
Molecular Mechanism of Early-Life
Chemical Exposure-Induced Harmful
Effects

Hua Wang and De-Xiang Xu

1 Introduction

Early developmental stages are more sensitive to environmental chemicals, such as
nicotine, ethanol, heavymetals, endocrine disruptors, pesticides, and so on [1]. Accu-
mulating data have demonstrated that exposure to environmental chemicals in early
life produces short-term and long-term harmful effects, such as metabolic diseases,
neurodevelopmental defects, male infertility, etc. [2–4]. Other works further identi-
fied intergenerational and transgenerational effects of environmental chemicals
[2, 5]. On one hand, some chemicals enter fetuses and neonates across either
placental or blood milk barriers and directly impair fetal and neonatal development.
On the other hand, early-life chemical exposure causes indirectly toxic effects via
impairing placenta or germlines. In the past decade, great progress has been made in
molecular mechanisms by which early-life chemical exposure induces adverse
health outcomes later in life. This chapter will summarize the role of genetic
mutation, epigenetic alterations, oxidative stress, inflammation, and glucocorticoid
on the latent effects of early-life exposure.

2 Genetic Mutation

Genetic mutation refers to the processes that chemical agents alter genetic informa-
tion. There is more and more evidence indicating that early-life exposure to
chemicals can induce genetic mutation. An epidemiological study showed that
higher arsenic exposure elevated micronucleus content in peripheral blood
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lymphocytes from children [6]. Another study found that maternal smoking during
pregnancy was positively associated with DNA damage in lymphocytes of their
newborns [7]. Later animal experiment demonstrated that early-life exposure to
cadmium induced DNA damage in embryos of terrestrial snails [8]. A recent
experiment found that early-life exposure to dichlorobenzoquinone elevated the
level of 8-hydroxydeoxyguanosine in zebrafish [9].

Genetic mutation plays a key role in chemical-induced developmental toxicity.
According to a recent study, gestational exposure to ethanol caused deficits of bone
development mainly through osteoblast DNA injury and micronucleus formation in
neonatal rats [10]. Moreover, prenatal co-exposure to copper and cadmium induced
embryo spinal and cardiovascular deformities in Oryzias latipes, which was corre-
lated with the increased DNA damage [11]. Another recent study found that devel-
opmental exposure to diethylstilbestrol elevated the incidence of uterine fibroids
through altering DNA repair in myometrial stem cells [12]. An earlier research
reported that ascorbic acid protected against cyclophosphamide-induced embryonic
resorptions via inhibiting structural chromosomal aberrations in mice [13]. In addi-
tion, N-acetylcysteine alleviated cadmium-induced embryonic lethality through
rescuing DNA mismatch repair in zebrafish embryos [14].

3 Epigenetic Alterations

Epigenetics was defined as heritable alterations in gene expression without under-
lying changes in DNA sequence. Increasing evidence has demonstrated that epige-
netic modifications, such as DNA methylation, histone modification and noncoding
RNA, play key roles in controlling gene expression through time- and space-
dependent manner. Indeed, embryonic stem cells and their differentiated cells
owned different biological functions due to selective gene expression affected by
epigenetic modifications. During the embryonic development, cell differentiation
and lineage commitment are determined by epigenetic reprogramming. Early-life
exposure to toxic chemicals may disrupt epigenetic reprograming and cause persis-
tent changes and even transgenerational impacts [15]. The Norwegian Mother and
Child Cohort Study (n ¼ 1062) showed that maternal smoking during pregnancy
was associated with the differential methylation in AHRR, CYP1A1, and GFI1 in
neonatal cord blood [16]. The Genome-wide Consortium Meta-analysis including
13 cohorts (n ¼ 6685) found that over 6000 CpGs were differentially methylated in
blood from newborns or older children whose mothers smoked during pregnancy
[17]. An earlier animal experiment showed that perinatal nicotine exposure
enhanced the susceptibility of HI-induced brain injury via DNA methylation of the
AT2R gene in neonatal male rats [18]. Indeed, Pb-induced neurodevelopmental
toxicity and subsequent epigenetic alterations was also a good example. This study
found that early postnatal exposure to Pb markedly reduced the levels of DNMT1
and MECP2 in mouse cerebral cortex across life span [19]. In line with above data,
an in vitro experiment showed that Pb altered the global DNA methylation profile in
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human embryonic stem cells and subsequently impaired neuronal differentiation
[20]. According to an observational study, gestational Pb exposure altered the DNA
methylation profiles in fetal germ cells and persistently modified DNA methylation
status in grandchildren’s neonatal blood [21]. This group also found that Pb expo-
sure in infancy upregulated H3K9Ac and H3K4me2 proteins (marks for gene
activation) but downregulated H3K27me3 (marks for gene repression) in older
primate and mouse brains [19, 22]. Additional study reported that miR-106b,
which targeted the APP mRNA, was significantly reduced in the brain of mice
whose mothers were exposed to Pb during lactation [23].

Epigenetic alterations in the germline, including sperm and egg, were essential for
transmitting transgenerational effects. Numerous studies found that exposure to
environmental chemicals in early life caused intergenerational and transgenerational
effects, which was associated with epigenetic alterations in germlines [2, 24]. The
earliest study reported that prenatal exposure to vinclozolin and methoxychlor, two
environment endocrine disruptors, induced transgenerational actions of male fertility
through altering sperm DNA methylation [5]. Consistent with alteration of sperm
DNA methylation, Dnmt3a and Dnmt3l were altered in the testes of fetal rats (F1–
F3) whose mothers were exposed to vinclozolin during pregnancy [25]. Further
work found that alteration of sperm noncoding RNA, such as piRNAs, miRNAs and
lncRNAs, and histone H3K27me3 methylation were observed in vinclozolin-
induced epigenetic transgenerational inheritance of phenotypes [26, 27]. Recently,
several studies demonstrated that sperm transfer RNA-derived small RNAs
(tsRNAs) were involved in environment chemical-induced intergenerational inher-
itance of acquired metabolic disorders [4, 28].

4 Oxidative Stress

Oxidative stress results from imbalance between reactive oxygen species (ROS)
overproduction and endogenous antioxidants. Excessive ROS causes oxidative
injury to intracellular macromolecules, such as DNA, lipids and proteins. Accumu-
lating evidence has demonstrated that early-life exposure to toxic chemicals triggers
oxidative stress and even oxidative damage of intracellular macromolecules. An
early report showed that urinary 8-hydroxydeoxyguanosine (8-OHdG) in infants
was positively linked with cadmium level in both urine and breast milk [29]. Several
animal experiments found that early-life exposure to dichlorobenzoquinone and
cyhalofop-butyl triggered excess ROS production, upregulated activity of superox-
ide dismutase (SOD), and elevated the levels of 8-OHdG and malondialdehyde
(MDA) in zebrafish [9, 30]. A recent study indicated that paternal arsenic exposure
elevated MDA/GSH ratio in hypothalamic-pituitary-gonadal (HPG) axis of adoles-
cent male mouse offspring [31].

Numerous studies have demonstrated that exposure to toxic chemicals induces
oxidative stress in adult offspring. An early report showed that prenatal ethanol
exposure caused hypothalamic oxidative stress and neuroendocrine alterations in
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adult rat offspring [32]. Another early study indicated that prenatal co-exposure to
ethanol and smoking impaired learning and memory abilities, which was associated
with oxidative stress in cerebral cortex of adult offspring [33]. Moreover, antenatal
nicotine exposure caused vascular dysfunction and enhanced oxidative stress in
adult offspring [34]. Pretreatment with apocynin, an NAPDH oxidase inhibitor,
and tempol, an SOD mimetic, improved vascular contractions in adult offspring
whose mothers were exposed to nicotine in pregnancy [34]. Additionally, supple-
mentation with MitoQ, a mitochondria-targeted antioxidant, protected against
chronic kidney disease in adult mouse offspring whose mothers were exposed to
smoking [35]. The modulatory subunit of glutamate cysteine ligase (GCLM) is the
key enzyme of GSH synthesis. A recent study showed that Gclm KO mice were
more sensitive to pharmacological stimuli as compared with WT mice [36]. Oxida-
tive stress triggered by pharmacological stimuli in preweaning or pubertal Gclm KO
mice reduced the number of parvalbumin-immunoreactive interneurons, but not in
adult Gclm KO mice [36]. Further observation found that pretreatment with N-
acetylcysteine reversed early-life stimuli-impaired parvalbumin interneurons via
inhibiting oxidative stress in Gclm KO mice [36].

5 Inflammation

Inflammation is a biological response of immune system upon pathogens, damaged
cells, or chemicals. The inflammatory process mainly includes vascular permeability
changes, leukocyte recruitment, the release of inflammatory cytokines, the resolution
of inflammation, and organ-specific inflammatory response [37, 38]. In response to
inflammatory stimuli, acute or chronic inflammation occurs in target organs, poten-
tially resulting in tissue injury and diseases [39]. Increasing data demonstrate that
early-life exposure to chemicals triggers inflammation. A recent population study
found that systemic inflammatory response of schoolchildren was associated with
chronic exposure to air pollution [40]. Another population study reported that early
gestational co-exposure to the mixture of phenols, phthalates, and metals was linked
with altered inflammatory cytokines in maternal and neonatal blood [41]. Several
earlier studies indicated that early-life exposure to endocrine-disrupting chemicals,
including bisphenol A, caused inflammatory response in different target tissues
[42, 43]. Later animal experiments demonstrated that early-life exposure to acet-
aminophen or 1-nitropyrene increased airway inflammation and susceptibility of
allergic asthma in adult offspring [44, 45]. The NF-κB and MAPK are the key
signaling pathways for modulating inflammatory mediators and cytokines in inflam-
matory cells [39]. A recent study indicated that prenatal LPS exposure caused
activation of NF-κB signaling, resulting in prenatally programmed hypertension in
adult offspring [46]. Moreover, maternal inflammation-mediated p38 MAPK acti-
vation predisposes offspring to heart injury caused by isoproterenol via augmenting
ROS generation [47].
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Various experimental studies have demonstrated that inflammation mediates the
harmful effects induced by early-life exposure to chemicals. Maternal dioctyl
sodium sulfosuccinate (DOSS) exposure during pregnancy elevated the circulating
level of IL-6 and increased susceptibility of adiposity, metabolic disorders, and
dyslipidemia in adult male offspring [48]. In utero exposure to lipopolysaccharide
(LPS) increased the level of pro-inflammatory cytokines in the postnatal brain and
caused the alteration of the glial cells in the developing amygdala [49]. Melatonin, an
anti-inflammatory agent, protected mice from placental insufficiency and fetal car-
diovascular compromise via downregulating IL-1β and TNF-α [50]. Supplementa-
tion with vitamin D3 inhibited IFN-γ production, thereby improving alveolar
development in LPS-induced bronchopulmonary dysplasia (BPD) in rats [51].

6 Glucocorticoid Overexposure

Glucocorticoid (GC) is an adrenal steroid hormone that controls a variety of phys-
iological processes such as development, metabolism, immune response, cardiovas-
cular activity and brain function [52–54]. However, excessive GC exposure during
pregnancy impairs fetal development. Indeed, increasing evidence has demonstrated
that early-life chemical exposure may cause active GC overexposure. According to a
birth cohort study in Chile, maternal urinary arsenic concentration during gestation
was positively associated with the level of salivary cortisol in infants [55]. Several
animal experiments demonstrated that prenatal exposure to caffeine or cad-
mium (Cd) caused fetal overexposure to active GC [56, 57]. An in vitro study
confirmed that Cd downregulated expression of 11β-HSD2 and inhibited
11β-HSD2 promoter activity in human placental trophoblasts [58].

Numerous studies reported that early-life exposure to chemical caused abnormal-
ity in adult period maybe through excess exposure to active GC. Several studies
showed that prenatal caffeine exposure increased circulatory GC level, changed
peripheral glucose and lipid metabolic pathways, and caused hypercholesterolemia
and osteoporosis in adult offspring [56, 59, 60]. Gestational ethanol exposure
enhanced the susceptibility of offspring rats to glomerulosclerosis and hypercholes-
terolemia via programming glucocorticoid-insulin-like growth factor 1 (GC-IGF1)
axis [61–63]. The Comparative Genomic Enrichment Method (CGEM) found that
prenatal co-exposure to arsenic and cadmium altered the expression of
glucocorticoid receptor (GR)-regulated target genes related to infectious disease
[64]. Additional study found that cortexolone, a GR inhibitor, protected against
arsenic-induced neural tube defects [65]. However, postnatal or perinatal exposure to
toxic chemicals inhibits GC/GR signaling. According to a recent report, cigarette
smoke during lactation lowered glucocorticoid level in male adult offspring
[66]. Moreover, both perinatal exposure to arsenic and lactational exposure to
benzpyrene reduced the level of serum GR in offspring [67, 68]. Indeed, GC
reduction impairs the function of hypothalamic-pituitary-thyroid (HPT) and
hypothalamic-pituitary-adrenal (HPA) function, whereas the latter is the cause of
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behavior alteration in rat offspring [69, 70]. Interestingly, gestational supplementa-
tion with betaine attenuates GC-induced hepatic lipid accumulation and activation of
lipolytic genes in adipose tissue through epigenetic modification in adult offspring
rats. In addition, postnatal supplementation with omega-3 fatty acid reversed
GC-programmed adiposity, hypertension, and hyperlipidemia in high-fat diet-fed
male offspring [71–73].

7 Conclusions and Future Prospect

The molecular mechanisms, such as genetic mutation, epigenetic alterations, oxida-
tive stress, inflammation, and glucocorticoid overexposure, are involved in the
harmful effects of early-life chemical exposure (Fig. 1). Although great progress
has been made in the molecular mechanisms of early-life chemical exposure-induced
harmful effects in adult period, further work is needed to elucidate following issues:

(1) The interaction among genetic mutation, epimutation, and other molecular
mechanisms remains elusive, (2) the exact mechanism by which early-life chemical
exposure induces intergenerational and transgenerational effects needs to be deter-
mined, (3) the mechanisms underlying enhanced disease susceptibility of offspring

Fig. 1 Molecular
mechanism of early-life
chemical exposure-induced
harmful effects
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to the second hit remain unclear, and (4) how to transform the molecular mecha-
nisms into the predictive biomarkers remains uncertain. As above, additional work is
required to explore the novel molecular mechanisms by which exposure to toxic
chemicals in early life induces harmful effects in later life.
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