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Abstract

Biofuel produced from the plant biomass shows greater alternative source of
renewable energy and better than the fossil fuels in reducing the greenhouse gas
emission from the burning of fossil fuels. Sugarcane is one of the best candidates
for biofuel production which has been used successfully to produce bioethanol
extensively in Brazil and also in other countries worldwide. Sugarcane is a
perennial monocot with C4 photosynthesis, having a fast growth rate without
any serious maintenance and can be harvested four to five times by multiplying
using the ratoons. Sugarcane is one of the primary crops as a source for both food
and bioenergy, with Brazil, India, and China contributing more than 60% of the
world’s total production. The diminishing resources of fossil fuel coupled with
augmented research interest for an environmentally sustainable and renewable
source of energy in the form of sugarcane. Industrial levels of biofuel production
have been achieved in Brazil and the USA, however more concerted efforts needs
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to be directed towards deployment of second-generation biofuel production by
utilizing lignocellulosic biomass.
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11.1 Introduction

Exploration of alternative energy sources has shown renewed special research focus
that could curtail or replace the usage of fossil fuels (Waclawovsky et al. 2010). The
ever increasing energy demands can be supplanted by plant feedstocks, which are
excellent sources of renewable energy resources. The availability of renewable
bioenergy resources can go a long way in securing the energy needs of a country
in sustainable economic manner, thereby diverting the precious resources from
oil-based import economy towards a self-sustainable one. The encouraging trends
in adoption of bioenergy-based utilization would go a long way in mitigating the
adverse effects of greenhouse gases (GHGs). Besides, it offers socio-economic and
environmental benefits. Several agricultural crops and plants have been explored and
identified for biofuel purpose, like sugarcane (Saccharum spp.), maize (Zea mays),
soybean (Glycine max), willow (Salix sps.), switch grass (Panicum virgatum),
rapeseed (Brassica napus), wheat (T. aestivum), sugar beet (Beta vulgaris), palm
oil (Attalea maripa), manioc (Manihot esculenta), miscanthus (Miscanthus sps.),
potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and barley (Hordeum
vulgare); sorghum (Sorghum bicolor), cassava (Manihot esculenta), and hemp
(Cannabis sativa) (Cho 2011; Davis et al. 2013; Balat 2010; Leite and Leal 2007;
Solomon and Bailis 2014).

Sugarcane is one of the most energy efficient crops being grown in more than
100 countries (Fig. 11.1) having very wide adaptability range supported by its C4
photosynthetic system resulting into large biomass production per unit area having
the desirable traits of high yield along with low input requirements and better
processing capabilities (Verheye 2010) as well as reducing greenhouse gases
(Matsuoka et al. 2009). Worldwide, it is grown on an area of 25.9 million ha, and
its total production is ~1.84 billion tons with a fresh cane yield of 70.9 tons ha�1

(FAOSTAT 2019) (Fig. 11.2) The largest acreage of sugarcane lies in Brazil
contributing 41% of world production (758 Mt), followed by India (306 Mt—
16%) and China (104 Mt—5.6%) (FAOSTAT 2019) (Fig. 11.3). Sugarcane was
originally domesticated around 8000 BC in Papua New Guinea. Commercial sugar-
cane is the cross of Saccharum officinarum with wild Saccharum spp., i.e.,
S. spontaneum, S. robustum, S. barberi, S. sinense, and S. edule (Talukdar et al.
2017; Allen et al. 1997; Jeswiet 1929). Commercial sugarcane suffers from high
level of pollen sterility, and propagation through vegetative cuttings is the method of
choice (Allsopp et al. 2000). Disaccharide sugar is the main product of sugarcane.
Juice extracted by crushing of the canes is clarified at high temperature in the
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presence of lime, which forms complexes with phosphorus in juices, precipitating
with impurities supported by flocculants (Mackintosh 2000).

Bioethanol obtained through sucrose fermentation of sugarcane (S. officinarum)
often referred as “noble cane” is referred to as “first-generation” bioethanol produc-
tion. Production of biofuel through fermentation of the lignocellulosic plant cell wall
biomass of sugarcane is referred to as “second-generation” bioethanol production.
Third- and fourth-generation bioethanol are derived from algal sources and

Fig. 11.1 (a) Major sugarcane-producing countries. (b) Global distribution of sugarcane
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genetically modified microalgae, respectively (Buckeridge et al. 2010; Carvalho
et al. 2013).

11.2 First-Generation Bioethanol Production

The first-generation bioethanol is sourced from easily extractable sugar or starch
sources. Here, sugarcane offers an obvious advantage with ~20% juice content with
production levels of 8000 L/ha which is twice that of maize, thereby requires half the
land requirement (Lima and Natalense 2010). Sugarcane undergoes chopping and
shredding in traditional mills to extract the broth. First-generation bioethanol pro-
duced from the sugarcane by fermentation of sugar obtained from its juice and left-

Fig. 11.2 Sugarcane area and production around the world (1961–2017) (FAOSTAT 2019)

Fig. 11.3 Leading sugarcane-producing countries (FAOSTAT 2019)
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over plant material after extracting the juice (bagasse) is burned to produce steam for
electricity generation, to produce fertilizers, or to produce heat in the sugar mills
(Pandey et al. 2000) (Fig. 11.4). The impurities and contaminants laden extracted
broth are removed as bagasse with aid of filters (physical treatment), and clear broth
undergoes chemical treatment wherein soluble impurities are coagulated using CaO
and phosphoric acid with pH7.0, followed by decantation and concentration to
20–22� brix in evaporators for better fermentation (Santos et al. 2012). Sulfitation
is an additional step in bioethanol production to purge the color from the formed
sludge. Under anaerobic condition, the most crucial step of bioethanol production is
accomplished by yeast (Saccharomyces cerevisiae) which metabolizes sugars to
bioethanol. Fermentation process at commercial scales involves: (1) Simple Batch:
Yeast is added to the fermenter, with the yeast fermentation process lasting till the
presence of nutrients. The process is slow and needs to be cleaned and reloaded with
each batch. Supplements and inoculums are incorporated at the start of the reaction,
with constant agitation that supports the growth and fermentation process. To
moderate pH, chemicals and antibiotics are added to the medium (Maxon and
Johnson 1953; Zhang 2009). Often fermenters are operated in series at commercial
level to sustain the high demand of bioethanols (Gomez-Pastor et al. 2011). The
status of the growth of yeast is regularly monitored. (2) Fed Batch: The fermentation
involves the addition of supporting nutrients to the fermenter with the products
remaining till the end of reaction. The fed-batch system offers an advantage over the
batch process: higher productivity level of ethanol along with lower content of
residual sugars, thereby self-inhibition by the presence of substrates and products
is minimized. The process requires less fermentation period, reduced toxicity levels
to the growing yeast cells, and prevalence of optimum growth conditions (Stanbury
et al. 2003). Higher inoculum load is inversely correlated to reduced yeast cell
viability (Laluce et al. 2009). (3) Multistage Continuous Process: These fermenter
systems are designed to operate continuously and are fed by sugarcane juice to
maintain continuous flow towards the distillation units. Often four or more reactors
are operated in series. The major advantage this system offers is very high levels of
ethanol production coupled with lower operational running costs (Deindoerfer and
Humphrey 1959). The drawbacks include higher chances of contamination, there-
fore requires large amounts of sulfuric acids and antibiotics (Domingues et al. 2000).

Fig. 11.4 Block flow diagram of a sugarcane-based first-generation bioethanol production
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11.3 Second-Generation Bioethanol Production

The second-generation biofuels involve the use of lignocellulosic materials. Ligno-
cellulose comprises of cellulose (homo-polymer of glucose units), hemicelluloses
(hetero-polymers of D-mannose, D-glucose, D-xylose, L-arabinose, D-galactose,
mannuronic acid, and glucuronic acid units), and lignin (phenylpropane units).
These three components are responsible for the rigidity of plant cell (Brodeur et al.
2011; Hendriks and Zeeman 2009; Ogeda and Petri 2010; Sarkar et al. 2012). The
idea of employing sugarcane straw from crop residues while not competing with
food production is building up the buzz. Bioethanol yield through this method can be
augmented as much as 100% with a yield of ~300 L of bioethanol from one ton of
bagasse. After harvest, the sugarcane straw (comprising 40% cellulose, 30%
hemicelluloses, and 25% lignin) is shredded and processed by hydrolysis. The
plant cell wall is degraded into monosaccharides to be used as a feeder for fermenta-
tion process (Piacente et al. 2015). The hydrolysis of cellulose is catalyzed by
cellulase enzymes to produce mono- and disaccharides followed by fermentation
to bioethanols. Since the process is slow, a pretreatment is often undertaken
(Fig. 11.5).

Pretreatment helps disrupt the cellulose structure, breaking down hemicelluloses
and modification/removal of lignin (Mosier et al. 2005). The methods include
physical, chemical, and biological pretreatments (Alvira et al. 2010). Physical
processes include steam explosion, mechanical reduction in size, and hot water
application, often added in combination with catalysts to improve efficiency
(Agbor et al. 2011). Physicochemical methods include CO2/SO2-steam explosion,
acid-steam explosion, and ammonia fiber explosion (Agbor et al. 2011). Chemical
pretreatments involve the use of dilute acids like H2SO4 and HCl; dilute alkalis like
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Fig. 11.5 Block flow diagram of a sugarcane-based second-generation bioethanol production
(Adapted from Dias et al. 2013)
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NaOH, ammonia; oxidizing agents like hydrogen peroxide and peroxyacetic acid;
organic acids like formic acid and acetates; and inorganic salts like FeCl3 and CaCl2
(Ngyen et al. 2010; Brandt et al. 2013; Zhang et al. 2012, 2013). To improve reaction
efficiency one or more methods are used in combinations.

11.4 Yeasts in Bioethanol Fermentation

Saccharomyces cerevisiae, the most commonly employed ethanol producing yeast,
offers distinct advantages in terms of owing to its high ethanol production from
hexoses, low cost and easy availability, high tolerance to ethanol, and other inhibi-
tory compounds and ability of fermenting wide range of sugars. Studies conducted
for ethanol production by S. cerevisiae from different substrates at varying treatment
and optimization conditions are compiled in Table 11.1.

The commonly used Saccharomyces cerevisiae yeast in industrial fermentation
processes lack the ability to metabolize pentoses such as xylose and arabinose. These
pentoses are present in large quantity in hemicelluloses, which forms a major
component of plant biomass (De Souza et al. 2013, 2015). Bio-prospecting for
new strains of pentose-fermenting microbes has gained prominence as a source for
the development of recombinant yeast strains with improved fermentation abilities
(Zhang and Geng 2012; Harner et al. 2015). Some of the new yeast species identified
for fermentation of pentose from diverse sources are listed in Table 11.2. The whole
genome sequencing of these newly identified strains of pentose metabolizing strains
will divulge the new genes of biotechnological importance for the development of
recombinant strains of S. cerevisiae.

11.5 Biotechnological Approaches

The second-generation biofuels are produced from the lignocellulosic material of the
plants. In the current scenario, uses of sugarcane bagasse for second-generation
biofuels emerged with great potential. The bottleneck in uses of lignocellulosic
material is the production cost, preventing this technology from the commercializa-
tion on a large scale (Halling and Simms-Borre 2008) due to use of expensive
microbial enzymes for pretreatment of the bagasse fibers to remove the recalcitrant
components (Yuan et al. 2008). For accelerating higher biofuel production from
sugarcane, requires a strategic shift to incorporate both first- and second-generation
biofuels production. This strategic shift can be achieved by the implications of
biotechnological practices such as improving the sugarcane yield, increasing the
sugar content, developing the faster-growing cultivars, modified bagasse lignocellu-
losic fiber quality which requires less or cheap pretreatments and faster biodegrad-
able property of these fibers (Hoang et al. 2015). Transgenic approaches to engineer
any organism have the unique ability that it can be applied independent of closeness
or relativeness of the source of the genes, i.e., a gene from any organism can be
transferred to any organism from other kingdoms.
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Table 11.1 Bioethanol production by Saccharomyces cerevisiae from different feedstock at
varying pretreatment and optimization conditions (Mohd Azhar et al. 2017; Tesfaw and Assefa
2014)

S. cerevisiae
strain Feedstock Pretreatment

Enzymatic
hydrolysis

Ethanol
produced
(g/l) References

MTCC 173 Sorghum
stover

NaOH Cellulase 68.0 Sathesh-Prabu
and Murugesan
(2011)

MTCC 174 Rice husk NaOH Crude
unprocessed
enzyme

14 Singh et al.
(2014)

RL-11 Spent
coffee
grounds

H2SO4 Cellulase 11.7 Mussatto et al.
(2012)

ATCC
26602

Wheat
straw

H2O2 Cellulase 10 Karagoz and
Ozkan (2014)

L2524a Empty
palm fruit
bunch
fibers

NaOH Cellulase 64.2 Park et al.
(2013)

KL17 Galactose
and
glucose

– – 96.9 Kim et al.
(2014)

Y5 Corn
stover

Steam
explosion

Cellulase and
glucosidase

50 Tian et al.
(2013)

ATCC 6508 Sweet
potato
chips

α-Amylase and
glucoamylase

104.3 Shen et al.
(2012)

DQ1 Corn
stover

H2SO4 Cellulase 48 Chu et al.
(2012)

CHY1011 Cassava
starch

– α-Amylase and
glucoamylase

89.1 Choi et al.
(2010b)

TISTR 5596 Sugarcane
leaves

H2SO4 or
Ca(OH)2

Cellulase 4.71 Jutakanoke
et al. (2012)

Y5 Corn
stover

Steam
explosion

Cellulase 40 Li et al. (2011)

TISTR 5596 Starch
cassava
pulp

– α-Amylase and
glucoamylase

9.9 Akaracharanya
et al. (2011)

CHFY0321 Cassava
starch

– α-Amylase and
glucoamylase

89.8 Choi et al.
(2010a)

DQ1 Corn
stover

Steam
explosion

Cellulase 55 Bi et al. (2011)

Var.
ellipsoideus

Corn meal – Heat stable
α-amylase and
glucoamylase

79.6 Nikolić et al.
(2010)

ZU-10 Corn
stover

H2SO4 Cellulase 41.2 Zhao and Xia
(2010)
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Among the several monocots which are being used for biofuel, sugarcane was
extensively studied through the genetic transformations to improve its potential
(Hoang et al. 2015 and the references therein). The genetic modification of sugar-
cane plants which have a desired ratio of cellulose to noncellulose content;
transgenically expressing some of the cellulolytic or hemicellulolytic enzymes
prior to which are being used for pretreatment before its conversion to ethanol;
improving the pest and disease resistance by expressing disease resistant genes;
improving the abiotic stress tolerance; or improving the agronomic performance by
incorporating some of the regulatory genes enhancing the growth parameters (Khan
et al. 2019; Hoang et al. 2015; Sticklen 2006; Yuan et al. 2008; Matsuoka et al. 2009;
Arruda 2012). In line with changing the carbohydrate composition, changing the cell
wall carbohydrate would facilitate in achieving the easier processing of the biomass
in the form of the end products for biofuel generation (Harris and DeBolt 2010).

Table 11.2 Novel yeast species isolated and identified for xylose and arabinose fermentation

Yeast species Isolation
Pentose
substrate References

Scheffersomycesshehatae
and S. stipitis

Gut of Guatemalan
passalid beetles

Xylose,
arabinose

Kurtzman
et al.
(2011)

Meyerozyma guilliermondii Termites (Nasutitermes
sp.) in the Amazonian
habitat

Xylose Matos et al.
(2014)

Scheffersomyces shehatae Natural habitats in
Brazilian forest

Xylose Martiniano
et al.
(2013)

Sugiyamaella xylanicola,
Scheffersomyces queiroziae, and
Scheffersomyces stipitis

Rotting wood of
Atlantic rainforest

Xylose Morais
et al.
(2013)

Spathaspora brasiliensis, Spathaspora
roraimanensis, Spathaspora suhii,
Spathaspora xylofermentans

Rotting wood of the
Brazil forest ecosystem

Xylose Prompt
(2012)

Spathaspora passalidarum,
Scheffersomyces stipitis

Rotting wood samples
of the Amazonian forest
ecosystem

Xylose Cadete
et al.
(2009)

Scheffersomyces insectosa,
Scheffersomyces lignosus

Baotianman Nature
Reserve, China

Xylose Ren et al.
(2014)

Zygoascushellenicus, Candida blankii,
Candida saraburiensis

Agricultural residues Xylose Nitiyon
et al.
(2011)

Spathaspora passalidarum and Candida
jeffriesii

Gut of passalid beetles
in the USA

Xylose Nguyen
et al.
(2006)

Candida tropicalis, Candida
parapsilosis, Candida mengyuniae,
Sporopachydermia lactativora,
Trichosporon asahii

Rectum of Murrah
buffalo and Swamp
buffalo in Thailand

Xylose Lorliam
et al.
(2013)
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11.5.1 Biomass Improvement

Increasing biomass yield of sugarcane would also enhance the quantities of ethanol
produced from the same area of cane cultivation. It was showed that the ScGAI gene
regulates the growth and development of the sugarcane culm by modulating the
ethylene signaling pathway (Garcia Tavares et al. 2018). They showed that silencing
the ScGAI gene increases the internode length, bigger height, and increased carbon
allocation to the stem (Garcia Tavares et al. 2018). For second-generation biofuel the
sugarcane bagasse fibers composed of lignocellulosic materials are being used. The
lignocellulosic biomass yield is about 22.9 tons dry weight per hectare per year and
thus the total available estimated dry weight of sugarcane lignocellulosic material
worldwide is approximately 600 million tons (Van der Weijde et al. 2013) and com-
bined bioethanol yield of 9950 L per hectare can be achieved (Khan et al. 2019 and
the references therein). Hence, increasing the biomass potential is another promising
strategy for producing higher amounts of biofuels from sugarcane.

11.5.2 Abiotic and Biotic Stress Tolerance

Drought is one of the most devastating abiotic stresses causing severe damage to
crop productivity. Similar to several other crops, scarcity of water can negatively
affect the growth of the sugarcane and could result in decrease of the biomass yield
by 50% (Inman-Bamber 2004). Many sugar molecules in plants serve as an osmolyte
to increase the solute concentration intracellular and thus promoting the efficient
water uptake during the mild drought stress. Trehalose is one of the good examples
which functions as an osmolyte and has been reported to protect the cellular structure
from dehydration induced damages (de Jesus Pereira et al. 2003). Developing
genetically modified sugarcane which expresses the genes of trehalose biosynthetic
pathway showed better growth, improved drought tolerance, and produced higher
sugar content than the WT plants (Zhang et al. 2006). Similarly, overexpression of a
drought responsive transcription factor cloned from Arabidopsis AtDREB2A CA in
sugarcane upregulates the expression of stress responsive genes, maintains better
relative water content and photosynthetic efficiency, and performs better vegetative
sprouting (Reis et al. 2014). Moreover, transgenic sugarcane overexpressing another
transcription factor BcZAT12 cloned from Brassica carinata enhanced both salinity
and drought stress tolerance (Saravanan et al. 2018). To improve the salinity stress
tolerance in the sugarcane, transgenic sugarcane overexpressing Arabidopsis vacuo-
lar pyrophosphatase (AVP1) or Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene
has been developed which showed the improved endurance against the salinity stress
(Kumar et al. 2014; Guerzoni et al. 2014).

On the other side, genetically engineered sugarcane to mitigate the diseases
caused by the biotic factors or fighting against the pests were also developed and
tested. Transgenic sugarcane resistant to the yellow leaf virus has been developed
very early as in 1997 (Khan et al. 2019; Arencibia et al. 1997, 1998, 1999).
Glufosinate resistant sugarcane was developed by expressing the phosphinothricin
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acetyltransferase (bar) gene and by spraying the glufosinate, the weeds are selec-
tively killed without having negative effect on the transgenic sugarcane
(Manickavasagam et al. 2004). To fight against several pest and insects, Monsanto
has already developed the transgenic sugarcane using the Bt technology and it is
being used commercially (Maldonado et al. 2010).

As above discussed, approaches are useful for the improvement of the yield
potential for both first- and second-generation biofuel from the sugarcane, in the
following sections we would emphasize the specific genetic engineering approaches
used for either first- or second-generation biofuels.

11.5.3 Increasing Cellulose Content

Obviously, it is clear that modifying the cell wall composition of the sugarcane by
increasing the cellulose and hemicellulose content will increase the fermentable
sugars produced from the same amount of the materials. Transgenic sugarcane plants
expressing the cellulose synthase gene CsCesA from a marine invertebrate Ciona
savignyi increased the cellulose synthase activity and also the cellulose content in the
transgenic plants (Ndimande 2014). Additionally, the hemicellulosic glucose con-
tent and the uronic acid content of the transgenic sugarcane have also been increased
with the decline of lignin content (Ndimande 2014).

11.5.4 Enhanced Sucrose Accumulation

Sugar is the first product of photosynthesis which is further modified in different
structural, nutritional, protective, or storage metabolites in the plants. Enhancing the
sugar synthesis either by increasing the photosynthesis efficiency or by manipulating
the sugar synthesis or sugar degradation pathway has not been successful so far.
Because an increase in any of these components sends feedback signals to the
photosynthesis and thus the photosynthesis is inhibited. To overcome the feedback
inhibition of sugar synthesis, the pathway has been modified, where the natural sugar
product of photosynthesis is modified in a different form of sugar. The modified
form does not send any feedback signal and is relatively more stable. These modified
sugars were designed in such a way that it can be used for food as well as for the
biofuel sector. Isomaltulose (IM) is a stable sugar which shows slower digestion
property than the sucrose and non-hygroscopic (Khan et al. 2019; Lina et al. 2002).
Expression of bacterial sucrose isomerase (SI) in vacuole of sugarcane accumulated
the IM in the vacuole without affecting the cellular sucrose concentration and thus
doubled the total sugar concentration of the sugarcane juice (Wu and Birch 2007).
Interestingly, the transgenic lines also showed increased photosynthesis, sucrose
transport, and increased sink strength (Wu and Birch 2007). Targeted expression of
the Saccharomyces cerevisiae invertase gene (SUC2), which has been expressed in
the apoplast of the sugarcane callus/liquid culture cells, showed the rapid conversion
of sucrose to hexose and increased hexose concentration in the medium (Ma et al.
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2000). Alternatively, several other strategies like improving the photosynthetic
capacity by expressing cyanobacterial genes, metabolic engineering for modifying
the photorespiratory pathways, Calvin–Benson cycle, or modifying the sugar forms
in the sink tissue will increase the photosynthetic efficiency of the sugarcane and
would also result in higher sugar yield (Lin et al. 2014; Shih et al. 2016).

Second-generation biofuel generation was adopted to avoid the competition
between the crops for feeding the growing population or for the fuel. The second-
generation biofuel is being produced from the lignocellulosic biomass of several
grasses with a higher growth rate and rich potential of yield and can be grown in the
marginalized lands. Traditionally, the lignocellulosic fiber of the sugarcane bagasse
obtained after extracting the juice is being used in the fertilizer industries or in sugar
mills for producing heat, steam, and electricity (Pandey et al. 2000). Including the
sugarcane lignocellulosic materials along with the sugar for bioethanol production
would make the breakthrough by enhancing the total yield of bioethanol of 9950 L
per hectare (Hoang et al. 2015; Somerville et al. 2010). Producing ethanol from the
bagasse lignocellulosic material is not as convenient and cost-effective as from the
sugar derived from the sugarcane. Enzymatic degradation of lignocellulosic biomass
to fermentable sugar requires several enzymes in huge quantities. For example,
15–25 kg cellulase is required for the processing of a ton of biomass (Carroll and
Somerville 2009; Fan and Yuan 2010). These degrading enzymes are derived from
microbial sources and thus the requirement of these huge quantities of
enzymes making the whole process expensive. The presence of recalcitrant material
in the cell wall arises additional bottleneck preventing the enzymatic access to the
cellulose or hemicellulose for their degradation. A new approach adopted to tackle
these issues was to express these enzymes required for pretreatment of the lignocel-
lulosic materials stably in the leaf of the sugarcane or metabolic engineering of the
cell wall content to reduce the recalcitrant material. Transgenic sugarcane lines with
reduced lignin content, higher cellulose to noncellulose ratio, and expressing the
lignocellulosic processing enzymes inplanta has been successfully reported (Khan
et al. 2019 and the references therein).

11.5.5 Modifying the Cell Wall Content of the Sugarcane

Removal of recalcitrant compounds in the bagasse lignocellulosic fibers is required
before they can be used for bioethanol production. Sugarcane bagasse constitutes of
cellulose, hemicellulose, and lignin at the ratio of 50, 25, and 25% of dry weight,
respectively (Khan et al. 2019; Hoang et al. 2015; Loureiro et al. 2011; Mutwil et al.
2008; Pauly et al. 2013). Lignin of the cell wall is one of the large barriers which
prevent the access of the cellulase to the cell wall. The biosynthetic pathway of the
lignin is complex which involves 10 enzymes (Whetten and Sederoff 1995), and
monolignol, the starting material for the lignin biosynthesis pathway whose biosyn-
thesis in plants is linked with 28 unigenes (Bottcher et al. 2013). A wise strategy can
be applied to suppress these genes or a candidate gene regulating these pathways to
reduce the lignin content in the sugarcane bagasse. It is important to be noted that the
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lignocellulosic fibers serve as the skeleton of the sugarcane (Khan et al. 2019) and
precaution must be taken that the modification of the lignin content should not affect
the plant growth and development. Some examples of modifying the lignin biosyn-
thesis pathway for the purpose to reduce recalcitrance of lignocellulosic fibers come
from the studies where enzyme like caffeic acid O-methyltransferase (COMT)
expression of the lignin biosynthesis and cinnamyl alcohol dehydrogenase (CAD)
enzyme expression of the monolignol biosynthesis were suppressed (Jung et al.
2012; Sticklen, 2006). In these studies, it was found that the growth and develop-
ment of the plants were not affected in the controlled growth conditions, while the
reduction of the lignin content resulted in a significant increase in the fermentable
sugar content without any pretreatment (Khan et al. 2019; Jung et al. 2012; Sticklen
2006). Field trial study of these COMT-suppressed transgenic lines in the USA
revealed that the lignin content of the transgenic was reduced by 12% as compared to
the WT plants and reduction of lignin content has reduced the hydrolysis time by
one-third and enzyme consumption decreased by 3- to 4-fold (Khan et al. 2019; Jung
et al. 2012). Using the similar strategy to engineer another biofuel grass, switch-
grass has shown better efficiency of cellulase treatment and increased production of
glucose and bioethanol (Fu et al. 2011; Saathoff et al. 2011).

Alternative to reducing the lignin content of the cell wall, approach where
changing the composition of the lignin polymer composition can also be employed.
It has been reported that the lignin in angiosperm is composed of guaiacyl, syringyl,
and p-hydroxyphenyl units derived from the monolignols (Vanholme et al. 2010),
where syringyl units are better-degrading type than that of recalcitrant guaiacyl-rich
lignin (Papes et al. 2015). Changing the syringyl and guaiacyl levels by
manipulating the gene expression has a minor effect on the plant development
(Vanholme et al. 2010) and the genetically modified sugarcane having altered cell
wall lignin composition can be easily processed, adding advantage in terms of cost-
effectiveness of the second-generation ethanol production (Maldonado et al. 2010).

11.5.6 In-Planta Processing

The idea of expressing cellulolytic and hemicellulolytic enzymes in sugarcane using
genetic engineering is to degrade or digest the cell wall cellulose and hemicellulose
within the sugarcane plants after harvesting, so that the highly cost consuming
pretreatment process can be mitigated. Maize PepC promoter-controlled expression
of the cellulolytic fungal cellobiohydrolase I (CBH I), CBH II, and bacterial
endoglucanase (EG) shows stable expression in different cellular compartment of
the leaf in transgenic sugarcane (Harrison et al. 2011). It was shown that the
accumulation of exo- or endoglucanase in the transgenic plants had no any negative
impact on the growth of the transgenic sugarcane plants (Harrison et al. 2011). But
this strategy also comes with the challenges and the detailed knowledge to overcome
these challenges are still limited. To achieve the full purpose of this strategy,
extensive knowledge of several inducible promoters are required, so that these
enzymes are expressed only after harvesting of the biomass. Use of constitutive
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promoter was limited due to occurrences of transgene silencing in the sugarcane
caused by its complex genome structure (Harrison et al. 2011). Expression of these
enzymes at the early developmental or growth stages could also be devastating and
may negatively impact the growth and development of the transgenic sugarcane
plants (Dale 2007; Harris and DeBolt 2010; Maldonado et al. 2010).

11.6 Genetic Engineering of Sugarcane for Biodiesel

The lipid in plants is stored in the form of triacylglycerols (TAGs) which have the
relatively higher energy content than that of the carbohydrates (Durrett et al. 2008).
The TAGs are converted to biodiesel by modifying the acyl chains of TAGs to fatty
acid methyl esters (Ohlrogge and Chapman 2011). Oil-seed crops tend to have
relatively higher content of the TAGs but the use of oil seeds or fruits for the
biodiesel product negatively impacts the food produced from those crops and thus
focus has been diverted towards use of the vegetative biomass of the crops without
affecting the food productivity (Chapman et al. 2013). Being a C4 grass, sugarcane
has efficient photosynthetic capability and extensive production of the vegetative
biomass drew attention of the scientific communities to explore the possibility of
biodiesel production from the sugarcane. Genetic engineering approaches are
focused to upregulate the lipid biosynthesis pathway in the sugarcane by rerouting
the carbon flux (Vanhercke et al. 2014; Zale et al. 2016). TAGs accumulation up to
19% dry weight of the total biomass production in the tobacco has been achieved by
expressing three genes, namely WRINKLED1, DGAT, and Oleosins (Vanhercke
et al. 2014; Zale et al. 2016). Similar strategy was adopted in sugarcane which
resulted in accumulation of 5% TAGs and 10% total fatty acids (Huang et al. 2015;
Zale et al. 2016). As most of the biomass in sugarcane is contributed by the stem, the
metabolic engineering using the stem-specific promoters could have large impact on
the TAGs production in sugarcane (Khan et al. 2019 and the references therein). It
will be an additional breakthrough in the biofuel industry if the metabolic engineer-
ing for TAGs synthesis in sugarcane would be successful which has a great potential
for biodiesel production due to its huge biomass production rate.

Disadvantages of Sugarcane-Based Biofuel Production The main drawback that
questions the sustainability of sugarcane-based biofuel production is the competition
between the land usage for food production and biofuel production. The possibility
of horizontal land expansion is not possible. This would lead to deforestation and
loss of soil diversity. The forest is a great carbon sink, so loss of forest would lead to
global warming. Sugarcane also requires substantial inputs of fertilizers and water
that lead to eutrophication. The use of pesticides and machine leads to soil pollution
and erosion. The other disadvantages are the GHG emissions from agricultural
inputs and farming operations. Therefore, the alternatives to sugarcane-based biofuel
which would be more sustainable like third and fourth generation biofuel should be
discussed.
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Alternatives to Sugarcane-Based Biofuel: 3rd- and 4th- Generation Recently,
the idea of algal biomass-based biofuels also called third-generation biofuel is
getting more acceptances. The algae have higher energy conversion efficiency and
surface area-to-volume ratio as compared to sugarcane. Hence the amount of lipid is
more in the algae, and biofuels from algae usually relies on the lipid content of the
microorganisms, for example, Chlorella has high lipid content (around 60 to 70%;
Liang et al. 2009) and high productivity (7.4 g/L/d for Chlorella protothecoides;
Chen et al. 2011). However there are geographical and technical challenges
associated with algal biomass production. First, algae production requires a large
amount of water with specific nutrient and temperature condition. Second, the
harvesting of algae, removal of water from them, and lipid extraction need technical
skills. The idea of using 3rd generation biofuels is setback by the cold countries and
countries lacking enough fresh water. At present, extensive research to improve both
the metabolic production and separation of fuels from non-fuels is underway.

To meet up such challenges and in order to develop biofuel that can be used
universally, the use of nonarable lands and solar energy towards the sustainable
development of biofuels is proposed. Such biofuels are also called fourth-generation
biofuels and can effectively reduce greenhouse gas emissions and mitigate climate
change. They include photobiological solar fuels and electrofuels. It is also based on
redesigning the genome of algae and cyanobacteria in such a way that their energy
conversion efficiency increases (also called photon-to-fuel conversion efficiency
(PFCE)) (Berla et al. 2013; Hays and Ducat 2015; Scaife et al. 2015). Photosynthetic
microorganism can be used as biocatalyst for the production of hydrogen by
photosynthetic water splitting (water oxidation). This can become a large contributor
to fuel production on a global scale, both by artificial photosynthesis (Inganäs and
Sundström 2016) and by direct solar biofuel production technologies. However, the
production of photobiological fuel and electrofuel requires synthetic biology
approach which is still in its beginning stage and requires a lot of optimization.

11.7 Conclusions

Sugarcane is characterized by narrow genetic base with a complex genome and low
levels of fertility. To realize the full potential of sugarcane as a bioenergy crop, more
efforts need to be directed towards improvements in biomass addition coupled with
sucrose accumulation, imparting tolerance to biotic and abiotic stresses. The
emerging biotechnological tools of genetic transformation primarily through
Agrobacterium-mediated genetic transformation are likely to emerge as major
force to supplement the classical breeding approaches towards sugarcane crop
improvement which is hampered by laborious and long development period. With
the availability of whole genome sequence information of sugarcane coupled with
ever evolving bioinformatics tools, the enigmatic goal of achieving the plant type
with most desirable traits will be within reach. Recent technique of genome editing
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and successes in the other crops offers new scope and dimension to sugarcane crop
improvement.
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