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Abstract Due to the development of the Internet of Things, there has been increas-
ing interest in the use of wearable electrocardiograms (WECGs) in the outdoor
environment instead of in a resting state at a hospital. During daily activities,
the WECG signals will suffer additional motion artefacts (MAs) originating from
the interface between the electrode and the conductive adhesive and the stretching of
the skin. However, MAs in WECG signals are highly difficult to suppress because
MAs and WECG signals have similar frequency spectra.

In this review, we briefly discuss motion artefact suppression methods, from the
origin of the motion artefacts to detecting the motion artefacts and then suppressing
the motion artefacts.

The metabolic difference between the live skin cells of the inner layer and the
dead skin cells of the stratum corneum create an ‘injury current’. When a force is
applied to the skin, the membrane of the dead skin cell breaks, and then, sodium will
flow into the cells through the crack and ultimately form the ‘injury current’. When
the current flows through the resistor of the stratum corneum, there will be a potential
change, which is the MA.

Adaptive filters (AFs) have been extensively applied in biomedical engineering
because of their simplicity, real-time processing ability and robustness. These filters
can remove MAs from WECG signals by using a reference signal that is correlated
with MAs and uncorrelated with the WECG. We also describe two concepts of
reference signal detection.

Because of the nonstationary properties of motion artefacts, low filter output
distortion and high QRS beat detection accuracy cannot be simultaneously
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generated. Hence, we propose a new feed forward combined adaptive filter algo-
rithm to overcome this limitation.

Finally, we provide an overview of recent findings for the adaptive filter
algorithm-based motion artefact suppression method.

Keywords Wearable ECG · Motion artefacts · Electrode tissue impedance · Noise
suppression · Adaptive filter

1 Introduction

With the increase in human life expectancy, the trend of ageing is evident. In 2050,
the population of elderly people (greater than 60 years old) will exceed that of young
people (less than 15 years old). There will be a large expense in medical care because
of ageing, and the health of elderly people will determine the overall cost of medical
insurance and the frequency of using advanced medical equipment. Therefore,
people must remain healthy as the life expectancy increases. Wearable medical
services will be a major part of helping elderly people decrease the frequency of
hospital medical treatments and increase their life expectancy.

Among the various medical conditions, heart disease has the highest mortality rate.
ECGs are widely used to detect heart disease. Wearable ECGs are a new technology
that extends ECG detection from hospitals to daily life. However, patients move about
during the course of their daily life, and the weak ECG signal will be affected by
motion artefacts, leading to an incorrect estimation of ECG features and triggering
unnecessary warnings. Recently, many studies have been published to find the origins
of motion artefacts and methods of suppressing motion artefacts.

In this chapter, we will review these studies. First, we will discuss the source of
motion artefacts from the view of anatomical and circuit models. Second, we will
describe the detection of motion artefacts from the electrical hardware system
domain. Finally, we will introduce a method for suppressing motion artefacts
using an adaptive filter.

2 The Origin of Motion Artefacts

Tam andWebster [1] found that the amplitude of the deformation potential decreases
when the stratum corneum is scraped away. They concluded that the major source of
motion artefacts is the skin/paste interface. The magnitude of the change in skin
potential will be significantly affected by the degree of skin abrasion.

The skin is made up of three layers: the epidermis, the dermis and the subcutaneous
layer. The stratum corneum is the surface layer, which is composed of dead cells. The
stratum granulosum and the stratum basale are located below the surface layer,
forming the layers of the epidermis. The dermis is located underneath the stratum
basale. Connective tissue, elastic tissue and living cells make up the rest of the dermis.
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Many skin models have been suggested in the literature, but Edelberg’s skin
model is the most widely accepted.

In Fig. 1, Ee is the potential across the epidermis barrier membrane, wherein the
magnitude of Ee is a function of the composition of the electrode paste. Re is the total
series resistance of the epidermis. Because jEe j < j Esj, skin abrasion decreases Re

such that Re � Rs, thereby resulting in a less negative skin potential. Additionally,
the smaller variation in Re caused by skin deformation leads to a much smaller
variation in skin potential.

Es is the potential across the sweat duct membrane at the layer of the stratum
basale. Es is variable because of the diverse salt concentration in sweat. Rs is the total
resistance in the sweat duct, for which the magnitude is determined by the height of
the column of saline in the sweat duct and the permeability of the sweat duct wall.
Sweat gland activity in response to sympathetic activation increases the sweat
column, decreasing Rs. Hydration of the stratum corneum also has an effect on
reducing Re. The long settling time of the offset potential after applying the elec-
trodes is the result of the wetting of the stratum corneum over time, which is caused
by sweat and the interaction between the sweat and the paste. Eskin can be expressed
as shown in Eq. (1):

Eskin ¼ Ee þ Re
Es � Ee

Rs þ Re

� �
ð1Þ

A variation in the skin potential results from changes in any of the four param-
eters. Thus, the net variation in the offset potential of the recording system is the sum
of the individual variations in skin potential under each electrode. Diagnostic ECG
measurements usually use a lower cut-off frequency amplifier of 0.05 Hz. Very slow
variations in the offset potential cause a negligible drift in the baseline. In contrast,
rapid variations in the offset potential dEoffset=dtimeð Þ lead to obvious motion artefact
problems. For example, when dEoffset=dtime ¼ 2mV=min , the baseline varies by
0.1 mV. The lower cut-off frequency is 0.5 Hz or higher in the monitoring mode,
so that even greater variations in the offset potentials are tolerable.

The metabolic process of different skin layers causes ion diffusion [2].
Thakor and Webster [3] hypothesized that the metabolic process is the result of

the differences in metabolic activity between the dead cells located in the outer layer
of the skin and the cells located in the inner layer.

Rs Re

Fig. 1 Edelberg’s skin
model [1]
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When mechanically stretching the skin, the skin potential V increases by several
millivolts. Thakor and Webster explained the origin of this motion artefact ΔV as a
reduction in the extracellular channel resistance Z.

The foundation of this model is based on two hypotheses. First, they hypothe-
sized that the skin potential arises from a constant current source called ‘injury
current’, which is generated by the difference in metabolic activity between the dead
cells of the stratum corneum and the viable cells of the inner layers of the skin.
Second, they hypothesized that this injury current flows through the extracellular
channels, generating a negative DC voltage that drops from the inside to the outside
of the skin. The skin potential is shown in Eq. (2):

V ¼ �RIð Þ Rmð Þ Ið Þ= Rt þ RC þ Rmð Þ ð2Þ

where RC is the impedance of the stratum corneum, Rt is the impedance of the
transitional region shunted by the current I of negatively charged ions and Rmis the
impedance of the measuring device. With Rm � (Rc + Rt), the following expression
can be obtained:

V ¼ �Rtð Þ Ið Þ ð3Þ

Because of the first hypothesis (I is constant), the only way to obtain variations in
V when stretching the skin is to assume that Rtalters V : ΔV ¼ (�ΔRt)(I )

In the report by Talhouet and Webster, their model is not perfect because of the
values of ΔZ that can be positive or negative at high values of Z and the difference in
shape between ΔV and ΔZ.

They explained the increase in Z in their study. They assumed that Rc increased
more than Rt decreased when stretching the skin. The different behaviour between Rc

and Rt could be clarified by the geometrical configuration of the skin cells. The
decrease in Rt can be explained by the geometrical arrangement of the stratum basale
and stratum granulosum, as stretching the skin causes the extracellular channels to
increase in diameter. The stratum corneum cells fit together when they are displaced
horizontally so that the horizontal channels between the cells form the main resis-
tance pathway for ions.

When stretching the skin, the length of the current pathway increases, and the
cross-sectional area of the current pathway decreases. This phenomenon occurs
because the cells that are linked together by tight junctions or gap junctions can
elongate under stretching.

They also suppose that the diffusion of Na+ ions across the proximal side of the
membrane is increased by stretching a cell in the transitional layer. This action will
cause the interior potential of the cell to be more positive. Viscoelastic stretching and
relaxation of the cell membrane could occur with long time constants and cause
variations in the skin potential with long time constants.

Burbank and Webster [4] studied the artefact potential amplitude and strain
dependence as a function of the stretching force and time.
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The skin under an electrode site was stretched for a time t with a repetition period
r. A relationship was then defined between the resulting artefact potential amplitude
A, which was defined as the maximum change in skin potential during skin
stretching in relation to that just before skin stretching, and the relaxation time
(r � t) before stretching. The fitted equation appeared to be quite good, as shown
in Eq. (4):

A ¼ A0 1� e� r�tð Þ=τ
� �

ð4Þ

where A0 is the maximum artefact and τ is the time constant of the system. The time
constant is 26 s, which is much longer than the electrical time constant of the skin at
low frequencies, which is normally approximately 0.1 s.

By changing the stretching force and simultaneously monitoring the skin strain,
potential and impedance, they compared the relationship between the strain and
stretching force and the artefact potential. They increased the stretched mass from
0 to 1 kg and then decreased it again to 0 kg at a uniform rate of 30 g/s. The
impedance was very nearly stable during this cycle. Although the strain was a
nonlinear function of the stretched mass, it had a small time dependence or
‘creep’. However, as discussed above, the artefact potential showed a very obvious
time dependence.

3 The Detection of Motion Artefacts

Hamilton et al. [5] reported a system for evaluating and comparing motion artefact
removal with sensors and impedance. A sinusoidal current was applied to an active
electrode pair. They used the series resistances on the secondary side of the trans-
former to limit the current between the electrodes to 1 μA with a 1 V peak-to-peak
output. Low-pass and high-pass filters were used to separate the impedance signal
from the ECG and artefact signals. The low-pass filter and high-pass Butterworth
filter had cut-off frequencies of 50 and 100 Hz, respectively. They applied an
envelope detector to monitor the amplitude of the impedance signal after separating
the motion artefact signal from the impedance signal. The final envelope signal was
scaled to the impedance between the two electrodes. A bandpass filter with lower
cut-off frequencies of 0.16 Hz and upper cut-off frequencies of 106 Hz removed the
DC level of the impedance from the envelope signal. They converted the motion
artefact signal to a digital signal with 10-bit resolution and a 120 Hz sample rate.

Spinelli et al. reported a simple direct method to measure the unbalance at power
line frequency [6]. The external resistors Rc ensure a well-known common-mode
input impedance. To apply the method to three electrode amplifiers, the third (right
leg) electrode must be disconnected.

They measured actual skin-electrode impedances. Two plate electrodes (12 cm2

in area) were placed on the right and left inner arms of the patient (ECG lead I). In the
next experiment, they measured the imbalance in the electrode impedance between a
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plate electrode (right arm) and a cup electrode (left arm), which showed a signifi-
cantly larger discrepancy than those obtained for two similar electrodes placed on the
same location. The main interference voltage is expressed as shown in Eq. (5):

VD:EMI ¼ VCM
ΔZE

ZC
ð5Þ

where ΔZE is the electrode-skin imbalance, ZC is the average common-mode input
impedance and VCM is the patient common-mode voltage.

Romero et al. [7] reported an application-specific integrated circuit (ASIC) for
monitoring three-lead ECG signals and one-channel skin-electrode impedance or
electrode-tissue impedance (ETI). To calculate the ETI, they injected an AC signal
and measured the voltage induced by the ETI. To avoid any interference with the
ECG signal, the frequency of the AC signal needs to be outside the ECG range. They
used a square-wave current at 2 kHz with a known amplitude. With the model shown
in Fig. 2, concurrent measurement of the resistive and capacitive components was
required for accurate measurement of the ETI information.

By demodulating the impedance signal with an in-phase frequency f(0) and a
quadrature-phase frequency f(90), they separated the resistive and capacitive
components.

The monitoring system synchronously measured the electrode-skin impedance
and the ECG signal. The monitoring system comprised an instrumentation amplifier
(IA), a ripple filter, a programmable gain amplifier and a bandwidth controllable
low-pass filter. The injected AC signal modulates and measures the ETI. An
instrumentation amplifier (IA) amplifies the resulting voltage and demodulates the
voltage with in-phase and quadrature-phase chopper clocks. The output signal of the
IA (in-phase, IMPI; quadrature-phase, IMPQ) will be filtered by a low-pass filter and
amplified by a programmable gain amplifier (PGA) that has four different gains. The
output signals are a measurement of the complex ETI.

The design of the current stimulation block should pay attention to the following
two points. The first is the output impedance of the current generator, which may
reduce the total input impedance of the ECG readout channel. The second is the DC

C Re

Rgel

e
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Rt

Rep

RD

Cep

Is

Fig. 2 Circuit
representation of the skin-
electrode interface and
changes in electrical
properties under motion
artefacts [7]
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component of the AC source, which may further amplify the effect of motion
artefacts at the output of the ECG channel. Therefore, they use a chopper-stabilized
AC source. To set the mean value of the stimulation current to zero, they double the
frequency of the AC signal to perform chopper stabilization. The continuous time
impedance monitoring channels demodulate the resulting AC voltage over the
electrode-skin interface. The ECG and impedance signals can be separated in the
frequency domain with a low-pass filter.

Ottenbacher et al. [8] reported a method for detecting motion artefacts by the
simultaneous measurement of electrode-skin impedance with an ECG signal. A
sinusoidal current of 400 Hz was injected at the same electrodes between which
the potential was measured.

High- and low-pass filters separated the impedance and potential signal, respec-
tively. A dual lock-in amplifier reconstructed the impedance signal. They used a very
small current of <1 μA to measure over a very wide range of electrode impedances
(500 Ω to 1 MΩ) and avoid high filter orders to separate the ECG and impedance
signal. They performed the experiments on the forearm of a test subject. They used
tape to attach a fixed reference electrode with gel near the subject’s elbow. In one
experiment, they pressed (Fp) the dry measurement electrode against the subject’s
arm. In a second experiment, they stretched (Fs) the skin under the dry electrode
while they pressed the electrode against the subject’s arm with a small weight.

The results in their study showed that the force, potential and electrode-skin
impedance depended on time (units: s). The potential is on the order of several mV,
and the impedance decreases correspondingly when pressing the electrode against
the subject’s skin. When stretching the skin under the electrode, the potential
exhibits an increase in the mV range, and the impedance also increases. The
variation in the impedance is diverse from subject to subject and greatly relies on
the humidity/sweat on the subject’s skin. They assumed that the varying area of the
electrode-skin contact, instead of the impedance change in the skin, leads to imped-
ance changes. They also found a very good correlation between force, electrode
impedance and electrode-skin potential. Nevertheless, it must be noted that actual
movements are changing constantly with simultaneous stretching and pressing.

A measurement is made with two dry electrodes on the chest. The correlation
between the impedance signal and the ECG signal against time is depicted. The
amplitude of the peaks has less information because it depends on how large
artefacts contaminate the signal. However, the peak reveals good correlation
between the two signals.

Oberg [9] reported a method to monitor the skin-electrode contact. They added an
AC voltage source with the potential U6 between the noninverting input of IC4 and
the ground.

The ECG signal U3 is independent of U5 because of Eq. (6):
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U3 ¼ U2 � U1ð Þ 2 � R1

R2
þ 1

� �
ð6Þ

The feedback loop from the output to the inverting input passes all contact
points A, B and C. Hereafter, assume that the impedances Za, Zb and Zc are no
longer negligible and that the impedances Za and Zb are equal. Zt is the sum of the
impedances between the ground electrode and one of the inputs, e.g. Zt ¼ Za + Zc. A
potential divider is formed by the impedance Zt together with the input resistance Rin

of the amplifier. In this case, the expression for U5 will be Eq. (7):

U5 ¼ U6 1þ 2Zt

Rin

���� ���� ð7Þ

This means that U5 is dependent on Zt. If the ground electrode is completely
loosened, i.e. Zt ¼ 1, then U5 goes to infinity. If the impedance Za 6¼ Zb by an
amount Zdiff, then U5 can be expressed as shown in Eq. (8):

U5 ¼ 2U6 1� 1
Z
Rin

þ 2

���� ���� ð8Þ

U5 relies on the contact impedance. If one of the electrodes at points A or B
becomes loose, Eq. (9) is obtained:

U5 ¼ 2U6 ð9Þ

Hence, if we introduce a voltage source at the noninverting input of IC4, then the
output voltage depends on the contact impedances Za, Zb and Zc. If we compare U5

and U6, we can decide whether the impedance in some of the contact points is too
large.

Degen and Jackel [10] reported a new method that allows continuous monitoring
of electrode-skin impedance. Each channel is preceded by a protection circuit, which
limits the maximal current through the body to 50 μA. They applied the method to a
three-electrode ECG without the additional reference electrode. The operations of
the measurement circuit are explained hereafter. The driven right leg (DRL) loop
will be forced by any voltage appearing at the positive input of the DRL op-amp. The
system reacts in such a way that the differential input voltage of the DRL op-amp is
again zero. In the case of a sinusoidal signal, this phenomenon occurs when the
bandwidth of the DRL loop is larger than the signal frequency. Therefore, at the
input of the instrumentation amplifier (INA), the sinusoidal voltage Vadd appears as a
common-mode voltage. The Common Mode Rejection Ratio (CMRR) of the INA
rejects this additional common-mode voltage, except for the part converted to a
differential signal by the electrode-skin impedance mismatch (potential divider
effect) and amplified by the differential mode gain of each INA. This part is
superimposed on the corresponding output voltage Vouti. If we exclude all other
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signal sources, e.g. power line interference and bioelectric signals, the residual of the
additional common-mode signal Vaddi at electrode i can be calculated.

The input impedance mismatch is expressed in Eq. (10):

ΔZelΔjωCinGDM � V addi

V add
ð10Þ

They applied a sinusoidal force to the signal electrode ‘I’. Moreover, they
measured both the norm of the residual voltage |V _ addi| and the bioelectric
recording. A strong relationship was found between the measured impedance
mismatch and the baseline variation.

Bertrand et al. [11] reported that the prediction of motion artefacts at one
electrode can be further improved by incorporating impedance measurements at
other electrodes in EEG recording.

Comert and Hyttinen [12] reported a simultaneous measurement of impedance at
eight current frequencies during the application of controlled motion to the electrode
under the mounting force of the monitored electrode. They found that the motion is
not reflected by the different frequencies of impedance measurements. The best
correlation between impedance and the applied motion appeared when the imped-
ance current frequencies were greater than 11 kHz. The impedance signal correlated
well with the applied motion; however, impedance had a lower correlation to the
actual motion artefact signal.

Zhang et al. [13] reported an approach that injects an additional common-mode
signal through the reference electrode to simultaneously measure the electrode-tissue
impedance and ECG signal. To suppress the MA in a WECG, a reference signal that
has a high correlation with the MA and a low correlation with the WECG is required
by an adaptive filter (AF). Figure 3 shows that the reference signal for the AF can be
generated by the multichannel electrode-tissue impedance (MC-ETI) detection
approach without any additional sensors.

A 1 kHz AC voltage is forced by amplifier A2 through the driven right leg circuit
and electrode ZLA. Two current paths flow through the body. One flows through ZLA,
ZRA, and Zin to the ground, and the other flows through ZLA, ZLL, and Zin to the
ground. The input impedance of the instrument amplifier is Zin. LL is located several
millimetres below the left breast, RA is located several millimetres below the right
collarbone and LA is located several millimetres below the left collarbone.

When the electrode movement leads to the variation in ZLA, ZLL, and ZRA, the
divided voltages vLL and vRA will vary simultaneously. These voltages are differen-
tially amplified by A3 and A4. A3 and A4 generate two AC voltages vETI _ LL and
vETI _ RA. Moreover, the WECG signal vECG is detected by A1. These voltages are
sampled by an analogue-to-digital converter (ADC) with an 80 kHz sampling rate.
The digital data are transported to the PC. The DC component from vETI _ LL and
vETI _ RA is extracted by a digital lock-in amplifier. The MC-ETI signal can be
calculated by Eqs. (11) and (12):
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ZETI LL � ZLL � Z in � 2ZLAð ÞVETI LL=2VAC � 2ZLA ð11Þ
ZETI RA � ZRA � Z in � 2ZLAð ÞVETI RA=2VAC � 2ZLA ð12Þ

The MC-ETI generating WECG and reference signals in the motionless and
motion state with a period of 50 s are shown in Fig. 4. In the motion state
(15–45 s), the WECG and MC-ETI signals have a high correlation. In the motionless
state (0–15 and 45–50 s), these signals are stable but have low correlation.

The correlation between the MC-ETI and WECG signals over the time offset is
shown in Fig. 5. There is no obvious peak in the black curve at zero time offset in the
motionless state. However, in the motion state, the peak in the red curve at zero time
offset shows a good correlation between these two signals.

E
p
id

erm
is

ZLL

ZRA

ZLA

D
erm

is

inZ

`

`A1

A2

A3

A4
Phase(0º,90º)

Phase(0º)

M

U

X

ADC

16-Bit

Body
Analog 

Front End

Data Acquisition

NI 6363

Personal Computer

LabVIEW

vETI_LL

vETI_RA

vECG

vAC

vRA

vLL

vECG

vETI_RA

vETI_LL

RG

Fig. 3 MC-ETI detection approach [13]

Fig. 4 (a) ECG signal and (b, c) MC-ETI signals [13]
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4 Suppression of Motion Artefacts with an Adaptive Filter

With digital signal processing, the motion artefacts in ECG signals can be
suppressed. Many studies have been reported on artefact suppression, which have
mostly focused on two methods: blind source separation (BSS) and adaptive
filtering.

Changli [14] reported that BSS has found many applications, including digital
image processing, speech signal processing, medical signal processing, geophysical
signal processing, communication signal processing and remote sensing image
processing. When the mixing process and the original signals are unknown, BSS
tries to decompose the observed sensor signals to obtain the unmixed source signals.
However, given some assumptions, BSS has had great success, and many novel and
effective methods have emerged.

Sweeney et al. [15] reported that, as a branch of BSS, independent component
analysis (ICA) can separate different components from the source signals by defin-
ing them as statistically independent components.

Romero [16] reported that motion artefacts and ECG signals are statistically
independent, so they can be separated by ICA.

However, ICA is restricted by data redundancy. ICA requires several independent
sensors and cannot be used in one-channel sensor system, and it is necessary to
ensure that the signal from each sensor is uncorrelated with other sensor signals. The
large computational cost makes ICA very difficult to implement for real-time
low-power applications.

The adaptive filter algorithm can automatically change its filter parameters and is
widely used in the signal processing field.

Thakor and Zhu [17] reported that the adaptive filtering technique is useful in
many biomedical applications. One simple but important application is in 60 Hz
power line interference cancellation.

Fig. 5 Correlation as a
function of the time offset
[13]
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The adaptive filter has a low computational cost and high reliability, so it is very
suitable for real-time low-power applications.

Tong et al. [18] reported that an adaptive filter using electrode motion as the
reference signal can reduce motion artefacts. They measured electrode motion with
two custom-developed sensors: anisotropic magnetoresistive (AMR) and acceler-
ometer (ACC) sensors.

A two-axis AMR sensor was oriented parallel to the body surface, and a three-
axis ACC sensor was developed using two dual-axis ACC chips.

Raya and Sison [19] reported using an accelerometer as a source of noise
reference. Least mean squares (LMS) and recursive least squares (RLS) adaptive
filter algorithms were used. They claimed that the major kinematic acceleration
component during human movement is usually found in the vertical direction.
Their adaptive filter can effectively reduce motion artefacts in stress ECGs.

Hamilton and Curley [20] reported that adaptive removal of motion artefacts can
be 12.5 dB by using a skin stretching signal derived from sensors mounted on a foam
electrode.

The most significant artefacts generated by skin stretching can still be adaptively
removed. However, their sensors each cost approximately $600 because of the
integrated stretching sensor.

Hamilton et al. [5] reported using a variable step size LMS (VSS-LMS) adaptive
filter to remove motion artefacts in ECG signals:

bs n½ � ¼ s n½ � �
Xi
0

win n� i½ � ð13Þ

w�
i ¼ wi þ βbs n½ � � n n� i½ � ð14Þ
β n½ � ¼ aP200

i¼1
s n�i½ ��n n�i½ �j j

200

ð15Þ

where s[n] represents the nth sample of ECG corrupted by noise, n[n] represents the
nth sample of the skin impedance or skin stretching signal and bs n½ � is the nth
estimation of the signal without motion artefacts. Note that ‘w’ represents filter
coefficients that are iteratively updated after each sample by Eqs. (14) and (15),
where ‘a’ is 8.44 	 10�11 V2.

Wen-Ching et al. [21] reported using the normalized least mean squares (NLMS)
adaptive filter algorithm to suppress the motion artefact from the primary input of
ECGs. The 120-order finite impulse response (FIR) filter was adaptively adjusted by
the NLMS with a 0.05 adaptive step size. They used the ACC signals and strain
gauge (SG) signals as reference signals. They analysed the correlation between the
ECG and ACC signals and the correlation between the ECG and SG signals. The
higher one was chosen as the master reference, whereas the lower one was chosen as
the slave reference.

Hyejung et al. [22] reported a two-stage cascade LMS adaptive filter for an ECG
monitoring system. The first LMS stage consisted of analogue feedback, which

84 H. Zhang and J. Zhao



prevents signal saturation to reduce the input dynamic range. This approach employs
a high-pass filter, which mainly targets the baseline wandering suppression to
prevent signal saturation. An LMS algorithm with an adaptive step size is introduced
and employed in the second LMS stage to remove the remaining motion artefact.
The adaptive step size algorithm can achieve fast convergence to quickly track large
sudden motion artefacts while preventing the distortion of the ECG component.

They reported a proposed LMS algorithm with adaptive step size control. The
difference between their algorithm and the standard LMS algorithm is that they
integrated an adaptive step size control block. The step size is updated to be large at a
high signal-to-noise ratio (SNR) and small at a low SNR. The variation in both the
reference signal σx(n) and the input signal σd(n) proportionally controls the step size
adaptation function μ0(n), as shown in (16) and (17):

c nð Þ ¼ σx nð Þ � σd nð Þ=p ð16Þ

μ0 nð Þ ¼
μ0, 0 
 c nð Þ < μ0

c nð Þ, μ0 
 c nð Þ < 0:9

0:9, 0:9 
 c nð Þ

8><>: ð17Þ

where ‘σ’ is the standard deviation (STD) of the signal during the half cycle of the
heart rate and ‘p’ is the experimentally determined constant, which sets the μ0(n)
range between 0 and 1.

Romero et al. [23] reported the performance of different implementations of
adaptive filter (AF) algorithms in the context of motion artefact reduction in ECG
signals.

They used the LMS algorithm with the accelerometer as a reference and recursive
least squares (RLS), convex AF and LMS sign-error with the skin-electrode imped-
ance (SEI) as a reference.

Zhang et al. [24] reported a feed forward combined adaptive filter (FFC-AF)
which is consisted of two separate AFs (one fast convergence speed AF ‘FCS-AF’
and one high convergence accuracy AF ‘HCA-AF’) and one combination AF. The
parameter combination varies with the estimation of the reference signal stationary.
Figure 6 describes the structure of the FFC-AF, and the corresponding equation is
shown in Eq. (18):
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n
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i¼0

xi

 !2

p ¼
pnon δ kð Þ � δth
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(

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð18Þ

where X(k) is the reference signal of two separate filters. Parameter λ1(k) is the
combination weight of the filter output, which ranges between 0 and 1. At each
iteration, λ1(k) updates its value according to the stationary degree of X(k) by its
variance δ(k). When X(k) is in the stationary state, δ(k) is lower than the threshold δth,
which means that AF is in the motion artefact (MA)-free state. Then, λ1(k) will
remain at approximately 0 to increase the weight of the high convergence accuracy
AF (HCA-AF) output. When X(k) is in the nonstationary state, δ(k) is larger than δth,
which means that AF is in the MA state. Then, λ1(k) will be maintained at approx-
imately 1 to increase the weight of the fast convergence speed AF (FCS-AF) output.

Figure 7 shows the AF results, in which one triangle represents one QRS beat
detection.

( ) ( ) ( )d k s k n k= +

( )1W k
( )1Y k

( )2W k

( )X k

( )2Y k
( )11 kλ−

( )1 kλ

( )e k

( )Y k

( ) ( ) ( )d k s k n k= + High Convergence 
Accuracy AF (HCA-AF)

Fast Convergence 
Speed AF (FCS-AF)

Combination

Fig. 6 FFC-AF block diagram [24]
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5 Conclusion

With the development of wearable medical technology, an increasing number of
patients with wearable healthcare monitoring devices are moving home from the
hospital. ECGs are important vital tests, which are the basis of wearable healthcare
monitoring.

This chapter illustrates the origins of motion artefacts in ECG signals. Interesting
experimental results are introduced to describe the physical reasons for the observed
motion artefacts. Moreover, circuit models are provided to qualitatively explain the
motion artefacts. Then, we describe the detection of motion artefacts. Several
electrical circuit architectures are provided from single-channel skin-electrode
impedance measurements and multichannel skin-electrode impedance measure-
ments. Finally, we summarize the application of an adaptive filter in motion artefact
suppression. The LMS, NLMS, VSS-LMS, cascade LMS and FFC LMS algorithms
are discussed. These algorithms form the foundation for developing an ECG system
without motion artefacts.
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