
Chapter 7
Designing Convolutional Neural Network
Architectures Using Cartesian Genetic
Programming

Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao

Abstract Convolutional neural networks (CNNs), among the deep learning mod-
els, are making remarkable progress in a variety of computer vision tasks, such
as image recognition, restoration, and generation. The network architecture in
CNNs should be manually designed in advance. Researchers and practitioners have
developed various neural network structures to improve performance. Despite the
fact that the network architecture considerably affects the performance, the selection
and design of architectures are tedious and require trial-and-error because the best
architecture depends on the target task and amount of data. Evolutionary algorithms
have been successfully applied to automate the design process of CNN architectures.
This chapter aims to explain how evolutionary algorithms can support the automatic
design of CNN architectures. We introduce a method based on Cartesian genetic
programming (CGP) for the design of CNN architectures. CGP is a form of
genetic programming and searches the network-structured program. We represent
the CNN architecture via a combination of pre-defined modules and search for the
high-performing architecture based on CGP. The method attempts to find better
architectures by repeating the architecture generation, training, and evaluation. The
effectiveness of the CGP-based CNN architecture search is demonstrated through
two types of computer vision tasks: image classification and image restoration.
The experimental result for image classification shows that the method can find a
well-performing CNN architecture. For the experiment on image restoration tasks,
we show that the method can find a simple yet high-performing architecture of a
convolutional autoencoder that is a type of CNN.

M. Suganuma
Tohoku University, RIKEN Center for AIP, Sendai, Miyagi, Japan
e-mail: suganuma@vision.is.tohoku.ac.jp

S. Shirakawa (�) · T. Nagao
Yokohama National University, Yokohama, Kanagawa, Japan
e-mail: shirakawa-shinichi-bg@ynu.ac.jp; nagao@ynu.ac.jp

© Springer Nature Singapore Pte Ltd. 2020
H. Iba, N. Noman (eds.), Deep Neural Evolution, Natural Computing Series,
https://doi.org/10.1007/978-981-15-3685-4_7

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3685-4_7&domain=pdf
mailto:suganuma@vision.is.tohoku.ac.jp
mailto:shirakawa-shinichi-bg@ynu.ac.jp
mailto:nagao@ynu.ac.jp
https://doi.org/10.1007/978-981-15-3685-4_7

186 M. Suganuma et al.

7.1 Introduction

Many types of CNN architecture have been developed by researchers during the
last few years aiming at achieving good scores on computer vision tasks. Despite
the success of CNNs, a question remains given recent developments: what CNN
architectures are good and how can we design such architectures? One possible
direction to address this question is neural architecture search (NAS) [5], in which
CNN architectures are automatically designed by an algorithm such as evolutionary
computation and reinforcement learning to maximize performance on targeted tasks.
NAS can automate the design process of neural networks and aids in reducing the
trial-and-error of developers.

This chapter is based on the works of [34–36] and explains a genetic
programming-based approach to automatically design CNN architectures. In the
next section, we briefly review NAS methods by categorizing them into three
approaches: evolutionary computation, reinforcement learning, and gradient-
descent-based approaches. Then, we describe the Cartesian genetic programming
(CGP)-based NAS method for a CNN, which is categorized as an evolutionary-
computation-based approach. In Sect. 7.3, the CGP-based architecture search
method for image classification, termed CGP-CNN, is explained. In Sect. 7.4, the
CGP-based architecture search method is extended to the convolutional autoencoder
(CAE), a type of CNN, for image restoration.

7.2 Progress of Neural Architecture Search

Automatic design of neural network structures is an active topic initially presented
several decades ago, e.g., [30, 33, 45]. These methods optimize the connection
weights and/or network structure of low-level neurons using an evolutionary
algorithm, and are also known as evolutionary neural networks. These traditional
structure optimization methods target relatively small neural networks whereas
recent deep neural networks, including CNNs, have greater than one million
parameters though the architectures are still designed by human experts. Aiming
at the automatic design of deep neural network architectures, various architecture
search methods have been developed since 2017. Nowadays, the automatic design
method of deep neural network architectures is termed a neural architecture search
(NAS) [5].

To address large-scale architectures, neural network architectures are designed
using a certain search method but the network weights are optimized by a stochastic
gradient descent method through back-propagation. Evolutionary algorithms are
often used to search the architectures. Real et al. [28] optimized large-scale neural
networks using an evolutionary algorithm and achieved better performance than that
of modern CNNs in image classification tasks. In this method, they represent the
CNN architecture as a graph structure and optimize it via the evolutionary algorithm.

7 Designing CNN Architectures Using CGP 187

The connection weights of the reproduced architecture are optimized by stochastic
gradient descent as typical neural network training; the accuracy for the architecture
evaluation dataset is assigned as the fitness. Miikkulainen et al. [20] proposed a
method termed CoDeepNEAT that is an extended version of NeuroEvolution of
Augmenting Topologies (NEAT). This method designs the network architectures
using blueprints and modules. The blueprint chromosome is a graph in which each
node has a pointer to a particular module species. Each module chromosome is
a graph that represents a small DNN. Specifically, each node in the blueprint is
replaced with a module selected from a particular species to which that node points.
During the evaluation phase, the modules and blueprints are combined to generate
assembled networks and the networks are evaluated. Xie and Yuille [42] designed
CNN architectures using the genetic algorithm with a binary string representation.
They proposed a method for encoding a network structure in which the connectivity
of each layer is defined by a binary string representation. The type of each layer,
number of channels, and size of a receptive field are not evolved in this method.
The method explained in this chapter is also an evolutionary-algorithm-based NAS.
Different from the aforementioned methods, it optimizes the architecture based on
genetic programming and adopts well-designed modules as the node function.

Another approach is to use reinforcement learning to search the neural archi-
tectures. In [49], a recurrent neural network (RNN) was used to generate neural
network architectures. The RNN was trained with policy-gradient-based reinforce-
ment learning to maximize the expected accuracy on a learning task. Baker et al. [2]
proposed a meta-modeling approach based on reinforcement learning to produce
CNN architectures. A Q-learning agent explores and exploits a space of model
architectures with an ε-greedy strategy and experience replay.

As these methods need neural network training to evaluate the candidate architec-
tures, they often require a considerable computational cost. For instance, the work
of [49] used 800 graphics processing units (GPUs). To reduce the computational
cost of NAS is an active topic. A promising approach is jointly optimizing
the architecture parameter and connection weights. This approach, termed one-
shot NAS (aka weight sharing), finds better architecture during single training.
In one-shot NAS, the non-differentiable objective function consisting of discrete
architecture parameters is transformed into a differentiable objective by continuous
[17, 43] or stochastic relaxation [1, 27, 31]; both the architecture parameters and
connection weights are optimized by gradient-based optimizers.

7.3 Designing CNN Architecture for Image Classification

In this section, we introduce the architecture search method based on CGP for image
classification. We term the method CGP-CNN. In CGP-CNN, we directly encode
the CNN architectures based on CGP and use highly functional modules as node
functions. The CNN architecture defined by CGP is trained by a stochastic gradient
descent using a model training dataset and assigns the fitness value based on the

188 M. Suganuma et al.

Initialization

Selection

Reproduction

I

I I

Parent

Child 1 Child 2

CNN training by
backpropagation with
model training data

Calculate classification
accuracy (fitness) on

architecture evaluation data

O

O O

Fig. 7.1 Overview of CGP-CNN. The method represents the CNN architectures based on CGP.
The CNN architecture is trained on a learning task and assigned a fitness based on the accuracies
of the trained model for the architecture evaluation dataset. The evolutionary algorithm searches
for better architectures

accuracies of another training dataset (i.e. the architecture evaluation dataset). Then,
the architecture is optimized to maximize the accuracy of the architecture evaluation
dataset using the evolutionary algorithm. Figure 7.1 shows an overview of CGP-
CNN. In the following, we describe the network representation and the evolutionary
algorithm used in CGP-CNN.

7.3.1 Representation of CNN Architectures

For CNN architecture representation, we use the CGP encoding scheme that rep-
resents an architecture of CNNs as directed acyclic graphs with a two-dimensional
grid. CGP was proposed as a general form of genetic programming in [22]. The
graph corresponding to a phenotype is encoded to a string termed a genotype and
optimized using the evolutionary algorithm.

Let us assume that the grid has Nr rows by Nc columns; then, the number of
intermediate nodes is Nr ×Nc and the number of inputs and outputs depends on the
task. The genotype consists of a string of integers of a fixed length and each gene
determines the function type of the node and the connection between nodes. The
c-th column’s node is only allowed to be connected from the (c − 1) to (c − l)-th
column’s nodes, in which l is termed a level-back parameter. Figure 7.2 shows an
example of the genotype, phenotype, and corresponding CNN architecture. As seen
in Fig. 7.2, the CGP encoding scheme has a possibility that not all of the nodes are
connected to the output nodes (e.g., node No. 5 in Fig. 7.2). We term these nodes
inactive nodes. Whereas the genotype in CGP is a fixed-length representation, the
number of nodes in the phenotypic network varies because of the inactive nodes.

7 Designing CNN Architectures Using CGP 189

Fig. 7.2 Examples of a genotype and phenotype. The genotype (left) defines the CNN architecture
(right). Node No. 5 on the left is inactive and does not appear in the path from the inputs to the
outputs. The summation node applies max pooling to downsample the first input to the same size
as the second input

This is a desirable feature because the number of layers can be determined using the
evolutionary algorithm.

Referring to modern CNN architectures, we select the highly functional modules
as the node function. The frequently used processes in the CNN are convolution
and pooling; the convolution processing uses local connectivity and spatially shares
the learnable weights and the pooling is nonlinear downsampling. We prepare
the six types of node functions, termed ConvBlock, ResBlock, max pooling,
average pooling, concatenation, and summation. These nodes operate on the three-
dimensional (3-D) tensor (also known as the feature map) defined by the dimensions
of the row, column, and channel.

The ConvBlock consists of a convolutional layer with a stride of one followed by
the batch normalization [10] and the rectified linear unit (ReLU) [23]. To maintain
the size of the input, we pad the input with zero values around the border before
the convolutional operation. Therefore, the ConvBlock takes the M × N × C tensor

190 M. Suganuma et al.

Fig. 7.3 The ResBlock
architecture

ConvBlock

Convolution

BatchNormalization

Summation

ReLU

as an input and produces the M × N × C′ tensor, where M , N , C, and C′ are the
number of rows, columns, input channels, and output channels, respectively. We
prepare several ConvBlocks with different output channels and receptive field sizes
(kernel sizes) in the function set of CGP.

As shown in Fig. 7.3, the ResBlock is composed of the ConvBlock, batch
normalization, ReLU, and tensor summation. The ResBlock is a building block of
the modern successful CNN architectures, e.g., [8, 47] and [13]. Following this
recent trend of human architecture design, we decided to use ResBlock as the
building block in CGP-CNN. The ResBlock performs identity mapping via the
shortcut connection as described in [8]. The row and column sizes of the input
are preserved in the same manner as those of the ConvBlock after convolution.
As shown in Fig. 7.3, the output feature maps of the ResBlock are calculated via
the ReLU activation and the summation with the input. The ResBlock takes the
M × N × C tensor as an input and produces the M × N × C′ tensor. We prepare
several ResBlocks with different output channels and receptive field sizes (kernel
sizes) in the function set of CGP.

The max and average poolings perform the maximum and average operations,
respectively, over the local neighbors of the feature maps. We use the pooling with a
2×2 receptive field size and a stride of two. The pooling layer takes the M ×N ×C

tensor and produces the M ′ ×N ′ ×C tensor, where M ′ = �M/2� and N ′ = �N/2�.
The concatenation function takes two feature maps and concatenates them in the

channel dimension. When concatenating the feature maps with different numbers
of rows and columns, we downsample the larger feature map by max pooling to
make them the same sizes as the inputs. Let us assume that we have two inputs of
size M1 × N1 × C1 and M2 × N2 × C2, then the size of the output feature maps is
min(M1,M2) × min(N1, N2) × (C1 + C2).

The summation performs element-wise summation of two feature maps, channel-
by-channel. Similar to the concatenation, when summing the two feature maps with
different numbers of rows and columns, we downsample the larger feature map
by max pooling. In addition, if the inputs have different numbers of channels, we

7 Designing CNN Architectures Using CGP 191

Table 7.1 Node functions
and abbreviated symbols used
in the experiments

Node type Symbol Variation

ConvBlock CB (C′, k) C′ ∈ {32, 64, 128}
k ∈ {3 × 3, 5 × 5}

ResBlock RB (C′, k) C′ ∈ {32, 64, 128}
k ∈ {3 × 3, 5 × 5}

Max pooling MP –

Average pooling AP –

Concatenation Concat –

Summation Sum –

C′: Number of output channels
k: Receptive field size (kernel size)

expand the channels of the feature maps with a smaller channel size by filling
with zero. Let us assume that we have two inputs of size M1 × N1 × C1 and
M2 × N2 × C2, then the sizes of the output feature maps are min(M1,M2) ×
min(N1, N2) × max(C1, C2). In Fig. 7.2, the summation node applies the max
pooling to downsample the first input to the same size as the second input. By using
the summation and concatenation operations, our method can express the shortcut
connection or branch layers, such as those used in GoogLeNet [37] and residual
network (ResNet) [8].

The output node represents the softmax function to produce a distribution over
the target classes. The outputs fully connect to all elements of the input. The node
functions used in the experiments are listed in Table 7.1.

7.3.2 Evolutionary Algorithm

Following the standard CGP, we use a point mutation as the genetic operator. The
function and the connection of each node randomly change to valid values according
to the mutation rate. The fitness evaluation of the CNN architecture involves CNN
training and requires approximately 0.5 to 1 h in our setting. Therefore, we need
to efficiently evaluate some candidate solutions in parallel at each generation.
To efficiently use the computational resource, we repeatedly apply the mutation
operator while an active node does not change and obtain the candidate solutions
to be evaluated. We term this mutation forced mutation. Moreover, to maintain a
neutral drift, which is effective for CGP evolution [21, 22], we modify a parent by
neutral mutation if the fitness of the offspring do not improve. The neutral mutation
operates only on the genes of inactive nodes without modification of the phenotype.
We use the modified (1+λ) evolution strategy (with λ = 2 in the experiment) using
the aforementioned artifice. The procedure of our evolutionary algorithm is listed in
Algorithm 1.

The (1 + λ) evolution strategy, the default evolutionary algorithm in CGP, is an
algorithm with fewer strategy parameters: the mutation rate and offspring size. We

192 M. Suganuma et al.

Algorithm 1 Evolutionary algorithm for CGP-CNN and CGP-CAE
1: Input: G (number of generations), r (mutation probability), λ (children size), S (Training set),

V (architecture evaluation set).
2: Initialization: (i) Generate a parent , (ii) train the model on the S, and (iii) assign the fitness

Fp using the set V .
3: for g = 1 to G do
4: for i = 1 to λ do
5: childreni ← Mutation(parent , r) # forced mutation
6: modeli ← Train(childreni , S)
7: f itnessi ← Evaluate(modeli , V)
8: end for
9: best ← argmaxi=1,2,...,λ {f itnessi }

10: if f itnessbest ≥ Fp then
11: parent ← childrenbest

12: Fp ← f itnessbest

13: else
14: parent ← Modify(parent, r) # neutral mutation
15: end if
16: end for
17: Output: parent (the best architecture found by the evolutionary search).

do not need to expend considerable effort to tune such strategy parameters. Thus,
we use the (1 + λ) evolution strategy in CGP-CNN.

7.3.3 Experiment on Image Classification Tasks

7.3.3.1 Experimental Setting

We apply CGP-CNN to the CIFAR-10 and CIFAR-100 datasets consisting of 60,000
color images (32×32 pixels) in 10 and 100 classes, respectively. Each dataset is split
into a training set of 50,000 images and a test set of 10,000 images. We randomly
sample 45,000 examples from the training set to train the CNN and the remaining
5000 examples are used for architecture evaluation (i.e. fitness evaluation of CGP).

To assign the fitness value to the candidate CNN architecture, we train the CNN
by stochastic gradient descent (SGD) with a mini-batch size of 128. The softmax
cross-entropy loss is used as the loss function. We initialize the weights using the
method described in [7] and use the Adam optimizer [11] with an initial learning
rate α = 0.01 and momentum β1 = 0.9 and β2 = 0.999. We train each CNN for
50 epochs and use the maximum accuracy of the last 10 epochs as the fitness value.
We reduce the learning rate by a factor of 10 at the 30th epoch.

We preprocess the data with pixel-mean subtraction. To prevent overfitting, we
use a weight decay with the coefficient 1.0 × 10−4. We also use data augmentation
based on [8]: padding 4 pixels on each size and randomly cropping a 32 × 32 patch
from the padded image or its horizontally flipped image.

7 Designing CNN Architectures Using CGP 193

Table 7.2 Parameter setting
for the CGP-CNN on image
classification tasks

Parameters Values

Mutation rate 0.05

Offspring (λ) 2

Rows (Nr) 5

Columns (Nc) 30

Minimum number of active nodes 10

Maximum number of active nodes 50

Levels-back (l) 10

The parameter setting for CGP is shown in Table 7.2. We use a relatively large
number of columns to generate deep architectures. The number of active nodes
in the individual of CGP is restricted. Therefore, we apply the mutation operator
until the CNN architecture that satisfies the restriction of the number of active
nodes is generated. The offspring size λ is two, the same number of GPUs in our
experimental machines. We test two node function sets termed ConvSet and ResSet
for CGP-CNN. The ConvSet contains ConvBlock, max pooling, average pooling,
summation, and concatenation in Table 7.1 and the ResSet contains ResBlock, max
pooling, average pooling, summation, and concatenation. The difference between
these two function sets is whether the set contains ConvBlock or ResBlock. The
number of generations is 500 for ConvSet and 300 for ResSet.

The best CNN architecture from the CGP process is retrained using all 50,000
images in the training set. Then, we compute the test accuracy. We optimize the
weights of the obtained architecture for 500 epochs using a different training
procedure; we use SGD with a momentum of 0.9, a mini-batch size of 128, and
a weight decay of 5.0 × 10−4. Following the learning rate schedule in [8], we start
with a learning rate of 0.01 and set it to 0.1 at the 5th epoch. We reduce it by a factor
of 10 at the 250th and 370th epochs. We report the test accuracy at the 500th epoch
as the final performance.

We implement CGP-CNN using the Chainer framework [40] (version 1.16.0)
and run it on a machine with two NVIDIA GeForce GTX 1080 or two GTX 1080
Ti GPUs. We use a GTX 1080 and 1080 Ti for the experiments on the CIFAR-
10 and 100 datasets, respectively. Because of the memory limitation, the candidate
CNNs occasionally take up the GPU memory, and the network training process fails
because of an out-of-memory error. In this case, we assign a zero fitness to the
candidate architecture.

7.3.3.2 Experimental Result

We run CGP-CNN 10 times on each dataset and report the classification errors.
We compare the classification performance to the hand-designed CNNs and auto-
matically designed CNNs using the architecture search methods on the CIFAR-10
and 100 datasets. A summary of the classification performances is provided in

194 M. Suganuma et al.

Table 7.3 Comparison of the error rates (%), number of learnable weight parameters, and search
costs on the CIFAR-10 dataset

Model # Params Test error GPU days

Maxout [6] – 9.38 –

Network in network [15] – 8.81 –

VGG [32] 15.2 M 7.94 –

ResNet [8] 1.7 M 6.61 –

FractalNet [14] 38.6 M 5.22 –

Wide ResNet [47] 36.5 M 4.00 –

CoDeepNEAT [20] – 7.30 –

Genetic CNN [42] – 7.10 17

MetaQNN [2] 3.7 M 6.92 80–100

Large-scale evolution [28] 5.4 M 5.40 2750

Neural architecture search [49] 37.4 M 3.65 16,800–22,400

CGP-CNN (ConvSet) 1.50 M 5.92 31

(6.48 ± 0.48)

CGP-CNN (ResSet) 2.01 M 5.01 30

(6.10 ± 0.89)

The classification error is reported in the format of “best (mean ± std).” In CGP-CNN, the number
of learnable weight parameters of the best architecture is reported. The values of other models are
referenced from the literature. The bold value indicates the best test error among the compared
models

Tables 7.3 and 7.4. The models, Maxout, Network in Network, VGG, ResNet,
FractalNet, and Wide ResNet, are the hand-designed CNN architectures whereas
MetaQNN, Neural Architecture Search, Large-Scale Evolution, Genetic CNN, and
CoDeepNEAT are the models obtained using the architecture search methods. The
values of other models, except for VGG and ResNet on CIFAR-100, are referenced
from the literature. We implement the VGG net and ResNet for CIFAR-100 because
they were not applied to the dataset in [32] and [8]. The architecture of VGG is
identical to that of configuration D in [32]. In Tables 7.3 and 7.4, the number of
learnable weight parameters in the models is also listed. In CGP-CNN, the number
of learnable weight parameters of the best architecture is reported.

On the CIFAR-10 dataset, the CGP-CNNs outperform most of the hand-designed
models and show a good balance between the classification errors and the number
of parameters. CGP-CNN (ResSet) shows better performance compared to that of
CGP-CNN (ConvSet). Compared to other architecture search methods, CGP-CNN
(ConvSet and ResSet) outperforms MetaQNN [2], Genetic CNN [42], and CoDeep-
NEAT [20]. The best architecture of CGP-CNN (ResSet) outperforms Large-Scale
Evolution [28]. The Neural Architecture Search [49] achieved the best error rate,
but this method used 800 GPUs and required considerable computational costs to
search for the best architecture. Table 7.3 also lists the number of GPU days (the
computational time multiplied by the number of GPUs used during the experiments)
for the architecture search. As seen, CGP-CNN can find a good architecture at

7 Designing CNN Architectures Using CGP 195

Table 7.4 Comparison of the error rates (%) and number of learnable weight parameters on the
CIFAR-100 dataset

Model # Params Test error

Maxout [6] – 38.57

Network in network [15] – 35.68

VGG [32] 15.2 M 33.45

ResNet [8] 1.7 M 32.40

FractalNet [14] 38.6 M 23.30

Wide ResNet [47] 36.5 M 19.25
CoDeepNEAT [20] – –

Neural architecture search [49] 37.4 M –

Genetic CNN [42] – 29.03

MetaQNN [2] 3.7 M 27.14

Large-scale evolution [28] 40.4 M 23.0

CGP-CNN (ConvSet) 2.01 M 26.7 (28.1 ± 0.83)

CGP-CNN (ResSet) 4.60 M 25.1 (26.8 ± 1.21)

The classification errors are reported in the format of “best (mean ± std).” In CGP-CNN, the
number of learnable weight parameters of the best architecture is reported. The values of other
models except for VGG and ResNet are referenced from the literature. The bold value indicates
the best test error among the compared models

a reasonable computational cost. We assume that CGP-CNN, particularly with
ResSet, could reduce the search space and find better architectures in an early
iteration by using the highly functional modules. The CIFAR-100 dataset is a very
challenging task because there are many classes. CGP-CNN finds the competitive
network architectures within a reasonable computational time. Even though the
obtained architecture is not at the same level as the state-of-the-art architectures,
it shows a good balance between the classification errors and number of parameters.

The error rates of the architecture search methods (not only CGP-CNN) do not
reach those of Wide ResNet, a human-designed architecture. However, these human-
designed architectures are developed with the expenditure of tremendous human
effort. An advantage of architecture search methods is that they can automatically
find a good architecture for a new dataset. Another advantage of CGP-CNN is
that the number of weight parameters in the discovered architectures is less than
that in the human-designed architectures, which is beneficial when we want to
implement CNN on a mobile device. Note that we did not introduce any criteria
for the architecture complexity in the fitness function. It might be possible to find
more compact architectures by introducing the penalty term into the fitness function,
which is an important research direction, such as in [4, 29, 39].

Figure 7.4 shows the examples of the CNN architectures obtained by CGP-CNN
(ConvSet and ResSet). Figure 7.4 shows the complex architectures that are difficult
to manually design. Specifically, CGP-CNN (ConvSet) uses the summation and
concatenation nodes leading to a wide network and allowing for the formation of
skip connections. Therefore, the CGP-CNN (ConvSet) architecture is wider than

196 M. Suganuma et al.

Input

Concat CB (64, 3)

Sum

CB (128, 5)

CB (32, 3)

AP CB (128, 3)

CB (128, 3)

AP

CB (128, 3)

AP CB (128, 5)

Concat

CB (128, 5)

Softmax

Input

RB (128, 3)

RB (128, 3)

RB (128, 3)

AP

RB (32, 3)

RB (128, 3)

RB (128, 3)

AP

AP

RB (128, 3)

MP

Softmax

Fig. 7.4 CNN architectures obtained by CGP-CNN with ConvSet (left) and ResSet (right) on the
CIFAR-10 dataset

that of CGP-CNN (ResSet). Additionally, we also observe that CGP-CNN (ResSet)
has a similar structure to that of ResNet [8]. ResNet consists of a series of two types
of modules: a module with several convolutions and shortcut connections without
downsampling and a downsampling convolution with a stride of 2. Although CGP-
CNN cannot downsample in the ConvBlock and ResBlock, we see that CGP-CNN
(ResSet) uses a pooling layer as an alternative to the downsampling convolution. We
can say that CGP-CNN can find an architecture similar to that designed by human
experts.

7 Designing CNN Architectures Using CGP 197

7.4 Designing CNN Architectures for Image Restoration

In this section, we apply the CGP-based architecture search method to an image
restoration task of recovering a clean image from its degraded version. We term
this method CGP-CAE. Recently, learning-based approaches based on CNNs have
been applied to image restoration tasks and have significantly improved the state-
of-the-art performance. Researchers have approached this problem mainly from
three directions: designing new network architectures, loss functions, and training
strategies. In this section, we focus on designing a new network architecture
for image restoration and report that simple convolutional autoencoders (CAEs)
designed by evolutionary algorithms can outperform existing image restoration
methods which are designed manually.

7.4.1 Search Space of Network Architectures

In this work, we consider CAEs that are built only on convolutional layers with
downsampling and skip connections. In addition, we use symmetric CAEs such that
their first half (encoder part) is symmetric to the second half (decoder part). The
final layer is attached to top of the decoder part to obtain images of fixed channels
(i.e. single-channel grayscale or three-channel color images), for which either one
or three filters of 3 × 3 size are used. Therefore, specifying the encoder part of a
CAE solely determines its entire architecture. The encoder part can have an arbitrary
number of convolutional layers up to a specified maximum, which is selected by the
evolutionary algorithm. Each convolutional layer can have an arbitrary number and
size of filters, and is followed by ReLU [23]. In addition, each layer can have an
optional skip connection [8, 18] that connects the layer to its mirrored counterpart in
the decoder part. Specifically, the output feature maps (obtained after ReLU) of the
layer are passed to and are added element-wise to the output feature maps (obtained
before ReLU) of the counterpart layer. We can use additional downsampling after
each convolutional layer depending on the task. Whether to use downsampling is
determined in advance and thus it is not selected by the architectural search, as
explained later.

7.4.2 Representation of CAE Architectures

Following [34], we represent architectures of CAEs via a directed acyclic graph
which is defined on a two-dimensional grid. This graph is optimized by the
evolutionary algorithm, in which the graph is termed a phenotype and is encoded
by a data structure termed a genotype.

198 M. Suganuma et al.

idnode 1 2 3
0 0 1 0 4 0 7 1

4
……

M*N+1
9

node type T connection C
(input node id)

Genotype

Phenotype

conv
(64, 1 1)

conv
(64, 3 3)

conv
(128, 5 5)

conv
(256, 3 3)

conv
(128, 1 1)

conv
(128, 5 5)

input output

conv
(64, 5 5)

conv
(64, 1 1)

conv
(256, 5 5)

9 (=M*N)
8

output node

outputinput

5

conv
(64, 3 3)

conv
(128, 1 1)

conv
(256, 5 5)

conv
(256, 5 5)

conv
(128, 1 1)

conv
(64, 3 3)

1

2

3

4

5

6

7

8

9

CGP-CAE

Fig. 7.5 An example of a genotype and a phenotype of CGP-CAE. A phenotype is a graph
representation of a network architecture and a genotype encodes a phenotype. They encode only
the encoder part of a CAE and its decoder part is automatically created such that it is symmetrical
to the encoder part. In this example, the phenotype is defined on a grid of three rows and three
columns

Figure 7.5 shows an example of a genotype and a phenotype of CGP-CAE. Each
node of the graph represents a convolutional layer followed by a ReLU in a CAE.
An edge connecting two nodes represents the connectivity of the two corresponding
layers. The graph has two additional special nodes termed input and output nodes.
The former represents the input layer of the CAE and the latter represents the output
of the encoder part, or equivalently the input of the decoder part of the CAE. As
the input of each node is connected to at most one node, there is a single unique
path starting from the input node and ending at the output node. This unique path
identifies the architecture of the CAE, as shown in the middle row of Fig. 7.5.
Note that the nodes depicted in the neighboring two columns are not necessarily
connected. Thus, the CAE can have a different number of layers depending on how
the nodes are connected. Because the maximum number of layers (of the encoder
part) of the CAE is Nmax, the total number of layers is 2Nmax + 1 including the
output layer. To control how the number of layers will be chosen, we introduce a
hyper-parameter termed level-back l, such that nodes given in the c-th column are
allowed to be connected from nodes given in the columns ranging from c − l to
c − 1. If we use a smaller l, then the resulting CAEs will tend to be deeper.

A genotype encodes a phenotype and is manipulated by the evolutionary
algorithm. The genotype encoding a phenotype with Nr rows and Nc columns has

7 Designing CNN Architectures Using CGP 199

NrNc +1 genes, each of which represents attributes of a node with two integers (i.e.
type and connection). The type specifies the number F and size k of the filters of
the node, and whether the layer has skip connections or not, by an integer encoding
their combination. The connection specifies the node that is connected to the input
of this node. The last (NrNc + 1)-st gene represents the output node that stores only
the connection determining the node connected to the output node. An example
of a genotype is shown in the top row of Fig. 7.5, where F ∈ {64, 128, 256} and
k ∈ {1 × 1, 3 × 3, 5 × 5}.

We use the same evolutionary algorithm as used in the previous section to
perform a search in the architecture space (see Algorithm 1).

7.4.3 Experiment on Image Restoration Tasks

We conducted experiments to test the effectiveness of CGP-CAE. We chose two
tasks: image inpainting and denoising.

7.4.3.1 Experimental Settings

Inpainting
We followed the procedures suggested in [46] for experimental design. We used
three benchmark datasets: the CelebFaces Attributes Dataset (CelebA) [16], the
Stanford Cars Dataset (Cars) [12], and the Street View House Numbers (SVHN)
[24]. The CelebA contains 202,599 images, from which we randomly selected
100,000, 1000, and 2000 images for training, architecture evaluation, and testing,
respectively. All images were cropped to properly contain the entire face and resized
to 64 × 64 pixels. For Cars and SVHN, we used the provided training and testing
split. The images of Cars were cropped according to the provided bounding boxes
and resized to 64 × 64 pixels. The images of SVHN were resized to 64 × 64 pixels.

We generated images with missing regions of the following three types: a central
square block mask (Center), random pixel masks such that 80% of all the pixels
were randomly masked (Pixel), and half-image masks such that a randomly chosen
vertical or horizontal half of the image was masked (Half). For the latter two, a
mask was randomly generated for each training mini-batch and each test image.

Considering the nature of this task, we consider CAEs endowed with down-
sampling. To be specific, the same counts of downsampling and upsampling with
stride = 2 were employed such that the entire network had a symmetric hourglass
shape. For simplicity, we used a skip connection and downsampling in an exclusive
manner; in other words, every layer (in the encoder part) employed either a skip
connection or downsampling.

200 M. Suganuma et al.

Denoising
We followed the experimental procedures described in [18, 38]. We used grayscale
300 and 200 images belonging to the BSD500 dataset [19] to generate training and
test images, respectively. For each image, we randomly extracted 64 × 64 patches,
to each of which Gaussian noise with different σ = 30, 50, and 70 are added. As
utilized in the previous studies, we trained a single model for all different noise
levels.

For this task, we used CAE models without downsampling following the
previous studies [18, 38]. We zero-padded the input feature maps computed in each
convolution layer not to change the size of the input and output feature space of the
layer.

Configurations of the Architectural Search
For the evolutionary algorithm, we chose the mutation probability as r = 0.1,
number of children as λ = 4, and number of generations as G = 250. For the
phenotype, we used the graph with Nr = 3, Nc = 20, and level-back l = 5. For the
number F and size k of the filters at each layer, we chose them from {64, 128, 256}
and {1 × 1, 3 × 3, 5 × 5}, respectively. During an evolution process, we trained each
CAE for I = 20,000 iterations with a mini-batch of size b = 16. We set the learning
rate of the ADAM optimizer to be 0.001. For the training loss, we used the mean
squared error (MSE) between the restored images and their ground truths:

L(θD) = 1

|S|
|S|∑

i=1

||D(yi; θD) − xi ||22, (7.1)

where the CAE and its weight parameters are D and θD , respectively; S is the
training set, xi is a ground truth image, and yi is a corrupted image. For the fitness
function of the evolutionary algorithm, we use the peak signal-to-noise ratio (PSNR)
of which the higher value indicates the better image restoration.

Following completion of the evolution process, we fine-tuned the best CAE using
the training set of images for additional 500,000 iterations, in which the learning
rate is reduced by a factor of 10 at the 200,000 and 400,000 iterations. We then
calculated its performance using the test set of images. We implemented CGP-
CAE using PyTorch [25] and performed the experiments using four P100 GPUs.
Execution of the evolutionary algorithm and the fine-tuning of the best model took
approximately 3 days for the inpainting tasks and 4 days for the denoising tasks.

7.4.3.2 Results of the Inpainting Tasks

We use two standard evaluation measures, the PSNR and structural similarity index
(SSIM) [41], to evaluate the restored images. Higher values of these measures
indicate better image restoration.

7 Designing CNN Architectures Using CGP 201

Table 7.5 Inpainting results

PSNR SSIM

Dataset Type Rand BASE CE SII CGP-CAE Rand BASE CE SII CGP-CAE

CelebA Center 15.3 27.1 28.5 19.4 29.9 0.740 0.883 0.912 0.907 0.934
Pixel 25.5 27.5 22.9 22.8 27.8 0.766 0.836 0.730 0.710 0.887
Half 12.7 11.8 19.9 13.7 21.1 0.549 0.604 0.747 0.582 0.771

Cars Center 17.1 19.5 19.6 13.5 20.9 0.704 0.767 0.767 0.721 0.846
Pixel 17.0 19.2 15.6 18.9 19.5 0.533 0.679 0.408 0.412 0.738
Half 13.0 11.6 14.8 11.1 16.2 0.511 0.541 0.576 0.525 0.610

SVHN Center 23.5 29.9 16.4 19.0 33.3 0.819 0.895 0.791 0.825 0.953
Pixel 29.0 40.1 30.5 33.0 40.4 0.687 0.899 0.888 0.786 0.969
Half 11.3 12.9 21.6 14.6 24.8 0.574 0.617 0.756 0.702 0.848

Comparison of two baseline architectures (RAND and BASE), Context Autoencoder (CE) [26],
Semantic Image Inpainting (SII) [46], and CAEs designed by CGP-CAE using three datasets
and three masking patterns. The bold values indicate the best performance among the compared
architectures

As previously mentioned, we follow the experimental procedure employed in
[46]. In the paper, the authors reported the performances of their proposed method,
Semantic Image Inpainting (SII), and Context Autoencoder (CE) [26]. However, we
found that CE can provide considerably better results than those reported in [46]
in terms of PSNR. Thus, we report here PSNR and SSIM values for CE that we
obtained by running the code provided by the authors.1 To calculate SSIM values of
SII, which were not reported in [46], we run the authors’ code2 for SII.

To further validate the effectiveness of the evolutionary search, we evaluate two
baseline architectures; an architecture generated by a random search (RAND) and
an architecture with same depth as the best-performing architecture found by CGP-
CAE but having a constant number (64) of fixed size (3 × 3) filters in each layer
with a skip connection (BASE). In the random search, we generate 10 architectures
at random in the same search space as ours and report their average PSNR and SSIM
values. All other experimental setups are the same.

Table 7.5 shows the PSNR and SSIM values obtained using five methods on
three datasets and three masking patterns. We run the evolutionary algorithm three
times and report the average accuracy values of the three optimized CAEs. As
shown, CGP-CAE outperforms the other four methods for each of the dataset-
mask combinations. Notably, CE and SII use mask patterns for inference. To be
specific, their networks estimate only pixel values of the missing regions specified
by the provided masks, and then they are merged with the unmasked regions of
clean pixels. Thus, the pixel intensities of the unmasked regions are identical to
their ground truths. On the other hand, CGP-CAE does not use masks yet outputs

1https://github.com/pathak22/context-encoder.
2https://github.com/moodoki/semantic_image_inpainting.

https://github.com/pathak22/context-encoder
https://github.com/moodoki/semantic_image_inpainting

202 M. Suganuma et al.

Ground
truth

Input

CGP-CAE

Fig. 7.6 Examples of inpainting results obtained by CGP-CAE (CAEs designed by the evolution-
ary algorithm)

Table 7.6 Denoising results on BSD200

PSNR SSIM

Noise σ Rand BASE RED MemNet
CGP-
CAE Rand BASE RED MemNet

CGP-
CAE

30 27.25 27.00 27.95 28.04 28.23 0.7491 0.7414 0.8019 0.8053 0.8047

50 25.11 24.88 25.75 25.86 26.17 0.6468 0.6229 0.7167 0.7202 0.7255
70 23.50 23.22 24.37 24.53 24.83 0.5658 0.5349 0.6551 0.6608 0.6636

Comparison of results of two baseline architectures (RAND and BASE), RED [18], MemNet [38],
and CGP-CAE. The bold values indicate the best performance among the compared architectures

complete images such that the missing regions are hopefully correctly inpainted.
We then calculate the PSNR of the output image against the ground truth without
identifying missing regions. This difference should help CE and SII to achieve high
PSNR and SSIM values, but nevertheless CGP-CAE performs better.

Sample inpainted images obtained by CGP-CAE along with the masked inputs
and the ground truths are shown in Fig. 7.6. It is observed that overall CGP-CAE
stably performs; the output images do not have large errors for all types of masks. It
performs particularly well for random pixel masks (the middle column of Fig. 7.6);
the images are realistic and sharp. It is also observed that CGP-CAE tends to yield
less sharp images for those with a filled region of missing pixels. However, CGP-
CAE can accurately infer their contents, as shown in the examples of inpainting
images of numbers (the rightmost column of Fig. 7.6).

7.4.3.3 Results of the Denoising Task

We compare CGP-CAE to two baseline architectures (i.e. RAND and BASE
described in Sect. 7.4.3.2) and two state-of-the-art methods RED [18] and MemNet
[38]. Table 7.6 shows the PSNR and SSIM values for three versions of the BSD200
test set with different noise levels σ = 30, 50, and 70, in which the performance
values of RED and MemNet are obtained from [38]. CGP-CAE again achieves the
best performance for all cases except for a single case (MemNet for σ = 30). It
is worth noting that the networks of RED and MemNet have 30 and 80 layers,
respectively, whereas our best CAE has only 15 layers (including the decoder part

7 Designing CNN Architectures Using CGP 203

Fig. 7.7 Examples of images reconstructed by CGP-CAE for the denoising task. The first column
shows the input image with noise level σ = 50

and output layer), showing that our evolutionary method was able to find simpler
architectures that can provide more accurate results.

An example of an image recovered by CGP-CAE is shown in Fig. 7.7. As we can
see, CGP-CAE correctly removes the noise and produces an image as sharp as the
ground truth.

7.4.3.4 Analysis of Optimized Architectures

Table 7.7 shows the top five best-performing architectures designed by CGP-CAE
for the image inpainting task using center masks on the CelebA dataset and the
denoising task, along with their performances measured on their test datasets. One
of the best-performing architectures for each task is shown in Fig. 7.8. We can see
that although their overall structures do not appear unique, mostly because of the
limited search space of CAEs, the number and size of filters are quite different
across layers, which is difficult to manually determine. Although it is difficult to
provide a general interpretation of why the parameters of each layer are selected, we
can make the following observations: (1) regardless of the task, almost all networks
have a skip connection in the first layer, implying that the input images contain
essential information to yield accurate outputs; (2) 1 ×1 convolution seems to be an
important ingredient for both tasks; 1×1 convolution layers dominate the denoising
networks, and all the inpainting networks employ two 1 × 1 convolution layers; (3)
when comparing the inpainting networks to the denoising networks, the following
differences are apparent: the largest filters of size 5 × 5 tend to be employed by the
former more often than the latter (2.8 vs. 0.8 layers on average), and 1 × 1 filters
tend to be employed by the former less often than the latter (2.0 vs. 3.2 layers on
average).

204 M. Suganuma et al.

Table 7.7 Best-performing five architectures of CGP-CAE

Architecture (Inpainting) PSNR SSIM

CS(128, 3) − C(64, 3) − CS(128, 5) − C(128, 1) − CS(256, 5) −
C(256, 1) − CS(64, 5)

29.91 0.9344

C(256, 3) − CS(64, 1) − C(128, 3) − CS(256, 5) − CS(64, 1) −
C(64, 3) − CS(128, 5)

29.91 0.9343

CS(128, 5) − CS(256, 3) − C(64, 1) − CS(128, 3) − CS(64, 5) −
CS(64, 1) − C(128, 5) − C(256, 5)

29.89 0.9334

CS(128, 3) − CS(64, 3) − C(64, 5) − CS(256, 3) − C(128, 3) −
CS(128, 5) − CS(64, 1) − CS(64, 1)

29.88 0.9346

CS(64, 1)−C(128, 5)−CS(64, 3)−C(64, 1)−CS(256, 5)−C(128, 5) 29.63 0.9308

Architecture (Denoising) PSNR SSIM

CS(64, 3) − C(64, 1) − C(128, 3) − CS(64, 1) − CS(128, 5) −
C(128, 3) − C(64, 1)

26.67 0.7313

CS(64, 5) − CS(256, 1) − C(256, 1) − C(64, 3) − CS(128, 1) −
C(64, 3) − CS(128, 1) − C(128, 3)

26.28 0.7113

CS(64, 3) − C(64, 1) − C(128, 3) − CS(64, 1) − CS(128, 5) −
C(128, 3) − C(64, 1)

26.28 0.7107

CS(128, 3) − CS(64, 1) − C(64, 3) − C(64, 3) − CS(64, 1) − C(64, 3) 26.20 0.7047

CS(64, 5) − CS(128, 1) − CS(256, 3) − CS(128, 1) − CS(128, 1) −
C(64, 1) − CS(64, 3)

26.18 0.7037

C(F, k) indicates that the layer has F filters of size k × k without a skip connection. CS indicates
that the layer has a skip connection. This table shows only the encoder part of CAEs. For denoising,
the average PSNR and SSIM values of three noise levels are shown

Fig. 7.8 One of the best-performing architectures given in Table 7.7 for inpainting (upper) and
denoising (lower) tasks

7 Designing CNN Architectures Using CGP 205

7.5 Summary

This chapter introduced a neural architecture search for CNNs: a CGP-based
approach for designing deep CNN architectures. Specifically, the methods, CGP-
CNN for image classification and CGP-CAE for image restoration, were explained.
The methods generate CNN architectures based on the CGP encoding scheme
with highly functional modules and use the evolutionary algorithm to find good
architectures. The effectiveness and potential of CGP-CNN and CGP-CAE were
verified through numerical experiments. The experimental results of image classi-
fication showed that CGP-CNN can find a well-performing CNN architecture. In
the experiment on image restoration tasks, we showed that CGP-CAE can find a
simple yet high-performing architecture of a CAE. We believe that evolutionary
computation is a promising solution for NAS.

The bottleneck of the architecture search of DNN is the computational cost.
Simple yet effective acceleration techniques, termed rich initialization and early
termination of network training, can be found in [36]. Another possible acceleration
technique is starting with a small data size and increasing the training data for the
neural networks as the generation progresses. Moreover, to simplify and compact the
CNN architectures, we may introduce regularization techniques to the architecture
search process. Alternatively, we may be able to manually simplify the obtained
CNN architectures by removing redundant or less effective layers.

Considerable room remains for exploration of search spaces of architectures of
classical convolutional networks, which may apply to other tasks such as single
image colorization [48], depth estimation [3, 44], and optical flow estimation [9].

References

1. Akimoto, Y., Shirakawa, S., Yoshinari, N., Uchida, K., Saito, S., Nishida, K.: Adaptive
stochastic natural gradient method for one-shot neural architecture search. In: Proceedings of
the 36th International Conference on Machine Learning (ICML), vol. 97, pp. 171–180 (2019)

2. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using
reinforcement learning. In: Proceedings of the 5th International Conference on Learning
Representations (ICLR) (2017)

3. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-
scale deep network. In: Advances in Neural Information Processing Systems 27 (NIPS ’14),
pp. 2366–2374 (2014)

4. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via
Lamarckian evolution. In: Proceedings of the 7th International Conference on Learning
Representations (ICLR) (2019)

5. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. Journal of Machine
Learning Research 20(55), 1–21 (2019)

6. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks.
In: Proceedings of the 30th International Conference on Machine Learning (ICML), pp. 1319–
1327 (2013)

206 M. Suganuma et al.

7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level
performance on ImageNet classification. In: Proceedings of the International Conference on
Computer Vision (ICCV), pp. 1026–1034 (2015)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

9. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution
of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017)

10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: Proceedings of the 32nd International Conference on Machine
Learning (ICML), pp. 448–456 (2015)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd
International Conference on Learning Representations (ICLR) (2015)

12. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained cate-
gorization. In: Proceedings of the International Conference on Computer Vision Workshops
(ICCVW), pp. 554–561 (2013)

13. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion
deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8183–8192 (2018)

14. Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: ultra-deep neural networks without
residuals. In: Proceedings of the 5th International Conference on Learning Representations
(ICLR) (2017)

15. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proceedings of the 2nd International
Conference on Learning Representations (ICLR) (2014)

16. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings
of the International Conference on Computer Vision (ICCV), pp. 3730–3738 (2015)

17. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. In: Proceedings of
the International Conference on Learning Representations (ICLR) (2019)

18. Mao, X., Shen, C., Yang, Y.: Image restoration using very deep convolutional encoder-decoder
networks with symmetric skip connections. In: Advances in Neural Information Processing
Systems (NIPS), pp. 2802–2810 (2016)

19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics. In:
Proceedings of the International Conference on Computer Vision (ICCV), pp. 416–423 (2001)

20. Miikkulainen, R., Liang, J.Z., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B.,
Shahrzad, H., Navruzyan, A., Duffy, N., Hodjat, B.: Evolving deep neural networks. Preprint.
arXiv:1703.00548 (2017)

21. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in Cartesian genetic
programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

22. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proceedings of the European
Conference on Genetic Programming (EuroGP), pp. 121–132 (2000)

23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In:
Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 807–814
(2010)

24. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural
images with unsupervised feature learning. In: Advances in Neural Information Processing
Systems (NIPS) Workshop on Deep Learning and Unsupervised Feature Learning (2011)

25. Paszke, A., Chanan, G., Lin, Z., Gross, S., Yang, E., Antiga, L., Devito, Z.: Automatic
differentiation in PyTorch. In: Autodiff Workshop in Thirty-first Conference on Neural
Information Processing Systems (NIPS) (2017)

26. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature
learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2536–2544 (2016)

7 Designing CNN Architectures Using CGP 207

27. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via
parameter sharing. In: Proceedings of the 35th International Conference on Machine Learning
(ICML), vol. 80, pp. 4095–4104 (2018)

28. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q.V., Kurakin, A.: Large-scale
evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine
Learning (ICML), pp. 2902–2911 (2017)

29. Saito, S., Shirakawa, S.: Controlling model complexity in probabilistic model-based dynamic
optimization of neural network structures. In: Proceedings of the 28th International Conference
on Artificial Neural Networks (ICANN), Part II (2019)

30. Schaffer, J.D., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural
networks: a survey of the state of the art. In: Proceedings of International Workshop on
Combinations of Genetic Algorithms and Neural Networks (COGANN ’92), pp. 1–37 (1992)

31. Shirakawa, S., Iwata, Y., Akimoto, Y.: Dynamic optimization of neural network structures
using probabilistic modeling. In: Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI-18), pp. 4074–4082 (2018)

32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: Proceedings of the 3rd International Conference on Learning Representations
(ICLR) (2015)

33. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.
Evol. Comput. 10(2), 99–127 (2002)

34. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing
convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 497–504 (2017)

35. Suganuma, M., Ozay, M., Okatani, T.: Exploiting the potential of standard convolutional
autoencoders for image restoration by evolutionary search. In: Proceedings of the 35th
International Conference on Machine Learning (ICML), vol. 80, pp. 4771–4780 (2018)

36. Suganuma, M., Kobayashi, M., Shirakawa, S., Nagao, T.: Evolution of deep convolutional
neural networks using Cartesian genetic programming. Evol. Comput. (2019). https://doi.org/
10.1162/evco_a_00253. Early access

37. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

38. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: A persistent memory network for image restoration.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4539–4547 (2017)

39. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: MnasNet:
platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2019)

40. Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source framework
for deep learning. In: Proceedings of Workshop on Machine Learning Systems (LearningSys)
in The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)
(2015)

41. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility
to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

42. Xie, L., Yuille, A.: Genetic CNN. In: Proceedings of the International Conference on Computer
Vision (ICCV), pp. 1388–1397 (2017)

43. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search. In:
Proceedings of the International Conference on Learning Representations (ICLR) (2019)

44. Xu, D., Ricci, E., Ouyang, W., Wang, X., Sebe, N.: Multi-scale continuous CRFs as sequential
deep networks for monocular depth estimation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5354–5362 (2017)

45. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

https://doi.org/10.1162/evco_a_00253
https://doi.org/10.1162/evco_a_00253

208 M. Suganuma et al.

46. Yeh, R.A., Chen, C., Lim, T.Y., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic
image inpainting with deep generative models. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6882–6890 (2017)

47. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the British Machine
Vision Conference (BMVC), pp. 87.1–87.12 (2016)

48. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: European Conference on
Computer Vision (ECCV) 2016. Lecture Notes in Computer Science, vol. 9907, pp. 649–666.
Springer, Berlin (2016)

49. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: Proceedings of
the 5th International Conference on Learning Representations (ICLR) (2017)

	7 Designing Convolutional Neural Network Architectures Using Cartesian Genetic Programming
	7.1 Introduction
	7.2 Progress of Neural Architecture Search
	7.3 Designing CNN Architecture for Image Classification
	7.3.1 Representation of CNN Architectures
	7.3.2 Evolutionary Algorithm
	7.3.3 Experiment on Image Classification Tasks
	7.3.3.1 Experimental Setting
	7.3.3.2 Experimental Result

	7.4 Designing CNN Architectures for Image Restoration
	7.4.1 Search Space of Network Architectures
	7.4.2 Representation of CAE Architectures
	7.4.3 Experiment on Image Restoration Tasks
	7.4.3.1 Experimental Settings
	7.4.3.2 Results of the Inpainting Tasks
	7.4.3.3 Results of the Denoising Task
	7.4.3.4 Analysis of Optimized Architectures

	7.5 Summary
	References

