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Abstract Anewclassification approach for time-varying power quality (PQ) signals
using ensemble classifiers (EC) is proposed in this paper. To achieve high perfor-
mance, existing expert systems require several signal features so that these systems
have more computational complexity. In order to reduce the computational cost and
to improve the accuracy further, a new set of features called moments and cumulants
are introduced in this paper to classify PQ events. Further, the performance of various
ensemble classifiers is analyzed with the proposed feature set. Moreover, the anal-
ysis is carried out with different training and testing rates. Finally, the performance
comparison is made with that of the existing techniques to prove the superiority of
the proposed features and classifiers.
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1 Introduction

The exploitation of sensitive electronic components in applications of smart cities,
smart buildings, and homes is growing exponentially [1]. These sensitive devices
are easily affected by PQ disturbances, such as sags, surges, interruptions. [2, 3]. In
real-time applications, failure of these sensitive devices may cause serious damage,
especially in smart applications [4]. An automatic or blind recognition system is
required to detect and identify the occurrence of PQ problem, so that devices can be
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prevented from damage [5]. In the last two decades, the researchers have developed
different classification methods such as rough set-based [6], discrete wavelet-based
[7, 8], neural network-based S-transform and modified ST-based [9–12], etc., for
recognition of PQ events. Recently, artificial neural networks, rule-based expert sys-
tems, data mining-based classifiers, and fuzzy logic classification systems [13] are
developed for classification of PQ events. All these methods extracted some specific
features such as skewness, energy, mean, kurtosis, standard deviation, variance, and
an average of the squared absolute values, etc., from the single and multiple distur-
bances for classification. Proper selection of features from the feature vector set is
required to get more accuracy in classification and to reduce the classification time
of the classifier. Some other approaches for classification of PQ events are discussed
in Table 1.

To overcome the drawbacks of existing PQ classification approaches, a new
attempt has been made in this present work to develop efficient algorithms for PQ

Table 1 PQ classification approaches

Ref.
no.

Feature
extraction
method

Classifier Feature
selection

Number of
disturbances

Accuracy Year

30 dB 20 dB

[16] WT DT x 5 96 x 2018

[17] VMD DT x 9 93.8 x 2015

[18] VMD DT x 9 96.7 x 2018

[19] FDST DT x 13 x 98.3 2018

[20] FDST DT x 11 95.3 x 2014

[21] ST DT x 11 97.9 x 2013

[22] TT DT ACO 9 91.2 x 2011

[22] TT DT PSO 9 95.6 x 2010

[23] DWT SVM x 5 98 95.6 2009

[24] DWT SVM x 9 97 96.3 2011

[25] WPT SVM x 8 93.4 x 2002

[26] WPT SVM GA-FKNN 8 96.2 x 2012

[27] DWT +
HST

SVM Gram-Schmidt
orthogonal
transform

10 99.3 98.7 2014

[28] DWT +
HST

SVM Mutual
forward
selection

8 99.2 98.4 2014

[19] FDST Quadratic
SVM

x 13 x 94.1 2018

[29] VMD SVM x 6 x x 2015

[30] TQWT SVM x 14 96.4 96.4 2018
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event classification. In order to develop the new algorithms, the following assump-
tions are considered. First, the classifier needs to be accurate. The accuracy is mea-
sured by the true-positive rate and false-negative rate. The lower false-negative rate
gives better classifier for PQ classification. Second, the PQ event classifier needs to
be robust under various noisy conditions. Third, the classifier is required to meet the
essential requirements such as better classification accuracy even with more number
of PQ classes in the pool.

The rest of the paper is organized as follows. Section 2 gives about the system
model and feature extraction. Proposed EC is discussed in Sect. 3. In Sect. 4, the
performance of the proposed EC is evaluated for different PQ signals. Section 5
concludes the article.

2 System Model

The proposed framework for PQ signal recognition is shown in Fig. 1. It involves
feature extraction and training followed by testing.

Training of the classifier is performed with the extracted features. Finally,
recognition is done with the trained EC.

The moments of a time-varying signal y(k) are given by

Mpq = E
[
y(k)p−q y∗(k)q

]
(1)

Fig. 1 PQ recognition framework
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where p is the order of moment.
These moments are further used to derive the multi-order cumulants as follows:

C20 = E
[
y2(k)

]
(2)

C40 = M40 − 3M2
20 (3)

C60 = M60 + 30M3
20 − 15M20M40 (4)

Here, C20,C40 and C60 are second-, fourth-, and sixth-order cumulants, respec-
tively.

3 Ensemble Classifier

The prediction accuracy of various PR classifiers is differed across data sets due to the
algorithmic variability of the classifiers. It is not possible to predict the best working
classification algorithm for different data sets. To overcome this problem, proposed
ensemble classifiers are constructed with a set of different classifiers in order to allow
them to vote for decisionmaking. Throughmajority vote, these classifiers provide the
best prediction accuracy. Ensemble classification is a nonlinearML approach. An EC
contains a set of autonomously trained classifiers, and their predictions are collected
when recognizing new object. Finally, based on their majority vote, prediction will
be done.

The most widely used ensemble technique is called boosting [14], and it works
with the weighted training set. Once boosting is completed, then ensemble classifier
model is ready for testing. In the testing phase, the unknown testing data is applied
to ensemble model for PQ prediction. The detailed process using ensemble classifier
is shown in Fig. 2 [15].

In this section, five types of ensemble classifiers such as bagged tress (BaT),
boosted trees (BoT), subspace discriminant KNN (SDKNN), subspace KNN
(SKNN), and RusBoosted trees (RBT) are developed for PQ recognition in com-
bination with features listed in the Sect. 2. Bagged and boosted trees are constructed
from deep trees, and these are slower in speed, whereas, subspace KNN and subspace
discriminant KNN uses discriminant analysis and KNNs. In RusBoosted trees, weak
learners will be boosted based on random under-sampling.

4 Results and Discussions

The recognition accuracy of proposed ECs is analyzedwith seven types of PQ signals
which are listed in Table 3. The detailed simulation parameters are discussed in
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Fig. 2 PQ recognition with EC

Table 2. For the experiments, each PQ disturbance is considered for 1000 times at
different SNR values. A set of features C20,C40 and C60 are extracted from each
copy signal and are used for training and testing. The accuracy of proposed ECs is
tested at 50–90% training and 50–40% testing.

Table 3 shows the numerical values of the three selected features for all classes
of PQ disturbances which are considered for simulation. These selected features are
used for training the proposed ECs where LB and UB are lower bound and upper
bound, respectively.

The performance of the proposed ECs with various percentages of training set is
shown in Table 4. Among all the proposed classifiers, BaT and BoT classifiers have
superior performance.

The recognition accuracy comparisonof proposedECswith various existingmeth-
ods is shown in Table 5. From Table 5, it is proved that, the proposed EC classifiers

Table 2 Simulation parameters

Parameter Description

PQ signals Momentary interruption, sag, flicker, spikes, harmonics, swell, transient

Size of data set 7000*3 (1000 copies of each PQ class under varying noise conditions, 3
statistical features)

Size of training set 50–90%

Size of testing set 10–50%

Performance indices Accuracy

Classifiers BaT, BoT, SDKNN, SKNN, and RBT
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Table 3 Cumulants of PQ events

Label PQ signal Features

C60 C40 C20

LB UB LB UB LB UB

S1 Sag 8.30 9.20 −1.42 −1.32 0.00 0.39

S2 Swell 9.37 9.51 −1.45 −1.43 0.03 0.10

S3 Outage 2.60 2.81 −0.83 −0.81 0.04 0.14

S4 Transient 65.7 71.0 5.30 5.50 0.02 0.07

S5 Flicker 6.90 7.18 −1.24 −1.21 0.03 0.14

S6 Harmonics 7.60 7.86 −1.30 −1.28 0.03 0.12

S7 Spikes 9.50 9.67 −1.46 −1.44 0.02 0.10

achieved the optimal classification accuracy even with less training. The recognition
capability of proposed ECs is superior to that of existing approaches. The training
time of proposed ECs is also very less.

5 Conclusion

A new PQ recognition approach using ensemble classifiers is proposed in this paper.
Three newPQ signal featuresC20,C40 andC60 are used alongwith the ensemble clas-
sifiers for PQ signal classification. Further, the recognition performance of proposed
ECs is analyzed at various training and testing rates. From the experiments, it is clear
that the performance of proposed ECs is superior to that of the existing techniques.
Further, the research can be extended by incorporating optimization algorithms along
with the proposed pattern recognition algorithms to improve classification accuracy
and to reduce the training time.
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Table 5 Performance comparison of different methods

Method Number of features Training time (sec) Accuracy (%)

ST, fuzzy C-means and APSO
[13]

8 – 96.33

ST, fuzzy C-means and GA [13] 8 – 96.45

ST and PNN [11] 7 – 96.10

WPT and ANN [12] 7 31.26 95.25

ST and PNN [10] 3
4

0.9 (CPU) 95.91
97.40

DWT [2] 8 – 97.81

WPT and SVM [12] 7 27.68 97.25

Proposed BaT
Training with ≥ 70%
Training with 50–65%

3 2.21–2.39 100
99.9

Proposed BoT
Training with ≥ 70%
Training with 60–65%
Training with 50–55%

3 2.19–2.41 100
99.9
99.8
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