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Abstract Atrial fibrillation (AF) is the most common and sustained heart rhythm
disorder, increasing the risk of stroke and death, and its incidence is destined to
increase as the population ages. Current diagnostic methods are primarily through
symptom or other indirect medical assessment methods. The fast-developing wear-
able technologies significantly promote the progress in ambulatory electrocardio-
gram (ECG) monitoring. This is a challenge to develop the devices that can detect
AF in wearable electronic devices, with accessibility, sensitivity, ease of use,
low-cost efficiency, and high computing power. Here, we first give a brief introduc-
tion to physiological concepts for development of detection algorithms. Then, we
describe several kinds of AF features in dynamic signals. These features are impor-
tant part of the automatic detection of AF, and a thorough understanding of these
concepts can help researchers gain better insight into AF detection. Finally, seven
AF features were extracted from the RR interval time series and were input into a
SVM model to train AF/non-AF classifier. The results on the wearable ECGs
verified that the proposed model could provide good identification for AF events.
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1 Introduction

Atrial fibrillation (AF), a rapid and irregular fibrillation from the atrium, is a very
important type of arrhythmia. According to statistics, the disease of AF affects
approximately 1.5–2% of the world’s total population, and this figure is likely to
increase in the next 50 years [1, 2]. The prevalence of AF increases with age, from
<0.5% at 40–50 years to 5–15% at 80 years [3]. In addition, AF can lead to stroke,
heart failure, and sudden death, with a high morbidity and mortality [4, 5]. Therefore,
the early detection and auxiliary diagnosis of AF have important clinical and social
significance for improving patients’ treatment strategies and the quality of treatment,
reducing the incidence of critical illness and mortality.

The surface electrocardiogram (ECG) signal contained the high potential diag-
nostic information, and its characteristics directly reflect the nature of pathophysio-
logic events occurring in both the cardiac chambers. In addition, it is painless to
record a surface ECG for the patient. Long-term surface ECG recordings can be
performed with minimal risk compared to other invasive diagnostic techniques
[6]. Therefore, ECG is a powerful tool to reveal initiation, maintenance, and
termination of AF.

Recently, the fast-developing wearable and Internet of things (IoT) technologies
significantly promote the progress in ambulatory electrocardiogram (ECG) monitor-
ing, which is an essentially useful tool for the early detection of AF. However, when
performed on the relatively noisy wearable ECGs, poor generalization capabilities
are inevitable due to the individual waveform variability and external noises.
Wearable electronic devices for ECG monitoring are usually highly sensitive to
motion artifacts and susceptible to noise interference [7]. This is a challenge to
develop AF detection that can be robust in noisy ECGs.

Our work describes physiological concepts behind the development of an AF
detection algorithm and some of the most recent signal processing techniques to
reveal atrial fibrillation. AF detectors can commonly follow ECG analysis to reveal
the arrhythmia. The chapter is dedicated to an overview of some different algorithms
to detect AF.

2 Physiological Concepts for Development of Detection
Algorithms

During AF, ECG has obvious features: P-wave disappears, f-waves (a series of
continuous and irregular atrial excitation waves) appear [8], and RR interval is
absolutely irregular [9]. Figure 1 shows the AF episode and normal rhythm episode.
In literature, AF detectors can be separated into two major classes: methods based on
P-wave features and RR interval features.

Many scholars analyzed the morphology of P-wave to achieve AF detection.
Andrikopoulos et al. [10] presented that increased variance of P-wave duration on
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the electrocardiogram distinguishes patients with idiopathic paroxysmal atrial fibril-
lation (PAF). Prerfellner et al. [11] used P-wave evidence as a method for improving
algorithm to detect AF. Alcaraz et al. [12] proposed a new approach to predict
termination of AF: wavelet sample entropy. Alcaraz et al. [13] applied wavelet
entropy to AF prediction. Garcia et al. [14] presented application of the relative
wavelet energy to heart rate independent detection of AF. However, P-waves or
f-waves in atrial activity have small amplitude, which are extremely susceptible to
noise interference. This situation can be worse in the dynamic ECG monitoring,
where many complicated interferences from the daily activities occur, and is difficult
to obtain stable, high-quality signals in real-time long-term recordings.

There are many AF detection algorithms based on RR interval features, including
variability analysis, complexity estimation, statistical method, and entropy estima-
tion. The R peak is the most prominent feature of an ECG and the least confounded
by muscle noise. Indeed, methods based on RR irregularity should be preferred for
external devices. These methods need a high accurate QRS detector, since extra and
missed beats would affect algorithms’ performance [15]. For the wearable ECG
detection, poor generalization capabilities are inevitable due to the individual wave-
form variability and external noises. This is a challenge to develop AF detection that
can be robust in the wearable ECG. This chapter introduces some RR interval
features for atrial fibrillation detection algorithm and provides guidance for the
identification of wearable ECG signals.

Fig. 1 (a, b) Atrial fibrillation episode and normal rhythm episode

Atrial Fibrillation Detection in Dynamic Signals 179



It is worth noting that AF detector combining of several of the above single
features with machine learning algorithms could enhance its performance. Couceiro
et al. [16] combined the P-wave disappearance, irregular heart rhythm, atrial activity,
and other ECG characteristics and developed a neural network model on the
MIT-BIH AF database, achieving a sensitivity of 93.8% and a specificity of
96.1%. Babaeizadeh et al. [17] presented a AF detector using decision tree classifier
and RR interval, PR interval variability, and a P-wave morphology similarity
measure, reporting a sensitivity of 92% and a positive predictivity of 97%. The
2017 PhysioNet/CinC Challenge [18] aims to classify normal sinus rhythm, AF, an
alternative rhythm, or noisy ECGs. Many contestants have developed AF detectors
based on RR interval features and analysis of the absence of P-waves or f-waves
present in TQ interval. Shreyasi Datta et al. [19] used morphological features,
frequency features, heart rate variability (HRV) features, statistical features, and
other abnormality features with a multilayer cascaded binary classification approach
in the PhysioNet/Computing in Cardiology (CinC) Challenge 2017 and won shared
1st places.

3 AF Features in Dynamic Signals: Description
and Comparison

This section summarizes the state of the art in AF detection based on RR interval
features, that is because pulse beats of ventricles are less likely to be influenced by
baseline wandering and noise. In addition, since we cannot predict when the
paroxysm of AF will come about, it will be useful to make a real-time portable
monitoring electrocardiograph. Some AF features based on RR interval are intro-
duced, and the underlying principle to reveal atrial fibrillation is briefly discussed.

3.1 Lorenz Plot

The characteristics of the Lorentz scatter plot can calculate atrial fibrillation
[20]. The RR interval of atrial fibrillation signal is irregular, and the distribution of
scatter plots is significantly different from that of normal people. Figure 2 shows
Lorenz plot of ΔRR intervals for normal signal and AF signal from the recording of
04936 from the MIT-BIH AF database. x axis is ΔRR interval, and y axis is ΔRR
(i � 1) interval.

ΔRR ¼ RR ið Þ � RR i� 1ð Þ
ΔRR i� 1ð Þ ¼ RR i� 1ð Þ � RR i� 2ð Þ
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Since the continuous RR interval difference of the normal signal is small, it can be
seen that the points of the normal signal are gathered around the starting point, and
the atrial fibrillation signal is sparsely distributed due to the irregular RR interval
from Fig. 2.

If we consider the digital representation of the Lorentz plot, such as a
two-dimensional histogram, it is divided into 13 discrete segments, shown in
Fig. 3. For each signal’s rhythm, its points have a higher probability of positioning
in a particular subdivision. For a normal signal, the point is almost concentrated near
the origin.

Therefore, the origin of the histogram, represented by “O,” will contain a large
number of points, while the boxes in other sections are almost empty. Conversely,
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Fig. 2 (a, b) Lorentz plot of ΔRR interval for AF signal and normal signal
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Fig. 3 The two-dimensional histogram, numeric representation of a Lorenz plot
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for atrial fibrillation signals, the points will spread across the histogram, filling a
larger number of intervals from “I” to “VII.”

AFEvidence, which accounts for points positioning within the plot, is a test
indicator, used to quantify the possibility of atrial fibrillation. IrregularityEvidence
is used to measure the sparsity of a high-value distribution of atrial fibrillation
signals. BinCountn (BCn) is the number of nonempty bins contained in the nth
segment of Fig. 3. PACEv is used to measure the low value of the normal signal,
which is corresponding to the number of all the dots filled in the “O” segment in
Fig. 3.

IrregularityEvidence ¼
X12
1

BinCountn ð1Þ

AFEvidence ¼ IrrEv� OriginCount� 2 � PACEv ð2Þ

PACEv ¼
X4
n¼1

PCn � BCnð Þ þ
X

n¼5, 6, 10

PCn � BCnð Þ þ
X

n¼7, 8, 12

PCn � BCnð Þ ð3Þ

where PCn is the number of points contained in the nth segment of Fig. 3.
The method was evaluated on the MIT-BIH AF database, showing sensitivity of

97.5% and positive predictive value of 99%. In the large number of atrial tachycardia
(AT) presence, detector performance is worsened. This condition needs to design a
supplemental detector to distinguish AT with regular ventricular response from
AF. Through clinical testing, this algorithm is eligible for a further implementation
on phone by clinical truth. The optimal window size is 2 min at least, and minimum
percentage of AF in AF ECG episode is currently 60%.

3.2 Poincare Plot

Poincare plot [21] from non-AF data showed some pattern, while the plot from AF
data showed irregular shape. Figure 4 shows Poincare plot of RR interval for AF
signal and normal signal. In case of non-AF data, the definite pattern in the plot
manifested itself with some limited number of clusters or closely packed one cluster.
In case of AF data, the number of clusters in the plot was too many. Making a
Poincare plot using the inter-beat intervals, the author extracted three-feature mea-
sures characterizing AF and non-AF: the number of clusters, mean stepping incre-
ment of inter-beat intervals, and dispersion of the points around a diagonal line in the
plot. The author divided distribution of the number of clusters into two and calcu-
lated mean value of the lower part by k-means clustering method and classified data
whose number of clusters is more than one and less than this mean value as non-AF
data. In the other case, the author tried to discriminate AF from non-AF using
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support vector machine with the other feature measures: the mean stepping incre-
ment and dispersion of the points in the Poincare plot.

The study [21] evaluated the accuracy using leave-one-out cross-validation on
Computers in Cardiology Challenge 2001 and 2004. Mean sensitivity and mean
specificity were 91.4% and 92.9%, respectively. It could be installed in a portable
heart monitoring system. This AF detector was designed as automated algorithm,
which did not require any human intervention and any specific threshold and could
be installed in a portable AF monitoring system.

3.3 RR Interval Variance

This AF detector is simply based on RR interval variance and is designed to provide
an automatic, robust detection of AF [22]. Evaluated by the authors on the MIT-BIH
AF database, it showed sensitivity of 87.30% and specificity of 90.31% with an
optimal window size of 120 s. This AF detector has been conceived for ambulatory
monitoring situations, where arbitrary lead placements, muscle artifact, and poten-
tially changing morphology of the signal can represent a challenge for an AF
detector.
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Fig. 4 (a, b) Poincare plot of RR interval for AF signal and normal signal
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3.4 The Median of the Variation in the Absolute Standard
Deviation from Mean of Heart Rate in Three Adjacent
Segments of the RR Interval Series (MAD)

MAD, defined as the median of the variation in the absolute standard deviation from
mean of heart rate in three adjacent segments of the RR interval series, reveals the
irregular nature of AF [23]. It was developed for long-term monitoring of AF on a
portable monitoring device. In the comparative study [24], this method showed the
highest sensitivity and the smallest window length (10 s), which can help in
detecting additional AF cases, such as paroxysmal events, whose onset is often
unexpected and of short duration and is developed to be easy-to-implement, simple,
and to have low-memory requirements.

3.5 Density Histogram of Delta RR Intervals

Huang et al. proposed a novel method for detection of the transition between AF and
sinus rhythm based on RR intervals [25]. First, we obtained the delta RR interval
distribution difference curve from the density histogram of delta RR intervals and
then detected its peaks, which represented the AF events. Once an AF event was
detected, four successive steps were used to classify its type, and thus to determine
the boundary of AF: (1) histogram analysis, (2) standard deviation analysis, (3) num-
bering aberrant rhythms recognition, and (4) Kolmogorov–Smirnov (K-S) test.

A dataset of 24-h Holter ECG recordings (n ¼ 433) and two MIT-BIH databases
(MIT-BIH AF database and MIT-BIH normal sinus rhythm (NSR) database) were
used for development and evaluation. Using the receiver operating characteristic
curves for determining the threshold of the K-S test, the authors have achieved the
highest performance of sensitivity and specificity (Sp) (96.1% and 98.1%, respec-
tively) for the MIT-BIH AF database, compared with other previously published
algorithms. The Sp was 97.9% for the MIT-BIH NSR database. The algorithm has
been integrated into a Holter system for the automatic detection of AF, and it is also
suitable for applying to the continuous AF monitoring situations.

3.6 Coefficient of Sample Entropy (CosEn)

The coefficient of sample entropy (CosEn) is used to distinguish AF and atrial flutter
(AFL) from sinus rhythm and other arrhythmias, which is an optimized combination
[26]. It includes sample entropy (SampEn) [27] and is able to encode the irregular
nature of short RR interval segments during AF and mean heart beat interval (RR),
which adds further independent information to the discrimination. Refer Appendix
6.1 for specific calculation process.
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This method used a very small window length (only a 12-beat segment). It was
validated on MIT-BIH database and achieved sensitivity of 91% and specificity of
94%. But, it had poor performance on Holter monitoring recordings from the
University of Virginia (UVa), which is because of recordings with frequent, complex
ventricular ectopy or electronic pacemakers which challenge AF identification.

3.7 Normalized Fuzzy Entropy (NFEn)

On the basis of SampEn, Liu et al. developed the FuzzyMEn method by using fuzzy
function instead of 0–1 judgment rule [28]. Then, combined with CosEn and
FuzzyMEn, normalized fuzzy entropy (NFEn), a novel entropy measure suitable
for AF detection based on a short-term RR time series, was proposed again
[29]. NFEn uses a fuzzy function to determine vector similarity, replaces a proba-
bility estimate with a density estimate for entropy approximation, utilizes a flexible
distance threshold parameter, and adjusts for heart rate by subtracting the natural log
of mean RR intervals.

NFEn was tested on the MIT-BIH AF, NSR, and arrhythmia databases, demon-
strating that NFEn is an accurate measure for detecting AF. For classifying AF and
non-AF rhythms, NFEn achieved the highest area under receiver operating charac-
teristic curve (AUC) values of 92.72%, 95.27%, and 96.76% for 12-beat, 30-beat,
and 60-beat window lengths, respectively.

3.8 Entropy_AF

Zhao et al. [30] proposed the Entropy_AF method to enhance the performance of
entropy-based AF detectors. This algorithm combines the distance normalization
function and the entropy-based AF detection concept and uses the flexible threshold
parameters. Refer Appendix 6.2 for specific calculation process.

On the MIT-BIH AF database, Entropy_AF achieved the highest area under
receiver operating characteristic curve (AUC) values of 98.15% when using a
30-beat time window, which was higher than CosEn with AUC of 91.86%. For
classifying AF and non-AF rhythms in the clinical wearable AF database,
Entropy_AF also generated the largest values of Youden index (77.94%), sensitivity
(92.77%), specificity (85.17%), accuracy (87.10%), positive predictivity (68.09%),
and negative predictivity (97.18%). Entropy_AF generated highest classification
accuracy when using a 12-beat time window and the better discrimination ability
for identifying AF when using Entropy_AF method, indicating that it would be
useful for the practical clinical wearable AF scanning.
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4 Atrial Fibrillation Detection in Dynamic Signals Based
on RR Interval Characteristics

Detectors designed are based on the ventricular response analysis. Starting from
the ECG, the RR interval series is derived. Seven AF features were extracted from
the RR interval time series. AF features were input classifier to return AF diagnosis.
The steps for AF detection are shown in Fig. 5.

4.1 Database

The database is wearable ECG data. The wearable ECG database was collected using
a wearable ECG device developed by Southeast University and Lenovo, as shown in
Fig. 6 [31]. The patients were recruited from the First Affiliated Hospital of Nanjing
Medical University and had been diagnosed as AF by ECG Holter. The study
protocol was approved by the Ethics Committee of the First Affiliated Hospital of
Nanjing Medical University, and the patient has signed the informed consent form.
ECGs were sampled as 400 Hz. In our study, we selected ten normal and ten patients
(randomly select 1000 ECG for each person) respectively to tenfold cross-validation.
In addition, we selected eight persons (24-h ECG) as testing sets. Table 1 shows
details of the dataset.

4.2 QRS Detection

For the RR interval feature extraction, the most important thing is to identify the
position of the R peak. In recent decades, QRS detection technology has developed

ECG

RR series

AF feature

Classifier

AF diagnosis
(0 or 1)

QRS detection

AF feature extraction

Input classifier

Fig. 5 Steps for AF
detection
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relatively maturely. In this chapter, a fast QRS detection algorithm proposed by
Paoletti et al. [15] was used to locate QRS complex waves. This algorithm has a
certain anti-noise property and is suitable for the R-peak positioning of dynamic
ECG signals [32]. The R-peak location of the 10-s dynamic signal labeled by this
QRS detector is shown in Fig. 7.

Fig. 6 The wearable ECG
device

Table 1 Details of data

Data 60-s ECG episode 30-s ECG episode 10-s ECG episode

Training set 20,000 20,000 20,000

Testing set1 16,313 17,175 23,062

Testing set2 16,688 19,872 15,443

Testing set3 15,738 16,158 16,483

Testing set4 15,744 17,044 27,352

Testing set5 15,582 16,389 17,042

Testing set6 15,366 15,768 16,188

Testing set7 15,785 19,292 15,245

Testing set8 16,016 15,222 16,703

Atrial Fibrillation Detection in Dynamic Signals 187



4.3 AF Features

The previous section reviews the technology in atrial fibrillation detection based on
RR interval features, with particular emphasis on AF screening applications that can
be implemented in dynamic signals. We chose seven AF features: Entropy_AF,
sample entropy (SampEn), coefficient of sample entropy (CosEn), mean RR inter-
vals of episode (mRR), minimum of heart rate of episode (minHR), maximum of
heart rate of episode (maxHR), and median heart rate of episode (medHR) for further
evaluation and comparison.

4.4 Support Vector Machine

LIBSVM with the Gaussian kernel function was used as the classifier in Matlab
R2017b. Grid search method [33] was used for parameter optimization.

4.5 Evaluation Methods

To get reliable and stable model, we used tenfold cross-validation on 20 people’s
data on the wearable ECG. In order to verify the generalization ability and
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Fig. 7 The R-peak location of the 10-s dynamic signal
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practicability of the model, we used eight people’s data as the test data. For model
evaluation, three widely used metrics, i.e., accuracy (Acc), sensitivity (Se), speci-
ficity (Sp), are used as evaluation indicators. According to the attribute of the label
(positive or negative), the result can generate four basic indexes: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN). In this case, Acc is
the radio of the number of correct predicted labels and total number of the labels,
thus Acc ¼ (TP + TN)/(TP + TN + FP + FN). Se is the true positive rate and is
probability of incorrectly diagnosing into positive among all positive patients,
Se ¼ TP/(TP + FN). Sp is proportion of incorrectly diagnosing into negative
among all negative patients, Sp ¼ TN/(TN + FP).

4.6 Results

Table 2 shows the classification results from tenfold cross-validation on the wearable
ECG database. The mean and standard deviation (SD) of the experimental results
were selected to be evaluated. The result showed an Acc of 95.20% for 10-s episode
(Se 93.98% and Sp 97.62%), an Acc of 97.47% for 30-s episode (Se 97.25% and Sp
98.07%), and an Acc of 98.41% for 60-s episode (Se 98.76% and Sp 98.38%).

The combination of the second fold and the seventh fold is the atrial fibrillation
signal and the ventricular premature. For 10-s episode, Se is relatively low, that is,
the classifier classifies a part of ventricular premature signal into atrial fibrillation
signal. But, for 30-s episode and 60-s episode, tenfold cross-validation results are
better.

Twenty people’s data on the wearable ECG were as training sets, and eight
individuals were tested. Table 3 shows the results on the eight wearable ECG data.
Testing set2 is a patient with no atrial fibrillation and more atrial and ventricular
premature. The test accuracy of 10-s episode and 30-s episode is very low (60.17%
and 79.51%, respectively), and the Acc of 60-s episode is 84.56%. Testing set6 is a
patient with no atrial fibrillation and atrial and ventricular premature. The testing
accuracy of 10-s episode is lower (78.79%), but the Acc is 94.12% of 30-s episode
and 97.50% of 60-s episode. For the other testing sets, Acc of 10-s ECG episode is
over 90%, Acc of 30-s ECG episode is over 96%, and Acc of 60-s ECG episode is
over 98%.

In our purposed algorithm, Acc of 60-s window is the best, but Acc of 10-s
window is low on patients with atrial and ventricular premature. In the following
model training, the volume and diversity of training sets should be increased.
Additional classification rules can be developed for the ECG signals of atrial and
ventricular premature.
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5 Conclusions

In this section, eight types of short-term features that can be used for dynamic AF
signal detection are described. Particular emphasis is placed on AF screening
applications that can be implemented in dynamic signals. Finally, seven AF features
were selected to train AF/non-AF model, and the detection effect of the algorithm on
the different window lengths of wearable ECG was evaluated. The testing results on
wearable ECG show that this is a feasible method for AF detection in dynamic
signals.

6. Appendix

6.1. Coefficient of Sample Entropy (CosEn)

A data record consists of a series of N consecutive RR intervals: x1, x2, . . . , xn. For a
length m < n and starting point i, the template xm(i) is the vector containing m
consecutive RR intervals xi, xi+1, . . . , xi+m�1. For a matching tolerance r > 0, an
instance where all the components of xm(i) are within a distance r of any other xm( j)
in the record is called a match (or template match). For example, the template x1
matches x2, if both |x1 – x3|< r and |x2 – x4|< r. Let Bi denote the number of matches
of length m with template xm(i) and Ai denote the number of matches of length m + 1
with template xm+1(i). Let A¼ Σi Ai, B ¼ Σi Bi denote, respectively, the total number
of matches of length m + 1 and m. The sample entropy which refers to the negative
natural logarithm of the conditional probability that two short templates with
matching length m will continue to match at the next point within any tolerance r.

SampEn ¼ � ln A=Bð Þ � ln Bð Þ � ln Að Þ ð4Þ

Table 3 The results on the eight wearable ECG data

Testing sets

60-s ECG episode 30-s ECG episode 10-s ECG episode

Acc
(%)

Acc
(%)

Acc
(%)

Testing set1 100.00 99.97 99.83

Testing set2 84.56 79.51 60.17

Testing set3 99.77 99.16 91.92

Testing set4 98.68 96.01 84.54

Testing set5 98.07 97.14 91.80

Testing set6 97.50 94.12 78.79

Testing set7 99.60 98.24 90.61

Testing set8 99.91 98.96 92.19
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where A is the total number of matches with lengthm + 1 and B is the total number of
matches of length m. The initial value of the matching tolerance r is 30 ms, but it is
allowed to increase until the minimum number of molecules (A) has been completed.

CosEn was proposed by Lake et al., which is a modified version of the sample
entropy of a short-time window. It takes into account the length of the entire
tolerance window (2r) along with the current heart rate, which is defined as follows:

CosEn ¼ SampEn� ln 2rð Þ � ln RR
� � ð5Þ

where RR is the mean of the RR interval.

6.2. Entropy_AF

For an RR time series x(i) (1 � i � N ), form the vector sequences Xm
i

(1 � i � N � m):

Xm
i ¼ x ið Þ, x iþ 1ð Þ, � � �, x iþ m� 1ð Þf g ð6Þ

where the vector Xm
i represents m consecutive x(i).

The distance between vector sequences Xm
i and Xm

j was defined as follows:

dXm
i,j ¼ d Xm

i ,X
m
j

h i

¼
max

0�k�m�1
x iþ kð Þ � x jþ kð Þj j � min

0�k�m�1
x iþ kð Þ � x jþ kð Þj j

max
0�k�m�1

x iþ kð Þ � x jþ kð Þj j þ min
0�k�m�1

x iþ kð Þ � x jþ kð Þj j þ ε
ð7Þ

where ε is a small positive number to avoid the possible denominator of 0.
Then, calculate the similarity degree DXm

i,j n, rð Þ between the vectors Xm
i and Xm

j

by a fuzzy function uX dXm
i,j, n, r

� �
defined as follows:

DXm
i,j n, rð Þ ¼ uX dXm

i,j, n, r
� �

¼ exp �
dXm

i,j

� �n
r

0
@

1
A ð8Þ

where n is the similarity weight and r is the flexible tolerance threshold.
Then, define the functions BXm(n,r) as follows:
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BXm n, rð Þ ¼ 1
N � m

XN�m

i¼1

1
N � m

XN�m

j¼1

DXm
i,j n, rð Þ

 !
ð9Þ

BXm(n,r) measures the mean similarity degrees for the vectors at dimension m.
Similarly, we define the functions of mean similarity degrees AXm+1(n,r) for dimen-
sion m + 1:

AXmþ1 n, rð Þ ¼ 1
N � m

XN�m

i¼1

1
N � m

XN�m

j¼1

DXmþ1
i,j n, rð Þ

 !
ð10Þ

Then, we use a density-based estimation, rather than probability-based estima-
tion, to generate a quadratic fuzzy entropy using the volume of each matching
region, i.e., (2r)m:

EntropyAF ¼ � ln
AXmþ1 n, rð Þ= 2rð Þmþ1

BXm n, rð Þ= 2rð Þm
� �

¼ � ln
AXmþ1 n, rð Þ
BXm n, rð Þ

� �
þ ln 2rð Þ ð11Þ

Subtract the natural log of mean RR interval as follows:

EntropyAF ¼ � ln
AXmþ1 n, rð Þ
BXm n, rð Þ

� �
þ ln 2rð Þ � ln RRmeanð Þ ð12Þ

where RRmean is the mean of RR intervals in the current RR episode. RRmean is
expressed in unit of seconds.

As shown in Eq. (12), directly subtracting the item of ln(RRmean) is arbitrary.
Last, we use a weight to optimize the effect of mean RR interval on the final entropy
output of EntropyAF as follows:

EntropyAF ¼ � ln
AXmþ1 n, rð Þ
BXm n, rð Þ

� �
þ ln 2rð Þ � w� ln RRmeanð Þ ð13Þ

where w is a weight for optimization.
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