
A Survey of Real-Time Big Data
Processing Algorithms

Devesh Kumar Lal and Ugrasen Suman

Abstract Data collection and processing in real time is one of the most challenging
domains for big data. The sustainable proliferation of unbounded streaming data
has become arduous for data collection, data pre-process, data optimization, etc.
Real-time streaming for data collection can effectively be performed by windowing
mechanism. In this communication, we have discussed various windowing mech-
anisms such as sliding window, tumbling window, landmark window, index-based
window, adaptive size tumbling window, and partitioned-based window. The relia-
bility measure, which depends upon selection of appropriate windowingmechanism,
has also been discussed. These window-based algorithms have been compared on
the basis of CPU utilization, memory consumption, time efficiency, and operation
compatibility. In this paper, we have surveyed various aggregation algorithms such
as reactive aggregator, flatFAT, flatFIT, B-Int, DABA, and two stacks aggregator and
compared them based on time complexity. Remarkably, a hybrid windowmechanism
has been introduced in this study which can handle the most recent data stream and
variable rate of data stream by sliding window and tumbling window, respectively.

Keywords Aggregation algorithms · Big data · Real-time data processing ·
Streaming data ·Window algorithms

1 Introduction

Big data is used for enormous data sets, which become arduous to process by tra-
ditional methods like distributive mechanisms. Big data processing challenge gets
intensified as data sets acquire velocity (also known as streaming data). Streams
of data may be generated from IoT sensor network, internetwork traffic data, stock
market, etc. The performance of streaming data analytics in real time with minimum

D. K. Lal (B) · U. Suman
School of Computer Science & IT, Devi Ahilya University, Indore, India
e-mail: devesh2222@gmail.com

U. Suman
e-mail: ugrasen123@yahoo.com

© Springer Nature Singapore Pte Ltd. 2020
V. K. Gupta et al. (eds.), Reliability and Risk Assessment in Engineering,
Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-3746-2_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3746-2_1&domain=pdf
http://orcid.org/0000-0002-0017-2166
http://orcid.org/0000-0001-9236-9232
mailto:devesh2222@gmail.com
mailto:ugrasen123@yahoo.com
https://doi.org/10.1007/978-981-15-3746-2_1

4 D. K. Lal and U. Suman

latency becomes intricate. Unbounded streams of data from various sources contin-
uously proliferate over time. This sustainable proliferation of data stream needs to
process in a real-time mode, to minimize the accumulation of data sets in a particular
node. Processing of data stream cannot be performed at once; it requires some finite
data elements, from unbounded data set.

Sliding window is themost commonmechanism for data selection. It gives a finite
window particularly based on time or space [1–6]. Time-based window accumulates
data sets depend upon number of clock cycle, while space-based window depends
upon its size. Increase in coarse window is directly proportional to its latency so
that it is adjusted between coarse and fine size of a window. Window accumulations
are primarily of two types; namely count-based window and time-based window
[7, 8]. Stream of data resides in window for a fixed number of counts, which is
termed as count-basedwindow.Awindow is specified by afixed-size temporal extent,
which usually, most recent time interval and comes under time-based window [9,
10]. Figure 1 depicts a typical windowing mechanism for streaming data. In this
mechanism, fixed windows slide over unbounded data streams.

Infeasibility to process entire data stream at once procreates the concept of win-
dowing. Here, the most recent data streams reside into a window. Windowing is
widely accepted mainly because of two benefits. Firstly, window makes it possible
to implement streaming version of aggregation, and secondly, the most recent data
stream can be availed, which is predominant in real-time analytics as compared to
historical data. Centralized and distributive window are the two types of processing
mechanisms of windowing system. Centralized window creates bottleneck, where
data streams are accumulated at a single node, which may discard the new stream
data gathered at a node. The rate of incoming data stream might be equal or less than
the processing time of the outgoing stream, else creates the accumulation of data
streams [11, 12].

Distributive window partitions the window into smaller multiple sub-windows to
be deployed into different nodes, for parallel processing. There exist various window
techniques such as sliding window, tumbling window, hopping window, partitioned
window. [5, 13–17]. The existing window techniques deal with the smaller chunks

dn dn-1 dn-2 ... d5 d4 d3 d2 d1Recent
data

stream

Evict old
data

stream

Window sliding

Window interval

Fig. 1 Windowing system in real-time big data

A Survey of Real-Time Big Data Processing Algorithms 5

of data, formed from unbound sets of data stream, which considers the entire data
stream in a sequential order, resulting in the enhancement of reliability.

Slidingwindow is themost widely used technique in data streaming. It uses aggre-
gation mechanisms, which are applied over a window [18]. In this paper, we have
applied window algorithms and aggregate algorithms for data streaming. Also, these
algorithms are compared with their time and space complexity. Various challenges
exist in windowing and aggregators algorithms to design a holistic aggregation for
real-time data streams. Many aggregator algorithms are based on operators applied
over single data stream node. The challenges get intensified for scalable nature
of data stream. Therefore, we have introduced a scalable approach of aggregation
sliding-window algorithm able to process into multiple nodes at a time.

2 Windowing Algorithms

Real-time unbound data stream can be evaluated with a fixed size of deterministic
window where all types of aggregation and filter operations are performed. A finite
number of data chunks can reside in the main memory at a particular time. This data
chunk is termed as window, which contains multiple tuples. This window can be
processed in centralized or distributed manner. Balkesen et al. [19] propose com-
mon dependent tuples require serial manner processing, whereas independent tuples
process in parallel manner. Input streams are partitioned into independent chunks
known as panes. These collective panes belong to similar window are processed and
managed by same process instance.

Balkesen et al. [19] proposed sliding-window partitioning mechanism, where
window is broken down into smaller multiple chunks. These multiple chunks are
processed in parallel. In tumbling window, elements are assigned to a fixed length,
non-overlapping windows of a specified window size such that only, one particular
window evicts and inserts at a time [20].

Chen et al. [21] proposed the twoclassifications of sliding-windowalgorithm.First
classification is based on data independent mode, which is extricated by equivalence
partition with round-robin technique. Second approach, classifies data-dependent
mode of data streams using a sliding-window index technique. In this approach,
data-dependent stream uses a sliding-window index that maintains the window size.
Itmaintains thewindowby inserting the newdata stream into thewindowand evicting
the old data stream resulting in low resource utilization and high system latency.

Tangwongsan et al. [22] andHirzel et al. [23] proposed the outlining of a chunked-
array queue implementation for FIFO windows. The main operations based on
queues, such that insert from the back of the queue and evict the front element of
the queue. Additionally, the queue provides a bidirectional iterator, which serves as
pointers into the queue. The complexity is managed by maintaining a doubly-linked
list of chunks, each a fixed-size array of elements.

Patroumpas et al. [18] proposed landmark window where windows have their
lower or upper boundfixed at a specific timeknownas a landmark letting others bound

6 D. K. Lal and U. Suman

Table 1 Comparison of windowing mechanisms

Parameter Window algorithm

CPU utilization Memory
consumption

Time efficiency Operation
compatibility

Sliding window Low Moderate High High

Tumbling
window

Moderate Moderate Low Low

Landmark
window

Low Moderate Low Low

Index-based
window

Low Moderate High High

Adaptive-sized
tumbling
window

High Moderate High Moderate

Partitioned-based
window

High Low High High

to follow the evolution of time. The existing windowing techniques are compared on
the basis of CPU utilization, memory consumption, time efficiency, and operation
compatibility. Comparison of various windowing algorithms is depicted in Table 1.

Smaller finite sets from unbound data stream procreate window, which become
significant by applying operations such as aggregation, joins. Among them, aggrega-
tion is a common important feature in streaming applications. Such applications often
need an aggregated summary of themost recent data in a stream, which is deemed the
most relevant. A poorly chosen algorithm can cause high latencies and high memory
consumption, leading to losses, missed opportunities, and quality-of-service viola-
tions. Aggregation operation depends on its window, which aims the most efficient
algorithm. The most commonly used aggregation algorithms are discussed in the
following sections.

3 Aggregation Algorithm

In traditional approach, aggregation is performed from scratch on a chunk window of
streaming data. These windows are aggregated as per user-defined query. Increase in
window size may reflect enhancement of overall complexity because entire window
gets aggregated at a time. Tangwongsan et al. [24] proposed reactive aggregator; it
manages values irreversibility, handles non-commutative of processed stream, and
provides solution from out-of-order window semantics. In this aggregator, a constant
stride maintains which applies over entire window. The length of stride is smaller
so that instance aggregated value is stored in a flat array. A user-defined aggregated
value is fetched from a query. Reactive aggregator uses FlatFAT aggregator operator
mechanism, which stores aggregated results in a pointer-less and tree-based data

A Survey of Real-Time Big Data Processing Algorithms 7

structure. These mechanisms reduce the overhead cost such as size of pointer, inclu-
sion of tree-based aggregation. In FlatFAT, aggregated operator allows processing of
multiple queries at time into a particular window. These aggregations are performed
by storing partial aggregated values in tree leaf node. Final aggregated values are
retrieved through applying multiple queries over partial aggregated results. The leaf
node of a tree contains partial aggregated valueswhile root node consists ofmaximum
range allowed for a result.

Shein et al. [25] proposed an incremental sliding-window aggregator for real-time
analytics. Here, they have introduced a flat and fast index traverse such as FlatFIT
approach. FlatFIT maintains indexing structures using a two circular array and a
stack. Here, stackmaintains and stores indices, whereas circular array interconnected
with the help of indices.

The partial aggregated results are stored in an index structure, which reduces
recalculation at the time of performing final aggregation. Tangwongsan et al. [22]
proposed a De-Amortized Banker’s Aggregator (DABA) sliding-window aggrega-
tor. DABA uses chunked-array queue data structure for performing sliding-window
aggregator operation. Here, every chunk represents a linear size array, which is inter-
linked with different reference pointers. In this algorithm, various reference pointers
help to calculate partial aggregated results. These partial results recombine to form
a complete desired aggregated result.

Base Intervals (B-Int) proposed by Arasuand Widom [26] is a final aggregation
technique. It uses a multi-level data structure that consists of dynamic intervals of
different lengths. The number of partial depends upon the level, such as first level
consists of one partial, the second level has two partial, and so on, until we reach to
maximum supported range length. The whole data structure is organized in a circular
fashion so that the rightmost interval on any level is followed by the leftmost interval
from the same level. When producing the final aggregate, B-Int also determines the
minimum number of intervals needed to represent the desired range and aggregates
the entire range. During insertions, B-Int only updates the intervals that end with the
inserted value, instead of updating the entire structure bottom up until reaching the
top layer. However, this slows down look-ups, since more intervals are needed to be
aggregated to produce result.

Two-stack algorithm is proposed and implemented by Tangwongsan et al. [24]
using FIFO window mechanism. In this approach, aggregation is performed over
stack, by storing aggregated value in stack-basedmanner. Two-stack approach spends
linear time in evict and storage. A comparative chart of aggregation algorithms is
presented in Table 2. The comparison is based on time complexity and usage of its
window mechanism.

The comparison of different aggregators on the basis of their time complex-
ity indicates the adaptation of suitable windowing mechanisms. In real-time big
data processing, aggregation operation applies on a fraction of window. Therefore,
it becomes essential to determine appropriate window and aggregator algorithms.
Table 2 shows FlatFIT aggregation approach is best suitable for sliding window and
tumbling window. These aggregators may be compared with space complexity as
well.

8 D. K. Lal and U. Suman

Table 2 Comparison of
aggregation algorithms

Algorithm Time complexity Windowing

Traditional aggregators O(n) Smaller window

Reactive aggregators Average (log n) TW, SW, LW

FlatFIT n − 1 SW, TW

B-Int n . log(n) Shared window

DABA Worst O(1) SW, TW, LW

Two stacks Average O(1) IBW, SW

TW—Tumbling window, SW—Sliding window, LW—Landmark
window, IBW—Index-based window

4 Challenges and Proposed Work

Windowing mechanisms bind with various challenges such as selection of appro-
priate window size. If selection of proper window with relative aggregation is not
specific, then approachwill becomecostly.Acoarse sizewindowmayperceive higher
latency as compared to fine-sized window. It has some limitation based on eviction
and insertion of data streams in window. Aggregations approaches may be distribu-
tive, non-distributive, commutative, etc. Generalized aggregator requires specifically
designed algorithms, which can contribute number of use cases. Aforementioned
aggregator algorithm is based on single data stream node [27].

Here, we introduce the hybrid window model with the combination of sliding
window and tumbling window. Sliding window accumulates recent data streams,
while tumbling window keeps a fixed interval of data stream that is responsible
for the rate of change. Tumbling window slices short interval from sliding window.
Tumbling window is executed in distributed manner. Unbound data stream arrives
in multiple nodes at a time, which may be extricated by distributive mode and it may
also handle generalized holistic aggregation operations. Window can be distributed
over multiple nodes. Partitioned window is computed separately in different node.
Results are reassembled to get the aggregated value.

5 Conclusions

In real-time data processing, latency can beminimized by using a suitablewindowing
and aggregation mechanism. The selection of appropriate window and aggregation
algorithm is based on various factors such as aggregation operation, type of window,
requirements for latency, type of processing, and size of data streams. A generalized
solution for all types of use cases in real-time stream processing is rare. Individual
algorithm for window and aggregator mechanism cannot satisfy all types of require-
ments. This paper presents a brief study and comparison of various data stream
algorithms, also identified research gaps in aforesaid algorithms.

A Survey of Real-Time Big Data Processing Algorithms 9

Acknowledgements I offer most sincere gratitude to the Council of Scientific and Industrial
Research (CSIR), Government of India, for financial support in the form of Junior Research
Fellowships.

References

1. Gibbonsand BP, Tirthapura S (2002) Distributed streams algorithms for sliding windows. In:
Proceedings of the fourteenth annualACMsymposiumonparallel algorithms and architectures.
ACM

2. Rivetti N, Busnel Y, Mostefaoui A (2015) Efficiently summarizing data streams over sliding
windows. In: 2015 IEEE 14th international symposium on network computing and applications
(NCA). IEEE

3. Mousavi H, Zaniolo C (2013) Fast computation of approximate biased histograms on sliding
windows over data streams. In: Proceedings of the 25th international conference on scientific
and statistical database management. ACM

4. Badiozamany S, Orsborn K, Risch T (2016) Framework for real-time clustering over sliding
windows. In: Proceedings of the 28th international conference on scientific and statistical
database management. ACM

5. Wei Z, Liu X, Li F, Shang S, Du X, Wen JR (2016) Matrix sketching over sliding windows.
In: Proceedings of the 2016 international conference on management of data. ACM

6. Wu F, Wu Q, Zhong Y, Jin X (2009) Mining frequent patterns in data stream over slid-
ing windows. In: 2009 international conference on computational intelligence and software
engineering, 2009, CiSE. IEEE, New York

7. ZahariaM, Das T, Li H, Hunter T, Shenker S, Stoica I (2013) Discretized streams: fault-tolerant
streaming computation at scale. In: Proceedings of the twenty-fourth ACM symposium on
operating systems principles. ACM

8. Epasto A, Lattanzi S, Vassilvitskii S, Zadimoghaddam M (2017) Submodular optimization
over sliding windows. In: Proceedings of the 26th international conference on world wide web
international world wide web conferences steering committee

9. Zhang L, Zhanhuai L, Yiqiang Z, Min Y, Yang Z (2007) A priority random sampling algorithm
for time-based sliding windows over weighted streaming data. In: Proceedings of the 2007
ACM symposium on applied computing. ACM

10. Braverman V, Ostrovsky R, Zaniolo C (2009) Optimal sampling from sliding windows. In:
Proceedings of the twenty-eighth ACMSIGMOD-SIGACT-SIGART symposium on principles
of database systems ACM

11. BalazinskaM, Hwang JH, ShahMA (2009) Fault-tolerance and high availability in data stream
management systems. In: Encyclopedia of database systems. Springer US, 1109–1115

12. Liberty E (2013) Simple and deterministic matrix sketching. In: Proceedings of the 19th ACM
SIGKDD international conference on knowledge discovery and data mining. ACM

13. Patroumpas K, Sellis T (2009) Window update patterns in stream operators. In: East European
conference on advances in databases and information systems. Springer, Berlin

14. Bhatotia P, Acar UA, Junqueira FP, Rodrigues R (2014) Slider: incremental sliding window
analytics. In: Proceedings of the 15th international middleware conference. ACM

15. Badiozamany S (2016) Real-time data stream clustering over sliding windows. Diss. Acta Univ
Ups

16. Zhang L, Lin J, Karim R (2017) Sliding window-based fault detection from high-dimensional
data streams. IEEE Trans Syst Man Cybernet Syst 47(2):289–303

17. GolabL (2004)Querying slidingwindowsover online data streams. In: International conference
on extending database technology. Springer, Berlin

10 D. K. Lal and U. Suman

18. Patroumpas K, Sellis T (2006) Window specification over data streams. In: Current trends in
database technology–EDBT, pp 445–464

19. Balkesen C, Tatbul N (2011) Scalable data partitioning techniques for parallel sliding win-
dow processing over data streams. In: International workshop on data management for sensor
networks (DMSN)

20. Marcu OC, Tudoran R, Nicolae B, Costan A, Antoniu G, Hernandez MSP (2017) Exploring
shared state in key-value store for window-based multi-pattern streaming analytics. In: Pro-
ceedings of the 17th IEEE/ACM international symposiumon cluster, cloud and grid computing.
IEEE Press

21. Chen H, Wang Y, Wang Y, Ma X (2016) GDSW: a general framework for distributed sliding
window over data streams. In: IEEE 22nd international conference on parallel and distributed
systems (ICPADS). IEEE

22. Tangwongsan K, Hirzel M, Schneider S (2017) Low-latency sliding-window aggregation
in worst-case constant time. In: Proceedings of the 11th ACM international conference on
distributed and event-based systems. ACM

23. Hirzel M, Schneider S, Tangwongsan K (2017) Sliding-window aggregation algorithms: tuto-
rial. In: Proceedings of the 11th ACM international conference on distributed and event-based
systems. ACM

24. Tangwongsan K et al (2015) General incremental sliding-window aggregation. In: Proceedings
of the VLDB endowment vol 8(7), pp 702–713

25. Shein AU, Chrysanthis PK, Labrinidis A (2017) FlatFIT: accelerated incremental sliding-
windowaggregation for real-time analytics. In: Proceedings of the 29th international conference
on scientific and statistical database management. ACM

26. Arasu A, Widom J (2004) Resource sharing in continuous sliding-window aggregates. In:
Proceedings of the thirtieth international conference on very large data bases, vol 30. VLDB
Endowment

27. Cormode G, Yi K (2011) Brief announcement: tracking distributed aggregates over time-based
sliding windows. PODC 11

	 A Survey of Real-Time Big Data Processing Algorithms
	1 Introduction
	2 Windowing Algorithms
	3 Aggregation Algorithm
	4 Challenges and Proposed Work
	5 Conclusions
	References

