180◦. From Fig. 13.11a,
it is clear that the presence of hindwing has a marginal effect on the CV of the
forewing. Hindwing in its downstroke generates lesser force compared to a single
flapping wing, as it operates in a lower pressure area created by the shed TEV of
the forewing. As the inter-wing distance increases, the effect of forewing on the
force generation of hindwing decreases and consequently, for l > 1.5c vertical force
generation of the hindwing increases rapidly (Fig. 13.11b). Typical variation of CV

is explained for l = 1.1c. Figure13.12 shows the evolution of vorticity and LCS
contours over time.

Hindwing is at the beginning of its upstroke when the forewing is at the begin-
ning of its downstroke (Fig. 13.12a). The initial peak in CV is reduced because of
the presence of the LEV of the hindwing (Fig. 13.11a). At t/T = 0.3, TEV of the
forewing interacts with the CCW vorticity of the hindwing, creating a low-pressure
region near the lower surface of the forewing (Fig. 13.12b). This corresponds to the
minima in CV of the forewing at t/T ≈ 0.3. As the forewing moves away from the
hindwing (Fig. 13.12c), the pressure on the lower surface of the wing increases and
consequently CV increases (Fig. 13.12c) and reaches a local maxima at t/T = 0.3. At
t/T = 0.3, TEV of the forewing and CCW vorticity of the hindwing merge together
and form a region of low pressure between the two wings (Fig. 13.12c). As the hind-
wing starts its downstroke, it interacts with the merged CCW vortex, this wake cap-
ture increases the vertical force generation of the hindwing. In Fig. 13.12c, it is clear
that the CV maxima at t/T = 0.6 is greater in magnitude than CV of a single-wing
flapping due to the interaction with the merged vortex (Fig. 13.12d).

After the wake capture, as the hindwing continues its downstroke, the downwash
of the forewing and the LEV shed by the forewing result in a sudden fall in the
vertical force. For the rest of its downstroke, the hindwing operates in a low-pressure
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Fig. 13.11 a and b Time-varying CV of forewing and hindwing, respectively

(a) t/T = 0.1 (b) t/T = 0.3 (c) t/T = 0.5 (d) t/T = 0.7

Fig. 13.12 Evolution of vorticity with time and LCS for l = 1.1c. Vorticity and LCS are plotted in
alternating rows

region created by the shed LEV of the forewing, the merged vortex and the growing
LEV. This results in the sudden drop in the vertical force generation of the hindwing
for t/T > 0.7. In comparison with a single-wing flapping where the delayed stall
mechanismgeneratesmuchof the vertical force.Besides, a part of the shedLEVof the
forewing and the CW shear layers merge with the LEV of the hindwing (Fig. 13.12d)
and enhance the delayed stall effect. This results in a further reduction of pressure
around the wing and is the major reason for the decreased vertical force generation of
the hindwing. A pair of counter-rotating vortices are shed in every flapping cycle. The
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Fig. 13.13 Vorticity contours for different l at the end of the downstroke. As l increase size and
strength of LEV and TEV increases

vortex pair has low swirl component. This wake with predominant vertical velocity
increases the stability of the body in hovering.

Effect of inter-wing distance:

Figure13.13 presents the vorticity contours at different inter-wing distances. CV of
the forewing slightly decreases initially, for l < 1.5c and remains nearly constant at
greater distances. The effect is apparent as the vortical structures of the forewing look
similar. CV of the hindwing increases slowly for l < 1.5c and increases rapidly for
l > 1.5c. For l ≥ 1.7c, there is no formation of the merged vortex, this reduces the
peak CV of the hindwing at t/T = 0.6 (Fig. 13.11b) as the effect of wake capture is
diminished. For l > 1.5c, due to the reduced wing–wing interactions, and decreased
effect of merged vortex in reducing the pressure around the hindwing, the delayed
stall mechanism becomes more effective in the force generation (Fig. 13.11b).

13.5 Effect of Ground on the Force Generation

In this section, we study the effect of ground on the vortex dynamics and the force
production of a single flapping wing. The study is carried out in a domain of size:
−20c ≤ x ≤ 20c, −1c ≤ y ≤ 20c on a grid with uniform grid dimensions of 0.01c.
Figure13.14 represents the details of the computational domain and boundary con-
ditions used in the study.

Figure13.15a represents the CV versus the ground clearance D/c. Figure13.15b
shows the time-varying vertical forceCV versus the non-dimensionalized timeplotted
at different heights from the ground. For the sake of clarity, only CV variations
pertaining to D/c = 0.5, 1, 2, 3, 5, and without ground effect cases are plotted.

Similar to Gao and Lu (2008), the variation of CV can be grouped into three
regimes: force enhancement, force reduction, and force recovery regimes. ForD/c <

2, as the wing moves closer to the ground, force generation increases, and the ground
effect is dominant; the force behavior lies in the force enhancement regime. For
2 < D/c < 4, CV is lesser than the values for the case with D/c = 0.5 as well as
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Fig. 13.14 Computational domain and the boundary conditions used in the study are represented
here. The non-dimensional clearance from the ground D/c is the vertical distance between the
center of the wing and the ground when the wing is at the end of its downstroke

Fig. 13.15 a Time-averaged vertical force versus ground clearance. b Vertical force versus time

CV∞ , and the force behavior changes from force enhancement to force recovery
regime. This regime is called force reduction regime. In the force recovery regime
(D/c > 4), the wing experiences increased vertical forces due to the reverse Kármán
vortex shedding and CV slowly reaches CV∞ . Figure13.16 shows the evolution of
vortical structures with time, along with the corresponding pressure contours for
D/c = 0.5. Velocity vectors are superimposed on vorticity plots to visualize the
interaction between fluid and the ground.

In Fig. 13.15b, CV initially increases and reaches itsmaximumat t/T ≈ 0.08. This
initial peak is due to the acceleration of the wing, and the rapid pitch-down rotation.
After the initial peak, CV slowly decreases and starts increasing at t/T ≈ 0.2. In
Fig. 13.16a, b, the vortex which is near the lower surface of the wing adds a CW
circulation to the fluid displaced by the wing, this reduces the effect of the ground on
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(a) t/T = 0.08 (b) t/T = 0.2 (c) t/T = 0.3

(d) t/T = 0.4 (e) t/T = 0.5 (f) t/T = 0.6

(g) t/T = 0.7 (h) t/T = 0.8 (i) t/T = 0.9

Fig. 13.16 Evolution of vorticity and pressure with time at D/c = 0.5. Velocity vectors are super-
imposed on vorticity. Vorticity and pressure are plotted in alternating rows. Red represents CCW
vorticity and positive pressure, and blue represents CW vorticity and negative pressure. Contour
levels for both vorticity and pressure are from −1 to 1
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the generation of vertical force. As the wing continues its downstroke, the CWvortex
advects downstream and away from the wings facilitating cushion effect; this results
in the direct impingement of the fluid on the ground. The increasing pressure on the
lower surface of the wing causes an increase in CV. This effect is analogous to a jet
impinging on a surface. Along with the cushion effect, the formation of leading-edge
vortex (LEV) in accordance with the delayed stall mechanism creates a low-pressure
region on the upper surface of the wing. A counterclockwise (CCW) trailing edge
vortex (TEV) is also created at the trailing edge of the wing. LEV coupled with
the cushion effect is the reason for the high CV observed in the near ground cases.
The flow generated by the wing creates shear layers on the ground. As the wing
starts pitching up, LEV and TEV of the wing are shed (Fig. 13.16c) causing a total
loss of lift. At t/T ≈ 0.5, the wing interacts with the shear layer on the ground and
disrupts it (Fig. 13.16e). Due to the severe gradients created, CV becomes minimum.
At t/T ≈ 0.5, the wing starts its upstroke and the lift slowly starts increasing because
of the induced velocity of the jet created by the shed LEV and the shed TEV. For
most part of the upstroke, the wing is vertical and is surrounded by a low-pressure
region (pressure plots of Fig. 13.16f–h), as a result, the lift generated in the upstroke
is less compared to the downstroke.

Figure13.17 shows the evolution of vortical structures at D/c = 1. Important
flow features in the present case are the rebound vortices. LEV and TEV shed in the
previous stroke strike the ground and rebound, and the shedLEVforms a low-pressure
region below the lower surface of the wing (Fig. 13.17a). Between t/T = 0.2 and
0.4, the wing interacts with the CW rebound vortex, (Fig. 13.17b–d). The presence of
the rebound vortex reduces the cushion effect on the wing, as a result, CV decreases
compared to D/c = 0.5. The LEV shed at the end of the downstroke strikes the
ground and forms a new rebound vortex. An important observation we made is the
change in the effective angle of attack (AoA) of the wing caused by the flow created
by the CW rebound vortex. When the wing is in its downstroke, the circulation
added by the rebound vortex to the surrounding fluid changes the AoA of the wing.
Depending on the size and strength of the CW rebound vortex, the vertical force
generated by the wing may either increase or decrease.

At D/c = 2, the induced velocity of the jet created by the rebound vortices gen-
erates most of the force. The prominent flow feature at this ground clearance is the
presence of a sustained CW rebound vortex (Fig. 13.18a). LEV shed by the wing at
the end of the downstroke feeds the rebound vortex from the previous stroke. Shed
TEV of the wing gets stretched by the shear layer at the ground, loses its strength and
eventually dissipates. As the ground clearance increases, the induced velocity of the
jet created by the shed vortices dominates the force generation. The flow structures
at the beginning of the downstroke for D/c = 2, 5, and out-of-ground effect cases
are shown in Fig. 13.18. The figures show that the effect of ground is negligible for
D/c > 5.0 as flow structures are almost similar (Fig. 13.18b, c).
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(a) t/T = 0.1 (b) t/T = 0.2 (c) t/T = 0.3

(d) t/T = 0.4 (e) t/T = 0.5 (f) tT = 0.6

(g) t/T = 0.7 (h) t/T = 0.8 (i) t/T = 0.9

Fig. 13.17 Evolution of vorticity with time for D/c = 1. Velocity vectors are superimposed on
vorticity to visualize ground effect

(a) D/c = 2 (b) D/c = 5 (c) D/c = ∞

Fig. 13.18 Vorticity contours at t/T = 0.1. Velocity vectors are superimposed on vorticity to
visualize ground effect
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13.5.1 A Note on Three-Dimensionality and Wing Flexibility

In this article, we have not considered two important effects relevant to insect flight:
(1) finite aspect ratio of the wings and (2) wing flexibility. Various researchers
have employed IBM, due to its versatility, to study the influence of these two and
related parameters on the insect aerodynamics. These studies focused on the effect
of the following parameters on the force production by flapping insect wings: three-
dimensional wingtip vortices on finite aspect ratio wings (Moriche et al. 2016), effect
of wing kinematic parameters (Han et al. 2018), complex maneuvering (Bode-Oke
et al. 2018), wing flexibility (Shahzad et al. 2018), fluid–structure–acoustics interac-
tion (Wang and Tian 2019), and complete wing-body models (Minami et al. 2014).

13.6 Conclusion

In this chapter,wepresented the application of immersedboundary projectionmethod
to study the unsteady aerodynamics of insect flight. Following a brief review of the
unsteady aerodynamic mechanisms involved in the insect flight, we presented the
numerical implementation of the moving-body and multi-processor implementation
of the present IBPM algorithm. The unsteady flow structures and aerodynamic forces
acting on an idealized 2D dragonflymodel wing were studied by numerically solving
the N-S equations with the IBPM formulation. The chapter covered the kinematics
and flow physics of the flapping flight with the focus on three major aspects of the
flight: (1) the mechanism of vertical force generation, (2) the forewing–hindwing
interaction in the case of tandem wings, and (3) the effect of ground on force genera-
tion. Spatio-temporal dynamics of vorticity field and Lagrangian coherent structures
are used to understand the physics behind the force variation in inclined stroke plane
kinematics. Our results suggest that the delayed stall mechanism is not the dominant
lift generationmechanism in the case of such kinematics. Insects using inclined stroke
kinematics use their wings as a bluff body in downstroke, and as a streamlined body
during upstroke; this difference in operation helps in large vertical force generation.
In the presence of tandem wings, in-phase stroking of the wings produces maximum
vertical force and the out-of-phase stroking generates the least vertical force. Fur-
thermore, the ground effect can be grouped into three regimes: force enhancement,
force reduction, and force recovery regimes, depending on the non-dimensional ratio
of distance between the ground to chord length.

It is worth emphasizing here that the immersed boundary method would be the
ideal choice to simulate fluid flow over rapidly oscillating insect wings. Moreover,
the study of interference effect and ground effect require handling multiple bodies
coming very close to each other. IBM is instrumental in simulating flows around
multiple bodies with complex kinematics. With conventional body-fitted methods,
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it would be practically impossible to handle such situations without re-meshing
operations and excessive human intervention. This situation is directly dealt with
using immersed boundary methods, thus enabling us to easily study the physics in
such scenarios.
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Chapter 14
Hybrid Lagrangian–Eulerian
Method-Based CFSD Development,
Application, and Analysis

Namshad Thekkethil and Atul Sharma

14.1 Introduction

Fluid–structure dynamics (FSD)—a coupled interaction between fluid dynamics and
structure dynamics—is one of the complex phenomena observed in nature and has
led to the development of biomimetic-based engineering systems. Analysis of the
FSD in the natural systems could lead to a better design of the biomimetic systems.
Since experimental methods have several limitations with regard to physical model
for the complex FSD phenomenon, computational methods can take the lead in the
analysis of the experimentally challenging FSD problems. For the computational
fluid–structure dynamics (CFSD), there are various types of methods that are based
on independent advancements in computational fluid dynamics (CFD) and compu-
tational structure dynamics (CSD) along with a coupling between the CFD and CSD
that can be either one-way or two-way. For a one-way coupled CFSD, the structure
is rigid and subjected to a forced motion that is independent of fluid dynamic forces
acting on the structure while the fluid flow depends on the kinematic conditions of the
structure. For a two-way coupled CFSD, the fluid flow and motion and/or deforma-
tion of flexible/rigid structure are dependent on each other; the motion/deformation
of the structure is caused by the fluid dynamic forces.
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14.1.1 CFSD Development, Application, and Analysis

Computational fluid–structure dynamics involves the development of a software, its
application for a fluid–structure dynamics problem to obtain scientifically exciting
and engineering-relevant results, and analysis of the results for a unified cause-and-
effect study (Sharma 2017). Historically, the Eulerian approach-based finite volume
method (FVM) is usually preferred in CFDwhile CSD prefers Lagrangian approach-
based finite element method (FEM). However, for CFSD, various combinations of
Eulerian and Lagrangian methods are considered that are broadly classified into two
approaches:monolithic and partitioned. Themonolithic approach considers fluid and
structure as a continuum and uses either Eulerian or Lagrangian approach throughout
the domain, whereas the partitioned approach solves the fluid flow and the structure
motion or/and deformation separately along with a coupling condition at the fluid–
solid interface. The partitioned approach is further classified into three types: fully
Lagrangian, arbitrary Lagrangian–Eulerian (ALE), and hybrid Lagrangian–Eulerian
(HLE) methods.

Fully Lagrangian method (Belytschko and Kennedy 1975; Donea et al. 1976)
considered both the fluid dynamics and structural dynamics in the Lagrangian system
and was the first choice for CFSD. However, the Lagrangian method for fluid flow is
limited to almost stationary fluid since the fluid flow leads to a distortion of the mesh.
ALE method considers body-fitted mesh and involves dynamic meshing without the
mesh distortion problems (Noh 1963). ALEmethods are efficient for many classes of
FSI problems; however, it is limited by the need to re-mesh and gets into the trouble of
the mesh distortion at a larger deformation of the structure. The HLEmethods are the
best choice for large deformation of CFSD problems. It uses the Eulerian approach
for CFD and the Lagrangian approach for CSD. The HLEmethod presented here was
proposed in our recent work (Thekkethil and Sharma 2019) for both one-way and
two-way coupled CFSD problems. The HLE method considers a physical law-based
FVM (Sharma 2017) and a level-set function-based immersed boundary method (LS-
IBM) for CFD and geometric nonlinear Galerkin FEM for CSD along with direct
implementation of coupling conditions at the fluid–solid interface.

14.1.2 Immersed Boundary Method

A historical development for CFD simulation of flow across immersed complex-
shaped body started with a finite difference method-based solution on a Cartesian
grid that approximates the curved body as a stepped one. Later, a finite volume
method-based solution on a body-fitted grid was proposed initially for a structured
curvilinear grid and later for an unstructured grid. The FVM-based solution contin-
ued for many years; however, the progress in CFD application from flow across a
stationary structure to a moving and/or deforming structure led to various numeri-
cal challenges in generating a time-wise varying body-fitted structured/unstructured
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grid. This led to a renewed interest in the application of Cartesian grid although with
a new form—non-body-fitted Cartesian grid.

Immersed boundary method (IBM) (Peskin 2002) is a numerical methodology for
finite difference method (FDM) or FVM-based CFSD development on a non-body-
fitted and fixed Cartesian grid that involves a special treatment for implementation
of fluid–solid interface boundary conditions and also for the CFD solution on the
partially filled fluid cells. IBM gained popularity during the last few decades. The
motion/deformation of the immersed structure results in certain Cartesian fluid cells
(near the fluid–solid interface) to be partially or entirely filled with the solid at
certain time instants. Depending on the numerical method to handle the change in
the fluid cells near the moving interface, many IBMs are available in the literature
that can be broadly classified into two types (Mittal and Iaccarino 2005): continuous
forcing IBM and discrete forcing IBM (Mittal and Iaccarino 2005). The discrete
forcing IBM is further classified based on the direct or indirect implementation of
fluid–solid interface boundary conditions. A sharp-interface IBM (Udaykumar et al.
2001; Mittal et al. 2008) considers the physically realistic sharp fluid–solid interface,
while a numerically diffused fluid–solid interface is considered in a diffused interface
IBM (Pan 2006; Patel and Natarajan 2018). Depending on the strategy used for
the application of fluid–solid interface boundary conditions, various sharp-interface
methods are available in the literature, such as ghost-cell-based IBM (Majumdar
et al. 2001; Mittal et al. 2008) and cut-cell-based IBM (Udaykumar et al. 2001).
Both methods use a certain type of interpolation for the application of fluid–solid
interface boundary conditions.

14.1.3 Outline of the Chapter

In this chapter, we present an HLE method-based CFSD development in Sect. 14.3
and its application for analysis of various types of one-/two-way coupled CFSDprob-
lems in Sect. 14.4. The HLE method (Thekkethil and Sharma 2019) involves FVM
and LS-IBM for fluid dynamics and geometric nonlinear Galerkin FEM for structural
dynamics and is based on a partitioned approach. The associated conservation laws
and the fluid–solid coupling conditions are presented in Sect. 14.2.

14.2 CFSD: Conservation Laws and Fluid–Solid Coupling
Conditions

For anyFSDproblem, conservation laws for fluid flowand structure dynamics need to
be satisfied along with a continuity of stress and kinematics as the coupling condition
at the fluid–solid interface. For fluid flow,mass andmomentum conservation laws are
considered in the Eulerian formwhile a Lagrangian form ofmomentum conservation
law is considered for motion as well as deformation of the structure.
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14.2.1 Mass and Momentum Conservation Laws for a Fluid
Control Volume: Eulerian Form

For an incompressible fluid control volume (CV) with volume �v and surface �v

(Fig. 14.1a), the Eulerian form of unsteady mass and momentum conservation laws
is given for a negligible body force as

Mass: Mv
out − Mv

in = 0 (14.1)

Momentum:
∂

∂t

(
M−→u )v + Av

out − Av
in = −→

F v
s (14.2)

where Mv
in and Mv

out are the mass flow rates while Av
in and Av

out are the momentum
flow rates entering and leaving the CV, respectively. Furthermore,M is the mass, −→u
is the velocity, and

−→
F v

s is the surface force acting on the surface �v of the control
volume.

14.2.2 Momentum Conservation Law for a Solid Control
Mass: Lagrangian Form

For a solid control mass with volume�m and surface�m (Fig. 14.1b), the Lagrangian
form of momentum conservation law is given for a negligible body force as

d

dt

(
M−→u )m = −→

F m
s where −→u = d

−→
d

dt
(14.3)

Fig. 14.1 a Mass and momentum conservation on a fluid control volume �v with control surface
�v and b momentum balance in a solid control mass �m with control surface �m
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Here, d
dt

(
M−→u )m

is the rate of change of instantaneous momentum of the control

mass,
−→
F m

s is the surface force acting on the surface �m, and
−→
d is the displacement

vector of the control mass.

14.2.3 Fluid–Solid Coupling Conditions

Coupled fluid dynamics and structural dynamics govern the fluid–solid interface
dynamics. The coupling is obtained by continuity of kinematics and stress field at
the interface, given as

−→u f ,int = −→u s,int and σs,int.n̂ = σf ,int.n̂ (14.4)

Here, the subscripts f and s represent the fluid and structure, respectively, and int
represents the fluid–solid interface. The vector n̂ represents the unit normal vector at
the interface.

14.3 HLE Method-Based CFSD Development: Hybrid
FEM-FVM-Based Numerical Methodology

The present HLE method (Thekkethil and Sharma 2019) uses a form of conserva-
tion law that is Lagrangian for structure dynamics and Eulerian for fluid dynamics,
presented in the previous subsection. Furthermore, the derivation of the algebraic for-
mulations for the present HLE method-based CFSD development considers a phys-
ical law-based finite volume method (Sharma 2017) and a Galerkin finite element
method (Zienkiewicz et al. 1977) for the fluid and structure dynamics, respectively.
The physical law-based FVM starts with a discrete form of conservation laws, pro-
posed by Sharma (2017) in a recent textbook on CFD as compared to starting with
the partial differential equations (PDEs) in almost all the other FVM books on CFD
(Patankar 2018; Versteeg andMalalasekera 2007). Both the physical law-based FVM
and the PDE-based FVM use the same approximations and, thus, result in the same
algebraic formulation for CFD.

Numerical methodology for the FVM-based CFD development and FEM-based
CSD development and the associated coupling for HLE method-based CFSD devel-
opment are presented in separate subsections below.
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14.3.1 CFD Development: Physical Law-Based FVM
and Level-Set Function-Based Immersed Boundary
Method

CFD development consists of five steps (Sharma 2017): grid generation, FVM-based
algebraic formulation, solution methodology, computation of engineering parame-
ters, and testing. The first three steps of the CFD development are presented in sep-
arate subsections below for the present level-set function-based immersed boundary
method (LS-IBM). The present LS-IBM involves a level-set function-based direct
implementation of fluid–solid interface boundary condition (Shrivastava et al. 2013);
thus, it avoids any interpolation for the interfacial boundary conditions.

14.3.1.1 Cartesian Grid Generation

For the development of a CFD solver, the present LS-IBMconsiders a fixed Cartesian
grid, as shown in Fig. 14.2. For flow across a non-Cartesian or complex-shaped
structure, as seen in Fig. 14.2, the non-body-fitted Cartesian grid results in certain
partially filled fluid control volumes (CVs) that require special treatment to ensure
mass and momentum conservation laws and no-slip boundary conditions. The figure
shows the various types of CVs for the Cartesian grid.

Fig. 14.2 Computational domain for a 2D FSI problem with a Lagrangian triangular mesh for
structure immersed in the Eulerian Cartesian mesh in the complete domain
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14.3.1.2 Physical Law-Based FVM

Figure14.3a shows a computational stencil for a CV P whose neighbouring CVs are
also fluid CVs. Considering the computational stencil, for a 2D incompressible flow,
amass andmomentum conservation law-based FVM results in discretemathematics-
based approximated algebraic formulation, given (Sharma 2017) as

(
mn+1

x,e − mn+1
x,w

)�yP −
(

mn+1
y,n − mn+1

y,s

)
�xP = 0 (14.5)

ρf
φn+1

P − φn
P

�t
�VP + An+1

φ,P = Dn+1
φ,P + Sn+1

φ,P

where Aφ,P = [(
m+

x,eφ
+
e + m−

x,eφ
−
e

)− (
m+

x,wφ+
w + m−

x,wφ−
w

)]�yP
[(

m+
y,nφ

+
n + m−

y,nφ
−
n

)
−
(

m+
y,sφ

+
s + m−

y,sφ
−
s

)]
�xP

Dφ,P = μf

[(
φE − φP

δxe
− φP − φW

δxw

)
�yP +

(
φN − φP

δyn
− φP − φS

δys

)
�xP

]

Su,P = (pw − pe) �yP, Sv,P = (ps − pn)�xP (14.6)

wheremx andmy are the components of mass flux in x- and y-directions, respectively,
and the superscript n + 1 represents the time instant (t + �t).

Fig. 14.3 Computational stencil for a fluid control volume with a all the neighbouring cells in the
fluid and b north and east neighbours in the structure
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For a semi-implicit solution methodology considered here, momentum equation
considers the implicit time-level (n + 1) for all the terms (advection A, diffusion D,
source S). Furthermore, φ = u and φ = v in Eq. (14.6) correspond to x-momentum
and y-momentum conservations, respectively. The advection terms Au,P and Av,P are
the advection of x-momentum flow rate and y-momentum flow rate, while the diffu-
sion terms Dχ

u,P and Dχ

v,P are the viscous forces in x- and y-directions, respectively.
Furthermore, ρf is the density of the fluid,μf is the viscosity of the fluid, and p is the
pressure acting on the surface of the CVs. Also, in the advection term, themass flux in
the positive and negative directionsm+ = max (m, 0) and m− = min (m, 0), and u/v
velocity at the face centre φf =e,w,n,s = wDφD + wU φU + wUU φUU is obtained using
an advection scheme (Sharma 2017). Here, D, U, and UU correspond to the down-
stream, upstream, and upstream-of-upstream values, respectively, and the weights
wD,wU , andwUU for the first-order upwind (FOU), second-order upwind (SOU), and
quadratic upstream interpolation for convective kinematics (QUICK) schemes are
obtained from a distance-based extrapolation/interpolation scheme (Sharma 2017).

14.3.1.3 Solution Methodology: Semi-implicit Pressure Projection
Method

A semi-implicit pressure projection method (SIPPM) on a co-located grid system
is used for the unsteady solution of the algebraic formulation—Eq. (14.5) for mass
and Eq. (14.6) for momentum conservation. The velocity field −→u n+1

P at a new time-
level (n + 1) is obtained from the momentum conservation equation, while the mass
conservation equation is converted into an algebraic equation for pressure (presented
below), using a predictor–correctormethod in the SIPPM.The predictor step involves
prediction (represented by ∗ values) of velocity at cell centre −→u ∗

P as well as normal
velocities of mass fluxes at the face centres (u∗

e , u∗
w, v∗

n , and v∗
s ). The predicted mass

fluxes at the face centres are used to obtain the pressure pn+1
P at the new time-level

(n + 1) from the pressure equation. Finally, the pressure field is used to obtain the
velocity correction (represented by ′ values) at the cell centres −→u ′

P and then obtain−→u n+1
P = −→u ∗

P + −→u ′
P . Formulation of the algebraic equations for −→u ∗

P , u∗
f /v∗

f , pn+1
P ,

and −→u ′
P is presented below for the SIPPM.

Original Proposition:

Using Eq. (14.6) with φ = u or v, the velocity at the cell centre un+1
P and that at the

east face centre un+1
e are given as

ρf
un+1

P − un
P

�t
�VP + An+1

u,P = Dn+1
u,P + (

pn+1
w − pn+1

e

)�yP

ρf
un+1

e − un
e

�t
�Ve + An+1

u,e = Dn+1
u,e + (

pn+1
P − pn+1

E

)�yP (14.7)
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Predictor step:

The projection method results in a velocity predictor equation for u∗
P/u∗

e obtained
from the above equation, after dropping the pressure term, given as

ρf
u∗

P − un
P

�t
�VP + A∗

u,P = D∗
u,P

ρf
u∗

e − un
e

�t
�Ve + A∗

u,e = D∗
u,e (14.8)

From the above implicit equation, u∗
P is obtained after an iterative solution while

u∗
e is approximated by linear interpolation of the neighbouring cell-centre predicted
velocity, i.e. u∗

e = u∗
P, u∗

E ; similarly, u∗
w = u∗

P, u∗
W , v∗

n = v∗
P, v∗

N , and v∗
s = v∗

P, v∗
S

where v∗
P is obtained from equation similar to Eq. (14.8). Note that u∗

e is not obtained
from the above implicit equation.

Corrector step:

Subtracting Eq. (14.8) for u∗
e fromEq. (14.7) for un+1

e , we get an approximate velocity
correction as

un+1
e − u∗

e ≈ �t

ρf

(
pn+1

E − pn+1
P

)

δxe
(14.9)

⇒ mn+1
x,e ≈ m∗

x,e − �t

(
pn+1

E − pn+1
P

)

δxe
(14.10)

The approximations in the above equation correspond to neglecting the velocity
correction corresponding to the advection and diffusion terms—resulting in the semi-
implicit equation (Patankar 2018) although the original proposition is fully implicit
[Eq. (14.6)].

Algebraic formulation for pressure:

Equations similar to Eq. (14.10) can be obtained for the mass fluxes at the other face
centres, and substituting from these equations to the mass conservation Eq. (14.5),
we obtain the pressure equation as

aPpn+1
P = aEpn+1

E + aW pn+1
W + aN pn+1

N + aSpn+1
S + b

where aE = �t�yP

δxe
, aW = �t�yP

δxw
, aN = �t�xP

δyn
, aS = �t�xP

δys
,

aP = aE + aW + aN + aS , b = −S∗
m,P

= −
[(

m∗
x,e − m∗

x,w

)�yP +
(

m∗
y,n − m∗

y,s

)
�xP

]
(14.11)
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Special Treatment for Partially Filled Fluid CVs

Figure14.3b shows a control volume P with its east and neighbouring north cells in
the structure. The solution procedure is same as other cells except for the computation
of advection, diffusion, and pressure terms on the faces whose adjoining CV is a solid
CV. For the control volume P in Fig. 14.3b, considering the east and north interfaces
as horizontal and vertical lines, the advection and diffusion fluxes at the east and
north sides are computed at Eint and Nint, respectively (instead of e and f ), using the
values of velocity at the solid boundary. The advection and diffusion fluxes at Eint

and Nint are given as

an+1
φx,E,int = mn

x,E,intφ
n+1
E,int, an+1

φy,N ,int = mn
y,N ,intφ

n+1
N ,int

dφx,E,int = μf
φn+1

E,int − φn+1
P

δxE,int
, dφy,N ,int = μf

φn+1
N ,int − φn+1

P

δyE,int
(14.12)

where δxE,int and δyN ,int are shown in Fig. 14.3b. The interface velocities (φE,int

and φN ,int) and the mass fluxes at the east and north sides are obtained from the
neighbouring solid grid points (at the interface) by linear interpolation, given as

φE,int = φN2 , φN3 , φN ,int = φN1 , φN2

mx,E,int = ρf uE,int, my,N ,int = ρf vN ,int (14.13)

where N1, N2, and N3 are solid nodes (defined for FEM), as shown in Fig. 14.3b.
Similar linear interpolation is used to obtain vE,int and vN ,int, and the resulting

−→u E,int

and −→u N ,int are used to obtain the advection fluxes [Eq. (14.12)] without using any
advection scheme. The interface distances in the diffusion flux, δxE,int and δyE,int

[Eq. (14.12) and Fig. 14.3b], are obtained using the level-set function ψ , given as

δxE,int = xE − xP

|ψE − ψP| |ψP| , δyN ,int = yN − yP

|ψN − ψP| |ψP| (14.14)

For the mass balance, the mass fluxes at east and north faces that corresponds to
the interface values [Eq. (14.13)] are directly used; resulting mass balance equation,
for the partially filled CV “P” (Fig. 14.3b), is given as

aPpn+1
P = aW pn+1

W + aSpn+1
S + b

where aP = aW + aS , b = −S∗
m,P

= −
[(

mn+1
x,E,int − m∗

x,w

)�yP +
(

mn+1
y,N ,int − m∗

y,s

)
�xP

]
(14.15)

The interface pressures (PE,int and PN ,int) are obtained from the pressure gradient
boundary condition at the interface, given as

∂p

∂n
= −ρf an =⇒ ∇p.n̂ = −ρf

−→a . n̂ (14.16)
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where an is the normal acceleration at the interface. Using the level-set function at
the interface, it is given (Shrivastava et al. 2013) as

∂p

∂x

∂ψ

∂x
+ ∂p

∂y

∂ψ

∂y
= −ρf

(
ax,int

∂ψ

∂x
+ ay,int

∂ψ

∂y

)
(14.17)

where ax,int and ay,int are the accelerations in the x- and y-directions at the solid
surface. Considering the solid boundary as horizontal and vertical lines, the above
equation results in an approximated boundary condition for the pressure, given as

∂p

∂x
≈ −ρf ax,int,

∂p

∂y
≈ −ρf ay,int (14.18)

Thus, the pressure boundary conditions at the east and north faces of the cell P are
given as

pE,int = pP − δxE,intρf ax,E,int

pN ,int = pP − δyN ,intρf ay,N ,int
(14.19)

where ax,E,int and ay,N ,int are obtained by linear interpolation from the solid grid
points [similar to Eq. (14.13)].

Calculation of Level-Set Function: A Geometric Method

Level-set function ψ (Sethian 1999) is a normal distance function with a change in
sign across an interface. The sign of ψ is used to detect the Cartesian CVs that are
in the fluid and also the partially filled CVs. Furthermore, its magnitude is used to
calculate the diffusion fluxes [Eq. (14.14)] in the partially filled CVs. The sign of
the level-set function is distinguished by using a winding number algorithm, and
its magnitude is obtained by a minimum distance algorithm, proposed in our recent
work (Thekkethil and Sharma 2019). The algorithms are presented here for a 2D
solid body; however, it can be extended to 3D geometries also.

The surface of the structure �s is divided into nss number of line segments �i, as
shown in Fig. 14.4, where i = 1, 2, . . . , nss. For the endpoints in the line segments,
the position vectors are specified as

[−→x 1,
−→x 2, . . . ,

−→x nss

]
. For any cell P in the

Cartesian domain (Fig. 14.4), the sign of the level-set function is computed using the
winding number algorithm, which is better than many other methods in this category
such as line tracing algorithm, that fails if the shape of the structure is complex. In
the winding number algorithm, the counterclockwise angle subtended by each line
segment with the cell P is added to obtain the winding number. For the cell P with
position vector−→x in Fig. 14.4, the angle subtended by the line segment �i is given as

θi = cos −1

[(−→x i − −→x ) . (−→x i+1 − −→x )
∣∣−→x i − −→x ∣∣ ∣∣−→x i+1 − −→x ∣∣

]

(14.20)
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Fig. 14.4 For a fluid cell in
the Cartesian system,
computation of angle
between two consecutive
grid points on the structure
surface

The winding number ωn for the cell P is computed as

ωn,P = 1

2π

nss∑

i=1

θi (14.21)

For any cell P inside the structure, ωn,P will be 1 while it will be 0 for a cell P in the
fluid.

For finding the magnitude of the level-set function, the minimum distance algo-
rithm is used. For each Cartesian cell P, the shortest distance from each line segment
�i (Fig. 14.4) is calculated as

|ψ |P,i = ∣∣−→x d

∣∣

where −→x d =

⎧
⎪⎨

⎪⎩

−→x − −→x i−→x − −→x i+1−→x − (−→x i + t
[−→x i+1 − −→x i

])

if t < 0

if t > 1

if 0 ≤ t ≤ 1

t =
(−→x − −→x i

)
.
(−→x i+1 − −→x i

)

∣
∣−→x i+1 − −→x i

∣
∣2

(14.22)

The magnitude of the level-set function is computed as the minimum of the shortest
distance from each line segment, given as

|ψ |P = min
(|ψ |P,1 , |ψ |P,2 , . . . , |ψ |P,nss

)
(14.23)

For a 3D geometry, a 3D winding algorithm (Jacobson et al. 2013) can be used to
find whether the point lies inside or outside the structure. The 3D geometry surface
can be divided into a finite number of elements. For each Cartesian cell, similar to θi

in 2D, the solid angle can be calculated for each element on the surface. Summation
of the solid angles with all the elements gives a measure of the winding number. For
finding the magnitude of the level-set function, similar to |ψ |P,i in 2D, the shortest
distance from each element can be computed, and the minimum of the shortest
distance gives the magnitude of the level-set function.
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Solution algorithm:

For the present HLE method, the CFD solution is obtained by solving the equations
presented in Sect. 14.3.1.3, for the completely as well as partially filled CVs. The
solution algorithm to obtain the velocity and pressure at a new (n + 1)th time step
from the old nth time instant is given as follows:

1. Initialise the velocity, pressure, and level-set field in the domain as per the initial
configuration variables.

2. Compute the level-set function ψ using Eqs. (14.21) and (14.23).
3. Solve Eq. (14.8) for u∗ and v∗.
4. Predict S∗

m,P [Eq. (14.11)] required for the pressure equation.
5. Solve the pressure equation, Eq. (14.11).
6. Calculate the corrected mass flux mn+1

f [Eq. (14.10)].

7. Solve Eq. (14.7) for un+1
P and vn+1

P using mass conserving mass flux mf n+1 and
linearly interpolated pressure (pw = pP, pW and pe = pP, pE).

8. Set n = n + 1 and repeat steps 2 − 8 for the next time step. Continue up to certain
stopping criterion of the transient simulation.

14.3.2 CSD Development: Geometric Nonlinear Galerkin
FEM-Based Numerical Methodology for Structural
Dynamics

For the structural dynamics involving large deformation, a geometric nonlinear
Galerkin FEM-based algebraic formulation is used here to convert the momentum
conservation equation [Eq. (14.3)] to a system of linear algebraic equations for dis-
placement vector

−→
d . Similar to the CFD development in the previous section, CSD

development is presented below in separate subsections for grid generation, FEM-
based algebraic formulation, and solution methodology.

14.3.2.1 Unstructured Grid Generation

For the development of a CSD solver, the present geometric nonlinear Galerkin
FEM-based numerical methodology considers a fixed body-fitted unstructured grid,
as shown in Fig. 14.2. The figure shows that the grid generation involves dividing the
solid into several control masses, considered triangular here. The control masses are
called as elements, and the grid points at the vertices of the elements are called as
nodes in FEM, represented by unfilled circles in Fig. 14.2. Although the triangular
elements, along with the nodes, move substantially during large deformation, a fixed
node/element is considered in the geometric nonlinearGalerkin FEMpresented in the
next subsection. This involves defining the deformation vector

−→
d at the various solid

nodes, with reference to the initial (t = 0) node configuration, shown in Fig. 14.2.
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14.3.2.2 Geometric Nonlinear Galerkin Finite Element Method

In order to solve the Lagrangian form of themomentum conservation law [Eq. (14.5)]
for the deformation vector

−→
d at the various nodes (Fig. 14.2), the algebraic formu-

lation for a three-node triangular element is presented here. For the volume �e and
surface �e of the element, the instantaneous momentum conservation [Eq. (14.5)]
for the element e is given as

⎛

⎝ d2

dt2

∫

�e

ρs
−→
d ed�e

⎞

⎠

n+1

=
∫

�e
c

σ n+1
c .n̂d�e

c =
∫

�e
in

(
D

e,n+1Se,n+1
)
.n̂d�e

in (14.24)

where the L.H.S of the above equation corresponds to the unsteady term d
dt

(
M−→u )

and R.H.S to the surface force term
−→
F e

s . Also, note that the above equation for the
force is first represented with reference to the current (instantaneous) configuration−→
F e

s,c and then with reference to the initial (t = 0) configuration
−→
F e

s,in. Here, ρs is

the density of the solid and
−→
d e is the displacement vector of the element.

−→
F e

s,c is
presented above as the surface integral of the Cauchy stress stress σ that is with
reference to the deformed or current configuration. Its conversion with reference
to the initial configuration (with surface area �e

in) results in a product of De and
Se and corresponds to deformation gradient and second Piola–Kirchhoff’s stress,
respectively. They are given in 2D Cartesian coordinate system as

D
e = I +

(
∇−→

d e
)T =

[
1 + de

x,x de
x,y

de
y,x 1 + de

y,y

]
and Se =

[
Se

xx Se
xy

Se
yx Se

yy

]
(14.25)

Here, the components of Se are presented in a matrix form as Se = DEe, where Se

is the element stress matrix, D is the stress–strain relationship matrix, and Ee is the
element Green strain matrix. Using St. Venant–Kirchhoff’s model for a plain-strain
case, the matrix form of stress–strain relationship is given as

Se = DEe ⇒
⎡

⎣
Se

xx
Se

yy

Se
xy

⎤

⎦ =
⎡

⎣
C1 C2 0
C2 C1 0
0 0 C3

⎤

⎦

⎡

⎢⎢⎢⎢
⎢
⎣

de
x,x + 0.5

[(
de

x,x

)2 +
(

de
y,x

)2]

de
y,y + 0.5

[(
de

x,y

)2 +
(

de
y,y

)2]

de
x,y

(
1 + de

x,x

)+ de
y,x

(
1 + de

y,y

)

⎤

⎥⎥⎥⎥
⎥
⎦

(14.26)

where C1 = E(1−νs)/(1+νs)(1−2νs), C2 = Eνs/(1+νs)(1−2νs), and C3 = E/2(1+νs). Here, E is
Young’s modulus and νs is Poisson’s ratio of the solid material. Further, the suffix
after the comma for de above represents the derivative, i.e. de

x,x = d
dx de

x .
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Using the Gauss divergence theorem, Eq. (14.24) is given as

ρs,in

⎛
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⎝

d2

dt2
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�e
in

−→
d ed�e

in

⎞

⎟
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(
D

e,n+1Se,n+1) d�e
in (14.27)

Using a bilinear interpolation with
−→
d e = a−→x + b−→y + c for the element e, the

constants a, b, and c are obtained as f
(−→x 1,

−→x 2,
−→x 3,

−→
d e

1,
−→
d e

2,
−→
d e

3

)
, which after

certain rearrangements results in a function form of the displacement vector for the
element e as
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d e = N e
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2
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3
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⎦ (14.28)

Here, N e
1 , N e

2 , and N e
3 are called as shape functions of the element e with respect to

the nodes 1, 2, and 3, respectively (Fig. 14.5). Substituting
−→
d e from Eqs. (14.28) to

(14.27), we get
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(14.29)

Nodal Equations:

For conversion of the above element equation to a nodal equation, the geometric
nonlinear Galerkin FEM (as compared to other FEMs) involves multiplication of the

Fig. 14.5 A triangular
element with three nodes
considered for the geometric
nonlinear Galerkin
FEM-based algebraic
formulation for an element
“e”
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integrand of the above equation with the shape functions of the corresponding nodes.
Using this operation, Eq. (14.29) results in a nodal for node i as

ρs,in

⎡

⎢
⎣

d2

dt2

∫

�e
in

(
N e
1
−→
d e

1 + N e
2
−→
d e

2 + N e
3
−→
d e

3

)
N e

i d�
e
in

⎤

⎥
⎦

n+1

=
⎡

⎢
⎣
∫

�e
in

(
D

eSe
)

N e
i .n̂d�e

in

⎤

⎥
⎦

n+1

−
⎡

⎢
⎣
∫

�e
in

(
D

eSe
)
.∇ (N e

i

)
d�e

in

⎤

⎥
⎦

n+1

(14.30)

where the first surface integral term (obtained after applying the Gauss divergence
theorem) on the R.H.S above represents the surface force acting on node i,

−→
F e

i .
Furthermore, substituting D

e and Se from Eq. (14.25), the integrand of the second
term in the R.H.S of the above equation is presented in matrix form. They are given
as

⎡

⎢
⎣
∫

�e
in

(
D

eSe
)

N e
i .n̂d�e

in

⎤

⎥
⎦

n+1

=
[

Fe
xi

Fe
yi

]
,

(
D

eSe
)
.∇ (N e

i

) =
[
1 + de

x,x de
x,y

de
y,x 1 + de

y,y

] [
Se

xx Se
xy

Se
yx Se

yy

] [
N e

i,x
N e

i,y

]

=
([

BL,e
i

]T +
[
BNL,e

i

]T
)
Se (14.31)

where BL,e
i and BNL,e

i are the linear and nonlinear deformation matrices for node i,
given as

BL,e
i =

⎡

⎣
N e

i,x 0
0 N e

i,y

N e
i,y N e

i,x

⎤

⎦ ,BNL,e
i =

⎡

⎣
N e

i,xde
x,x N e

i,xde
y,x

N e
i,yde

x,y N e
i,yde

y,y

N e
i,xde

x,y + N e
i,yde

x,x N e
i,xde

y,y + N e
i,yde

y,x

⎤

⎦ (14.32)

Here, the suffix after the comma for N e
i above represents the derivative, i.e. N e

i,x =
d
dx N e

i . Further, the element stress matrix Se in Eq. (14.31) is represented in terms of

BL,e and modified deformation matrix Bme, by substituting Eq. (14.28) for
−→
d e into

Eq. (14.26) for Se, given as

Se = D
(
BL,e + Bme

)
de

where BL,e = [BL,e
1 BL,e

2 BL,e
3

]
and Bme = [

Bme
1 Bm

e
2 Bm

e
3

]
(14.33)

where Bme
i and de (nodal displacement vector of the element e) are given as
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Bme
i = 0.5

⎡

⎣
N e

i,xde
x,x N e

i,xde
y,x

N e
i,yde

x,y N e
i,yde

y,y

2N e
i,yde

x,x 2N e
i,xde

y,y

⎤

⎦ ,de =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

de
x1

de
y1

de
x2

de
y2

de
x3

de
y3

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(14.34)

Substituting Eqs. (14.31)–(14.30), taking all the terms to the R.H.S, and using
generalised Newmark algorithm (Zienkiewicz et al. 1977) [with a second-degree
polynomial approximation for time variation and second-order accuracy (GN22)],
the residual vector � of an element e with respect to node i for (n + 1)th time instant
is given as

�
e,n+1
i =

[
Fe

xi
Fe

yi

]
−
⎡

⎢
⎣
∫

�e
in

([
BL,e

i

]T +
[
BNL,e

i

]T
)
Sed�e

in

⎤

⎥
⎦

n+1

−

2ρs,in

�t2

∫

�e
in

[
N e
1 0 N e

2 0 N e
3 0

0 N e
1 0 N e

2 0 N e
3

]
N e

i d�e
in

[
de,n+1 − de,n + �t × ue,n

] = 0

(14.35)

where ue,n is the nodal velocity vector of the element e at nth time instant. Since the
above equation is nonlinear, an iterative method is used for the solution. Using the
Newton–Raphson method, the residual vector at (k + 1)th iterative step is obtained
by a Taylor series expansion, given as

�
e,n+1,k+1
i ≈ �

e,n+1,k
i + ∂�

e,n+1,k
i

∂de,n+1
dde,n = 0 (14.36)

where dde,n is the increment to the displacement vector, given as

dde,n = de,n+1,k+1 − de,n+1,k (14.37)

Thus, the final equation for the three nodes of a triangular element—called as
nodal equation—is given as

Ke
i dde,n = �

e,n+1k
i where Ke

i = −∂�
e,n+1,k
i

∂de,n+1
and i = 1, 2, 3 (14.38)

Here, Ke
i is the element stiffness matrix for the element e with respect to node i and

the associated derivative of �
e,n+1,k
i [Eq. (14.35)] with respect to de,n+1, given as

Ke
i = 0 + (

Ke
m,i + Ge

i

)+ 2Me
i

�t2
(14.39)
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where the derivative of Eq. (14.35) with respect to de,n+1 for the surface force
−→
F e

i
is zero, differentiation in parts for the stress term results in the terms shown above
inside the bracket, and that for the unsteady term results in 2Me

i /�t2. Ke
m,i, G

e
i , and

Me
i in the above equation are called as material tangent matrix, geometric stiffness

matrix, and mass matrix, respectively. The material tangent matrix is given as

Ke
m,i =

∫

�e
in

([
BL,e

i

]T +
[
BNL,e

i

]T
)n+1 d

dde,n+1
Se,n+1d�e

in (14.40)

Substituting Se from Eq. (14.33) and using d
dde,n+1

([
BL,e

i

]T
)

= 0, we get

d

dde,n+1
Se,n+1 = DBe,n+1 where Be = BL,e + BNL,e

=⇒ Ke
m,i =

([
Be

i

]T)n+1
DBe,n+1�e

in (14.41)

Further, using d
dde,n+1

([
BL,e

i

]T
)

= 0, the geometric stiffness matrix Ge
i is given as

Ge
i =

∫

�e
in

d

dde,n+1

([
BL,e

i

]T +
[
BNL,e

i

]T
)n+1

Se,n+1d�e
in

⇒ Ge
i =
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Ge

i,1 0 Ge
i,2 0 Ge

i,3 0
0 Ge

i,1 0 Ge
i,2 0 Ge

i,3

]
�e

in where

Ge
i,j = N e

i,xSe,n+1
xx N e

j,x + N e
i,xSe,n+1

xy N e
j,y + N e

i,ySe,n+1
xy N e

j,x + N e
i,ySe,n+1

yy N e
j,y (14.42)

The mass matrix Me
i is given as

Me
i = ρs,in

∫

�e
in

[
N e
1 0 N e

2 0 N e
3 0

0 N e
1 0 N e

2 0 N e
3

]
N e
1d�e

in (14.43)

Element equations:

Combining the nodal equations for all the three nodes [Eq. (14.38)], the system of
equations for an element e is presented in matrix form as

Kedde,n,k = �e,n+1,k where Ke =
⎡

⎣
Ke

1
Ke

2
Ke

3

⎤

⎦ and �e =
⎡

⎣
�e

1
�e

2
�e

3

⎤

⎦ (14.44)

Here, Ke is the element stiffness matrix and �e,n+1,k is the residual of the element e
for (n + 1)th time step, given as
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�e,n+1,k =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

Fe
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Fe
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Fe
x2

Fe
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]
,

Ke = Ke
m + Ge + 2Me

�t2
(14.45)

For the element e, the various matrices in the above equation are given as

Ke
m =

([
Be
]T)n+1

D
[
Be
]n+1

�e
in,

Ge = �e
in

⎡
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e
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⎡
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⎣

2 0 1 0 1 0
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⎤

⎥⎥⎥⎥
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⎦

(14.46)

14.3.2.3 Solution Methodology: Global Equations

For CSD development, solution methodology corresponds to solution of a global
system of linear algebraic equations that is obtained by a summation of the element
equation [Eq. (14.44) for ne number of elements], given as

ne∑

e=1

Kedde,n,k =
ne∑

e=1

�e,n+1,k ⇒ KGddG,n,k = �G,n+1,k (14.47)

where KG is the global stiffness matrix, ddG is the global displacement-increment
vector, and �G is the global residual vector. The global KG , ddG , and �G are
expressed in terms of the respective elemental equations, given as

KG
2i+p−2,2j+q−2 =

ne∑

e=1

Ke
2l+p−2,2m+q−2, if Re,l = i; Re,m = j;

for
i = 1, 2, . . . , ns; j = 1, 2, . . . , ns

l = 1, 2, 3; m = 1, 2, 3
p = 1, 2; q = 1, 2

(14.48)
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ddG,n
2i+p−2 = dde,n

2l+p−2, if i = Re,l , for

e = 1, 2, . . . , ne

i = 1, 2, . . . , ns

l = 1, 2, 3
p = 1, 2

(14.49)

�
G,n+1,k
2i+p−2 = fG2i+p−2 −

ne∑

e=1

�
e,n+1,k
2l+p−2 if i = Re,l , for

i = 1, 2, . . . , ns

l = 1, 2, 3
p = 1, 2

(14.50)

where fG2i+p−2 represents the external forces acting on the node i (in x-direction for
p = 1 and y-direction for p = 2), i.e. fG2i+p−2 = ∑ne

e=1 f e
2l+p−2. Here, K

G , ddG , and

�G are computed with respect to the global node numbering from 1 to ns. In order to
relate global node numbering with the element node numbering, a node relationship
matrix is defined as

Re,l = 3e − 3 + l where e = 1, 2, . . . , ne; l = 1, 2, 3 (14.51)

The global displacement vector dG is also related to the element displacement
vector de in the same way. For the present iterative step, dG,n+1,k+1 is obtained as

dG,n+1,k+1 = dG,n+1,k + ddG,n,k (14.52)

Solution algorithm:

1. Generate unstructured mesh, resulting in the position vector of all the nodes and
global as well as local node numbering.

2. Compute node relationship matrix Re,l [Eq. (14.51)].
3. Initialise dG = 0 and compute the geometric parameters.
4. Assume dG,n+1,k = dG,n and set k = 1.
5. Update the displacement matrix dG,n+1,k+1 = dG,n+1,k and set k = k + 1.
6. Compute global stiffness matrix KG [Eq. (14.48)] and global residual vector

�G,n+1,k [Eq. (14.50)].
7. Solve Eq. (14.47) to obtain ddG,n,k and update dG,n+1,k+1 using Eq. (14.52).
8. Check for the convergence. If

∣∣Ψ n+1,k+1
∣∣ < ε

∣∣Ψ n+1,1
∣∣, continue to next time step

and go to step 2, else set k = k + 1 and go to step 2.

14.3.3 Implicit Coupling Between CFD and CSD Solvers

The fluid dynamics and structural dynamics co-occur in an FSI problem. Thus, both
CFD solver and CSD solver are coupled. The coupling is achieved by using the
continuity condition presented in Sect. 14.2.3, which can be either explicit or implicit.
Explicit coupling leads to a time lag between the fluid and structural solver, while
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Fig. 14.6 Normal and shear
stress on a node NA on the
solid surface

an iterative procedure is used in the implicit coupling to remove the time lag. The
implicit coupling has better numerical stability characteristics and is essential for
large deformation; thus, the implicit coupling is used in the present HLE method
(Thekkethil and Sharma 2019) and presented below.

For the fluid domain, the body velocity obtained from theCSD solver is used as the
boundary condition for the two-way coupled CFSD problem. For the CSD solver, the
fluid dynamic forces obtained from theCFDsolver are used as the boundary condition
on the surface of the solid, for the two-way coupledCFSDproblem.Figure14.6 shows
the fluid dynamics forces acting on a node NA on the solid surface. The normal and
shear stresses acting on the node are given as follows:

σ =
[
−p + μf

∂un

∂n

]

NA

; τ =
[
μf

∂uτ

∂n

]

NA

(14.53)

Here, the pressure p at node NA is computed using quadratic interpolation from the
neighbouring nodes. The normal derivatives of normal and tangential velocities at
node NA are computed as

[
∂un

∂n

]

NA

= un,NB − un,NA

δ
;
[
∂uτ

∂n

]

NB

= uτ,NB − uτ,NA

δ
(14.54)

where NB is a point along the normal at the node NA at a distance δ, which is equal
to the finest grid size considered in the fluid domain. The normal and tangential
velocities at NB, un,NB , and uτ,NB are computed using quadratic interpolation from the
nearest fluid cells. From the normal and tangential stresses, the stresses along x- and
y-directions are obtained as

σx = σ cos θ + τ sin θ; σy = −σ sin θ + τ cos θ (14.55)
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where θ is the angle of the normal at node NA, given as

θ = tan-1

⎡

⎣

(
∂ψ

∂y

)

(
∂ψ

∂x

)

⎤

⎦ (14.56)

For the implicit coupling between the fluid and structural solvers, the solution is
obtained iteratively until a convergence criterion is achieved for the interface vari-
ables, i.e. x-position xint, y-position yint, x-velocity uint, y-velocity vint, x-acceleration
ax,int, and y-acceleration ay,int. The convergence criteria correspond to maximum of
residual that is given as

R =max
(

Rn+1,new
xint , Rn+1,new

yint , Rn+1,new
uint , Rn+1,new

vint , Rn+1,new
ax,int

, Rn+1,new
ay,int

)
< ε (14.57)

Here, Rn+1,new
χint

is the root mean square of the residuals of all the interface nodes for
the present iteration, given as

Rn+1,new
χint

=
√√√√ 1

ns

ns,int∑

i=1

(
rn+1,new
χint,i

)2
, where rn+1,new

χint,i
= χ

n+1,new
int,i − χ

n+1,old
int,i (14.58)

Here, the superscripts represent the new and old iterations. For each iteration, the
interface variables are updated using an under-relaxation factor to ensure conver-
gence. For faster convergence, Aitken’s acceleration method (Degroote et al. 2010)
is used for the under-relaxation factor after certain (three here) iterative steps, given as

ωn+1,new
χint

= ωn+1,old
χint

(
rn+1,old
χint

)T (
rn+1,new
χint

− rn+1,old
χint

)

∥
∥∥rn+1,new

χint − rn+1,old
χint

∥
∥∥
2 (14.59)

where ω is the under-relaxation factor and rχint is the interface residual vector. Using
the under-relaxation factor, the updated interface variables are obtained as

χ
n+1,new
int,i = χ

n+1,old
int,i + ωn+1,new

χint
rn+1,new
χint,i

(14.60)

For a two-way coupledCFSDproblem,Fig. 14.7 shows aflowchart for the implicit
coupling between the CFD and CSD solvers. For the first iteration, the interface
position, velocity, and acceleration in the present time instant are considered equal
to that at the previous time instant for the CFD solver. After the solution of CFD
solver, the structure equations are solved using the forces obtained at the fluid–solid
interface. Using the solution obtained from theCSD solver, the interface variables are
updatedwith an under-relaxation factor [Eq. (14.60)]. Further, the fluid flow is solved
using the updated interface variables. The procedure is continued until convergence
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Fig. 14.7 Flow chart for the
implicit coupling between
the CFD and CSD solvers,
for a two-way coupled CFSD

is obtained for the residual [Eq. (14.57)]. An order of accuracy study was presented
in our recent study (Thekkethil and Sharma 2019), where the order of accuracy of
the present HLE method was demonstrated as second order.

14.4 HLE Method-Based CFSD Application and Analysis

OurHLEmethod-basedCFSDapplication and analysis are presented here in separate
subsections for rigid and flexible structure-based FSD problems.

14.4.1 CFSD Application and Analysis for Fluid–Rigid
Structure Dynamics

For the one-way coupled fluid–rigid structure dynamics, CFSD application and anal-
ysis are presented here first for 2D flow across a transversely oscillating cylinder and
2D as well as 3D hydrodynamics study on fish-like propulsion of fish-like undulating
foil. For the fish-like locomotion, the 2D study is presented for both tethered propul-
sion and self-propulsion of a fish-like pitching/undulating NACA0012 hydrofoil;
the 3D study is presented for tethered propulsion of a batoid fish-like locomotion.
The tethered propulsion is simulated by a constant velocity u∞-based free-stream
cross-flow, while a time-wise varying velocity u∞ (t) is used for the self-propulsion;
both the velocities correspond to the propulsion velocity up of the foil that is con-
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stant up = u∞ for the tethered propulsion and time-varying up (t) = u∞ (t) for the
self-propulsion. Here, up (t) is obtained from the instantaneous thrust force, using
Newton’s II law of motion. The non-dimensional computational set-ups for all the
one-way coupled CFSD problems are shown in Fig. 14.8.

14.4.1.1 Free-Stream Flow Across a Transverse Oscillating Cylinder

The transverse oscillating circular cylinder in a free-stream flow is a classical bench-
mark problem to test numerical methods for fluid flow across moving solid. The
transverse oscillation is given as ye = Aesin (2π fet), where Ae is the amplitude and
fe is the frequency of oscillation. The non-dimensional parameters for the problem
are the Reynolds number Re = ρf u∞D/μf , the non-dimensional amplitude Ae/D,
and the frequency ratio fe/fo. Here, fo is the natural frequency of vortex shedding.

For Re = 185, Ae/D = 0.2, and fe/fo = 1.0, Fig. 14.9 shows an excellent agree-
ment between our and published (Guilmineau and Queutey 2002) results for vor-
ticity contours and streamlines. Furthermore, our results for mean thrust coefficient
CTm = 0.432 and RMS value of lift force coefficient CLrms = 1.548 match very well
with respective values of 0.410 and 1.503 reported in the literature (Guilmineau and
Queutey 2002).

14.4.1.2 2D Hydrodynamic Study for Tethered Propulsion and
Self-propulsion of Anguilliform and Carangiform Fishes-Like
Undulating Hydrofoil

LS-IBM-based hydrodynamic analysis of fishes-like tethered propulsion study of a
2D NACA0012 hydrofoil was presented in our recent study (Thekkethil et al. 2018).
A fish body is modelled by the foil of chord length c, and a unified kinematic model
was proposed. The model is based on the wavelength λ of a travelling wave moving
along the foil. The travellingwave-based unified kinematics is represented by a lateral
displacement of the centreline of the foil �y, given as

�y = a(x) sin

(
2πx

λ
− 2π ft

)
where a (x) = amax

x

c
(14.61)

The wave equation consists of amplitude a(x) (varying from head to tail of the foil),
wavelength λ, and frequency f of the travelling wave. A linear amplitude varia-
tion is considered from head to tail, with maximum amplitude at the tail as amax.
The non-dimensional parameters for the problem are the non-dimensional wave-
length λ∗ (≡ λ/c), non-dimensional frequency St

(≡ 2famax/up
)
, non-dimensional

maximum amplitude Amax (≡ amax/c), and Reynolds number Reup = ρf upc/μf .
The unified kinematic model [Eq. (14.61)] represents various types of fishes-like
kinematics—anguilliform fishes-like kinematics for the smaller non-dimensional
wavelength (λ∗ < 1), caudal fin motion thunniform fishes-like kinematics for the
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Fig. 14.8 Non-dimensional computational set-up for a free-stream flow across a transversely oscil-
lating circular cylinder, b tethered/self-propulsion of fish-like undulating 2DNACA0012 hydrofoil,
and c tethered propulsion of 3D batoid fish-like body
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Fig. 14.9 a, b Streamlines and c, d pressure contours obtained from the a, c LS-IBM and b, d
literature (Guilmineau and Queutey 2002), for the transverse oscillating cylinder in a free-stream
flow at a time instant corresponding to maximum upward displacement of the cylinder, for constant
Re = 185, Ae/D = 0.2, and fe/fo = 1.0

Fig. 14.10 Instantaneous vorticity contour and velocity vector during a anguilliform fishes-like
undulation at λ∗ = 0.8 and b carangiform fishes-like pitching at λ∗ = ∞ for tethered propulsion
of NACA0012 hydrofoil at St = 0.4, Amax = 0.1, and Reup = 5000

largerwavelength (λ∗ → ∞), and hypothetical fishes-like kinematics that is a combi-
nation of the anguilliform and thunniform fishes-like kinematics for the intermediate
values of λ∗.

Figure14.10 shows a reverse von Karman vortex street as a signature of thrust
generation. Further, for smaller λ∗ as compared to larger λ∗, the vortices are weaker
and laterally stretched as compared to larger λ∗. The flow pattern results in a larger
thrust force (efficiency) for larger (smaller) λ∗-based carangiform (anguilliform)
fishes-like kinematics (Thekkethil et al. 2018).

For self-propelled anguilliform and carangiform fishes-like locomotion in our
recent study (Thekkethil 2019) at a constant Reynolds number based on the frequency
Ref

(≡ ρf famaxc/μf
)
, Fig. 14.11 shows a temporal variation of vorticity contours and

velocity vectors. For the initial time duration, the figure shows that λ∗ results in a
dipole formation with a strong lateral jet flow that leads to a larger hydrodynamic
force and maximum stream-wise acceleration of the foil. Further, the figure shows a
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Fig. 14.11 Temporal variation of vorticity contours and velocity vectors during second, third, and
fifth cycles of self-propulsion of NACA0012 hydrofoil for a–c anguilliform fishes-like undulation
with λ∗ = 0.8 and d–f carangiform fishes-like pitching with λ∗ = ∞, at Ref = 1000 and Amax =
0.1

decrease in the jet strength with time (due to the increase in the vortex spacing) that
leads to a reduction in the hydrodynamic force. At the dynamic steady state, a zero
net thrust force is obtained, resulting in a constant propulsion velocity.

14.4.1.3 3D Hydrodynamics Study for Tethered Propulsion of a Batoid
Fishes-Like Body

Hydrodynamic analysis of various types of 3D batoid fishes-like locomotion was
presented in our recent work (Thekkethil 2019). The batoid type of fishes uses a bat-
like flapping of pectoral fin along with fishes-like undulation of body. The combined
motion leads to a 3D kinematics. Figure14.12 shows the shape of the batoid-like
body considered in our recent study (Thekkethil 2019). The body has a hydrofoil
cross section in the x-z plane with chord length c in the x-direction and an elliptical
cross section in x-y and y-z planes with a span of b in the y-direction. The kinematics
is a combination of the wavy motion in the x-z plane and symmetric pitching (a
bird-like flapping) motion in the y-z plane. The combination of motions in the x-z
and y-z planes can be represented by the transverse displacement of the body with
respect to the x-y plane in dimensional form as

�z = amax

cb/2
x|y|sin

[
2π
( x

λ
− ft

)]
where, x = [0, c] and y = [−b/2, b/2]

(14.62)
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Fig. 14.12 3D view of the batoid-like body

Fig. 14.13 Instantaneous Q-criterion-based vortex structure during a tethered propulsion of the
batoid fishes-like body for a λ∗ = 0.8 and b λ∗ = 4.0, at AR = 0.75, St = 0.5, Amax = 0.15, and
Reup = 10,000

Here, amax is the maximum possible amplitude at x = c and |y| = b/2. The wave-
length of undulation λ and frequency of undulation f are similar to the 2D hydrofoil.
For the 3D fishes-like locomotion, aspect ratio AR (≡ b/c) is an additional non-
dimensional parameter. The various λ∗ and AR represent different types of batoid
fishes-like locomotion.

For tethered propulsion of or constant propulsion-velocity-based free-stream flow
across various types of 3D batoid fishes-like undulating hydrofoils, Fig. 14.13 shows
instantaneous Q-criterion-based vortex structure. The figure shows a double pair of
vortex rings with each pair on the front and backside connected by the vortex contrail
for smaller λ∗. The two vortex rings are formed due to the symmetric pitchingmotion
on both sides of the plane of symmetry. For the larger wavelength (λ∗ = 4.0), a
horseshoe vortex structure connecting the two vortex rings is present in addition to
the vortex rings. This results in larger hydrodynamic forces for the larger λ∗.
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14.4.2 CFSD Application and Analysis for Fluid–Flexible
Structure Dynamics

As discussed above, for the fluid–flexible structure dynamics, the interaction between
fluid dynamics and structural dynamics is two-way coupled—the fluid flowand struc-
ture motion/deformation are dependent on each other. In this section, the application
of the present HLE method is presented for three problems: first, a lid-driven cavity-
based flow across a flexible plate; second, a Poiseuille flow across a rigid cylinder
with a flexible splitter plate; and third, tethered-propulsion-based free-stream flow
across a flexible hydrofoil. The first problem is a computationally efficient bench-
mark problem, recently proposed by us (Thekkethil and Sharma 2019), the second
problem is also a commonly used benchmark problem, and the third problem is an
extension of our study on hydrodynamics during fishes-like locomotion. The non-
dimensional computational set-ups for the two-way coupled CFSD problems are
shown in Fig. 14.14.

14.4.2.1 Lid-Driven Cavity Flow-Based Benchmark Problem
for Fluid–Flexible Structure Dynamics

We recently proposed (Thekkethil and Sharma 2019) a computationally efficient and
easy-to-set up lid-driven cavity flow-based benchmark problem along with bench-
mark solutions for the two-way coupled FSD. The problem considers a square lid-
driven cavity, with cavity length L, and both top and bottom wall act as a lid moving
with a constant velocity. A flexible plate, of length 0.5L and thickness 0.05L hinged
at the centre of the cavity, gets deformed due to the lid-driven cavity flow-based
hydrodynamic force. In addition to the Reynolds number Re, the two-way coupled
FSD problem considers the non-dimensional Young’s modulus E∗, density ratio ρr ,
and Poisson’s ratio νs as non-dimensional governing parameters.

Figure14.15 shows the steady-state streamlines and pressure as well as vorticity
contours. The lid-driven flow creates circular flows near the top and bottom bound-
aries of the cavity, which results in symmetric bending of the plate, as shown in the
figure. The computational time taken for this problem is very small as compared to
many benchmark problems reported in the literature.

14.4.2.2 Poiseuille Flow Across a Flexible Splitter Plate Behind
a Cylinder

The problem corresponds to a hydrodynamically fully developed flow across a rigid
circular cylinder of diameter D with a flexible splitter plate (of a thickness of 0.2D
and length 3.5D attached behind it) in a channel. The problem was first proposed by
Turek and Hron (2006) and is widely used as a benchmark problem in the literature.
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Fig. 14.14 Non-dimensional computational set-up for a the benchmark problem on the classical
lid-driven cavity flow-induced deformation of a hinged vertical plate, b a rigid circular cylinder
with a flexible splitter plate in a Poiseuille flow, and c tethered propulsion of structurally flexible
hydrofoil subjected to pitching motion
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Fig. 14.15 Steady-state a vorticity contours and streamlines and b pressure contours, for hinged
plate in a top and bottom lid-driven cavity at Re = 100, E∗ = 100, ρr = 10, and νs = 0.3

Fig. 14.16 Instantaneous vorticity contour obtained from the a LS-IBM and b literature (Bhardwaj
and Mittal 2012), for the channel flow across flexible splitter plate attached behind rigid circular
cylinder at a time instant t = 76, for constant Re = 100, E∗ = 1400, ρr = 10, and νs = 0.4

Figure14.16 shows an excellent agreement between our (Thekkethil 2019) results
and published (Bhardwaj and Mittal 2012) results for a periodic state. Due to the
time-wise periodic hydrodynamic forces acting on the body, the plate is subjected to
vibration and the periodic state is obtained after a certain number of vortex shedding
cycles.

14.4.2.3 2D Hydrodynamics Study for Tethered Propulsion
of a Fish-Like Pitching Flexible Hydrofoil

The arrangement of the flexible hydrofoil is shown in Fig. 14.14c. This was proposed
in an experimental work (Marais et al. 2012) and was studied numerically in our
recent work (Thekkethil 2019).
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Fig. 14.17 Instantaneous a–c stream-wise velocity contours and d–f vorticity contours for the free-
streamflow across pitching flexible hydrofoil with a,d largely flexible (E∗ = 5000),b, emoderately
flexible (E∗ = 30,000), and rigid (E∗ = ∞) hydrofoils, at St = 0.5, Re = 5000, θro,max = 8o, ρr =
1.0, and νs = 0.4

For the tethered-propulsion-based free-stream flow across the flexible pitching
hydrofoil, Fig. 14.17 shows the vorticity contours and stream-wise velocity contours.
The figure shows a single straight-jet flow (straight reverse vonKarman vortex street)
for the largely flexible foil, inclined jet flow (inclined von Karman vortex street) for
the rigid foil, and inclined jet flow along with a straight-wake (inclined reverse von
Karman vortex street with straight von Karman vortex street) for the moderately
flexible foil. The moderate (large) flexibility results in maximum (minimum) thrust
generation.

14.5 Closure

This chapter is presented in two parts: first, CFSD development, and second, CFSD
application and analysis. For the first part on CFSD development, a detailed numer-
ical methodology in two-dimensional Cartesian coordinate system is presented for
the partitioned approach-based hybrid Lagrangian–Eulerian (HLE) method. The
methodology is based on physical law-based FVM and level-set-based IBM for CFD
development and geometric nonlinearGalerkin FEM-basedCSDdevelopment, along
with an implicit coupling between the CFD and CSD solvers that is numerically sta-
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ble for large deformation. The second part demonstrates the HLE method-based
CFSD application (with the help of computational set-up) and analysis (of hydrody-
namic results) on a variety of rigid and flexible structure-based one-way and two-way
coupled CFSD problems, respectively.
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Chapter 15
Immersed-Boundary Methods
for Simulating Human Motion Events

Jung-Il Choi and Jack R. Edwards

15.1 Introduction

Immersed-boundary methods are a general class of technique that indirectly imposes
the effects of a (possibly moving) solid surface on the surrounding flow. While the
original immersed-boundary method dates from the work of Peskin (1972), the tech-
nique was recast into a form more useful for conventional CFD strategies by Mohd-
Yosuf (1997), Verzicco et al. (2000), Fadlun et al. (2000), and others. A review article
summarizing these and other techniques is that of Mittal and Iaccarino (2005). A key
to these newer immersed-boundary methods is the enforcement of fluid boundary
conditions indirectly, through specification of the distribution of the fluid velocity
in the vicinity of the immersed boundary. This paper presents a generalization of an
immersed-boundary method developed for time-dependent, incompressible flows in
Choi et al. (2007). This approach is similar to that of Gilmanov et al. (2003) in that a
surface mesh consisting of structured or unstructured elements is embedded within
a flow and that flow property variations normal to the surface are reconstructed. The
surface meshes may be closed (surrounding a volume of space) or zero-thickness
(surfaces alone). The Navier–Stokes equations are solved in cells outside the body
(field cells); a constant property condition is enforced for cells inside the body (inte-
rior cells); and boundary conditions are enforced through specifying distributions of
fluid properties in a collection of band cells just outside the immersed body (band
cells). In contrast to many other IB techniques, the methods developed in Choi et al.
(2007) can be applied to turbulent flows at highReynolds numbers by virtue of the use
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of power-law interpolation techniques to mimic the near-wall profile of an attached
turbulent flow. The methods are also applicable to general curvilinear meshes as well
as unstructured meshes. Since the publication of Choi et al. (2007), extensions to
particle-laden incompressible flows (Oberoi et al. 2010; Choi et al. 2012), gas-phase
contaminant transport (Choi and Edwards 2008, 2012), and compressible, turbulent
flows (Ghosh et al. 2010a, b, 2012) have been developed. All of these studies have
rendered immersed objects as point clouds, which has advantages if the object is
sufficiently detailed but becomes inconvenient if the object is relatively featureless.
This report outlines a way of embedding stereo-lithography (STL) files as immersed
objects within a computational domain and introduces several techniques for con-
verting scenarios involving complicated and possibly moving objects into detailed
large-eddy flow simulations driven by immersed-boundary motion. The presented
applications involve realistic humanmotion activity as well as secondary effects such
as buoyancy-driven flow resulting from the human thermal plume.

15.2 Numerical Methods

15.2.1 Governing Equations

For a three-dimensional, time-dependent incompressible flow, the grid-filtered
governing equations for a fluid phase can be written as

∂ ūi
∂xi

= 0, (15.1)

∂ρūi
∂t

+ ∂

∂x j
(ρūi ū j + p̄δi j − τ i j + τ SGS

i j ) = f̄i , (15.2)

where ūi is the velocity vector, ρ is the density of the fluid, p̄ is the pressure, f̄i is an
external force,μ is the molecular viscosity, τ i j is the viscous stress tensor for a New-
tonian fluid, and τ SGS

i j is the subgrid-scale (SGS) stress tensor. Note that the overbar
represents grid-filtered variables. Based on the Smagorinsky model (Smagorinsky
1963), which assumes that the SGS stress tensor is proportional to the velocity strain
rate Si j , the SGS stress tensor is modeled as τ SGS

i j = −2μt Si j . The subgrid-scale

eddy viscosity is defined as μt = ρ(Cs�)2(2Si j Si j )1/2, where Cs(= 0.1) is the
Smagorinsky constant and � is a local grid-filter width, which is set equal to the
cube root of the mesh-cell volume.

The mass conservation equations for transport of a set of passive gaseous
contaminants in Eulerian framework (Crowe et al. 1996) are as follows:

∂ρk

∂t
+ ∂

∂x j
(ρk(ūi + v̄k, j )) = 0, (15.3)
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where the subscript k denotes the kth gas species. Here, ρk is the mass density of
species k. The diffusion velocity ṽk,i is given by Fick’s law:

v̄k,i = −
(

μ

Sc
+ μt

Sct

)
1

ρ̄k

∂Y k

∂xi
, (15.4)

where the mass fraction Y k = ρk/ρ and the laminar and turbulent Schmidt numbers
are assigned values of 0.72 and 1.0, respectively (Crowe et al. 1996). It is assumed that
the mass fractions of the tracer-gas species are small enough that the density of the
carrier gas is not affected significantly. We extrapolate contaminant concentration to
all physical surfaces; the contaminant concentration is set to zero inside all immersed
surfaces.

Under incompressible flow assumptions, the evolution of temperature θ can be
written as:

ρCp

(
∂θ

∂t
+ ū j

∂θ

∂x j

)
= ∂

∂x j

(
(α + αt )

∂θ

∂x j

)
+ Q̇, (15.5)

where θ is temperature, Cp is specific heat capacity at constant pressure, α is the
thermal conductivity, αt is the turbulent thermal conductivity, and Q̇ is an external
heat source. The thermal conductivities α and αt are related to the molecular and
eddy viscosities through the assumption of constant laminar and turbulent Prandtl
numbers (0.72 and 0.9, respectively). Equation (15.5) is solved subject to isothermal,
adiabatic, or imposed heat-flux boundary conditions at solid surfaces. Buoyancy
effects resulting from temperature gradients are imposed in Eq. (15.2) using the
Boussinesq approximation: f̄i = ρ∞gi (1 − θ/θ∞), where gi is the gravitational
force and the subscript ∞ denotes the undisturbed-flow state.

Basic formulation We solve the three-dimensional incompressible Navier–Stokes
equations using a finite volume approach. Time integration of the discrete Navier–
Stokes equations is achieved by an artificial compressibility approach (Chorin 1967)
which is facilitated by a dual time-stepping procedure at each physical time step.
At time level n + 1, sub-iteration k, the solution of the discrete representation of
Eqs. (15.1) and (15.2) can be written as

A(Vn+1,k+1 − Vn+1,k) = −Rn+1,k . (15.6)

The flow variablesV = ( p̄, ūi )T are advanced from time level n (Vn+1,k=0 = Vn)

to time level n + 1 (Vn+1 = Vn+1,k=kmax ) over a number of sub-iterations kmax. The
system Jacobian matrix is denoted as A, and the corresponding residual vectors
R = (Rc, RMi )

T can be written as

Rn+1,k
c =

[
∂ ūi
∂xi

]n+1,k

(15.7)
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Rn+1,k
Mi

= ρ

(
3ūn+1,k

i − 4ūni + ūn−1
i

�t

)
+

[
∂

∂x j
(ρūi ū j + p̄δi j

−τ i j + τ SGS
i j ) − ρ f̄i

]n+1,k
. (15.8)

Equation (15.8) is solved approximately at each sub-iteration using an implicit
technique based on incomplete LU decomposition (Wesseling 1995). For the spatial
discretization, the inviscid fluxes in the governing equations are discretized using
a low-diffusion flux-splitting scheme (LDFSS) (Edwards and Liou 1998; Neaves
and Edwards 2006), while second-order central differencing methods are used to
discretize the viscous components. For the cases presented later, higher-order spa-
tial accuracy for the interface fluxes is achieved by using the piecewise parabolic
method (Colella and Woodward 1984). The effects of smaller subgrid fluctuations
are modeled using a Smagorinsky subgrid eddy viscosity (Baurle et al. 2003). The
present flow solver uses METIS (Karypis and Kumar 1998) to partition a general
multi-block grid over the number of allowable processors.Message-passing interface
(MPI) communication routines are used to pass information among the processors.
The incompressible flow solver and its components have been validated for a range
of model problems (Edwards and Liou 1998).

15.2.2 Cell-Classification Procedure

We develop a classification algorithm for computational nodes based on the signed
distance function 	(x, t), which is less than zero for cells within a closed immersed
body and greater than zero for cells outside the body. Special procedures discussed
later are used to handle zero-thickness immersed surfaces for which the signed
distance is always positive.

Classification of computational cells TheHeaviside functionG(	(x, t)) is defined
to be one for points just outside the immersed body and within the immersed body
and is zero otherwise. The calculation of the Heaviside function is initiated by first
initializing G(	(xk, t)) = 0 for all points xk . Then, given a point xk , if 	(xk, t) > 0
and if any 	(xm, t) < 0, where xm is a face, edge, or vertex neighbor of xk , then
G(	(xk, t)) is set to 1. If 	(xk, t) ≤ 0, then G(	(xk, t)) is also set to 1. The set of
nearest neighbors, for a structured grid discretized according to a cell-centered finite
volume method, is generally defined as the 26 cells that are immediately adjacent to
a particular mesh cell, though smaller subsets can be used. Finally, we can define the
Heaviside function as

G(	(xk, t)) =
{
0 for xk ∈ 
F

1 for xk /∈ 
F
, (15.9)

where
F represents the set of the node points shown as the open circles in Fig. 15.1.
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Fig. 15.1 Schematic
illustrating classification of
cell-centered points for a
complex immersed body
surface. Open, gray, and
close circles represent field
(
F ), band (
B) and
interior points (
I ),
respectively, and thick line
represents an immersed body
surface. Adapted from (Choi
et al. 2007)

The classification of the node points can be summarized as follows:

• Field points: xk ∈ 
F if 	(xk, t) > 0 and G(	) = 0,
• Band points: xk ∈ 
B if 	(xk, t) > 0 and G(	) = 1,
• Interior points: xk ∈ 
I if 	(xk, t) ≤ 0 and G(	) = 1.

where 
B and 
I represent the set of the node points shown as the gray and closed
circles in Fig. 15.1, respectively. The zero iso-surface of the signed distance function
defines the immersed body surface.

Surface definition in a computational domain The most popular way to describe
3D objects in computer system is to construct surface meshes composed of trian-
gular elements (henceforth referred to as triangle meshes). This can be done using
a computer-aided design (CAD) format or through other means, but the key is that
triangle elements with an outward-pointing normal vector are created for each sep-
arate component of the object, as different components may move at different rates.
The next step is to define 3D surfaces using the unsigned distance and classification
whether an arbitrary point in a background domain is inside or outside of the objects.
Classification can be achieved by counting intersections of a ray going from the
given point (outside point from the object) to infinity since the number of intersec-
tions must be odd if the point is inside—this is called a ray tracing method (Linhart
1990). Another means of classification is to define a signed distance using the inner
product between a pseudo-normal vector and a distance vector to an arbitrary point
from its closest point on the surface—this is known as a signed distance computation
(Gouraud 1971; Bærentzen andAanæs 2005).While the formermethod needs to visit
the parts of the triangle mesh along the ray tracing line, the latter algorithm needs
to find the closest point on the mesh. We will apply the signed distance computation
which is faster than ray tracing method in order to define 3D surfaces which will be
incorporated with the present immersed-boundary method.
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Fig. 15.2 Schematics for a a minimal distance from the points in a computation domain to surface
points and b nearest neighbors for triangle elements. Adapted from (Edwards et al. 2010)

The distance d from grid points xg in a computational domain 
C to the closest
surface point xs on triangle meshes �l for lth component is simply defined as d =∥∥xg − xs

∥∥ in Fig. 15.2a. Computation of the distance to 3Dobjects can be achieved by
using brute force computation, a Voronoi diagram (Hoff et al. 1999), or hierarchical
data structures (Payne and Toga 1992; Guéziec 2001). Among these methods, we
use a k-d tree hierarchical data structure with a bounding box to accelerate finding
the nearest triangle mesh element. For simplicity, we consider the one component’s
closed surface as shown in Fig. 15.2b. At first, we find a cloud of nearby points xvi
from the given point xg in a bounding box, in order of the closest distance, using an
approximate nearest-neighbor (ANN) searching algorithm (Arya et al. 1998). The
next step is to search the closest point in the set of the neighbor triangle meshes
�

j
i ∈ �i which are shared with a cloud of nearby vertices xvi since the closest vertex

is typically different from the closest point on a triangle mesh. We can define the
subset�s = {�i } of the total trianglemeshes�. Based on the subset�s , theminimum
distance can be obtained using point-triangle, point-edge, and point-vertex distance
calculations.

In the search process, the subset �s can be reduced using geometric restriction.
Modern CAD programs enhance the uniformity of the triangles and control the edge
distances. At a given edge distance de, we can get a restriction for the searching
algorithm. As shown in Fig. 15.2b, the circles show the spheres with radius de and
origin xvi . The entire triangle neighbors �

j
i shared with the vertex xvi are included

within the spheres. The distances d j
i in the subset �i are bounded as |dk

i − di | ≤ de
with respect to the point-vertex distance di . Also, the distance is |d j

1 − d1| ≤ de for
the subset �1 which is the equivalent subset for the minimum point-vertex distance.
The difference between two point-vertex distances can be written as d j

i −dk
1 −2de <

di−d1 < d j
i −dk

1+2de. Ifd
j
i < dk

1 , the difference should be bounded asdi−d1 < 2de.
Therefore, the abovenearest distance calculation should be repeated for the ith nearest
vertex point in the ANN list which satisfies di − d1 < 2de.
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Signed distance computation The signed distance function 	 can be obtained by
multiplying the unsigned distance d with the sign of the dot product of the distance
vector with the outward normal vector n:

	 = sgn((xg − xs) · n) d, (15.10)

where sgn(ϕ) returns a value of 1 for each nonnegative element and −1 for each
negative element of ϕ and ‖ ‖ denotes the magnitude of the vector.

This simple procedure was found not to work properly for some very complex
CAD objects (Choi et al. 2007). Usually, the CAD objects are defined as triangular
surface elements that contain each vertex and face-normal vector. If a nearest surface
point at a given field point is located on an edge or at a vertex, the simple signed
distance function may not be calculated correctly. Therefore, we consider an angle-
weighted pseudo-normal vector (Bærentzen and Aanæs 2005), which is defined at
surface nodes (vertices) or edges, rather than cell centers of surface triangles. For a
given vertex xv, we identify the triangle elements shared with the vertex and calculate
the incident angle αi for each element with the outward-pointing face-normal vector
ni (Choi et al. 2007). The angle-weighted pseudo-normal vector nv at the vertex can
be defined as

nv =
∑

i αini∥∥∑
i αini

∥∥ , (15.11)

where i denotes the triangle elements that surround the vertex and ‖ ‖ denotes the
magnitude of the vector. Based on the pseudo-normal vector at the vertex and face-
normal vectorni at the element center xi , we can determine an inside/outside decision
using the same signed distance function in Eq. (15.10)with the data set of the vertices.
This procedure essentially averages local fluctuations in the outward normal that
could result from small features in the CAD file.

To define a global signed distance function 	 at any given mesh point, a simple
priority rule is exercised. First, the global distance function is initialized to a large
number. Then, the global signed distance function at a particular point is taken as the
minimum of the individual signed distance functions for each component l at that
point:

	 = min
l

(	l). (15.12)

The collections of points that comprise the surfaces are allowed tomove according
to prescribed rate laws.

Embedding of CAD objects as immersed surfaces One of our major goals is to
be able to incorporate general stereo-lithography (STL) files as immersed objects in
our program without any additional user intervention. As discussed earlier, the main
challenge is in accurately computing the signed distance from any of our mesh points
to the nearest point on the STL surface. This challenge is made more difficult for
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objects that contain large, flat panels (usually rendered as two triangles) and smaller
features that aremore refined. In our earlier work, we simplymesh-refined the objects
until a clear rendering was achieved, but this required significant pre-processing and
led to STL files that could be very large (millions of cells). In this work, we develop
a module for directly reading STL files and for computing nearest distances and
normal vectors to any panel, edge, or node on the surface. A detailed step-by-step
procedure is as follows:

Step 1: Import STL file (ASCII format) and determine element-to-element con-
nectivity. The STL file provides coordinates of vertices of each triangle alongwith
the normal vector associated with the face center of each triangle.
Step 2: Calculate, for every triangle, coordinates of the face center and the mid-
point of each edge, pseudo-normal vectors at each vertex, and normal vectors at
the midpoint of each edge.
Step 3: Add these additional coordinates/normal vectors to the database.
Step 4: Given a particular field point, use approximate nearest-neighbor (ANN)
searching (Arya et al. 1998) to determine a set of nearest vertices to that point.
Step 5: Determine whether the true nearest point to the surface lies on a triangle,
at a vertex, or on an edge.
Step 6: Based on this decision, find the nearest point and assign the appropriate
normal vector (face-centered, pseudo-normal, or edge-centered) to this point.
Calculate signed distance functions at each query cell.

The search for an initial subset of possible vertices is an N log(m) operation,
so this approach is still relatively efficient. Note that, N and m are the number of
query points and the listed data points (possible vertices), respectively. The case of
very large triangles neighboring small triangles, however, can require expanding the
initial subset decision space to include all possible triangles, leading to a complexity
of O(Nm).

For moving objects, we initially read ASCII-formatted STL files for the objects at
each time step. This reading sequence required non-trivial I/O access times compared
to the entire computation. Thus, we developed an improved STL reader to accelerate
the reading sequence using binary formatted STL files as well as avoiding redundant
procedures. The current status of the reader is that it is able to read directly immersed
objects from STL files (ASCII or binary format) and can separate automatically
multiple objects in STL files into smaller segments.

Figure 15.3 shows the original avatar rendering in 3DSMax®, the surface trian-
gulation, and the rendered image as an immersed body in the computational domain.
The avatar consists of four segments such as body, head, hat, and gun. In order to
make a closed immersed surface for the soldier, we merged the body, head, and hat
into a single object. Note that, we maintain the skinning in the merging procedure
for the original biped motion.
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Fig. 15.3 Soldier avatar: a 3DSMax® rendering, b triangle elements in a STL file, and c immersed
object rendering in a computational domain

15.2.3 Immersed-Boundary Formulation

Given the classification of the computational domain into field, band, and interior
cells as described above, a direct forcing approach is used to enforce the boundary
conditions at the interior and band cells. This results in the residual form of the
governing equation system shown below which is then solved implicitly, coupled
with exterior cells, by use of sub-iteration techniques:

R̃n+1,k
i = (1 − G(	n+1))Rn+1,k

i

+ G(	n+1)

[
V n+1,k
i − V n+1,k

B,i

�t

]
, i = c, Mx , My, Mz . (15.13)

This equation represents the blending of the Navier–Stokes residual with a source
term that relaxes the primitive variable vector V = ( p̄, ūi )T to its band-cell values.
As discussed earlier, other equations representing transport of species concentration
and heat may be added to this system.

Determination of information at the interpolation point The developments fol-
low hinge on the determination of flow properties q(dI ) at a certain distance dI away
from the surface (see Fig. 15.4). Given a point within the band xk and a list of nearest
neighbors to that point xl , a merit function wl is defined as

wl = 1√
(|xl − xk |)2 − ((xl − xk) · n)2 + ε

for (xl − xk) · n > 0, (15.14)

otherwise wl = 0.
In this, (xl − xk) · n is the projection of the distance from xk to xl in the direction

of the outward normal, and ‖xl − xk‖ is the magnitude of the distance vector itself.
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Fig. 15.4 Schematic determination of the distance dI between the interpolation point xi and surface
node point for a given band point xk using the projected distance dI from neighbor points xl to
outward normal line based on surface-normal vector n at the immersed surface points xs marked by
green circle. Large closed circle represents the band point to be interpolated with the information at
neighbor point. Hatched black and gray circles represent the field points and band points associated
with the present determination, respectively

If point xl is located directly along the outward normal line corresponding to band
point xk , and if (xl − xk) · n is positive, meaning that point xl is further away from
the surface than point xk , then the merit function returns a very large value (~1/ε,
where ε is 10−12).

The actual calculation of wl is performed in three stages. First, only field points
(those with	(xl , t) > 0 and G(	(xl , t)) = 0) are considered as members of the list
of nearest neighbors. Then, wl is calculated according to Eq. (15.14), and the sum
of the weights

∑
m wm is calculated. If this sum is nonzero, then the actual weight

function for each nearest neighbor is determined as

ωl = wl∑
m
wm

. (15.15)

Otherwise, the process is repeated, now considering both field points and other
band points as members of the list of nearest neighbors. If this application also results
in no viable interpolation points being found, then the band point xk is effectively
set to an interior point.

The location at which interpolated properties are defined, dI , is calculated for a
particular field point as

dI =
∑
l

ωl(xl − xk) · n. (15.16)



15 Immersed-Boundary Methods for Simulating Human Motion Events 405

Note that, this distance is in the direction of the normal coordinate. With this, the
fluid properties q(dI ) are found by applying the weighting functions,

q(dI ) =
∑
m

qmωm . (15.17)

Variable reconstruction in band cells The following closures are used for the fluid
properties in the band cells, where the subscript ‘I’ indicates properties obtained
at an interpolation point located along the normal line extending outward from the
nearest surface location corresponding to the band cell in question, and the subscript
‘B’ indicates the band cell.

pB = p(dI )

uB,i − uS,i = uT,i (dI )
(
dB

/
dI

)k + uN ,i (dI ) fN (dI , dB),

uN ,i (dI ) = (u j (dI ) − uS, j )n jni ,

uT,i (dI ) = (ui (dI ) − uS,i ) − uN ,i (dI ) (15.18)

In these expressions,n is the normal vector at the closest point on the body surface,
d is a distance from the nearest surface point, uS, j is the velocity at the nearest surface
point, and k is a power-law. The choice of k allows the model to replicate a turbulent
velocity profile (k = 1/7 or 1/9) or a laminar profile (k = 1). To obtain the temperature
distribution near the surface, the following expressions are utilized. These are a low
Mach-number simplification of more general relations derived fromWalz’s formula
(Walz 1969):

Isothermal wall:

TB

T (dI )
= Tw

T (dI )
+

(
1 − Tw

T (dI )

)(
dB
dI

)k

(15.19)

Adiabatic wall:

TB

T (dI )
= 1 (15.20)

The function fN (dI , dB) that scales the normal velocity component in Eq. (15.18)
is determined by enforcing a discrete form of the continuity equation at each band
cell using a locally parallel flow assumption. A general formulation suitable for
compressible flows is given in Ghosh et al. (2010); here, a simpler form suitable for
constant-density flows is presented.

fN (dI , dB) =
(
dB

/
dI

)
d−(

dB
/
dI

)
d− + (

1 − dB
/
dI

)
d+ ,

d− = (
dB

/
2dI

)k
and d+ = (

1 + dB
/
dI

)k/
2k . (15.21)
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Note that, this procedure does not rigorously enforcemass conservationwithin the
band cells, as the integral form of the continuity equation is not used. If precise mass
conservation is required, the pressure interpolation in Eq. (15.18) can be replaced
by the solution of the continuity equation in the band cells. This, however, can lead
to oscillations within the band cells, and for some of the moving-body applications
presented later, a hybrid approach is utilized. Given that Rc,orig is the initial residual
of the continuity equation within a band cell, a modified residual is defined as

Rc, mod = Rc,orig + CFmax

(
0,−

∑
k

nB · nk Ak

)
�t2

p(dB) − p(dI )

(dI − dB)2
|uB · nB |.

(15.22)

This approach (with CF set to 100) provides additional numerical dissipation
within band cells when objects move but reduces to the solution of the continuity
equation for non-moving objects.

Interface blocking for zero-thickness immersed surfaces When the continuity
equation is solved within band cells, there is a need to identify mesh-cell faces across
which mass flow must be restricted (‘blocking’ interfaces). This is a trivial task for
objects that are closed, but for zero-thickness objects, special considerations must be
made. To this end, we introduce indices for classifying mesh-cell interfaces as being
blocking (no mass transport allowed) versus non-blocking (transport allowed) for
zero-thickness immersed objects. The classification of the grid cells in the immersed-
boundary (IB) method needs to be robust for any kind of complex immersed surface.
Normally, two adjacent triangle elements share one edge; however, the disconnected
edges at the boundary of non-closed object only belong to one triangle element.
For a given cell’s center point xq , we find the nearest point xs on a zero-thickness
immersed surface using ANN algorithm (Arya et al. 1998) and then compute the
unsigned distance function 	. Using inner products between the position vector xq
at the query cell and the position vectors xnb at adjacent neighboring cellswith respect
to the nearest point xs , we can classify the band cells for zero-thickness immersed
surfaces by detecting a sign change of the inner product; i.e., if (xq −xs)·(xnb−xs) <

0 for |	| ≤ 2�, then xq is band cell. Note that � is a representative grid resolution.

For an open surface (zero-thickness surface), the blocking index B is only valid
for the case that nearest surface points are not on the disconnected edges of the
immersed surface from two adjacent cells xi and x j , because the signed distance
functions at the cells may not be unique due to the ambiguity of the pseudo-normal
vectors at the edges. To avoid the ambiguity, we introduce two incident angles to the
parallel direction at the disconnected edges as shown in Fig. 15.5. Let us suppose
that the nearest surface points are xls for the lth immersed object and xms for the mth
immersed object at the cell xi and x j with the center of the interface xi j , respectively.
We can define Bl(xi j ) and Bm(xi j ) based on the lth and the mth immersed objects,
respectively, using the proposed algorithm. For example, if the nearest surface point
xls on the lth immersed object for the cell xi is not on a disconnected edge, the blocking
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Fig. 15.5 Schematic of classifications for interface blocking, a non-blocking, b blocking, and
c blocking index in the vicinity of doors and door frame. Red and blue colored circles represent the
blocking index in x and y directions, respectively. Note that, there is no blocking in z direction. The
actual doors and door frame are rendered in the inset figure

index Bl(xi j ) can be simply determined by an inner product of two position vectors
xi − xls and x j − xls . However, if the nearest surface point x

l
s is on a disconnected

edge, we need to define two angles θ l
1 and θ l

2 illustrated in Fig. 15.5 for determining
the blocking index. The angles are defined as

θ l
1 = cos−1

[((
xi − xi j

) · nle
)
/
(∣∣xi − xi j

∣∣∣∣nle∣∣)] (15.23)

θ l
2 = cos−1

[((
xls − xi j

) · nle
)
/
(∣∣xls − xi j

∣∣∣∣nle∣∣)], (15.24)

where nle is a unit vector that is orthogonal to the line segment of the disconnected
edge and the plane involving with the triangle element containing the segment. Thus,
the blocking index Bl(xi j ) for the lth immersed object can be defined as

Bl(xi j ) =
⎧⎨
⎩
1, if θ l

1 ≥ θ l
2 for xls is on a disconnected edge

1, if (xi − xls) · (x j − xls) ≤ 0 for xls is not on a disconnected edge
0, otherwise

(15.25)

Similarly, we can define Bm(xi j ) based on the mth immersed object. Finally, the
blocking index B(xi j ) for all the immersed objects at the interface xi j can be defined
as

B(xi j ) =
{
1, if Bl(xi j ) + Bm(xi j ) ≥ 1
0, if Bl(xi j ) + Bm(xi j ) = 0

, (15.26)

Note that B(xi j ) indicates that the interface is a virtual wall. This means that
mass cannot be transferred through the interface and the information at the cell x j is
excluded in the interpolation stencil for the cell xi and vice versa.
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15.3 Simulations Involving Human Activity

15.3.1 Problem Definition

The primary use of the developed methodology has been in conducting simulations
of realistic human motion, with a specific focus toward capturing induced wake
and thermal plume effects on the transport of airborne agents, which can either be
gas-phase or particulate in nature. Applications of this capability include entry/exit
into shelters designed for collective protection of individuals from harmful agents.
Such shelters may use overpressure to inhibit agent transport under static operating
conditions and/or airlock systems to remove material that is inevitably transported
into the system upon personnel entry. A key to the design of sheltering systems of
this type is an understanding of the volume flow of air [normally expressed in cubic
feet (CF)] exchanged during an entry event. With this information in place and with
knowledge of the agent concentration field, it is possible to predict the mass flow of
agent into the shelter.

Such entry events are highly dynamic, involving motion of multiple persons,
moving doors, and possibly a transient external flow field. As such, the large-eddy
simulation/immersed-boundary methodology described earlier can be used to good
effect in capturing the flow physics. The remaining sections describe several appli-
cations of this type, along with strategies designed to reduce the output into forms
suitable for incorporation into fast-running system performance models.

15.3.2 Agent Transport Due to Thermal Plume and Motion
Effects

The first case considered involves simulation of an experiment conducted by Toyon.
Incorporated involving tracer-gas transport due to the combined effects of buoyancy
(human thermal plume) and wake transport (Juricek 2014). The experimental test
chamber (Fig. 15.6) consists of two rooms, a 3 × 6 × 8 ft (L xW x H) antechamber,
connected to a second, 12 × 6 × 8 ft main chamber by a swing door (24-inW × 70-
in H). Compressed gaseous perfluorocarbon tracer compounds (PDCH and PMCH)
mixed in air were released at a flow rate sufficient to ensure detectability. At time t
= 0, a person initiates the release of the agent and walks from the antechamber into
the main chamber, where he stands for 7.5 min. Tracer-gas concentrations (parts per
billion) are sampled over one-minute intervals.

Simulation results for the ‘moving’ experiment are presented in Fig. 15.7 for a
simulation of 7.5 min in duration and using a 12 M cell mesh. The moving person is
rendered as a closed-surface immersed body and is incorporated as a sequence of STL
files, generated using 3DSMax® using protocols described earlier. The hinged doors
are rendered as zero-thickness immersed objects and are comprised of planar STL
files. Rate laws for the door motion are defined in a separate subroutine. The tracer
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Fig. 15.6 Schematic of room chambers used in simulations

Fig. 15.7 Tracer-gas transport at 3.5 s (left figure) and 300 s (right figure)

gas is ‘emitted’ from a location under the person’s left armpit—this involves the
tagging of specific elements of the STL files as mass and momentum sources. In the
actual experiment, the person held the tracer-gas emission tube at this same location.
A similar approach is used to model human ‘breathing’ from the nose, though this
effect is minor compared to transport due to the thermal plume. At 3.5 s into the event
(left component of Fig. 15.7), the person’s thermal plume is rendered as a red iso-
surface (T = 304 K). Iso-surfaces of swirl strength, indicating locations of vortex
cores, are colored by tracer-gas concentration. Wakes generated by closing door
motion and human walking motion dominate thermal and tracer transport at early
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Fig. 15.8 Comparison of predictions with tracer-gas measurements for moving-person entry into
the chamber

times. After 5 min (right component of Fig. 15.7), buoyancy-driven flow spreads the
tracer-gas plume upward and away from the person.

Quantitative comparisons with experimental gas-samplingmeasurements are pro-
vided in Fig. 15.8. The centermost image shows probe locations within the chamber,
while the surrounding images plot agent concentration (ppb) versus time. Probe A
is directly above the person, and measurements here are affected both by regular
human breathing motion, buoyancy, and (initially) by the decay of velocity fluctu-
ations resulting from the door closing and the person stopping (due to inertia, the
wake continues to move forward after the person stops, creating a disturbance field
that moves entrained material forward and eventually upward). The predicted con-
centration levels (sampled at 100 Hz) are very noisy. Filtering the predictions over
an interval of 10 s (corresponding to the time required for the gas-sampling syringe
pump to operate) reduces the noise significantly. Generally, there is good overall
agreement between the simulation and experiment. Probe C is further away from
the source, and the concentration field in this region is not nearly as intermittent.
The predictions are in close agreement with experiment at this location. The general
agreement with experiment is reasonable at all probe locations, with some individual
samples showing larger differences than others.
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15.3.3 Airlock Entry Simulations

The next set of simulations focuses on personnel entry into a multiple-person-entry
(MPE) airlock located at the front of a large shelter. These simulations were designed
to determine the amount of gas transported into the airlock over the duration of an
entry event as a function of the number and arrangement of entering personnel as
well as wind speed and wind direction. The computational domain surrounding the
shelter and within the interior of the airlock was rendered as a structured, multi-block
mesh, with isotropic meshes used in the regions of human activity. Part of the interior
of the shelter was also meshed to enable simulations of personnel entering the shelter
from the airlock, leading to a total mesh-cell count of 31.3 M. Figure 15.9 shows a
wire-frame view of the rendered interior of the complete domain.

Airlock initialization A separate calculation was used to initialize flow within the
airlock, which is designed to operate at a target overpressure level. Figure 15.10
(left) shows a side view of the airlock mesh, emphasizing regions of mesh clustering
designed to resolve various air jets and exit ports used to facilitate the purging of
contaminated gas. Figure 15.10 (right) shows a snapshot of the airlock flow field,
highlighting the entering jets of air from the manifold and from the shelter itself,
which also operates at an overpressure. In the image, black streamlines emanate
from the manifold, while red streamlines emanate from the shelter.

Initialization procedures The external velocity fieldwas initialized using a Pasquill
neutrally stable velocity profile. The inputted ‘target’ velocity for each trial corre-
sponds to the velocity at 2 m above the surface. The inputted flow direction was used
to resolve the velocity profile into directions perpendicular to and parallel to the door
entrance plane. The orientation is such that 0° corresponds to flow directed into the
door, 180° corresponds to flow directed out from the door, and 90° corresponds to
flow parallel to the door entrance plane. The simulations were conducted for a fixed

Fig. 15.9 Wire frame
rendering of airlock and
shelter
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Fig. 15.10 Side view of airlock mesh (left) and snapshot of flow inside airlock (right)

period of time (10 s) prior to the entry event to allow the external flow to stabilize, and
discrete wind speeds of 0, 0.8, 1.6, 3.2, 4.8, and 6.0 m/s and discrete wind directions
of 0°, 45°, 90°, 135°, and 180° (26 trials, since zero wind speed holds for all direc-
tions) were used. Several personnel arrangements were used during the course of the
study: single-person entry, five-person single-file entry, four people carrying a patient
on a litter, seven-person single-file entry, five-person side-by-side entry, and seven-
person side-by-side entry. Animation sequences for each of the entry events were
created using 3DSMax®, and the generated sequences of STL files were converted
to closed immersed objects using procedures described earlier. The bump-through
doors, rendered as planar STL files and containing embedded vents for overpressure
control, were ‘opened’ and ‘closed’ through the use of specially defined rate laws
and were rendered as zero-thickness immersed surfaces.

Five-person, side-by-side airlock entry Figure 15.11 shows snapshots correspond-
ing to the entry of five people side by side into the multi-person airlock. The average
walking speed of the group is 1.1 m/s, and the wind speed is zero for this case. Iso-
surfaces of swirl strength, colored by agent concentration, illustrate the flow patterns
generated upon entry. Red contours correspond to a normalized agent concentra-
tion of unity, while blue contours correspond to a normalized agent concentration of
zero. FrameA corresponds to conditions just prior to entry. Highlighted flow features
include air jets entering the airlock from themulti-port manifold and the exiting of air
through the door values to maintain the target overpressure. The doors open (Frame
B) just prior to entry, leading to an initial expulsion of air in the direction of the
entry. A suction pressure is created behind the exiting vortex, allowing flow outside
the airlock to migrate into the system. This, combined with the effects of wakes
induced by moving personnel, induces net agent transport into the airlock (Frame
C). As the doors close, the airlock begins to recover the target overpressure, and flow
again emerges from the door vents (Frame D). Figure 15.12 shows a close-up view
of wake structures generated as the group makes their way through the released air
stream. The time is just after Frame B above; the doors are rendered as transparent
to provide a better view of the interior of the airlock. Figure 15.13 (left) plots cubic
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Fig. 15.11 Five-person side-by-side entry into MPE

Fig. 15.12 Close-up view of group entering airlock
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Fig. 15.13 Raw (left) and normalized (right) CF transported versus time

feet of gas transported into the airlock versus time for different wind speed/wind
direction combinations. The transport histories are similar to one another and can be
effectively collapsed by normalizing by the target CF value at the door closing point
(the average of the upper and lower peaks), as shown in Fig. 15.13 (right).

For eventual inclusion into a fast-running system performance model, it is nec-
essary to correlate the target CF transported at the door closing point as a function
of wind speed and wind direction. One might expect that wind vectors more aligned
with the entry event would enhance transport into the airlock, as would higher wind
speeds, but the entry event can also be in the wake of the shelter for wind directions
greater than 90°, leading to interactions with vortices shed by the airlock and shelter
edges. The dependence is thus not trivial, and our best approach has been to fit the
target CF as a function of wind speed and direction angle using a single hidden-layer,
ten-node neural network with a sigmoidal activation function:

CFtarget(V, θ) = (c1 +
10∑
k=1

bkhk)c2 + c3

hk = 1
1+exp(−xk )

xk = a1,k + a2,k
V−a3,k
a4,k

+ a5,k
θ−a6,k
a7,k

, (15.27)

Figure 15.14 shows scatter plots of CFtarget predicted by Eq. 15.27 for 50,000
randomly distributed (V, θ ) ordered pairs, with V varied from 0 to 6 m/s and θ varied
from 0 to 180°. A good coverage of the factor space is indicated, and most of the trial
data points lie within the predicted factor space. The average error is 4.20%, and the
largest error is around 8%. It is also to be noted that this case shows the expected
trends of increased transport into the airlock for higher wind speeds and directions
more aligned with the movement of the group. The zero wind speed values represent
the effects of wake transport in the absence of windmotion. CF transported generally
increases with the number of personnel, but the arrangement also affects transport. A
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Fig. 15.14 Predicted target CF versus wind speed and wind direction

similar case conducted with five people entering in single file results in nearly twice
as much transport at zero wind speed (60 CF vs. 36 CF). This is partially due to the
duration of the event, which is ~3.5 s for the side-by-side entry versus 5 s for the
single-file entry.

15.3.4 Flow Over a Ruined Building

The last example, while not involving moving entities, illustrates the process of
constructing a scenario, creating geometries as sets of STL files, and rendering the
objects as closed or zero-thickness immersed bodies. The scenario involves a person
buried in rubble releasing a gas-phase taggant to aid in his rescue. ACADdescription
of a ruined building was obtained from Turbosquid.com (an online retailer for 3D
CAD models used in gaming). The building geometry is that of a small house with
four small rooms that has collapsed upon itself. The geometry was imported into
3DSMax® and then exported as a binary STL file. This file was then read into
Autodesk’s NetFabb®, a tool for assembling, repairing, and modifying STL files for
use in 3D printing. The STL file for the soldier used in the earlier simulations was
added to the scenario, rescaled, and repositioned, so that he was ‘trapped’ under a
portion of the building. The STL files were then exported and pre-processed using
the steps described earlier for inclusion as immersed objects in the simulation. The
geometry is open to the air above, as shown in Fig. 15.15. The placement of the person
and the wind direction is also shown in the figure. The same Pasquill boundary layer
used in the shelter simulation was used in this case, which contains about 64 M cells
with an isotropic region surrounding the region occupied by the object. The cell size
in the isotropic region is 1 in. The person holds the taggant canister and also breathes
but otherwise is stationary (his legs are pinned underneath a part of the building).

http://Turbosquid.com
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Fig. 15.15 Collapsed building containing injured person

Mass and momentum sources were applied at locations on the person’s STL object
to mimic taggant release and transient breathing.

Figure 15.16 shows the flow structures that emerge after several transit times.
In the left image, an iso-surface of taggant mass fraction (0.0001) is shown col-
ored by velocity magnitude. The image on the right shows iso-surfaces of swirl
strength colored by the logarithm of taggant mass fraction. The irregular geometry

Fig. 15.16 Taggant concentration (left) and swirl strength (right) iso-surfaces: flow over a ruined
building—bottom images show top-down views
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of the building provides sources for turbulence generation as well as low-momentum
regions that may trap fluid. The small enclosure in which the person is placed is one
such region—the taggant fills the entire enclosure before being entrained into the
external wind field. The breath gas remains within the enclosure, but breathing is a
periodic source of effluent—later times would show the expulsion of the breath gas
from the enclosure. The fact that the chosen taggant (SF6) is non-buoyant keeps the
plume close to the surface.

15.4 Conclusion

An immersed-boundary method suitable for general flow simulations has been pre-
sented. Themodel is grid-topology independent and is based on the decomposition of
a computational domain into cells inside an immersed body (field cells), cells outside
but adjacent to an immersed body (band cells), and cells far away from an immersed
body (field cells). Immersed objects are generated initially as sets of closed-surface
or zero-thickness stereo-lithography (STL) files. Procedures for rendering these files
as immersed objects within the domain hinge first on splitting such objects into sim-
pler units and secondly on the calculation of the signed distance from each field cell
to the embedded surfaces. Interpolation methods based on turbulent boundary layer
theory are used to connect the flow solution in band cells to specified surface bound-
ary conditions and to the solution of the Navier–Stokes equations in the field cells.
The approach differs from others in the literature in its use of power-law forms for
the near-surface velocity, thus enabling the method to mimic the energizing effect of
a turbulent boundary layer without excessive near-surface resolution. Applications
have been presented for cases involving gas-phase agent transport as induced by
human activity (including realistic human motion, breathing, and buoyancy effects
due to the human thermal plume) and by other factors, such as an external flow field
and moving doors. The combination of large-eddy simulation techniques for cap-
turing wake-induced turbulence and the developed immersed-boundary techniques
for representing the effects of stationary and moving objects on the flow evolution
provides a powerful framework for conducting realistic simulations of complicated
time-dependent flows.
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Chapter 16
Immersed Boundary Method for High
Reynolds Number Compressible Flows
Around an Aircraft Configuration

Taro Imamura and Yoshiharu Tamaki

16.1 Introduction

The boundary layer on the surface of a transport aircraft at the cruise condition is
almost fully turbulent. The Reynolds number (Re) of the flow based on themainwing
chord length is on the order of 107 (Wahls 2001; Green and Quest 2011). In addi-
tion, modern aircraft have high-aspect-ratio wings and long fuselages that increase
their surface area. Thus, the computational costs of a direct numerical simulation or
a large eddy simulation (LES) for an external flow around an aircraft are still too
high for engineering purposes. Choi and Moin (2012) reported that more than 108

cells are required to spatially resolve the flow around a wing whose aspect ratio is
4, even when a wall-modeled LES is used. The simulation also requires many time
steps because the time scale of the unsteady turbulent vortices is several orders of
magnitude smaller than that of the mean flow. Therefore, the Reynolds-averaged
Navier–Stokes (RANS) simulation is widely used for external flows around an air-
craft, especially for industrial application. In the derivation of the RANS equation,
the temporal fluctuation component and the mean component are decomposed. The
computation is carried out only through the mean component, and a steady-state
solution is obtained unless strong instabilities (e.g., separated flows behind a bluff
body or artificial oscillating motion) exist in the flow field. Under the cruise condi-
tion, the flow is mostly attached to the surface; thus, RANS simulations are fairly
accurate. For example, in the Drag PredictionWorkshops (DPWs) (2017), the RANS
simulation capability for an aircraft aerodynamic prediction was widely investigated.
These studies (Sclafani et al. 2010, 2013; Lee-Rausch et al. 2014; and Hashimoto
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et al. 2014) validated the results on body-fitted grids. The computational grids for
RANS simulations are designed to resolve the viscous sublayer of the turbulent
boundary layer, using high-aspect-ratio cells that conform to the wall surface. Using
the immersed boundary method (IBM) on Cartesian grids for the wall boundary
condition, the grids are not aligned to the wall surface (non-body-fitted grids). The
cells’ aspect ratio near the wall is fixed to unity when Cartesian grid is used which
is not suitable for high Reynolds number flow simulations. To resolve the viscous
sublayer, many cells are required as compared with that of the typical body-fitted
grid. In simple 2D problems, research (Takahashi and Imamura 2014; de Tullio et al.
2007) has proved that turbulent boundary layers can be reproduced when the viscous
sublayer is sufficiently resolved. However, simulating 3D turbulent flows using such
a fine grid is not realistic. Simulations of flows around high-aspect-ratio wings are
quite difficult to perform owing to the uniform cell size requirement in the span-wise
direction.

This chapter presents a methodology for simulating a high Reynolds number flow
using RANS equation on hierarchical Cartesian grids in combination with IBM. We
propose a new approach which applies the modified wall function to IBM. Addition-
ally, a flux-based method is developed based on the balance of the numerical fluxes
in order to evaluate the aerodynamic forces.

The remainder of this chapter is organized as follows. Section 2 describes the
baseline flow solver using Cartesian grids and the IBM for turbulent flow simulation.
A method to calculate the aerodynamic force acting on the immersed bodies is also
explained. Section 3 provides numerical results, e.g., turbulent flow over a 2D bump
and around an aircraft configuration. Finally, Sect. 4 summarizes the chapter.

16.2 Numerical Methods

16.2.1 The Baseline Grid Generator and Flow Solver
(UTCart)

The specification of the baseline flow solver the University of Tokyo Cartesian-
grid-based automatic flow solver (UTCart) is described. UTCart consists of two
parts: the grid generation and the flow solver. First, the hierarchical Cartesian grid is
automatically generated using tree data structures, i.e., the quadtree (2D) or oct-tree
(3D). The shapes of input objects are defined by sets of line segments in 2D or by
Standard Triangulated Language files (i.e., sets of triangular facet segments) in 3D.
Then, binary tree structures and bounding boxes are constructed for each object to
search the nearest segments. The cells intersecting the input object are treated as
wall cells. In addition, the cells inside the object are classified as body cells, whereas
those outside the object are classified as fluid cells. The grid distribution around
the object is controlled by the following two options. The first option is to control
the numbers of cells in the layers of the same cell size. Figure 16.1 illustrates the
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Fig. 16.1 Layers and the
refinement box of the
generated grid

case where the minimum number of cells in each layer is set to 4. The minimum
cell size near the wall (the first layer) is doubled after at least four cells of the
same size, and this continues to the far-field boundary. The number of cells in each
layer is controlled as necessary. The second option is the refinement box which is
used to refine uniformly a certain area of the computational domain. The refinement
box is specified by the minimum/maximum coordinates of the rectangular (2D) or
cuboid (3D) and the uniform cell size inside. After the generation of the hierarchical
Cartesian grid, the grid is partitioned using the METIS library (2019) for a parallel
computation based on the message passing interface. In each divided grid domain,
sleeve cells are specified for the communication between the domains.

In the second step, a flow calculation is performed. The numerical methods in
the solver are summarized in Table 16.1. The flow simulation by UTCart is based
on the compressible Euler/Navier–Stokes equations in a conservation form. For high
Reynolds number flows, RANS simulations are carried out using a turbulencemodel.
The governing equations are as follows:

∂ Q
∂t

+ ∂
(
F j − FV, j

)

∂x j
= 0, (16.1)

where Q = [ρ, ρui , ρE]T is the vector of conservative variables. F j =
[
ρu j , ρuiu j + pδi j , (ρE + p)u j

]T
is inviscid flux, and FV, j = [

0, τi j , τ jkuk − q j
]

denotes viscous flux (i, j, k = 1, 2 for 2D, and i, j, k = 1, 2, 3 for 3D). Here, ρ is the
density, ui is the velocity, E is the total energy per unit mass, τi j is the viscous stress
tensor, and q j is the heat flux. The ideal gas law for relating the thermal quantities is

p = ρRT, E = p

ρ(γ − 1)
+ 1

2
ukuk, (16.2)

where T is the temperature, R is the gas constant, and γ = 1.4 is the ratio of the
specific heat. The viscous stress tensor and the heat flux are approximated as
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Table 16.1 Numerical
methods for UTCart

Governing equations Compressible Euler equations

Compressible Navier–Stokes
equations

Compressible
Reynolds-averaged
Navier–Stokes equations

Turbulence model Spalart–Allmaras (SA-noft2)

Discretization method Cell-centered finite volume
method

Type of grids Unstructured hierarchical
Cartesian grids

Inviscid flux SLAU with third-order
MUSCL

Limiter Minmod or van Albada

Viscous flux Second order

Convective and diffusive flux
of SA

Second order

Gradient evaluation WLSQ (G)

Time integration method MFGS or LU-SGS (Yoon and
Jameson 1988)

Time-stepping method Local time-stepping method

τi j = 2(μ + μt )

[
Si j − 1

3
Skkδi j

]
, q j = −cp

(
μ

Pr
+ μt

Prt

)
∂T

∂x j
,

where μ is the molecular viscosity, μt is the eddy viscosity, Si j =
1/2

(
∂u j/∂xi + ∂ui/∂x j

)
, and cp = γ /(γ − 1)R is the specific heat at constant

pressure. Prandtl number Pr is set to 0.72, and turbulent Prandtl number Prt is set to
0.9. When the eddy viscosity μt is set to 0, Eq. (16.1) becomes the Navier–Stokes
equations. In Euler calculations, the molecular viscosity μ is additionally set to 0.
Spalart–Allmaras one-equation turbulence model (SA) (Spalart and Allmaras 1992)
calculates the eddy viscosity. The version of SA used in this research is an SA-
noft2 model (Turbulence Modeling Resource 2019), which neglects the ft2 term.
The equations of SA-noft2 are as follows:

∂

∂t
(̃ν) + ui

∂

∂xi
(̃ν) = 1

σ

[
∂

∂xi

(
(ν + ν̃)

∂ν̃

∂xi

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
+ cb1 S̃ν̃

− cw1 fw

(
ν̃

d

)2

, (16.3)

μt = ρν̃ fv1, fv1 = χ3

χ3 + c3v1
, χ = ν̃

ν
, S̃ = 
 + ν̃

κ2d2
,
 = √

2Wi jWi j ,
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Fig. 16.2 Schematic of the
wall boundary condition of
the immersed surface

Cell P

Cell F

FC

Wi j = 1

2

(
∂ui
∂x j

− ∂u j

∂xi

)
, fv2 = 1 − χ

1 + χ fv1
, fw = g

[
1 + c6w3
g6 + c6w3

] 1
6

,

g = r + cw2
(
r6 − r

)
, r = min

[
ν̃

S̃κ2d2
, 10

]
,

where d denotes the distance from the local point xi to the nearest point on the wall
surface. The closure constants are

cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41,

cw1 = cb1/κ
2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2, and cv1 = 7.1.

Thegoverning equations are discretized by the cell-centeredfinite volumemethod.
The hierarchical Cartesian grids are treated as unstructured data structure. The invis-
cid flux is evaluated using the simple low-dissipation advection upstream splitting
method (AUSM) scheme (Shima and Kitamura 2011). The third-order monotonic
upwind scheme for conservation laws (MUSCL) is used to increase the spatial accu-
racy. The viscous flux is calculated using a modified second-order central difference
(Wang et al. 2010). The accuracy of the convective and diffusive flux of the SA
model is second order. Gradients of the primitive variables are calculated using the
weighted least square method (WLSQ) (Shima et al. 2013). The matrix-free Gauss–
Seidel, which is an implicit time integration method, is used for the time integration
(Shima 1997). All the numerical computations are steady; thus, a local time-stepping
method is introduced to accelerate convergence. The subsonic far-field boundary con-
ditions are determined based on the method proposed by Chakravarthy and Osher
(1983).
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16.2.2 Immersed Boundary Method for UTCart

Figure 16.2 is the schematic of the grid near the wall boundary. The cells intersecting
the body surface are the wall cell, and the cell completely inside the fluid domain
is the fluid cell. UTCart imposes the wall boundary condition at the center between
fluid cell and the wall cell [point face center (FC)]. A discrete-forcing IBM is used
to determine the boundary conditions. Here, the IBM for inviscid and low Reynolds
number viscous flows is explained. The IBM for high Reynolds number flow is
described in the next subsection.

To determine the physical quantities of FC, an image point (IP) is set on the wall-
normal line through FC, assuming one-dimensional variable profiles between the IP
and the wall. The distance between the IP and the wall is dIP related to the size of
the ambient cells �x by

dIP = rIP�x, (16.4)

where rIP is the ratio of the IP distance to the cell size on the wall, which is a constant
value. The minimum value for rIP is

√
2 in 2D and

√
3 in 3D for the IPs to be located

in the fluid cells. Typically, the rIP value is set to 2–3. An exception may occur where
twowalls are located close to each other. If IP is located in thewall, thewall boundary
is considered to be a step-wise face, and the value at FC is determined using the value
at the fluid cell including the FC to avoid a numerical problem.

In the explanation below, the quantities at the IP and FC are represented by
subscripts IP and FC, respectively. The primitive variables q at the IP is linearly
interpolated locally inside the cell as

qIP = qP + ∂q
∂x j

∣∣∣∣
P

(
x j,IP − x j,P

)
, (16.5)

where the subscript P denotes the value at the center of the cell including the IP.
Then, the primitive variables at FC are calculated using the quantities at the IP.
For example, the pressure is assumed to satisfy the zero-gradient condition on the
wall. The wall-normal velocity must satisfy the non-penetration condition, where
the normal velocity is zero on the wall. Thus, a linear profile between the IP and
the wall is assumed. The boundary condition for the tangential velocity ut depends
on whether the wall is slip or non-slip. The numerical flux at FC is calculated using
the primitive variables at FC. An upwind scheme calculates the inviscid flux. The
viscous flux is calculated using only the quantities at FC assuming the adiabatic wall
boundary condition for the heat flux.

During the grid partitioning for the parallel flow computation, a modification
is applied to the list of sleeve cells when IBM is used (Imamura et al. 2017). As
illustrated in Fig. 16.2, physical quantities at the IP are used to define the wall
boundary condition at the FC which is an interface between the fluid cell and wall
cell. Extra communication is required if IP and FC are located in different domains.
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16.2.3 Wall Function for RANS

A wall boundary condition for UTCart to simulate turbulent flows is presented. The
SA wall model developed by Allmaras et al. (2012) is used to evaluate the effect
of the neglected molecular viscosity and construct a universal law of the wall. This
wall velocity model is derived under the assumption for the law of the wall analysis:
incompressible, zero pressure gradient, constant outer edge velocity, ignore advection
terms, and gradient terms parallel to the wall. The shape of this function is presented
in Fig. 16.3.

u+ = fSA
(
y+)

, (16.6)

where u+ and y+ are the normalized tangential velocity using wall friction velocity
uτ and distance in the wall unit, respectively. By substituting the tangential velocity
at IP in Eq. (16.6), Newton’s iteration is performed to obtain uτ . Then, the tangential
velocity at FC is calculated as

ut,FC = uτ fSA
(
y+
FC

)
. (16.7)

Furthermore, the temperature at FC is calculated by the Crocco–Busemann
relationship (White 2006):

TFC = TIP + Pr1/3

2cp

(
u2t,IP − u2t,FC

)
. (16.8)

Then, the density at FC is calculated as:

ρFC = pFC
RTFC

. (16.9)

Fig. 16.3 SA wall model
developed by Allmaras et al.
(2012)
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Fig. 16.4 Modification of
the velocity profile

The velocity profile defined by the wall function in Eq. (16.6) is a nonlinear
function. However, a spatial schemewith second-order accuracy reconstructs a linear
(first-order polynomial) profile within a cell. As a result, the velocity profile assumed
by the wall function cannot be reproduced in the cell. To overcome this problem, the
velocity profile and related flow variables should be modified. This idea originates
from Capizzano (2011). The tangential velocity profile is modified using the first
derivative of the SA wall model:

fSA,mod
(
y+) = u+

IP + d fSA
dy+

∣∣∣∣
IP

(
y+
IP − y+)

. (16.10)

The inviscid flux on the face is calculated using the tangential velocity u+(
y+
FC

)

obtained by Eq. (16.10). In this velocity profile (Fig. 16.4), the tangential velocity at
y+ = 0 is nonzero; thus, a virtual slip velocity is imposed on the wall. Note that the
viscous flux on the face is directly calculated as τFC = ρFCu2τ .

Alongwith the velocity profilemodification, it is important tomaintain the balance
of the shear stress,

(ν + νt )
du

dy
= τw

ρ
, (16.11)

where τw is the wall shear stress. Note that Eq. (16.11) is an approximate relationship
in the inner layer of the boundary layer, where the convection and pressure gradients
are negligible. Thus, a modification is required on the eddy viscosity profile corre-
sponding to the modification of the velocity profile. In the modified velocity profile
of Eq. (16.10), the velocity gradient (du/dy) is constant. Accordingly, νt must be
constant in the region between the IP and the wall to maintain the constant shear
stress implied by Eq. (16.11). Here, the near-wall solution of ν̃ is retained, and only
the wall-damping function fv1 in Eq. (16.3) is modified to avoid additional complex-
ity. To realize the constant profile of the eddy viscosity, the wall-damping function
must be

fv1 ∼ 1

d
, (16.12)

because of the near-wall solution of ν̃ is proportional to the wall distance d. For
the implementation, the profile of fv1 must be continuous. Thus, the wall-damping
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function is redefined as

fv1 =
{

fv1,original(d ≥ dcutoff)
fv1,near-wall(d < dcutoff)

. (16.13)

Cutoff distance dcutoff is equal to the distance between the IP and the wall, dIP.
The original damping function fv1 is

fv1,original = χ3

χ3 + c3v1
, (16.14)

and fv1,near-wall is a modified damping function near the wall defined as

fv1,near-wall = rd
(χrd)

3

(χrd)
3 + c3v1

, (16.16)

where rd = dcutoff/d. Note that fv1,near-wall is a product of rd and the original fv1
at d = dcutoff. When the IP is located in the log layer of the turbulent boundary
layer, fv1,near-wall is approximately equal to rd . This function depends on the relative
position of the IP in the boundary layer. For example, the shape of the function with
y+
IP = 50 is illustrated in Fig. 16.5. The modified eddy viscosity profile has a kink at
the cutoff point. The following technique is used to calculate the viscous fluxes on
the faces. Here, face lr is considered, which is the face between cells l and r. The
eddy viscosity on the face is required to calculate the viscous flux on faces l, r, and
νt,lr . However, the simple average of νt,l and νt,r is different from the true value of
the profile if the kink exists between cells l and r. This may cause numerical errors.
Thus, the following procedure is adopted to eliminate the effect of the kink. The
averages of left and right cells for ν̃, ν and d are calculated as follows:

(a) Wall-damping function, (b) Eddy viscosity

Fig. 16.5 Modification of the eddy viscosity profile
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ν̃lr = rlr ν̃l + (1 − rlr )̃νr ,

νlr = rlrνl + (1 − rlr )νr ,

dlr = rlr dl + (1 − rlr )dr , (16.17)

where rlr is the ratio of the cell sizes:

rlr = �xr
�xl + �xr

. (16.18)

The eddy viscosity is calculated by those quantities:

νt |lr = ν̃lr fv1(χlr , dlr ), (16.19)

where χlr = ν̃lr/νlr . The ν profile is nearly linear near the wall, and the numerical
error is smaller than the simple average of νt .

Corresponding to the modification of the velocity and eddy viscosity profiles,
the thermal boundary condition has now been reconsidered. The Crocco–Busemann
relationship in Eq. (16.8) is differentiated in terms of wall-normal coordinate yields:

dT

dy
= Pr1/3

cp
ut
dut
dy

. (16.20)

In the modified velocity profile in Eq. (16.10), the normal gradient of the tangent
velocity is constant below the IP. Here, uτ is assumed to be nearly constant because
the velocity gradient in the log layer is small. Thus, the temperature gradient is nearly
constant below the IP, and the temperature profile becomes a linear profile:

TFC = TIP − dT

dy IP
(yIP − yFC), (16.21)

where the temperature gradient at IP is calculated in Eq. (16.20).
The proposedmethod is thoroughly tested through the simulations of the flat-plate

turbulent boundary layer. Further details are discussed by Tamaki et al. (2017) and
Tamaki (2018).

16.2.4 Force Calculation Method

To compute the aerodynamic force, the polygon-based method (Nonomura and
Onishi 2017) which integrates over the input CAD surface is often used. In this
method, the physical quantities (e.g., pressure) on the Cartesian grid are interpolated
and/or extrapolated onto the CAD surface before the integration. This method is the
same as the force integration method of conventional body-fitted grids, except for
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Fig. 16.6 Description of the
computational domain and
the boundaries

the interpolation and/or extrapolation. However, arbitrariness exists in the interpola-
tion and/or extrapolation formula; thus, the computed forces may contain additional
numerical errors. In addition, the integration accuracy depends on the resolution of
the CAD surface. Therefore, the calculation of force acting on the immersed body
based on the flow solution needs to be explored.

To remove the uncertainties related to the previous discussion, new force inte-
gration is developed based on the balance of the numerical flux. This idea is similar
to the far-field methods (van Dam 1999; Kusunose and Crowder 2002); however,
the integration surface is the step-wise cell boundary between the fluid cell and the
wall cell. Unlike the far-field method, the pressure and viscous component of the
force are calculated using this new method because the integration surface is near
the object surface. The force can also be decomposed when multiple objects exist in
the computational domain.

As illustrated in Fig. 16.6, an immersed body ΓS in Cartesian grids is considered.
The step-wise cell boundary near the wall and the far-field boundary are named ΓG

and ΓF , respectively. Note that the normal vectors of ΓG and ΓF are pointing outside
the computational domain. Furthermore, the domain between ΓG and ΓF and that
between ΓG and ΓS are named V1 and V2, respectively. To perform component-wise
integration of the aerodynamic force, the integral over ΓF is replaced by that over
ΓG . The momentum equation is integrated over domain V1 assuming neither mass
source nor body force exists in the domain. The near-field integration formula for
the aerodynamic force is described as follows:

Fi =
∫

ΓG

{
ρ
(
ui −U∞,i

)
u j + (p − p∞)δi j − τi j

}
n jdS. (16.22)

Equation (16.22) is discretized on the faces that compose ΓG :

Fi =
∑

face∈ΓG

[〈(
ρuiu j + pδi j

)
n̂ j

〉 − 〈
ρu j n̂ j

〉
U∞,i − p∞δi j n̂ j − 〈

τi j n̂ j
〉]
face,

(16.23)
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where
〈(
ρuiu j + pδi j

)
n̂ j

〉
are the momentum components of the inviscid flux,〈

ρu j n̂ j
〉
is the mass component of inviscid flux, and

〈
τi j n̂ j

〉
is the momentum compo-

nents of the viscous flux. Note that n̂ j is the normal vector component of the faces on
ΓG . Here, the integral of the viscous flux is considered to be the viscous component
of the aerodynamic force, and the remainder is considered to be pressure component.
The aerodynamic forces acting on each part of the immersed body (or each object)
can be decomposed when the faces are classified with respect to the nearest part or
object. Thus, it is suggested that one uses the same inviscid and viscous numerical
fluxes as those in the flow calculation of the flux components in Eq. (16.23). The
evaluated force directly reflects the accuracy of the flux used in the flow calculation,
and no additional numerical error is produced.

16.3 Numerical Results

16.3.1 Subsonic Flow Over a 2D Bump

The first test case is the subsonic flow over a 2D bump defined in the NASA Turbu-
lenceModel Resource (TMR) (2019). The effect of the stream-wise pressure gradient
is small compared to that of viscous force, except for the location close to a separa-
tion point (Tennekes and Lumley 1972). In this problem, the validity of the proposed
IBM is investigated in a flow with a mild pressure gradient. This is because the effect
of the stream-wise pressure gradient is neglected in the baseline, which is an approx-
imated governing equation for the proposed IBM. The Reynolds number based on
reference length L, and the free-streamMach number of 0.2 is 3 × 106, and the free-
stream temperature is 300 K. The overview of the grid and the boundary conditions
are illustrated in Fig. 16.7. Five grids with different grid resolutions are prepared
to check the trend of grid convergence as tabulated in Table 16.2. In addition, rIP is
fixed to 3 for this problem. CFL3D (2019) computes the reference result on the 1409
× 641 grid. These reference computational results are also provided in the TMR.
The y+

IP in Table 16.2 is estimated by c f of this reference result. The results of the
original IBM and modified IBM are compared to clarify the importance of the mod-
ification proposed in Sect. 2.3. The specification of these methods is summarized in
Table 16.3.

The distributions of the pressure and skin friction coefficients on the bump are
illustrated in Figs. 16.8 and 16.9, respectively. The reference result by CFL3D is also
illustrated in the same figures. On one hand, a large oscillation is observed on the
pressure coefficientCp in the original IBM results, and the skin friction deviates from
the reference result. This trend is obvious in the fine grids; the result in grid 5 predicts
the peak of c f at a different location, and the magnitude of c f is approximately 30%
smaller than the reference result. As a result, no trend of grid convergence is observed
in the original IBM results. However, the modified IBM reproduces the distribution
of c f more accurately. The oscillation of Cp is smaller than the original IBM result,
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(a) Computational grid

(b) Boundary conditions

Fig. 16.7 Computational grid over the bump

Table 16.2 Setting of computational grids over the 2D bump

Grid Min. cell size Number of cells y+
IP at x/L = 0.75 (estimation)

1 1.57 × 10−3 21,762 784

2 7.86 × 10−4 43,246 392

3 3.93 × 10−4 82,978 196

4 1.96 × 10−4 164,638 98.0

5 9.82 × 10−5 325,698 49.0

Table 16.3 Specification of the original and modified IBMs

Original IBM Modified IBM

Velocity profile SA wall model, Eq. (16.6) Linear, Eq. (16.10)

fv1 Original definition in SA, Eq. (16.3) Modified, Eq. (16.13)

Temperature profile Crocco–Busemann relationship, Eq. (16.8) Linear, Eq. (16.21)
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(a) Original IBM (b) Modified IBM

Fig. 16.8 Distribution of the pressure coefficient on the bump

(a) Original IBM (b) Modified IBM

Fig. 16.9 Distribution of the skin friction coefficient on the bump

and the magnitude of Cp is also more accurate. In addition, the skin friction on
the finer grids has better agreement with the reference result; thus, a correct grid
convergence trend toward the reference result is confirmed. Therefore, the modified
IBM can reproduce this flow with a certain degree of accuracy.

16.3.2 Flow Analysis Around the NASA Common Research
Model

To investigate the capability of the proposed framework for aerodynamic pre-
diction on a civil transport aircraft, transonic flows around the NASA common
research model (CRM) (Vassberg et al. 2008) are simulated (Tamaki 2018; Tamaki
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and Imamura 2018). The NASA CRM was developed as a benchmark in the
DPWs (2017). This geometry is widely tested in wind tunnel experiments (Rivers
and Dittberner 2014; Ueno et al. 2014) and in numerical simulations (Sclafani et al.
2010, 2013; Lee-Rausch et al. 2014; Hashimoto et al. 2014; Yamamoto et al. 2012;
Vassberg et al. 2014; and Tinoco et al. 2017). Using CFD simulations, a domestic
workshop in Japan, the Aerodynamic Prediction Challenge (APC) (2019) workshop,
was held recently to investigate the accuracy of the aerodynamic prediction of the
NASA CRM. The geometry tested in this workshop consists of a fuselage, main
wings, and horizontal tails with the incident angle of attack of iH = 0°. The cal-
culation setting in this section is adjusted to the condition of the experiment (Ueno
et al. 2014) in Japan Aerospace Exploration Agency (JAXA) transonic wind tunnel,
using a 2.16% scale model (the mean aerodynamic chord cref = 151.31mm). The
free-stream Mach number is 0.847; the free-stream temperature is 284 K; and the
Reynolds number based on the mean aerodynamic chord is 2.26× 106. The angles of
attack are from−1.79° to 5.72°. In the wind tunnel experiment, the wing is deformed
by the aerodynamic force acting on it (Tinoco et al. 2017). The geometry used in this
simulation is also deformed based on the experimental data. The deformation (twist
and bend) of the wing was measured (Ueno et al. 2014), and the data were provided
in the workshop (2019).

The grid is shown in Fig. 16.10. Here, a symmetric boundary condition is assigned
on the y = 0 plane, and a half-span model is simulated. To reduce the computational
cost, two different cell sizes are specified on the wall. The wing upper surface and
the tail are covered by the finest level of the cell because the flow features in those
regions are important in terms of accurate aerodynamic force simulation. The other
parts (the fuselage and wing lower surface) are covered with the second next level
of the cell to reduce the computational cost. The ratio of the IP distance to the cell
size, rIP, is set to 3. Coarse, medium, and fine grids are prepared to check the grid
sensitivity. In addition, a “medium-b” grid is created by changing the number of
cells in the second layer (refer to Fig. 16.1). Table 16.4 describes the specification of
these grids. The lengths in the table are based on the actual scale of the NASA CRM
(cref = 275.8 inch). The cell number slightly changes when the wing is deformed,
and the numbers presented in the table are α = 2.94°.

The UTCart computational cases are as follows. First, the grid sensitivity is exam-
ined at α = 2.94° on the coarse, medium, medium-b, and fine grids. Then, the flows
at α = −1.79, 0.62, 2.47, 2.94, 3.55, 4.65, and 5.72° are simulated on the medium
grid. Furthermore, reference calculations are conducted by a flow solver FaSTAR,
developed by JAXA (Hashimoto et al. 2012), on body-fitted grids. The computational
grids are provided in the APC workshop (Third Aerodynamic Prediction Challenge
(APC-III) 2019).

Figure 16.11 compares the surface pressure coefficient distributions of the two
flow solvers. The qualitative features (e.g., the position of the shock on the wing
upper surface) have good agreement with each other. Figure 16.12 presents the sur-
face pressure coefficient distributions on the section of the wing. As illustrated in
Fig. 16.13, the definition of the sections follows that of the APC workshop. These
sections are identical to the positions of the pressure taps of the experiment. At the
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(a) Overview of the computational grid (very coarse grid,only for visualization)

(b) Main wing tip (c) Main wing root

Fig. 16.10 Computational grid for UTCart (medium grid, except for the overview)

Table 16.4 Settings of the computational grid around the NASA CRM for UTCart

Coarse Medium Medium-b Fine

Total cell number 31,055,490 61,988,288 54,335,363 117,882,932

Domain size (inch) 4.80 × 104 3.60 × 104 3.60 × 104 5.40 × 104

�xmin (inch) 0.732 0.549 0.549 0.412

Number of cells in the first layer 3 3 3 3

Number of cells in the second layer 3 6 3 8

Number of cells in the rest of the
layers

3 3 3 3

cref
�xmin

753 1004 1004 1339



16 Immersed Boundary Method for High Reynolds Number … 437

(a) UTCart (medium grid) (b) FaSTAR (fine grid)

Fig. 16.11 Surface pressure coefficient calculated by UTCart, medium grid (α = 2.94°)

inboard sections, the surface pressure coefficient in theUTCart result has good agree-
ment with the FaSTAR result and the experimental data. The pressure distributions
at the outboard sections are slightly different from the FaSTAR result. The UTCart
grid size on the upper surface of the wing is uniform. Accordingly, the number of
cells in the local chord is smaller than that of the outboard sections, indicating that
the grid resolution relative to the local chord length is low in the outboard sections
and is assumed to be one of the causes of the inaccuracy. Furthermore, the shock
thickness of the UTCart result is thinner than that in the FaSTAR result at Section I.
This indicates that the UTCart computational grid has a higher grid resolution in the
chord-wise direction than the grid for FaSTAR.

Figure 16.14 presents the component-wise aerodynamic coefficients. The pres-
sure drag computed by UTCart is overestimated, especially on the coarse grid. The
pressure drag in the medium-b grid result is 3 drag counts (1 drag count is 10−4)
larger than the value of the medium grid result. This indicates that the pressure drag
is dependent on the grid resolution in the region away from the wall, revealing that
a proper grid refinement is required. Furthermore, the viscous drag is overestimated
by 7 drag counts even on the fine grid. This difference is caused by the wing and
the body. Simultaneously, the lift coefficient in the UTCart result is overestimated as
compared to the FaSTAR result, whereas the pitching moment coefficient is underes-
timated. For these two coefficients, the trend of grid convergence is observed toward
the FaSTAR result. The main cause of these discrepancies is the main wing. It may
also be due to the grid resolutions that capture the curvature of the leading edge and
the thickness of the trailing edges.

Figure 16.15 shows the computed and measured drag polar (drag coefficient vs.
lift coefficient) of this aircraft configuration. The basic trend of each coefficient
indicates fair agreement between the UTCart and FaSTAR results and between the
UTCart results and the experimental data.
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(c) (d) 

(e) (f) 

(a) (b) 

Fig. 16.12 Surface pressure coefficient on the wing sections (α = 2.94°)
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Fig. 16.13 Definition of the wing sections of the NASA CRM

(a) Lift coefficient (b) Drag coefficient 

(c) Pressure drag coefficient (d) Viscous drag coefficient 

Fig. 16.14 Comparison of the aerodynamic coefficients of the NASA CRM (α = 2.94°)
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Fig. 16.15 Drag polar of
NASA CRM

16.4 Summary

We explored the methodology for high Reynolds number flow simulations using
hierarchical Cartesian grids in combination with IBM. To reduce the computational
cost, the wall function, i.e., the model of the near-wall part of the turbulent boundary
layer, was combined with IBM. The velocity of the wall model wasmodified to linear
profile to avoid numerical problems. We also demonstrated that the modification of
the eddyviscosity is essential to retain the balance of the shear stress near thewall. The
temperature profile is also modified accordingly. The object surface was immersed
in the Cartesian grid, and uncertainty was thus remarked in the evaluation of the
aerodynamic force. We clarified the relation between the aerodynamic force and the
numerical flux in the flow calculation. In the 2D bump problem, modified IBM, the
new approach introduced in this study, achieved higher accuracy than that of the
original IBM in predicting the skin friction and pressure coefficients. Consistent grid
convergence toward the converged solution was observed. In the flow simulations in
the NASA CRM configuration under the cruise condition, the flow patterns showed
fair agreement with those of FaSTAR and experimental data. Also, the basic trend
of aerodynamic coefficients was predicted correctly using the UTCart.

The proposed framework can be used to estimate the basic flow feature around a
complex geometry within a short time. Although the accuracy of the conventional
CFD simulation may be higher once a well-tailored body-fitted grid is prepared, the
proposed framework can also predict the flow with a certain degree of accuracy. The
grid generation is fully automatic; thus, the total workload for the flow simulations
is reduced compared to that of the conventional simulation on body-fitted grids. In
addition, shape optimization problems are conducted without a manual procedure in
the sequence of calculations. Thus, the proposed framework will be beneficial as a
tool for aerodynamic design.
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