
Chapter 8
Fast Evolution of CNN Architecture
for Image Classification

Ali Bakhshi, Stephan Chalup, and Nasimul Noman

Abstract The performance improvement of Convolutional Neural Network (CNN)
in image classification and other applications has become a yearly event. Generally,
two factors are contributing to achieving this envious success: stacking of more
layers resulting in gigantic networks and use of more sophisticated network
architectures, e.g. modules, skip connections, etc. Since these state-of-the-art CNN
models are manually designed, finding the most optimized model is not easy. In
recent years, evolutionary and other nature-inspired algorithms have become human
competitors in designing CNN and other deep networks automatically. However,
one challenge for these methods is their very high computational cost. In this
chapter, we investigate if we can find an optimized CNN model in the classic CNN
architecture and if we can do that automatically at a lower cost. Towards this aim,
we present a genetic algorithm for optimizing the number of blocks and layers and
some other network hyperparameters in classic CNN architecture. Experimenting
with CIFAR10, CIFAR100, and SVHN datasets, it was found that the proposed GA
evolved CNN models which are competitive with the other best models available.

8.1 Introduction

In recent years many pieces of research have been directed towards designing
deep neural networks (DNNs). The performance of DNNs is very depended
on its architecture and its hyperparameters’ setting. The state-of-the-art DNN
models are designed by qualified experts in various areas of machine learning.
Moreover, all of these networks are designed for specific problems or data. For
example, convolutional neural networks (CNNs) are most widely used in various
image related applications in computer vision. Although the state-of-the-art DNNs
proposed in the literature can be used for solving similar problems using some

A. Bakhshi · S. Chalup · N. Noman (�)
The University of Newcastle, Newcastle, NSW, Australia
e-mail: ali.bakhshi@uon.edu.au; stephan.chalup@newcastle.edu.au;
nasimul.noman@newcastle.edu.au

© Springer Nature Singapore Pte Ltd. 2020
H. Iba, N. Noman (eds.), Deep Neural Evolution, Natural Computing Series,
https://doi.org/10.1007/978-981-15-3685-4_8

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3685-4_8&domain=pdf
mailto:ali.bakhshi@uon.edu.au
mailto:stephan.chalup@newcastle.edu.au
mailto:nasimul.noman@newcastle.edu.au
https://doi.org/10.1007/978-981-15-3685-4_8

210 A. Bakhshi et al.

techniques like transfer learning, the same network model is not suitable for a
diverse class of problems. For best performance, we need to design a DNN tailored
to the problem under consideration. Consequently, many researchers are working
towards automatic methods that can identify suitable DNN architecture as well as
hyperparameters for a certain problem.

Evolutionary algorithms (EAs) are a class of the generic population-based meta-
heuristic optimization algorithms that can be used to identify the suitable network
architecture and hyperparameters [1]. There are remarkable efforts in the literature
that used the variants of evolutionary algorithms such as the genetic algorithm
(GA) and particle swarm optimization (PSO) to solve a variety of optimization
problems [2]. Considering the promising success of the artificial neural networks
(ANNs) and evolutionary algorithm in solving different machine learning problems,
finding efficient ways to combine these two methods has been an active research
area for the past two decades. There exists a good survey that classifies different
approaches for combining ANNs and GAs into two categories: the supportive
combination and collaborative combination [3]. In supportive combination, either
GA or ANN is the main problem solver, and the other assists it in accomplishing
that, whereas, in collaborative combination, both GA and ANN work in synergy
to solve the problem. An example of a supporting combination is using GA
for selecting features for a neural network, and an example of a collaborative
combination is designing the ANN topology using GA.

With the emergence of DNNs as a powerful machine learning method for solving
different problems, there has been a growing interest in designing and training these
networks using evolutionary algorithms. Considering the success of gradient base
algorithms in training the DNNs, and due to other considerations such as very large
search space, there has been limited interest in training the DNNs using evolutionary
algorithms. Although there exist examples of outstanding efforts in training deep
neural networks for reinforcement learning using GA [4], the majority of researches
concentrated on evolving DNN architectures and finding the best combination of
hyperparameters for a range of classification and regression tasks [1].

Convolutional Neural Network (CNN) is one of the most successful deep
architectures as manifested by its remarkable achievements in many real-world
applications. The state-of-the-art CNN architectures such as VGGNet [5], ResNet
[6], GoogLeNet [7], designed by experienced researchers, exhibited performance
competitive to humans. However, crafting such powerful and well-designed net-
works requires extensive domain knowledge and expertise in neural network design.
These requirements often make it a difficult task for inexperienced researchers and
application engineers to design a suitable architecture according to the problem
and available data. Hence, in recent years, we have seen several attempts to
automatically designing CNN architectures as well as network hyperparameters
using evolutionary algorithms.

In this work, we used a conventional GA to evolve optimized CNN architectures
and to find the best combination of hyperparameters for the image classification
task on multiple datasets. We considered the optimization of the classical CNN
architecture (i.e., VGG-like networks) consisting of blocks of convolutional layers.

8 Fast Evolution of CNN Architecture for Image Classification 211

The proposed GA was used to optimize the number of convolutional blocks, as
well as the number of layers in each block. Using a fixed-sized chromosome, we
explored the search space of CNN architectures with the variable number of layers.
The algorithm also searched for the optimal set of hyperparameters for the network
from the selected ranges.

One particular challenge in the evolution of all kinds of DNNs is the high
computational cost. The computational burden originates from the fitness evaluation
of each individual in the evolutionary algorithm, which requires training of many
deep neural networks. Recent research has shown that partial training is sufficient
for estimating the quality of CNN architecture [8, 9]. In this work, we adopted
this strategy and trained the CNN architectures for a few epochs in the evolution
phase. Later, the best evolved CNN model was trained completely for evaluating
its performance. The proposed GA was applied to three well-known datasets, and
the evolved CNN models were compared with many existing models designed by
human and automatically.

The rest of the chapter is organized as follows. A brief overview of CNN is
presented in Sect. 8.2. Section 8.3 reviews the related work. The proposed GA is
described in Sect. 8.4. Section 8.5 details the experimental setup and the experimen-
tal results are presented in Sect. 8.6. Section 8.7 contains a brief discussion on the
results and Sect. 8.8 concludes the chapter.

8.2 A Brief Overview of CNNs

Convolutional neural networks (CNNs) that were inspired by the organization of
the animal cortex [10] are mostly used for two-dimensional data like images. CNNs
consist of three major types of network layers, namely: convolutional, pooling, and
fully connected. The learning in a convolutional layer depends on three concepts:
sparse interaction, equivariant representation, and parameter sharing [11]. Unlike
the feed-forward neural network layers that utilize layer-wide matrix multiplication
for relating the inputs with the outputs, convolutional layers implement sparse
interactions by using filters smaller than the inputs. By sharing the same filter across
the input surface, convolutional layers can achieve spatial equivariance as well as
reduce the computational volume considerably. Using multiple learnable filters the
convolutional layer can learn different features from the input. Pooling layers are
usually placed after one or more convolutional layers to reduce the dimensionality
of the data. Multiple blocks of convolutional and pooling layers are used to extract
hierarchical features from the data. Also, depending on the nature of the problem,
the final convolutional or pooling layer is followed by one or more fully connected
or recurrent layers.

There are many hyperparameters involved in designing a CNN architecture,
such as the number of layers in a convolutional block, the kernel size, stride
size, and channel size (number of feature maps) of a convolution layer, the stride
size of the pooling layer, type of pooling operation, number of fully connected

212 A. Bakhshi et al.

layers, the number of nodes in a fully connected layer, etc. In human-designed
CNNs, these hyperparameters are selected on a trial and error basis with the
help of prior knowledge about the functionality of these layers. As discussed in
Sect. 8.3, meta-heuristic algorithms can help to automatically select an optimal set
of hyperparameters for a CNN in a given task.

8.3 Related Works

In recent years, we have seen a increasing interest in the evolutionary computation
community in evolving DNN architectures and their hyperparameters. David and
Greental [12] proposed a simple GA-assisted method to improve the performance
of the deep autoencoder on the MNIST dataset. They stored the sets of weights of
an autoencoder in the chromosomes of individuals in their GA population. Then, by
calculating the root mean square error (RMSE) of each chromosome for the training
sample, they set the fitness score of each individual as the inverse of RMSE. After
sorting all chromosomes from the fittest to the least fit, they tuned the weights of the
high ranking chromosomes using backpropagation and replaced the low-ranking
members with the offspring of high ranking ones. However, they just used the
fitness score as a criterion for removing the low ranking members, and selection
is implemented uniformly and applied to the outstanding chromosomes with equal
likelihood. The authors showed that compared to the traditional backpropagation,
the GA-assisted method gives better reconstruction error and network sparsity.

Suganuma et al. [8] used Cartesian Genetic Programming (CGP) to construct the
CNN structure and network connectivities. To reduce the search space, high-level
functional modules, such as convolutional block and tensor concatenation, were
used as the node functions of CGP. Following the training of the network using the
training data, they utilized the validation accuracy as the fitness score. By evaluating
the performance of the evolved CNN models on the CIFAR10 dataset, they achieved
the error rates of 6.34 and 6.05% for the CGP-CNN (ConvSet) and the CGP-CNN
(ResSet), respectively. Loshchilov and Hutter [13] introduced the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) as an optimization method for selecting
the hyperparameters of the deep neural networks (DNNs). In their experiments,
the performance of CMA-ES and other state-of-the-art algorithms were evaluated
for tuning 19 hyperparameters of a DNN on the MNIST dataset. They pointed out
that the CMA-ES algorithm shows competitive performance, especially in parallel
evaluations.

In another study, Sun et al. [14] used a GA to design the CNN architectures
automatically for image classification. They used skip layers, composed of two
convolutional layers and one skip connection borrowed from ResNet [6], to increase
the depth of the network. Moreover, they used the same filter size and stride for
all convolutional layers, and the number of feature maps was selected by their
method. The fully connected layers were omitted in their model, but the pooling
layers were used. They evaluated the performance of their model on several popular

8 Fast Evolution of CNN Architecture for Image Classification 213

benchmarks, such as CIFAR10 and CIFAR100. The other work conducted by Sun
et al. [15] utilized the ResNet and DenseNet blocks [16] for automatically evolving
the CNN architectures. In their approach, a combination of three different units,
ResNet block units, DenseNet block units, and pooling layer units, have been used
to generate the CNN architecture. In their encoding strategy, to increase the depth
of the network as well as the speed of heuristic search by changing the depth of the
network, each ResNet or DenseNet unit composed of multiple ResNet and DenseNet
blocks. They showed the superiority of their model by comparing their model
generated results with 18 state-of-the-art algorithms on CIFAR10 and CIFAR100
datasets. Ali et al. [17] proposed a GA model to evolve a CNN architecture and other
network hyperparameters. They used a generic GA to find the best combination of
network hyperparameters, such as the number of layers, learning rate, and weight
decay factor. Using some design rules and constraints for genotype to phenotype
mapping, they evolved a CNN architecture on CIFAR10 dataset. They compared
the performance of the best CNN architecture evolved by their method with 13 other
models in terms of classification accuracy and GPU days. Sun et al. [9] introduced a
GA model for evolving CNN architecture as well as connection weight initialization
values in image classification tasks. They used an efficient variable-length gene
encoding method, representing various building blocks, to find the optimal depth
of the CNN. Furthermore, to avoid trapping in local minima, a major problem in
gradient-based training, they introduced a new representation scheme for initializing
the connection weights of DNN. They showed the effectiveness of their proposed
method by comparing their results with 22 existing algorithms involving state-of-
the-art models on nine popular image classification tasks.

8.4 The Proposed Genetic Algorithm for Designing CNNs

In this work, using a GA, we evolved CNN architectures with the best combination
of hyperparameters for the image classification task. Our GA operates in the search
space of VGG-like architectures, i.e., we assumed that the CNN architecture consists
of a sequence of convolutional blocks, each followed by a pooling layer, and a fully
connected layer at the end. The GA is used to optimize the number of convolutional
blocks, the number of convolutional layers in each block as well as some other
hyperparameters of the CNN architecture. The assumption about the organization of
the CNN architecture confines the GA to discover only the classical CNN models,
i.e., it does not allow to design CNN architectures with more sophisticated modules
like residual blocks [6] or inception modules [7]. However, by exploring the
limited search space, the proposed GA was able to design CNNs, which exhibited
competitive performance with the other state-of-the-art CNN models.

214 A. Bakhshi et al.

Initialise
Population

Evaluate
Fitness

Elite
Selection

Random
Selection

Breed
Offspring

Evaluate
Offspring

Update
Generation

Criterion
Satisfied?

Selected
Hyperparameters Yes

No

Fig. 8.1 The flowchart of the genetic algorithm for evolving CNN model

The proposed algorithm for optimizing CNN architecture works in the generic
GA framework with standard GA operations (Fig. 8.1). The algorithm begins with
an initial population created by the random selection of genes for each individual.
The chromosome of each individual uniquely determines the architecture of a CNN
as well as some of its hyperparameters. Then, each CNN model is trained and
validated using the training dataset, and the average classification accuracy of the
network in the validation phase is used as the individual’s fitness score. Next, the
population of individuals is sorted in descending order of their fitness scores. Then,
by applying a chain of genetic operations such as elite selection, random selection,
and breeding of the new members, the next generation of the population is created.
This process is repeated until the satisfaction of the termination criterion. The
pseudocode of the genetic algorithm for CNN architecture optimization is shown
in Algorithm 1, and the details of each module are presented in the following
subsections.

Algorithm 1: Proposed GA framework for evolving CNN models
Input: Population size (NP), Maximum number of generation (Gmax), the range of values

for the selected hyperparameters (LH), the RGB images of training dataset
Output: The best CNN architecture with its hyperparameters

1 Initialize the population using a random combination of hyperparameters [Algorithm 2]
2 Train the CNN model designated by each individual in the population, and calculate the

corresponding fitness score [Algorithm 3]
3 Store the population of individuals and their fitness scores in a list called P

4 NG ← 0
5 while NG < Gmax do
6 Create a new generation Pnew consisting of elite individuals, random individuals and

offspring created from P [Algorithm 4]
7 Evaluate individuals in Pnew

8 Set P ← Pnew and NG ← NG + 1
9 end

10 Return the best CNN architecture in P along with its hyperparameters

8 Fast Evolution of CNN Architecture for Image Classification 215

Fig. 8.2 The chromosome of an individual showing different hyperparameters of the CNN model

8.4.1 Population Initialization

As mentioned earlier, the proposed GA is used to seek the optimal CNN model in
the search space of classical CNN architectures. We limited the maximum number
of convolutional layers in a CNN to 20 divided into a maximum of 5 blocks
B1, B2, B3, B4, B5. Each of the blocks can have any number of layers between
0 and 4. The number of feature maps for each block is also optimized by GA, which
can be chosen from {32, 64, 128, 256, 512}. The other hyperparameters, optimized
by our GA, are learning rate (LR), weight decay (WD), momentum (M), and dropout
rate (DR). The structure of the chromosome is shown in Fig. 8.2.

From the chromosome structure, it becomes clear that the proposed GA works
with a fixed size chromosome. However, by allowing a block size to be zero, the
GA can actually search for variable-length CNN models having variable number of
blocks with any number of layers between 0 and 20. The example in Fig. 8.2 shows
a CNN architecture with 11 layers where the first block consists of 2 convolutional
layers with a feature map size of 256. The second block does not exist, the third,
fourth, and fifth block have 3, 2, and 4 layers and their corresponding feature map
sizes are 32, 512, and 256, respectively.

In genotype to phenotype mapping, a couple of additional layers are added in
each CNN model. Each convolutional block is followed by a max-pooling layer
with kernel size 2 and stride size 2, an average-pooling layer with a kernel size
2 and a stride size 1 is added after the final max-pooling layer, and a linear fully
connected layer is placed at the end of the network. Moreover, each convolutional
layer is followed by a batch normalization layer [18] and a Rectified Linear Unit
(ReLU) layer [19], and a dropout layer is added at the rear of each convolutional
block.

Algorithm 2 summarizes the process of population initialization for the GA. Each
gene in a chromosome can take a range of values, and the proposed GA searches for
the optimal combination of these values through the evolution process. The range
of possible values for each gene (shown in Table 8.1) is selected according to the
previous experiences in different classification problems using CNNs. Following the
random selection of the hyperparameters, the CNN architecture is created without
any constraints on the number or the order of convolutional layers or feature maps.
Often, human-designed CNN architectures are created following some rules, e.g.,
an increasing number of feature maps are used in successive convolutional blocks.
However, in the proposed GA model, no such restriction was imposed, and the
architecture of a CNN is completely guided by the chromosome.

216 A. Bakhshi et al.

Algorithm 2: For generating initial population
Input: The population size NP

Output: The initialized population Pinit

Data: The ranges of values for different hyperparameter are stored in a list called LH

1 Pinit ← ∅
2 while |Pinit | < NP do
3 Select the learning rate (lr) randomly from the LH [LR]
4 Select the weight decay factor (wd) randomly from the LH [WD]
5 Select the momentum (m) randomly from the LH [M]
6 Select the dropout (d) randomly from the LH [DR]
7 Select the number of convolutional layer in each block {B1, B2, B3, B4, B5}

randomly from the LH [NL]
8 Select the number of feature maps corresponding to each block {F1, F2, F3, F4, F5}

randomly from the LH [NF]
9 Create an individual (Ind) with the selected hyperparameters

10 Pinit ← Pinit ∪ Ind

11 Return Pinit

Table 8.1 The range of possible values for different hyperparameters to be searched by the GA

Hyperparameter Values

Learning rate (LR) 0.1, 0.01, 0.001, 0.0001

Weight decay (WD) 0.1, 0.01, 0.001, 0.0001, 0.00001

Momentum (M) 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9

Dropout rate (DR) 0.25, 0.5, 0.75

Block size (NL) in B1-B5 0, 1, 2, 3, 4

Feature map size (NF) in F1-F5 32, 64, 128, 256, 512

Finally, it should be noted that the chromosome structure and the algorithm
are flexible enough to make it more general by considering the optimization of
additional hyperparameters, e.g., activation function, individual kernel size for
each convolutional block, etc. Nevertheless, increasing the search space size will
necessitate more extensive searching. We did some preliminary study with some
other variants of the chromosome, but later fixed those hyperparameter values (e.g.,
fixed the kernel size of convolutional layers to 3) to reduce the computational
burden.

8.4.2 Fitness Evaluation

In order to assess the quality of a CNN model constructed from the chromosome of
an individual, we need to train it and evaluate its classification performance. Train-
ing and evaluating a deep neural network is the computationally most expensive
part of any deep neuroevolution algorithm. Recent studies have suggested that it is
possible to roughly assess the architectural quality of a CNN model based on its

8 Fast Evolution of CNN Architecture for Image Classification 217

evaluation after partial training [8, 9]. Henceforth, during the evolution process, we
evaluated the performance of the CNN networks after partially training them for
only Nepoch = 10 epoch, which significantly accelerated the genetic algorithm.

Algorithm 3: For fitness evaluation of an individual
Input: The individual (Ind), training data (Dtrain), validation data (Dvalid), the number of

epoch in training phase (Nepoch)
Output: The fitness score of the individual

1 Create the CNN model (net) from the hyperparameters of Ind augmented with pooling,
fully connected, batch-normalization, ReLU and dropout layers (details in Sect. 8.4.1)

2 Acc ← ∅
3 step ← 0
4 Accavg ← 0
5 while step < Nepoch do
6 Train the model net using the Dtrain

7 Calculate the classification accuracy (acc) using the Dvalid

8 Acc ← Acc ∪ acc

9 step ← step + 1
10 end

11 Accavg ← Average of accuracies in Acc

12 Return Accavg

We used the average validation accuracy of the constructed CNN model as the
fitness score of the corresponding individual. 90% of the training data is used during
the training phase, and the rest 10% is utilized for validation. The constructed CNN
model is trained by the stochastic gradient descent (SGD) algorithm [20], for a
constant number of epochs (Nepoch = 10), and the average classification accuracy of
the validation phase is used as the fitness score of the individual. In all experiments,
during the training phase, the cross-entropy loss is used as the loss function, and the
learning rate is reduced by a factor of 10 in every 10 epochs during complete training
for the model after the evolutionary phase. The details of the fitness evaluation of an
individual are summarized in Algorithm 3.

8.4.3 Creating New Generation

In the proposed GA, the next generation of individuals is created from the current
generation using elite selection, random selection, and offspring generation. First,
the individuals in the current generation are sorted based on their fitness scores. Top
e% of the individuals, known as elites, are selected from the current population
and added to the next generation. To maintain the population diversity and to
prevent premature convergence, some random individuals are also added [21, 22].
Specifically, from the rest of the current population, individuals are randomly
selected with a probability of pr and added to the next generation. Finally, the
selected elite and random individuals form the parent pool to breed offspring.

218 A. Bakhshi et al.

Algorithm 4: For creating a new generation of individuals
Input: The current population of individuals with their fitness scores (P), the percentage of

population preserved as the elite (e), the probability of preserving an individual from
the non-elite section of the current population (pr), the probability of mutation (pm),
and the population size (Np)

Output: The new population (Pnew)
1 Pnew ← ∅
2 Sort the individuals in P in descending order of their fitness scores
3 Add top e% individuals from P to the new population Pnew

4 Select the individuals from the bottom (1 − e)% of P with probability pr and add them to
Pnew

5 Pparents ← Pnew

6 while |Pnew | < Np do
7 Par1 ← An individual randomly selected from Pparents

8 Par2 ← An individual randomly selected from Pparents

9 if Par1 �= Par2 then
10 Create two children from the selected parents using uniform crossover operation

and save them in Children

11 for each Child in Children do
12 r ← Randomly generate a number from the range (0,1)
13 if pm > r then
14 Randomly replace a gene in Child with the randomly selected value
15 end

16 end

17 Pnew ← Pnew ∪ Children

18 end

19 end

20 Return Pnew

The process of generating the offspring starts with the random selection of
two dissimilar individuals from the parent pool. The selected parents participate
in uniform crossover operation to create two offspring. Each child may inherit
various combinations of genes from the parents because its genes are randomly
selected from the parents. Then, the child undergoes the mutation operation with
a predefined mutation probability of pm. If the mutation condition is met, one
randomly selected gene in the offspring chromosome is randomly modified from
a set of predefined values (shown in Table 8.1). Newly created offspring are added
to the next generation. The process of creating new children is repeated until the
number of individuals in the new generation reaches the population size. Finally,
the new generation, consisting of parent pool and children pool, replaces the current
generation. The process of generation alternation is repeated Gmax times so that the
GA can search for the best network architecture and hyperparameters. The process
of creating a new generation from the current generation is shown in Algorithm 4.

8 Fast Evolution of CNN Architecture for Image Classification 219

8.5 Experimental Setup

8.5.1 Datasets

In this work, we used three popular datasets CIFAR10, CIFAR100, and SVHN
as the benchmark for image classification problems. These datasets have been
used in many pieces of research for evaluation of the state-of-the-art deep neural
network models which makes our evolved models comparable with those models.
The CIFAR10 dataset includes 60,000 color RGB images belonging to 10 classes
and is mostly used for image classification tasks. These images are of dimension
32 × 32 and are divided into training and testing parts. The training set contains
50,000 images, and the rest of 10,000 images are used as the testing set. There is an
equal number of training and testing samples for each class.

The CIFAR100 dataset is similar to the CIFAR10, except with 100 classes that
are categorized into 20 superclasses each of which contains five classes. There exist
only 500 training images and 100 testing images, per class, making classification
more challenging in this dataset.

The SVHN (Street View House Numbers) dataset that can be considered in
essence similar to the MNIST dataset but with more labeled data contains 73257
and 26032 digits for training and testing, respectively. Compared to the MNIST
dataset, the SVHN dataset originates from a more difficult real-world problem. This
dataset contains the original, colored, and variable resolution images from the house
numbers in Google Street View images. However, all digits of the house numbers
have been resized to a fixed resolution 32 × 32 and originate from 10 different
classes [23].

8.5.2 Experimental Environment

In this work, we used the Pytorch framework (Version 1.2.0) of the python
programming language (Version 3.7) in all experiments. Besides, we ran the codes
using both high-performance computing (HPC) services and the DGX station
machine at the University of Newcastle. All codes ran with two GPUs at all stages
including the evolution of various CNN architectures, complete training of the
selected models with a larger epoch, and testing the best-performing models.

8.5.3 Parameter Selection

As stated before, our proposed framework is very flexible for increasing the search
space. In other words, many hyperparameters can be evolved through the GA
framework, but because of the limitation imposed by computational resources, we

220 A. Bakhshi et al.

just evolved some of the selected hyperparameters. Also, according to our earlier
experimental results, a specific value is always selected by the GA for some of these
hyperparameters, namely activation function, optimizer. Hence, in all experiments,
the ReLU activation function and SGD optimizer have been used. Besides, the
kernel size of the convolutional layers was set to 3 and the stride size of the
convolutional layer and the max-pooling layer was set to 2.

The GA parameters were set as follows: maximum number of generationGmax =
40, population size NP = 30, the percentage of population retained as the elite
e = 40%, the probability of retaining an individual from the non-elite part of
the population pr = 0.1, and the probability of the mutation pm = 0.2. These
parameters were set based on our experience with evolutionary algorithms and using
some primary studies. Moreover, to decrease the computational burden and speed
up the evolution process, during evolution, we trained the networks with a smaller
number of the epochs Nepoch = 10. After the evolutionary phase, the best CNN
model is trained completely before it is evaluated with the test dataset. Precisely, the
best model evolved by the GA is trained for a higher number of epoch Nepoch = 350
using the full training set.

8.6 Experimental Results

In our experiments, we applied the proposed GA for evolving the CNN architectures
for each dataset. Considering the stochastic nature of the algorithm, we repeated
each experiment 5 times and the best CNN model evolved in each experiment is
later trained completely and tested on the corresponding dataset. Table 8.2 shows
the performance of the evolved models in different datasets in terms of their average
accuracy, standard deviation, best accuracy, and the worst accuracy. The CNN
models designed by the GA was able to achieve a good performance in all three
datasets. Considering the average, best, and worst accuracies as well as the standard
deviations shown in Table 8.2, it is evident that the evolutionary algorithm was pretty
reliable in finding CNN models of similar quality over multiple experimental runs.

The average convergence graph of GA from a single representative run is shown
in Figs. 8.3 and 8.4 for all three datasets. Note that the fitness score in these graphs is
the average validation accuracy of the CNN models in each generation which were

Table 8.2 The average accuracy, standard deviation, best and worst accuracy of the best CNN
models evolved by multiple GA runs in each dataset

Dataset Average accuracy STD Best accuracy Worst accuracy

CIFAR10 94.75 0.650 95.82 94.01

CIFAR100 75.90 0.521 76.79 75.34

SVHN 95.11 0.48 95.57 94.52

Each network was trained for 350 epochs

8 Fast Evolution of CNN Architecture for Image Classification 221

(b)(a)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Generation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Generation

90
65

60

55

50

45

40

35

30

25

85

80

75

70

65

A
cc
ur
ac

y

A
cc
ur
ac

y

Fig. 8.3 The average convergence graph of the GA population in one representative run on (a)
CIFAR10 dataset and (b) CIFAR100 dataset

100

95

90

85

80

75
1 3 5 7 9 11 13 15 17 19 21 23 25 27 2931 33 35 37 39

Generation

A
cc
ur
ac
y

Fig. 8.4 The average convergence graph of the GA population in one representative run on SVHN
dataset

trained only for 10 epochs. As shown in these graphs, the proposed algorithm was
successful to improve the overall fitness of the population on all datasets. The fitness
of the population improved quickly in the first 10 generations and then slowed down
gradually. However, this behavior is expected because of the high selection pressure
from the elitism strategy and the participation of the elite individuals in offspring
generation.

Table 8.3 shows the structures of the best networks evolved in different GA
runs for each dataset. Each row of Table 8.3 shows the CNN architecture in
terms of the number of blocks, number of convolutional layers in each block,
and the feature map size of each block. The convolutional blocks are separated
by comma and in each block we show the number of layers and the feature map
size (in parenthesis) for each layer in that block. For example in the first row of
Table 8.3, 4×(128) represents that the first convolutional block of the CNN consists

222 A. Bakhshi et al.

Table 8.3 The best structures evolved in different GA runs for different datasets

Dataset Network ID No. parameters Evolved architecture

CIFAR10 Net 1 14.3 M [4 × (128), 4 × (256), 2 × (256), 3 × (512),
2 × (512)]

CIFAR10 Net 2 25.4 M [4 × (512), 3 × (512), 4 × (512), 2 × (256)]

CIFAR10 Net 3 5.8 M [2 × (512), 4 × (256), 2 × (128)]

CIFAR10 Net 4 6.7 M [2 × (256), 3 × (512), 2 × (32)]

CIFAR10 Net 5 20.7 M [3 × (512), 2 × (512), 4 × (512), 2 × (256)]

CIFAR100 Net 1 1.7 M [4 × (256), 2 × (512), 4 × (256)]

CIFAR100 Net 2 14.2 M [3 × (512), 4 × (512)]

CIFAR100 Net 3 11.2 M [2 × (256), 4 × (512), 4 × (512)]

CIFAR100 Net 4 18.3 M [3 × (512), 3 × (512), 4 × (256)]

CIFAR100 Net 5 14.8 M [2 × (256), 2 × (512), 3 × (512)]

SVHN Net 1 19 M [3 × (512), 4 × (512), 4 × (256)]

SVHN Net 2 7.8 M [3 × (32), 3 × (512), 4 × (512), 2 × (512)]

SVHN Net 3 17.1 M [3 × (32), 3 × (512), 4 × (512), 4 × (512)]

SVHN Net 4 23.8 M [3 × (256), 3 × (256), 2 × (256), 4 × (512)]

SVHN Net 5 11.9 M [3 × (32), 3 × (512), 4 × (512), 2 × (512)]

of 4 convolutional layer each having a feature map size of 128. The complete
CNN model is constructed by adding ReLU, batch normalization, dropout, average
pooling layer and fully connected layers as described in Sect. 8.4.1. This table also
shows the number of trainable parameters for different evolved models. The other
hyperparameters of each evolved network for CIFAR10, CIFAR100, and SVHN
dataset are shown in Tables 8.4, 8.5, and 8.6, respectively. Figure 8.5 visualizes the
architecture of the best CNN models evolved by GA over five repeated runs in three
datasets.

It can be seen from Table 8.3 that different evolutionary runs evolved quite
different CNN architectures in terms of the number of blocks, number of layers,
and number of trainable parameters even for the same dataset. However, with these
different architecture the models achieved very similar accuracy in the respective
datasets as shown in Tables 8.4, 8.5, and 8.6. One interesting observation in evolved
architectures by the GA is the feature map sizes in different blocks. In human-
designed architectures, usually the feature map size increases in later convolutional
blocks as we have seen in case of different VGG models. In some of the evolved
models we notice the same characteristics, e.g. Net 1 for CIFAR10, however, in
general, this order was not maintained in the evolved models. Some architecture has
it in decreasing order (Net 3 for CIFAR10) and some has it in no specific order (Net
4 for CIFAR10). From this observation we can infer that use of increased feature
map size in later convolutional block is not absolutely necessary for good CNN
architecture design.

In order to further assess the merit of the evolved models, we trained each evolved
model with the other datasets and tested its accuracy. Specifically, Table 8.4 shows
the best evolved models for the CIFAR10 datasets and then applied in CIFAR10,

8 Fast Evolution of CNN Architecture for Image Classification 223

Table 8.4 Hyperparameters of the top five CNN models evolved by different GA runs for
CIFAR10 dataset

Hyperparameters CIFAR10 CIFAR100 SVHN

Net name LR WD M DR No. blocks No. layers accuracy accuracy accuracy

Net 1 0.01 0.01 0.65 0.5 5 15 95.82 79.48 96.93

Net 2 0.01 0.001 0.8 0.5 4 13 95.09 76.95 96.60

Net 3 0.1 0.001 0.7 0.25 3 8 94.64 74.41 95.64

Net 4 0.01 0.01 0.7 0.5 3 7 94.21 71.53 92.80

Net 5 0.01 0.0001 0.8 0.5 4 11 94.01 76.07 96.27

Table 8.5 Hyperparameters of the top five CNN models evolved by different GA runs for
CIFAR100 dataset

Hyperparameters CIFAR10 CIFAR100 SVHN

Net name LR WD M DR No. blocks No. layers accuracy accuracy accuracy

Net 1 0.01 0.001 0.8 0.5 3 10 93.28 76.79 96.03

Net 2 0.1 0.0001 0.75 0.5 2 7 94.14 76.04 95.87

Net 3 0.01 0.0001 0.8 0.5 3 10 94.66 75.59 96.54

Net 4 0.01 0.001 0.8 0.25 3 10 94.56 75.52 96.35

Net 5 0.01 0.0001 0.9 0.5 3 7 94.34 75.34 96.03

Table 8.6 Hyperparameters of the top five CNN models evolved by different GA runs for SVHN
dataset

Hyperparameters CIFAR10 CIFAR100 SVHN

Net name LR WD M DR No. blocks No. layers accuracy accuracy accuracy

Net 1 0.01 0.0001 0.9 0.25 3 11 95.10 73.95 95.57

Net 2 0.01 0.0001 0.7 0.5 4 12 93.21 73.53 95.51

Net 3 0.01 0.0001 0.7 0.5 4 14 92.58 72.89 95.43

Net 4 0.01 0.001 0.7 0.5 4 12 94.19 73.18 94.53

Net 5 0.01 0.0001 0.8 0.5 4 12 94.05 73.10 94.52

CIFAR100 and SVHN datasets. Similarly, Tables 8.5 and 8.6 show the performance
of the evolved models for the CIFAR100 and SVHN datasets, respectively, in all
three datasets.

It was expected that the model evolved for a particular dataset will exhibit
the best performance in that dataset. However, we notice that in general the
best performance was exhibited by the models evolved for CIFAR10 dataset
(Table 8.4). We hypothesize that for more complex datasets like CIFAR100 and
SVHN, the training of 10 epochs is not sufficient to assess the quality of the network
architecture, therefore, the evolved model did not perform the best in the respective
datasets. One particular point to note in Tables 8.4, 8.5, and 8.6 is that evolutionary
runs selected network hyperparameters pretty consistently. For example almost in
every model, dropout rate was chosen as 0.5 and learning rate was chosen as 0.01.

224 A. Bakhshi et al.

Input RGB Images

3 × 3 Conv, 128

3 × 3 Conv, 128

3 × 3 Conv, 128

3 × 3 Conv, 128

MaxPooling, Stride 2

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

3 × 3 Conv, 512

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

AvgPooling, Stride 1

Fully Connected

Input RGB Images

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

AvgPooling, Stride 1

Fully Connected

Input RGB Images

3 × 3 Conv, 512

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

3 × 3 Conv, 512

3 × 3 Conv, 512

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

AvgPooling, Stride 1

Fully Connected

Fig. 8.5 Architectures of top CNN models evolved by GA (left to right for: CIFAR10, CIFAR100,
and SVHN datasets)

8 Fast Evolution of CNN Architecture for Image Classification 225

Table 8.7 The comparisons between the GA-evolved CNN model and the state-of-the-art CNN
algorithms in terms of the classification accuracy (%)

Algorithm Accuracy Accuracy GPU Parameter

name CIFAR10 CIFAR100 days setting

VGG16 93.05 74.94 – Manually

VGG19 92.59 74.04 – Manually

ResNet101 94.08 75.39 – Manually

DenseNet 94.52 76.61 – Manually

Maxouta 90.70 61.40 – Manually

Genetic CNNa 92.90 70.97 17 Semi-auto

Hierarchical evol.a 96.37 – 300 Semi-auto

Block-QNN-Sa 95.62 79.35 90 Semi-auto

Large-scale evol.a 94.60 77 2750 Automatic

CGP-CNNa 94.02 – 27 Automatic

NASa 93.99 – 22,400 Automatic

Meta-QNNa 93.08 72.86 100 Automatic

CNN-GAa 95.22 77.97 35 Automatic

Fast-CNN [17] 94.70 75.63 14 Automatic

This work (CIFAR10) 95.82 79.48 6 Automatic
aThe values of this algorithm reported in [14]

The purpose of partial training (with a smaller number of epochs) of different
models during evolutionary phase was to reduce the computation burden. Some
other work [8, 9] and our previous experiments [17] showed that such partial training
can be sufficient for assessing network architecture in image classification. In this
work we aimed to investigate it further by training the network for only 10 epochs.
No doubt it accelerates the evolution process greatly—the average time for evolving
the networks was only 6 GPU days. However, based on the performance of the
networks evolved for CIFAR100 and SVHN datasets, we infer that such minimum
training will be useful for simpler dataset but will not be sufficient for assessing the
network’s quality in complex datasets.

Finally, to assess the competitiveness of the GA-evolved models with the other
state-of-the-art CNN models, we compared their performance in Table 8.7 (best
performances are shown in bold). We contrasted the performance of three cate-
gories of networks, manually designed, designed semi-automatically, and designed
completely automatically [14]. Among the manually designed networks are VGG16
[5], VGG19 [5], ResNet101 [6], DenseNet [16], and Maxout [24]. Among the
semi-automatically designed networks are Genetic CNN, Hierarchical Evolution,
Block-QNN-S and from the fully automatically designed networks are Large-
scale Evolution, CGP-CNN, NAS, Meta-QNN, CNN-GA, and Fast-CNN [17]. We
compared the performance of the best model evolved by the proposed GA for
CIFAR10 dataset on both CIFAR10 and CIFAR100 datasets (last row). Besides
comparing these models in terms of their accuracy in CIFAR10 and CIFAR100
datasets, for the automatically designed networks, we compared them in terms of

226 A. Bakhshi et al.

GPU days required to design those networks. The GPU days are a rough estimation
for determining the speed of the algorithm, but it is not applicable to the manually
designed models. It should be noted that some of the results have been reproduced
by us, while others (indicated in the table footnote) were just copied from [14].

From Table 8.7 it can be seen that the CNN model evolved by our proposed
GA was obviously better than VGG models as well as other human designed CNN
models in CIFAR10 dataset. The CNN model was also better than all other models
designed automatically. Its performance was second best among the compared
models in CIFAR10 dataset. The best performance was exhibited by the model
designed by hierarchical evolution which is a semi-automatically designed network.
In terms of performance on CIFA100 dataset, the evolved model in this work
exhibited the best accuracy compared to all other CNN models whether designed
manually, semi-automatically, or automatically. Finally, when compared in terms
of required computational power, the proposed GA was really fast, requiring only
6 GPU days, in finding the optimal CNN architecture compared to other semi-
automatic and automatic methods. Although the Hierarchical Evolutionary model
in the semi-automatic category shows better classification accuracy on CIFAR10,
its GPU days is 50 times bigger than that required by the proposed method in this
work.

8.7 Discussion

This chapter basically investigates if a genetic algorithm can help to find an
optimized VGG-like CNN model for image classification. Using a fixed length
chromosome, the proposed GA explored the search space of CNN architectures
consisting of variable number of layers divided into a variable number of blocks.
Experiments with three widely used datasets show that the proposed GA is able
to design CNN models optimizing both its structure and hyperparameters. The
evolved models were better than the classic VGG models and several other human-
designed CNN models. Despite having a VGG-like architecture, the GA designed
models were also very competitive with other state-of-the-art CNN models designed
by semi-automatic and automatic methods. Additionally, the GA designed CNN
models sometimes had structural characteristics different from those designed by
humans. We also evaluated the performance of the CNN model, evolved by GA
for one dataset, on other datasets. The high-quality performance of the models on
other datasets indicates the superiority of the architectures evolved by GA. Based
on these results, we conclude that the proposed GA is capable of optimizing classic
CNN models for higher performance.

For the answer to our second question, if we can reduce the high cost of
evolving CNN architecture by using partial training of the models, we evaluated
the performance of networks after a few epochs of training. From our experiments
with the CIFAR10 dataset, we found that partial training of the models with only a
few epochs was good for finding very good architectures. However, the CNN models

8 Fast Evolution of CNN Architecture for Image Classification 227

evolved for CIFAR10 dataset exhibited an overall better performance in CIFAR100
and SVHN datasets than those evolved for these two datasets. Based on these
results, we hypothesize that perhaps partial training was not effective in evaluating
network’s performance in complex datasets. Nevertheless, a more detailed study by
varying the training epochs on multiple datasets is required for a more general and
accurate conclusion.

In our experiments, some of the structural parameters and hyperparameters of
CNN were kept fixed. Although the presented framework is ready to be extended for
the evolution of those parameters, the expansion of the search space will necessitate
more computational power to find the optimal CNN model. On the other hand, at
that expense, it might be possible to find a more efficient CNN model. Besides, the
size of the evolved networks is big compared to many other architectures because
no measure was taken to restrict the network size. The current framework can also
be extended to incorporate that criterion either in a single or multi-objective setup.
Optimizing a larger set of parameters may also help in finding smaller network
models.

8.8 Conclusion and Future Work

In this chapter, we showed how a simple genetic algorithm (GA) can be used to
automatically discover the optimized CNN model. Exploring the search space of
the classic CNN models, the proposed GA optimized the number of convolutional
blocks, number of convolutional layers in each blocks, the size of feature maps for
each block and other training related hyperparameters such as dropout rate, learning
rate, weight decay, and momentum. To reduce the computational burden in model
training, which is a common challenge for all deep neuroevolution algorithms, we
trained the models partially during evolution. The proposed GA, when evaluated in
three popular datasets, CIFAR10, CIFAR100 and SVHN, designed very high quality
CNN models over multiple repeated experiments. Performance of the evolved
CNN model is compared with 14 state-of-the-art models, chosen from different
categories, in terms of classification accuracy and GPU days. The best CNN model
evolved on the CIFAR10 dataset was found very competitive with other human
designed and automatically designed CNN models in terms of the classification
accuracy and better in terms of GPU days to evolve them.

The proposed GA framework can be used for searching more structure and train-
ing related hyperparameters of CNN, e.g. kernel size, stride size, activation function,
optimizer choice, etc., with very minimum changes. Besides, the framework can
be extended for finding a smaller network model in terms of parameter numbers.
Additionally, the performance of proposed GA can be tested in other applications
of CNN as well as for optimizing other types of deep neural networks.

228 A. Bakhshi et al.

References

1. Darwish, A., Hassanien, A.E., Das, S.: A survey of swarm and evolutionary computing
approaches for deep learning. Artif. Intell. Rev., 1–46 (2019)

2. Iba, H., Noman, N.: New Frontier in Evolutionary Algorithms: Theory and applications.
Imperial College Press, London (2011)

3. Schaffer, J.D., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural
networks: a survey of the state of the art. In: International Workshop on Combinations of
Genetic Algorithms and Neural Networks, 1992. OGANN-92, pp. 1–37. IEEE, Piscataway
(1992)

4. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep Neuroevo-
lution: genetic algorithms are a competitive alternative for training deep neural networks for
reinforcement learning. Preprint. arXiv:1712.06567 (2017)

5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. Preprint. arXiv:1409.1556 (2014)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

7. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., Rabinovich, A.: Going deeper with convolutions. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2015)

8. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing
convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 497–504. ACM, New York (2017)

9. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Evolving deep convolutional neural networks for
image classification. IEEE Trans. Evol. Comput. 24(2), 394–407 (2020)

10. Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression recog-
nition with robust face detection using a convolutional neural network. Neural Netw. 16(5–6),
555–559 (2003)

11. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press,
Cambridge (2016)

12. David, O.E., Greental, I.: Genetic algorithms for evolving deep neural networks. In: Pro-
ceedings of the Companion Publication of the 2014 Annual Conference on Genetic and
Evolutionary Computation, pp. 1451–1452. ACM, New York (2014)

13. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks.
Preprint. arXiv:1604.07269 (2016)

14. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Automatically designing CNN architectures using
genetic algorithm for image classification. Preprint. arXiv:1808.03818 (2018)

15. Sun, Y., Xue, B., Zhang, M.: Automatically evolving CNN architectures based on blocks.
Preprint. arXiv:1810.11875 (2018)

16. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional
networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2261–2269. IEEE, Piscataway (2017)

17. Bakhshi, A., Noman, N., Chen, Z., Zamani, M., Chalup, S.: Fast automatic optimisation of
CNN architectures for image classification using genetic algorithm. In: 2019 IEEE Congress
on Evolutionary Computation (CEC), pp. 1283–1290. IEEE, Piscataway (2019)

18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. Preprint. arXiv:1502.03167 (2015)

19. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323
(2011)

20. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of
COMPSTAT’2010, pp. 177–186. Springer, Berlin (2010)

8 Fast Evolution of CNN Architecture for Image Classification 229

21. Anderson-Cook, C.M.: Practical genetic algorithms. J. Am. Stat. Assoc. 100(471), 1099–1099
(2005)

22. Malik, S., Wadhwa, S.: Preventing premature convergence in genetic algorithm using DGCA
and elitist technique. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(6) (2014)

23. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural
images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and
Unsupervised Feature Learning (2011)

24. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks.
Preprint. arXiv:1302.4389 (2013)

	8 Fast Evolution of CNN Architecture for Image Classification
	8.1 Introduction
	8.2 A Brief Overview of CNNs
	8.3 Related Works
	8.4 The Proposed Genetic Algorithm for Designing CNNs
	8.4.1 Population Initialization
	8.4.2 Fitness Evaluation
	8.4.3 Creating New Generation

	8.5 Experimental Setup
	8.5.1 Datasets
	8.5.2 Experimental Environment
	8.5.3 Parameter Selection

	8.6 Experimental Results
	8.7 Discussion
	8.8 Conclusion and Future Work
	References

