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Preface

Computational Intelligence Will Benefit Heart Patients

Clinical observation of heart activity from the body surface has become so common
that we now rarely stop to think about it. Advances made over the past 100 years
have been astonishing. What lies next? It would be all too easy to say that there is
little more that can be achieved. That is far from the case, and a well-informed review
of modern computational approaches should encourage new developments, with the
expectation that many will progress to become essential clinically useful techniques.
The book by Chengyu Liu and colleagues (Feature Engineering and Computational
Intelligence in ECG Monitoring) is just what is needed to encourage such new
research.

Electrocardiography started with the development of often cumbersome, complex
and costly equipment. As a result of much research and development, devices that
create the electrocardiogram (ECG) now appear in every hospital and in most family
doctor clinics and ambulances.

The most obvious results from body surface ECGs include the diagnosis of
cardiac conditions such as heart attacks and abnormal rhythms, the detection of
life-threatening atrial fibrillation, and the continuous monitoring of patients to detect
ventricular fibrillation with the ability to initiate life-saving defibrillation.

All such techniques are based on well-founded and obvious features of the ECG.
What is the role of more subtle features that undoubtedly relate to cardiac muscle and
conduction abnormalities and hidden cardiac conditions?

Readers and researchers can now be introduced to modern computational tech-
niques that use what we would generally consider “intelligence” and examine
features that even the trained eye would not see. Then in order to assist future
researchers, information is provided on where to find numerous relevant ECG
examples that can be used in initial research. No ECG is ever perfect, and in real
situations many ECGs are covered in noise that needs to be removed or its influence
avoided by further computational methods.
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There are many practical areas where new computational techniques would be
invaluable, including the ability to record from multiple body sites while subjects
continue to pursue their normal activities. This is an important area for future
research, as many subjects have abnormal heart conditions that appear only during
specific patient situations or occur very infrequently.

Then finally, the review of applications for these new techniques is essential. It is
for the benefit of patients that there are many applications, and this list can only but
grow with the research techniques described.

Newcastle upon Tyne, UK Alan Murray
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Part I
Introduction



Feature Engineering and Computational
Intelligence in ECG Monitoring: An
Introduction

Chengyu Liu and Jianqing Li

1 Background and Motivation

Recent advances in wearable technology and on devices based on Internet of Things
(IoT) have led to an explosion of routinely collected individual electrocardiogram
(ECG) data. The use of feature engineering and computational intelligence methods
to turn these ever-growing ECG monitoring data into clinical benefits seems as if it
should be an obvious path to take. However, this field is still in its infancy, and many
nominal “computational intelligence” techniques do not produce substantial help
with clinical diagnostic. Many essential concepts and current solutions need to be
reviewed and clarified in depth.

ECG Holter is a conventional technology for long-term, dynamic ECG monitor-
ing. Although its application in any hospital is relatively mature, it cannot be easily
applied for monitoring people outside the hospital. In the out-of-hospital monitoring
environment, subjects have more autonomous activities, inducing a large amount of
unexpected noise and hence yielding extreme difficulty in signal analysis. In addi-
tion, out-of-hospital monitoring also needs more comfortable monitoring situations.
Current wearable ECG technology can be more comfortable and convenient than
ECG Holter, but it still needs to maintain a rigorous attitude to its use, with a clear
understanding for its practical application, especially for large-scale crowd
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monitoring applications. Real-time, long-term, and dynamic ECG monitoring is
helpful for detecting sporadic or hidden arrhythmias. However, we should be alert
to the difficulties in medical services caused by a large number of applications,
because at present, medical services such as high-quality doctor diagnosis and
interpretation for long-term dynamic ECG data have not yet matured into a stan-
dardized system. Whether it is patients themselves or equipment suppliers, when
they bring a large amount of data to the doctor, it is difficult to obtain full data
interpretation and analysis. In addition, the accuracy of the signal processing algo-
rithm itself also needs to be improved. Whether it is a signal quality problem or an
algorithm problem, it will cause errors or unreasonable reporting results, and these
results will lead to unnecessary medical intervention. In addition, it is important to
build accurate dynamic ECG databases, with clear labeling. Manual labeling for
massive ECG data is obviously unrealistic. Thus, developing automatic labeling
algorithms for dynamic ECGs seems to be a promising direction. It can automati-
cally obtain more reliable feature labels by fusing multiple single algorithm results
and effectively improving the reliability of labeling results.

The purpose of this book is to summarize the recent progress in feature engineer-
ing and computational intelligence solutions for ECG monitoring, with an emphasis
on how these methods can be efficiently used for the emerging needs and chal-
lenges—dynamic, continuous, and long-term individual ECG monitoring and real-
time feedback and application, aiming to provide a “snapshot” of the state of current
research at the interface between ECG signal analysis and machine learning. It could
help clarify some dilemmas and encourage further investigations in this field, to
explore rational applications of feature engineering and computational intelligence
in clinical practices for dynamic ECG monitoring.

2 Open-Source Advances

This book also aims to emphasize the spirit of open-source research, which is
characterized by participation, sharing, dedication, and ultimately converging into
a community, due to a group behavior, not an individual behavior. One of the
authors has participated in the organization of the PhysioNet Challenge with Pro-
fessor Gari Clifford while working in the United States. People who perform ECG
research know the PhysioNet databases. We need to thank Professor Roger G. Mark
and Dr. George B. Moody fromMIT for their outstanding and leading work in open-
access databases. It was their pioneering contributions that allowed later researchers
to easily access a large number of clinical physiological data resources and data
analysis toolkits and then start their own research work. Since 2000, under the
initiative from Roger and George, PhysioNet and the Computing in Cardiology
(CinC) conference have jointly launched the annual Physionet/CinC Challenge,
which has become an important annual event in the field of physiological signal
analysis. After 2015, the organization baton of the Physionet/CinC Challenge was
delivered to Professor Gari D. Clifford, who has significantly enhanced the influence
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of the challenge worldwide. The author Chengyu Liu participated in the organization
of the two competitions in 2016 and 2017. We actively sought valuable competition
data from universities, research institutes, and enterprises and then did a lot of work
for data labeling and provided some basic signal processing algorithms as bench-
marks. The competition provided open-source, free, high-quality databases for
researchers worldwide and, more importantly, provided high-value data labeling,
benchmark algorithms, and communication platforms, which greatly promoted the
progress of open sources. After Chengyu returned to work in China in 2017, he has
initiated and organized the annual Chinese Physiological Signal Challenge (CPSC),
which promoted the progress of open sources in China.

From a broader perspective, we need to thank Mr. Linus B. Torvalds, who is the
father of Linux and an important initiator of the open-source concept; Mr. Dennis
M. Ritchie, who is the father of the C language and UNIX as the first modern
programming language; and also Mr. Guido van Rossum, who founded the Python
language, which greatly accelerated the progress of machine learning.

3 Progress So Far

Open source requires sharing and dedication, but before sharing and dedication, we
need to understand the use of existing resources and to participate in the process of
co-constructing the resources. In this sense, one of the purposes of this book is to
provide readers with the progress of current ECG research and then to share,
participate, and contribute under the spirit of open source. Specially, we prepared
Chap. 2 to introduce several open-source ECG databases from our group, two of
which became the challenge data for the CPSC2018 and CPSC2019. Along with the
competition, there are corresponding open-source codes for reference. We should
note that, although data and source code are important, they are not the whole and
essential spirit of open source. The value of data and source code can be significantly
improved with interactive discussions. The true spirit of open source is to form an
interactive community. Everyone can take the existing resources as a ladder and
eventually achieves further and better goals through participation, sharing, contri-
bution, and interaction.

4 Survey of Contents

“Representative Databases for Feature Engineering and Computational Intelligence
in ECG Processing” chapter: With the development of data science and artificial
intelligence (AI) technique, data have become the source of novel research. The
value of big data has been widely acknowledged by researchers from the machine
learning community. Data size/diversity has been regarded as more important than
the choice of machine learning algorithms. Efforts to create new databases or even to
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increase the size of existing ones, as well as creating standard evaluation protocols,
have been made in several research areas, especially to avoid the potential unfair
comparisons between methods. The widely used MIT-BIH ECG database does not
perfectly fit the algorithm development for wearable ECG analysis. The team from
Southeast University has undertaken great work to address this issue and has
constructed several databases of wearable ECGs from both cardiovascular disease
and healthy subjects. “Representative Databases for Feature Engineering and Com-
putational Intelligence in ECG Processing” chapter reviews five open-access data-
bases and describes the specific composition of each database, by supplying both
recording and annotation information since adequate information seems to be the
most important element in feature engineering and computational intelligence in
ECG monitoring. These databases can be used for training ECG algorithms for
feature detection, arrhythmia classification, and signal quality assessment.

“An Overview of Signal Quality Indices on Dynamic ECG Signal Quality
Assessment” chapter: Signal quality assessment (SQA) is usually the first step for
dynamic ECG analysis, to choose the signal episode with good signal quality and
avoid false diagnosis due to artifact or noise. Feifei Liu et al. introduce methods for
developing signal quality indexes (SQIs) and for SQA of dynamic ECGs. SQIs were
developed from the morphology, time domain, frequency domain, and nonlinear
features of ECG signals. The special aspect for SQIs is the newly developed
generalized bSQI method, named as GbSQI. Typical machine learning methods
were used for developing the models for signal quality classification. This chapter
provides a simple review for the commonly used SQIs for quantifying the noise level
not only for dynamic ECGs but also for other physiological signals collected from
the dynamic environment.

“Signal Quality Features in Dynamic ECGs” chapter: Unlike the former chapter
focusing on the SQIs developed by multiple domain features based on the prior
knowledge of ECG, this chapter focuses on only self-correlation features. Herein,
Yixuan Li et al. present a special method combining both long and short template
matching mechanisms and propose a real-time SQA algorithm for wearable ECGs
based on multi-template matching and correlation coefficient matrix. The algorithm
was verified using the data from three types of signal quality classification.

“Motion Artefact Suppression Method for Wearable ECGs” chapter: Noise due to
the artifact and electrode motion is hard to totally eliminate because it overlaps in
both time and frequency domains with the real ECG components. Jianlong Zhao and
Huanqian Zhang present a review of motion artifact suppression methods in wear-
able ECGs. By analyzing the source of motion artifact from the view of the skin–
electrode interface and electrical model in wearable environments, motion artifact
suppression methods from both hardware design and adaptive filter algorithm were
developed. This chapter introduces the basic concepts of analog circuit model of skin
tissue, electrical circuit architecture, skin electrode impedance measurement of
singlechannels and multichannels, as well as the design for adaptive filters based
on least means square (LMS) to suppress the motion artifact.

“Data Augmentation for Deep Learning-Based ECG Analysis” chapter: Deep
learning has become “hot” technology in recent years owing to its admirable
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performance in data processing. Though it is also widely used in ECG signal
processing and achieves good results in some typical examples, lack and imbalance
of the annotated data seriously hampers the performance of these deep learning-
based analysis methods. The challenge also exists in the balance between huge
amount of raw data and the limited diversity of patients. Qing Pan et al. summarize
the typical data augmentation methods applicable for ECG analysis and examine
their performance on a task for detecting atrial fibrillation (AF), verifying the
efficiency of data augmentation methods for the unbalanced ECG data analysis.

“Study on Automatic Classification of Arrhythmias” chapter: With the former
chapter concerning with the preprocessing step (data augmentation) of machine
learning, this chapter discusses automatic classification methods for ECG arrhyth-
mias. There are various types of arrhythmias, and each type is associated with a
special pattern, and as such, it is possible to be identified and classified. However,
accurately identifying and classifying arrhythmias in dynamic situations is still
challenging. Runnan He et al. review the existing studies regarding arrhythmia
classification methods and propose a machine learning model composed of several
steps, including preprocessing, feature extraction, feature selection, and automatic
classification. This chapter provides a helpful and systematic tutorial on the practical
operation of machine learning in ECG arrhythmia classification.

“ECG Interpretation with Deep Learning” chapter: Continuing the topic of
handling with the arrhythmia classification, Wenjie Cai and Danqin Hu concentrate
on the application of convolutional neural networks (CNN) and recurrent neural
networks (RNN) for exploring the rational machine learning model. The great
success of 2D CNN in image recognition has attracted much attention on the
convolution analysis of 1D time series. The addition of RNN can help to enhance
the insensitivity of CNN on timing information while increasing the computational
cost. This chapter gives a systematical review on CNN-based, RNN-based, as well as
CNN&RNN-based intelligent analysis models for automated ECG interpretation.

“Visualizing ECG Contribution into Convolutional Neural Network Classifica-
tion” chapter: CNN has achieved great success in classification tasks but lacks the
interpretability and thus is usually regarded as a “black box,” which means at least
the following two aspects: (1) the neural network feature or decision logic is difficult
to understand at the semantic level; (2) lack of mathematical tools to diagnose and
evaluate the network’s feature expression capabilities, such as generalization ability
and convergence speed. Yaowei Li et al. provide a routine for classification and
visualizing the ECG contribution with CNN and deconvolved neural network
(DeconvNet) and interpretation and presentation of the CNN model as feature
importance degree heatmap (FIDH). This chapter shows that the main ECG features
(such as QRS complexes) can be highlighted by a CNN deconvolution process based
on the absolute amplitude of ECG signal.

“Atrial Fibrillation Detection in Dynamic Signals” chapter: Rapid development
of wearable technology has greatly promoted the progress of dynamic ECG moni-
toring, and AF detection has become a most important issue since its popularity and
universality. The PhysioNet/Computing in Cardiology (CinC) Challenge 2017
aimed to develop a classification algorithm for classifying normal or AF or other
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arrhythmia or noise from an ECG segment. Caiyun Ma et al. describe the detailed
physiological concepts used to develop AF detection algorithms and redefine several
AF features in dynamic ECG analysis. SVM was used to train the AF and non-AF
classifier, and the model was verified on the wearable ECG database.

“Applications of Heart Rate Variability in Sleep Apnea” chapter: According to
the World Health Organization survey, about one-third of the world’s population
suffers from sleep disorders, and the proportion has been increasing in recent years.
With the development of wearable ECG, sleep apnea-hypopnea syndrome (SAHS)
can be monitored and detected from single-channel ECGs. Heart rate variability
(HRV) is an important marker of autonomic nervous system (ANS) activity and can
be used for sleep apnea analysis. Xiaotong Dong et al. studied multisource HRV
features (time and frequency domain and nonlinear analysis) from SAHS patients
and found that the features have significant differences between normal sleep and
sleep apnea signals, indicating its usefulness as a preliminary screening tool for
detecting sleep apnea.

“False Alarm Rejection for ICU ECGMonitoring” chapter: High false alarm rates
have been reported in intensive care unit (ICU) monitors, which decrease quality of
care by slowing staff response times while increasing patient burden and stress. A
National Patient Safety Goals report in 2016 recognized reducing the hazards of
clinical alarm fatigue as an important consensus to improve patient safety. Dai Jian
et al. provide an overview on the variable reasons of alarm generation in ICU and
how to reduce false alarms for ECG monitoring. Clinical alarm management system
improvement and intelligent alarms are proposed in this chapter in order to reduce
and suppress the meaningless ECG alarm.

“Respiratory Signal Extraction from ECG Signal” chapter: Respiration is an
important factor to monitor diseases, and abnormal respiratory rate is recognized
as an indicator of catastrophic deterioration of diseases. In special situations, respi-
ratory rate is even more reliable for monitoring cardiac arrest than heart rate. In
practice, respiratory signal is usually derived from the ECG signal. Kejun Dong et al.
focus on the detection of ECG-derived respiration (EDR). This chapter reviews eight
ECG-derived respiration methods and verifies them using the synchronously col-
lected respiratory signals.

“Noninvasive Recording of Cardiac Autonomic Nervous Activity: What Is
Behind ECG?” chapter: The autonomic nervous system (ANS) innervates internal
organs unconsciously and controls the homeostasis of the human body. Studies show
that autonomic nerves are closely related to cardiovascular disease, and its regulation
of cardiovascular disease is multifaceted. Yike Zhang et al. overview the relationship
between the ANS and cardiovascular diseases, including the functions of ANS, ANS
in the cardiovascular system, and ANS dysfunction and related diseases. Then the
important features for quantifying the ANS function are introduced, including HRV
features, heart rate turbulence features, baroreflex sensitivity features, as well as skin
sympathetic nerve activity (SKNA) features. This last SKNA technique is highly
emphasized.

“A Questionnaire Study on Artificial Intelligence and Its Effects on Individual
Health and Wearable Device” chapter: Development of AI-related techniques has

8 C. Liu and J. Li



brought great convenience to our lives. At the same time, it has also promoted the
rise of applications of mobile Internet and wearable devices. Meanwhile, wearable
techniques have become an important part for personal analysis, by measuring
physical conditions, recording physiological parameters, or notifying medication
schedules. This evolving technology not only is expected to help people pursue a
healthier lifestyle but also provide continuous medical data to proactively track
metabolic status, diagnosis, and treatment. To better understand the frequent
responses to these current hot topics, Tiange Bu and Fangyuan Li designed and
presented a questionnaire survey focusing on the abovementioned hot topics, AI and
its impact on personal health and wearables. “A Questionnaire Study on Artificial
Intelligence and Its Effects on Individual Health and Wearable Device” chapter
introduces this survey and summarizes its results in detail.
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Representative Databases for Feature
Engineering and Computational
Intelligence in ECG Processing

Hongxiang Gao, Chengyu Liu, Qin Shen, and Jianqing Li

Abstract Standard electrocardiogram (ECG) database is a key point for validating
the algorithms of feature detection and disease diagnosis. Researchers usually use
the ECG databases posted in the PhysioNet platform, which were basically collected
from clinical environment with high signal quality. Performance of the developed
algorithms from these databases suffers the poor robustness and weak generalization
when implemented on the dynamic ECGs typically collected by wearable devices.
Standard and accredited dynamic databases are absent. Six open-accessed ECG
databases, including signal quality database, China physiological signal challenge
(CPSC) 2018 and 2019 databases, arrhythmia database, atrial fibrillation
(AF) database, and long-term ECG database, were therefore tidied up and published
freely. All the valuable ECG feature information were carefully annotated by
cardiologists. We hope these databases may benefit the ECG study on dynamic
signal processing.
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1 Introduction

In the field of health management, it is vital to timely discover the abnormal health of
the body and the early warning of major disease risks. Traditionally, we will
implement this requirement through annual medical examinations, even if the time
span of medical examinations is large, and the geographical coverage is not enough,
too. In terms of electrocardiogram (ECG) diagnosis, dozens of seconds recording
with 12-lead in routine inspection and 24-hour recording for Holter monitoring were
widely used in clinical environment. The downside of these methods is, of course,
their inefficiency to cover the real-time and long-term diagnostic requirements.
Recently, people have turned their attention to wearable devices, which can achieve
real-time and long-term monitoring for physical abnormalities of large populations
across regions.

The number of available devices that can record and analyze ECG is on the rise
[1]. Biswajit et al. [2] searched the Internet and PubMed and found out that most of
the available devices are developed in the engineering domain with an isolation from
the medical domain. Wearable ECG devices are emerging with their portability and
real-time capabilities all appear to be less electrodes and mobile device visualization
[3]. They can play a significant role in improving the health and wellness of subjects
by increasing the availability and quality of healthcare, with the application for early
detection of cardiovascular disease (CVD), as well as for other situations, such as
sports and fitness, rehabilitation, elderly care support, emotion, and sleep monitoring
[4–8]. Different types of ECG systems [9–12] have been introduced so far to
improve the signal quality in the clinical settings. Nevertheless, simple equipment
brings up more kinds of data situations and more complicated diagnostic require-
ments for heart disease. Most of the available ECG wearable devices only monitor
the heart rate (HR) without detecting any heart diseases in real time. Therefore, a
mature intelligent analysis system is essential to deal with common abnormalities in
CVDs and output the necessary medical information.

Although ECG analysis methods have been severely tracked throughout the last
several decades and many sophisticated algorithms have been proposed, they are not
perfectly suitable for noisy ECG episode or abnormal rhythm waveforms, especially
when the ECG recordings are from dynamic wearable situations [3, 4, 13–15]. In
contrast to standard ECG leads, signals in wearable devices are acquired by simu-
lated limb leads, which lead to variant ECG morphology. Thus, novel automatic
diagnostic algorithms should be trained not only on the existing ECG databases but
also on the expert-annotated wearable database, aiming to enhance its efficiency in
wearable applications.

Along with the development of data science and artificial intelligence (AI), data
has become the important source for novel research. The value of big data has been
widely accepted by all parties, and the collection of big data has become an
important part. The construction of general well-organized database would be a
great challenge because, besides the financial costs involved, they would have to be
incorporated into standards such as AAMI standards to reach the desired audience.
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The PhysioNet platform [16], established in 1999, is managed by members of the
MIT Laboratory for Computational Physiology, offering free access to large collec-
tions of physiological and clinical data and related open-source software. This
platform provides the most commonly used ECG databases for developing algo-
rithms. AHA database was released since 1982 and completed in 1985, consisting of
80 two-channel excerpts of analog ambulatory ECG recordings, digitized at 250 Hz
per channel with 12-bit resolution over a 10 mV range. MIT-BIH Arrhythmia
Database [17, 18] contains 48 half-hour excerpts of two-channel ambulatory ECG
recordings, obtained from 47 subjects studied by the BIH Arrhythmia Laboratory
between 1975 and 1979. In cooperation with the annual Computing in Cardiology
(CinC) conference, PhysioNet also hosts an annual series of challenges, which
published a lot of clinical data for the unsolved problems in clinic and basic science
and attracted lots of researchers and supporters. In the nearly 20 years, the PhysioNet
database has enormously boosted the development for research and education.

Unfortunately, dynamic and wearable ECGs, as well as the standardization, such
as lead position, lead wire, electrode material, data formats, lack. In the past several
years, we have collected dynamic ECGs (usually 24 h) from more than 300 individ-
uals with specific CVD diseases using wearable devices. To address the concern
about the shortage of dynamic/wearable ECG database, in the current study, we
tidied up five well-annotated wearable databases and one traditional ECG database
from the clinical collection (see more profiles in Table 1) and posted them to
researchers interested in ECG-related study.

2 Sources and Types of Databases

Six open-accessed ECG databases were prepared to accelerate the development of
automatic algorithms used for dynamic/wearable environment. The China Physio-
logical Signal Challenge (CPSC) was held annually since 2018, aiming at providing
a platform for the open-source data and algorithms. We included the databases from
CPSC 2018 and 2019 here [19, 20].

2.1 Signal Quality Database

In recent years, analysis and evaluation of ECG signal quality has been a hot topic
[21–23]. The PhysioNet/CinC Challenge 2011 [24] aimed to develop an efficient
algorithm able to run in real time within a mobile phone [25] that can provide useful
feedback to a layperson in the process of acquiring a diagnostically useful ECG
recording. Due to the poor signal quality caused by the dry electrodes [26, 27], signal
quality assessment is considered as a main target. Herein, a specialized database of
300 recordings was designed for signal quality study (see Table 2), with three
categories of signal quality: good (A), medium (B), and poor (C) signal quality.
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ECGs for signal quality type A have clear and distinct P-QRS-T morphologies
accompanied by slight noise or artifacts occasionally. ECGs for signal quality type B
show obvious rhythmical characteristics, but with obvious signal noises and cannot
be used for morphology diagnosis. ECGs for signal quality type C are totally
unacceptable recordings, due to the large proportion of noise. Typical examples of
ECG waveforms are shown in Fig. 1.

Table 1 Data profiles for six open-accessed ECG databases

Database Type #recordings Profile

Signal Quality Database
[44]

Good signal quality (A) 100 • 2-channel
• 400 Hz
• 10-s length

Medium signal
quality (B)

100

Poor signal quality (C) 100

Database of CPSC 2019
[20]

Pathological arrhythmias 1220 • 1-channel
• 500 Hz
• 10-s length

Abnormal sinus rhythm 46

Noise/artifacts 734

Arrhythmias Database [44] Sinus bradycardia 50 • 1-channel
• 400 Hz
• 30-s length

Sinus tachycardia 43

Sinus arrest 4

Single PAC 100

Coupled PAC 50

SAT/NSAT 50

AF 50

Single PVC 100

Coupled PVC 20

SVT/NSVT 1

AF Database [44] AF 20 • 1-channel
• 400 Hz
• 30-min length

Long-term Arrhythmias
[44]

Arrhythmias 2 • 1-channel
• 400 Hz
• 24-h length

Database of CPSC 2018
[19]

Normal 918 • 12-channel
• 500 Hz
• Varying lengths
(6–60 s)

AF 1098

I-AVB 704

LBBB 207

RBBB 1695

PAC 574

PVC 653

STD 826

STE 202

PAC premature atrial contract, PVC premature ventricular contract, NSAT/SAT non-sustained/
sustained atrial tachycardia, AF atrial fibrillation, NSVT/SVT non-sustained/sustained ventricular
tachycardia, I-AVB first-degree atrioventricular block, LBBB left bundle branch block, RBBB right
bundle branch block, STD ST-segment depression, STE ST-segment elevation
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2.2 CPSC 2019 Database

Training set of the CPSC 2019 database [20] consists of 2000 single-lead ECG
recordings collected from patients with CVDs. Each recording lasts for 10 s. Test set
contains the similar ECG recordings with the same time lengths, but it is unavailable
to the public. ECG recordings were sampled as 500 Hz. All recordings were
provided in MATLAB format (each including two “.mat” file: one is ECG data
and another one is the corresponding QRS annotation file). These 10-s ECGs are
challenging for QRS detection, as well as for HR estimation.

2.2.1 Data Structure

1. Type A: pathological arrhythmias
The abnormal heartbeats, generated by the irregularity in the origin/conduction of
the cardiac electrical activity, mainly include the following: LBBB, RBBB, and

Table 2 Specification for signal quality division

Category Symbol Definition

Good A Signal with apparent P-QRS-T morphologies
Signals with slightly baseline drift or transient artifacts

Medium B A good recording contaminated severely in a narrow window
A good recording with one or a few missing signals
A poor recording that may be interpretable with difficulty

Poor C Signal usefulness to clinical application (may be caused by misplaced
electrodes, poor skin–electrode contact)
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Fig. 1 Typical examples of the three signal quality categories: (a) good signal quality, (b) medium
signal quality, (c) poor signal quality
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PVC (see Fig. 2). These episodes can be from any of the 12 ECG leads, rather
than from a special ECG channel. Thus, the morphology of the ECG episodes
varies. Traditional threshold algorithms (usually amplitude threshold) show poor
performance when dealt with the small amplitude of QRS complexes caused by
abnormal heartbeats.

When bundle branch block occurs, one branch of His bundle delays the
conduction of the electrical impulse, and ventricle is activated by the myocardial
propagation of electrical activity from other ventricles. Thus, the affected ventri-
cle is depolarized erratically and slowly through an alternative pathway. This
delay is shown in ECG with a widening of QRS complex (duration>120 ms) and
a change of its pattern, which varies depending on the affected branch, acted as
RBBB or LBBB. Specific diagnostic criteria of RBBB and LBBB given by the
ACC/ESC consensus document are summarized in Table 3 [28, 29].

2. Type B: sinus tachycardia and sinus bradycardia
Sinus tachycardia and sinus bradycardia are sinus rhythms with a rate higher than
100 beats per minute (bpm) or less than 60 bpm. In sinus tachycardia the sinus
node fires between 100 and 180 impulses per minute. Maximal HR decreases
with age from around 200 to 140 bpm. In sinus bradycardia the sinus node fires at
a slow (<60 bpm) rate. More severely, sinoatrial exit block or sinus arrest may
occur during sinus bradycardia and cause a long break. All these sinus
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Fig. 2 From top to bottom: LBBB (a: data00872), RBBB (b: data00295), and PVC (c: data00480).
Red circles denote the reference QRS locations

Table 3 Diagnostic criteria of RBBB and LBBB

RBBB LBBB

QRS duration greater than 120 ms QRS duration greater than 120 ms

rsR’ “bunny ear” pattern in the anterior
precordial leads (leads V1–V3)

Monomorphic R wave in leads I, V5, and V6
with no Q waves

Slurred S waves in leads I, aVL, and frequently
V5 and V6

ST and T wave opposite to the major deflec-
tion of the QRS complex
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tachycardia and sinus bradycardia put a challenge to the fixed threshold algo-
rithms. Figure 3 shows two examples of sinus tachycardia and sinus bradycardia.

3. Type C: poor signal quality due to artifact and noise
Dynamic/wearable ECGs are easily contaminated by artifacts and noises.
Denoising approaches are limited here in frequency domain since the overlap
between the noise frequency content and signal interest or in time domain since
the similarity between QRS complex and some special artifacts (as shown in
Fig. 4). The typical artifacts and noises [30] are from (1) electrode contact noise:
loss of contact between the electrode and skin manifesting as sharp changes with
saturation on the ECGs (usually due to an electrode being nearly or completely
pulled off); (2) electrode movement artifacts, electrode movement away from the
contact area on the skin, leading to variations in the impedance between the
electrode and skin, which will cause potential variations in the ECG and usually
manifest themselves as rapid (but continuous) baseline jumps or complete satu-
ration; and (3) device noise, noises generated by the hardware of the device.

Unfortunately, ECG is often contaminated by noise in similar morphologies
caused the interest signal nearly invisible by the human eyes. To remove all
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Fig. 3 Example of bradycardia (a: data00134) and tachycardia (b: data00470). Red circles denote
the reference QRS locations
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Fig. 4 Examples of poor signal quality ECG episodes due to artifacts (a: data00079) and noise (b:
data00573). Red circles denote the reference QRS locations
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noises completely is impossible, so it is important to quantify the nature of noises
in a particular dataset and choose an appropriate algorithm.

PVCs are conducted by the specialized conduction system and therefore are
broad. The QRS width is at least 120 ms but often very broad around
160–200 ms. PVCs have many types and can be: monomorphic (QRS complexes
with similar morphologies), multiformic (QRS complexes with different morphol-
ogies), bigeminy (every sinus beat followed by a PVC), or trigemini (every second
sinus beat followed by a PVC).

2.2.2 Annotation

All QRS locations were beat-by-beat annotated by the Pan and Tompkin (P&T)
detector and then manually hand-corrected by visual inspection. For more informa-
tion about the CPSC 2019, please visit the URL (http://www.icbeb.org/Challenge.
html).

2.3 Arrhythmia Database

2.3.1 Data Acquisition

ECGs in the hospital are huge but usually locally available. In addition, raw signals
are usually invisible to public, and the data collected from different hospitals or
different devices in the same hospital do not have unified format, making the sharing
difficult. A database contains only wearable ECGs from 200 arrhythmia patients
which was constructed. The patients aged between 18 and 82 years. All subjects
were trained to wear a wearable ECG monitor device for at least 24 h even to 72 h to
cover all possible onsets of arrhythmia. ECGs were collected with a sampling rate of
400 Hz, using a 12-bit sampling accuracy and a frequency response bandwidth of
0.05–45 Hz. The acquired signals are two-channel of the simulated limbs (lead I, II),
which contain the information of various activities (sport, rest, and sleep), fully
reflecting the real-world situation of patients’ dynamic ECG signals.

2.3.2 Annotation Workflow

Performance of an algorithm or system must be evaluated against reference or “gold
standard” annotations. An annotation platform was developed by co-operation of
automatic classification algorithms and three cardiologists. First, ECG episodes were
uploaded to the annotation platform in the standard ECG waveform presentation
format. Then, an automatic step was applied to coarse annotate with commonly used
algorithms. After that, two clinical cardiologists independently corrected the
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automatic labels results. The third expert finally checked the results and identified
the labels with different opinions and made a determination.

2.3.3 Data Type

The ECGs included in this database are intended to be used for the evaluation of
algorithms for arrhythmias analysis on rhythm changes. However, subject to the
small sample of heart disease, several subtypes only contain a few recordings
(Table 4). The ANSI/AAMI EC57:1998/(R) 2008 standard [31] specifies that
records of patients using pacemakers should not be considered. In addition, seg-
ments of data containing ventricular flutter or fibrillation (VF) were also excluded
from the analysis.

1. Sinus arrhythmia
For sinus arrhythmias, ECG appears periodically with a stable PR interval shorter
than 0.2 s. Normal P wave in lead II usually shows upright wave in morphology
and consistent lasting time in duration. Bradycardia is the situation where HR is
less than 60 bpm, and tachycardia is the situation where HR is greater than
100 bpm. A long interval twice as long as normal PP interval between the second
and the third P waves (see picture arrest in Fig. 5) indicates a sinus arrest. In this
situation, the sinus node ceases to generate the electrical impulses for a variable
period of time.

2. Atrial arrhythmia
Premature beat initiates outside the sinoatrial node. Atrial premature beats, also
called PAC, are ectopic beats that originate in the atria. Typically, atrial impulse
propagates normally through the atrioventricular node into the cardiac ventricles,
resulting in a normal, narrow QRS complex. Atrial premature beat is associated
with an incomplete compensatory pause, meaning that the interval between the
preceding and following sinus beats is less than twice the complete cycle. Single
PAC clearly manifests a regular underlying rhythm; however, there is a premature
beat which can be identified by irregular P wave with different sizes and shapes.

Bigeminy is an abnormal pulse characterized by two beats in rapid succession
followed by a pause. Atrial bigeminy occurs with pairing of atrial beats, as when
an atrial extrasystole is coupled to each sinus beat. PACs may occur frequently or
sporadically. Two PACs occurring consecutively are referred to an atrial couplet
(coupled PAC). Paroxysmal atrial tachycardia has a high regular rate of about
140–250 bpm. In this situation, P waves are generally invisible and PR intervals
are not measurable. AF has an atrial rate of more than 400 bpm and is distin-
guishable due to its irregular ventricular rate.

Figure 6 shows examples of different atrial arrhythmias except AF. Typical
features were marked to present the rule of clinical diagnosis. Figure 7 shows
examples of AF pattern.
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Table 4 The structure of the arrhythmia database

Class Subtype Number ECG characteristics

N Sinus
bradycardia

N1_001
~
N1_050

Upright, consistent, and normal in morphology and duration of
P waves in analog leads I and II
Regular PP intervals, and PR interval is between 0.12 and
0.25 s
HR less than or equal to 60 bpm

Sinus
tachycardia

N2_001
~
N2_43

Upright, consistent, and normal in morphology and duration of
P waves in analog leads I and II
Regular PP intervals, and PR interval is between 0.12 and
0.20 s
HR greater than or equal to 100 bpm

Sinus arrest N3_001
~
N3_004

Upright, consistent, and normal in morphology and duration of
P waves in analog leads I and II
PP interval prolonged significantly
No common multiple relationship between the longest PP
interval and basic sinus PP interval

A Single
PAC

A11_001
~
A11_050
A12_001
~
A12_050

P waves, as opposed to sinus P waves, appear before the
normal narrow QRS with normal axis
PR interval is equal or greater than PR interval which is
between 0.12 and 2 s
Atrial premature beats are associated with an incomplete
compensatory pause, meaning that the interval between the
preceding and following sinus beats is less than length of two
complete cycles

Bigeminy
PAC

If an atrial premature beat follows every sinus beat, atrial
bigeminy is said to exist

Coupled
PAC

A2_001
~
A2_050

Two consecutive P waves appear before the normal narrow
QRS, followed by a long compensatory interval

NSAT/
SAT

A3_001
~
A3_050

No less than three P waves appear continuously before the
normal narrow QRS followed by a compensatory interval
NSAT lasts no longer than 30 s, otherwise known as SAT

AF A4_001
~
A4_050

Absence of distinct P waves and irregular RR intervals
Abrupt onset of an irregularly narrow-complex tachycardia
Small and irregular baseline wave with variable shape and
amplitude, called F waves
Frequency of F waves is about 350–600 bpm

V Single
PVC

V11_001
~
V11_050
V12_001
~
V12_050

Occurs early on or shortly after the T wave of the preceding
sinus beat and is associated with a wide QRS complex
Accompanied by secondary ST-T change (ST segment down
and T wave inversion)
Followed by a long interval. The PP interval around the
premature ventricular complex is twice as the underlying sinus
rate (PP interval)

Bigeminy
PVC

If a ventricular premature beat follows every sinus beat,
bigeminy PVC is said to exist

Coupled
PVC

V2_001
~V2_020

Two consecutive wide and deformed QRS complexes,
followed by a long compensatory interval

NSVT/
SVT

V3_001 No less than three wide and deformed QRS complexes
appeared continuous and followed by a long compensatory
interval
NSVT lasts no longer than 30 s, otherwise known as SVT
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3. Ventricular arrhythmia
PVCs are premature ectopic beats originating in the ventricles of the heart and
sometimes produces accompanying palpitations. A ventricular beat is initiated by
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an ectopic focus, which occurs before the usual sinoatrial beat, characterized by
premature, widened, and bizarre QRS complexes, not preceded by a P wave.
PVCs can occur during sinus rhythm or any other prevailing cardiac rhythm or
cause a compensatory pause, if no retrograde atrial activation is present or if
retrograde atrial encounters entrance block at the sinus node, thereby not produc-
ing disturbance in the sinus firing rate. PVC may be expressed as different forms:
(1) single unifocal complexes, (2) multiple morphologies and fusion complexes,
(3) multiple coupling intervals to the preceding sinus beats, (4) couplets or
triplets, and (5) non-sustained or sustained ventricular tachycardia (Fig. 8).
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-1

0

1

2
Single-PVC

-1

0

1

Bigeminy-PVC

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-0.5
0

0.5
1

1.5
Couplet-PVCA

m
p
li

tu
d
e 

(m
V

)

Fig. 8 From top to bottom, they are single PVC, bigeminy PVC, and couplet PVC; red asterisks
represent the sinus P waves; abnormal P waves are assigned with red rhombic and big “V” points to
the widened, bizarre QRS complex

24 H. Gao et al.

https://www.sciencedirect.com/topics/medicine-and-dentistry/sinus-rhythm
https://www.sciencedirect.com/topics/medicine-and-dentistry/heart-rhythm
https://www.sciencedirect.com/topics/medicine-and-dentistry/atrioventricular-block
https://www.sciencedirect.com/topics/medicine-and-dentistry/sinoatrial-node
https://www.sciencedirect.com/topics/medicine-and-dentistry/firing-rate


2.4 AF Database

AF is the most common sustained cardiac arrhythmia [32], occurring in 1–2% of the
general population, and is associated with significant mortality and morbidity
through association of risk of death, stroke, heart failure and coronary artery disease,
etc. [33, 34].

AF can be classified into paroxysmal AF, persistent AF, and permanent AF
according to the European Society of Cardiovascular Diseases and North American
Association of Pacing and Electrophysiology Arrhythmia [35]. Clinical 12-lead
ECG detection is effective to diagnose patients suffering from persistent AF but
may miss many cases of paroxysmal AF [36, 37]. For AF detection, atrial activity-
based [38] and ventricular response-based methods are two commonly used
methods. The success of the PhysioNet/CinC Challenge 2017 of “AF Classification
from a short single lead ECG recording” significantly promotes the process of AF
detection research [39]. Herein, the AF database contains 20 single-lead normal and
AF recordings sampled at 400 Hz and lasts for 5 min.

2.5 Long-Term Arrhythmia ECGs

Abnormality of the cardiac conduction system can induce arrhythmia, abnormal
heart rhythm, which can frequently lead to other cardiac diseases and complications,
sometimes life-threatening [40]. In clinic, the number of abnormal heartbeats for a
long-time monitoring window (such as 24 h) is a vital indicator for diagnostic
decision. Thus, we collected and annotated this long-term arrhythmia ECG database,
which contains two long-term ECG recordings, lasting for 24.51 and 23.11 h,
respectively. The heartbeats are manually classified into the most common types:
normal sinus (N), PAC (A), and PVC (V), represented numerically as 0, 1, and
2, respectively.

2.6 CPSC 2018 Database

A number of studies have investigated the performances of different detection/
classification methods for the abnormal ECG types. However, many studies are
generally limited in applicability because (1) the classification of normal and only
one single abnormality was performed; (2) the data were not sufficient without the
use of a separate out of sample test dataset, and only a small number of subjects were
used, almost certainly resulting in over-fitting of the model and inflated statistics;
and (3) failure to post the data (and any code to process the data) publicly so others
may compare their results directly. Therefore, CPSC 2018 [19] contributes to a more
comprehensive database to address these issues, including one normal type and eight
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abnormal types, which are detailed as (1) AF, (2) I-AVB, (3) LBBB, (4) RBBB,
(5) PAC, (6) PVC, (7) STD, and (8) STE.

ECG recordings were collected from 11 hospitals. The training set contains 6877
(female, 3178; male, 3699) 12-lead ECG recordings lasting from 6 s to just 60 s,
sampled as 500 Hz. Figure 9 illustrates an example of the 12-lead ECG waveforms
with AF and RBBB. Table 1 shows the details of the training data. All data are
provided in MATLAB format (each recording is a .mat file containing the ECG data,
as well as the patient sex and age information). For the most data, each recording has
only one label from the nine types, while some recordings have two or three labels
because the patient who provided the signals suffers from multiple diseases simul-
taneously. There are 477 recordings of this multi-label type in the training set. For
more information on the Challenge and to download the data, please visit the website
(http://www.icbeb.org/Challenge.html).
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3 Discussion

Researchers have made great progress related to the automatic ECG diagnosis.
Results presented in literatures are usually based on the analysis of the MIT-BIH
database. However, unbalance issue hinders the model development of in-patient
scheme [41]. The size and diversity of databases play a more and more important
role in machine learning-based techniques [42]. One of the obstacles to achieve
advances in this research domain is the databases, which have strict annotations and
can be freely accessed online. Thus, elaboration of new databases is essentially
important but challenging.

Noted that, many of approaches developed for ECG classification and QRS
detection presented very high accuracy even nearly 100% in the commonly used
MIT-BIH database but are hardly worked effectively in real environment. Consid-
ering the significance of individual diversity, databases existing for now are insuf-
ficient, especially for the dynamic and long-term ECG databases. Efforts to create
new databases or even to increase the size of existing ones, as well as creating the
corresponding annotations, have been made in several research areas involving
image recognition, speech recognition, etc., to avoid unfair comparisons between
methods [43].

This study describes the design and implementation of several annotated dynamic
ECG database for signal quality assessment, QRS detection, and arrhythmia classi-
fication. These databases emphasize the challenge of signal processing and abnormal
detection for dynamic ECGs, which are usually very noisy due to the unlimited
physical activities. Currently, portable battery-operated systems such as mobile
phones with wireless ECG sensors have the potential to be used in continuous and
real-time cardiac function assessment that can be easily integrated into daily life.
With the development in equipment and algorithms, new databases are needed. We
hope this work can benefit the study of dynamic ECG analysis. We release the data
listed in this chapter in our Lab website. If you want these data for research, please
visit http://www.shelab.cn/Data for downloading the data.
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Relevance of Signal Quality



An Overview of Signal Quality Indices
on Dynamic ECG Signal Quality
Assessment

Feifei Liu, Shoushui Wei, Fei Lin, Xinge Jiang, and Chengyu Liu

Abstract With the rapid development of wearable ECG medical devices, it is an
imperious demand to evaluate the quality of dynamic ECG signals. Thus, a lot of
signal quality indices (SQIs) have been proposed in the past few years. In this
chapter, we review the analysis performances of SQIs from time-domain, fre-
quency-domain, joint time-frequency, self-correlation, cross-correlation, entropy
methods. We then illustrate the SQI performances using real clinical data, allowing
a comparison of the SQIs. The performance of 26 SQIs was analyzed and discussed
systematically.
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1 Introduction

Cardiovascular disease (CVD) is the leading cause of death globally: more people
die annually from CVDs than from any other causes. According to the World Health
Organization [1], CVDs take 17.9 million lives every year, accounting for 31% of all
global deaths. Early detection and prevention are very important for the treatment of
CVDs. Electrocardiogram (ECG) is an important medical tool for diagnosing heart
disease and evaluating cardiac function. Recent years have witnessed rapid devel-
opments of wearable ECG systems for continuous ECG recording [2]. It is a needful
tool for the early detection of cardiovascular diseases (CVDs) [3]. However, because
of the bad electrode contacting or wrong electrode positioning on account of wrong
operation without supervision in a remote condition, dynamic ECG signals were
subjected to poor signal quality [4]. These poor signal qualities bring great chal-
lenges to the wearable ECG system, which hinders the reliable manual or automated
measurement [5], increases the risk of false alerts and misdiagnosis [6], and
increases the workload of doctors [7]. All of these problems will limit the telemed-
icine application in remote areas [5]. So automated signal quality assessment (SQA)
is an important work need to be done. First, an alarm of degraded signal quality can
remind the user to check the location of the electrode [8]. Then, the unavailable
ECGs with the poor signal quality can be deleted directly, so it avoids the network
congestion in the process of data transmission [9]. Therefore, the reliable signals can
be provided for CVD detecting [10].

The issue of ECG quality evaluation has recently become a hot topic. A large
number of signal quality indices (SQIs) have emerged [11–17], including time-
domain features, frequency-domain feature, the features of the QRS waves,
nonlinear characteristic, etc. In 2008, Redmond et al. developed a signal artifact
masking method, which was the first study about the ECG signal quality in a remote
medical system [12]. In the same year, Li et al. [14] developed four SQIs (bSQI,
iSQI, kSQI, and sSQI). Based on these four SQIs, Clifford et al. got very good
grades in the 2011 PhysioNet Computing in Cardiology Challenge: Improving the
Quality of ECGs Collected using Mobile Phones [15]. Since then, a lot of SQIs have
been developed [3], including six wave features from time domain proposed by
Marco [16] and a signal quality matrix employed by Xia [10]. Typical SQIs were
extensively studied in previous works [8, 18, 19]. However, according to the existing
literature, the performance of these SQIs has not been analyzed and discussed
systematically. The aim of this chapter is to do this work. First, the issue of lead-
fall detection, a very important part for ultra-long-term (14-day) dynamic ECGs,
needs to be considered. Next, the SQIs based on different signal characteristics such
as time- and frequency-domain features or QRS wave information are discussed.
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2 Typical Signal Quality Indexes for Dynamic ECG Signal
Quality Assessment

The research in the literature [44] found that for high signal quality ECG recordings,
most QRS detection algorithms had very high detection accuracy (F1 >99%),
whereas the F1 results decrease significantly for the poor signal quality ECG signals
(all <80%). For the resting ECG recordings, the signal qualities are very well. And
the preprocessing program could solve the problem from the slight noise. However,
dynamic ECGs suffer from the problem of lead fall due to the bad electrode contact
or incorrect electrode positioning due to unsupervised operators in a remote condi-
tion [4]. A variety of SQIs have sprung up for dynamic ECGs, including time-
domain, frequency-domain, joint time-frequency, self-correlation, cross-correlation,
entropy methods, etc.

2.1 Lead-Fall Detection

Liu et al. found that lead-fall detection used as an initial classification could decrease
data volume and computation load for further analysis [19]. ECG is detected as lead-
fall signal not only when the most portion of samples keep constant, but also the
random fluctuation without any rules because of the outside noises, as shown in
Fig. 1. This figure shows several typical cases of lead fall from the 2011 PhysioNet/
CinC Challenge. Many research works have been done for lead-fall detection,
including the following several methods:

1. Constant voltage ECG excerpts of at least 1 s length are searched in all leads [20].
2. Range (min–max) below a global disconnection threshold or signal amplitude

above low limit for at least certain percent of the total lead duration [21].
3. Low-frequency time marginal energy defined as the peak value of the energy

distribution in the frequency band [0, 0.5] Hz. High values of this parameter
indicated the presence of prominent baseline drift or constant amplitude level
(“flat line”) in the original ECG signal [16].

4. Leads with constant voltage were labeled as “missing.” The voltage is considered
constant if voltage variations in a given lead are less than or equal to four times
the maximum voltage resolution (4 � 5 μV) [22].

5. Zero-line detection for 80% of the lead or >40% portion of samples above
�2 mV [23].
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2.2 Time-Domain Features

1. sSQI: sSQI is the third moment (skewness) of the ECG signal distribution [8, 14]
and is defined as:

sSQI ¼ 1
M

XM
i¼1

xi � μ
σ

h i3�����
����� ð1Þ

where xi is the ECG signal with N sample points, μ is the signal mean, σ is the
standard deviation (SD), and |�| means the absolute value.

2. kSQI: kSQI is the fourth moment (kurtosis) of the ECG signal distribution [8, 14]
and is defined as:

kSQI ¼ 1
M

XM
i¼1

xi � μ
σ

h i4
ð2Þ

where all parameters have the same meanings with sSQI.

Fig. 1 Typical cases of lead fall from the 2011 PhysioNet/CinC Challenge
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3. SDN-SQI: Estrella et al. [24] developed the noise maps for quantitative and
clinical severity toward long-term ECG monitoring. Traditionally, dealing with
poor-quality ECG has been faced as a denoising problem for which the target
consists of improving some quality metrics, such as the root mean square (RMS)
or the signal-to-noise ratio (SNR), which are often measured on artificially
contaminated ECGs. Recent quantitative analysis has been performed within
this framework using different signal processing techniques. SDN is a novel
measure, which was designed to take into account events that make the signal
unreadable, such as signal loss or gain saturation due to electrode disconnection.
The proposed SDN-SQI was extracted by the following steps: (a) the standard
deviation of the signal was computed in blocks of 0.5 s; (b) for every 10 blocks,
the mean and the standard deviation were calculated; and (c) finally, the mean
plus twice the standard deviation was used as a measure of the noise for each
block.

4. PLI-SQI: The powerline interference (PLI) was also analyzed in the literature
[24], because it is the most usual types of noise in cardiac records, and they are
also easy to extract from the ECG. The quantification of PLI-SQI was made with
a notch filter with the center frequency at 50 Hz.

2.3 Frequency-Domain Features

1. purSQI: Signal purity of ECG [25]:

purSQI ¼ ϖ2 kð Þð Þ2
ϖ0 kð Þϖ4 kð Þð Þ ð3Þ

where ϖn ¼
R π
�πω

nP ejωð Þdω , P(e jω) is the power spectrum of the ECG in the
analysis window, and ω ¼ 2πf.

2. basSQI: The relative power in the baseline:

basSQI ¼ 1�
Z 1Hz

0 Hz
P fð Þdf =

Z 40Hz

0 Hz
P fð Þdf ð4Þ
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3. pSQI: pSQI assesses the power spectrum distribution feature. ECG waveform
usually has a frequency range of 0.05–125 Hz for clinical diagnosis and a
frequency range of 0.05–45 Hz for clinical monitoring. High signal quality
ECGs usually have a distinguishable QRS complex, which has a frequency
range from several to a dozen of Hz [8, 14]. So, the ratio of power spectral
density in the QRS energy band to that in the overall energy band provides a
useful measure, and thus, pSQI is defined as:

RpSQI ¼
Z 15Hz

5 Hz
P fð Þdf =

Z 40Hz

5 Hz
P fð Þdf ð5Þ

where P( f ) is the autoregressive (AR) model spectrum and the Burg algorithm is
adopted for parameter estimation.

4. LpSQI: The low-frequency power spectrum distribution feature: The ratio of the
power spectral density in low-frequency band compared to the power spectral
density in the overall signal is:

LpSQI ¼
Z 3Hz

0 Hz
P fð Þdf =

Z 100Hz

0 Hz
P fð Þdf ð6Þ

5. MpSQI: The main frequency power spectrum distribution of ECG waveforms:
The ratio of the sum of the power of the low-frequency ECG between frequen-
cies, f, of 5 and 35 Hz to the power between 0 and 100 Hz is:

MpSQI ¼
Z 35Hz

5 Hz
P fð Þdf =

Z 100Hz

0 Hz
P fð Þdf ð7Þ

6. HpSQI: The high-frequency power spectrum distribution feature: The ratio of the
sum of the power of the high-frequency ECG between frequencies, f, of 40 and
100 Hz to the power between 0 and 100 Hz is:

HpSQI ¼
Z 100Hz

40 Hz
P fð Þdf =

Z 100Hz

0 Hz
P fð Þdf ð8Þ
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2.4 SQI Based on the QRS Waves

1. GbSQI: The original bSQI proposed by Li et al. was based on the comparison of
two beat detectors on a single lead [14]. In the original bSQI, “ep_limited” [26]
and “wqrs” [27] QRS detecting methods were employed. Liu et al. found that the
performance of bSQI heavily depends on QRS detecting methods [28]. Therefore,
GbSQI was proposed in the Liu’s study based on ten QRS detectors, which is
defined as:

GbSQI k,wð Þ ¼ n� 1ð Þ � N matched k,wð Þ
N Method1 k,wð Þ þ N method2 k,wð Þ þ � � � þ N methodn k,wð Þ � N matched k,wð Þ

ð9Þ

where N_matched(k,w) is the beat number agreed upon (within γ ¼ 150 ms) and
N_Methodn(k,w) is the beat number detected by the nth QRS detectors. There-
fore, GbSQI ranges between 0 and 1 inclusively. Seven patterns of GbSQI (bSQI-
2, bSQI-3, bSQI-4, bSQI-5, bSQI-6, bSQI-7, and bSQI-8) were tested. The
GbSQI definition was sufficiently flexible to allow the use of an arbitrary number
of R wave detectors. U3 [29], UNSW [30], DOM [31], and OKB [32] detectors
were recommended for calculating GbSQI.

2. iSQI: Liu et al. developed the iSQI index [2]. It assesses the interval abnormal
index for RR interval time series (with QRS locations) with a fixed time window.
RR intervals are sorted in ascending order, and then, the 15% percentile value
RR15 and 85% percentile value RR85 are selected, and iSQI is defined as:

iSQI ¼ RR15=RR85 ð10Þ

Similar to GbSQI, detection performance iSQI was heavily dependent on the
performance of QRS detector selection.

3. rsdSQI: The relative standard deviation (STD) of QRS complex [33]:

rsdSQI ¼ 1
N

XN
i¼1

σri
σai � 2 ð11Þ

where σri is the STD of each QRS (from R�0.07 to R +0.08 s) and σai is the STD
around each QRS (from R �0.2 to R +0.2 s).

4. eSQI: The relative energy in the QRS complex [33]:

eSQI ¼
P

iEri
Ea

ð12Þ

where Eri ¼ ∑ x2 is the energy of each QRS segment (from R �0.07 to
R +0.08 s), i ¼ 1, 2, 3, . . . is the detected QRS complex in the analysis window,
and Ea is the energy of the analysis window.
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5. bsSQI: Baseline wander check in time domain [33]:

bsSQI ¼ 1
N

XN
i¼1

Rai
Bai

� �
ð13Þ

where Rai is the peak-to-peak amplitude of the ECG waveform around each QRS
complex (from R�0.07 to R +0.08 s), R is the fiducial marker of QRS complex of
QRS detector, i ¼ 1, 2, 3, . . ., and N is the detected QRS complex in the analysis
window. Bai is the peak-to-peak amplitude of baseline (filtered by a 1-Hz
low-pass filter, H(z) ¼ 0.0503/(1 � 0.9497z�1)) around each QRS complex
(from R �1 to R +1 s).

6. hfSQI: The relative amplitude of high-frequency noise [33]:

hfSQI ¼ 1
N

XN
i¼1

Rai
Hi

� �
ð14Þ

where the ECG signal (x) was multiplied by integer coefficient high-pass filter,
with the difference equation y( j)¼ x( j)� 2x( j� 1) + x( j� 2). Then, the filtered
signal ( y) was summed for every six points s( j) ¼ |y( j)| + |y( j � 1)| + � � � + |y
( j � 5)|. Rai is the peak-to-peak amplitude of each QRS complex. Hi is the mean
of s( j) before each QRS complex (from R �0.28 to R �0.05 s).

7. tSQI: tSQI assesses the morphology consistency of any two ECG beats (with
QRS locations) within a fixed time window. The correlation matrix C ¼ [cij] is
constructed, where Cij is the correlation coefficient between the ith beat and the
jth beat. tSQI is defined as:

tSQI ¼
PM

i¼1

PM
j¼1cij

M2 ð15Þ

where M is the beat number in a fixed time window.
8. pcaSQI:A ratio comprising of the sum of the eigenvalues associated with the five

principal components over the sum of all eigenvalues obtained by principal
component analysis applied to the time-aligned ECG cycles detected in
the window by the eplimited algorithm, segmented at 100 ms either side of the
R-peak [18].

9. picaSQI: Periodic component analysis (PiCA) periodicity measure of the
ECG waveform nonlinear characteristic [33]. We define the covariance of the
signal X(t) as:

CX τð Þ ¼ Et X t þ τð ÞX tð Þf g ð16Þ

where Et{•} indicates averaging over tτ, τ is a constant time lag. In order to apply
this to the ECG signal, we replace τ with a variable τt that is calculated from beat-
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to-beat ECG. Therefore, in each ECG cycle, the sample at time instant t is
compared with the sample t + τt, which is the sample with the same phase
value in the succeeding ECG beat. Then,

picaSQI ¼ CX τtð Þ
CX 0ð Þ
����

���� ¼ Et X t þ τtð ÞX tð Þf g
Et X tð Þ2
n o

������
������ ð17Þ

2.5 Entropy Measures

Entropy as a measure of the complexity of an unstable time series has been widely
used for signal processing and analyzing. Many algorithms about entropy have
emerged. The approximate entropy (ApEn), which was proposed by Pincus in
1991, represents a simple index for the overall complexity and predictability of
time series. It has been widely applied to clinical physiological signal studies [34]. It
is derived from the computation of the correlation integral [35]. However, the ApEn
produces biased estimation for the complexity of physiological signals with self-
matching. To relieve this bias, Richman et al. proposed another statistic, the sample
entropy (SampEn) [36]. SampEn is derived from approaches developed by
Grassberger and coworkers. SampEn(m, r, N) is precisely the negative natural
logarithm of the conditional probability that two sequences similar for m points
remain similar at the next point, where self-matches are not included in calculating
the probability. Thus, a lower value of SampEn also indicates more self-similarity in
the time series.

However, for the ApEn and SampEn, the poor statistical stability has not been
solved. The inherent reason for their poor statistical stability is that the two entropy
measures are based on the Heaviside function of the classical sets, which is basically
a two-state classifier that judges two vectors as either “similar” or “dissimilar,” with
no intermediate states [37, 38]. To overcome this problem, Chen et al. [12, 16]
proposed a statistic named fuzzy entropy (FuzzyEn), in which the Heaviside func-
tion was replaced by the Zadeh fuzzy sets. However, these entropy measures are
heavily dependent on the predetermined parameters and confined to data length.
Therefore, Li [39] developed a novel measure—distribution entropy (DistEn). The
DistEn took full advantage of the inherent information underlying the vector-to-
vector distances in the state space by probability density estimation.

In this chapter, we analyze the performances of these four entropy measures on
the ECG signal quality assessment. The detailed calculation processes of ApEn,
SampEn, FuzzyEn, and DistEn are given in the Appendix.
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2.6 Lempel–Ziv (LZ) Complexity

Lempel–Ziv (LZ) complexity is a measure of signal complexity and has been applied
to a variety of biomedical signals. It is a useful approach for evaluating the irregu-
larity of physiological time series. In most cases, the classic LZ complexity (CLZ)
algorithm is executed by transforming an original signal into a binary sequence by
comparing it with a preset median or mean value as the threshold [40]. That is,
whenever the signal is larger than the threshold, one maps the signal to 1, otherwise,
to 0. So the ECG signal should be coarse grained and transformed into a symbol
sequence before the LZ calculation.

However, some studies have found most exiting LZ algorithms (CLZ and MLZ)
with signal irregularity rather than complexity. Furthermore, the LZ values from
random signals overlap with those from chaotic signals, corroborating to the inac-
curacies found in LZ algorithms. Therefore, Zhang et al. developed a novel encoding
LZ (ELZ) algorithm to directly and accurately quantify the irregularity, rather than
the complexity, of a physiological time series.

In this chapter, we analyze the performances of LZ and ELZ algorithm on the
ECG signal quality assessment. The detailed calculation processes of ApEn,
SampEn, FuzzyEn, and DistEn are given in the Appendix.

3 Performance Analysis of SQIs

3.1 Database

In this study, 1000 recordings of standard 12-lead ECGs were employed to detect the
performance of each SQIs. These data came from the 2011 PhysioNet Computing in
Cardiology Challenge [9, 41, 42]. Each ECG recording was 10 s long, sampled
500 Hz. Of all these recordings, 773 were marked as “acceptable,” 225 were marked
as “unacceptable,” and 2 were “unascertainable.” But these tags were determined for
12-lead signals, not for the single lead. Therefore, the database could not be used to
evaluate the performance of these indicators on single-lead ECG signal. For this
reason, we relabel the ECG recording on a single ECG channel. For more informa-
tion about relabeling, please refer to the reference [28]. At last, we obtained 12,000
10-s marked ECG records, a total of 9941 acceptable and a total of 2059 unaccept-
able 10-s ECG segments. In this chapter, lead-fall detection was used firstly, and
1071 10-s ECG segments from unacceptable group were detected as lead fall.
Therefore, only 988 unacceptable segments were used for performance analysis of
SQIs. Table 1 shows the detail description of the database.
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3.2 Evaluation Methods

In this chapter, sensitivity (Se), specificity (Sp), and modified accuracy (mAcc) were
used for measuring the performance, which are defined in (18–20).

Se ¼ TP
TPþ FN

� 100% ð18Þ

Sp ¼ TN
TNþ FP

� 100% ð19Þ

mAcc ¼ Seþ Sp
2

� 100% ð20Þ

where TP was the number of marked unacceptable segments correctly classified as
“unacceptable.” FP was the number of marked acceptable signals falsely classified as
“unacceptable.” TN was the number of marked acceptable signals correctly classi-
fied as “acceptable.” FN was the number of marked acceptable signals falsely
classified as “acceptable” [23].

In this chapter, 26 SQI indexes were selected to analyze the performances on
ECG signal SQA. We tested the performances from both single SQI feature-based
classifier and multiple SQI feature-based classifier. For single SQI feature-based
classifier, each SQI feature was input to an SVM classier for training a classification
model. For multiple SQI feature-based classifiers, the selected (sorted based on the
performance of single SQI feature) features were input to an SVM classier for
training a classification model. The Gaussian kernel was used in SVM. C and γ
were optimized using a grid search method with the search range over C (from 0.5 to
724) and γ (from 4 to 32). For each test, a tenfold cross-validation was used. Figure 2
demonstrates the evaluation process. The threshold was also used for classifying.

3.3 Results

Table 2 shows the total classification performances (mAcc, Se, Sp) for single GbSQI
feature-based classifiers. In order to analyze and compare the performances of each
SQI better, we sorted the results of mAcc from high to low and presented the results

Table 1 The description of the database

Description
No. of
recordings

Sample
frequency (Hz)

Record
length (s) Source

Lead fall 1071 500 10 2011 PhysioNet/CinC Chal-
lenge training set
https://physionet.org/chal
lenge/2011/

Unacceptable 9941 500 10

Acceptable 988 500 10

Total 12,000 – –
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in Fig. 3. Table 3 and Fig. 4 show the total classification performances (mAcc, Se,
Sp) for multiple GbSQI feature-based classifiers. In Table 2, the threshold detecting
results are also presented.

As shown in Table 2 and Fig. 3, the SQI based on the QRS waves presented best
performances, especially bSQI-2, bSQI-4, tSQI, and picaSQI (mAcc all >90%).
These SQIs were highly dependent on the QRS detection algorithm. Second, the
SQIs based on the nonlinear characteristic presented better results, especially
SampEn-SQI, Fuzzy-SQI, and ELZ-SQI (mAcc all >85%). However, SQIs based
on the time-domain features and frequency-domain features did not show good
performances. In Table 2, the results from threshold detecting were shown. Because
some SQI results are difficult to judge the range of the threshold with the naked eye,
threshold detection was not carried out, such as basSQI, pSQI, HpSQI, and pcaSQI.
For other SQIs, the results of threshold detecting and SVM classer were equal.

Based on the results of single SQI, we sorted the results mAcc from high to low
and selected (sorted based on the performance of single SQI feature) features to
training a multifeature classification model. The performance of the classifier
increased initially and then held steady as the features increased. The classification
performance was not proportional to feature number. As shown in Table 3 and
Fig. 4, when the first 14 SQIs were selected, the classification model presented the
best result (mAcc ¼ 95.2%). The continuous increase of the SQIs reduced the
performance of classification. Especially, if the four bottom SQIs (PLI-SQI, rsdSQI,
purSQI, and hfSQI) were selected, the performance of classification was very
terrible. Figure 4 did not show the results of the last four models in order to display
the previous results better.

SQIs

26 features 

Sort 

1st

2nd

3rd

4th

5th

6th

7th

26th

26 feature combinations

1:   1st

2:   1st ,2nd

3:   1st ,2nd,3rd

4:   1st ,2nd,3rd,4th

5:   1st ,2nd,3rd,4th,5th

6:   1st ,2nd,3rd,4th,5th ,6th

26: 1st , 2nd 23th, 26th

best 

classified 

combination 

SVM 

classified 

method

10-folder

Cross 

validation

Step 1 Step 2
Single SQI feature-based classifier Multiple SQIs feature-based classifier

SVM 

classified 

method

10-folder

Cross 

validation

Fig. 2 Demonstration of the evaluation process
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4 Discussion and Conclusion

Results demonstrated that the SQIs based on the QRS waves presented best perfor-
mances. These SQIs were highly dependent on the QRS detection algorithm.
Therefore, QRS detector selection was quite important. Literature [28] pointed out
that two aspects should be considered for the QRS selection: one is the own character
of the QRS detection algorithm, and the other is the relationship between the selected
detectors. Different QRS detection algorithms were sensitive to different types of
noise [43]. First, the selected detectors should have high sensitivity and specificity in
QRS detection. Second, the selected detectors should be complementary. In this
chapter, the constructions of bSQI-2 and bSQI-4 are in full compliance with the
literature [28] recommendations. For bSQI-2, the QRS detectors U3 [29] and UNSW
[30] were selected, and for bSQI-4, the QRS detectors OKB [32], UNSW, U3, and

Table 2 The classified results of single feature for 26 SQIs

Category No. Signal quality 

index 

SVM Threshold 

detection mAcc Se Sp 

Time domain 

features 

1 sSQI 80.06 2.14 87.84 4.55 72.95 1.47 81.02 

2 kSQI 80.42 3.04 84.18 6.17 77.37 4.34 82.51 

3 SDN-SQI 83.41 2.34 83.00 4.59 83.86 2.58 85.83 

4 PLI-SQI 68.08 1.87 65.25 5.72 70.41 5.52 74.55 

Frequency 

domain 

features 

5 purSQI 52.78 0.22 99.47 0.53 0.79 0.76 79.10 

6 basSQI 75.49 2.70 63.49 4.30 87.92 2.29 -- 

7 bsSQI 82.22 1.81 69.73 4.32 94.85 1.60 81.31 

8 pSQI 77.37 1.44 61.96 3.21 92.78 1.59 -- 

9 HpSQI 83.66 2.19 73.13 4.06 93.93 0.92 -- 

10 LpSQI 78.11 2.29 81.40 3.91 74.92 2.65 79.75 

11 MpSQI 82.99 1.60 92.57 3.32 73.28 1.56 85.15 

SQI based on 

the QRS 

waves 

12 tSQI 91.98 1.00 96.10 1.68 88.12 1.70 92.45 

13 iSQI 87.31 2.88 87.09 4.73 87.87 3.51 89.29 

14 rsdSQI 67.18 12.03 97.70 7.27 9.91 31.34 87.50 

15 hfSQI 50.00 0.00 100.00 0 0.00 0.00 79.21 

16 eSQI 76.22 2.09 85.66 4.57 66.57 3.81 84.33 

17 picaSQI 90.83 1.35 94.84 1.65 86.93 2.39 91.66 

18 pcaSQI 74.24 2.45 90.37 3.87 57.73 2.59 -- 

19 bSQI-4 93.70 1.49 93.43 2.98 93.79 1.25 94.00 

20 bSQI-2 93.84 1.47 93.43 2.58 94.18 1.45 94.13 

Nonlinear 

characteristic 

21 ApEn-SQI 83.28 2.33 84.46 3.96 81.70 1.91 75.69 

22 SampEn-SQI 85.57 2.52 79.64 4.92 91.42 2.55 85.23 

23 Fuzzy-SQI 86.33 2.60 80.47 4.98 91.89 1.91 85.41 

24 DistEn-SQI 80.55 2.42 62.09 4.62 98.98 0.57 76.01 

25 LZ-SQI 83.34 1.52 77.42 4.56 89.23 2.97 83.89 

26 ELZ-SQI 86.61 2.25 80.99 4.96 91.72 1.25 86.55 
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Fig. 3 The line chart of the classified results (mAcc, Se, Sp) of single feature

Table 3 The classified results of multifeature combination for 26 SQIs

The number of Signal quality mAcc Se Sp 

1 bSQI-2 93.82±1.47 94.21±1.42 93.43±2.58 

2 bSQI-4 94.36±1.44 94.38±1.45 94.35±2.91 

3 tSQI 94.11±1.05 92.35±1.60 95.86±2.22 

4 picaSQI 93.85±0.96 91.94±1.91 95.76±2.12 

5 iSQI 93.92±1.06 92.03±1.96 95.81±2.26 

6 ELZ-SQI 94.05±0.85 92.33±1.82 95.76±1.96 

7 FuzzyEn-SQI 94.33±0.94 92.52±1.88 96.15±1.66 

8 SampEn-SQI 94.24±1.02 92.42±1.98 96.06±1.64 

9 HpSQI 94.58±0.98 93.05±1.93 96.10±1.73 

10 SDN-SQI 94.63±1.01 93.39±1.77 95.86±1.75 

11 LZ-SQI 94.64±0.92 93.42±1.67 95.86±1.72 

12 ApEn-SQI 95.03±0.85 93.96±1.82 96.10±2.96 

13 MpSQI 95.00±1.00 93.90±1.95 96.10±2.31 

14 bsSQI 95.20±0.83 94.25±1.71 96.16±1.85 

15 DisEn-SQI 94.47±0.86 92.69±1.81 96.25±1.43 

16 kSQI 94.46±0.84 92.68±1.80 96.25±1.43 

17 sSQI 94.42±0.73 92.54±1.67 96.30±1.65 

18 LpSQI 94.48±0.76 92.57±1.70 96.39±1.60 

19 pSQI 94.35±0.78 92.40±1.83 96.30±1.37 

20 eSQI 94.35±0.83 92.41±1.82 96.30±1.45 

21 basSQI 94.35±0.87 92.41±1.83 96.30±1.45 

22 pcaSQI 94.34±0.84 92.44±1.86 96.25±1.37 

23 PLI-SQI 50.00 0.00 100.00 

24 rsdSQI 50.00 0.00 100.00 

25 purSQI 50.00 0.00 100.00 

26 hfSQI 50.00 0.00 100.00 
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DOM [31] were used. For other indexes based on QRS detecting, OKB detector was
employed. This detector presented the best R-wave detecting performance on the six
ECG databases, especially dynamic ECG signals [44]. For the nonlinear character-
istic, ELZ-SQI, Fuzzy-SQI, and SampEn-SQI had good performances (mAcc all
>85%).

From Table 2, the reason for the difference between SVM and threshold detecting
is that the tenfold cross-validation was employed for the SVM and the best threshold
was chosen from all the samples. As the results shown, the SQI selection is very
important. The best result from bSQI-2 was 93.84%, whereas the worst result of
purSQI was only 52.78%. The results are very different. In this chapter, the SQIs
(bSQI-2, bSQI-4, tSQI, picaSQI, SampEn-SQI, Fuzzy-SQI, and ELZ-SQI) were
recommended.

There are some limitations in this study. First, in this study, only 26 SQIs were
analyzed although there are lots of SQIs at present, which were not considered
because of space constrain. Second, because some algorithms were published in a
theoretical way without online code and some literatures only include a few guide-
lines for real implementation and do not fully explain the necessary preprocessing
operations, some SQIs were coded by ourselves. Therefore, the detection results in
this study may be different from those in the other literatures, but these differences
are slight. Third, a unified signal normalization processing was performed before
SQI calculation for the fair comparisons among different SQI methods.

In this chapter, a systematical evaluation work was performed on 26 widely used
SQI algorithms. Seven SQIs (bSQI-2, bSQI-4, tSQI, picaSQI, SampEn-SQI, Fuzzy-
SQI, and ELZ-SQI) were recommended. The first 14 SQI combinations showed the
best performances.

Fig. 4 The line chart of the classified results (mAcc, Se, Sp) of multifeature combination
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Appendix

A.1 ApEn_SQI

To solve the problems of short and noisy recordings in physiological signals, Pincus
[45] presented approximate entropy (ApEn) as a measure of complexity that is
applicable to noisy, medium-sized datasets. For an N sample time series {u
(i) : 1 � i � N}, given m, form vector sequences Xm

1 through Xm
N2mþ1 as

Xm
i ¼ u ið Þ, u iþ 1ð Þ, . . . , u iþ m� 1ð Þf g, i ¼ 1, . . . ,N � mþ 1 ð21Þ

where m is the length of compared window. For each i � N 2 m + 1, let Cm
i rð Þ be

(N – m + 1)�1 times the number of vectors Xm
j within r of Xm

i . By defining

ϕm rð Þ ¼ N � mþ 1ð Þ�1
XN�mþ1

i¼1

lnCm
i rð Þ ð22Þ

where ln is the natural logarithm, Pincus defined the parameter:

ApEn m, rð Þ ¼ lim
x!1 ϕm rð Þ � ϕmþ1 rð Þ� � ð23Þ

In this chapter, ApEn_SQI was defined as:

ApEn SQI ¼ ApEn m, rð Þ ð24Þ

where m ¼ 2, r is equal to the 0.15 times of standard deviation of the signal.

SampEn_SQI

Sample entropy (SampEn) is a modification of approximate entropy (ApEn), used
for assessing the complexity of physiological time-series signals, diagnosing dis-
eased states [46]. Now assume we have a time-series data set of length N ¼ {x1, x2,
x3, . . ., xN} with a constant time interval τ. We define a template vector of length m,
such that Xm(i) ¼ {xi, xi + 1, xi + 2, . . ., xi + m � 1} and the distance function d[Xm(i),
Xm( j)](i 6¼ j) is to be the Chebyshev distance. We define the sample entropy to be

SampEn m, r,Nð Þ ¼ � ln
Am rð Þ
Bm rð Þ

� �
ð25Þ
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where Bm
i is (N � m � 1)�1 times the number of vectors Xm

j within r of Xm
i , where

j ranges from 1 to N � m, and j 6¼ i to exclude self-matches, and then define

Bm rð Þ ¼ N � mð Þ�1
XN�m

i¼1

Bm
i rð Þ ð26Þ

where Am
i is (N � m � 1)�1 times the number of vectors Xmþ1

j within r of Xmþ1
i ,

where j ranges from 1 to N � m, and j 6¼ i to exclude self-matches, and then define

Am rð Þ ¼ N � mð Þ�1
XN�m

i¼1

Am
i rð Þ ð27Þ

In this chapter, ApEn_SQI was defined as:

SampEn SQI ¼ SampEn m, r,Nð Þ ð28Þ

where N is equal to the length of the signal, m ¼ 2, r is equal to the 0.15 times of
standard deviation of the signal.

FuzzyEn_SQI

FuzzyEn [46] excludes self-matches and considers only the first N � m vectors of
length m to ensure that Xm

i and Xmþ1
i are defined for all 1 � i � N � m. For times

series {u(i) : 1 � i � N}, form vectors:

Xm
i ¼ u ið Þ, u iþ 1ð Þ, . . . , u iþ m� 1ð Þf g � u0 ið Þ, i ¼ 1, . . . ,N � mþ 1

	 
 ð29Þ

where u0 ið Þ ¼ m�1
Pm�1

j¼0u iþ jð Þ.
For finite datasets, FuzzyEn can be estimated by the statistic:

FuzzyEn m, r,Nð Þ ¼ lnφm rð Þ � lnφmþ1 rð Þ ð30Þ

where φm rð Þ ¼ N � mð Þ�1PN�m
i¼1 ϕm

i rð Þ and φmþ1 rð Þ ¼ N � mð Þ�1PN�m
i¼1 ϕmþ1

i rð Þ .
And ϕm

i rð Þ ¼ N � m� 1ð Þ�1PN�m
j¼1,j6¼iD

m
ij .

Given vector Xm
i , calculate the similarity degree Dm

ij of its neighboring vector Xm
j

to it through the similarity degree defined by a fuzzy function:

Dm
ij ¼ μ dmij , r

� �
ð31Þ
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where dmij is the maximum absolute difference of the corresponding scalar compo-
nents of Xm

i and Xm
j . For each vector Xm

i i� 1, . . . ,N � mþ 1ð Þ, averaging all the
similarity degree of its neighboring vectors Xm

j j� 1, . . . ,N � mþ 1, and j 6¼ ið Þ,
we get ϕm

i rð Þ.
For a ECG signal,

FuzzyEn SQI ¼ FuzzyEn m, r,Nð Þ ð32Þ

where N is equal to the length of the signal, m ¼ 2, r is equal to the 0.15 times of
standard deviation of the signal.

DistEn_SQI

Distribution entropy was established by Li et al. [39]. For times series
{u(i) : 1 � i � N}, form vectors:

X ið Þ ¼ u ið Þ, u iþ 1ð Þ, . . . , u iþ m� 1ð Þf gi ¼ 1, . . . ,N � mf g ð33Þ

Here, m indicates the embedding dimension. Define the distance matrix
D¼ {di, j} among vectorsX(i) andX( j) for all 1� i, j�N�m, wherein di, j¼ max {|
u(i + k) � u( j + k)|, 0 � k � m � 1} is the Chebyshev distance between X(i) and X
( j). The distribution characteristics of all di, j for 1� i, j� N�m should be complete
quantification of the information underlying the distance matrix D. We here apply
the histogram approach to estimate the empirical probability density function ofD. If
the histogram hasM bins, we use pt, t¼ 1, 2, . . .,M to denote the probability of each
bin. To reduce bias, elements with i ¼ j are excluded when estimating the empirical
probability density function.

Define the DistEn of u(i) by the classical formula of Shannon entropy, that is

DistEn mð Þ ¼ � 1
log 2 Mð Þ

XM
t¼1

pt log 2 ptð Þ ð34Þ

LZ Complexity

The calculation process of LZ complexity is summarized as follows [17, 40]. For
CLZ complexity, the coarse-graining process is performed by comparing signal
X with a threshold to transform X into a binary sequence R. That is, whenever the
signal is larger than the threshold, one maps the signal to 1, otherwise, to 0. The
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mean or median of the signal is usually selected as the threshold. The MLZ converts
signal X ¼ x1,x2, . . ., xn to a 0, 1, 2, . . ., γ-sequence S, where γ is an integer number
higher than 3. After the coarse-graining process, the LZ complexity counter c(n) of
the new symbol sequence can be calculated according to the rules. Let S and Q,
respectively, denote two strings, and SQ is the concatenation of S and Q, whereas
string SQπ is derived from SQ after its last character is deleted (π means the
operation to delete the last character in the string). Let v(SQπ) denote the vocabulary
of all different substrings of SQπ. Initially, c(n) ¼ 1, S ¼ s1, and Q ¼ s2, and thus
SQπ ¼ s1. In summary, S¼ s1, s2, . . ., sr, andQ¼ sr+1, and thus SQπ ¼ s1s2, . . ., sr. If
Q belongs to v(SQπ), then sr+1, that is, Q is a substring of SQπ, and so S does not
change, and renew Q to be sr+1sr+2, and then judge if Q belongs to v(SQπ) or not.
This process is repeated untilQ does not belong to v(SQπ). Next,Q¼ sr+1sr+2, . . ., sr
+i, which is not a substring of SQπ ¼ s1,s2, . . ., srsr+1,. . ., sr+i�1; therefore, c(n) is
increased by 1. Subsequently, S is renewed to be S ¼ s1s2, . . ., sr+i, and Q ¼ sr+i+1.
The procedures are repeated until Q is the last character. Concurrently, c(n) is the
number of different substrings (new pattern) contained in the new sequence. Finally,
c(n) can be normalized as:

C nð Þ ¼ c nð Þ log a nð Þ
n

ð35Þ

where n is the length of signal X, α is the number of possible symbols contained in
the new sequence, and C(n) is the normalized LZ complexity and denotes the arising
rate of new patterns within the sequence. In practice, the normalized complexity C
(n), instead of c(n), is considered.

ELZ Complexity

ELZ transforms each xi contained within the original signal [17] X ¼ x1, x2, . . ., xn
into a three-bit binary symbol b1(i)b2(i)b3(i), and the process is described as.

The first binary digit b1(i) is determined by comparing xi with a threshold Tmean

which is the mean of signal X, and it is defined as:

b1 ¼
0 if xi < Tmean

1 if xi � Tmean


, i ¼ 1, 2, . . . n ð36Þ

The second binary digit b2(i) is determined by the difference between xi and xi�1,
and it is defined as:
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b2 ¼
0 if xi � xi�1 < 0

1 if xi � xi�1 � 0


, i ¼ 1, 2, . . . n ð37Þ

where b2(1) is set to 0.
For the third binary digit b3(i), a variable Flag is first denoted as:

Flag ið Þ ¼ 0 if xi � xi�1j j < dm

1 if xi � xi�1j j � dm


, i ¼ 2, 3, . . . n ð38Þ

where dm is the mean distance between adjacent points within signal X. If Flag(i) is
0, point xi is relatively close to point xi�1; otherwise, the two points are relatively far
away. Subsequently, b3(i) is calculated as:

b3 ið Þ ¼ NOT b2 ið ÞXOR Flag ið Þð Þ, i ¼ 2, 3, . . . , n ð39Þ

where b3(1) is 0. Moreover, b2(i)¼ 1 and Flag(i) ¼ 1 mean that xi is not only higher
than xi�1 but also relatively farther from xi�1 compared with b2(i) ¼ 1 and Flag
(i) ¼ 0.
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Signal Quality Features in Dynamic ECGs

Yixuan Li, Chengyu Liu, Yuwei Zhang, and Jianqing Li

Abstract The electrocardiogram (ECG) recorded by a wearable device usually shows
a different signal quality due to the diversity of noise and individual activities. It is often
found that the ECG segment only includes noise without any clinically useful infor-
mation. Therefore, real-time evaluation and feedback of signal quality are required. We
propose a real-time dynamic ECG quality evaluation algorithm based on multi-template
matching and correlation coefficient matrix. We then illustrate the algorithm and
analyze the results using the data from three classification databases of ECG quality.
The total Kappa coefficient of this algorithm is 0.705 and the total accuracy is 81.25%.

Keywords Wearable ECG · ECG quality evaluation · Template matching ·
Correlation coefficient matrix

1 Introduction

Cardiovascular disease (CVD) is a kind of circulatory system disease related to the
heart or blood vessels that seriously endangers human health and safety. In many
developing countries, the incidence of and mortality due to CVD are increasing.
According to the 2017 report on cardiovascular disease in China published in 2018,
it is estimated that more than 40% of residents’ deaths due to diseases are caused by
CVD, which is far higher than other major diseases such as tumors. In recent years,

Y. Li
School of Instrument Science and Engineering, Southeast University, Nanjing, China

University of British Columbia, Vancouver, BC, Canada

C. Liu (*)
The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering,
Southeast University, Nanjing, China
e-mail: chengyu@seu.edu.cn

Y. Zhang · J. Li
School of Instrument Science and Engineering, Southeast University, Nanjing, China

© Springer Nature Singapore Pte Ltd. 2020
C. Liu, J. Li (eds.), Feature Engineering and Computational Intelligence in ECG
Monitoring, https://doi.org/10.1007/978-981-15-3824-7_4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3824-7_4&domain=pdf
mailto:chengyu@seu.edu.cn
https://doi.org/10.1007/978-981-15-3824-7_4#ESM


the mortality rate because of CVD in rural areas has been higher than that in urban
areas, and the number of CVDs will rise rapidly in the next decade.

While smartphones and mobile networks are common, primary health care is still
poorly equipped. Many rural populations around the world rely on clinics staffed by
nonspecialist volunteers, and these clinics identify patients who need secondary care
through healthcare specialists in distant urban hospitals. Thence, the availability of
some inexpensive medical devices, such as electrocardiographs, is becoming
increasingly feasible to rural clinics. These electrocardiographs transmit digital
ECG to smartphones for storage and display, thereby extending the reach of diag-
nostic doctors to remote areas. But technology alone cannot provide consistently
available information without quality control. The quality of collected data can be
improved to assist clinical diagnosis, and growing interest in mobile medicine is
driving the vision of combining smartphones with medical data to provide point-to-
point diagnostic services for underserved populations [1].

At the same time, the study shows that long-duration ECG can effectively
improve the detection rate of arrhythmia. However, the ECG signal is at the millivolt
level, which is very weak and sensitive to environmental noise. The quality of the
dynamic ECG will be far worse than that of routine ECG due to individual activities,
which seriously affects the accuracy of the results. Therefore, it is important to
evaluate the quality of dynamic ECG and filter the noise. Also, due to the limitation
of power consumption on the mobile terminal and the demand for real-time results,
the classification algorithm using many signal features and the complex network is
inappropriate, so it becomes extremely urgent to design an algorithm with simple
operation and real-time feedback of ECG classification results.

In 2011, the PhysioNet/CinC challenge called for the development of an algo-
rithm that achieves real-time quality assessment of ECG signals and noise filtering.

Clifford et al. [2] quantified the spectral energy distribution, higher-order
moments and inter-channel and inter-algorithm agreement through a series of signal
quality metrics. Seven indicators (12 leads, a total of 84 features) of each channel
were calculated and submitted to a support vector machine (SVM) or a multilayer
perceptual neural network (MLP) for classification.

Di Marco et al. [3] used time-frequency analysis to evaluate ECG quality by
identifying ECG contaminants (baseline drift, flat line, QRS artifact, stray spikes,
gradually changing amplitude, other noises, etc.) on a single lead. Classification was
based on cascaded single-condition decision rules (SCDRs) tested levels of contam-
inants against classification thresholds.

Hayn et al. [4] evaluated four ECG quality indexes: a no signal detector, a spike
detector, a lead crossing point analysis, and the quantization of the robustness of QRS
detection. Conditions and thresholds were set respectively to realize classification.

Johannesen and Galeotti designed a two-step algorithm [5]. First, a signal with
macroscopic errors (signal missing, large voltage offset, and signal saturation) was
marked as unacceptable and filtered. Then, the baseline drift, power line noise, and
myoelectric noise were quantified. Finally, the global noise was obtained after
weighted addition, and the threshold value was set to realize classification.

The objective of these algorithms is to evaluate the quality of clinical available
and unavailable ECG signals. Remond et al. [6] separately labeled 300 single-lead
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ECG records. By identifying motion artifacts, QRS signal position and quality, and
comparing the original unfiltered signal with the filtered signal, the three-level
quality indexes (good, middle, and poor) were obtained. Seven groups of features
based on template and signal morphology were introduced into the Parzen window
supervised statistical classifier model to realize signal three classification.

In this chapter, an ECG quality evaluation algorithm mainly based on the signal
quality matrix is proposed. Many researchers used the matrix to represent features of
the signal and quantified the signal quality to score or classify it.

Henian Xia et al. [7] proposed a matrix of regularity (MoRE) to measure the
degree of irregularities in the ECG. They used some tests such as missing signals,
overlaps between leads, and irregular beats to construct the MoRE. MoRE is a 12�12
matrix, where each column corresponds to a lead. The elements represent the
influences of irregularities due to artifacts in the corresponding lead or other leads
on the present lead. Therefore, R will be a zero matrix if ECG quality is perfect since
no irregularity exists, and R will be ‘away’ from the zero matrix if the artifact
increases. Finally, they computed properties of the MoRE as scores to grade the
quality of ECGs.

Yatao Zhang et al. [8] calculated and quantified the power spectrum, baseline
drifts, amplitude difference, and other time-domain features to build the feature
matrix. The matrix is assessed using KSVM and GA to determine the ECG quality
degree.

Yun Chen and Hui Yang [9] utilized Dower transform to derive the 3-lead VCG
from the 12-lead ECG to preserve the useful information and reduce the redundant
part, thereby being more efficient in the computer processing and analysis of the
ECG signal quality. The transformation of an ECG into a VCG was done using a 3�8
Dower transformation matrix (DTM) and the back operation was done by an 8�3
inverse DTM.

2 Real-Time Dynamic ECG Quality Evaluation Algorithm
Based on Multitemplate Matching and a Correlation
Coefficient Matrix

In this chapter, a new real-time dynamic ECG quality evaluation algorithm based on
multitemplate matching and a correlation coefficient matrix is proposed. It consists
of six parts: (1) ECG waveform pretreatment; (2) QRS detection; (3) standard
deviation of the RR interval; (4) ECG signal multitemplate matching and a correla-
tion coefficient matrix; (5) processing of the correlation coefficient matrix; and (6) a
fusion evaluation algorithm. Figure 1 shows the specific process of the algorithm.
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2.1 ECG Waveform Pretreatment

ECG is often contaminated by noise and artifact, which may superimpose on a clean
signal or cover the original ECG signal in the frequency band of interest and appear
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Fig. 1 The specific process of the algorithm
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in morphology like an ECG itself. Therefore, it is necessary to perform noise
preprocessing of an ECG signal for subsequent processing.

2.1.1 Abnormal Signal Detection

Abnormal signals, including step signals, linear signals, and saturation signals, are
classified as C. Multiple continuous QRS complexes cannot be detected on these
signals, which are of low signal quality and clinical uselessness, mostly caused by
the following noise or artifact:

Patient-electrode motion artifacts: movement of the electrodes away from the skin
contact area, resulting in impedance changes between the skin and the electrodes,
leading to potential changes in the ECG. It usually manifests as a rapid but contin-
uous baseline jump or complete saturation for 0.5 s.

Data collecting device noise: artifacts produced by signal processing hardware,
such as signal saturation.

According to experimental simulation, if abnormal signals are not detected and
filtered first, they will be deformed after baseline drift processing, which may lead to
QRS false detection. Therefore, abnormal signals have to be detected and filtered at
the beginning.

If there is a straight segment longer than 0.25 s in the 10 s ECG signal, it indicates
that the signal has an obvious step, straight line, or saturation segment, which should
be classified as a clinically useless C signal.

2.1.2 Baseline Drift Filtering

Baseline drift is one of the main artifacts in ECG recording, which is usually caused
by human respiration, body shaking, and temperature drift of the component equip-
ment. It is a low-frequency noise with a frequency of 0.15–0.3 Hz. It presents a
sinusoidal curve that changes slowly and overlaps with the S-T frequency band, thus
affecting ECG signal detection [10].

The baseline drift can be removed by passing the original signal through a high-
pass filter. A Butterworth filter has the characteristics of simple design, comprehen-
sive function, low Q value requirement for components, and easy manufacture. The
frequency response curve of the Butterworth filter achieves maximum smoothness
and uniformity in the passband and gradually drops to zero in the stopband. The
transfer function of the filter is as follows:

H u, vð Þ ¼ 1

1þ D0
D u, vð Þ

� �2n ð1Þ
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where n is the order of the filter and D(u, v) is the cut-off frequency. A Butterworth
high-pass filter with a cut-off frequency of 0.5 Hz is used to filter baseline drift noise
and improve the SNR.

2.2 QRS Detection

The QRS position is detected by the classical algorithm Pan and Tompkins based on
difference threshold judgment and the ‘jqrs’ algorithm based on wavelet transform,
and the QRS detected jointly by the two methods is regarded as the final QRS
position within the tolerance error range of 60 ms. This way can ensure the accuracy
of detection, laying a foundation for template matching of ECG signals and the
calculation of other indicators such as the standard deviation of RR interval and QRS
number.

2.3 The Standard Deviation of the RR Interval

An RR interval sequence is defined as:

RR ¼ RR1, RR2, . . . , RRnf g ð2Þ

The standard deviation (STD) of RR interval is defined as:

Sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

RRi � RR
� �2s

ð3Þ

where n is the number of the RR interval, i is the serial number of the RR interval,
RR is the average of the RR interval. Sn is used to measure the dispersion degree of
RR interval sequences. If obvious abnormal values are detected in RR interval
sequences, it indicates that normal QRS complexes could not be detected in this
segment and there is a large noise.

2.4 ECG Signal Multitemplate Matching

The principle of template matching and correlation coefficient method is to place the
template image in the larger image to be searched, and to achieve the research
objective by moving the template image and calculating the similarity between the
subimage and the template image in each place.
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The index measuring the similarity level of two vectors i and j is the correlation
coefficient ρij. In the broad sense, it can represent the mathematical distance. It has
the following properties:

j ρij j� 1 ð4Þ

The higher the value of jρijj, the higher the correlation between the two vectors,
and the lower the value of jρijj, the lower the correlation between the two vectors,
accordingly. When jρijj ¼ 0, the two vectors are not relevant.

The QRS complexes’ positions at the first and last ends of the QRS sequence
detected in Sect. 2.2 are discarded to ensure that the template length will not exceed
the signal boundary. The template center is n QRS complexes after the removal of
both ends. By setting two templates with different lengths, the searching of signal
images in different scopes is realized. The template lengths of the two groups are the
integral value of 0.5 times the average RR interval length (short template) and 1 time
the average RR interval length (long template), respectively.

Extract the heartbeats with the above two template lengths, match each heart beat
template with all the heart beat templates including itself, and get the correlation
coefficient matrix R, which is defined as:

R ¼

1 ρ12 � � � ρ1n
ρ21 1 � � � ρ2n
⋮ ⋮ ⋱ ⋮
ρn1 ρn2 � � � 1

2
6664

3
7775 ð5Þ

The ρij (i, j ¼ 1, 2, . . .n) is the correlation coefficient obtained by template
matching between Ti, the ith template, and Tj, the jth template.

Correlation coefficient ρij is defined as:

ρij ¼
Plength

n¼1 Ti nð Þ � Ti

� �
T j nð Þ � T j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPlength

n¼1 Ti nð Þ � Ti

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPlength
n¼1 T j nð Þ � T j

� �2q ð6Þ

where length is the template length, Ti and T j are the average of template Ti and
template Tj, respectively.

2.5 Correlation Coefficient Matrix Processing

2.5.1 QRS Number

QRS number (Nr) can be derived from the correlation coefficient matrix.
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Nr ¼ nþ 2 ð7Þ

If the QRS number (Nr) of ECG signals with a length of 10 s satisfies Nr < 5 or
Nr> 40, the signal is abnormal, which is a noise signal and should be filtered out [5].

2.5.2 PCA Processing

The correlation coefficient matrix contains the correlation degree information
between two pairs of each heart beat template centered on QRS complexes. How-
ever, in order to evaluate the overall quality of the signal, the correlation coefficient
matrix is required to process and reflect the overall correlation of the signal.

Principal Component Analysis (PCA) is a multivariate statistical method pro-
posed by Pearson in 1901 and further developed by Hotelling in 1933. It is a
technique of data dimensionality reduction. By referring to linear fitting, high-
dimensional data of n-dimension are divided into data projected on k new orthogonal
axes, and a large number of related variables are converted into k independent
variables (principal components).

The correlation coefficient matrix obtained by template matching is analyzed by
PCA, and the eigenvalues and eigenvectors are calculated and arranged in order from
large to small, and the maximum contribution rate P is calculated and defined as:

P ¼ λmaxPn
i¼1λi

ð8Þ

where λmax is the greatest eigenvalue.
The proportion of the variance of a principal component in the total variance, that

is, the proportion of the eigenvalue in the total eigenvalue, is defined as the
contribution rate. Since the variance of each principal component is decreasing,
the information contained gradually decreases, too. Through the observation, the
better the signal quality is, the higher the interpretation of the first principal compo-
nent to the signal data is, and the higher the value of P is. On the other hand, the
poorer the signal quality is, the lower the interpretation of the first principal compo-
nent to the signal data is, the lower the value of P is, and more principal components
are needed to explain this ECG information.

Here, two maximum contribution rates, Pmin and Pmax, are used to represent the
correlation degree after matching of short and long templates. High value of the
P indicates that the ECG signal in this segment is more consistent with the charac-
teristic of approximate periodic fluctuation, and the signal quality is good, which is
suitable for clinical use; otherwise, the signal quality is poor and clinically useless.
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2.6 Fusion Evaluation Algorithm

By integrating STD of RR interval, QRS number, maximum contribution rate and
other indicators, thresholds are set according to the ROC curve and Youden index to
classify signal quality levels and filter out type C signals that could not be used
clinically.

Vector X ¼ [T _ line, Sn,Nr,Pmin,Pmax], where T _ line is the duration of straight
segment, Sn is the STD of the RR interval, Nr is the QRS number, Pmin is the
maximum contribution rate obtained by the short template, and Pmax is the maximum
contribution rate obtained by the long template.

For the acquired original dynamic ECG signals, set the threshold value of each
indicator and divide the signal quality levels. The specific steps are as follows:

(a) If T _ line > 0.25 s, the signal segment is judged to be type C and clinically
useless; otherwise, step b is entered.

(b) If the STD of the RR interval satisfies Sn > 500ms, the signal segment is judged
to be type C and clinically useless; otherwise, step c is entered.

(c) If the QRS number Nr satisfies Nr< 5 or Nr> 40, the signal segment is judged to
be type C and clinically useless; otherwise, step d is entered.

(d) The maximum contribution rates Pmin and Pmax are obtained by template
matching and correlation coefficient matrix processing. If the sum of Pmin and
Pmax satisfies ∑P < 55, the signal segment is judged to be type C and clinically
useless; If ∑P > 125, the signal segment is judged to be type A and of good
quality; If 55 � ∑ P � 125, the signal segment is judged to be type B, clinical
available but the signal quality is relatively poor;

(e) Finally, type C ECG signals are filtered out to realize real-time quality evaluation
of dynamic ECG.

3 Demonstration of ECG Three-Classification Quality
Evaluation Algorithm

3.1 ECG Waveform Pretreatment

3.1.1 Abnormal Signal Detection

Figure 2 shows an abnormal signal, which includes step signals, linear signals, and
saturation signals. If this signal is not filtered out first, QRS complexes will be
detected falsely after baseline drift processing.
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3.1.2 Baseline Drift Filtering

Figure 3 demonstrates the comparison of the effects after baseline drift filtering
processing. The baseline signal becomes stable after filtering.

3.2 The Standard Deviation of the RR Interval

After experimental induction and analysis, it is found that if Sn> 500ms, it indicates
that the discretization degree of the RR interval sequence is serious, and many
abnormal values are included. If the value of Sn is larger than 500 ms, the signal is
determined as type C. As shown in Fig. 4, the STD of the signal Sn ¼ 702ms; this is
a noise signal.

Fig. 2 Abnormal ECG signal
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3.3 ECG Signal Multitemplate Matching

The deep blue curves displayed in Fig. 5 are the short template and the long template,
respectively.
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3.4 QRS Number Obtained from the Matrix

If the number of QRS complexes is less than 5, this signal is classified as type
C. Figure 6 illustrates that three QRS complex waves are detected, and the number of
waves is not within the range of the QRS waves of the normal ECG signal.

Fig. 5 Short template and long template
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Fig. 6 A type C signal with Nr ¼ 4
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Therefore, the signal should be classified into class C and filtered according to the
rules.

3.5 The Signal Examples Mainly Classified by the Matrix

Type A ECG signals satisfy ∑P> 125,∑P is the sum of Pmin and Pmax. In Fig. 7,∑P
equals 131.2, 137.7, and 153.2, respectively.

Type B ECG signals satisfy 55 � ∑ P� 125, ∑P is the sum of Pmin and Pmax. In
Fig. 8, ∑P equals 71.4, 62.3, and 56.9, respectively.

Type C ECG signals satisfy ∑P < 55, ∑P is the sum of Pmin and Pmax. In Fig. 9,
∑P equals 41.4, 42.6, and 54.1, respectively.

3.6 Classification Result Analysis

In this work, three evaluation indicators named F-measure, Kappa coefficient, and
accuracy (ACC) are employed to evaluate the reliability of the training model. The
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definitions of recall rate (REk), precision rate (PEk), and accuracy rate (ACC) are
below:

REk ¼ C1k
C1k þ C2k

ð9Þ

PEk ¼ C1k
C1k þ C3k

ð10Þ

ACC ¼
P3

k¼1C1kP3
k¼1C1k þ

P3
k¼1C2k

¼
P3

k¼1C1kP3
k¼1C1k þ

P3
k¼1C3k

¼ 2
P3

k¼1C1k
2
P3

k¼1C1k þ
P3

k¼1C2k þ
P3

k¼1C3k
ð11Þ

where C1k represents the number of type k ECG signals that are identified as type
k correctly. C2k represents the number of type k ECG signals falsely identified as
other two types; C3k represents the number of other two types of ECG signals falsely
identified as type k signals.

Conflict exists in the index of precision and recall sometimes, so they need to be
considered comprehensively. F-measure is a weighted and average of precision rate
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and recall rate, which can comprehensively reflect the classification of the model.
The index of F-measure is defined as:

Fβ ¼
β2 þ 1
� �

PEk � REk

β2PEk þ REk
ð12Þ

The value of β is assigned 1 under normal circumstances. The definition of F1 is
as follows:

F1 ¼ 2� PEk � REk

PEk þ REk
ð13Þ

For a classification algorithm, the higher the F1 measure, the more effective the
classification method is.

Kappa coefficient is mostly used for testing consistency and measure classifica-
tion accuracy, which can be obtained through the confusion matrix. The value of
Kappa coefficient ranges from 0 to 1. When Kappa value is in the interval from 0.61
to 0.80, it indicates a high degree of consistency between the classification results
and the actual results. When Kappa value is in the interval from 0.81 to 1, it means

0 1 2 3 4 5 6 7 8 9 10
time(s)

0

2

4
am

pl
itu

de
(m

V)

0 1 2 3 4 5 6 7 8 9 10
time(s)

1

2

3

4

am
pl
itu

de
(m

V)

0 1 2 3 4 5 6 7 8 9 10
time(s)

0

2

4

6

am
pl
itu

de
(m

V)

Fig. 9 ECG signals of type C
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that the classification results are almost identical with the actual results. Kappa
coefficient is defined below as:

Kappa ¼ p0 � pe
1� pe

ð14Þ

where the p0 value equals the accuracy rate. Suppose that the number of actual
samples of each type is a1, a2, a3, and the number of predicted samples of each type
is b1, b2, b3, and the total number of samples is n. pe is defined as:

pe ¼ a1 � b1 þ a2 � b2 þ a3 � b3
n2

ð15Þ

The confusion matrix is derived from 320 pieces of data (type A: 60, type B:
120, type C: 140) in the three-classification database, as shown in Fig. 10 below.

Table 1 lists the measurement performance of the dynamic ECG quality evalua-
tion algorithm proposed in detail.

Then, using the test set (type A: 10, type B: 10, type C: 10) for evaluation, total
accuracy is 76.7%.

The result analysis above indicates that the algorithm can effectively realize the
quality evaluation of dynamic ECG signals.

A B C

A 40 20 0

B 10 103 7

C 8 15 117

Proposed

Referenced

Fig. 10 Confusion matrix

Table 1 Measurement
performance of this chapter

F1-measure Kappa ACC

A B C

0.678 0.798 0.886 0.705 0.8125
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4 Summary

This chapter mainly introduces the principle and specific steps of a real-time ECG
quality evaluation algorithm based on multitemplate matching and correlation coef-
ficient matrix. Computation of three classification indexes of F-measure, Kappa
coefficient, and accuracy of the three-classification database proves that the algo-
rithm is not only simple to calculate, but also has high accuracy and a good
classification effect. It can be effectively applied to the dynamic ECG quality
assessment in real time.
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Motion Artefact Suppression Method
for Wearable ECGs

Huanqian Zhang and Jianlong Zhao

Abstract Due to the development of the Internet of Things, there has been increas-
ing interest in the use of wearable electrocardiograms (WECGs) in the outdoor
environment instead of in a resting state at a hospital. During daily activities,
the WECG signals will suffer additional motion artefacts (MAs) originating from
the interface between the electrode and the conductive adhesive and the stretching of
the skin. However, MAs in WECG signals are highly difficult to suppress because
MAs and WECG signals have similar frequency spectra.

In this review, we briefly discuss motion artefact suppression methods, from the
origin of the motion artefacts to detecting the motion artefacts and then suppressing
the motion artefacts.

The metabolic difference between the live skin cells of the inner layer and the
dead skin cells of the stratum corneum create an ‘injury current’. When a force is
applied to the skin, the membrane of the dead skin cell breaks, and then, sodium will
flow into the cells through the crack and ultimately form the ‘injury current’. When
the current flows through the resistor of the stratum corneum, there will be a potential
change, which is the MA.

Adaptive filters (AFs) have been extensively applied in biomedical engineering
because of their simplicity, real-time processing ability and robustness. These filters
can remove MAs from WECG signals by using a reference signal that is correlated
with MAs and uncorrelated with the WECG. We also describe two concepts of
reference signal detection.

Because of the nonstationary properties of motion artefacts, low filter output
distortion and high QRS beat detection accuracy cannot be simultaneously
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generated. Hence, we propose a new feed forward combined adaptive filter algo-
rithm to overcome this limitation.

Finally, we provide an overview of recent findings for the adaptive filter
algorithm-based motion artefact suppression method.

Keywords Wearable ECG · Motion artefacts · Electrode tissue impedance · Noise
suppression · Adaptive filter

1 Introduction

With the increase in human life expectancy, the trend of ageing is evident. In 2050,
the population of elderly people (greater than 60 years old) will exceed that of young
people (less than 15 years old). There will be a large expense in medical care because
of ageing, and the health of elderly people will determine the overall cost of medical
insurance and the frequency of using advanced medical equipment. Therefore,
people must remain healthy as the life expectancy increases. Wearable medical
services will be a major part of helping elderly people decrease the frequency of
hospital medical treatments and increase their life expectancy.

Among the various medical conditions, heart disease has the highest mortality rate.
ECGs are widely used to detect heart disease. Wearable ECGs are a new technology
that extends ECG detection from hospitals to daily life. However, patients move about
during the course of their daily life, and the weak ECG signal will be affected by
motion artefacts, leading to an incorrect estimation of ECG features and triggering
unnecessary warnings. Recently, many studies have been published to find the origins
of motion artefacts and methods of suppressing motion artefacts.

In this chapter, we will review these studies. First, we will discuss the source of
motion artefacts from the view of anatomical and circuit models. Second, we will
describe the detection of motion artefacts from the electrical hardware system
domain. Finally, we will introduce a method for suppressing motion artefacts
using an adaptive filter.

2 The Origin of Motion Artefacts

Tam andWebster [1] found that the amplitude of the deformation potential decreases
when the stratum corneum is scraped away. They concluded that the major source of
motion artefacts is the skin/paste interface. The magnitude of the change in skin
potential will be significantly affected by the degree of skin abrasion.

The skin is made up of three layers: the epidermis, the dermis and the subcutaneous
layer. The stratum corneum is the surface layer, which is composed of dead cells. The
stratum granulosum and the stratum basale are located below the surface layer,
forming the layers of the epidermis. The dermis is located underneath the stratum
basale. Connective tissue, elastic tissue and living cells make up the rest of the dermis.
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Many skin models have been suggested in the literature, but Edelberg’s skin
model is the most widely accepted.

In Fig. 1, Ee is the potential across the epidermis barrier membrane, wherein the
magnitude of Ee is a function of the composition of the electrode paste. Re is the total
series resistance of the epidermis. Because jEe j < j Esj, skin abrasion decreases Re

such that Re � Rs, thereby resulting in a less negative skin potential. Additionally,
the smaller variation in Re caused by skin deformation leads to a much smaller
variation in skin potential.

Es is the potential across the sweat duct membrane at the layer of the stratum
basale. Es is variable because of the diverse salt concentration in sweat. Rs is the total
resistance in the sweat duct, for which the magnitude is determined by the height of
the column of saline in the sweat duct and the permeability of the sweat duct wall.
Sweat gland activity in response to sympathetic activation increases the sweat
column, decreasing Rs. Hydration of the stratum corneum also has an effect on
reducing Re. The long settling time of the offset potential after applying the elec-
trodes is the result of the wetting of the stratum corneum over time, which is caused
by sweat and the interaction between the sweat and the paste. Eskin can be expressed
as shown in Eq. (1):

Eskin ¼ Ee þ Re
Es � Ee

Rs þ Re

� �
ð1Þ

A variation in the skin potential results from changes in any of the four param-
eters. Thus, the net variation in the offset potential of the recording system is the sum
of the individual variations in skin potential under each electrode. Diagnostic ECG
measurements usually use a lower cut-off frequency amplifier of 0.05 Hz. Very slow
variations in the offset potential cause a negligible drift in the baseline. In contrast,
rapid variations in the offset potential dEoffset=dtimeð Þ lead to obvious motion artefact
problems. For example, when dEoffset=dtime ¼ 2mV=min , the baseline varies by
0.1 mV. The lower cut-off frequency is 0.5 Hz or higher in the monitoring mode,
so that even greater variations in the offset potentials are tolerable.

The metabolic process of different skin layers causes ion diffusion [2].
Thakor and Webster [3] hypothesized that the metabolic process is the result of

the differences in metabolic activity between the dead cells located in the outer layer
of the skin and the cells located in the inner layer.

Rs Re

Fig. 1 Edelberg’s skin
model [1]
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When mechanically stretching the skin, the skin potential V increases by several
millivolts. Thakor and Webster explained the origin of this motion artefact ΔV as a
reduction in the extracellular channel resistance Z.

The foundation of this model is based on two hypotheses. First, they hypothe-
sized that the skin potential arises from a constant current source called ‘injury
current’, which is generated by the difference in metabolic activity between the dead
cells of the stratum corneum and the viable cells of the inner layers of the skin.
Second, they hypothesized that this injury current flows through the extracellular
channels, generating a negative DC voltage that drops from the inside to the outside
of the skin. The skin potential is shown in Eq. (2):

V ¼ �RIð Þ Rmð Þ Ið Þ= Rt þ RC þ Rmð Þ ð2Þ

where RC is the impedance of the stratum corneum, Rt is the impedance of the
transitional region shunted by the current I of negatively charged ions and Rmis the
impedance of the measuring device. With Rm � (Rc + Rt), the following expression
can be obtained:

V ¼ �Rtð Þ Ið Þ ð3Þ

Because of the first hypothesis (I is constant), the only way to obtain variations in
V when stretching the skin is to assume that Rtalters V : ΔV ¼ (�ΔRt)(I )

In the report by Talhouet and Webster, their model is not perfect because of the
values of ΔZ that can be positive or negative at high values of Z and the difference in
shape between ΔV and ΔZ.

They explained the increase in Z in their study. They assumed that Rc increased
more than Rt decreased when stretching the skin. The different behaviour between Rc

and Rt could be clarified by the geometrical configuration of the skin cells. The
decrease in Rt can be explained by the geometrical arrangement of the stratum basale
and stratum granulosum, as stretching the skin causes the extracellular channels to
increase in diameter. The stratum corneum cells fit together when they are displaced
horizontally so that the horizontal channels between the cells form the main resis-
tance pathway for ions.

When stretching the skin, the length of the current pathway increases, and the
cross-sectional area of the current pathway decreases. This phenomenon occurs
because the cells that are linked together by tight junctions or gap junctions can
elongate under stretching.

They also suppose that the diffusion of Na+ ions across the proximal side of the
membrane is increased by stretching a cell in the transitional layer. This action will
cause the interior potential of the cell to be more positive. Viscoelastic stretching and
relaxation of the cell membrane could occur with long time constants and cause
variations in the skin potential with long time constants.

Burbank and Webster [4] studied the artefact potential amplitude and strain
dependence as a function of the stretching force and time.
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The skin under an electrode site was stretched for a time t with a repetition period
r. A relationship was then defined between the resulting artefact potential amplitude
A, which was defined as the maximum change in skin potential during skin
stretching in relation to that just before skin stretching, and the relaxation time
(r � t) before stretching. The fitted equation appeared to be quite good, as shown
in Eq. (4):

A ¼ A0 1� e� r�tð Þ=τ
� �

ð4Þ

where A0 is the maximum artefact and τ is the time constant of the system. The time
constant is 26 s, which is much longer than the electrical time constant of the skin at
low frequencies, which is normally approximately 0.1 s.

By changing the stretching force and simultaneously monitoring the skin strain,
potential and impedance, they compared the relationship between the strain and
stretching force and the artefact potential. They increased the stretched mass from
0 to 1 kg and then decreased it again to 0 kg at a uniform rate of 30 g/s. The
impedance was very nearly stable during this cycle. Although the strain was a
nonlinear function of the stretched mass, it had a small time dependence or
‘creep’. However, as discussed above, the artefact potential showed a very obvious
time dependence.

3 The Detection of Motion Artefacts

Hamilton et al. [5] reported a system for evaluating and comparing motion artefact
removal with sensors and impedance. A sinusoidal current was applied to an active
electrode pair. They used the series resistances on the secondary side of the trans-
former to limit the current between the electrodes to 1 μA with a 1 V peak-to-peak
output. Low-pass and high-pass filters were used to separate the impedance signal
from the ECG and artefact signals. The low-pass filter and high-pass Butterworth
filter had cut-off frequencies of 50 and 100 Hz, respectively. They applied an
envelope detector to monitor the amplitude of the impedance signal after separating
the motion artefact signal from the impedance signal. The final envelope signal was
scaled to the impedance between the two electrodes. A bandpass filter with lower
cut-off frequencies of 0.16 Hz and upper cut-off frequencies of 106 Hz removed the
DC level of the impedance from the envelope signal. They converted the motion
artefact signal to a digital signal with 10-bit resolution and a 120 Hz sample rate.

Spinelli et al. reported a simple direct method to measure the unbalance at power
line frequency [6]. The external resistors Rc ensure a well-known common-mode
input impedance. To apply the method to three electrode amplifiers, the third (right
leg) electrode must be disconnected.

They measured actual skin-electrode impedances. Two plate electrodes (12 cm2

in area) were placed on the right and left inner arms of the patient (ECG lead I). In the
next experiment, they measured the imbalance in the electrode impedance between a
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plate electrode (right arm) and a cup electrode (left arm), which showed a signifi-
cantly larger discrepancy than those obtained for two similar electrodes placed on the
same location. The main interference voltage is expressed as shown in Eq. (5):

VD:EMI ¼ VCM
ΔZE

ZC
ð5Þ

where ΔZE is the electrode-skin imbalance, ZC is the average common-mode input
impedance and VCM is the patient common-mode voltage.

Romero et al. [7] reported an application-specific integrated circuit (ASIC) for
monitoring three-lead ECG signals and one-channel skin-electrode impedance or
electrode-tissue impedance (ETI). To calculate the ETI, they injected an AC signal
and measured the voltage induced by the ETI. To avoid any interference with the
ECG signal, the frequency of the AC signal needs to be outside the ECG range. They
used a square-wave current at 2 kHz with a known amplitude. With the model shown
in Fig. 2, concurrent measurement of the resistive and capacitive components was
required for accurate measurement of the ETI information.

By demodulating the impedance signal with an in-phase frequency f(0) and a
quadrature-phase frequency f(90), they separated the resistive and capacitive
components.

The monitoring system synchronously measured the electrode-skin impedance
and the ECG signal. The monitoring system comprised an instrumentation amplifier
(IA), a ripple filter, a programmable gain amplifier and a bandwidth controllable
low-pass filter. The injected AC signal modulates and measures the ETI. An
instrumentation amplifier (IA) amplifies the resulting voltage and demodulates the
voltage with in-phase and quadrature-phase chopper clocks. The output signal of the
IA (in-phase, IMPI; quadrature-phase, IMPQ) will be filtered by a low-pass filter and
amplified by a programmable gain amplifier (PGA) that has four different gains. The
output signals are a measurement of the complex ETI.

The design of the current stimulation block should pay attention to the following
two points. The first is the output impedance of the current generator, which may
reduce the total input impedance of the ECG readout channel. The second is the DC

C Re
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Fig. 2 Circuit
representation of the skin-
electrode interface and
changes in electrical
properties under motion
artefacts [7]
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component of the AC source, which may further amplify the effect of motion
artefacts at the output of the ECG channel. Therefore, they use a chopper-stabilized
AC source. To set the mean value of the stimulation current to zero, they double the
frequency of the AC signal to perform chopper stabilization. The continuous time
impedance monitoring channels demodulate the resulting AC voltage over the
electrode-skin interface. The ECG and impedance signals can be separated in the
frequency domain with a low-pass filter.

Ottenbacher et al. [8] reported a method for detecting motion artefacts by the
simultaneous measurement of electrode-skin impedance with an ECG signal. A
sinusoidal current of 400 Hz was injected at the same electrodes between which
the potential was measured.

High- and low-pass filters separated the impedance and potential signal, respec-
tively. A dual lock-in amplifier reconstructed the impedance signal. They used a very
small current of <1 μA to measure over a very wide range of electrode impedances
(500 Ω to 1 MΩ) and avoid high filter orders to separate the ECG and impedance
signal. They performed the experiments on the forearm of a test subject. They used
tape to attach a fixed reference electrode with gel near the subject’s elbow. In one
experiment, they pressed (Fp) the dry measurement electrode against the subject’s
arm. In a second experiment, they stretched (Fs) the skin under the dry electrode
while they pressed the electrode against the subject’s arm with a small weight.

The results in their study showed that the force, potential and electrode-skin
impedance depended on time (units: s). The potential is on the order of several mV,
and the impedance decreases correspondingly when pressing the electrode against
the subject’s skin. When stretching the skin under the electrode, the potential
exhibits an increase in the mV range, and the impedance also increases. The
variation in the impedance is diverse from subject to subject and greatly relies on
the humidity/sweat on the subject’s skin. They assumed that the varying area of the
electrode-skin contact, instead of the impedance change in the skin, leads to imped-
ance changes. They also found a very good correlation between force, electrode
impedance and electrode-skin potential. Nevertheless, it must be noted that actual
movements are changing constantly with simultaneous stretching and pressing.

A measurement is made with two dry electrodes on the chest. The correlation
between the impedance signal and the ECG signal against time is depicted. The
amplitude of the peaks has less information because it depends on how large
artefacts contaminate the signal. However, the peak reveals good correlation
between the two signals.

Oberg [9] reported a method to monitor the skin-electrode contact. They added an
AC voltage source with the potential U6 between the noninverting input of IC4 and
the ground.

The ECG signal U3 is independent of U5 because of Eq. (6):
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U3 ¼ U2 � U1ð Þ 2 � R1

R2
þ 1

� �
ð6Þ

The feedback loop from the output to the inverting input passes all contact
points A, B and C. Hereafter, assume that the impedances Za, Zb and Zc are no
longer negligible and that the impedances Za and Zb are equal. Zt is the sum of the
impedances between the ground electrode and one of the inputs, e.g. Zt ¼ Za + Zc. A
potential divider is formed by the impedance Zt together with the input resistance Rin

of the amplifier. In this case, the expression for U5 will be Eq. (7):

U5 ¼ U6 1þ 2Zt

Rin

���� ���� ð7Þ

This means that U5 is dependent on Zt. If the ground electrode is completely
loosened, i.e. Zt ¼ 1, then U5 goes to infinity. If the impedance Za 6¼ Zb by an
amount Zdiff, then U5 can be expressed as shown in Eq. (8):

U5 ¼ 2U6 1� 1
Z
Rin

þ 2

���� ���� ð8Þ

U5 relies on the contact impedance. If one of the electrodes at points A or B
becomes loose, Eq. (9) is obtained:

U5 ¼ 2U6 ð9Þ

Hence, if we introduce a voltage source at the noninverting input of IC4, then the
output voltage depends on the contact impedances Za, Zb and Zc. If we compare U5

and U6, we can decide whether the impedance in some of the contact points is too
large.

Degen and Jackel [10] reported a new method that allows continuous monitoring
of electrode-skin impedance. Each channel is preceded by a protection circuit, which
limits the maximal current through the body to 50 μA. They applied the method to a
three-electrode ECG without the additional reference electrode. The operations of
the measurement circuit are explained hereafter. The driven right leg (DRL) loop
will be forced by any voltage appearing at the positive input of the DRL op-amp. The
system reacts in such a way that the differential input voltage of the DRL op-amp is
again zero. In the case of a sinusoidal signal, this phenomenon occurs when the
bandwidth of the DRL loop is larger than the signal frequency. Therefore, at the
input of the instrumentation amplifier (INA), the sinusoidal voltage Vadd appears as a
common-mode voltage. The Common Mode Rejection Ratio (CMRR) of the INA
rejects this additional common-mode voltage, except for the part converted to a
differential signal by the electrode-skin impedance mismatch (potential divider
effect) and amplified by the differential mode gain of each INA. This part is
superimposed on the corresponding output voltage Vouti. If we exclude all other
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signal sources, e.g. power line interference and bioelectric signals, the residual of the
additional common-mode signal Vaddi at electrode i can be calculated.

The input impedance mismatch is expressed in Eq. (10):

ΔZelΔjωCinGDM � V addi

V add
ð10Þ

They applied a sinusoidal force to the signal electrode ‘I’. Moreover, they
measured both the norm of the residual voltage |V _ addi| and the bioelectric
recording. A strong relationship was found between the measured impedance
mismatch and the baseline variation.

Bertrand et al. [11] reported that the prediction of motion artefacts at one
electrode can be further improved by incorporating impedance measurements at
other electrodes in EEG recording.

Comert and Hyttinen [12] reported a simultaneous measurement of impedance at
eight current frequencies during the application of controlled motion to the electrode
under the mounting force of the monitored electrode. They found that the motion is
not reflected by the different frequencies of impedance measurements. The best
correlation between impedance and the applied motion appeared when the imped-
ance current frequencies were greater than 11 kHz. The impedance signal correlated
well with the applied motion; however, impedance had a lower correlation to the
actual motion artefact signal.

Zhang et al. [13] reported an approach that injects an additional common-mode
signal through the reference electrode to simultaneously measure the electrode-tissue
impedance and ECG signal. To suppress the MA in a WECG, a reference signal that
has a high correlation with the MA and a low correlation with the WECG is required
by an adaptive filter (AF). Figure 3 shows that the reference signal for the AF can be
generated by the multichannel electrode-tissue impedance (MC-ETI) detection
approach without any additional sensors.

A 1 kHz AC voltage is forced by amplifier A2 through the driven right leg circuit
and electrode ZLA. Two current paths flow through the body. One flows through ZLA,
ZRA, and Zin to the ground, and the other flows through ZLA, ZLL, and Zin to the
ground. The input impedance of the instrument amplifier is Zin. LL is located several
millimetres below the left breast, RA is located several millimetres below the right
collarbone and LA is located several millimetres below the left collarbone.

When the electrode movement leads to the variation in ZLA, ZLL, and ZRA, the
divided voltages vLL and vRA will vary simultaneously. These voltages are differen-
tially amplified by A3 and A4. A3 and A4 generate two AC voltages vETI _ LL and
vETI _ RA. Moreover, the WECG signal vECG is detected by A1. These voltages are
sampled by an analogue-to-digital converter (ADC) with an 80 kHz sampling rate.
The digital data are transported to the PC. The DC component from vETI _ LL and
vETI _ RA is extracted by a digital lock-in amplifier. The MC-ETI signal can be
calculated by Eqs. (11) and (12):
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ZETI LL � ZLL � Z in � 2ZLAð ÞVETI LL=2VAC � 2ZLA ð11Þ
ZETI RA � ZRA � Z in � 2ZLAð ÞVETI RA=2VAC � 2ZLA ð12Þ

The MC-ETI generating WECG and reference signals in the motionless and
motion state with a period of 50 s are shown in Fig. 4. In the motion state
(15–45 s), the WECG and MC-ETI signals have a high correlation. In the motionless
state (0–15 and 45–50 s), these signals are stable but have low correlation.

The correlation between the MC-ETI and WECG signals over the time offset is
shown in Fig. 5. There is no obvious peak in the black curve at zero time offset in the
motionless state. However, in the motion state, the peak in the red curve at zero time
offset shows a good correlation between these two signals.
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Fig. 4 (a) ECG signal and (b, c) MC-ETI signals [13]
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4 Suppression of Motion Artefacts with an Adaptive Filter

With digital signal processing, the motion artefacts in ECG signals can be
suppressed. Many studies have been reported on artefact suppression, which have
mostly focused on two methods: blind source separation (BSS) and adaptive
filtering.

Changli [14] reported that BSS has found many applications, including digital
image processing, speech signal processing, medical signal processing, geophysical
signal processing, communication signal processing and remote sensing image
processing. When the mixing process and the original signals are unknown, BSS
tries to decompose the observed sensor signals to obtain the unmixed source signals.
However, given some assumptions, BSS has had great success, and many novel and
effective methods have emerged.

Sweeney et al. [15] reported that, as a branch of BSS, independent component
analysis (ICA) can separate different components from the source signals by defin-
ing them as statistically independent components.

Romero [16] reported that motion artefacts and ECG signals are statistically
independent, so they can be separated by ICA.

However, ICA is restricted by data redundancy. ICA requires several independent
sensors and cannot be used in one-channel sensor system, and it is necessary to
ensure that the signal from each sensor is uncorrelated with other sensor signals. The
large computational cost makes ICA very difficult to implement for real-time
low-power applications.

The adaptive filter algorithm can automatically change its filter parameters and is
widely used in the signal processing field.

Thakor and Zhu [17] reported that the adaptive filtering technique is useful in
many biomedical applications. One simple but important application is in 60 Hz
power line interference cancellation.

Fig. 5 Correlation as a
function of the time offset
[13]

Motion Artefact Suppression Method for Wearable ECGs 83



The adaptive filter has a low computational cost and high reliability, so it is very
suitable for real-time low-power applications.

Tong et al. [18] reported that an adaptive filter using electrode motion as the
reference signal can reduce motion artefacts. They measured electrode motion with
two custom-developed sensors: anisotropic magnetoresistive (AMR) and acceler-
ometer (ACC) sensors.

A two-axis AMR sensor was oriented parallel to the body surface, and a three-
axis ACC sensor was developed using two dual-axis ACC chips.

Raya and Sison [19] reported using an accelerometer as a source of noise
reference. Least mean squares (LMS) and recursive least squares (RLS) adaptive
filter algorithms were used. They claimed that the major kinematic acceleration
component during human movement is usually found in the vertical direction.
Their adaptive filter can effectively reduce motion artefacts in stress ECGs.

Hamilton and Curley [20] reported that adaptive removal of motion artefacts can
be 12.5 dB by using a skin stretching signal derived from sensors mounted on a foam
electrode.

The most significant artefacts generated by skin stretching can still be adaptively
removed. However, their sensors each cost approximately $600 because of the
integrated stretching sensor.

Hamilton et al. [5] reported using a variable step size LMS (VSS-LMS) adaptive
filter to remove motion artefacts in ECG signals:

bs n½ � ¼ s n½ � �
Xi
0

win n� i½ � ð13Þ

w�
i ¼ wi þ βbs n½ � � n n� i½ � ð14Þ
β n½ � ¼ aP200

i¼1
s n�i½ ��n n�i½ �j j

200

ð15Þ

where s[n] represents the nth sample of ECG corrupted by noise, n[n] represents the
nth sample of the skin impedance or skin stretching signal and bs n½ � is the nth
estimation of the signal without motion artefacts. Note that ‘w’ represents filter
coefficients that are iteratively updated after each sample by Eqs. (14) and (15),
where ‘a’ is 8.44 	 10�11 V2.

Wen-Ching et al. [21] reported using the normalized least mean squares (NLMS)
adaptive filter algorithm to suppress the motion artefact from the primary input of
ECGs. The 120-order finite impulse response (FIR) filter was adaptively adjusted by
the NLMS with a 0.05 adaptive step size. They used the ACC signals and strain
gauge (SG) signals as reference signals. They analysed the correlation between the
ECG and ACC signals and the correlation between the ECG and SG signals. The
higher one was chosen as the master reference, whereas the lower one was chosen as
the slave reference.

Hyejung et al. [22] reported a two-stage cascade LMS adaptive filter for an ECG
monitoring system. The first LMS stage consisted of analogue feedback, which
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prevents signal saturation to reduce the input dynamic range. This approach employs
a high-pass filter, which mainly targets the baseline wandering suppression to
prevent signal saturation. An LMS algorithm with an adaptive step size is introduced
and employed in the second LMS stage to remove the remaining motion artefact.
The adaptive step size algorithm can achieve fast convergence to quickly track large
sudden motion artefacts while preventing the distortion of the ECG component.

They reported a proposed LMS algorithm with adaptive step size control. The
difference between their algorithm and the standard LMS algorithm is that they
integrated an adaptive step size control block. The step size is updated to be large at a
high signal-to-noise ratio (SNR) and small at a low SNR. The variation in both the
reference signal σx(n) and the input signal σd(n) proportionally controls the step size
adaptation function μ0(n), as shown in (16) and (17):

c nð Þ ¼ σx nð Þ � σd nð Þ=p ð16Þ

μ0 nð Þ ¼
μ0, 0 
 c nð Þ < μ0

c nð Þ, μ0 
 c nð Þ < 0:9

0:9, 0:9 
 c nð Þ

8><>: ð17Þ

where ‘σ’ is the standard deviation (STD) of the signal during the half cycle of the
heart rate and ‘p’ is the experimentally determined constant, which sets the μ0(n)
range between 0 and 1.

Romero et al. [23] reported the performance of different implementations of
adaptive filter (AF) algorithms in the context of motion artefact reduction in ECG
signals.

They used the LMS algorithm with the accelerometer as a reference and recursive
least squares (RLS), convex AF and LMS sign-error with the skin-electrode imped-
ance (SEI) as a reference.

Zhang et al. [24] reported a feed forward combined adaptive filter (FFC-AF)
which is consisted of two separate AFs (one fast convergence speed AF ‘FCS-AF’
and one high convergence accuracy AF ‘HCA-AF’) and one combination AF. The
parameter combination varies with the estimation of the reference signal stationary.
Figure 6 describes the structure of the FFC-AF, and the corresponding equation is
shown in Eq. (18):
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(

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
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where X(k) is the reference signal of two separate filters. Parameter λ1(k) is the
combination weight of the filter output, which ranges between 0 and 1. At each
iteration, λ1(k) updates its value according to the stationary degree of X(k) by its
variance δ(k). When X(k) is in the stationary state, δ(k) is lower than the threshold δth,
which means that AF is in the motion artefact (MA)-free state. Then, λ1(k) will
remain at approximately 0 to increase the weight of the high convergence accuracy
AF (HCA-AF) output. When X(k) is in the nonstationary state, δ(k) is larger than δth,
which means that AF is in the MA state. Then, λ1(k) will be maintained at approx-
imately 1 to increase the weight of the fast convergence speed AF (FCS-AF) output.

Figure 7 shows the AF results, in which one triangle represents one QRS beat
detection.

( ) ( ) ( )d k s k n k= +

( )1W k
( )1Y k

( )2W k

( )X k

( )2Y k
( )11 kλ−

( )1 kλ

( )e k

( )Y k

( ) ( ) ( )d k s k n k= + High Convergence 
Accuracy AF (HCA-AF)

Fast Convergence 
Speed AF (FCS-AF)

Combination

Fig. 6 FFC-AF block diagram [24]
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5 Conclusion

With the development of wearable medical technology, an increasing number of
patients with wearable healthcare monitoring devices are moving home from the
hospital. ECGs are important vital tests, which are the basis of wearable healthcare
monitoring.

This chapter illustrates the origins of motion artefacts in ECG signals. Interesting
experimental results are introduced to describe the physical reasons for the observed
motion artefacts. Moreover, circuit models are provided to qualitatively explain the
motion artefacts. Then, we describe the detection of motion artefacts. Several
electrical circuit architectures are provided from single-channel skin-electrode
impedance measurements and multichannel skin-electrode impedance measure-
ments. Finally, we summarize the application of an adaptive filter in motion artefact
suppression. The LMS, NLMS, VSS-LMS, cascade LMS and FFC LMS algorithms
are discussed. These algorithms form the foundation for developing an ECG system
without motion artefacts.
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Part IV
Latest Techniques for Machine Leaning



Data Augmentation for Deep
Learning-Based ECG Analysis

Qing Pan, Xinyi Li, and Luping Fang

Abstract Deep learning has become the technology that gets the most attention in
recent years owing to its admirable performance compared to the conventional
methods in a series of tasks. Though its application in electrocardiogram (ECG)
analysis has enhanced the understanding and the applicability of many disease
diagnosis in clinic, lack of annotated data hampers the deep learning-based ECG
analysis as large amount of data is required for a well-performed deep learning
model. Data augmentation, which refers to the procedure that enriches the dataset by
introducing unobserved samples, plays an important role in this respect. Despite the
successful usage of data augmentation in the image-based deep learning analysis, its
application in one-dimensional physiological signals, such as ECG, is still limited. In
this chapter, we summarize the data augmentation methods applicable for ECG
analysis and examine their performance on a task for detecting atrial
fibrillation (AF).

Keywords Data augmentation · Electrocardiogram · Deep learning · Atrial
fibrillation

1 Introduction

Analysis of electrocardiogram (ECG) plays a significant role in diagnosis and
screening of cardiac diseases. It allows detecting the occurrence of arrhythmia,
which is often responsible for sudden cardiac death and largely related to a series
of cardiovascular diseases [1–3]. In addition, ECG analysis locates the R peak in the
ECG waveform to provide the basis for the analysis of R-R interval pattern, which
contains important information about the autonomic nervous system [4]. ECG
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analysis also contributes to other related fields, such as biometric identification [5]
and emotion assessment [6].

Computerized algorithms have been applied for ECG analysis for decades. A lot
of efforts have been made in locating the QRS complex, recognizing various
heartbeat types, detecting arrhythmia, and so on [7, 8]. For example, the most
famous Pan–Tompkins algorithm for QRS complex detection [9] automatically
adjusts thresholds and parameters periodically to adapt to such ECG changes such
as QRS morphology and heart rate, which makes the detection more effective and
saves much human cost. Wavelet analysis is widely used in the detection of QRS
complexes [10] and the onsets and offsets of P- and T-waves [11], recognizing and
describing isolated heartbeats [12]. With the help of these algorithms, automatic
analysis of ECG becomes possible and increases the efficiency of cardiologists
greatly. It also eliminates the intra- and interobserver variability in recognition and
diagnosis.

Machine learning has shown great advantages and potentials in physiological
signal processing. Zhao and Zhang [13] applied support vector machine (SVM) with
Gaussian kernel to classify six heart rhythm types, and the accuracy of recognition
has reached 99.68%. Emanet [14] used random forest to classify five types of ECG
beats with the accuracy of 99.8% and increased the speed. Li et al. [15] also used a
SVM to classify the ventricular fibrillation and tachycardia, and the validation
accuracy has reached to 96.3%.

Although machine learning methods have got many achievements in the field of
ECG processing, conventional machine learning techniques require complicated
engineering and domain expertise to extract suitable features and design a feature
extractor. However, representing the raw data with appropriate vectors and building
an effective machine learning system [16] are always time consuming and difficult.

By contrast, the emergence of deep learning, which is capable of extracting the
features by the model itself, overcomes the current challenges in the machine
learning field and, therefore, boosts its application in many fields, such as image
processing [17–19] and speech recognition [20–22]. Since deep learning has got
great success in large-scale automatic speech recognition, people start to realize its
great potential in other sequence signal processing fields, such as biomedical signal
processing. As ECG is a kind of time series with specific shape morphological
features, deep learning has become an important approach that can benefit in
promoting the development of automated ECG analysis.

2 Deep Learning Models for ECG Analysis

In supervised learning tasks, deep learning network models can usually be divided
into two types: convolutional neural network (CNN) and recurrent neural network
(RNN). CNN is a kind of neural network specially used to process data with similar
grid structure, which uses convolution instead of matrix multiplication at least in one
layer of the network [23]. Because of its excellent performance on the processing of
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entire visual fields, it is widely used for image classification. RNN is a kind of neural
network used to process sequential data x(1), . . ., x(τ), which can process sequences
of variable length. So they have efficiency on the tasks such as unsegmented
handwriting recognition [24] or speech recognition [25, 26]. Long short-term mem
ory (LSTM) networks, which were put forward by Hochreiter and Schmidhuber in
1997 [27], have become the main method of prediction and classification of time
sequences.

In the past few years, the application of deep learning models for ECG analysis
increases rapidly. Both CNN and RNN models are used for classifying beat type,
locating QRS complex, and detecting arrhythmia. The most representative study is
carried out by Andrew Ng et al. They develop a 34-layer CNN model to beat the
certified cardiologists in detecting a wide range of heart arrhythmias from ECGs
recorded with a single-lead wearable monitor [28]. Ubeyli presented the input to a
RNN classifier by composing feature vectors and Lyapunov exponents of each ECG
beat in classifying ECG signals [29]. This method has successfully classified four
different beat types. Chauhan and his group used deep LSTM networks to detect
abnormal and normal signals in ECG data [30]. The performance of the depth
detection system based on LSTM is 96.45%. In addition, the authors have examined
the type of abnormal signal detected for which type they are successful. Rahhal et al.
proposed a method of ECG data classification based on depth analysis [31]. In the
learning attribute stage, the sparse constraint method is used to superimpose the
autoencoder to remove noise. These learning features were classified by deep neural
network (DNN) structure. Recently, a model specially for atrial fibrillation
(AF) detection was put forward [32], which added an attention network to visualize
which regions of the signal are important while there is an underlying AF arrhythmia
in the signal. So, the model can automatically extract features from the focused parts
of the signal. It also transformed the signal into spectrograms and fed the images to a
CNN to extract more features.

3 Data Augmentation Approaches for ECG Analysis

Success of ECG analysis based on deep learning relies on rich annotated dataset.
Although large amount of ECG recordings is available nowadays thanks to fast
developing digital medical devices, constructing a high-quality annotated ECG
dataset for deep learning model remains challenging. On one hand, it is demanding
for the experienced cardiologists to annotate the recordings. Therefore, the annotated
data are insufficient in quantity and diversity. On the other hand, the incidence of
abnormal cardiac events is much lower than that of normal beats, resulting in a
highly imbalanced dataset. If not properly treated, the imbalance will lead to biased
classification results using deep learning models.

Data augmentation may shed a light to the problem. It refers to a procedure that
enriches the dataset by introducing unobserved samples [33]. Many successful deep
learning applications benefit from efficient data augmentation approaches. For
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instance, in image-based supervised learning tasks, simple parametric transforma-
tions such as rotation and scaling are usually used to perform data augmentation
[34]. While data augmentation has been widely used in many image-based deep
learning applications [35–37], its effect on sequential physiological signals, such as
ECG, has not been extensively explored yet. In this chapter, we summarize the
currently available data augmentation methods for ECG and demonstrate their
application on deep learning-based ECG analysis. As ECG can be processed in
either episode-based form or beat-by-beat manner for different research purposes,
this chapter introduces the data augmentation methods for ECG records and ECG
beats, respectively.

3.1 Data Augmentation for ECG Records

3.1.1 Window Slicing (WS)

Window slicing (WS) for time series data augmentation was first proposed by Cui
et al. [38]. It follows the assumption that a slice of the original recording holds the
same label as the original one. For an ECG recording T consisting of a set of data
points {t1, t2, . . .ti, . . ., tn}, a slice of the original time series can be denoted as Si,
which is a subset {ti, . . ., ti + s � 1} extracted from the original recording T, requiring
0 < i� n � s + 1, where s is the width of the slicing window. The window is slid on
the original recording to generate a set of new recordings {S1, S2, . . ., Sm}, where all
the new recordings in the set have the same length s, and the same label as their
original recording Tdoes. Figure 1 illustrates the WS method.

Selection of the window size is critical for the WS method. Selecting a small
window size may render loss of the discriminative information of an ECG recording.
Oppositely, a large size leads to too much overlapping, which results in high

Fig. 1 Illustration of window-slicing method. With a sliding window of fixed width, cut the
original signal into m slices
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similarity among augmented samples. The selection of an appropriate window size
should be the focus because cutting the time series arbitrarily tends to destroy
temporal correlation in the data [39, 40].

The step length is another parameter. It controls the number of sliced snippets,
which depends on how many new samples are needed. Also, it determines the
similarity among the sliced snippets.

When training the deep learning model, all the augmented slices are considered as
independent training samples. At the testing stage, because the training samples are
shortened compared to the original ones, the testing samples need to be cut into
several snippets (odd number in general) using the same window for data augmen-
tation. Then, the classifier is applied to each snippet, and a majority voter is utilized
to make the prediction.

WS method is especially suitable for CNN models, which require all the samples
to have equal length. It has been widely used in many experiments. It has achieved
excellent performance on University of California, Riverside Home Time Series
Classification Archive, when using multiscale CNN approach as the training model
[38], and the superior performance is ascribed to the WS applied to the dataset
[41]. The greatest advantage of WS is while retaining most of the original informa-
tion, increasing the number and diversity of data.

3.1.2 Permutation

In mathematics, permutation is an act which arranges the elements of a set into a
sequence. If the set is already ordered, its elements shall be rearranged by this act.
Permutation was firstly proposed as a data augmentation method in [42]. It is a
simple way to randomly perturb the temporal location of the events.

Permutation can be used in two ways. On the one hand, it can be used in a whole
recording. It is carried out by dividing each sample into Np subsegments with the
same length firstly. A set was defined with the subsegments from one sample. Then,
all the subsegments in one set were randomly permuted and assemble the perturbed
segments to generate a new recording with the same label of the original signal. This
operation should be repeated tC times, which is the parameter that could be used for
balancing different categories. If we want to balance the number of samples in each
category to Nmax, the tC of class C with NC samples can be calculated as Eq. (1):

tC ¼ Nmax

NC

� �
ð1Þ

where [x] indicates the rounding value of x and Nmax represents the number of
samples after this operation.

In addition, the number of samples in the dataset can be increased to
M (M ¼ λNmax) by modifying the Eq. (2) as:
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tC ¼ M
NC

� �
¼ λNmax

NC

� �
ð2Þ

The number of subsegments Np was defined to satisfy:

Np! > tC > Np � 1
� �

! ð3Þ

in order to guarantee that the permutation does not produce repeating samples.
On the other hand, permutation can be used in together with the WS method to

randomly perturb the temporal location of within-window slices. This method can
provide more diversities because it has two parameters: the width of the window and
the permuting times. The permutation method combined with WS was tested on
wearable sensor data for Parkinson’s disease monitoring [42], and the result indi-
cated that permutation has an improvement on the classification of time series.

3.1.3 Concatenating and Resampling Method

Although permutation method increases the diversity of the dataset, slicing the ECG
episodes and randomly perturbing the events may destroy the orders and morphol-
ogies of the heartbeats. To deal with this problem, a slicing based on characteristic
points and resampling method was proposed [43], aiming to increase the diversity of
the samples, balance the number of samples among the classes, and reserve the
physiological information at the same time. The diagram of the strategy is shown in
Fig. 2.

First, the Pan–Tompkins QRS detector [9] is used to locate the QRS complex of
each heartbeat. Then, the location of the notch between Q-wave and R-peak (starting
point of the QRS) is determined as the characteristic point. All the characteristic
points are represented as q1, q2, q3. . .qn. The episode between q1 and qn is defined as
the selected sequence (SS).

Second, the SS is duplicated and concatenated to the original series. Finally, it
uses a sliding window of size lw to generate tC new samples from the reconstructed
series. tCis calculated by Eq. (1) or Eq. (2). The generated segments are identified as
Si(i ¼ 1, 2, . . ., tC). To ensure that Si have the same annotation with the original
recording, lw should be greater than or equal to the length of the original ECG
recording.

This method duplicates the subsequence, which is sliced from the original data
based on the characteristic points, to generate a series with the same pattern fragment.
The duplication makes full use of the fragment with specific characters, which can help
the deep learning models to learn the determinant features more effectively. Then, as
mentioned above, the WS method is applied to generate more samples.

As the concatenation may disrupt the patterns of R-R interval of the raw signal,
more strict concatenation making use of the information of heartbeat dynamics [44]
could be developed for better quality of data augmentation.
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3.1.4 Window Warping (WW)

Le Guennec et al. introduced a more time-series-specific method based onWS called
window warping (WW) [45], which aims at increasing the diversity of data as well as
the amount. It randomly selects a slice of the time series using a sliding window and
warps it by squeezing or dilating. When applied to the ECG signal, WW can be
illustrated as in Fig. 3.

Fig. 2 Illustration of concatenating and resampling method. (a) Step 1: detect the characteristic
points as starting points, which are denoted as q1, q2, q3, . . .qm; (b) Step 2: select a subsequence SS
{q1, q2, q3, . . .qτ}; (c) Step 3: duplicate the SS and concatenate it with itself; (d) Step 4: use a sliding
window of size lw to slice the sequence which was generated in Step 2 into tC slices
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Like WS, the width of the sliding window is a parameter of this method. As
mentioned above, the WS method can be adopted in order to ensure that sub-
sequences from multilength original series to have same length for training the
network. The other parameter is the warping ratio, which controls the morphology
of the generated signal. A proper warping ratio guarantees that the augmented
sample remains physiological and holds the same label as the original one.

The selection of the warping area is critical for the performance of the WW
method, because for an ECG recording, the time scale has significant physiological
meanings. Different warping areas may result very different interpretations. There-
fore, the WW method is sometimes two-sided. It may introduce nonredundant
samples to the dataset with proper selection of parameters. However, if the warping
area or the warping ratio is not carefully selected, the generated new samples may
destroy the physiological significance, which will impair the deep learning-based
analysis.

3.2 Data Augmentation for ECG Beats

There are about 100,000 heartbeats every day for one person. Therefore, the amount
of heartbeats is usually sufficient for a beat-wise deep learning-based analysis. For
example, in the widely used Massachusetts Institute of Technology-Beth Israel
Hospital (MIT-BIH) Arrhythmia Database, 48 ECG recordings lasting about
30 min contribute 110,159 beats in total. However, as the incidence of abnormal
beats is much lower than the normal ones, the dataset is often highly imbalanced. In
addition, such a dataset is suffering from the low diversity as the number of subjects
is small.

Currently, most studies are only simply removing samples from the prominent
category for balancing the dataset. Acharya et al. proposed a method to generate
synthetic data [46] by varying the standard deviation and mean of Z-score calculated

within-window points

(a) raw signal (b) dilated signal (c) squeezed signal

interpolation of points down-sampling of points

Fig. 3 Illustration of window warping. (a) The raw data with a sliding window, the data points
within the window represent the segment which will be warped; (b) the signal after dilating the data
points by interpolation; (c) the signal after squeezing by down sampling
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from the original normalized ECG signals. The data augmentation introduces high
diversity to the dataset and, therefore, leads to that the trained CNN achieved an
accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in
original and noise-free ECGs, respectively. However, the available data augmenta-
tion methods for ECG beats are limited.

Despite the fact that ECG is intrinsically a one-dimensional (1D) time series, it
can also be represented as two dimensional (2D) if it is plotted as an image, to allow
utilization of the powerful 2D CNN models. Jun et al. firstly proposed an ECG
arrhythmia classification method using a deep 2D CNN with grayscale ECG images
[47]. They plotted each heartbeat in a single image. In order to reduce overfitting and
maintain a balanced distribution between classes, they applied cropping, which is the
most widely used method for image augmentation. Every ECG beat was augmented
with nine different cropping methods: left top, center top, right top, center left,
center, center right, left bottom, center bottom, and right bottom (Fig. 4).

The cropping size is an adjustable parameter in the data augmentation. The
suitable size of cropping is essential for guaranteeing the discriminative information
for each class is kept. Then, these augmented images were resized to the original size
and fed into the network. This method transformed the 1D sequence into 2D images,
so that it can use the CNN models to classify the images, which have much faster
training speed than RNN models. It also has a great contribution in balancing the
ECG dataset and increases the diversity as well.

Fig. 4 Illustration of the cropping data augmentation [47]
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3.3 Other Augmentation Methods

In addition to the methods mentioned above, several other techniques are available
for augmenting physiological time series signals. Jittering is a maneuver that ran-
domly adds jitter on the ECG recordings to simulate the noise [21]. Scaling multi-
plies every data point of the series by a random scalar to compress or stretch the
magnitude. Rotating turns the signal upside down. Cropping randomly removes a
part of the recording. The applicability of these data augmentation methods, how-
ever, is weak in the ECG. Jittering adds redundant noise to the recordings which are
already removed from noise and baseline. Other methods have changed the mor-
phologies of recordings which have physiological significance. Le Guennec et al.
proposed a method for data augmentation that is a mixture between various datasets
[45]. It requests that the chosen datasets share similar time-series length. They used
this method to learn the convolutional part of their model in an unsupervised manner,
which reached an excellent result.

4 Applications on Atrial Fibrillation Detection

In this section, data from the PhysioNet/Computing in Cardiology (CinC) Challenge
2017 dataset were used to illustrate the application of various data augmentation
methods.

The dataset contains 8528 single-lead ECG recordings with different lengths
(9–61 s), which are divided into four types: (1) normal sinus rhythm (NSR),
(2) AF, (3) other abnormal rhythms (OAR), and (4) noise (NO, too noisy to classify).
Note that the OAR class contains signals with premature ventricular contraction
(PVC), premature atrial contraction (PAC), and other abnormal beats. The labels
represented the characters of each recording instead of each single beat. All the
recordings were collected using the AliveCor device (AliveCor Inc., USA), which
were sampled at 300 Hz. The distribution of data is shown in Table 1, and the ECG
waveform of each class is shown in Fig. 5.

The effect the data augmentation methods mentioned in Sects. 3.1.1–3.1.3 were
evaluated on a two-layer LSTM network, which is a widely used RNN architecture.
The structure of each cell is show as Fig. 6.

Table 1 Detailed information
of the dataset

Type # Recording

Time length (s)

Mean SD Max Median Min

NSR 5154 31.9 10.0 61.0 30.0 9.0

AF 771 31.6 12.5 60.0 30.0 10.0

OAR 2557 34.1 11.8 60.9 30.0 9.1

NO 46 27.1 9.0 60.0 30.0 10.2

NSR normal sinus rhythm, AF atrial fibrillation, OAR other abnor-
mal rhythms, NO too noisy to classify
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Each cell of LSTM consists of a forget gate, an input gate, an output gate, and cell
states Ct and Ct � 1.

The forget gate is used to control whether to forget the hidden cell state of the
upper layer with a certain probability. Its activation at time t is defined as Eq. (4).

ft ¼ σ W xt,ht�1½ � þ bfð Þ ð4Þ

The input gate is responsible for processing input of the current sequence
position. Its activation at time t is defined as Eq. (5).

it ¼ σ W xt,ht�1½ � þ bið Þ ð5Þ

Finally, the output gate updates the cell state as Eq. (6).

ot ¼ σ W xt,ht�1 þ bo½ �ð Þ ð6Þ

Among Eqs. (4), (5), and (6), xt represents the input of the sequence at time t.
C represents the memory at each time step. ht � 1 is the activation of the previous
state. W is the weight vector, and b is the bias vector.

The flowchart of the evaluation is shown in Fig. 7.
The number of recordings in each category was augmented to 10,000. Then,

the augmented dataset was split into a training and test set. Ninety percent of the
recordings were selected as the training set and the rest 10% as the test set. The
training set contained a validation set with 30% of data, which was used for early
stopping, and the remaining data were used for network training. The performance of
each method was examined by applying a fivefold cross-validation.

σ σ σtanh

tanh

xt

Ct-1

ht-1

ft it C,
t ot

ht

Ct

ht

Fig. 6 The structure of each cell of LSTM
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We used cross-entropy as the loss function and applied a training optimization
strategy and an early stopping criterion during the training phase. An Adam opti-
mizer [49] was selected for the training process, whose initial learning rate was set as
0.001. The training would be terminated without the loss of validation decreasing ten
consecutive epochs. During the training procedure, any model with a decreased loss
of validation would be saved for testing. We also applied dropout [50] and recurrent
dropout [51] strategies during the training procedure to avoid overfitting.

To evaluate the power of the proposed data augmentation methods for AF
detection, specificity and sensitivity were calculated, which are defined as:

Specificity ¼ TN
TNþ FP

ð7Þ

Sensitivity ¼ TP
TPþ FN

ð8Þ

where TP (true positive), TN (true negative), FP (false positive), and FN (false
negative) indicate the number of recordings correctly labeled as AF, correctly
identified as non-AF, incorrectly labeled as AF, and unrecognized as AF should be
identified as AF, respectively.

F1 score was used as the evaluation index following the rules of the PhysioNet/
CinC challenge 2017 [48]. The F1 score for class C is given as:

Preprocessing

Raw data Remove noise 
and baseline 

Data 
augmentation

5-fold validation

Training set
Testing set

Train the network

Network

Reshape Masking LSTM Softmax NSR,AF,
OAR,NOLSTM

Evaluate the network

Fig. 7 Flowchart of the evaluation approach
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F1C ¼ 2� TP
2� TPþ FPþ FN

ð9Þ

The multiclass F1 score is the weighted average of the F1 score for the three
classes “NSR,” “AF,” and “OAR” following the rule of the PhysioNet/CinC chal-
lenge 2017.

F1 ¼ F1N þ F1A þ F1O

3
ð10Þ

The accuracy for all classes is calculated as:

Accuracy ¼ TPall
TPall þ FNall

ð11Þ

Confusion matrix was used to demonstrate the performance of various methods
more intuitively based on the best performance in the fivefolds.

4.1 Results with Raw Dataset

Table 2 shows the F1 scores and accuracy based on raw data, and Table 3 shows the
specificity and sensitivity of AF.

As seen in Table 2, the performance of the model is low without data augmen-
tation mainly due to the imbalanced and insufficient dataset. The F1 score of AF is
much lower than other two classes. The imbalanced dataset leads the model to
classify most testing samples to the prominent categories, which resulted in confus-
ing accuracy. It needs to be noted that the variance of accuracy is high, which means
the model is not robust. The low specificity of AF indicates that most AF samples
have not been identified correctly.

Figure 8 presents the confusion matrix of the best fold achieved by the model
based on the raw data. The diagonal denotes the number of recordings correctly

Table 2 F1 scores and
accuracy based on raw data

Index Mean � SD

F1N 0.701 � 0.076

F1A 0.080 � 0.147

F1O 0.427 � 0.009

F1 0.403 � 0.065

Accuracy (%) 58.030 � 5.300

Table 3 Specificity and
sensitivity of AF

Index Mean � SD

Specificity (%) 7.792 � 14.944

Sensitivity (%) 98.737 � 2.526
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labeled, while the other cells denote the number of misclassified recordings. As
shown in the figure, more samples were misclassified than the number of correctly
classified samples for AF, OAR, and NO, suggesting that the model gives an inferior
performance based on the raw dataset.

4.2 Results with Window Slicing (WS)

Tables 4 and 5 show the result of the network when using WS to augment the
dataset. Every ECG recording was sliced into a shorter one with the sliding window
size being fixed at 90% of the original recording length.

Comparing with the results shown in Sect. 4.1, it is clear that the F1 scores of all
the categories have improved significantly. The size of the dataset is enlarged, which
enables the model to learn more features and conduct classification more accurately.
And the number of each samples of each category has been set to a fixed one, so the
model can learn features of each category fairly to avoid biased results.

Fig. 8 Confusion matrix
achieved by the raw dataset

Table 4 F1 scores and
accuracy based on WS

Index Mean � SD

F1N 0.836 � 0.063

F1A 0.587 � 0.177

F1O 0.563 � 0.231

F1 0.662 � 0.157

Accuracy (%) 73.505 � 10.475

Table 5 Specificity and
sensitivity of AF

Index Mean � SD

Specificity (%) 76.623 � 4.107

Sensitivity (%) 95.747 � 0.866
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As shown in Table 5, the specificity of AF has been increased largely than using
raw data, indicating the importance of data augmentation. As shown in Fig. 9, the
accuracy of model prediction has been significantly improved. Only 13 AF samples
are misclassified, compared to 48 based on raw data. Meanwhile, more testing
samples of other categories have been classified correctly, suggesting the effective-
ness of the WS method.

4.3 Results with Permutation

In order to balance the dataset, each recording was sliced into different snippets
according to the full arrangement formula (12).

An
n ¼ M ð12Þ

In order to reach the M ¼ 10, 000, n is set as 4 for AF, 3 for NSR and OAR, and
6 for NO. Then, these segments were randomly permutated and arranged to generate
new signals. Tables 6 and 7 show the results of permutation.

It is observed that permutation performed better than WS. This is because in
addition to increasing the dataset size, permutation also increases the diversity,

Fig. 9 Confusion matrix
achieved by WS method

Table 6 F1 scores and
accuracy based on
permutation

Index Mean � SD

F1N 0.851 � 0.015

F1A 0.635 � 0.038

F1O 0.624 � 0.024

F1 0.703 � 0.022

Accuracy (%) 75.967 � 1.750
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which can improve the generalization ability of the model. It can be seen in Table 7
that the detection accuracy of AF is further improved compared to using WS.

Figure 10 indicates that permutation also increases the number of correctly
classified. Although the correct values are lower than WS methods, it should be
noted that the variance is much lower as well, because the permutation method
generates more samples with more diverse morphologies, which helps the model to
learn better.

4.4 Results with Concatenating and Resampling Method

Tables 8 and 9 demonstrate the performance of the model when using the dataset
augmented by concatenating and resampling method.

Table 8 shows that the F1 scores and accuracy are all improved compared to the
results using WS and permutation. This method retains more original information
than randomly segmenting the original signal which may destroy its morphology.

Table 7 Specificity and
sensitivity of AF

Index Mean � SD

Specificity (%) 67.013 � 7.189

Sensitivity (%) 95.644 � 1.272

Fig. 10 Confusion matrix
achieved by permutation
method

Table 8 F1 scores and
accuracy based on
concatenating and resampling
method

Index Mean � SD

F1N 0.883 � 0.007

F1A 0.715 � 0.032

F1O 0.696 � 0.034

F1 0.765 � 0.023

Accuracy (%) 80.750 � 1.605
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Repeating and concatenating the snippet can make the feature more prominent,
which also helps the model to learn more detailed features. So, it has a slight
improvement on the results compared with the two methods mentioned above.

Table 9 shows that this method also gives better sensitivity and specificity.
Figure 11 presents the confusion matrix of this method. Only five testing samples
of AF are misclassified. And the total correct values are greater than those of other
methods.

5 Discussions and Conclusions

Because of the complexity of unstructured signal and the disturbance of noise
affecting the patterns, conventional machine learning has great limitations in ECG
observation. Deep neural networks have shown to be very powerful to learn the
complex patterns in the ECG. However, lack of large amount of data with balanced
distribution and high diversity challenges its successful application in ECG analysis.

Data augmentation is an effective approach to deal with the problem. It has
become an inevitable processing in image-based deep learning applications, whereas
its application in time-series physiological signals remains limited. We have sum-
marized several data augmentation methods for deep learning-based ECG analysis
and demonstrated that data augmentation can improve the performance of deep
learning models greatly in detecting arrhythmia. In spite of these achievements,
the currently available and effective data augmentation methods are still limited. In

Table 9 Specificity and
sensitivity of AF

Index Mean � SD

Specificity (%) 83.117 � 5.631

Sensitivity (%) 95.103 � 1.015

Fig. 11 Confusion matrix
achieved by concatenating
and resampling method
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particular, for beat-wise ECG analysis, data augmentation is not widely used because
it seems that there are “enough” number of beats in the datasets. However, the
diversity of the beats is relatively low as a large number of samples are from limited
number of patients. Therefore, although the algorithms can obtain superior perfor-
mance on the public dataset, their generalization ability is not satisfactory.

Recently, more researches lay their attention on GAN (Generative Adversarial
Network), which is an unsupervised learning method by allowing two neural
networks to contest with each other [52]. As the GAN model is capable of
reproducing samples with realistic properties, researchers start to use it as a tool
for data augmentation based on existing datasets, which has been proved feasible
and potential on time series [53, 54].

In summary, more data augmentation approaches especially designed for ECG
analysis are required to deal with the shortage of annotated data with high quality.
With the help of more advanced data augmentation methods, we believe that deep
learning may play a more significant role in ECG analysis.
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Study on Automatic Classification
of Arrhythmias

Runnan He, Yang Liu, and Henggui Zhang

Abstract Electrocardiogram (ECG) signals reveal the electrical activity of the heart
and can be used to diagnose heart abnormalities. In the past few decades, ECG
signals have been utilized for automatic arrhythmia detection owing to the nonin-
vasive nature and convenience of electrocardiography. However, it is difficult to
extract and select reliable features or design robust and generic classifiers because of
the complexity and diversity of ECG signals. Consequently, improving the classifi-
cation rate of arrhythmias still remains a considerable challenge. To resolve this
pressing issue, we have proposed a model composed of preprocessing, feature
extraction, and classification, where the correct implementation of each part is
crucial for final arrhythmia identification. In this chapter, the literature on existing
algorithms is comprehensively reviewed according to the aforementioned primary
aspects.
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1 Introduction

Cardiovascular diseases are the primary cause of death worldwide. Among them,
cardiac arrhythmias are very common conditions that require new approaches for
early diagnosis and more efficient treatments to prevent heart-related issues. Cardiac
arrhythmia is the general name for several disorders where the heart rhythm is too
slow, too fast, or irregular. Electrocardiography, which records the electrical activity
of the heart, is the most widely applied technique for heart disease diagnosis [1]. A
typical cardiac cycle from one electrocardiogram (ECG) signal is depicted in Fig. 1
[2]. As indicated in Fig. 1, each ECG beat displays morphological and temporal
features of different components, such as the QRS complex, which supply useful
clinical information that assists the automatic diagnosis of arrhythmias. However,
automatic classification of arrhythmias is an enormous challenge owing to the
diverse features of ECG signals from different patients under varying conditions
[3]. Furthermore, each individual displays a particular ECG signal, and different
patients may exhibit distinct ECG shapes for the same disease or similar ECG signals
for different diseases. Consequently, it is necessary to analyze each heartbeat to
detect arrhythmias. It is time consuming for cardiologists to diagnose many patients
by analyzing long ECG signals in an efficient manner, and human errors due to
fatigue can also occur during ECG analysis. Therefore, ECG signal interpretation
can be improved by employing computer-aided algorithms for automatic arrhythmia
detection. Cardiac arrhythmias are characterized by varying in waveform to generate
some modes. Using these modes, it is possible to identify the type of arrhythmia. In
general, the automatic classification of arrhythmias can be divided into four succes-
sive procedures. This chapter presents a comprehensive review of arrhythmia clas-
sification algorithms considering all of the key aspects, including preprocessing,
feature extraction, feature selection, and classification.

The first step includes filtering of the ECG signal, data segmentation, and
balancing. The techniques employed during the filtering directly impact the next
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Fig. 1 A typical cardiac cycle from the MIT-BIH Arrhythmia Database [2]

114 R. He et al.



step and should therefore be carefully selected. After denoising, segmentation is
typically accomplished using the detected QRS complexes or a specific length
depending on the particular requirements. Furthermore, balancing of the dataset is
also important for the classification of arrhythmias. In practical applications, imbal-
anced data is a particularly common problem that requires attention during the
construction of classifiers. Therefore, there is still considerable room for improve-
ment in these aspects of classification.

Among the four key steps, the features employed in the final classification phase
are vital for building a successful model. Thus, the feature extraction step directly
influences the performance and accuracy of the overall sorting process. All of the
information extracted from one heartbeat or a certain length can be applied to assign
the appropriate category. The features can be extracted from the wave morphology
of the ECG or higher-order statistical features obtained using various custom-written
algorithms [4, 5]. Recently, deep neural networks (DNNs) have attracted consider-
able attention for feature extraction and have permitted great achievements in fields
such as computer vision [6]. In contrast to conventional methods, DNNs can
automatically extract features on the basis of the probability distribution of the
dataset. With adequate training samples, the features extracted by a DNN model
can be more comprehensive than those extracted by handcrafted methods. Conse-
quently, numerous researchers have applied DNNs to arrhythmia classification over
the last several years [7, 8]. Following feature extraction, it requires to employ
techniques to reduce the feature dimensionality prior to feature selection [9]. The
final step of classification is to identify arrhythmias from the extracted and selected
feature sets, which is used to construct models. All of these procedures will be
discussed in detail in this paper.

2 Preprocessing

Preprocessing is the first step and consists of filtering and data processing (such as
segmentation and balancing). ECG signals are frequently contaminated by various
types of noise, such as powerline interference, baseline wander, and muscle noise.
Furthermore, imbalanced data is also a common issue that requires balancing by data
segmentation to permit the final classification. These aspects are discussed in this
section.

2.1 Filtering

The raw ECG signals are fed into a filter to eliminate noise originating from the
electrical network, incorrect placement of the electrodes, or even bodily movement.
Among the proposed filters, the simplest and most frequently used method is the
recursive digital filter response to the finite impulse [10]. Although this method is
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effective for reduction of known frequency bands such as powerline interference
(50/60 Hz), the frequency bands of other types of noise are typically unknown.
Although this problem can be overcome by applying multiple filters for various
frequency bands, the casual application of filters such as high-pass and low-pass
ones can distort the morphology of ECG signals, which limits the utility of this
approach for diagnosing cardiac diseases. Therefore, linear adaptive filters have been
proposed for noise removal from ECG signals [11, 12]. However, these filters are not
clearly superior to digital filters [13]. In an effort to improve performance,
researchers have utilized neural networks to construct adaptive filters, which resulted
in significant noise attenuation [14]. In addition, some other methods such as
quadratic filters have been applied for signal denoising while reinforcing the QRS
complex for the subsequent segmentation [15, 16].

Over the past decade, wavelet transforms (WT) have been utilized in various
fields. As a result, numerous filtering algorithms based on WTs have been proposed
to solve the problem of denoising. Owing to their ability to preserve ECG signal
properties and avoid the loss of significant physiological information, WT is effec-
tive for handling diverse types of noise [17–19]. Another study reported a modified
WT referred to as the multi-adaptive bionic wavelet transform, which can be
employed to remove noise and baseline variation from ECG signals. Compared
with conventional WT, this transform exhibits superior performance. Besides wave-
let denoising, other algorithms have also been exploited for noise attenuation. For
example, nonlinear Bayesian filters have delivered promising results for the reduc-
tion of ECG signal noise [20]. Among such filters, the most widely used is the
Kalman filter, which employs the parameters of an ECG dynamic model for noise
reduction and signal compression, and the extended Kalman Filter in particular has
made a huge contribution to data processing owing to its superior performance.

Although techniques for filtering ECG signals are highly developed, the specific
choice of method is dependent on the final task. For dividing ECG signals into
heartbeats, preliminary filtering may be necessary. In contrast, if the goal is the
automatic classification of arrhythmias through deep learning, the noise is likely to
improve the identification accuracy and may enhance model robustness.

2.2 Segmentation

In the segmentation stage, there are generally two ways to partition the signal. For
heartbeat classification, the QRS complex (R peak) is typically used as the central
point, and the signal is cut off a certain length before and after the R peak. After
segmentation, several types of physiological information can be obtained by feature
extraction, which is considered the foundation of automatic classification. Therefore,
the accuracy of QRS complex detection is important as it impacts the following steps
and ultimately the final classification.

Many different algorithms for detection of the QRS complex have been proposed
over more than three decades [21, 22]. Among them, the Pan–Tompkins algorithm,
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which is based on analysis of the slope of the QRS complex, is widely applied for
heartbeat segmentation owing to its simplicity and effectiveness. This algorithm is
also considered one of the gold-standard methods. In some similar algorithms, the
first- and second-order derivatives are calculated, and a sliding window is then used
to determine the location of the QRS complex. Other sophisticated algorithms such
as WT and empirical mode decomposition (EMD) have also been investigated for
QRS complex detection [23, 24]. Based on traditional machine learning methods,
neural networks, support vector machine (SVM) [25], genetic algorithms [26], filter
banks, and quad level vector [27] have also been utilized. For the comparison of
these heartbeat segmentation algorithms, standard public databases must be
employed. In the field of ECG signal processing, the most recommended and utilized
database for the analysis of arrhythmias is the MIT-BIH Arrhythmia Database
(MITDB) [28]. Other databases such as AHA [29] and CSE [30] have also been
employed.

In the classification of arrhythmias, each ECG signal may have a different length
that must be divided into fixed lengths, which are convenient for training the
classification model. In this respect, the China Physiological Signal Challenge
(CPSC) database has been used as an example [31]. As shown in Table 1, each
recording is segmented into lengths of 30 s, which ensures the recording integrity
while avoiding increasing the computational complexity by padding or truncating
the recordings. If the recording length is less than 30 s, the recording is padded to
30 s by assigning zero values at the start. Alternatively, if the length exceeds 30 s, the
extra data is truncated after 30 s. It is possible that the processes of padding and
truncating may have some influence on the classifier performance; therefore, the

Table 1 The training set according to the “Frist label” annotations

Type
Number of
recordings

Time length (s)

Mean SD Min Median Max

Normal 918 15.43 7.61 10.00 13.00 60.00

Atrial fibrillation (AF) 1098 15.01 8.39 9.00 11.00 60.00

First-degree atrioventricular
block (I-AVB)

704 14.32 7.21 10.00 11.27 60.00

Left bundle branch block
(LBBB)

207 14.92 8.09 9.00 12.00 60.00

Right bundle branch block
(RBBB)

1695 14.42 7.60 10.00 11.19 60.00

Premature atrial contraction
(PAC)

556 19.46 12.36 9.00 14.00 60.00

Premature ventricular contraction
(PAC)

672 20.21 12.85 6.00 15.00 60.00

ST-segment depression (STD) 825 15.13 6.82 8.00 12.78 60.00

ST-segment elevated (STE) 202 17.15 10.72 10.00 11.89 60.00

Total 6877 15.79 9.04 6.00 12.00 60.00

Mean, SD, Min, Median, and Max in the header indicate the mean, standard deviation, minimum,
median, and maximum of the time lengths of the recordings, respectively [31]
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operations can be done in different positions, which may decrease the bias when
training the classification model. The details will be discussed in the following
subsection.

2.3 Data Augmentation and Balancing

After segmentation, augmentation and balancing of the dataset are also important for
the classification of arrhythmias. Data imbalance occurs when the number of a
certain class (termed the majority class) in the training set far exceeds the numbers
of other classes (termed minority classes). To the best of our knowledge, most of the
common datasets, such as the MITDB and CPSC databases, are imbalanced. In
clinical diagnosis based on ECG recordings, treatment could be delayed if the
minority class is abnormal samples. Furthermore, the majority of classification
algorithms are developed under the assumption that the training set is balanced,
which will tend to cause the learning algorithm to favor the majority class. This not
only impedes convergence during the training phase but also reduces the generali-
zation ability of the classifier. Therefore, it is crucial to address the data imbalance
problem by focusing on the minority class. Numerous methods have been adopted to
solve this class imbalance, as discussed in detail below [32, 33].

The first method is to modify the distribution of the training data by oversampling
or undersampling. The most common approach to oversampling is to simply copy
the minority class samples randomly, which is termed random oversampling. How-
ever, as this operation can easily lead to overfitting, more advanced techniques have
been proposed, such as the synthetic minority oversampling technique (SMOTE)
[34] and adaptive synthetic sampling approach for imbalanced learning (ADASYN)
[35]. Furthermore, several other SMOTE algorithms have also been proposed in
recent years [36–38]. In contrast, in undersampling, the majority samples are
randomly removed such that their number is approximately equal to the numbers
of other minority classes. However, careful attention must be paid to minimize the
loss of useful information during undersampling.

The second method is to adjust the algorithm rather than changing the distribution
of the training data. Examples of this approach reported in the literature include cost-
sensitive learning and ensemble methods [39, 40]. Cost-sensitive learning can
greatly improve classification performance. However, this method is only suitable
if the costs of misclassification are known, and it can be very difficult or even
impossible to confirm the cost of misclassification in certain areas [41]. Ensemble
methods require considerable time to train multiple classifiers and can be impractical
when DNNs are employed as the base classifiers. Therefore, new algorithms such as
second-order cone programming SVM have been proposed [42]. Some researchers
have also combined these two types of methods to develop mixed methods such as
EasyEnsemble and SMOTEBoost, which have been demonstrated to more effec-
tively deal with imbalanced data [43, 44].

118 R. He et al.



Recently, generative adversarial networks (GANs) have demonstrated great
promise for producing synthetic data [45]. GANs consist of two parts, namely, a
generative model and a discriminative model, which compete with one another to
obtain optimal outputs. When supplied with training data, the generator makes the
noise vector as input and attempts to produce synthetic data similar to the training
data. Then, the discriminator attempts to differentiate the training data from the
synthetic data obtained from the generator. Therefore, given imbalanced training
data, GANs can learn to estimate and change the distribution of the training data.

On the basis of traditional GAN models, a modified GAN named InfoGAN has
also been proposed, which exerts a systematic and predictable influence on the
outcome [46]. The use of synthetic samples generated by GANs has been gaining
prominence with the results obtained in several works, such as those using the data
augmentation generative adversarial network (DAGAN) approach, where it was
empirically demonstrated that the data generated by DAGAN generally improved
the accuracy [47]. In other fields, a deep convolutional GAN (DCGAN) was
exploited for data augmentation to improve both liver lesion classification [48] and
skin lesion segmentation [49]. An InfoGAN model was also previously employed
for heartbeat anomaly detection to produce synthetic images to unbalanced
classes [50].

3 Feature Extraction

ECG signals reflect the electrical activity of the heart, and the correct representation
of these signals plays important roles in feature extraction and ultimately arrhythmia
classification. Various feature extraction methods have been proposed in the litera-
ture to generate the unique information regarded as one feature. These features can
be extracted in various forms, which can be applied individually or in combination.
In this section, the types of features are divided into four categories, namely,
waveform, statistical, wavelet, and other features.

3.1 Waveform Features

An ECG signal is mainly composed of the P wave, the QRS complex, and the T
wave. Therefore, the most intuitive and fundamental features are the locations,
durations, and shapes of these components. Excitation of the heart typically begins
in the sinoatrial node and then propagates to the atria. The P wave is a weak, round,
broad wave with low voltage amplitude that corresponds to the depolarization of the
atria. This wave is an important feature for detecting AF. The QRS complex
corresponds to the depolarization of the left and right ventricles. The Q wave is
the first downward wave after the P wave. The R wave is the most prominent peak in
an ECG signal and is important for the classification of arrhythmias. The S wave is a
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downward deflection following the R wave and together with the Q and R waves
makes up the QRS complex. Numerous studies have attempted to extract features
from the QRS complex, which are calculated from the heartbeat interval referred to
as the RR interval [51, 52]. The RR interval is the time between the R peaks of
successive heartbeats and represents the duration of a single cardiac cycle. Changes
in the RR interval can be used to calculate the heart rate variability, which is related
to heart disease. Therefore, the RR interval has great value in arrhythmia classifica-
tion. The T wave is a long wave with a round, broad peak that corresponds to the
process of ventricular repolarization that follows the S wave. Although changes in
the T wave are typically quite small, they can be important for diagnosing conditions
such as myocardial infarction (MI). In addition to the original waveform character-
istics, some researchers have employed other techniques to compress and reconstruct
ECG signals, which represent new morphological features used to diagnose arrhyth-
mias [53, 54]. For example, morphological features such as the Hermit function
coefficient and temporal features have been extracted from ECG signals to classify
heartbeats. Furthermore, the authors have used a random projection matrix to extract
morphological features and combine dynamic features for heartbeat
identification [55].

3.2 Statistical Features

In the last decade, statistical features have been employed for ECG classification.
Among these features, the mean, standard deviation, and other statistical measures
have been adopted in numerous studies [56, 57]. In general, these features provide an
efficient strategy for analyzing the distribution and complexity of an ECG signal to
better represent the temporal sequence. Moreover, higher-order statistics such as
skewness and kurtosis are not particularly sensitive to changes in the ECG wave-
form. The potential change in the ECG signals can be examined through the owning
dynamic and nonlinear properties [58]. Therefore, these features can help improve
the ability to identify arrhythmias.

3.3 Wavelet Features

Wavelet features are another popular representation for ECG signals. Generally,
ECG signals are nonstationary signals, making WT an efficient instrument for their
analysis. Numerous studies have employed wavelet features for the classification of
ECG signals [59, 60]. Compared with Fourier transforms, WT display strong time-
frequency localization performance and rely on a linear transformation to decom-
pose the ECG signals into different scales with a mother wavelet. Therefore,
the choice of wavelet and number of signal decomposition levels are crucial for
the analysis of ECG signals. The number of decomposition layers is determined on
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the basis of the main frequency components. Then, according to the requirements,
the corresponding frequency components of the ECG signals are reserved for
classification of the wavelet coefficients. The initial operation of a WT is to divide
ECG signals into low- and high-frequency components, which are considered
approximate and detailed information. The decomposition of the next level is
derived from the approximate component of the previous layer. Alternatively, both
the approximate and detailed information can be decomposed at each layer to obtain
more sub-band contents by using the wavelet packet. Various types of WT are
available for extracting wavelet features. In addition to the traditional continuous
wavelet transform (CWT), other transforms such as discrete wavelet transform, dual-
tree complex WT, and flexible analytic WT have been employed to acquire other
wavelet features.

3.4 Other Features

Several other techniques, such as independent component analysis (ICA) and prin-
cipal component analysis (PCA), have been employed to reduce the dimensionality
of features by extracting new coefficients to represent the ECG signals. The ICA
technique can be used to statistically separate individual sources from a composite
signal similar to the ECG signal, which consists of several action potential sources
connected with different arrhythmia types. Therefore, the principle of the ICA for
ECG signal classification is to separate the useful action potentials from the noise.
The PCA technique is used to separate the sources from the signals based on their
energy contributions. Research suggests that noise sources have low energy and are
difficult to isolate and that the individual sources isolated by ICA are promising
features for ECG classification. Moreover, it has been demonstrated that the combi-
nation of these two techniques can provide considerable advantages compared with
the use of either technique alone [61]. Another proposed PCA algorithm is kernel
principal component analysis, which is superior to PCA for arrhythmia detection
owing to its nonlinear structure [62]. In addition to the two techniques discussed
above, other feature extraction methods have also been proposed, such as Lyapunov
exponents [63], Kolmogorov complexity, autocorrelation analysis, power spectral
density [64], and genetic algorithms [65].

4 Feature Selection

Although some studies consider feature extraction and feature selection as two
similar works, however, the two parts are in fact different. While feature extraction
is regarded as the step to descript the information of ECG signals, feature selection is
to use a series of methods for improving the performance of classifiers with the most
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representative feature. In addition to enhance the performance of algorithm, it can
also reduce the dimension of feature space that saves computational time.

4.1 Deterministic Wrappers

In terms of deterministic wrappers, the most commonly used algorithms are those
based on sequential selection to estimate the significance of each feature for the final
classification by adding or removing various numbers of features to or from the
original feature set to achieve a better criterion value [66]. There are two approaches
to sequential selection. The first is forward selection, which begins with an empty set
and then adds each feature that maximizes the criterion function to the current set in a
step-by-step manner until the predetermined number of features is reached. The
second is sequential backward selection, which operates in the reverse direction,
starting with the entire feature set and removing features to maximize the criterion
function until the predetermined number of features is again reached. However,
owing to the nesting effect, these two methods can only afford suboptimal results.
Therefore, instead of a single feature, n features can be added to or removed from the
current feature set at each step [67]. Another generalization of these two methods is
plus-l takeaway-r (PTA), in which one feature is selected to add to the set at each
step, and r features are then removed from the set. Although these methods reduce
the nesting effect, they still do not provide optimal results.

The sequential floating selection algorithm is an improvement over PTA algo-
rithms, which utilizes a flexible backtracking mechanism. Sequential floating for-
ward selection starts with an empty feature set. After each forward step, backward
steps are performed until the criterion function stops increasing, such that this
method is considered a dynamic version of PTA [68]. Therefore, in each step of
selection, different numbers of features can be added to or removed from the original
set until an improved criterion value is attained. Sequential floating backward
selection operates in the reverse direction. In an effort to further improve these
approaches, several other strategies have also been proposed, such as forward and
backward selection SVM with a Gaussian RBF kernel and k-nearest neighbor
(KNN)-based sequential forward selection methods for feature selection from ECG
signals.

4.2 Randomized Wrappers

Another popular feature selection approach is genetic algorithm (GA), which rely on
a probabilistic search strategy inspired by the process of biological evolution
[69]. For a given issue, GA can be applied to find the optimal solution in various
potential ways. In this approach, each new generation is expected to provide a closer
approximation to the optimal solution. In GA, the evolution process typically begins
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with an initial population that is either randomly generated or manually defined. In
each iteration, the population is regarded as a generation, in which the fitness of
every individual is assessed. The fitness is the value of the objective function, which
is typically defined as the classification accuracy of ECG signals with the chosen
features. The much fitter individuals are stochastically selected from the current
population, and the genome of every individual is modified via recombination and
random mutation to produce the subsequent generation, which is then adopted in the
next iteration until a maximum number of generations or satisfactory fitness level for
the population is reached. The use of GA-based feature selection for ECG analysis
has been reported in several studies [70, 71]. In addition to GAs, particle swarm
optimization may also provide promising results for feature selection in the
future [72].

5 Traditional Machine Learning Algorithms

After the features has been extracted and selected from the ECG signals, classifica-
tion models can be constructed from these features by traditional machine learning
algorithms. In the literature, there are various classifiers that have been utilized for
ECG analysis and classification tasks. According to the recent researches, these
methods can be mainly divided into artificial neural networks (ANNs), linear
discriminant analysis (LDA), k-nearest neighbor (KNN), support vector machine
(SVM), decision tree (DT), and Bayesian classifiers, which will be discussed in
detail below.

5.1 Artificial Neural Networks (ANNs)

Inspired by biological neural networks, ANNs are composed of interconnected
artificial neurons with adjustable weights. ANNs typically comprise three compo-
nents, namely, input, hidden, and output layers, and have been extensively applied in
an effort to address both linear and nonlinear classification issues using various
network structures. Recently, several ANN architectures have been employed for
arrhythmia classification, including probabilistic neural network (PNN) and multi-
layer perceptron (MLP). PNN is a feed-forward neural network that exhibit shorter
training times than some other neural network models such as backpropagation
network [73]. Furthermore, PNN are computationally more robust and efficient
than traditional MLP [74] and have been exploited in numerous studies over recent
years [75, 76]. Hybrid neuro-fuzzy networks have also been proposed to overcome
the problems of MLP, such as their generalization performance and training time
[77]. Radial basis function neural networks use radial basis functions as the activa-
tion functions to form a simple structure that can be trained effectively. Other
models, such as recurrent ANNs, generalized regression neural networks, and
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block-based neural networks, have also been applied in some ECG classification
studies [78, 79]. Besides single models, some researchers have utilized combined
neural networks to obtain more generic methods, which not only reduces the overall
error in the neural networks but also decreases the incidence of false negatives [80].

5.2 Linear Discriminant Analysis (LDA)

LDA was originally proposed by Fisher and can achieve high classification accuracy
compared with more complex algorithms [81]. LDA is a statistical approach based
on discriminant functions, which are estimated from the training data and attempt to
linearly separate the features by changing the weight vector and a bias, where the
criteria applied to compute the weight vector is based on a model. The parameters are
selected by maximum likelihood to provide the highest possible discrimination
between different classes. LDA has been utilized in several recent ECG classification
studies [82, 83].

5.3 k-Nearest Neighbor (KNN)

KNN is a widely used machine learning algorithm that has been exploited in
numerous fields, including ECG classification [84, 85]. According to the labels of
the closest training samples, the KNN category can be determined for an unknown
class in the feature space. The closest training samples are selected by calculating the
similarity of each feature vector using a distance measure, where the most common
distance formula is that for Euclidean distance. Subsequently, the unknown samples
can be confirmed to belong to the class of most of the closest k samples, which is
analogous to a majority voting approach. In KNN, the choice of the k value is crucial
as it strongly influences the accuracy of the ECG signal classification. However, the
computational cost is relatively high. Therefore, some studies have combined
clustering algorithms with neural networks to improve the robustness and reduce
the training time [86, 87].

5.4 Support Vector Machine (SVM)

In SVM, the classifiers are constructed by using different hyperplanes in an n-
dimensional space and then applied to distinguish different classes [88]. The hyper-
planes are formed with the aid of points located at the edges of the support vectors.
SVM is a popular method for solving binary classification problems owing to its
excellent generalization ability, in which the main purpose is to search for a
maximum margin between the training set and decision boundary. Support vectors
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are the training samples closest to the decision boundary and employed for maxi-
mization of the margin. Depending on the type of kernel function, SVM can be
utilized for both linear and nonlinear classification. A linear kernel function makes
the SVM deal with a linear classification, whereas nonlinear kernel functions, such
as Gaussian radial basis, polynomial, and sigmoid, make the SVM handle a
nonlinear classification. In recent years, SVM has been utilized in numerous ECG
classification studies [89, 90].

5.5 Decision Trees (DTs)

DTs are a decision support method that uses a tree-like model to determine and
classify different categories utilizing only conditional control statements to execute
the program. According to the difference purposes, the output results may be either a
possible target class label or a target value, which are referred to as classification and
regression trees, respectively. Recently, DTs have been employed for ECG signal
classification [91, 92]. In addition to common DT approaches, some modified DT
structures have also been reported, such as ensemble classifiers, which have also
been employed for ECG signal classification. In the case of ensemble classifiers,
multiple decision trees are trained with subsets of the training data, and the output
class is a type of majority voting based on the maximum number of votes from all of
the individual trees.

5.6 Bayesian

Bayesian classifiers are based on Bayesian decision theory, which is a fundamental
statistical method. These classifiers have been widely used to solve pattern recogni-
tion problems in various studies [93, 94]. The rules of these classifiers can be divided
into two types depending on whether the class is known. If the class is known, the
values of the other features can be predicted. If the class is not known, Bayes’s rule
can be employed to predict the class label according to the given features. In
Bayesian classifiers, probabilistic models of the features are constructed to predict
the label of an unknown sample. Several types of Bayesian classifiers, including
Bayesian networks such as naive Bayes, as well as the Bayes maximum-likelihood
classifier, have been applied to ECG classification.

In addition to the aforementioned algorithms, other types of classifiers have also
been employed for ECG classification, such as the template matching technique [95],
Gaussian mixture model [96], and hidden Markov model. Furthermore,
unsupervised learning algorithms such as k-means and self-organizing maps [97]
have also been utilized.
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6 Deep Learning Algorithms

Different from traditional algorithms that rely on hand-designed feature extraction
methods, the deep learning algorithms can be used to train an end-to-end DNNs,
where the feature extraction function is a hidden part of the model, which is
optimized during the model training. Therefore, these methods can reduce the
consumption of human efforts for feature extraction. Moreover, due to the auto-
learned feature extraction functions avoid the subjectivity and limitation of human
designed methods, the deep learning methods can usually achieve a better perfor-
mance than traditional methods, especially when the dataset is big and comprehen-
sive. In this section, we will discuss the deep learning methods that have been
proposed for ECG classification.

6.1 Convolutional Neural Networks (CNNs)

CNNs are a type of DNNs that have found broad application in numerous fields,
such as computer vision [98] and speech recognition [99]. A CNN is typically
composed of a stack of convolutional layers and other types of assistant layers,
such as max pooling layers, nonlinear activation layers, and batch normalization
layers. There are numerous studies in the literature that have utilized CNNs for ECG
classification.

Beat-level arrhythmia detection with the MITDB is a typical problem where
CNNs have been widely adopted. According to the AAMI EC57 standard, heartbeats
can be divided into five categories, namely, N (beats originating in the sinus mode),
S (supraventricular ectopic beats), V (ventricular ectopic beats), F (fusion beats), and
Q (unclassifiable beats) [100]. For classification, heartbeats should be first extracted
from the ECG recordings. Typically, a heartbeat is cut out with specified lengths
before and after the corresponding QRS complex. The extracted heartbeats can be
processed directly using a 1D CNN, which usually consists of a series of 1D
convolutional layers, pooling layers (between the convolutional layers), and fully
connected layers [101]. For the multi-label classification of heartbeats, the output
layer is typically a softmax layer whose output is the respective predicted probabil-
ities of each class. As heartbeat segments are relatively short and have generally been
downsampled to a short length (typically 100–200 sampling points), the CNNs used
for the classification are usually not very deep, perhaps containing only two or three
convolutional layers. To make the CNN parameters independent from the input layer
dimension, a variant of CNNs, termed adaptive CNNs [102], has been proposed by
extending the convolutional layers such that they are capable of both convolution
and downsampling. Another innovation of this work was that the input contained not
only the heartbeat to be classified but also its neighbors, which allowed the neural
network to identify abnormal beats (e.g., premature atrial contractions) by compar-
ing the current beat to its neighbors. For similar purposes, a dual-beat coupling
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method was proposed to prepare for the network input. This method converts two
pairs of adjacent beats into a dual-beat coupling matrix, which provides information
concerning both the beat waveform and beat-to-beat correlation. Next, the dual-beat
coupling matrix is input to a 2D CNN with three convolutional layers for classifi-
cation. Another study proposed a 1D residual convolutional network for heartbeat
classification [103]. This network consists of five residual blocks, each containing
two convolutional layers, two ReLU activation layers, a residual skip connection,
and a pooling layer. The output of the final residual block is then input into two fully
connected layers (the first followed by a ReLU layer and the last followed by a
softmax layer) to perform the final classification. This network contains 13 layers
with trainable weights, which is much deeper than the networks reported in other
studies.

In addition to the MITDB, the PTB is another commonly employed dataset that
has been used to study beat-level MI identification methods. Numerous studies have
utilized CNNs to address this problem. In an early study, a simple CNN consisting of
three convolutional layers, three max pooling layers (each following a convolutional
layer), and three fully connected layers was proposed for MI detection [104]. A
previous study proposed an MI detector by reusing the design and weights of
convolutional layers in the residual CNN that had been trained and evaluated on
the MITDB. The final two fully connected layers in the network were retrained on
the PTB dataset to adapt to this problem. For better feature extraction from 12-lead
ECG recordings, a multiple-feature-branch convolutional neural network
(MFB-CNN) [105] was proposed to extract the features of each ECG lead using
separate CNN subnetworks (i.e., feature branches). The outputs of the feature
branches are then summarized and classified by fully connected softmax layers.
As an extension of the MFB-CNN method, the multilead-CNN (ML-CNN) [106]
leverages 2D convolutional layers with a 1D kernel to enable parameter sharing
among leads, which helps to reduce the number of parameters and avoid overfitting.
Furthermore, an extension to the pooling layer, termed a lead asymmetric pooling
layer, was also introduced to capture the multiscale features of the different
leads [106].

Although the detection of ECG abnormalities at the beat level is relatively easy to
handle, the limitation is also obvious. The features of some diseases, such as AF,
may manifest themselves not only in the heartbeat waveform but also in the pattern
of beat-to-beat variability. Therefore, many researchers have attempted to address
the problem of arbitrary ECG segment classification, where the length of ECG
segments can be very variable, typically ranging from several seconds to several
minutes. The classification of ECG segments is more in line with the needs of
clinical practice and has thus attracted the attention of an increasing number of
researchers. As the input is substantially longer than that of beat-level classifiers, the
networks designed to address this problem are usually much deeper. For example, a
34-layer residual-based CNN was proposed to detect up to 12 types of rhythms using
single-lead ECGs. These researchers assembled a very large dataset containing
91,232 ECG recordings obtained from 53,549 patients using single-lead ambulatory
ECG monitoring devices. In terms of performance, the average F1 score of the DNN
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model was reported to exceed that of an average cardiologist. In addition, when the
specificity was set to the cardiologist level, the DNN displayed a higher sensitivity
than the average cardiologist for all rhythm classes, which demonstrates the power of
DNN for ECG classification. However, as the dataset used in this study is not
publicly available, most of the research in this field has been conducted using
other publicly accessible datasets, such as the AFDB and CinC/PhysioNet Challenge
2017 (CinC2017DB) dataset. In one study, the authors created two types of CNNs
(one with two convolutional layers and the other with three convolutional layers)
using the AFDB to detect AF [107]. The inputs for these CNNs were 5-s ECG
segments that had been transformed via short-term Fourier transform and stationary
wavelet transform, respectively. In addition, a four-layer CNN was proposed to
detect AF using five contiguous heartbeats that had been separately subjected to
CWT [7].

The CinC2017DB contains 12,186 single-lead ECG recordings for AF detection
and has attracted considerable research attention [108], with many researchers
creating CNN-based AF detectors using this dataset. To extract features from signals
lasting up to tens of seconds, networks with a deeper structure are typically required,
and consequently residual convolutional networks have proved popular [109]. For
example, one proposed network was based on a previous network design with
variable network depth and number of filters at each layer. In another study, the
authors proposed a simple residual convolutional network consisting of
16 convolutional layers to address this problem. As another effective CNN, a
densely connected convolutional network (DenseNet) was also applied to detect
AF from ECGs obtained from this dataset. Another proposed network consisted of
three dense blocks using 15-s ECG segments as the input [110]. Some other works
have combined CNNs and handcrafted features to improve the generalization ability
of the classifiers. For example, in one study the authors extracted the features using a
statistical description of the signal average beats and CNN, and trained an ensemble
classifier of a neural network and bagged tree for AF detection [111]. In another
study, features to characterize the variability of the RR interval and existence of P
waves were extracted via custom methods and then combined with CNN-extracted
features for the final classification [112].

6.2 Recurrent Neural Networks (RNNs)

RNNs were designed for time series processing and have demonstrated outstanding
performance in fields such as automatic speech recognition and natural language
processing. As ECG signals are time series in nature, it is quite natural to expect that
RNNs could be used for ECG processing. For beat-level ECG classification, a type
of RNN termed the long short-term memory (LSTM) network was applied to
classify beats from the MITDB [113]. In another study, the beat waveforms were
first converted into frequency sub-band sequences using a wavelet-based layer and
then fed into a bidirectional LSTM-based neural network for feature learning and
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classification [114]. With respect to arbitrary ECG segment classification, an ensem-
ble of RNNs was created to detect AF using recordings from CinC2017DB
[115]. The input for this network was the sequence of features extracted from each
heartbeat rather than the raw ECG recordings, which significantly reduces the
number of steps that the RNNs must process. Similarly, in another study, each
ECG recording was split into a sequence of beats, and each beat was then processed
using an MLP for feature extraction [116]. The extracted beat feature sequence was
then processed using an LSTM-based neural network to predict the sequence
rhythm. Furthermore, a handcrafted feature-based classifier was also constructed
and coupled with the LSTM-based DNN to afford an ensemble classifier, which
achieved the first place in the challenge.

6.3 Combining CNNs and RNNs

As one ECG segment may contain up to thousands of sampling points, it is neither
effective nor efficient to process raw ECG signals using only an RNN model. In
addition, CNNs are considered effective for extracting features from the raw wave-
forms. Thus, the combination of CNNs and RNNs is expected to improve the feature
learning and classification of ECG signals, and numerous such studies have been
reported. For example, a model combining a CNN and LSTM was constructed for
the automatic classification of cardiac arrhythmias using data from CinC2017DB
[117]. The CNN was used to learn a high-level representation (a sequence of feature
vectors) of the ECGs, while the LSTM further summarized the feature sequence
learned by the CNN for classification. In another study, the performance of a model
combining a CNN and LSTM was compared with that of a pure CNN model via
fivefold cross validation, which demonstrated the efficiency of this combination
[118]. In a separate study, two independent CNN models were used to extract
features from ECG and heart rate signals, and then the features were merged into
an RNN for aggregation [119]. In addition, a deep residual convolutional network
with recurrent layers was applied to AF detection using 5-s ECG segments [120]. In
another study, the authors proposed a novel framework that combined a CNN,
bidirectional LSTM, and an attention mechanism for the detection of paroxysmal
atrial fibrillation (PAF) [121]. The input for this network was a sequence of 30-s
ECG segments, each of which was first converted to a time-frequency representation
via wavelet transform and then fed into a CNN subnet for feature extraction. Then, a
bidirectional RNN with an attention layer was used to aggregate the extracted feature
sequences for AF detection. Finally, in another study, the authors separately
extracted ECG features using an RNN, a combination of a CNN and an RNN, and
handcrafted methods, and then used an XGBoost classifier to perform the final
classification based on the union of all of these features [122].
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6.4 Unsupervised Deep Models

Unsupervised deep learning methods have also been applied to ECG classification,
especially for pretraining of the model parameters. For example, heartbeat classifi-
cation was accomplished by gradually training a stack of restricted Boltzmann
machine (RBM) layers for feature learning. The trained RBM layers were then
combined to form a deep brief network with a softmax layer for classification. In
another study, a stacked denoising auto-encoder (SDAE) was proposed to extract
features from the time-frequency spectra of heartbeats that were computed using a
modified frequency slice wavelet transform. The classifier was then built by
concatenating an encoder layer of the SDAE and a softmax layer. A modified
denoising auto-encoder was also reported using the original heartbeat as the input,
after which the output was compared with the denoised heartbeat for loss computing
[123]. The features extracted by the last encoder layer were fed into a feed-forward
neural network to classify the heartbeats into 16 categories, and comparable perfor-
mance with previous methods based on feature engineering was achieved. In another
study, a stacked sparse auto-encoder was proposed for ECG feature learning, in
which the extracted features were further handled by a softmax regression model for
heartbeat classification [124]. A convolutional auto-encoder was also utilized to
extract features from heartbeats, and the features were then fed into an LSTM
network for classification of the beats into five types of rhythms [125]. With respect
to unsupervised learning using arbitrary ECG segments, the authors of one study
proposed an encoder-decoder-based genitive model for limited-channel ECG clas-
sification [126]. This network was trained to generate the missing channel informa-
tion, and then the latent representation could be used as features to perform other
supervisory tasks. The model was compared with standard RNNs with respect to
disease prediction, which demonstrated the effectiveness of the proposed method.

7 Proposed Deep Learning Algorithm

We have proposed a novel neural network by combining a residual CNN and
bidirectional LSTM to discriminate nine different cardiac conditions (including
one normal condition and eight abnormalities) using the 12-lead ECG recordings
from the CPSC2018 dataset [127]. As the length of these recordings is variable
(ranging from 6 to 60 s), we converted them to the same length by truncation (for
longer recordings) or padding with zeros (for shorter recordings) to enhance the
batch processing during model training. The selected target length was 30 s (15,000
sampling points), which is longer than most recordings in the dataset, to obtain a
balance between the information integrity of the ECG recordings and the computa-
tional complexity of the DNN model. Then, the ECGs were processed using our
proposed DNN for feature extraction and classification. As the input sequences are
very long, it is challenging to extract features from them. To overcome this
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challenge, we constructed our DNN with three parts, namely, a local features
learning part, a global features learning part, and a classification part, as depicted
in Fig. 2.

The local features learning part is a 1D residual CNN that consists of 11 residual
blocks of two types, which was adapted from a previous work. Both types are
composed of 1D convolutional (1D Conv) layers, batch normalization
(BN) layers, ReLU layers, dropout layers, and max pooling layers. The difference
is that type 2 contains three more layers (including a BN layer, a ReLU layer, and a
dropout layer) than type 1 at the beginning of the block. Counting the independent
convolutional layer at the very beginning, there are a total of 25 convolutional layers
and 12 max pooling layers in this part. The initial convolutional layer contains
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32 filters with a kernel size of 16. For the deeper layers, the filter number increases
by 32 every four blocks, while the kernel size is reduced by half every six blocks. In
our design, the length of a feature map remains unchanged when going through a
convolutional layer but is compressed by half when going through a max pooling
layer that has a pool size of 2. However, only one of every two adjacent max pooling
layers has a pool size of 2, whereas the other has a pool size of 1. Therefore, the
sequence length is compressed by six times to 1/64 of the original after processing by
the local features learning part. The compressed feature maps are then fed into the
global features learning part for further processing.

The global features learning part is composed of two layers, namely, a bidirec-
tional LSTM layer and a global max pooling layer, as depicted in Fig. 3. Owing to
the advantageous gate designs of this unit, LSTM can remember the properties of a
longer temporal up to hundreds of time steps in its internal state. The bidirectional
LSTM is composed of two LSTM layers, termed the forward LSTM and the
backward LSTM, which process the sequences in opposite directions. Each LSTM
layer contains 64 units, which means that the output at each step is also a vector with
64 elements. The outputs of the two LSTM layers are summed into a local-focused
global feature vector containing 64 elements, which encapsulates features from the
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Fig. 3 Structure unfolded along the time sequence of the global features learning part [127]
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context of the current step in both the forward and backward directions. The outputs
of the two LSTM layers are summed in a stepwise manner and then fed into a global
max pooling layer, which aggregates the feature sequence into a single feature
vector.

In the classification part, the global feature vector is processed by two fully
connected (Dense) layers, where the first is followed by a ReLU layer and the
second is followed by a softmax layer. The first fully connected layer contains
64 cells, whereas the second contains nine cells (corresponding to nine classes).
The output of the softmax layer is thus the predicted probability distribution over the
nine classes.

We evaluated our proposed model using the hidden test dataset containing about
3000 ECG recordings. The performance of our proposed model was measured by the
F1 scores of nine classes, the F1 scores of four sub-normal types, and the overall F1

score which is the average of the 9 class-wised scores. The four sub-normal types
include AF, Block (including I-AVB, LBBB, and RBBB), PC (including PAC and
PVC), and ST (including STD and STE). Through the competition process of the
CPSC, we got two groups of scores, one (shown in Tables 2 and 3) was computed by
using a balance subset (containing 450 recordings, 50 for each class) of the test set,
and the other (shown in Table 4) was computed by using the whole test set.

Table 2 Results of the arrhythmia classification based on 450 test samples [127]

Rank Team Normal AF I-AVB LBBB RBBB PAC PVC STD STE

1 He
et al.

0.748 0.920 0.882 0.889 0.883 0.787 0.851 0.780 0.780

2 Cai
et al.

0.765 0.927 0.887 0.886 0.880 0.812 0.800 0.784 0.753

3 Chen
et al.

0.752 0.930 0.871 0.915 0.839 0.832 0.833 0.800 0.667

4 Mao
et al.

0.692 0.940 0.852 1.000 0.899 0.706 0.875 0.762 0.622

5 Yu
et al.

0.709 0.907 0.863 0.918 0.838 0.736 0.783 0.714 0.723

6 Zhang
et al.

0.757 0.904 0.839 0.887 0.787 0.735 0.755 0.742 0.638

Table 3 The F1 scores of four sub-abnormal types based on 450 test samples [127]

Rank Team Faf Fblock Fpc Fst F1

1 He et al. 0.920 0.884 0.821 0.780 0.836
2 Cai et al. 0.927 0.884 0.806 0.770 0.833

3 Chen et al. 0.930 0.868 0.832 0.738 0.827

4 Mao et al. 0.940 0.898 0.800 0.704 0.816

5 Yu et al. 0.907 0.871 0.758 0.719 0.799

6 Zhang et al. 0.904 0.833 0.745 0.699 0.783
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As shown in Table 2, the classifier achieves a good performance on a small and
balanced dataset. The scores for the eight abnormalities are all close to or greater
than 0.78, and the highest one (0.920) is the score for AF detection. The lowest score
(0.748) is achieved on the identification of normal. The F1 scores of four sub-normal
classes were presented in Table 3. The achieved F1 scores of AF, Block, PC, and ST
are 0.920, 0.884, 0.821, and 0.78, respectively. From the results, we can see that the
proposed model has a high-level capability of identifying AF, block, and premature
contraction. The score for detection of ST-segment changes is slightly lower,
possibly because the ST-segment changes in some cases are too subtle to be detected
by a CNN network.

Table 4 presents the F1 scores of four sub-abnormal types on the entire test set,
which is slightly lower than that achieved on the dataset with 450 samples. The
possible reason is that we balanced the training set during the training process of our
model making the data distribution different from that of the test set. The balance
operation is helpful to the feature learning of the network, but it can also cause a bias
to the classifier, which needs to be improved in future studies. Nevertheless, the
overall score (0.806) is still higher than that of most competitors, which ranked the
third place in the CPSC2018 challenge.

8 Discussions

During the history of automatic ECG analysis, lots of algorithms have been proposed
to address a series of problems in this field. Though many of these algorithms have
been used successfully in some scenarios, many problems in the workflow of ECG
processing, e.g., noise removal, feature extraction and selection, remain to be solved.
As the development of mobile computing and communication technologies, smaller
and cheaper portable ECG monitors are becoming a trend in the industry, and
meantime bringing new challenges to the community of ECG analysis due to the
lower quality and bigger volume of their generated data.

In recent years, deep learning has exceeded the performance of traditional pattern
recognition algorithms in many aspects, making it a very promising technology.
Compared to the traditional algorithms, a DNN model can extract features from the
raw data by itself rather than relying on handcrafted features. We have demonstrated

Table 4 The F1 scores of four sub-abnormal types based on the entire test set [127]

Rank Team Faf Fblock Fpc Fst F1

1 Chen et al. 0.933 0.899 0.847 0.779 0.837

2 Cai et al. 0.931 0.912 0.817 0.761 0.830

3 He et al. 0.914 0.879 0.801 0.742 0.806
4 Yu et al. 0.918 0.890 0.789 0.718 0.802

5 Yan et al. 0.924 0.882 0.779 0.709 0.791

6 Chen et al. 0.905 0.902 0.722 0.708 0.783
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its effectiveness to the problems of ECG classification and arrhythmias detection by
experiments. Besides, a DNN model is generally supposed to have a better accuracy
and robustness when it is trained on a much larger dataset. We have noticed that
many entertainments built their private annotated ECG datasets that are much larger
than the public available datasets. Open-access large databases, such as CPSC2018,
have prompted the researches of deep learning technology in the field of ECG
analysis. In the future, larger open-access ECG datasets will benefit the research
community greatly, just like what happened in the field of computer vision and
natural language processing. Furthermore, as new technologies, e.g., new compo-
nents and architectures, keep emerging, deep learning is in a stage of rapid devel-
opment and will continue to promote progress in the field of ECG analysis.
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ECG Interpretation with Deep Learning

Wenjie Cai and Danqin Hu

Abstract Electrocardiography (ECG), which can trace the electrical activity of the
heart noninvasively, is widely used to assess heart health. Accurate interpretation of
ECG requires significant amounts of education and training. With the application of
deep learning, the accuracy of ECG diagnostic analysis has reached a new high level
and even outperforms that of individual cardiologists. And the automated ECG
diagnostic model makes it possible for analyzing ECG signals from wearable
devices in real time. The common deep learning networks for analyzing ECG are
mainly based on convolutional neural networks (CNN), recurrent neural networks
(RNN), CNN plus RNN, and some other architectures. This chapter gives a
systematical review on the CNN-based, RNN-based, as well as CNN and
RNN-based intelligent analysis models for the automated ECG interpretation.

Keywords Convolutional neural network · Recurrent neural network ·
Electrocardiography interpretation

An electrocardiogram (ECG) is a record of the electrical activity of the heart. It is one
of the routine means of detecting cardiovascular disease. Millions of ECGs were
generated in hospitals and healthcare centers annually throughout the world. With
the rise of wearable devices, more and more ECGs are being produced all the time.
Automated analysis and interpretation of these data can help improve the work
efficiency of medical physicians.

Computerized interpretation of ECG can date to late 1950s. Despite of the
improvement of ECG analysis algorithms, the total accuracy of computer programs
was 5.8% lower than average cardiologists [1]. The algorithms were very sensitive to
the quality of ECG signals and made most frequent mistakes in arrhythmias,
conduction disorders, and electronic pacemaker rhythms [2]. However, the
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computerized interpretation does help facilitating clinical decision making and
saving physician readers’ time. Combination of algorithm and physician readers
can make the ECG diagnosis more accurate [3]. The improvement of algorithms can
further reduce the workload of doctors and increase diagnostic accuracy.

Machine learning, which is a branch of artificial intelligence (AI), provides more
intelligent ways to interpret ECGs. Algorithms such as k-nearest neighbor (KNN),
support vector machine (SVM), and random forest parse ECG features learn from
them and then make intelligent decisions to new samples [4]. Machine learning is
very popular because the algorithm automatically recognizes the correlation between
data features and classification labels, automatically finds the optimal solution, and
shows strong robustness. However, disadvantage exists and is that professional
knowledge is needed to extract the ECG features. The type, quality, and quantity
of feature extraction are decisive for the final classification results.

Deep learning, which is a subset of machine learning, uses multilayered artificial
neural network (ANN) to decrypt the data and has achieved great success in many
areas such as computer vision, speech recognition, and natural language processing.
It is so successful due to the application of convolutional neural network (CNN) and
recurrent neural network (RNN), which are two major ideas of deep learning. With
CNN, RNN, or combination of them, deep learning makes state-of-the-art solutions
for many kinds of complicated tasks such as medical imaging analysis. The biggest
advantage of deep learning is that no manual feature extraction is required during
model training, which reduces the need for domain expertise. Actually, the deep
learning model can learn the abstract features from data in an incremental manner.
And in many cases the features extracted by deep learning model are more repre-
sentative than that extracted by human experts [5]. The performance of such a model
can outperform human experts. Figure 1 shows the difference between traditional
machine learning and deep learning. “Deep” means more hidden layers in deep
learning neural networks than in ANNs. Preprocessing of deep learning can be the
same as traditional machine learning, or it can be different or even none at all. It
mainly depends on the model’s training strategy. Feature extraction is done auto-
matically when training the deep learning model. In this chapter, we focus on the
deep learning application on ECG analysis.

Fig. 1 Comparison between traditional machine learning and deep learning. AF atrial fibrillation,
PVC premature ventricular contraction
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1 Preprocessing

The resolution of ECG can be resampled to 120–500 Hz. Sampling rate should
remain the same in the training data set and the test data set. An ECG with too low
sampling frequency will lose some useful details and will affect the diagnostic
accuracy, while an ECG with very high sampling frequency increases
computational cost.

Deep learning does not require the data to have the same size. However, to speed
up training, the data is calculated in batches, and the dimensions of the data in each
batch must be the same. Normally, we arbitrarily choose the model input length. If
the raw signal is longer than the chosen length, the ECGs can be divided into
segments of that length. Typically, ECG of 5–10 s is enough for a medical practi-
tioner to make a diagnosis conclusion. When the sample is too short for segmenta-
tion, it can be padded with zeros at the beginning or ending. It has to be noted that the
shorter the sample is segmented, the finer the annotation must be. For most arrhyth-
mias such as atrial fibrillation (AF), the symptom will last for a while. If the entire
ECG is not very long, such as only 1 min, it is usually safe to say that the diagnosis
conclusion of any small segmentation is just the same as the entire ECGs. However,
for premature contractions such as premature ventricular contraction (PVC), abnor-
mal heartbeats may appear multiple times in the entire 1-min ECG or occur just once.
For these kinds of ECGs, the entire ECG is required for classification, or it needs
more detailed annotation to indicate specifically where the premature beats are.

Performance of deep learning systems depends heavily on the number of training
samples. In the real world, the training data is limited and sometimes even very little.
Data augmentation creates new training data by applying domain-specific techniques
to original data. It is an effective way to improve classification accuracy and reduce
overfitting. For ECG, data augmentation can be done in several ways. First, random
noise can be added to the signals. Second, sinusoidal signal can be fused with raw
ECG to simulate baseline drifting. Third, samples can be renormalized with a
random mean and standard deviation [6]. Data augmentation forces the model to
learn the real pattern and helps improve model performance. ECG segmentation is
also a kind of data augmentation because it can increase training samples signifi-
cantly. The principle of data augmentation for ECG data is that cardiologists will
make the same diagnosis conclusion for the converted data and the original data.

2 CNN Model

CNN is widely used in computer vision due to its powerful ability to extract abstract
features from various images. CNN layers take inputs and calculate with filters.
Different filters generate different features. The outputs contain certain spatial
features of the inputs. When stacked with several CNN layers, the model can identify
a variety of complex features. Through these features, the model makes state-of-the-
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art image recognition. For ECG signals, whatever single lead, two leads, or 12 leads
were used, one-dimensional CNN is usually used to decode the time series signals
and preserve the features of adjacent signals’ voltage values. The learned features are
used to make final classifications (Fig. 2).

Acharya et al. used beat-to-beat strategy with a deep neural network, which
contained three layers of 1D-CNN to classify five different categories
(non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown)
of heartbeats, and they achieved an accuracy of 94.03% [7] on the MIT-BIH
Arrhythmia database (MITDB) [8]. They also tested segment strategy and proposed
a model that contained four layers of 1D-CNN to automatically discriminate four
different arrhythmias (normal, AF, atrial flutter, and ventricular flutter) on the data
from three different open databases. ECG with 2-s and 5-s segments were input into
the model, and the model achieved accuracies of 92.50% and 94.90%, respectively
[9]. Yıldırım et al. designed a model that contained seven CNN layers to detect
17 classes of arrhythmia with the MITDB. The analysis is based on 10-s ECG
fragments and reached overall accuracy of 91.33% with low computational com-
plexity [10]. The more CNN layers are used, the more complex pattern can be
extracted.

Hannun et al. developed a deep residual neural network to discriminate ECG into
12 classes. The architecture had 34 layers that contained 16 residual blocks, and each
residual block had two convolutional layers. The model was trained and tested on a
large ECG data set containing 91,232 single-lead ECGs. The average F1 scores for
this model reached 0.837 and exceeded that of average cardiologists of 0.780.
Additionally, the model also ranked among the best in the 2017 PhysioNet/CinC
Challenge which used a medium-sized ECG data set [11, 12]. With the network
depth increases, the varnishing gradient problem makes the model hard to train.
Residual network can overcome this problem by skipping connection to add the
output to a later layer from an earlier layer [13]. It has advantages of keeping the
network deep but trainable.

Apart from 1D-CNN, 2D-CNN can also be used to analyze ECG signals. In this
case, the signal needs to be converted to 2D version. Ji et al. extracted heartbeats and
converted each beat into an image. Then the image was fed to the 2D-CNN model
which was composed of the ZF net (a CNN architecture winner of ImageNet
competition 2013), region proposal network (RPN) net, and faster regions with
CNN (Faster R-CNN) net. The model classified ECG beats into five categories

Fig. 2 Block diagram of a CNN model
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using the MITDB with an accuracy of 99.21%, which was much higher than that of
SVM algorithm [14]. Rahhal et al. applied continuous wavelet transform (CWT) to
the ECG signals to generate time–frequency 2D features. Then they fed these
features into a CNN model which was pretrained on the ImageNet data set and got
state-of-the-art results on the detection of ventricular ectopic beats (VEB) with an
accuracy of 99.9% and supraventricular ectopic beats (SVEB) with an accuracy of
99.8% [15]. Similarly, Xia et al. used short-term Fourier transform (STFT) and
stationary wavelet transform (SWT) to transform the 1D ECG signals to 2D matrix.
STFT and SWT features were then fed into two deep CNN architectures, and the
results showed better diagnostic sensitivity, specificity, and accuracy for AF detec-
tion compared to other conventional machine learning techniques with an accuracy
of 98.63% [16]. 2D-CNN is the core part of compute vision and is believed to be able
to obtain better spatial details. A comparison study on classifying ECG into normal
and abnormal beats with the MITDB showed that 2D-CNN model could reach an
accuracy of 98% and was 2% better than the best 1D-CNN model [17].

3 RNN Model

When doctors read ECG trying to get a diagnosis conclusion, they read it segment by
segment while keeping memories of the information of early segments. RNN is such
a deep learning architecture. It processes the input sequence one by one while
keeping a state containing early information (Fig. 3). It has been successfully applied
to sequence data such as speech recognition and natural language processing. Long
short-term memory (LSTM) and gated recurrent unit (GRU) are most popular RNN
architectures. LSTM maintains three gates, which are an input gate, an output gate,
and a forget gate. These three nonlinear gates determined what past information to be
remembered [18]. GRU is a kind of simplified version of LSTM. It has two gates: an
update gate and a reset gate [19, 20]. LSTM is more powerful but computationally
expensive while GRU has the similar effects with cheaper computation.

Fig. 3 Block diagram of an RNN model
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Faust et al. used a bidirectional LSTM neural network to detect AF with the
MIT-BIH Atrial Fibrillation Database (AFDB). They partitioned the RR interval
signals with a sliding window of 100 samples. Then the samples were fed into the
model and got an accuracy of 98.51% with tenfold cross-validation. The results were
promising, but the training process was really slow [21]. Wang et al. proposed a
global classification model named global recurrent neural network (GRNN). Inputs
of the GRNN include two parts. The first one was the raw, single heartbeat signals,
which were input into two stacked LSTM layers to extract morphological features.
The other one was temporal features related to RR intervals. These two kinds of
features were then put into an RNN layer that served as feature learning layer, and
the output was the classification results. The model achieved accuracies of more than
99% to detect supraventricular ectopic and ventricular ectopic beats on several ECG
database [22].

Apart from the raw signal input into RNN model, the data can be preprocessed
first to get some preliminary local features and then fed into the model. This process
will save lot of training time. Yildirim tried to classify five types of heartbeats, which
are normal, PVC, paced beat (PB), left bundle branch block (LBBB), and right
bundle branch block (RBBB) with the MITDB. He applied discrete wavelet trans-
form (DWT) to ECGs to get meaningful features and then input these features to two
stacked, bidirectional LSTM layers. Data preprocessing with DWT significantly
improved the model performance compared with no data preprocessing. And the
model with bidirectional LSTM layers was superior to the model with unidirectional
LSTM layers. Their best model got a very high recognition performance of 99.39%
on the test set [23]. Actually, the most common preprocess for RNN model is CNN.
We will elaborate it in the next section.

4 CNN + RNN Model

The combination of CNN and RNN is becoming more and more popular. Such a
model can not only extract local spatial features by using CNN but also make full use
of the sequence processing capability of RNN. More importantly, the computational
cost is greatly reduced while ensuring the accuracy of the model. Figure 4 shows a
CNN plus GRU model that we used to in the first China Physiological Signal
Challenge (CPSC 2018). This model is composed of three stacked CNN blocks,
two stacked bidirectional GRU layers, and two fully connected layers. The inputs are
5-s 12-lead ECG segments that have been downsampled to 125 Hz. With this model
and some optimization skills, we achieved the F1 score of 0.83 for nine classes ECG
and won the second place. Similarly, Zihlmann et al. first computed logarithmic
spectrograms of ECGs and used stacked CNN layers to extract spectrogram features.
Then a LSTM layer was used to calculate the features across time. This model
performed better than the model without a LSTM layer and got second place in the
competition of the 2017 PhysioNet/CinC Challenge [24]. Xiong et al. developed a
21-layer 1D convolutional recurrent neural network, which contained 16 residual
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CNN blocks and 3 RNN layers to classify ECGs in the 2017 PhysioNet/CinC
Challenge. They used 5-s segments of ECG signals as inputs. The model had an
F1 score of 0.82, which is 0.01 less than the top score [25]. These excellent models
emerged in the ECG challenges indicate that the combination of CNN and RNN has
superior advantages.

The diversity of the models lies in the combination of different numbers of CNN
and RNN, and all have extraordinary performance. Tan et al. proposed a model that
consisted of two stacked CNN layers and three stacked LSTM layers to automati-
cally detect coronary artery disease (CAD) ECG signals. The CAD ECG data were
from Fantasia and St Petersburg Institute of Cardiology Technics 12-leads arrhyth-
mia. The model was able to diagnose CAD ECG signals with an accuracy of 99.85%
[6]. Andersen et al. designed a five-layer model for real-time detection of AF. The
data were from the MITDB, the AFDB, and the MIT-BIH NSR Database (NSRDB).
Their network contained two stacked CNN and one LSTM layer. The input sequence
was 30 RR intervals. This model achieved 97.8% for accuracy [26]. Oh et al.
developed a network combined with CNN and LSTM to classify ECGs into five
classes, which were normal, PAC, PVC, LBBB, and RBBB. The model had three
stacked convolutional layers followed by one LSTM layer. The model achieved an
accuracy of 98.10% on the MITDB [27].

5 Other Deep Learning Architectures

Deep ANN can also be used for ECG classification. Xu et al. proposed a five-layer
deep ANN for heartbeat classification. Their strategy was based on beat-by-beat
detection and required heartbeat segmentation and alignment. The model achieved
an overall accuracy of 94.7% for detecting non-ectopic, supraventricular ectopic,

Fig. 4 CNN + RNN
network structure used in
the CPSC 2018
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ventricular ectopic, fusion, and unknown beats [28]. Sannino et al. proposed a nine-
layer deep ANN to automatically recognize abnormal heartbeats from the MITDB
without using CNN or RNN. They segmented ECGs into individual heartbeats, and
then took 50 uniformly distributed samples from each P wave to T wave and
concatenated them with four temporal features as model inputs. The model showed
an accuracy of 99.09% for classifying normal and abnormal heartbeats [29].

Deep learning models can be used just as feature extractors. Liu fed deep learning
features and 174 other expert features into an XGBoost (eXtreme Gradient Boosting
of decision trees) model to classify the ECG data from the CPSC 2018 into nine
categories. Deep learning features were from a deep residual neural network that
contains 17 layers of convolution. Expert features included time domain features,
frequency domain features, and other specific features that had statistics and phys-
iology significance. The model reached a F1 score of 0.81 and was ranked among
top ten of the leaderboard of the CPSC 2018 [30].

There are some other deep learning methods that can be used to classify ECG
signals such as restricted Boltzmann machines and deep belief networks [31]. With
the development of deep learning technology, more sophisticated models will be
developed. Table 1 summarizes the studies on ECG interpretation with deep
learning.

6 Conclusion

Artificial intelligence has made great strides in many fields, and technological
innovation has changed people’s lives. The application of deep learning in ECG
analysis has made remarkable achievement. It performs better than the traditional
machine learning and even has higher diagnostic accuracy than cardiologists
[12]. Along with the emerging of lots of wearable devices, which can collect ECG
signals, fully automated analysis of ECG is becoming very important. It can improve
people’s health management level and screen out suspicious heart disease. The use
of artificial intelligence to aid diagnosis can greatly increase work efficiency and
reduce the rate of misdiagnosis [3].

The most common means of deep learning today include CNN, RNN, or a
combination of both. CNN is good at capturing spatial features and has low
computational cost. RNN is good at processing time series data but had high
computational cost. Combining CNN and RNN may be a smart solution under the
limitation of computing power. Despite of great achievements of automated ECG
interpretation with deep learning, we have several concerns. First, the models
proposed in most researches can only identify a few kinds of abnormal ECGs, so
their clinical application value is limited. Second, many models are reported to have
high ECG interpretation accuracy. However, they were tested in different databases
or they discriminated different ECG classes, so it is hard to tell which one is better
with the metrics such as accuracy or F1 score. The main bottleneck is the lack of
standardized large databases. The most used ECG database in literature is the
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MITDB, which has only 48 records. The CPSC2018 has made a good attempt to
provide a moderate-sized clinical 12-lead ECG database [32]. More open, large,
standard ECG databases will definitely take the automated ECG interpretation to the
next level.
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Visualizing ECG Contribution into
Convolutional Neural Network
Classification

Yaowei Li, Frédéric Precioso, and Chengyu Liu

Abstract Convolutional Neural Network (CNN) demonstrated impressive classifi-
cation performance on ElectroCardioGram (ECG) analysis and has a great potential
to extract salient patterns from signal. Visualizing local contributions of ECG input
to a CNN classification model can both help us understand why CNN can reach such
high-level performances and serve as a basis for new diagnosis recommendations.
This chapter builds a single-layer 1-D CNN model on ECG classification with a 99%
accuracy. The trained model is then used to build a 1-D Deconvolved Neural
Network (1-D DeconvNet) for visualization. We propose Feature Importance
Degree Heatmap (FIDH) to interpret the contribution of each point of ECG input
to CNN classification results, and thus to show which part of ECG raises attention of
the classifier. We also illustrate the correlation between two visualization methods:
first-order Taylor expansion and multilayer 1-D DeconvNet.
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1 Introduction

Deep learning is a branch of artificial intelligence, which outperforms traditional
machine learning methods and can even outperform humans on signal analysis tasks,
for instance, achieving higher accuracy on heart disease diagnose than cardiologists
[1]. Convolutional Neural Network (CNN) was first introduced by Fukushima in
1980 [2] and later improved by LeCun et al. [3]. It is a kind of neural network where
hidden layers follow a structure providing invariance or robustness to spatial trans-
formations (i.e., scale changes, translation changes) [3]. CNN has become widely
used in many computer vision tasks, achieving state-of-the-art performance, for
instance, for object detection [4]. It also makes remarkable solutions on electrocar-
diogram (ECG) analysis and has a great potential to extract salient patterns of signal
[1, 5–10].

Kiranyaz et al. [11] studied the real-time “patient-specific” ECG classification
system using 1-D CNN, reaching an accuracy of 97.60% and 99.00% in the
detection of supraventricular ectopic beats and ventricular ectopic beats, respec-
tively, on MIT-BIH Arrhythmia database [12]. Acharya et al. [13] tested segment
strategy and proposed a model which contained four layers of 1-D CNN to auto-
matically discriminate four different arrhythmias (normal, atrial fibrillation, atrial
flutter, and ventricular flutter). The data were collected from three different open
databases. ECGs with 2-s and 5-s segments were input into the model achieving
accuracies of 92.50% and 94.90%, respectively [14].

However, it is hard to interpret why the deep neural network perform so well. In
deep neural network, the input components are merged after the first layer, which
cause diluted links between higher layers and input data and lead to a lack of
interpretability. This drawback hinders the cardiologist to integrate their expertise
knowledge into the network or verify the classification decision. “Why your deep
network makes such decision?” is hard to explain to physicians or patients, which
considerably limits values and trustworthiness of the decision result.

Several works have been dedicated to understand the internal operations of
multilayer network classification and explain what features are captured and learned
inside the network. Explanation of neural network behavior on the level of single
neurons is given in [15, 16]. These works try to find inputs which maximize the
activation of neurons by means of optimization problems which can be solved by
gradient ascent. To visualize CNN, Zeiler and Fergus [17] proposed “Deconvolved
Network” to visualize deep models by mapping the hidden features in each inter-
mediate layer to input pixel space, showing which patterns from the training set
activate the feature map. However, it does not illustrate how the network makes
decision and why this visualization would be valid. Simonyan et al. [18] establish an
interpretation of the work done in [17] as an approximation to partial derivatives
with respect to pixels in the input image. However, it does not match multilayer
network.

In this chapter, we aim to propose a simple CNN to classify 1-D ECG signals and
interpret which feature in the input signal is discriminative during the CNN
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classification. We first train a 1-D Convolutional Neural Network (CNN) to classify
four types of ECG beats. To interpret the feature from the trained 1-D CNN, we
visualize the network by applying the layer-wise propagation “Deconvolved Net-
work” in 1-D signal space, and thus, in this chapter, we call it “1-D deconvolved
neural network (1-D DeconvNet).” The principle of 1-D CNN and 1-D deconvolved
neural network is presented in Sect. 2.2. In this section, we interpret the relationship
between Taylor expansion and DeconvNet. The architecture of 1-D CNN (see Sect.
2.3.1) and 1-D deconvolved neural network (see Sect. 2.3.2) is described in Sect. 2.3.
The dataset used in this chapter is a wearable ECG database collected using
conductive textile dry electrodes embedded in the Wearable 12-lead ECG Lenovo
SmartVest system (see Sect. 3.1). The classification result of 1-D CNN reached an
accuracy of 96%; more details are shown in Sect. 3.2. The visualization of 1-D CNN
is presented as Feature Importance Degree Heatmap (FIDH), which is shown in Sect.
3.3.

2 Method

2.1 Principle of 1-D Convolutional Neural Network
(1-D CNN)

CNN is a hierarchical network which consists of convolutional layers alternate with
pooling layers to automatically extract features, followed with fully connected layers
as a classifier. Compared to a 2-D CNN commonly used in vision tasks which
requires a large training set and numerous iterations to converge (often hundreds of
epochs), 1-D CNN is easier to train with only a few dozens of epochs, making it a
good choice for 1-D ECG signal classification.

For a convolution layer, the convolution operation is as follows:

Z lð Þ ¼ F X lð Þ � K lð Þ
� �

ð1Þ

where X(l ) and K(l ) are feature map and kernel at layer l, respectively, Z(l ) is the
output of the convolutional layer, �(∙) is the filtering (convolution) operation, and F
(∙) is the activate function.

In this study, we choose ReLU as activation, defined by the following:

F Yið Þ ¼ max 0, Yið Þ ð2Þ

where Y is a 1-D vector and Yi is the ith element of Y.

Fig. 1 1-D convolution
operation
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The convolutional layer is then followed with the pooling layer. We choose
max-pooling in this chapter:

X lþ1ð Þ ¼ maxpooling Z lð Þ
� �

ð3Þ

X(l + 1) is the output of max-pooling in layer l, which is also the 1-D input vector of
layer l + 1. Z(l ) is the input of max-pooling in layer l, which is also the 1-D output
vector of convolution operation.

In the max-pooling operation, each element in the output vector X(l + 1) is selected
from the input vector Z(l ):

X lþ1ð Þ
i ¼ max j2Ω ið Þ Z lð Þ

j

� �
ð4Þ

X lþ1ð Þ
i is the ith element of X(l + 1). Z lð Þ

j is the jth element of the 1-D vector Z(l ),
which is the output of the convolution layer.

Thus, in a multilayer CNN, the input vector X(0) is processed by a combination of
convolutions, max-pooling, and ReLU:

X nð Þ ¼ F maxpooling X n�1ð Þ � K n�1ð Þ
� �� �

¼ F maxpooling F maxpooling X n�2ð Þ � K n�2ð Þ
� �� �

� K n�1ð Þ
� �� �

¼ . . .

¼ F . . .F maxpooling X 0ð Þ � K 0ð Þ
� �� ��

ð5Þ

The output of layer n X(n) is then followed by a classification operation, such as
fully connected layers and softmax layer. In this study, a flatten layer, a dense layer
(also called fully connected layer), and a softmax layer lead to the classification
decision.

The whole architecture is shown in Fig. 5. A flatten layer concatenates all
channels from the previous layer. The output of this architecture is a classification
score f(x) obtained to predict which class the input vector belongs to.

Fig. 2 1-D max-pooling
operation
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2.2 Visualization of 1-D CNN: 1-D Deconvolved Neural
Network

2.2.1 Visualization by First-Order Taylor Expansion

Although we build high-accuracy network in Sect. 2.1, we still cannot explicit what
makes the CNN performing so well. The overall idea of CNN visualization is to
understand the contribution of each single component from an input vector x to the
prediction f(x) made by a classifier f. The objective is, thus, to measure how much
each input vector component contributes to a positive or negative classification
results.

Simonyan et al. [18] address the visualization of deep CNN by using first-order
Taylor expansion. They used the score of a given class fc(x). In such a setup, there is
a mapping fc : R

v ! R1 such that fc(x) > 0 denotes the presence of the learned
structure. We are interested in finding out the contribution of each input component x
(d ) of an input signal x to a specific prediction fc(x).

Given a signal x0, we can approximate fc(x) with a linear function in the neigh-
borhood of x0 by computing the first-order Taylor expansion:

fc xð Þ ¼ fc x0ð Þ þ w ∙ x� x0ð Þ ð6Þ

where x0 is given and w is the first-order derivative of f(x0):

w ¼ ∂fc x0ð Þ
∂x0

ð7Þ

Thus, the influence of each position in a given signal x0 can be ranked by Eq. (7).
Another interpretation using the class score derivative is that the magnitude of the
derivative indicates which position needs to be changed the least to affect the class
score the most. Baehrens et al. [19] also visualize classifier predictions by using
partial derivatives at the prediction point x but in the context of Bayesian
classification.

In the forward propagation of CNN, the input of each layer X(l + 1) is calculated by
the following:

X lþ1ð Þ ¼ G X lð Þ � K lð Þ
� �

ð8Þ

where X(l ) is the convolutional kernel of layer l and G(∙) is a nonlinear function. In
this chapter, it consists of ReLU and max-pooling.

The gradient of f(X(0)):
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∂fc
∂X 0ð Þ ¼ ∂fc

∂X 1ð Þ ∙
∂X 1ð Þ

∂X 0ð Þ

¼ ∂fc
∂X 1ð Þ ∙

∂G

∂X 0ð Þ � K 0ð Þ � K 0ð ÞT

¼ ∂fc
∂X 2ð Þ ∙

∂G

∂X 1ð Þ � K 1ð Þ � K 1ð ÞT ∙ ∂G

∂X 1ð Þ � K 0ð ÞT

¼ ∂fc
∂X lð Þ ∙

∂relu
∂maxpool

∙ ∂maxpool

∂X lð Þ � K l�1ð ÞT ∙ . . . ∙ ∂relu
∂maxpool

∙ ∂maxpool

∂X 1ð Þ � K 0ð ÞT

ð9Þ

The gradient of feature importance fl(X
0) in layer l:

∂fl X0
� �

∂X0 ¼ ∂fl
∂X1 ∙ ∂G

∂X1 � K1 � K 1ð ÞT

¼ ∂fl
∂X lð Þ ∙

∂relu
∂maxpool

∙ ∂maxpool

∂X lð Þ � K l�1ð ÞT ∙ . . . ∙ ∂relu
∂maxpool

∙ ∂maxpool
∂X1 � K 0ð ÞT

ð10Þ

where K(l )T is the flip kernel (transpose of K(l )) and X(0) is the input signal of a CNN.
This whole operation is similar to a backward propagation. In backward propa-

gation, since the max-pooling operation is not differentiable, the “derivative” of
max-pooling is obtained by recording the locations of the maxima within each
pooling region in a set of switch variables. In Eq. (10), we just represent it as
∂maxpool
∂X nð Þ .

The operation is shown in Fig. 3.

2.2.2 Visualization by DeconvNet

In DeconvNet, to reproject any feature map onto the input space, the feature map
convolved from CNN is repeatedly processed with three operators: UnReLU,
Unpooling, and Unconv.

1. Unpooling: Unpooling approximates the inverse pooling operation by recording
the locations of the maxima within each pooling region in a set of switch
variables. This operation corresponds to the max-pooling in backward propaga-
tion (Fig. 4).

Thus, the unpooling operation can be expressed as follows:

unpooling Xð Þ ¼ ∂maxpool
∂X

where X is the input of unpooling operation; in real case, it is always a feature map in
one layer of CNN.
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1. UnReLU: The ReLU function used in CNN rectifies the feature maps, thus
ensuring the feature maps are always positive. To obtain valid feature reconstruc-
tions at each layer (which also should be positive), we pass the reconstructed
signal through a ReLU function.
Thus, the UnReLU operation is expressed as follows:

UnReLU Xð Þ ¼ ReLU Xð Þ

2. Unconv: To invert a convolution operation in CNN, the DeconvNet applies
transposed versions of the initial filters to the rectified maps. In practice, this
means flipping each filter vertically and horizontally:

conv Xð Þ ¼ X � K
unconv Xð Þ ¼ X � KT

where � is convolution operation, K is the filter during convolution, and KT is the
transpose filter of K.

In multilayer network, given an input signal X(0), the reconstruction Rl of the
feature importance within layer l to the input space is expressed as in Eq. (11). This
could visualize the feature importance of layer l in the input space. To better present
the equation, we represent ReLU(⋆) as ⋆⋮ReLU.

Fig. 3 Max-pooling backward propagation

Fig. 4 Unpooling operation, which is corresponding to the max-pooling backward propagation
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Rl ¼ X lð Þ⋮ReLU � ∂maxpool

∂X lð Þ � K l�1ð ÞT � . . .⋮ReLU � ∂maxpool

∂X 1ð Þ � K 0ð ÞT ð11Þ

We can show that the equation is similar to Eq. (10):

Rl ffi ∂fl
∂X 0ð Þ

The contribution of each component to the classification result is expressed as
Eq. (12):

Rn ¼ fc X 0ð Þ
� �

⋮relu ∙ . . .⋮relu ∙ ∂maxpool

∂X 1ð Þ � K 0ð ÞT ð12Þ

We can say that in DeconvNet, the expression of each input component contri-
bution is very similar to the one in Eq. (10), the gradient of fc(X

(0)).

Rn ffi ∂fc
∂X 0ð Þ ð13Þ

Different from Rl which visualizes the layer feature importance and highlights
which input part is important for CNN feature extraction, Rn focuses on the decision
or classification result. Thus, Rn implies the contribution of each component of input
signal X(0) to the classification result fc(X

(0)), while Rl implies the feature importance
of layer l backward to the input space.

2.3 Model

2.3.1 1-D CNN Model

Figure 5 provides details about the 1-D CNN architecture. This model only includes
one convolutional layer. A 5000 � 1 signal is presented as the input. It is convolved
with four different feature maps (blue block), each of size 35 by 1, using a stride of
1. The resulting feature maps are then: (1) passed through a rectified linear unit
function (not shown) and (2) pooled (max within 2 � 1 regions, using stride 2).
These four feature maps are then passed to a flatten layer (green block), which is able
to transform multichannel features (in this case 4) into a 1-channel 10,000� 1 vector
that can be fed into a fully connected neural network classifier. This last network
consists of two dense layers, taking features from the former layers, and results in the
final 4 � 1 vector of classification scores.
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2.3.2 1-D DeconvNet Model

Once the 1-D CNN training exposed in Sect. 2.3.1 is completed, a DeconvNet can be
built to visualize the contribution of each input component to the classification
results. Figure 6 illustrates the flowchart of 1-D CNN model and DeconvNet. A
1 � 5000 1-D signal passes through the trained 1-D CNN model (left). To visualize
this signal, a DeconvNet (right) is attached to the CNN layer, providing a path to
project the feature maps of CNN layer back onto the input space. The feature maps of
the CNN layer are then successively processed by “UnReLU,” “Unpooling,” and
“Unconv” to reconstruct the activity stored in the feature maps into the input space,
and thus get a 1 � 5000 1-D signal as output of the DeconvNet.

Fig. 5 1-D CNN
architecture includes one
convolutional layer and two
dense layers (i.e., fully
connected layers). A flatten
layer is added before the first
dense layer
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3 Experiment

3.1 Dataset

A wearable ECG database was collected using conductive textile dry electrodes
embedded in the Wearable 12-lead ECG Lenovo SmartVest system. A self-charged
ECG module was embedded in the back of SmartVest, which could start-up signal
recording and implement hardware filtering, denoising, and amplifying (frequency
band ¼ 0.05–125 Hz, gain ¼ 400). The ECG was sampled at 500 Hz and was stored
locally in the remember card in ECG module, being transmitted to a connected
smartphone via Bluetooth. Twenty volunteers aged 26–65 with a history of prema-
ture contractions participated in this study. The time length of each recording was
30 min. Wearable ECGs were also segmented into 10-s segments without
overlapping. Signal quality was manually checked. Each R-peak location and its
type (N, PAC or PVC) of the wearable ECG database were also annotated by two
independent cardiologists and arbitrated by a third. The total number of beats was
3642, including 906 normal, 900 noise, 928 PAC, and 967 PVC beats.

3.2 Training Details of 1-D CNN Classification

We now describe the training details of the CNN model shown in Sect. 2.3. The
network architecture is shown in Fig. 5. The implementation of the CNN model is

Fig. 6 1-D CNN (left) and DeconvNet (right) flowchart: feature maps are generated from the 1-D
CNN and then used as the input of the DeconvNet. The input of CNN and the output of DeconvNet
are both 1�5000 vector
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based on tensorflow. The model is trained on the dataset described in Sect. 3.1 (3642
ECG signals, four classes, including 906 normal, 900 noise, 928 PAC, and 967 PVC
beats).

The dataset is split into five folds randomly. One fold was selected for validation
set, and the other four folds are the training set. Stochastic gradient descent with a
mini-batch size of 500 has been used to update the parameters, starting with a
learning rate of 0.01. We anneal the learning rate throughout training manually
when the loss on the validation converges. All weights are initialized to 0.01 and
biases are set to 0. We stopped training after 200 epochs; however, it always
converges before 20 epochs given filter size of 34 and max-pooling size of 2.

During training, dropout is used at each convolutional and dense layer, with a
learning rate of 0.5. The filter size is set 35 � 1 for convolution and 2 � 1 for
max-pooling. The overall accuracy is 96% on the validation set.

Figure 7 illustrates the relationship between the convergence speed and the
max-pooling size. Larger max-pooling size will lead to a longer convergence time
with the same accuracy. Figure 8 illustrates the relationship between the model
stability and the filter size. A larger filter size will not change the convergence speed
but will reduce the model stability.

3.3 Feature Visualization

3.3.1 Feature Importance Degree Heatmap (FIDH)

In this study, we first train a 1-D CNN for classification of ECG beat types on the
wearable ECG database mentioned in Sect. 3.1. The classified ECG includes four
different types of beats, which are shown in Fig. 3: (a) PAC (premature atrial
contraction), (b) PVC (premature ventricular contraction), (c) normal beat, and
(d) noise beat. All recordings are 10-s signal sampled at 500 Hz.

Once the training of the 1-D CNN model described in Sect. 2.3.1 is complete, we
start to visualize the features of these four types of beats. Using the 1-D DeconvNet
(cf. Sect. 2.3.2), a 5000 � 1 vector is then obtained as the model output. Each point
illustrates the contribution of the corresponding input value in the original signal to
the classification result. To better visualize the signals in Fig. 9 and to interpret the
correlation between the contribution and the original signal, we plot the Feature
Importance Degree Heatmap (FIDH), adding the degree of feature importance as
colors at each point of the original signal.

Figure 10 shows FIDH, visualizing the degree of contributions at each point in
Fig. 9. This means that samples of beats shown in Fig. 10 are the same as the samples
in Fig. 9 selected from the dataset. Here, we only intercept 3.5- to 7-s recording for a
clearer visualization, which contains the moments that PAC and PVC appear. Thus,
the same four types of beats are included: PAC, PVC, normal beat, and noise beat.
The degree of contribution to classification is represented as colors in Fig. 10. The
red color means “the hidden weight” at this point is positive, and the blue color
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means “the hidden weight” at this point is negative. The more intense the color is, the
higher the absolute value of importance. Positive (red) or negative (blue) does not
mean it will contribute to a positive or negative result. For example, in PVC case, the
QRS wave at 5 s, which is colored in deeper red compared to other instant, is the
most discriminant part during CNN feature extraction.

In Fig. 10, it is illustrated that only several parts of signal are discriminant for the
CNN classifier:

1. In PAC, PVC, and normal beats, all R peaks contribute to a positive classification
result. In PAC and normal case, the T waves are also slightly discriminant.

2. However, in PVC case, T waves are hardly highlighted. The R peak at 5 s
becomes the most discriminant part, while other R peaks are uniformly less
discriminant.

3. In noise case, all parts at high value are positively noticed. The lowest parts of
every wave are almost blue (negatively noticed).

To further investigate the correlation between QRS waves, T waves, amplitude,
and discrimination, we have selected three other PAC beat samples from the same
patient but from different leads. Figure 11 illustrates the DCDH of the three PAC
cases. Thus, for each recording, the PAC appears at the same time. Evidently, QRS
waves are still discriminative in these three PAC cases with uniform degree. It is
visible that T waves are comparably higher in case 1 than in case 2 and in case

Fig. 9 ECG beats examples of PAC (a), PVC (b), normal (c), and noise (d)

170 Y. Li et al.



3. Accordingly, T waves in case 1 are significantly more discriminant than case 2 and
case 3.

Similarly, Fig. 12 includes three cases of PVC selected from the same patient but
from different leads.

1. In case 1, the QRS wave at 5 s is significantly higher than other QRS complexes,
and thus, the PVC is easily noticeable.

2. In case 2 similarly as in case 1, the QRS wave at 5 s is discriminative. However,
all amplitudes of QRS waves are negative values.

Fig. 10 Feature Importance Degree Heatmap (FIDH) of four types of signal. The samples in Fig. 9
are the input of 1-D CNN, and the generated feature maps are the input of DeconvNet. The color of
each curve represents the output of DeconvNet. The red color means “the hidden weight” at this
point is positive, and the blue color means “the hidden weight” at this point is negative. Color
intensity corresponds to absolute value of importance
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Fig. 11 Feature Importance Degree Heatmap (FIDH) of PAC beats. Three PAC beat samples are
selected from the same patient but from different leads. For each recording, PAC appears at the
same time (in this case, it is right after 5 s). The red color means “the hidden weight” at this point is
positive, and the blue color means “the hidden weight” at this point is negative. The deeper the color
is the higher absolute value of the contribution

Fig. 12 Feature Importance Degree Heatmap (FIDH) of PVC beats. For each recording, PAC
appears at the same time (in this case 5 s)
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3. However, it is significantly different in case 3. Though the QRS wave at 5 s is still
different from other QRS waves, the absolute amplitude of this wave is the lowest
of all QRS waves. It has to be noticed that this case is correctly classified by the
model.

4 Conclusion

In this chapter, we have investigated how interesting are the information, the
deconvolution process first proposed by Zeiler and Fergus [17] can provide. In
order to simplify the analysis, we restrict our study to a CNN of one convolutional
layer and confirm that known standard ECG features can be retrieved. This study
shows that main ECG features (such as QRS complexes) can be highlighted by CNN
deconvolution process based on the absolute amplitude of ECG signal. The next step
will be to extend this study to deeper networks such as the one described in the work
by Hannun [20].

References

1. Rautaharju, P.M.: Eyewitness to history: landmarks in the development of computerized
electrocardiography. J. Electrocardiol. 49(1), 1–6 (2016)

2. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521(7553), 436 (2015)
4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. Adv. Neural Inf. Proces. Syst. 2012, 1097–1105 (2012)
5. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review,

opportunities and challenges. Brief. Bioinform. 19(6), 1236–1246 (2017)
6. Oh, S.L., Ng, E.Y.K., Tan, R.S., Acharya, U.R.: Automated diagnosis of arrhythmia using

combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol.
Med. 102, 278–287 (2018)

7. Yıldırım, O., Pławiak, P., Tan, R.S., Acharya, U.R.: Arrhythmia detection using deep
convolutional neural network with long duration ECG signals. Comput. Biol. Med. 102,
411–420 (2018)

8. Rahhal, M.M.A., Bazi, Y., Zuair, M.A., Othman, E., Benjdira, B.: Convolutional neural
networks for electrocardiogram classification. J. Med. Biol. Eng. 38, 1014–1025 (2018)

9. Andersen, R.S., Peimankar, A., Puthusserypady, S.: A deep learning approach for real-time
detection of atrial fibrillation. Expert Syst. Appl. 115, 465–473 (2019)

10. Sannino, G., De Pietro, G.: A deep learning approach for ECG-based heartbeat classification for
arrhythmia detection. Futur. Gener. Comput. Syst. 86, 446–455 (2018)

11. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D
convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2015)

12. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G.,
Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and
PhysioNet: components of a new research resource for complex physiologic signals. Circula-
tion. 101(23), e215–e220 (2000)

Visualizing ECG Contribution into Convolutional Neural Network Classification 173



13. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., Tan, R.S.: A deep
convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017(89),
389–396 (2017)

14. Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Automated detection of
arrhythmias using different intervals of tachycardia ECG segments with convolutional neural
network. Inf. Sci. 2017(405), 81–90 (2017)

15. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep
network. University of Montreal. 1341(3), 1 (2009)

16. Le, Q.V.: Building high-level features using large scale unsupervised learning. In: IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 8595–8598 (2013)

17. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European
Conference on Computer Vision, pp. 818–833. Springer, Cham (2014)

18. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

19. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.-R.: How to
explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

20. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P., Ng, A.
Y.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms
using a deep neural network. Nat. Med. 25(1), 65–69 (2019)

174 Y. Li et al.



Part V
Practical Applications



Atrial Fibrillation Detection in Dynamic
Signals

Caiyun Ma, Shoushui Wei, and Chengyu Liu

Abstract Atrial fibrillation (AF) is the most common and sustained heart rhythm
disorder, increasing the risk of stroke and death, and its incidence is destined to
increase as the population ages. Current diagnostic methods are primarily through
symptom or other indirect medical assessment methods. The fast-developing wear-
able technologies significantly promote the progress in ambulatory electrocardio-
gram (ECG) monitoring. This is a challenge to develop the devices that can detect
AF in wearable electronic devices, with accessibility, sensitivity, ease of use,
low-cost efficiency, and high computing power. Here, we first give a brief introduc-
tion to physiological concepts for development of detection algorithms. Then, we
describe several kinds of AF features in dynamic signals. These features are impor-
tant part of the automatic detection of AF, and a thorough understanding of these
concepts can help researchers gain better insight into AF detection. Finally, seven
AF features were extracted from the RR interval time series and were input into a
SVM model to train AF/non-AF classifier. The results on the wearable ECGs
verified that the proposed model could provide good identification for AF events.
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1 Introduction

Atrial fibrillation (AF), a rapid and irregular fibrillation from the atrium, is a very
important type of arrhythmia. According to statistics, the disease of AF affects
approximately 1.5–2% of the world’s total population, and this figure is likely to
increase in the next 50 years [1, 2]. The prevalence of AF increases with age, from
<0.5% at 40–50 years to 5–15% at 80 years [3]. In addition, AF can lead to stroke,
heart failure, and sudden death, with a high morbidity and mortality [4, 5]. Therefore,
the early detection and auxiliary diagnosis of AF have important clinical and social
significance for improving patients’ treatment strategies and the quality of treatment,
reducing the incidence of critical illness and mortality.

The surface electrocardiogram (ECG) signal contained the high potential diag-
nostic information, and its characteristics directly reflect the nature of pathophysio-
logic events occurring in both the cardiac chambers. In addition, it is painless to
record a surface ECG for the patient. Long-term surface ECG recordings can be
performed with minimal risk compared to other invasive diagnostic techniques
[6]. Therefore, ECG is a powerful tool to reveal initiation, maintenance, and
termination of AF.

Recently, the fast-developing wearable and Internet of things (IoT) technologies
significantly promote the progress in ambulatory electrocardiogram (ECG) monitor-
ing, which is an essentially useful tool for the early detection of AF. However, when
performed on the relatively noisy wearable ECGs, poor generalization capabilities
are inevitable due to the individual waveform variability and external noises.
Wearable electronic devices for ECG monitoring are usually highly sensitive to
motion artifacts and susceptible to noise interference [7]. This is a challenge to
develop AF detection that can be robust in noisy ECGs.

Our work describes physiological concepts behind the development of an AF
detection algorithm and some of the most recent signal processing techniques to
reveal atrial fibrillation. AF detectors can commonly follow ECG analysis to reveal
the arrhythmia. The chapter is dedicated to an overview of some different algorithms
to detect AF.

2 Physiological Concepts for Development of Detection
Algorithms

During AF, ECG has obvious features: P-wave disappears, f-waves (a series of
continuous and irregular atrial excitation waves) appear [8], and RR interval is
absolutely irregular [9]. Figure 1 shows the AF episode and normal rhythm episode.
In literature, AF detectors can be separated into two major classes: methods based on
P-wave features and RR interval features.

Many scholars analyzed the morphology of P-wave to achieve AF detection.
Andrikopoulos et al. [10] presented that increased variance of P-wave duration on
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the electrocardiogram distinguishes patients with idiopathic paroxysmal atrial fibril-
lation (PAF). Prerfellner et al. [11] used P-wave evidence as a method for improving
algorithm to detect AF. Alcaraz et al. [12] proposed a new approach to predict
termination of AF: wavelet sample entropy. Alcaraz et al. [13] applied wavelet
entropy to AF prediction. Garcia et al. [14] presented application of the relative
wavelet energy to heart rate independent detection of AF. However, P-waves or
f-waves in atrial activity have small amplitude, which are extremely susceptible to
noise interference. This situation can be worse in the dynamic ECG monitoring,
where many complicated interferences from the daily activities occur, and is difficult
to obtain stable, high-quality signals in real-time long-term recordings.

There are many AF detection algorithms based on RR interval features, including
variability analysis, complexity estimation, statistical method, and entropy estima-
tion. The R peak is the most prominent feature of an ECG and the least confounded
by muscle noise. Indeed, methods based on RR irregularity should be preferred for
external devices. These methods need a high accurate QRS detector, since extra and
missed beats would affect algorithms’ performance [15]. For the wearable ECG
detection, poor generalization capabilities are inevitable due to the individual wave-
form variability and external noises. This is a challenge to develop AF detection that
can be robust in the wearable ECG. This chapter introduces some RR interval
features for atrial fibrillation detection algorithm and provides guidance for the
identification of wearable ECG signals.

Fig. 1 (a, b) Atrial fibrillation episode and normal rhythm episode
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It is worth noting that AF detector combining of several of the above single
features with machine learning algorithms could enhance its performance. Couceiro
et al. [16] combined the P-wave disappearance, irregular heart rhythm, atrial activity,
and other ECG characteristics and developed a neural network model on the
MIT-BIH AF database, achieving a sensitivity of 93.8% and a specificity of
96.1%. Babaeizadeh et al. [17] presented a AF detector using decision tree classifier
and RR interval, PR interval variability, and a P-wave morphology similarity
measure, reporting a sensitivity of 92% and a positive predictivity of 97%. The
2017 PhysioNet/CinC Challenge [18] aims to classify normal sinus rhythm, AF, an
alternative rhythm, or noisy ECGs. Many contestants have developed AF detectors
based on RR interval features and analysis of the absence of P-waves or f-waves
present in TQ interval. Shreyasi Datta et al. [19] used morphological features,
frequency features, heart rate variability (HRV) features, statistical features, and
other abnormality features with a multilayer cascaded binary classification approach
in the PhysioNet/Computing in Cardiology (CinC) Challenge 2017 and won shared
1st places.

3 AF Features in Dynamic Signals: Description
and Comparison

This section summarizes the state of the art in AF detection based on RR interval
features, that is because pulse beats of ventricles are less likely to be influenced by
baseline wandering and noise. In addition, since we cannot predict when the
paroxysm of AF will come about, it will be useful to make a real-time portable
monitoring electrocardiograph. Some AF features based on RR interval are intro-
duced, and the underlying principle to reveal atrial fibrillation is briefly discussed.

3.1 Lorenz Plot

The characteristics of the Lorentz scatter plot can calculate atrial fibrillation
[20]. The RR interval of atrial fibrillation signal is irregular, and the distribution of
scatter plots is significantly different from that of normal people. Figure 2 shows
Lorenz plot of ΔRR intervals for normal signal and AF signal from the recording of
04936 from the MIT-BIH AF database. x axis is ΔRR interval, and y axis is ΔRR
(i � 1) interval.

ΔRR ¼ RR ið Þ � RR i� 1ð Þ
ΔRR i� 1ð Þ ¼ RR i� 1ð Þ � RR i� 2ð Þ
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Since the continuous RR interval difference of the normal signal is small, it can be
seen that the points of the normal signal are gathered around the starting point, and
the atrial fibrillation signal is sparsely distributed due to the irregular RR interval
from Fig. 2.

If we consider the digital representation of the Lorentz plot, such as a
two-dimensional histogram, it is divided into 13 discrete segments, shown in
Fig. 3. For each signal’s rhythm, its points have a higher probability of positioning
in a particular subdivision. For a normal signal, the point is almost concentrated near
the origin.

Therefore, the origin of the histogram, represented by “O,” will contain a large
number of points, while the boxes in other sections are almost empty. Conversely,
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Fig. 2 (a, b) Lorentz plot of ΔRR interval for AF signal and normal signal
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Fig. 3 The two-dimensional histogram, numeric representation of a Lorenz plot
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for atrial fibrillation signals, the points will spread across the histogram, filling a
larger number of intervals from “I” to “VII.”

AFEvidence, which accounts for points positioning within the plot, is a test
indicator, used to quantify the possibility of atrial fibrillation. IrregularityEvidence
is used to measure the sparsity of a high-value distribution of atrial fibrillation
signals. BinCountn (BCn) is the number of nonempty bins contained in the nth
segment of Fig. 3. PACEv is used to measure the low value of the normal signal,
which is corresponding to the number of all the dots filled in the “O” segment in
Fig. 3.

IrregularityEvidence ¼
X12
1

BinCountn ð1Þ

AFEvidence ¼ IrrEv� OriginCount� 2 � PACEv ð2Þ

PACEv ¼
X4
n¼1

PCn � BCnð Þ þ
X

n¼5, 6, 10

PCn � BCnð Þ þ
X

n¼7, 8, 12

PCn � BCnð Þ ð3Þ

where PCn is the number of points contained in the nth segment of Fig. 3.
The method was evaluated on the MIT-BIH AF database, showing sensitivity of

97.5% and positive predictive value of 99%. In the large number of atrial tachycardia
(AT) presence, detector performance is worsened. This condition needs to design a
supplemental detector to distinguish AT with regular ventricular response from
AF. Through clinical testing, this algorithm is eligible for a further implementation
on phone by clinical truth. The optimal window size is 2 min at least, and minimum
percentage of AF in AF ECG episode is currently 60%.

3.2 Poincare Plot

Poincare plot [21] from non-AF data showed some pattern, while the plot from AF
data showed irregular shape. Figure 4 shows Poincare plot of RR interval for AF
signal and normal signal. In case of non-AF data, the definite pattern in the plot
manifested itself with some limited number of clusters or closely packed one cluster.
In case of AF data, the number of clusters in the plot was too many. Making a
Poincare plot using the inter-beat intervals, the author extracted three-feature mea-
sures characterizing AF and non-AF: the number of clusters, mean stepping incre-
ment of inter-beat intervals, and dispersion of the points around a diagonal line in the
plot. The author divided distribution of the number of clusters into two and calcu-
lated mean value of the lower part by k-means clustering method and classified data
whose number of clusters is more than one and less than this mean value as non-AF
data. In the other case, the author tried to discriminate AF from non-AF using
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support vector machine with the other feature measures: the mean stepping incre-
ment and dispersion of the points in the Poincare plot.

The study [21] evaluated the accuracy using leave-one-out cross-validation on
Computers in Cardiology Challenge 2001 and 2004. Mean sensitivity and mean
specificity were 91.4% and 92.9%, respectively. It could be installed in a portable
heart monitoring system. This AF detector was designed as automated algorithm,
which did not require any human intervention and any specific threshold and could
be installed in a portable AF monitoring system.

3.3 RR Interval Variance

This AF detector is simply based on RR interval variance and is designed to provide
an automatic, robust detection of AF [22]. Evaluated by the authors on the MIT-BIH
AF database, it showed sensitivity of 87.30% and specificity of 90.31% with an
optimal window size of 120 s. This AF detector has been conceived for ambulatory
monitoring situations, where arbitrary lead placements, muscle artifact, and poten-
tially changing morphology of the signal can represent a challenge for an AF
detector.
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Fig. 4 (a, b) Poincare plot of RR interval for AF signal and normal signal
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3.4 The Median of the Variation in the Absolute Standard
Deviation from Mean of Heart Rate in Three Adjacent
Segments of the RR Interval Series (MAD)

MAD, defined as the median of the variation in the absolute standard deviation from
mean of heart rate in three adjacent segments of the RR interval series, reveals the
irregular nature of AF [23]. It was developed for long-term monitoring of AF on a
portable monitoring device. In the comparative study [24], this method showed the
highest sensitivity and the smallest window length (10 s), which can help in
detecting additional AF cases, such as paroxysmal events, whose onset is often
unexpected and of short duration and is developed to be easy-to-implement, simple,
and to have low-memory requirements.

3.5 Density Histogram of Delta RR Intervals

Huang et al. proposed a novel method for detection of the transition between AF and
sinus rhythm based on RR intervals [25]. First, we obtained the delta RR interval
distribution difference curve from the density histogram of delta RR intervals and
then detected its peaks, which represented the AF events. Once an AF event was
detected, four successive steps were used to classify its type, and thus to determine
the boundary of AF: (1) histogram analysis, (2) standard deviation analysis, (3) num-
bering aberrant rhythms recognition, and (4) Kolmogorov–Smirnov (K-S) test.

A dataset of 24-h Holter ECG recordings (n ¼ 433) and two MIT-BIH databases
(MIT-BIH AF database and MIT-BIH normal sinus rhythm (NSR) database) were
used for development and evaluation. Using the receiver operating characteristic
curves for determining the threshold of the K-S test, the authors have achieved the
highest performance of sensitivity and specificity (Sp) (96.1% and 98.1%, respec-
tively) for the MIT-BIH AF database, compared with other previously published
algorithms. The Sp was 97.9% for the MIT-BIH NSR database. The algorithm has
been integrated into a Holter system for the automatic detection of AF, and it is also
suitable for applying to the continuous AF monitoring situations.

3.6 Coefficient of Sample Entropy (CosEn)

The coefficient of sample entropy (CosEn) is used to distinguish AF and atrial flutter
(AFL) from sinus rhythm and other arrhythmias, which is an optimized combination
[26]. It includes sample entropy (SampEn) [27] and is able to encode the irregular
nature of short RR interval segments during AF and mean heart beat interval (RR),
which adds further independent information to the discrimination. Refer Appendix
6.1 for specific calculation process.
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This method used a very small window length (only a 12-beat segment). It was
validated on MIT-BIH database and achieved sensitivity of 91% and specificity of
94%. But, it had poor performance on Holter monitoring recordings from the
University of Virginia (UVa), which is because of recordings with frequent, complex
ventricular ectopy or electronic pacemakers which challenge AF identification.

3.7 Normalized Fuzzy Entropy (NFEn)

On the basis of SampEn, Liu et al. developed the FuzzyMEn method by using fuzzy
function instead of 0–1 judgment rule [28]. Then, combined with CosEn and
FuzzyMEn, normalized fuzzy entropy (NFEn), a novel entropy measure suitable
for AF detection based on a short-term RR time series, was proposed again
[29]. NFEn uses a fuzzy function to determine vector similarity, replaces a proba-
bility estimate with a density estimate for entropy approximation, utilizes a flexible
distance threshold parameter, and adjusts for heart rate by subtracting the natural log
of mean RR intervals.

NFEn was tested on the MIT-BIH AF, NSR, and arrhythmia databases, demon-
strating that NFEn is an accurate measure for detecting AF. For classifying AF and
non-AF rhythms, NFEn achieved the highest area under receiver operating charac-
teristic curve (AUC) values of 92.72%, 95.27%, and 96.76% for 12-beat, 30-beat,
and 60-beat window lengths, respectively.

3.8 Entropy_AF

Zhao et al. [30] proposed the Entropy_AF method to enhance the performance of
entropy-based AF detectors. This algorithm combines the distance normalization
function and the entropy-based AF detection concept and uses the flexible threshold
parameters. Refer Appendix 6.2 for specific calculation process.

On the MIT-BIH AF database, Entropy_AF achieved the highest area under
receiver operating characteristic curve (AUC) values of 98.15% when using a
30-beat time window, which was higher than CosEn with AUC of 91.86%. For
classifying AF and non-AF rhythms in the clinical wearable AF database,
Entropy_AF also generated the largest values of Youden index (77.94%), sensitivity
(92.77%), specificity (85.17%), accuracy (87.10%), positive predictivity (68.09%),
and negative predictivity (97.18%). Entropy_AF generated highest classification
accuracy when using a 12-beat time window and the better discrimination ability
for identifying AF when using Entropy_AF method, indicating that it would be
useful for the practical clinical wearable AF scanning.
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4 Atrial Fibrillation Detection in Dynamic Signals Based
on RR Interval Characteristics

Detectors designed are based on the ventricular response analysis. Starting from
the ECG, the RR interval series is derived. Seven AF features were extracted from
the RR interval time series. AF features were input classifier to return AF diagnosis.
The steps for AF detection are shown in Fig. 5.

4.1 Database

The database is wearable ECG data. The wearable ECG database was collected using
a wearable ECG device developed by Southeast University and Lenovo, as shown in
Fig. 6 [31]. The patients were recruited from the First Affiliated Hospital of Nanjing
Medical University and had been diagnosed as AF by ECG Holter. The study
protocol was approved by the Ethics Committee of the First Affiliated Hospital of
Nanjing Medical University, and the patient has signed the informed consent form.
ECGs were sampled as 400 Hz. In our study, we selected ten normal and ten patients
(randomly select 1000 ECG for each person) respectively to tenfold cross-validation.
In addition, we selected eight persons (24-h ECG) as testing sets. Table 1 shows
details of the dataset.

4.2 QRS Detection

For the RR interval feature extraction, the most important thing is to identify the
position of the R peak. In recent decades, QRS detection technology has developed

ECG

RR series

AF feature

Classifier

AF diagnosis
(0 or 1)

QRS detection

AF feature extraction

Input classifier

Fig. 5 Steps for AF
detection
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relatively maturely. In this chapter, a fast QRS detection algorithm proposed by
Paoletti et al. [15] was used to locate QRS complex waves. This algorithm has a
certain anti-noise property and is suitable for the R-peak positioning of dynamic
ECG signals [32]. The R-peak location of the 10-s dynamic signal labeled by this
QRS detector is shown in Fig. 7.

Fig. 6 The wearable ECG
device

Table 1 Details of data

Data 60-s ECG episode 30-s ECG episode 10-s ECG episode

Training set 20,000 20,000 20,000

Testing set1 16,313 17,175 23,062

Testing set2 16,688 19,872 15,443

Testing set3 15,738 16,158 16,483

Testing set4 15,744 17,044 27,352

Testing set5 15,582 16,389 17,042

Testing set6 15,366 15,768 16,188

Testing set7 15,785 19,292 15,245

Testing set8 16,016 15,222 16,703
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4.3 AF Features

The previous section reviews the technology in atrial fibrillation detection based on
RR interval features, with particular emphasis on AF screening applications that can
be implemented in dynamic signals. We chose seven AF features: Entropy_AF,
sample entropy (SampEn), coefficient of sample entropy (CosEn), mean RR inter-
vals of episode (mRR), minimum of heart rate of episode (minHR), maximum of
heart rate of episode (maxHR), and median heart rate of episode (medHR) for further
evaluation and comparison.

4.4 Support Vector Machine

LIBSVM with the Gaussian kernel function was used as the classifier in Matlab
R2017b. Grid search method [33] was used for parameter optimization.

4.5 Evaluation Methods

To get reliable and stable model, we used tenfold cross-validation on 20 people’s
data on the wearable ECG. In order to verify the generalization ability and
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Fig. 7 The R-peak location of the 10-s dynamic signal
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practicability of the model, we used eight people’s data as the test data. For model
evaluation, three widely used metrics, i.e., accuracy (Acc), sensitivity (Se), speci-
ficity (Sp), are used as evaluation indicators. According to the attribute of the label
(positive or negative), the result can generate four basic indexes: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN). In this case, Acc is
the radio of the number of correct predicted labels and total number of the labels,
thus Acc ¼ (TP + TN)/(TP + TN + FP + FN). Se is the true positive rate and is
probability of incorrectly diagnosing into positive among all positive patients,
Se ¼ TP/(TP + FN). Sp is proportion of incorrectly diagnosing into negative
among all negative patients, Sp ¼ TN/(TN + FP).

4.6 Results

Table 2 shows the classification results from tenfold cross-validation on the wearable
ECG database. The mean and standard deviation (SD) of the experimental results
were selected to be evaluated. The result showed an Acc of 95.20% for 10-s episode
(Se 93.98% and Sp 97.62%), an Acc of 97.47% for 30-s episode (Se 97.25% and Sp
98.07%), and an Acc of 98.41% for 60-s episode (Se 98.76% and Sp 98.38%).

The combination of the second fold and the seventh fold is the atrial fibrillation
signal and the ventricular premature. For 10-s episode, Se is relatively low, that is,
the classifier classifies a part of ventricular premature signal into atrial fibrillation
signal. But, for 30-s episode and 60-s episode, tenfold cross-validation results are
better.

Twenty people’s data on the wearable ECG were as training sets, and eight
individuals were tested. Table 3 shows the results on the eight wearable ECG data.
Testing set2 is a patient with no atrial fibrillation and more atrial and ventricular
premature. The test accuracy of 10-s episode and 30-s episode is very low (60.17%
and 79.51%, respectively), and the Acc of 60-s episode is 84.56%. Testing set6 is a
patient with no atrial fibrillation and atrial and ventricular premature. The testing
accuracy of 10-s episode is lower (78.79%), but the Acc is 94.12% of 30-s episode
and 97.50% of 60-s episode. For the other testing sets, Acc of 10-s ECG episode is
over 90%, Acc of 30-s ECG episode is over 96%, and Acc of 60-s ECG episode is
over 98%.

In our purposed algorithm, Acc of 60-s window is the best, but Acc of 10-s
window is low on patients with atrial and ventricular premature. In the following
model training, the volume and diversity of training sets should be increased.
Additional classification rules can be developed for the ECG signals of atrial and
ventricular premature.
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5 Conclusions

In this section, eight types of short-term features that can be used for dynamic AF
signal detection are described. Particular emphasis is placed on AF screening
applications that can be implemented in dynamic signals. Finally, seven AF features
were selected to train AF/non-AF model, and the detection effect of the algorithm on
the different window lengths of wearable ECG was evaluated. The testing results on
wearable ECG show that this is a feasible method for AF detection in dynamic
signals.

6. Appendix

6.1. Coefficient of Sample Entropy (CosEn)

A data record consists of a series of N consecutive RR intervals: x1, x2, . . . , xn. For a
length m < n and starting point i, the template xm(i) is the vector containing m
consecutive RR intervals xi, xi+1, . . . , xi+m�1. For a matching tolerance r > 0, an
instance where all the components of xm(i) are within a distance r of any other xm( j)
in the record is called a match (or template match). For example, the template x1
matches x2, if both |x1 – x3|< r and |x2 – x4|< r. Let Bi denote the number of matches
of length m with template xm(i) and Ai denote the number of matches of length m + 1
with template xm+1(i). Let A¼ Σi Ai, B ¼ Σi Bi denote, respectively, the total number
of matches of length m + 1 and m. The sample entropy which refers to the negative
natural logarithm of the conditional probability that two short templates with
matching length m will continue to match at the next point within any tolerance r.

SampEn ¼ � ln A=Bð Þ � ln Bð Þ � ln Að Þ ð4Þ

Table 3 The results on the eight wearable ECG data

Testing sets

60-s ECG episode 30-s ECG episode 10-s ECG episode

Acc
(%)

Acc
(%)

Acc
(%)

Testing set1 100.00 99.97 99.83

Testing set2 84.56 79.51 60.17

Testing set3 99.77 99.16 91.92

Testing set4 98.68 96.01 84.54

Testing set5 98.07 97.14 91.80

Testing set6 97.50 94.12 78.79

Testing set7 99.60 98.24 90.61

Testing set8 99.91 98.96 92.19
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where A is the total number of matches with lengthm + 1 and B is the total number of
matches of length m. The initial value of the matching tolerance r is 30 ms, but it is
allowed to increase until the minimum number of molecules (A) has been completed.

CosEn was proposed by Lake et al., which is a modified version of the sample
entropy of a short-time window. It takes into account the length of the entire
tolerance window (2r) along with the current heart rate, which is defined as follows:

CosEn ¼ SampEn� ln 2rð Þ � ln RR
� � ð5Þ

where RR is the mean of the RR interval.

6.2. Entropy_AF

For an RR time series x(i) (1 � i � N ), form the vector sequences Xm
i

(1 � i � N � m):

Xm
i ¼ x ið Þ, x iþ 1ð Þ, � � �, x iþ m� 1ð Þf g ð6Þ

where the vector Xm
i represents m consecutive x(i).

The distance between vector sequences Xm
i and Xm

j was defined as follows:

dXm
i,j ¼ d Xm

i ,X
m
j

h i

¼
max

0�k�m�1
x iþ kð Þ � x jþ kð Þj j � min

0�k�m�1
x iþ kð Þ � x jþ kð Þj j

max
0�k�m�1

x iþ kð Þ � x jþ kð Þj j þ min
0�k�m�1

x iþ kð Þ � x jþ kð Þj j þ ε
ð7Þ

where ε is a small positive number to avoid the possible denominator of 0.
Then, calculate the similarity degree DXm

i,j n, rð Þ between the vectors Xm
i and Xm

j

by a fuzzy function uX dXm
i,j, n, r

� �
defined as follows:

DXm
i,j n, rð Þ ¼ uX dXm

i,j, n, r
� �

¼ exp �
dXm

i,j

� �n
r

0
@

1
A ð8Þ

where n is the similarity weight and r is the flexible tolerance threshold.
Then, define the functions BXm(n,r) as follows:
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BXm n, rð Þ ¼ 1
N � m

XN�m

i¼1

1
N � m

XN�m

j¼1

DXm
i,j n, rð Þ

 !
ð9Þ

BXm(n,r) measures the mean similarity degrees for the vectors at dimension m.
Similarly, we define the functions of mean similarity degrees AXm+1(n,r) for dimen-
sion m + 1:

AXmþ1 n, rð Þ ¼ 1
N � m

XN�m

i¼1

1
N � m

XN�m

j¼1

DXmþ1
i,j n, rð Þ

 !
ð10Þ

Then, we use a density-based estimation, rather than probability-based estima-
tion, to generate a quadratic fuzzy entropy using the volume of each matching
region, i.e., (2r)m:

EntropyAF ¼ � ln
AXmþ1 n, rð Þ= 2rð Þmþ1

BXm n, rð Þ= 2rð Þm
� �

¼ � ln
AXmþ1 n, rð Þ
BXm n, rð Þ

� �
þ ln 2rð Þ ð11Þ

Subtract the natural log of mean RR interval as follows:

EntropyAF ¼ � ln
AXmþ1 n, rð Þ
BXm n, rð Þ

� �
þ ln 2rð Þ � ln RRmeanð Þ ð12Þ

where RRmean is the mean of RR intervals in the current RR episode. RRmean is
expressed in unit of seconds.

As shown in Eq. (12), directly subtracting the item of ln(RRmean) is arbitrary.
Last, we use a weight to optimize the effect of mean RR interval on the final entropy
output of EntropyAF as follows:

EntropyAF ¼ � ln
AXmþ1 n, rð Þ
BXm n, rð Þ

� �
þ ln 2rð Þ � w� ln RRmeanð Þ ð13Þ

where w is a weight for optimization.
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Applications of Heart Rate Variability
in Sleep Apnea

Xiaotong Dong, Shoushui Wei, Hongru Jiang, and Chengyu Liu

Abstract Sleep apnea detection based on Electrocardiograph (ECG) is of great
significance for the simplification of the detection process and clinical application.
Heart rate variability (HRV) is a marker of autonomic nervous system (ANS)
activity that can reflect arrhythmias, which often occur during sleep apnea. In this
paper, we take sleep apnea-hypopnea syndrome (SAHS) as an example to introduce
the time-domain, frequency-domain and nonlinear analysis methods of HRV in
detail, as well as each step of ECG signal processing, and study the performance
and differences of HRV between normal sleep signals and sleep apnea signals.
Through the Mann–Whitney U test, we found that HRV has significant differences
between normal sleep signals and sleep apnea signals, indicating that it is suitable as
a preliminary screening tool for detecting sleep apnea.

Keywords Sleep apnea · Heart rate variability · Electrocardiograph

1 Introduction

1.1 Introduction to Sleep Apnea-Hypopnea Syndrome

SAHS refers to recurrent apnea and/or hypoventilation, hypercapnia and sleep
interruption caused by various reasons during sleep, resulting in a series of patho-
physiological changes in the human body. According to different causes, it is often
divided into obstructive sleep apnea syndrome (OSAS), central sleep apnea syn-
drome (CSAS), and mixed sleep apnea syndrome (MSAS), of which OSAS is the
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most common type [1]. Sleep apnea can cause daytime sleepiness, irritability, mental
and intellectual decline, seriously affecting the quality of life, and more serious it
may increase the risk of heart disease, high blood pressure and even death [2]. In
recent years, studies have shown that sleep apnea has a certain correlation with the
occurrence of cancer [3]. According to the World Health Organization epidemio-
logical survey, about one-third of the world’s population suffers from sleep disor-
ders, and it has been increasing in recent years.

The apnea hypopnea index (AHI), which is the sum of the average number of
apnea and hypopnea per hour, is the main indicator of the severity of sleep apnea
syndrome. The specific definition of sleep apnea is as follows: during sleep,
the oronasal respiratory airflow disappears or significantly weakens (down 90%
from the baseline) for at least 10 s. If the oronasal airflow during sleep is 30%
lower than the baseline level for at least 10 s, accompanied by a decrease in blood
oxygen saturation (SaO2) of 4%, or if the oronasal airflow decreased by 50% for 10 s
with SaO2 decreased by 3%, it is considered as hypoventilation. During the 7 h of
sleep, sleep apnea or hypoventilation occurs repeatedly more than 30 times or
AHI� 5 is considered as SAHS. Among them, 5�AHI< 15, mild, 15�AHI< 30,
moderate, and AHI � 30, severe [4].

The detection of SAHS is mainly based on polysomnography (PSG). Multiple
physiological signals such as electroencephalogram (EEG), electrooculogram
(EOG), electromyogram (EMG), ECG, SaO2, respiration and so on are recorded
by PSG, and diagnosis is made based on a comprehensive analysis of all of these
signals throughout the night. This is the gold standard for SAHS diagnosis [5]. How-
ever, due to the high price and troublesome operation of the PSG, many of patients
with sleep apnea are not diagnosed in time, and the test process will seriously affect
the patient’s sleep quality, leading to incorrect test results [6]. With the development
of wearable devices, SAHS detection based on single-channel signal is very
necessary.

1.2 Introduction to Heart Rate Variability (HRV)

HRV is an analysis of changes in the heartbeat cycle [7]. The change in heart rate is
the result of the action of ANS. HRV contains information on the regulation of the
cardiovascular system by neurohumoral factors, so that it is a valuable indicator for
predicting sudden cardiac death and arrhythmic events [8]. HRV analysis includes
time domain analysis, frequency domain analysis and nonlinear analysis and has a
good performance in predicting hypertension, myocardial infarction, and
arrhythmia.

HRV has important applications and significance in the diagnosis of many
diseases. Currently, HRV is used clinically as a predictor of risk after acute myo-
cardial infarction [9] and as an early warning marker of diabetic neuropathy
[10]. Yan et al. [11] compared the differences in HRV between patients with
congestive heart failure and normal subjects and quantified the distinguishing ability
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of HRV features. They considered that HRV features can distinguish heart failure.
Bodin et al. [12] studied the impact of smoking on ANS and found that smokers had
lower HF than nonsmokers. Pal et al. [13] found that spectral analysis of HRV may
predict the future development of essential hypertension. Blom et al. [14] found that
adolescent female psychiatric patients with anxiety disorders and/or major depres-
sive disorder show reduced HRV compared with healthy controls.

HRV also has many applications in the field of sleep, such as the judgment of the
severity of sleep apnea [15], the classification of sleep stages [16, 17], and the
detection of sleep apnea events [18]. Aytemir et al. [19] studied 80 patients with
OSAS and 55 healthy people of age-matched age. They found that in OSAS, the
sympathetic nervous system and parasympathetic nervous system were affected, but
the changes in nocturnal autonomic balance are more beneficial to the sympathetic
nervous system. Roche et al. [20] studied 91 subjects, of which 39 were patients. The
study believes that time-domain HRV analysis can be used as an accurate and
inexpensive screening tool for clinically suspected OSAS patients.

1.3 Research Steps in This Paper

In this paper, we comprehensively analyze the performance and differences of HRV
between normal sleep signals and sleep apnea signals. This study includes ten
patients with SAHS, which are taken from the PSG monitor of the Provincial
Hospital of Shandong Province. ECGI signal with sampling frequency of 200 Hz
is used and the signal duration is 1 h. The signals are marked per minute to indicate
whether sleep apnea exists during this time. If so, it is marked as 1; if not, it is marked
as 0. The details of the data are shown in Table 1. The research process of this paper
is as follows.

Table 1 The detailed information of the data

No. Gender Age BMI

Sleep
efficiency
(%)

Maximum
apnea time
(s)

Longest
hypoventilation
time (s)

Minimum
SaO2 AHI

120 Male 50 23.39 84.2 60.5 57.5 74 62.6

123 Male 40 21.88 73.6 60.5 51.5 91 14.3

131 Male 43 26.29 78.6 13 47 85 7.7

134 Male 50 18.69 59.4 68.5 58 86 27.8

267 Male 51 30.42 92.8 54 91 82 10.9

271 Male 51 25.83 80.2 104 116.5 47 54.2

285 Male 39 27.89 86.8 30 23 80 31.5

291 Male 49 24.91 66 45.5 52.5 84 20.7

332 Male 40 25.25 89.3 34.5 35.5 92 7.9

355 Male 58 28.37 94.9 50 44.5 71 52.9
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1. Signal preprocessing: ECG signals contain a lot of noise, so the signals are first
processed for noise reduction. Then, according to the literature [21], sleep apnea
is detected best when the signal length is 1 min, so the signals are segmented into
1-min segments, a total of 600 segments.

2. Feature extraction: Based on ECG signals, five time-domain features, four
frequency-domain features, six nonlinear features are extracted.

3. Feature analysis: First, significance test is used to analyze which features are
significantly different between the sleep apnea signals and the normal sleep
signals, then the features with significant differences are further analyzed.

2 Signal Preprocessing

ECG signal is a very weak physiological low-frequency electrical signal. The
amplitude is generally only 0.05–4 mV, and the frequency range is generally
0.1–35 Hz, mainly concentrated at 5–20 Hz. ECG signals are recorded by elec-
trodes mounted on the skin surface of the human body and are extremely suscepti-
ble to internal and external noise, which affects the shape and recognition of
the waveform, as shown in Fig. 1a. Next, the main noises of the ECG signal,
including baseline drift, power frequency interference, and myoelectric noise will
be filtered.
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(c) median filtered signal

Fig. 1 (a–c) Signal preprocessing
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2.1 Low-Pass Filtering

The myoelectric noise generally comes from the contraction and tremor of muscles,
and its frequency is generally greater than 30 Hz, which appears as an irregular and
rapidly changing waveform. Power frequency interference is mainly generated on
the power supply equipment and is an inevitable interference of the ECG signal. It
shows a “burr” on the ECG signal, which is often filtered by a 50 Hz notch [22]. In
order to simplify the processing, we used a 30 Hz Butterworth low-pass filter to filter
out both myoelectric and power frequency interference, because this study only
needs to identify the position of the QRS wave and the frequency of the QRS wave is
about 15 Hz. Figure 1b shows the signal after low-pass filtering. The signal becomes
smoother than before.

2.2 Median Filtering

The baseline drift is generally caused by human respiration and electrode movement,
and its frequency is generally less than 1 Hz. There are many methods to eliminate it,
such as median filtering, high-pass filtering, wavelet transform, and morphological
filtering, etc. Many studies have shown that compared with other methods, the
wavelet transform method has the best filtering effect, but it has a large amount of
calculation and is not suitable for real-time processing [23, 24].

Median filtering is a nonlinear smoothing technique with a small amount of
calculation. It has a good suppression effect on both severe and weak baseline
drift, and it also has a good protection effect on the ST segment. The main principle
is to first extract the baseline using median filtering, and then subtract the baseline
from the original signal. The size of the window of the median filter is the main
reason that affects the filtering effect. According to previous research experience, the
filtering effect is best when the size of the window is about 30% of the sampling
frequency. Figure 1c shows the signal after median filtering. The baseline drift is
effectively filtered and the signal waveform is well protected.

2.3 Signal Quality Assessment

Although signal preprocessing can improve the signal quality to some extent, some
signals are still unusable because of poor quality, as shown in Fig. 2a, b. Therefore, it
is necessary to evaluate the quality of the signal and remove signals of poor quality.
In 2011, PhysioNet/Computing in Cardiology launched a competition on the eval-
uation of ECG signal quality and many useful methods were proposed in the
competition, such as methods based on signal waveform characteristics [25],
methods based on noise type [26], methods based on machine learning [27], etc.
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Because the purpose of this paper is to identify the position of the QRS wave, the
quality assessment method used in this paper is as follows.

Two QRS wave detection algorithms with different sensitivity to noise are used to
detect the location of QRS, and the F1 measure is used as an index to measure the
consistency of the two methods. The F1 measure is calculated in the form of a sliding
window, where the length of the window is 10 s and the step size is 1 s [28]. If
F1< 0.9, the signal quality in this window is poor. Signal quality index (SQI)¼ num-
ber of windows with good signal quality/total number of windows. If SQI � 0.8, the
signal will be discarded. Figure 2 shows signals of different qualities, and this
method is very effective. After signal quality assessment, there are 452 1-min signals
in total, of which 190 are normal sleep signals and 262 are sleep apnea signals.

3 Feature Description of HRV

In this section, we will explain the computational and physiological significance of
each feature.

3.1 Time-Domain Features

The following sections introduce the calculation methods of common time-domain
features and their physiological and statistical significance. In the following formula,
N represents the length of the RR interval sequence, and μ represents the mean of the
RR interval sequence.

0 10 20 30 40 50 60

t/s

-0.4

-0.2

0

0.2

am
p
li

tu
d
e/

m
V

(a) SQI=0.28

0 10 20 30 40 50 60

t/s

-0.4

-0.2

0

0.2

am
p
li

tu
d
e/

m
V

(b) SQI=0.7
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Fig. 2 (a–c) ECG signals with different SQI
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1. Standard deviation (SDNN): SDNN reflects all the cyclic components that cause
changes in the RR interval sequence.

SDNN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

RRi � μð Þ2
vuut ð1Þ

2. Root-mean-squared value (RMSSD): RMSSD is the root mean square of the
difference between adjacent RR intervals, and assesses high-frequency changes
in heart rate.

RMSSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
EN
i¼2 RRi � RRi�1ð Þ2

r
ð2Þ

3. Skewness (Skew): A measure of the asymmetry of the probability distribution of
a real-valued random variable. Skew ¼ 0, normal distribution; Skew < 0, left
skewness, where there is less data to the left of the mean of RR interval sequence
than to the right; Skew > 0, Right skew, opposite to left skew.

Skew RRð Þ ¼ E
RR� μ

σ

� �3
� �

, ð3Þ

where σ represents standard deviation of RR interval sequence.
4. Kurtosis (Kurt): A measure of “heaviness of the tails” of a probability distribu-

tion, defined as the fourth cumulant divided by the square of the variance of the
probability distribution. Kurt ¼ 3, normal distribution; Kurt < 3, insufficient
kurtosis; Kurt > 3, excessive kurtosis.

Kurt RRð Þ ¼ 1
N � D2

XN
i¼1

RRi � μð Þ4 � 3, ð4Þ

where D is the variance of the RR interval sequence.
5. Interquartile range (Iqr): Iqr is the difference between the first and third quartiles,

reflecting the degree of dispersion of the middle (50%) of the data. The smaller
the value is, the more concentrated the data in the middle is. Especially,
Interquartile range is not affected by the extreme value.

3.2 Frequency-Domain Features

Compared with the time-domain analysis method, the frequency-domain analysis
method can better distinguish the effect of sympathetic and parasympathetic nerves
on HRV. Moreover, it is more suitable for short-term HRV analysis [29].
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1. Very low frequency power (VLF): power in the range of 0–0.04 Hz.
2. Low frequency power (LF): power in the range of 0.04–0.15 Hz, mainly

reflecting the activity of sympathetic nerves.
3. High frequency power (HF): power in the range of 0.15–0.4 Hz, mainly reflecting

the activity of the vagus nerves.
4. LF/HF: high and low frequency power ratio, reflecting the balance between

sympathetic and vagal regulation.

3.3 Nonlinear Features

1. Poincaré plot is a scatter plot of the current RR interval plotted against
the preceding RR interval. It takes Ri as x-axis and Ri+1 as y-axis, where i is the
index of the RR interval sequence, as shown in Fig. 3. It can be found that the
distribution of these points is approximately elliptical and the center of the ellipse
is located at the coordinate point determined by (μ, μ), μ represents the mean of
the RR interval sequence. SD1 is the variance of the RR interval sequence in the
y ¼ �x + 2 � μ direction, and has been correlated with high frequency power.
SD2 is the variance of the RR interval sequence in the y ¼ x direction, which has

Fig. 3 Poincare diagram of the RR interval
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been correlated with both low and high frequency power [7]. SD1 depicts short-
term changes, which are mainly caused by respiratory sinus arrhythmia (RSA),
while SD2 depicts long-term changes. SD1/SD2 reflects the balance between
long-term and short-term heart rate variability [30].

2. Fuzzy measure entropy (FMEn) and approximate entropy (ApEn)
ApEn [31] is a measure of the complexity of an unstable time series. The idea is to
detect the probability of a new subsequence in a time series. It is suitable for
statistical analysis of relatively short and noisy time series. These statistical
analyses are consistent with the general clinical need to distinguish between
healthy and abnormal subjects. ApEn is calculated as follows: The time series
of N data points are divided into m subsegments according to the order of the data
points, and a total of (N � m + 1) subsequence fragments can be obtained.
Marking the subsequence fragments with X(i), where 1 < i < N � M + 1. Then
calculate the distance dXm(i,j) between the current ith subsegment sequence and
other subsegments X( j), where 1 < j < N � M + 1 and j 6¼ i. When dXm(i,j) < r
(r represents the threshold, 0.2 times of the standard deviation of the sequence
was used in here), it is considered that X(i) and X( j) are similar. Calculate the
proportion of other sequences similar to the current ith subsegment sequence:

Cm
i rð Þ ¼ num dXm i, jð Þ < rð Þ

N � mþ 1
ð5Þ

The above analysis is performed on all subsegments to obtain the average
similarity rate of the subsequence sequences at the m-data point scale:

Φm rð Þ ¼
PN�mþ1

i¼1
log Cm

i rð Þ� �

N � mþ 1
ð6Þ

Similarly, constructing the m + 1 sequence, repeat the above steps, calculate
Φm+1(r), and ApEn is as follows:

ApEn ¼ Φm rð Þ �Φmþ1 rð Þ ð7Þ

FMEn [32] uses the membership of the fuzzy function instead of the Heaviside
function used in ApEn and Sample entropy (SampEn) as the vector similarity
criterion. At the same time, FMEn uses fuzzy local measure entropy and fuzzy
global measure entropy to reflect the implicit overall complexity in physiological
signals, making up for the limitation that fuzzy entropy only focuses on local
complexity.

3. Detrended Fluctuation Analysis (DFA)
DFA [33] can eliminate the influence of trend and analyze the long-range
correlation of time series. Firstly, integrate the time series x (length N ) to obtain
y(k), and divide y(k) into length N. For the isometric interval, the first-order linear
fit is performed on the data of each interval by the least square’s method, and the
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y-coordinate of the straight-line segment is represented by yn(k). Next, the trend of
the integration time series y(k) is eliminated by subtracting the local trend yn(k) in
each interval. The root mean square fluctuation of y(k) is calculated as follows:

F nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

y kð Þ � yn kð Þ½ �2
vuut ð8Þ

The above calculations are repeated on all time scales to describe the relation-
ship between F(n), average fluctuations and interval length n. The linear relation-
ship on the log–log plot indicates the existence of a power-law scale. In this case,
the fluctuation can be expressed by the slope of the line between log F(n) and
log n, expressed by α. When 0.5 < α < 1, it indicates that the time series has a
long-range correlation, showing a trend of increasing trend, that is, an increasing
(decreasing) trend in a certain period, and an increasing (decreasing) trend in the
next time period. The closer the α is to 1, the stronger the correlation is.

4 Significance Test

In statistics, the significance test is a kind of statistical hypothesis test, which is used
to detect whether there is a difference between the experimental group and the
control group and whether the difference is significant in a scientific experiment.
Significance tests include parametric and nonparametric tests. The commonly used
methods of parametric tests include T test, analysis of variance (ANOVA), etc.,
which require data to follow a normal distribution and homogeneity of variance.
When the data does not meet these conditions, the parametric test may give the
wrong answer. At this time, a rank-based nonparametric test should be used.
Common methods for nonparametric tests include Mann–Whitney U test, Kruskal–
Wallis test, etc. [34]. Because some features do not meet the requirements of
homogeneity of variance, the method used in this study is the Mann–Whitney U test.

The Mann–Whitney U test [35] is a nonparametric test method that uses sample
ranks instead of sample values to calculate whether the difference between two
groups is significant. The main idea is to first combine the two sets of data and
arrange them in ascending order to obtain the rank of each sample. If the sample
values are equal, the rank is defined as the average of the sum of the ranks. Let n1 and
n2 be the volume of the two groups of samples, respectively, and T1 and T2 be the
sum of rank of the two groups of samples, respectively. The Mann–Whitney U test
statistic was calculated according to the following formula:

U1 ¼ n1n2 þ n1 n1 � 1ð Þ=2� T1, U2 ¼ n1n2 þ n2 n2 � 1ð Þ=2� T2
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The smaller of U1 and U2 is selected as the final statistic U. When both sample
sizes are small, U value can be directly compared with the critical value table to
determine whether there is a significant difference. When two sample sizes are large,
their sampling distribution is close to normal distribution, and Z test can be used to
detect them.

Z ¼ U � ðn1�n2Þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1�n2ðn1þn2þ1Þ
12

q ð9Þ

When |Z| > 1.96, there are significant differences between the two groups
( p < 0.5).

5 Results and Discussion

Table 2 shows the results of the Mann–Whitney U test. “�” indicates significant
differences between the two groups. Among them, the time-domain features: Skew,
Iqr, SDNN, the frequency-domain features: VLF, LF, LF/HF, and nonlinear fea-
tures: ApEn, FMEn, SD2, SD1/SD2 show significant differences between normal
sleep signals and sleep apnea signals. Then, features with significant differences
between the two groups will be analyzed in detail.

Table 2 The results of the Mann–Whitney U test

Feature
Average rank of normal
sleep group (190)

Average rank of sleep
apnea group (262) Z value p value

SDNN 186.65 255.4 5.523 <0.001�
RMSSD 213.34 236.04 1.824 0.068

Skew 249.42 209.88 �3.176 0.001�
Kurt 230.24 223.79 �0.519 0.604

Iqr 182.59 258.34 6.088 <0.001�
VLF 180.68 259.73 6.35 <0.001�
LF 198.64 246.71 3.862 <0.001�
HF 218.28 232.46 1.139 0.255

LF/HF 209.76 238.64 2.32 0.02�
ApEn 240.82 216.12 �1.984 0.047�
FMEn 254.27 206.36 �3.849 <0.001�
SD1 213.41 236 1.815 0.07

SD2 183.99 257.32 5.891 <0.001�
SD1/SD2 250.93 208.78 �3.386 0.001�
LDA 214.05 235.53 1.726 0.084
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5.1 Time-Domain Analysis of HRV

Figure 4 shows that the mean difference between the normal sleep and sleep apnea
signals for each feature. The mean value of SDNN of the sleep apnea signals is larger
than that of the normal sleep signals. Taking a patient’s continuous sleep as an
example, it can be seen from Fig. 5 that the SDNN of the sleep apnea signal is mostly
above the average line, especially when the sleep apnea occurs continuously. The
results are consistent with the results of using the 10-min signal length [36], while
the results of using the 24-h signal length [37] are contrary to the results in this paper.
However, the results of the frequency-domain features obtained in these papers are
the same as those obtained in this paper. And from that, we conclude that the time-
domain features are more susceptible to signal length, while the frequency-domain
features are more stable for different signal lengths. It can be seen from Fig. 4 that the
mean of Iqr of the sleep apnea signals is much larger than that of the normal sleep
signals, indicating that the RR interval distribution of the sleep apnea signals is more
dispersed. The Skew of the sleep apnea signals is basically distributed in a space
smaller than 0, while that of the normal sleep signals is distributed in a space larger
than 0. The difference between the two groups is obvious, as shown in Fig. 6. From
this, we can infer that when sleep apnea occurs, the RR intervals are significantly
prolonged.

5.2 Frequency-Domain Analysis of HRV

In Fig. 4, the mean of VLF, LF, and LF/HF of the sleep apnea signals is higher than
that of the normal sleep signals, and HF is not significantly different between the two
groups. Studies have shown that HF is regulated by the vagus nerve, and LF is
regulated by the sympathetic nerves [38]. It can be concluded that when sleep apnea
occurs, the sympathetic nerves are activated, resulting in an imbalance of the
sympathetic vagal regulation [39]. The difference of VLF between the two groups
is obvious. VLF represents the effects of vasodilatation and contraction, renal
angiotensin system, and thermal regulation (body temperature) on heart rate,
suggesting that when apnea occurs, hypoxemia and hypercapnia will cause changes
in autonomic nervous tone and release of neurotransmitters. And the combined
effect of increased intrathoracic pressure and systemic pressure will increase left
ventricular afterload, activating the sympathetic nervous system through hypoxia
and awakening from sleep, causing multiple disorders of the cardiovascular system
including elevated blood pressure, arrhythmias.
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5.3 Nonlinear Analysis of HRV

Figure 4 shows that the mean of ApEn and FMEn of sleep apnea signals are smaller
than that of normal sleep signals, indicating that the complexity is lower because the
sympathetic excitation increases the certainty of the signal, and thus the entropy
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value decreases [40]. And the difference displayed by ApEn is greater than FMEn.
The SD2 of the sleep apnea signals is larger, and the SD1/SD2 is smaller than the
normal signals, which can be clearly seen in Fig. 7, which means that the balance of
sleep apnea signals is reduced. We already know that SD1, HF, and RMSSD all
indicate high-frequency changes in heart rate, and these features have no significant
difference between normal sleep signals and sleep apnea signals. Therefore, we infer
that the low-frequency information can better reflect the occurrence of sleep apnea.

6 Conclusions and Future Prospects

This paper describes the detailed process of analyzing sleep apnea events using
HRV. The results show that HRV can, to some extent, distinguish between normal
sleep signals and sleep apnea signals. This is very helpful for detecting the severity
of sleep apnea. The shortcoming of this paper is that we did not consider the impact
of different sleep stages on HRV, which may cause differences in results. In future
experiments, we will do a more detailed study of the difference between normal
sleep signals and sleep apnea signals at each sleep stage.
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False Alarm Rejection for ICU ECG
Monitoring

Jian Dai, Zehui Sun, and Xianliang He

Abstract Alarm fatigue, a pain point in clinic, includes ECG false alarm and ECG
meaningless alarm. For one thing, ECG false alarm is mainly caused by clinical care,
patients’ daily activity and attachment connection failure. Two viable solutions
including multi-lead and multi-parameter are provided. For another, ECG meaning-
less alarm contains arrhythmia class and heart rate over-limit class. Clinical alarm
management system improvement and intelligent alarm are proposed in order to
reduce ECG meaningless alarm. In a word, this article indicates many effective
solutions to relief alarm fatigue.

Keywords Alarm fatigue · False alarm · Meaningless alarm · Intelligent alarm

1 Introduction

The monitoring equipment has been widely used in the clinical setting in order to
constantly monitor the vital signs of the patient. When there is a change in the vital
sign indicating potential risk in a patient’s physiological condition, the medical staff
will be alerted by an alarm. However, due to environmental noise, patient move-
ment, inappropriate setting of alarm, and so on, the patient monitoring device may
generate many false or unnecessary alarms. Too many false alarms will increase the
medical staff cognitive load. As a result, caregivers become desensitized and may
simply ignore the alarms—a phenomenon called alarm fatigue [1]. Alarm fatigue can
result in impaired recognition of critical event. According to the American Emer-
gency Medical Research Institute (ECRI) in 2013, the alarm fatigue problem ranked
first in the top ten medical technology hazards [2]. Moreover, it was not the first time
that alarm fatigue appeared on the list. Since 2007, ECRI has listed it in the “top ten
medical hazards” for more than once.
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Alarm fatigue is a serious threat to patient safety. In 2010, the US media reported
a medical accident in which the patient did not receive timely treatment due to
excessive alarms. The report raised great public concern over the problem of how the
clinical alarm system may endanger patient safety [3]. According to a report released
by Joint the Commission of the United States, 98 adverse cases related to medical
device alarms occurred from 2009 to 2012, including 80 cases of patient death,
13 cases of permanent loss of certain physical function, and five cases of prolonged
hospital stay [4]. In the NPSG (national patient safety goals) report in 2016, released
also by the Joint Commission, reducing the hazards of clinical alarm fatigue is
recognized as an important consensus to improve patient safety [5].

2 An Overview of the Alarms in ICU

Depending on whether the alarm reflects a patient’s physiological or therapeutical
change [6], the clinical alarms can be divided into correct and false alarms; the
correct alarms can be further marked as clinically relevant or clinically irrelevant
based on whether clinical intervention is needed. Alarm fatigue problems are mainly
caused by false alarms and clinically irrelevant alarms. According to Bonafid et al.,
24% of the clinical alarms were false alarms, and among the correct alarms, 87% of
them were clinically irrelevant [7, 8].

ECG reflects cardiac function, and is one of the most important vital signs in
clinical monitoring. Arrhythmia alarms and heart rate alarms generated during ECG
monitoring are the major causes of alarm fatigue. Drew et al. showed that half of the
monitor alarms over his study of 31-day period are arrhythmia alarms, among which
up to 89% were annotated as false alarm [1]. Wu Jun et al. found, in their 7-day study
in the intensive care unit (ICU) monitor alarms, the rate of false alarm and the rate of
clinical irrelevant alarm reached 65.4% and 32.1%, respectively. In general, 99.9%
of the arrhythmia alarms were false alarms [9]. Improving the accuracy of ECG
monitoring is therefore the most important way to solve the problem of alarm
fatigue.

3 False Alarm Reduction for ECG Monitoring

In the clinical environment, routine care, patient movement, accessory failure,
electrode dropping, etc. can all introduce artifacts in ECG signal, resulting false
alarms. The complexity of the clinical practice and the diversity of ECG character-
istics of different patients together pose a great challenge to ECG false alarm
reduction. It is a key issue faced by all patient monitor manufacturers.
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3.1 Causes of ECG False Alarms

3.1.1 Interference from Clinical Care

In the ICU, to prevent pressure ulcers, nurses often help the patients change their
positions regularly in the bed. The movements may compress or pull the electrode,
introducing artifacts in ECG recordings. Figure 1 shows a four-lead ECG signal. The
ventricular-tachycardia-like signal segments in the top three recordings are caused
by back tapping and body scratching. For this situation, if only ECG II and V lead
were analyzed, a false ventricular arrhythmia alarm would be generated. Referring to
III lead, however, can help rule out the false alarm.

3.1.2 Interference from Patient Movement

In the subintensive care unit, patients are encouraged to perform their activities of
daily living for early postoperative recovery. Those daily activities often cause false
alarms in ECG monitoring. For example, patients after cardiothoracic surgery are
encouraged to do early functional exercise. The friction between electrode and
clothing may cause motion artifacts in ECG signal. As shown in Fig. 2, in the lead
II, III, and V, motion artifacts of mid-high frequency are so severe that the QRS wave
can hardly be distinguished. Meanwhile the lead I ECG signal is not interfered. The
artifacts can be removed by joint analysis of all the leads.

Fig. 1 Interference showing a pattern similar to ventricular tachycardia
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The function of multi-lead ECG joint analysis has a great advantage in this
situation. Monitors without this function will generate incorrect heart rate and
many arrhythmia false alarms.

At the same time, daily living activities such as brushing the teeth, lying and other
activities may squeeze the ECG electrode. As illustrated in Fig. 3, the RA, V
electrodes are squeezed, resulting in severe distortions in the I, II, V lead ECG
waveforms, and QRS waves. At the same time, since the waveforms of these
interferences have certain regularity in their pattern, and III recording is not dis-
turbed, these artifacts can be removed successfully (Fig. 3).

During the sustained monitoring process, long-term adhesion of the electrode will
cause skin irritation. If the patient scratches the surrounding area, artifacts in lead I,
II, and V in Fig. 4 will show up in the ECG recordings. These artifacts have a similar
shape to that of short-term ventricular tachycardia and cannot be eliminated by single
lead ECG analysis. Only when the I, II, V, and III lead ECG recordings are jointly
analyzed can the interference be completely removed, and the arrhythmia false alarm
can be avoided.

3.1.3 Interference Caused by Electrode Dropping

During the monitoring process, if the monitoring time is too long, the electrode may
get loose or even fall off. In this situation, the dropped lead will generate no signal.
As shown in Fig. 5, the lead I, III, and V signals are lost, but the lead II signal is still
normal and therefore can be used for arrhythmia detection. In this situation,

Fig. 2 Example of friction interference to electrode from patient motion
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single-lead or two-lead ECG monitoring mode will generate a false asystole alarm. It
is necessary for the nurse to manually switch to normal lead or reattach the electrode.

3.2 ECG False Alarm Solution

3.2.1 Multi-Lead Joint Analysis

One of the most effective ways to reduce ECG false alarms is multi-lead ECG
analysis. As early as 1989, AHA suggested that the monitoring equipment should be

Fig. 3 Example of ECG interference from patient squeezing the electrodes

Fig. 4 Example of ECG interference from skin scratching
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capable of jointly analyzing and simultaneously displaying two, preferably three or
more leads. Multi-lead analysis is a promising way for reducing false alarms
[10]. Compared with the single-lead ECG algorithm, using signals from multiple
leads can reduce the impact of interference and improve the detection accuracy of the
algorithm. Moreover, in the multi-lead mode, medical staff will no longer need to
select the analysis lead as the algorithm will auto-select the lead. In addition to the
increased ease of use, multi-lead joint ECG analysis will also reduce arrhythmia false
negative and false detections due to inappropriate lead selection [11]. For example,
in Fig. 1, the effect of interference can be removed by including lead III in the
analysis.

3.2.2 Multi-parameter Joint Analysis

In addition to the multi-lead mode in ECG analysis, we can also use multi-parameter
joint analysis to further reduce false alarms. In most clinical monitoring scenarios,
multiple vital sign parameters are measured from the patient, such as ECG,
photoplethysmogram (PPG) from oximetry and arterial blood pressure (IBP). Nor-
mally, in one cardiac cycle, ECG records the electrical activity of the heart, whereas
the synchronized PPG and IBP record the pulsatile variation in the arterial blood
resulted from the corresponding heart contraction. Therefore, PPG or IBP can be
used to crosscheck the heartbeat detected in ECG and discriminate artifacts from
arrhythmia, correcting arrhythmia false alarm [12]. As in Fig. 6, there is a segment of

Fig. 5 Example of interference from electrode dropping
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ECG showing the typical characteristics of ventricular tachycardia. However, the
simultaneously measured PPG signal (marked as SpO2 in Fig. 6) shows no sign of
arrhythmia, with the pulse amplitude and interval being uniform and consistent as in
normal pulse cycles. Through the joint analysis of ECG and PPG, we recognize the
ECG signal segment being artifact. Therefore, the ventricular tachycardia alarm is a
false alarm and should be suppressed.

In the 2015 physionet/cinc challenge [13], the scheme of combining of ECG,
PPG, and IBP signal features was proposed to suppress ICU arrhythmia false alarms.
Many teams from all over the word participated in the challenge and proposed their
false alarm suppression algorithms. For instance, Chengyu Liu team proposed a
multifeature fusion algorithm consisting steps of multifeature extraction, feature
screening, feature fusion, and a decision mechanism [14], as shown in Fig. 7. This
algorithm is very effective in reducing false alarms and meanwhile simple for
practical use. Machine learning was also used by many teams to solve the problem
[15, 16]. However, multiple vital signs in the real clinical environment can demon-
strate a huge variety of combinational patterns, posing a big challenge to data
collecting and annotation.

4 ECG Meaningless Alarm and Its Solutions

As mentioned before, the alarms in the clinical setting can be divided into (1) clin-
ically relevant alarms that correctly reflect the patient status and require clinical
interventions and (2) meaningless alarms that reflect the patient status correctly but
require nonclinical interventions [17–19]. As shown in Fig. 7, there is a segment of

Fig. 6 Example of correcting ECG false alarms using the oximetry photoplethysmogram [12]

False Alarm Rejection for ICU ECG Monitoring 221



torsade de pointes (TDP) ECG triggering alarm. This alarm reflects the patient’s
critical physiological state which needs to be treated and is a clinically relevant
alarm.

In clinical practice, meaningless alarms consist of a large portion of the alarms,
reducing medical staff’s alarm compliance and increasing response time to the
alarms, so that clinically relevant alarms might not get responded in time.

4.1 Types of ECG Meaningless Alarm

4.1.1 Meaningless Arrhythmia Alarm

During ECG monitoring, most alarms are due to ventricular arrhythmia according to
Drew et al. the number of ventricular arrhythmia alarms reached 900,000 times in a
31-day period in the ICU, accounting for about half of all the alarms in the ICU. This
is partly because ventricular arrhythmia in previous years was thought to be the
preceding signs of ventricular tachycardia or ventricular fibrillation and requires
immediate intervention. However, CAST (cardiac arrhythmia suppression trial) in
1989 showed that the treatments on ventricular rhythm could lead to increased
patient mortality. After this study, patients with ventricular arrhythmia but with no
obvious symptoms or no hemodynamic changes are not recommended to receive
medication therapy [20]. Nowadays, ventricular arrhythmia like this usually triggers
intermediate-level alarms which are often left untreated [1]. For example, Fig. 8

Fig. 7 Example of ventricular tachycardia alarm
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shows a pair of premature ventricular contraction which is commonly seen in the
clinical monitoring. If the PVCs like this only occur occasionally, clinical interven-
tions are usually not necessary.

4.1.2 Heart Rate Meaningless Alarm

Heart rate alarms consist of another large portion of monitor alarms. This kind of
alarm is often directly triggered if heart rate exceeds the preset thresholds. Since the
basal heart rate varies greatly across different patients, and for the same patient,
his/her physiological state can change dramatically during the monitoring process,
the over-the-limit scheme often generates a large number of false or meaningless
alarms. For example, if a patient’s basal heart rate is high or elevated due to drug
effect, lots of over-the-limit false alarms will appear [21]. To reduce the number of
false alarms, it is desirable to customize the threshold based on the patient’s the basal
heart rate level and adaptively adjust the threshold during the monitoring process
according to the patient’s condition change. In addition, the monitoring is performed
using the default threshold configuration.

Fig. 8 Example of an occasional pair of premature
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4.2 Solution to ECG Meaningless Alarm

4.2.1 Improvement of Clinical Alarm Management System

From the perspective of clinical application, in order to reduce the harm caused by
excessive alarms from the clinical monitoring systems, the following measures are
recommended for the medical institutions [5]:

1. Establish alarm system as a significant influencing factor for patient safety
2. Identify the key vital signs requiring close
3. Establish a set of standardized policies and procedures for alarm management
4. Educate the responsible medical staff and licensed independent practitioners

about the importance and correct operation of alarm systems

Therefore, enhancing the alarm management regulation, and training staff on
alarm management procedure can reduce the number of false alarms and relieve the
impacts of alarm fatigue. For instance, with a customized threshold for each patient,
heart rate over-limit alarm can be reduced effectively [22]. Furthermore, the param-
eter configuration, alarm mute-criteria, alarm priority rules, and sound/light function
should all be set appropriately, and readjust during the monitoring process if needed.
In a word, it is important to ensure that alarms are processed effectively and
normatively.

4.2.2 Intelligent Alarm

The alarm fatigue problem has received more attention than before in the clinical
setting. With the development of monitoring technology, intelligent alarm technol-
ogy has been proposed to solve the alarm fatigue problem. Different from the
traditional alarm system triggered by solely analyzing single vital sign, the intelli-
gent alarm analyzes the patient’s medical record, historical monitoring data, fre-
quency of triggered alarms and the characteristic of user interaction so as to
comprehensively evaluate the current alarm setting and patient status. The alarm
strategy can be streamlined to suppress the insignificant alarms, alleviating the alarm
fatigue problem. For example, for recurrent alarms for chronic AF, persistent
tachycardia, bundle branch block, and pacing patient with sustained ST elevation,
alarm fusion should be used to form the multiple repetitive short-term alarms into
one significantly clinical relevant alarm to capture the caregiver’s attention. In
addition to alarm integration, multiparameter joint analysis also can help to detect
the potential physiological critical events such as infection, shock, etc.
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5 Discussion

Alarm fatigue is one of the most urgent problems in the ICU. The excessive alarms
generated by the physiologic monitor had created a cacophonous environment,
which desensitized the clinicians to the life-threatening alerts. Reducing the false
alarm effectively has become the key to resolve the problem, and various solutions
that had achieved excellent clinical results had been proposed. Compared with
traditional single parameter analysis, multiparameter feature fusion analysis has
shown great potential for false alarm rejection in the ICU.

Meanwhile, with the development of artificial intelligence, machine learning has
been used to solve more and more clinical ECG monitoring problems. These
AI-based approaches can be extended to solve other alarm fatigue problems. For
example, machine learning can be used for disease diagnosis [23, 24], and with
labeled ECG signatures, supervised learning algorithms can be used for arrhythmias
identification [25]. Considering the variability of the waveform characteristics of
ECG signals and the effects of noises, a large amount of expert-annotated data are
required to train a viable model for use in clinical practice. With the development of
big data and deep learning technology, data-driven algorithms are showing their
potential for precise alarming. For example, deep learning has been used for
arrhythmia detection in ECG monitoring [26, 27].

Smarter signal analysis reduces false alarms in patient monitoring and alleviates
alarm fatigue. Patient monitor manufactures should work closely with clinical
medical staff to develop an effective and easy-to-use alarm management system,
in order to combat alarm fatigue and to improve patient safety.
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Respiratory Signal Extraction from ECG
Signal

Kejun Dong, Li Zhao, and Chengyu Liu

Abstract The extraction of respiration from physiological signals such as the
electrocardiogram (ECG) and photoplethysmogram (PPG) has been explored for a
long time. The proposed methods are mainly based on filters and features. However,
the performances among methods are hardly compared and summarized. In this
chapter, we focus on the studies of the typical feature-based ECG-derived respira-
tions (EDR). The review of each method is given. The experiment is processed with
rest ECG data and reference respiratory data collected synchronously over 60 s.
Three parameters, waveform correlation C1, interval correlation C2, and respiratory
rate RR, are introduced to evaluate each method under conditions of good and poor
signal qualities. The results indicate that the optimal method should be determined
by applications. For parameter C1, trough envelope-based method provides the
highest similarity with reference waveform (0.8426) when the signal quality is
good. However, it is easily affected by the noise, decreasing to �0.3219. For
parameter C2, ECG area mean-based method has the highest similarity with intervals
of reference signal (0.8162). Likewise, it performs no better than QRS complex area-
based method (0.7013) when the signal quality is poor. In general, signal quality has
an effect on the results of these methods.
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1 Introduction

Respiration is an important factor to monitor diseases, such as sleep apnea, depres-
sion, and cardiac arrest, which evaluates dysfunction by the respiratory rate [1]. In
hospital, abnormal respiratory rate (RR) is recognized as an indicator of catastrophic
deterioration. A study shows RR is a reliable indicator of cardiac arrest than heart
rate, since 54% of all sufferers from cardiac arrest in an internal medicine unit have a
high RR more than 27 breaths per minute before cardiac arrest attacks [2]. In
addition, in primary care, the respiratory rate is a tool to predict the pneumonia.
Many out of more than two million children dead of pneumonia every year can be
prevented by early detection and treatment without delay [3]. Even though the
respiratory rate provides vital information for clinical use, the measurement usually
depends on the nurse counting the chest wall moves manually, which is time
consuming and not accurate [4]. Not many automatic devices are available to fit
the clinical robustness. Currently, the respiratory signal is usually detected using
spirometry, pneumography, or plethysmography [5]. However, with the develop-
ment of homecare, the devices with noninvasive and low-cost techniques are much
in demand. Therefore, extracted respiratory signal from other physiological signals
is more cost-effective, compared with respiration collected directly. Electrocardio-
gram (ECG) is a widely used signal to derive respiratory signal due to its noninva-
sive detection and stable signal quality [6]. The ECG-derived respiration (EDR)
methods are commonly based on three respiratory modulations: amplitude modula-
tion (AM), frequency modulation (FM), and baseline wander (BW) [7]. Heart rate
increases during inspiration and decreases during expiration due to FM [8]. A more
complex EDR method based on FM is to detect the duration of QRS complex
[9]. The respiration effects on ECG morphology induced the methods based on
peak and trough amplitudes [3, 10]. Other methods referring to morphology varia-
tion obtain respiration information from QRS complex area [11] and differences
between the amplitudes of troughs and proceeding peaks [3]. Some methods based
on the QRS slopes and R-wave angle variations have also been proposed [5]. We
review eight EDR methods in the next parts and verify them using collected rest
ECG signals. Then, we compare the result of each method with synchronized
collected respiratory signal and among ECG signals with good and poor qualities.

2 Typical EDR Methods

2.1 Amplitude Variation-Based Method

Amplitude variation is the technique to extract the difference between the amplitudes
of troughs (Q wave) and proceeding peaks (R wave). Karlen et al. proposed to use
this method on PPG [3]. The variation of PPG amplitude induced by the respiration
is caused by the corresponding decrease in cardiac output due to reduced ventricular
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filling. Einthoven et al. showed that the respiration is correlated with the ECG in
some certain aspects [12]. The amplitude of ECG can be changed due to breathing.
Peter et al. applied Karlen’s method on ECG rather than on PPG [7]. The difference
on amplitude between R and Q peaks is extracted for each beat. The formula is
described as follows:

Feature ¼ VR � VQ ð1Þ

where VR and VQ are the amplitudes of R wave and Q wave (Fig. 1).

2.2 Peak Interval-Based Method

Frequency method aims to measure the time interval between consecutive peaks.
Heart rate is affected by the respiration, which increases during inspiration and
decreases during expiration. Such cyclic variation of heart rate is also referred to
as respiratory sinus arrhythmia (RSA). Karlen et al. [3] measured the synchroniza-
tion of the heartbeat with respiratory rate in PPG waveform, corresponding to the
frequency variation. Orphanidou et al. [6] showed that two aspects of ECG are
associated with respiration, in which RSA is one. The heart rate variability (HRV) is
modulated by respiration, causing the dominant frequency in HRV changes.
Charlton et al. [7] extracted the interval between two consecutive R peaks in ECG
signal and assessed it with other methods. The formula is described as follows:
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Feature ¼ TR2 � TR1 ð2Þ

where TR2 and TR1 are locations of the consecutive R peaks (Fig. 2).

2.3 ECG Area Mean-Based Method

The ECG mean is to obtain mean signal value over one heartbeat. Unlike the
amplitude modulation method, it finds the envelope of the ECG waveform, which
is greatly influenced by environment and artifact noises. Mean values show the
baseline fluctuation of ECG caused by the breathing, which is more robust to noise.
Ruangsuwana et al. [10] calculated these values during a window period starting
from 40% of the current RR interval before a given R peak and ending before the P
peak of the next beat. The baseline modulated by the respiration should observe the
increase and decrease trends during the chosen window. Charlton et al. [7] modified
the chosen window in their application on the assessment of different ECG-derived
respiration methods. The offset is current Q peak and the end is next Q peak. The
signal located in the Q-Q interval is calculated by the mean value. The calculation is
based on Eq. (3).

Feature ¼
ZQ2

Q1

VECG ð3Þ

where VECG is the amplitude of ECG signal (Fig. 3).
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2.4 Envelope-Based Method

The envelope method tries to capture the amplitude change under breathing works,
similar to the mean value and amplitude variation methods. Karlen et al. [3]
considered the amplitude variation of PPG peaks, defined as the respiratory-induced
intensity variation. Same method was used on R peaks, corresponded peaks in ECG
signal, by Charlton et al. [7]. Ruangsuwana et al. [10] also evaluated the QQ
envelope, in addition to RR envelope (Fig. 4).
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2.5 QRS Duration-Based Method

Ramya and Rajkumar [9] evaluated the ECG-derived respiration (EDR) by the
duration of QRS complex, which is based on the moving window integration.
Appropriate window length is important to determine the QRS complex; otherwise,
other peak information is added in the integration waveform, causing difficulties in
the detection process. The duration of QRS complex is equal to the width of the
rising edge of the integration waveform. When this method was implemented,
Charlton et al. [7] found the locations of the onset and end of the QRS complex to
determine the duration. The onset is defined as the trough farthest before the R peak
within the 0.1-s window. Similarly, the end is found at the trough nearest after the R
peak in the 0.1 s. The time duration between the onset and end is extracted for each
heartbeat. The result of the second method is shown in the following:

Feature ¼ TEnd � TOnset ð4Þ

where TEnd and TOnset are the locations of end and onset points of QRS complex
(Fig. 5).

2.6 QRS Complex Area-Based Method

The rotation of the electrical axis of the heart is caused by the heart apex stretching
toward the abdomen and compressing toward the breast within the respiratory cycle
[11], which leads to the change of beat morphology of ECG. Sobron et al. [11]
selected the area of QRS complex as the method to obtain EDR signal. The area
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means the ECG signal within a 0.1-s window around R peak. A baseline defined as
the mean value around each beat is removed. Taking this method as reference, the
period between the onset and end around each beat is substituted for the 0.1-s
window by Charlton et al. [7].

The definitions of onset and end refer to the duration of QRS complex. The line
linking to the two points is recognized as the baseline. The area is surrounded by the
ECG signal and baseline as the shadowed part in Fig. 6. The shadow area could be
expressed as follows:

Feature ¼
ZEnd

Onset

VECG � lð Þ ð5Þ

where l is the baseline linking onset and end points (Fig. 6).

2.7 Slope-Based Method

The slopes of QRS complex are proposed as the marks for evaluating ECG changes
caused by myocardial ischemia, in particular for upward slope and downward slope
of R wave [14]. It is mentioned that the respiration can affect the measurement of
slopes through the amplitude modulation [13]. The algorithm used to calculate
slopes is proposed in [14]. Three steps are described: first, the point, denoted nU or
nD, is found as the maximum value of first derivate of the signal between the onset
and R peak or R peak and end. Second, centered at the point, nU or nD, the least
squares are computed within an 8-ms window. Last, the lines are fitted with maximal
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upslope or downslope to ECG signal. Figure 7 gives two fitted lines marked on the
ECG signal. The derived respiration associated with two slopes is shown.

2.8 Angle-Based Method

Based on the respiration-induced influence on slope measurement, the angles formed
by the lines of ECG are also associated with the respiration. Romero et al. [13]
introduced three types of angles shown as follows:

θR: The R-wave angle, which is opposite to the R line lR.
θU: The upstroke angle, opposite to the down line lD.
θD: The downstroke angle, opposite to the up line lU.

The minimal angle, θR, is the feature extracted to derive respiratory signal in [5]
(Fig. 8). The formula of angle calculation is described below:

θ ¼ arctan
SU � SD
1þ SUSD

����
����

� �
ð6Þ

However, for clinical purpose, the time axis and voltage axis should be rescaled to
match the particular case of conventional ECG tracings. The formula is modified as
follows:
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θR ¼ arctan
SU � SD

0:4 6:25þ SDSDð Þ
����

����
� �

ð7Þ

3 Experiment

3.1 Datasets

ECG signals and a referenced respiratory signal are collected synchronously under
1-kHz sampling rate. Five ECG segments with good and poor qualities are picked up
to verify these methods. Each segment is recorded over 60 s. The tolerance of
methods to the quality of input signals can be illustrated by comparing the results.

3.2 Processing

Some noises are collected while the ECG signal is recorded by the electrodes, such
as frequency interference and baseline drift. The movement of electrodes stuck to the
skin results in the electrode contact noise. The polarization noise, muscle noise, and
environmental artifacts are also present in the recorded ECG signal. Therefore, a
low-pass filter with �3-dB cutoffs of 100 Hz is used to eliminate the very high
frequencies. The main interference is eliminated by an additional 50-Hz notch filter
[7]. After that, a common R-peak detection algorithm is applied on filtered ECG
signal [15]. R peak is recognized as the maximum value in one beat. Q and S peaks
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are found within 0.1 s before and after detected R peak for each beat. “Respiration” is
obtained after the determination of which EDR method is used. For elimination of
additional noise and irregularity of the extracted signal, resampling under 5 Hz using
linear interpolation is implemented. Last, nonrespiratory frequencies should be
eliminated from the extracted respiration using a high-pass filter with �3-dB cutoff
of 4 bpm. Figure 9 shows the structure of the algorithm process.

3.3 Evaluation Methods

The performances of extraction techniques are evaluated from three aspects:

1. A parameter, C1, is defined as the correlation between each extracted respiratory
waveform and the reference waveform. The extracted respiratory signal has been
resampled at 5 Hz; however, the reference signal is collected simultaneously with
the original ECG signal under a sampling rate of 1 kHz. For correlation calcula-
tion, the length of the extracted and reference signals with 60 s should stay
the same.

2. A parameter, C2, is defined as the correlation between the each peak interval of
extracted respiratory signal and corresponding peak interval of the reference
signal. Peaks are identified in the initial step. A moving window with the length
of 1 s is used to search the peaks. The window starts at the beginning of the
extracted signal and moves to the maxima found in the window range. The
maxima is identified as the peak until it is the beginning of the moving window.
Only the peaks closest to the peaks of corresponding beats of the reference signal
are kept. The peak intervals are calculated based on the corrected peaks.

3. A parameter, RR, is defined as the respiratory rate of each extracted respiratory
signal or the reference signal. Autoregressive (AR) spectral analysis is used on the
fitting of respiratory frequency. Not like the Fast Fourier Transform (FFT), AR
model only refers to the coefficients of the system, resulting in a smoother
spectrum, which not only reduces some interference and noise but also keeps
the characteristics of the spectrum. The power spectral density (PSD) based on the
AR model with P coefficients is calculated by the following equation:

P ωð Þ ¼ δ2ω

1þPP
K¼1α

ke�jkω
�� ��2 ð8Þ

where δ2ω is the PSD of white noise and αk is the kth coefficient of the AR model.
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4 Results

This section shows the derived respirations from a 60-s collected ECG signal with
good and poor signal qualities using methods mentioned in above section. These
results are compared with a 60-s reference respiration by three parameters, C1, C2,
and RR. The result figures are shown below.

4.1 The Result from Signal with Good Quality

This section discusses the results derived from the ECG signal with good quality.
The top figure is the reference respiratory signal collected within 60 s synchronously
with the ECG signal. The others are the extracted respirations from ten methods
detailed in Sect. 2. Comparing the parameters among these methods, positive values
for C1 and C2 parameters are positive correlation, otherwise negative correlation.
QRS complex area-based method and amplitude variation-based method give the
same respiratory rate as reference. Also, the result waveform from QRS complex
area-based method has the closest relation with the reference waveform. However,
the peak intervals from downslope-based method take the highest similarity with
reference, which is 0.9419 (Fig. 10).

4.2 The Result from Signal with Poor Quality

This section discusses the results derived from the ECG signal with poor quality. The
orders of figures are same as in Fig. 10. Under the condition of poor signal quality,
QRS complex area-based method is the optimal one, whose three parameters all
achieve the highest values than any other method. However, the C1 parameter under
this method is only �0.2167, indicating that the big difference on morphology still
exists. Since the highest parameter values are still lower than those in Sect. 4.1, the
ECG signal quality does has an effect on the extracted results, particularly on the
morphology (Fig. 11).

4.3 Statistical Results

The statistical results of parameters C1 and C2 are summarized in Tables 1 and 2,
respectively. For each table, the first column represents ten EDR methods mentioned
above. The parameters come from two-group data, which is derived from respira-
tions under good and poor signal qualities. Each group includes five-segment ECG
data collected over 60 s.
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Table 1 The average and standard deviation values of parameter C1 for each EDR method on good
and poor signal conditions

EDR methods

Good signal Poor signal

Mean Std Mean Std

M1 �0.6508 0.1795 �0.3564 0.2130

M2 �0.0178 0.1217 0.1402 0.1170

M3 �0.4882 0.0679 �0.4656 0.1100

M4 �0.6105 0.2008 �0.3008 0.1956

M5 �0.1904 0.1451 �0.1017 0.1375

M6 0.2277 0.1202 0.2282 0.1300

M7 �0.7599 0.1049 20.5043 0.1184

M8 �0.8038 0.0884 0.2777 0.0992
M9 0.4756 0.7755 �0.2790 0.2400

M10 0.8426 0.1006 �0.3219 0.1903

M1: QRS complex area-based method; M2: downslope-based method; M3: amplitude variation-
based method; M4: upslope-based method; M5: peak envelope-based method; M6: angle-based
method; M7: peak interval-based method; M8: QRS duration-based method; M9: ECG area mean-
based method; M10: trough envelope-based method
The two bold values in the Mean columns indicate the respiration waveform derived from the
methods and give the largest similarity with the reference waveform on good and poor signal
conditions, respectively. In addition, the two bold values in the Std columns indicate parameter C1

values of these two methods and give the relative stability compared to other methods

Table 2 The average and standard deviation values of parameter C2 for each EDR method on good
and poor signal conditions

EDR methods

Good signal Poor signal

Mean Std Mean Std

M1 0.4254 0.6120 0.7013 0.2118

M2 0.5283 0.2563 0.1491 0.4019

M3 0.6669 0.3166 0.5934 0.4019

M4 0.6793 0.4961 0.3959 0.4333

M5 0.5722 0.1916 0.4086 0.3369

M6 0.6240 0.1597 0.3918 0.4088

M7 0.7357 0.3648 0.5795 0.4194

M8 0.8148 0.3056 0.5460 0.1937

M9 0.8162 0.1877 0.5075 0.1566
M10 0.7263 0.4061 0.6478 0.1833

M1: QRS complex area-based method; M2: downslope-based method; M3: amplitude variation-
based method; M4: upslope-based method; M5: peak envelope-based method; M6: angle-based
method; M7: peak interval-based method; M8: QRS duration-based method; M9: ECG area mean-
based method; M10: trough envelope-based method
Similar to Table 1, the two bold values in the Mean columns indicate the intervals of extracted
respiration from the methods and are most similar with intervals of reference respiration. And the
two bold values in the Std columns indicate parameter C2 values of these two methods and give the
relative stability compared to other methods
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Table 1 reveals the performance of each method on waveform correlation. The
two bold values in the Mean columns indicate the respiration waveform derived
from the methods and give the largest similarity with the reference waveform on
good and poor signal conditions, respectively. In addition, the two bold values in the
Std columns indicate parameter C1 values of these two methods and give the relative
stability compared to other methods. Compared with good signal quality, the results
under poor signal quality have worse performance in general. Peak interval-based
method is the best one to deal with poor signals, but only half similar to the reference
waveform. Trough envelope-based method provides a better waveform similarity
when it is applied on good signals, whose correlation achieves 0.8426. However, it is
easily affected by the signal quality. Amplitude variation-based method is the stable
one not affected by the signal quality.

Table 2 reveals the performance of each method on interval correlation. Similar to
Table 1, the two bold values in the Mean columns indicate the intervals of extracted
respiration from the methods and are most similar with intervals of reference
respiration. And the two bold values in the Std columns indicate parameter C2 values
of these two methods and give the relative stability compared to other methods. ECG
area mean-based method and QRS complex area-based method provide the highest
similarity with the peak intervals of reference signal under the situation of good and
poor signals. Unlike the big influence of signal quality on waveform correlation, no
big difference is achieved on the largest interval correlations of two signal qualities,
which is 0.8162 and 0.7013, respectively. From the view of stability, ECG area
mean-based method is still the relatively optimal one regardless of the signal quality.

5 Conclusion

In this chapter, we review some typical feature-based ECG-derived respiration
methods. The dataset, which consists of the ECG data and respiratory signal
collected synchronously, is classified into two groups: data with good and poor
qualities. Five segments of each group are picked up to evaluate each method. Three
parameters are introduced for the evaluation: waveform correlation, C1; interval
correlation, C2; and respiratory rate, RR. The performances of methods keep con-
sistency on waveform and interval correlations. For good signal quality, peak
interval-based and QRS duration-based methods are in the top three ranking of
both C1 and C2. However, they cannot fit the poor signal quality very well. In
contrast, QRS complex area-based and amplitude variation-based methods perform
better in the poor situation. If the stability is taken as the first factor to consider,
amplitude variation-based method is relatively optimal one under parameter C1, no
matter what signal quality is. For parameter C2, ECG area mean-based method is the
relatively stable one in two-group data. According to the statistical results above,
methods tend to provide high similarities with reference respiration versus stabilities
under different signal qualities. Therefore, the method recognized as optimal should
be determined by different applications.
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In future studies, the size of each data group can be expanded to verify the
performance of each method, which is more reliable. The data used to test are rest
ECG data, which are not reliable for clinical applications since they are usually
recorded in a short period of time. Therefore, dynamic data as a long-term data
recorded continuously over 24 h or more should be focused to further explore each
method in future analysis.

6. Appendix

6.1. The Least Square Method

The least square method finds the optimal estimation, which satisfies the minimum
sum of squares with original data. It is described as follows.

Assume that a regression equation with two unknown parameters, β0 and β1, is
defined as follows:

y ¼ β0 þ β1x ð9Þ

Given a sequence of sample input data {x1, x2, . . ., xn} and corresponding output
data {y1, y2, . . ., yn}, where n denotes the length of data. The estimated regression
equation is as follows:

by ¼ b0 þ b1x ð10Þ

where b0 and b1 are the estimates of β0 and β1, respectively.
The aim is to get the parameter estimates satisfying the condition:

min
X

yi � byið Þ2 ð11Þ

where yi is the corresponding value of original data x, and byi is the estimated
corresponding value of original data x.

Combining Eq. (10) with Eq. (11), the condition is rewritten as follows:

min
X

yi � b0 þ b1xið Þ½ �2 ð12Þ

Taking the partial derivative of b0, we get the expression as follows:

b0 ¼ y� b1x ð13Þ

where y and x are the average values of y and x, respectively.
Substitute Eq. (13) for b0 in Eq. (12), and the partial derivative of b1 is obtained as

follows:
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b1 ¼
P

yi � yð Þ xi � xð ÞP
x� xið Þ2 ð14Þ
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Noninvasive Recording of Cardiac
Autonomic Nervous Activity: What Is
Behind ECG?

Yike Zhang, Chang Cui, and Minglong Chen

Abstract The autonomic nervous system, which is divided into the sympathetic
nervous system and the parasympathetic nervous system, takes part in various
physiological processes. The assessment of autonomic nervous activity is necessary
for disease diagnosis and risk stratification for patients. Noninvasive testing
approaches based on ECG, such as heart rate variability, heart rate turbulence,
baroreflex sensitivity, and skin sympathetic nerve activity, are briefly introduced in
this chapter to enlighten broader applications of these physiological signals in
clinical work.

Keywords Autonomic nervous system · Heart rate variability · Skin sympathetic
nerve activity

1 Introduction

Since the invention of electrocardiogram (ECG) in 1895, this technique has brought
much useful information for doctors in clinical practice. Myocardial ischemia can be
detected early when the sign of the depressed ST presented in the ECG. Patients with
atrial fibrillation can start anticoagulation therapy soon when diagnosed by irregular
RR intervals. ECG helps in the diagnosis with the advantages of simplicity, accu-
racy, and real-time performance. However, the information behind ECG is more than
that. Data are available reflecting the activity of the autonomic nervous system,
which plays an indispensable role in the course of different diseases. Herein, from
the physiological point of view, we summarize several parameters and methods to
measure the autonomic nervous functions via noninvasive approaches, shedding
light on broader applications of ECG-based techniques.
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2 The Autonomic Nervous System (ANS)
and Cardiovascular Diseases

2.1 Functions of ANS

The autonomic nervous system, which innervates internal organs unconsciously,
controls the homeostasis of the human body. It consists of two branches—the
sympathetic nerve and the parasympathetic nerve. Heart, lungs, stomach, intestine,
pupils, endocrine, and exocrine glands are innervated by ANS. Activation of the
sympathetic nerves leads to a state of “fight or flight” response, referring to overall
elevated activity and attention with increased blood pressure and heart rate,
bronchodilation, and glycogenolysis. On the other hand, the parasympathetic nerves
promote the “rest and digest” processes, with lower heart rate and blood pressure,
bronchoconstriction, gastrointestinal peristalsis, etc. Normally, both branches have
nerve tonic all the time but can fluctuate depending on different conditions [1].

The sympathetic nervous system has a distinguished feature. The postganglionic
neurons of the sympathetic system distribute with spinal nerves. Sympathetic fibers
account for 8% of the fibers of a spinal nerve. In consequence, the effectors in the
skin, such as blood vessels and sweat glands, are also innervated by sympathetic
nerve fibers.

2.2 ANS in the Cardiovascular System

ANS controls the balance of an organism and is critical to maintain sinus rhythm and
sustain blood circulation. The heart and brain form interconnected cardio–neural
hierarchy to modulate the physiological functions of the heart—chronotropy,
dromotropy, inotropy, and lusitropy [2].

The sympathetic nerves controlling the heart locate in the stellate ganglion
[3]. Playing the role like a transfer station, it receives preganglionic sympathetic
impulses from the spinal cord and outputs efferent neural responses toward the heart
through middle cervical ganglion. Efferent postganglionic fibers travel along the
coronary vasculature, into the epicardial regions, and toward the endocardium and
then control the atrial and the ventricular nerves. Stellate ganglion stimulation results
in increased heart rate, conduction velocity, and contraction.

The parasympathetic nerve functions mainly by the cervical vagal nerve, which
are divided into the superior and inferior cardiac nerves, entering the heart via the
cardiac plexus and innervating the sinoatrial node, the atrioventricular node, and the
ventricle. The parasympathetic nerves slow the heart rate and conduction, and reduce
the blood pressure to balance the effect of sympathetic nerves.
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2.3 ANS Dysfunction and Related Diseases

ANS dysfunction can derive from both primary or secondary causes [3]. Primary
causes, such as diabetes mellitus, directly impair myelinated vagus branches, sym-
pathetic nerves axons and ganglia, resulting in autonomic neuropathy. Many organs
and systems could be involved such as digestive, cardiovascular, and urinary system.
Symptoms such as diarrhea, constipation, nausea, dizziness, and night sweats could
present in these patients. Besides, syndromes of primary autonomic disorder or
failure (pure autonomic failure, Parkinson’s disease, multiple system atrophy, etc.)
also damage the ANS, manifested by orthostatic hypotension and other symptoms.
The activation of the autoimmune system, which targets ganglionic receptors, might
be the underlying pathogenesis for these primary disorders.

Secondary causes such as myocardial infarction (MI), heart failure, and sleep
apnea, bring about the secondary alterations in ANS. These are mostly due to the
compensation of the organism to maintain the balance. In cases such as MI or
cardiomyopathy, the ANS acutely responses to the dysfunction of the circulation
system, increasing the sympathetic nerve activity and decreasing the vagus nerve
activity to ensure the cardiac output. However, elevated catecholamines and cyto-
kines are relatively persistent, which aggravate the primary diseases.

3 Parameters for the Function Analysis of ANS

ECG provides us with the physiological information of the heart, including heart
rate, rhythm, and cardiac conduction. To go one step further, we can extract
information on cardiac ANS. Herein, we list several parameters to assess ANS
function and introduce each one from physiology basis, analysis methods to clinical
applications.

3.1 Heart Rate Variability (HRV)

3.1.1 Introduction

HRV refers to the oscillation in the intervals between consecutive beats [4]. The
study on HRV has a long history. In 1965, Hon and Lee [5] first found that there
were alterations in interbeat intervals before fetal distress. In 1970s, to identify the
autonomic neuropathy diabetic patients, Ewing et al. [6] devised tests to measure the
short-term RR variation. After that, as a convenient method to detect autonomic
nerve function, HRV was broadly used in different clinical circumstances, such as
coronary artery diseases, ventricular arrhythmia, heart failure, sleep apnea, asthma,
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fetal distress, and so on. HRV data are also included in a 24-h Holter monitoring
report as routine.

3.1.2 Physiological Basis

The disturbance of the body can affect the center (e.g., vasomotor and respiratory
center) or peripheral (e.g., oscillation in arterial pressure and respiratory movements)
oscillators. These oscillators dominate the tone and balance of the sympathetic nerve
and vagal nerve so as to affect the rhythm fluctuations of the sinus node. As a result,
the variability of heart rhythm can provide us with information about the modulating
effect of the autonomic nervous system [4].

3.1.3 Analysis Methods

The broad applications of HRV are attributed to its advanced analysis approaches,
including the time-domain, the frequency-domain, and nonlinear analysis.

The time-domain analysis of HRV calculates the RR intervals by mathematical or
statistical operations to output SDNN (standard deviation of normal RR intervals),
RMMD (root mean square of RR interval differences), and PNN50 (the percentage
of normal RR intervals that differ by more than 50 ms). The frequency-domain
analysis of HRV is based on the spectral analysis of a sequence of RR intervals, and
demonstrates information on the power distributed as a function of frequency. Three
main spectral components are distinguished in a spectrum analysis: very low fre-
quency (VLF), low frequency (LF), and high frequency (HF), representing the
balance of sympathetic and vagal nerves. Clinical procedures and physiological
experiments such as electrical vagal stimulation, muscarinic receptor blockade,
and vagotomy have shown that the efferent vagal activity is a major contributor to
the HF component. On the other hand, the LF component is more controversial
because both sympathetic and vagal nerves can affect it. Therefore, normalization
like LF/HF ratio is required to study the sympathetic activity. Except for the time-
domain and frequency-domain analysis, nonlinear analysis approaches, such as
detrended fluctuation analysis (DFA), are also feasible but have not been
widely used.

3.1.4 Clinical Applications

Decreased HRV has an association with both sudden cardiac death and non-sudden
death in myocardial infarction and chronic left ventricular dysfunction, independent
of the ejection fraction of left ventricle [7]. In a recent study of 9550 patients,
reduced RMSSD was also associated with elevated risk across a range of established
cardiovascular risk factors, including inflammatory markers, blood lipids and glu-
cose, as well as blood pressure [8]. However, at present, HRV cannot precisely
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predict the risk of sudden cardiac death. The pathophysiological relationship
between reduced HRV and elevated mortality remains unclear.

There are also many pitfalls and limitations of HRV [9]. First, long-term HRV is
highly dependent on the daily activity of the patient. Second, the cutoff value of
0.15 Hz to separate LF and HF is also questionable. Besides, respiratory sinus
arrhythmia (RSA) also interferes with the frequency component of HRV. As a result,
HRV provides us with a measurement approach of ANS control of the heart;
however, the modulation of ANS is not that simple, and more work is required to
explain the HRV data precisely.

3.2 Heart Rate Turbulence (HRT)

3.2.1 Introduction

Heart rate turbulence refers to the fluctuations of heart rate after a premature
ventricular contraction (PVC). This term was first defined by Schmidt in 1999 [10].

3.2.2 Physiology Basis

PVCs interrupt the hemodynamics evidently because the premature beat pumps
much lower volume. The decreased cardiac output leads to lower blood pressure,
which is then detected by the baroreceptor in the carotid artery. Therefore, such a
baroreflex stimulates the sympathetic nerve and inhibit the vagus nerve, leading to
blood pressure rising. This overcompensation results in the increased tone of the
vagus nerve and decreased tone of sympathetic nerves. The modulation of the
autonomic nervous system is reflected in the fluctuation after PVC and termed
as HRT.

3.2.3 Analysis Methods

Turbulence onset (TO) and turbulence slope (TS) are mostly used to evaluate the
chronotropic response of sinus rhythm to PVCs. TO refers to the immediate initial
acceleration quantified by the relative change of RR intervals immediately after a
PVC compared with before a PVC. TS, the steepest regression line between RR
interval count and RR interval duration, is used to quantify the speed of the
subsequent deceleration following a PVC. A 24-h Holter, which can monitor both
the PVC and the heart rate, is an accessible tool to evaluate HRT.
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3.2.4 Clinical Applications

Schmidt et al. [10] suggested that HRT was a powerful tool to predict the mortality
after acute myocardial infarction. Patel et al. [11] found that HRT was significantly
associated with incident congestive heart failure in asymptomatic, older adults. The
association between HRT and atrial fibrillation symptoms has also been reported,
indicating that compromised baroreflex sensitivity could come with severe AF
symptoms [12]. Except for the wide use in cardiovascular diseases, abnormal HRT
has also been reported to be associated with liver cirrhosis deterioration [13] and
systemic lupus erythematosus (SLE) [14].

3.3 Baroreflex Sensitivity (BRS)

3.3.1 Introduction

Baroreflex plays a pivotal role in regulating cardiovascular homeostasis. BRS, which
quantifies the magnitude of the cardiac cycle changes following arterial pressure
variations, evaluates the efficiency of this reflex and implies the regulation of both
the vagus and the sympathetic nerves.

3.3.2 Physiology Basis

The circuit of baroreflex is achieved via baroreceptor at carotid sinus and aorta arch.
The signal of reduced blood pressure is sent to the central nervous system, reflec-
tively activating the sympathetic nerves, thus bringing about the rise in ventricular
contractility, heart rate, and peripheral vascular resistance to maintain normal blood
pressure. On the contrary, elevated blood pressure leads to the activation of the
parasympathetic nerve, with decreased contractility, heart rate, and peripheral vas-
cular resistance. There is a few seconds delay for sympathetic nerves, but no time lag
for the vagus nerve, which means the responses to elevated and reduced arterial
pressure are asymmetrical in man [15]. As a result, when it comes to BRS, the
baroreflex slopes obtained by decreased arterial pressure are lower compared with
increased arterial pressure.

3.3.3 Analysis Methods

There are several ways to measure baroreflex or the heart rate change due to blood
pressure. First, vasoactive drugs, such as phenylephrine, are used to stimulate the
alteration in blood pressure. To avoid the usage of drugs, noninvasive methods such
as Valsalva maneuver and mechanical manipulation of carotid baroreceptors are also
used. Besides, spontaneous fluctuation of heart rate and blood pressure can also be
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monitored to assess BRS with advanced wearable devices. Similar to the analysis of
HRV, the time-domain and frequency-domain analysis are two basic methods to
study BRS [16].

3.3.4 Clinical Applications

At the beginning, BRS was used to study the risk of patients with previous myocar-
dial infarction. The ATRAMI study, which enrolled nearly 1300 patients to study the
relationship between cardiac mortality and autonomic nerve dysfunction, showed
that reduced BRS was an independent predictor of total cardiac mortality [17]. BRS
has also been established with prognostic value in chronic heart failure [18, 19].

Overactivation of autonomic nerves can also be found by BRS. Postural tachy-
cardia syndrome (POTS) is a drastic hemodynamic alteration after a postural change,
which means the increase of the heart rate is over 40 bpm, or the maximum heart rate
is more than 120 bpm. Li et al. [20] found that BRS, which was positively correlated
with HR change in POTS group (r ¼ 0.304, P < 0.05), could be a predictor for the
short-term outcome of POTS in children.

Population divergence in BRS was revealed in a recent cross-sectional study.
Athletes (n ¼ 30) and nonathlete boys (n ¼ 30) aged between 10 and 19 years were
recruited. The BRS index for athletes was higher than that in nonathlete boys,
implying that exercise may improve the autonomic nervous function [21].

3.4 Skin Sympathetic Nerve Activity (SKNA)

3.4.1 Introduction

Skin sympathetic nerve activity (SKNA) is a novel method to record the signals of
sympathetic nervous noninvasively. Direct nerve recordings are the gold standard to
measure nerve activity, but anesthesia and invasive procedures prevent its wide-
spread application in conscious populations. Recently, it has been found that it is
feasible to test the sympathetic nerve activity by electrodes in the subcutaneous
space of the left thorax. Subcutaneous nerve activity (SCNA) is in correlation with
the stellate ganglion nerve activity, which can become a micro-invasive method to
evaluate the nerve function [22]. Furthermore, they observed that SKNA, which can
be monitored noninvasively like ECG, correlated well with the stellate ganglion
nerve activity (SGNA), providing a brand new avenue to monitor the real-time
autonomic nerve activity.

The feasibility was first proved in the canine experiment. SKNA correlated
morphologically with heart rate acceleration and preceded the onsets of ventricular
arrhythmia. Based on these animal studies, they hypothesized that it is practical to
record both SKNA and ECG simultaneously in humans. They tested on four
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different groups of patients to stimulate or inhibit their ANS and determined that
SKNA could become a useful tool to estimate sympathetic tone in humans [23].

3.4.2 Physiological Basis

The postganglionic neurons of the sympathetic system travel along with the 31 pairs
of spinal nerves, which means sympathetic nerve fibers are also distributed in the
skin. The upper thorax skin is innervated by sympathetic nerves extended from the
stellate ganglion, which is in charge of the sympathetic fibers to the heart. As a result,
as an alternative way to measure SGNA, SKNA can be recorded totally noninva-
sively by conventional ECG electrodes simultaneously with ECG in patients. The
bursts of SKNA suggest the activation of sympathetic nerves. SKNA, ECG, and
heart rate can be illustrated in a single time axis, and the disturbance of SKNA can be
analyzed with the fluctuation of heart rate, providing a clear view of ANS controlling
the heart rhythm.

3.4.3 Analysis Methods

By conventional ECG electrodes, the SKNA signal can be recorded simultaneously
with ECG. The sampling rate of SKNA is 10,000 Hz. The same electrical signal
filtered between 0.5 and 150 Hz displays ECG, while the bandpass from 500 to
1000 Hz shows SKNA.

For the quantitative analysis of SKNA, the average voltage of SKNA (aSKNA)
and the integrated SKNA (iSKNA) are often used. The aSKNA is obtained by
dividing the total voltage of SKNA by the number of digitized samples over a
time window. For example, the total voltage of all samples in 10 s was
200,000 μV (sampling rate 10,000 Hz), then the aSKNA was 2 μV. Similarly,
iSKNA was obtained by integrating the voltage of digitized data over a time window
of 100 ms, which is used in the figure, not in statistical analysis [23].

SKNA recordings can sometimes be affected by artifacts. First, the movement
artifacts can produce evident morphological changes within the signal that can
disturb data processing and analysis. Patients should be restrained when tested to
ensure the quality of the signals. Timestamps can be used to record the movements
of the patients. Artifacts related to this disturbance will be evaluated in the analysis
process. If no obvious ECG alteration is shown, this piece of the signal will be
counted as artifacts and then eliminated. Second, muscle artifact can also interfere
with the SKNA signals. The surface electromyography (EMG) signal is between
0 and 500 Hz. Even though most muscle activities had a frequency of <100 Hz, a
small part of muscle activities were over 400 Hz. To increase the specificity of
detection, bandpass filtering can be useful to acquire SKNA signals. However, no
data to date shows if there is any overlap between EMG and SKNA. Besides, SKNA
varies depending on electrode contact, electromagnetic interference, and the site of
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the recording. Therefore, a uniform method to measure SKNA has to be
established [24].

3.4.4 Clinical Applications

SKNA was a novel way to evaluate the real-time sympathetic nervous activity in a
noninvasive way. Cold water pressor test (CPT) and Valsalva maneuver are two
common ways to stimulate the autonomic nervous system. SKNA significantly
increased during the CPT and Valsalva maneuver and then reduced significantly
during recovery [23]. Furthermore, the fluctuation of ANS could be displayed in a
timeline in other situations, such as tilt table test (TTT) [24], sedative drugs [25], and
vagal nerve stimulation [26], providing us with a clear understanding of ANS
physiology.

SKNA was also employed widely in recent clinical studies. SKNA was first
applied in patients with arrhythmias to identify the relationship between ANS and
the progress of arrhythmias. SKNA was observed to increase at onset and termina-
tion of atrial tachycardia (AT) and atrial fibrillation (AF) [27]. The acceleration of
the ventricular rate in AF patients is also associated with SKNA bursts, which
indicated that ANS could be the therapeutic target for rate control in AF [28]. On
the other hand, in patients with ventricular arrhythmias, the average SKNA
(aSKNA) was higher than the control group, and SKNA was an independent
predictor of ventricular arrhythmia recurrence [29]. Also, a shared phenomenon
was seen in both atrial and ventricular tachy-arrhythmias that large and sustained
sympathetic nerve activities are associated with the temporal clustering of arrhyth-
mia, indicating that neuromodulation could be an effective therapy.

4 Expectations

The noninvasive methods to assess ANS function based on ECG are far from perfect.
HRV is only available only in the period of sinus rhythm, which restricts its use in
patients with irregular RR interval (e.g., persistent AF, PVC). The linking of the
sympathetic and parasympathetic nerves to LF and HF is also controversial. For
BRS and HRT, extra stimulation is often needed to disturb the ANS to assess its
function. SKNA also has the problems of signal noise and the lack of information on
parasympathetic tones. These methods have to be improved for further clinical
application.

The evolution of wearable devices makes it easy to have access of massive
information and biological signals. However, in some cases, we have difficulties
in explaining those data. There seems to be a gap between the information and the
clinical events. The study and assessment of ANS function have added an extra
dimension to physiological signals. The knowledge of the physiological basis may
be helpful to process and explain the information. With advanced engineering and
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algorithm, data can be translated into clinical benefits for patients and doctors,
improving primary, secondary, and tertiary prevention of diseases.
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A Questionnaire Study on Artificial
Intelligence and Its Effects on Individual
Health and Wearable Device

Tiange Bu and Fangyuan Li

Abstract Our goal is to better understand what a professional person thinks about
the current hot topics such as Artificial Intelligence (AI), wearable devices, and
individual health. We designed a questionnaire to survey the professionals. The
questionnaire focused on three main subjects, AI, and its effects on individual health
and wearable device. In the AI-related questions, since AI can play an extremely
important role in signal processing, it is widely used by respondents in the field of
biological signal processing. In the individual health-related questions, the view that
the local residents in the city where they live have healthy dietary habits is accepted
by 43.75% of the respondents, and 21.88% of the respondents consider that the
dietary habits of the local residents in the city where they live is not healthy. In the
wearable devices-related questions, 59.38% of the respondents think the current
wearable devices are far from meeting the need for the early disease detection and
health monitoring, and only 7.81% of the respondents believe the current wearable
devices are very useful. The societal impact of the AI revolution will be significant as
it is beginning to affect most aspects of our lives and work, shaped our shopping and
entertainment habits, as well as our employment patterns.

Keywords Artificial intelligence · Wearable devices · Individual health

1 Introduction and Motivation

With the progress of technology, artificial intelligence (AI) has emerged frequently
in science and public consciousness in recent years. Artificial intelligence is a branch
of computer science that attempts to understand the essence of intelligence and
produce a new kind of intelligent machine that can respond in a similar way to
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human intelligence. AI techniques are poised to influence nearly every aspect of the
human condition. With recent progress in digitized data acquisition, machine learn-
ing, and computing infrastructure, AI applications are expanding into areas that were
previously thought to be only the province of human experts [2]. Over the past
decade, several machine-learning techniques have been used in fields of medicine,
biomedical signal processing, and chemistry. A healthy lifestyle is a habit of
behavior that is good for your health, which concludes scientific diet, reasonable
work and rest, and appropriate exercise. Individual lifestyle has an essential effect on
the occurrence and development of chronic diseases, thus plays a main role in the
individual health. The core of healthy lifestyle management is to develop good
habits. For a long time, people made a series of health plans by themselves, and it
was difficult to monitor their health status in real time. With the rise of mobile
Internet and wearable devices, healthy lifestyle management methods have also
changed. A series of mobile Internet health management tools provide a lot of
convenience for people, making the development of lifestyle more interesting and
more motivated. With the development of mobile Internet, technological progress,
and the launch of high-performance and low-power processing chips, some wearable
devices have gone from conceptualization to commercialization, and new wearable
devices are coming out. Wearables as medical technologies are becoming an integral
part of personal analytics, measuring physical status, recording physiological param-
eters, or informing schedule for medication. These continuously evolving technol-
ogy platforms do not only promise to help people pursue a healthier life style but also
provide continuous medical data for actively tracking metabolic status, diagnosis,
and treatment [4].

Our goal is to better understand what a professional person thinks about these
current hot topics.

2 Method

The questionnaire focused on three main subjects: AI, its effects on individual
health, and wearable device. There are ten questions in total: questions 1 to 3 are
multiple choices; question 4 is indicating possibilities; questions 5 to 10 are multiple
choices. In the first subject Artificial Intelligence, there are three questions; then in
the second subject, there are three questions. In the last subject, there are four
questions. At the beginning of the questionnaire, we designed a form to ask the
respondents to fill in their details of work and research, and also their nationalities.

2.1 Basic Information

Name: __________________ Gender: □ Female/□ Male
Nationality: __________________ Age: _______________
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Research topic: (based on the conference classification for the topics of interest,
please tick one opinion)

□ Medical Imaging Technology and Application
□ Biomedical Signal Processing and Medical Information
□ Biomechanics and Biomechanical Engineering
□ Molecular Biology
□ Chemistry, Pharmacology, and Toxicology
□ Other Topics

2.2 Questionnaire Survey

Part I: AI
AI is growing so fast currently. It has been used widely in many areas, such as
autonomous vehicles, playing games, finance, economics, art, and of course, the
healthcare. It is undeniable that AI has a profound impact, not only on our research
but also on the people’s daily life.

1. Assume the participants of the questionnaire have the quantitative assessment
point on this question. Concerning the research work you engaged in, how often/
how much do you use the AI-related techniques?
Level: □ 0% (Never) □ 25% □ 50% □ 75% □ 100% (Very often)

2. Assume the participants of the questionnaire have the quantitative assessment
point on this question. In your opinion, how often/how much the AI-related
techniques are applied in the people’s daily life in the city where you live?
Level: □ 0% (Never) □ 25% □ 50% □ 75% □ 100% (Very often)

3. Due to the rapid rise of AI and the boundless possibilities existing, many people
talk about the topic of “AI will replace the doctor one day.” How long do you
think the AI-related techniques can greatly surpasses the performance of profes-
sional human in your profession?
□ Within 5 years □ 5–10 years □ 10–20 years □ 20–50 years □ Never

4. Assume the participants of the questionnaire have the quantitative assessment
point on this question. How positive or negative would be the overall impact of
AI on humanity, in the long run? Please indicate a probability for each option.
(The sum should be equal to 100%.)

Impact Probability
Extremely good _________
On balance good _________
More or less neutral _________
On balance bad _________
Extremely bad (existential catastrophe) _________

Total: 100%
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Part II: Individual Health
Chronic, noncommunicable diseases, such as cardiovascular diseases, chronic respi-
ratory disease, and cancer, are the leading causes of both death and the burden of
disease in the world. It reported that individual lifestyle has an important effect on
the occurrence and development of chronic diseases, and thus plays an important
role on the individual health.

5. Assume the participants of the questionnaire have the quantitative assessment
point on this question. For the dietary habits of the residents in the city where you
live, do you think it is healthy?
Level: □ 0% (Totally unhealthy) □ 25% □ 50% □ 75% □ 100% (Totally
healthy)

6. Assume the participants of the questionnaire have the quantitative assessment
point on this question. For the sports and fitness of the residents in the city where
you live, how often do you think in the average level?
Level: □ 0% (Never) □ 25% □ 50% □ 75% □ 100% (Very often)

7. Assume the participants of the questionnaire have the quantitative assessment
point on this question. In your opinion, how important the individual lifestyle
(including dietary habit, sport, fitness, etc.) performs on the individual health?
Level: □ 0% (Not at all important) □ 25% □ 50% □ 75% □ 100% (Very
important)

Part III: Wearable Device
Many wearable devices have been developed for the individual health monitoring
currently, such as the daily ECG, blood pressure, exercise, sleep monitoring, gener-
ating benefit for the early disease detection, and health management, especially when
working with the AI-related techniques. However, for the useful clinical application,
challenges exist. And here come the questions:

8. Assume the participants of the questionnaire have the quantitative assessment
point on this question. How do you think the current wearable devices/tech-
niques can meet the need for the early disease detection and health monitoring?
Level: □ 0% (Never useful) □ 25% □ 50% □ 75% □ 100% (Very useful)

9. How long do you think the wearable devices/techniques can perform very well
for the individual health monitoring, and thus significantly improve the individ-
ual health management?
□ Within 5 years □ 5–10 years □ 10–20 years □ 20–50 years □ Never

10. Wearable techniques can generate lots of individual data. Opening and sharing
the wearable data (with hiding the personal information) can significantly
benefit the research work, while it has the risk to reveal personal privacy.
Assume the participants of the questionnaire have the quantitative assessment
point on this question. How would you like to support the open source data?
Level: □ 0% (Never support) □ 25% □ 50% □ 75% □ 100% (Fully
support)
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3 Results

The questionnaire survey has 65 respondents, consisting of 45 males and 20 females.
They come from six countries, including China, the United States, South Korea, the
United Kingdom, Turkey, and Israel. The respondents were mainly from the fields of
medical imaging technology and application, biomedical signal processing and
medical information, biomechanics and biomechanical engineering, molecular
biology, chemistry, pharmacology, and toxicology (Fig. 1).

3.1 Results on AI-Related Questions

Artificial Intelligence is used frequently by 36.92% of the respondents, and only
3.08% of the respondents never use AI technology, suggesting that AI has been
widely applied in the fields of medical imaging, biological signal processing,
biomechanics, molecular biology, chemistry, and pharmacy. Only the AI-related
techniques can greatly surpass the performance of human in their profession within
5 years, and 35.38% of the respondents believe that AI will never surpass the
performance of human in their profession. It shows that although a number of
respondents have used AI technology in scientific research, most of them believe
that AI cannot surpass human performance in the short term. Only 1.54% of the
respondents consider that the AI-related techniques are never applied in the people’s
daily life in the city where they live, suggesting that AI is gradually changing
people’s daily life in the city where respondents live. The overall impact of AI on
humanity would be positive, and this view is agreed by 73.84% of the respondents. It
follows that most respondents deem the impact of AI positive in the long run.

The respondents were mainly from the fields of medical imaging technology and
application, biomedical signal processing and medical information, biomechanics
and biomechanical engineering, molecular biology, chemistry, pharmacology, and
toxicology. Figure 2 shows that the frequencies of AI used in various research topics.
AI-related techniques are used more frequently in the fields of medical imaging and
biological signal processing, especially in the field of biological signal processing.
Medical imaging examination relies mainly on the manual reading of doctors, which
requests a high standard of the doctor’s professional skills and clinical experience.
At present, AI techniques are used to extract useful information from massive
medical image data for assisting clinical diagnosis and clinical decision. The promise
of artificial intelligence (AI) and machine learning in cardiology is to provide a set of
tools to augment and extend the effectiveness of the cardiologist [1]. Similarly, since
AI can play an extremely important role in signal processing, it is widely used by
respondents in the field of biological signal processing.

From Fig. 3, we can conclude that most respondents agree that AI is difficult to
surpass human performance in their fields. Although AI technology is frequently
used in the fields of medical imaging and biological signal processing, the largest
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number of respondents believed that AI could never surpass human performance in
their fields. It can be seen that Although AI promises to revolutionize many research
fields, a number of technical challenges lie ahead. The availability of large amounts
of high-quality training data on which AI-related techniques rely heavily is the first
challenge [2]. Although several high-performing machine-learning models can
achieve better-than-human performance, results generated by them are difficult to
interpret by unassisted human [2].

3.2 Results on Individual Health-Related Questions

Dietary habits and physical activity are significant indicators to evaluate whether an
individual lifestyle is healthy; 85.94% of the respondents agree that a healthy
lifestyle plays a vital role in individual health. The respondents of the questionnaire
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Fig. 2 The bar chart of the frequencies of AI used in various research topics
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survey come from six countries, including China, the United States, South Korea, the
United Kingdom, Turkey, and Israel. The view that the local residents in the city
where they live have healthy dietary habits is accepted by 43.75% of the respon-
dents, and 21.88% of the respondents consider that the dietary habits of the local
residents in the city where they live is not healthy. Physical inactivity is one of the
leading modifiable risk factors for global mortality, with an estimated 20–30%
increased risk of death compared with those who are physically active [3]. Abundant
scientific evidence has demonstrated that physically active people of all age groups
and ethnicities have higher levels of cardiorespiratory fitness and health, and a lower
risk for developing several chronic medical illnesses, compared with those who are
physically inactive [3]. For the frequency of sports and fitness of the local residents
in the city where they live, 34.38% of the respondents believe it is often, and 23.44%
of the respondents hold the opposite view.

3.3 Results on Wearable Devices-Related Questions

With the growing consumer desire for health awareness and the development of
wearable technologies, the past decade has seen the emergence of several wearable
devices, including several that have been widely adopted by both physicians and
consumers. Wearable devices are increasingly helping people to better monitor their
health involving acquisition of data on daily activities, sport performance, and health

How long do you think the Al-related techniques can greatly surpasses
 the performance of professional human in your profession?
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status. At present, wearable devices include smart watches, smart wristband, and
electronic textiles [4]. In all, 59.38% of the respondents think the current wearable
devices are far from meeting the need for the early disease detection and health
monitoring, and only 7.81% of the respondents believe that the current wearable
devices are very useful. It shows that most people are not satisfied with the
performance of current wearable devices. From Fig. 4, we can conclude that both
male and female are not satisfied with the performance of current wearable devices,
especially males. The cause of this result is that males have a greater need than
females for the ability to acquire sport performance using wearable devices in daily
life. Figure 5 shows that the views on whether wearable devices can meet the
demand of different age group. Respondents over 50 are more dissatisfied with the
performance of wearable devices, reflecting the elderly have higher requirements on
wearable devices and need better health monitoring. Due to the fact that elderly are
more likely to have health problems than youngsters, wearable devices for the
elderly need better performance in early disease detection and health management.

The key to development of wearable devices can be attributed to several factors,
such as sensor signal acquisition, processing, and artificial intelligence algorithms.
The next few years present a set of challenges in wearable devices, and to overtake
them, an improvement of these technologies should be made. The view that wearable
devices can perform very well for the individual health monitoring and management
in 5–10 years is agreed by 46.88% of the respondents, and only 7.81% of the
respondents think wearable devices can perform very well for the individual health
monitoring and management within 5 years. It suggests that most respondents are
confident in the future development of wearable devices in the long run, but

How do you think the current wearable devices can meet the need for the
early disease detection and health management?
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wearable devices can hardly meet the needs for the early disease detection and health
monitoring within 5 years. The term big data refers to extremely large datasets that
cannot be analyzed, searched, interpreted, or stored using traditional data-processing
methods. Big data include data from mobile phone applications, wearable technol-
ogy, and precision medicine platforms [5]. Wearable techniques can generate lots of
individual data. Opening and sharing the wearable data (with hiding the personal
information) can significantly benefit the research work, while it has the risk to
reveal personal privacy. For example, currently some wearable device service pro-
viders limit their user’s access to the collected and stored data. These service pro-
viders charge their users’ fees to access their row data, which is also acquired by
third-party companies. The open-source data is supported by 64.07% of the respon-
dents, and only 14.06% of the respondents do not support the open source. Although
data safety is a potential risk, open-source data enables AI algorithms more effective
in early disease detection and health monitoring.

4 Discussion

With the current popularization of the Internet, the universal existence of sensors, the
emergence of big data, development of e-commerce, rise of the information com-
munity, and the interconnection and fusion of data, and knowledge with society,
physical space, and cyberspace, the information environment for AI development
has been changed profoundly [6]. The societal impact of the AI revolution will be
significant as it is beginning to affect most aspects of our lives and work, shaped our

Fig. 5 The bar chart of the views on whether wearable devices can meet the demand of different
age group
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shopping and entertainment habits, as well as our employment patterns. At present,
AI-related technologies are applied in the fields of medical imaging, biological
signal processing, biomechanics, molecular biology, chemistry, and pharmacy
more or less. In the above fields, AI-related techniques are used more frequently in
the fields of medical imaging and biological signal processing, especially in the field
of biological signal processing. AI can also be used to process large amounts of data
from images and signals (i.e., information about the attributes of a particular physical
phenomenon). Data produced by motion and sound are common examples of
signals. Steps in image and signal processing algorithms typically include signal
feature analysis and data classification using tools such as artificial neural networks
(ANNs) [7]. Most of the medical data come from medical imaging; the medical
imaging data are still growing year by year, but the growth rate and work efficiency
of imaging doctors are not enough to cope with this growth trend, which will bring
great pressure to doctors. Medical imaging has become the most popular direction in
the field of artificial intelligence. Artificial intelligence (AI) is already widely
employed in various medical roles, and ongoing technological advances are encour-
aging more widespread use of AI in imaging [8]. AI techniques are used to extract
useful information from massive medical image data for assisting clinical diagnosis
and clinical decision. Moreover, AI methods have been gradually introduced into
biological signal processing in recent years. Although AI-related techniques are
widely used in many fields of scientific research, the majority of scholars consider
that AI technology is difficult to surpass human performance in their profession, at
least in the short term. Algorithm, computing power, and data are considered the
three core elements of artificial intelligence. The growth of data volume, the
improvement of computing power, and the optimization of deep learning algorithm
are the current problems that we need to break through. Substantial uncertainty will
be brought by AI; most people, however, believe the impact of AI positive in the
long run. Individual health, as demonstrated by scientific practice, depends on
heredity, environment, and lifestyle, the most important of which is the individual
lifestyle. With the improvement of living standards, people worldwide are aware of
the importance of individual health. Healthy dietary habits and adequate exercise are
pursued by people all over the world. The awareness of a healthy individual lifestyle
is the driving force behind wearable technologies involving acquisition of data on
daily activities, sport performance, and health status. At the same time, the demand
for wearable devices has increased. The consumer-directed wearable devices market
is rapidly growing, which includes devices that can be worn from head to toe. At
present, the main wearable products on the market have different forms, such as
smart watches, smart bracelets, health wear, and so on. AI analytics support the
practice of precision medicine, especially in the difficult setting of chronic diseases
characterized by multiorgan involvement, erratic acute events, and long illness
progression latencies [9]. However, few of people think the current wearable devices
can meet the need for the early disease detection and health monitoring. Currently,
the development of wearable devices is in the initial stage, and there are still many
problems that need to be solved, among which the most important is the diversity of
functions, accuracy of results, and security of data. In order to accurately measure
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physiological indicators, comprehensive application of multiple sensors and cross-
validation of results are required by wearable devices. The main target of wearable
devices is to integrate several biosensors, intelligent processing, and alerts to detect
early disease and monitor health while interacting with health providers. With the
development of artificial intelligence, 5G network, and sensor technology, wearable
devices can perform very well for the individual health monitoring, and thus
significantly improve the individual health management in the long run. Moreover,
the rapid development of machine-learning techniques has promised to bring forth
even more useful applications from big data to disease diagnosis and health moni-
toring. However, the open-source data is still controversial: while many people
support open data, some hope conservative attitudes. The concept of privacy is
notoriously difficult to define. One currently prominent view connects privacy to
context. There are contextual rules about how information can flow that depend on
the actors involved, the process by which information is accessed, the frequency of
the access, and the purpose of that access [10]. Therefore, users’ privacy data should
be properly handled in the future.
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