
Chapter 4
Automated Development of DNN Based
Spoken Language Systems Using
Evolutionary Algorithms

Takahiro Shinozaki, Shinji Watanabe, and Kevin Duh

Abstract Spoken language processing is one of the research areas that has con-
tributed significantly to the recent revival in neural network research. For example,
speech recognition has been at the forefront of deep learning research, inventing
various novel models. Their dramatic performance improvements compared to
previous state-of-the-art implementations have resulted in spoken language systems
being deployed in a wide range of applications today. However, these systems
require intensive tuning of their network designs and the training setups in order to
achieve maximal performance. The laborious effort by human experts is becoming
a prominent obstacle in system development. In this chapter, we first explain the
basic concepts and the neural network-based implementations of spoken language
processing systems. Several types of neural network models will be described. We
then introduce our effort to automate the tuning of the system meta-parameters using
evolutionary algorithms.

4.1 Spoken Language Processing Systems

An automatic speech recognition system takes a waveform signal of an utterance and
outputs the corresponding text as the recognition result. It functionally corresponds
to the human ear. Contrary, a speech synthesis system takes text as input and outputs
a waveform signal of the synthesized voice as the output, which corresponds to
the human mouth. Depending on the applications, they are used as a stand-alone

T. Shinozaki (�)
Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
e-mail: shinot@ict.e.titech.ac.jp

S. Watanabe
Johns Hopkins University, Baltimore, MD, USA
e-mail: shinjiw@ieee.org

K. Duh
Johns Hopkins University, Baltimore, MD, USA
e-mail: kevinduh@cs.jhu.edu

© Springer Nature Singapore Pte Ltd. 2020
H. Iba, N. Noman (eds.), Deep Neural Evolution, Natural Computing Series,
https://doi.org/10.1007/978-981-15-3685-4_4

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3685-4_4&domain=pdf
mailto:shinot@ict.e.titech.ac.jp
mailto:shinjiw@ieee.org
mailto:kevinduh@cs.jhu.edu
https://doi.org/10.1007/978-981-15-3685-4_4

98 T. Shinozaki et al.

application or as a sub-component of other systems such as spoken dialogue systems
and spoken translation systems.

4.1.1 Principle of Speech Recognition

In speech recognition systems, the input waveform is typically analyzed by short-
time Fourier transform by segmenting the waveform with overlapping short win-
dows as shown in Fig. 4.1. The window width and the shift are typically 25 and
10 ms to balance the frequency and time resolutions to capture temporal changes of
frequency patterns of sub-phone units. As a result of the analysis, the waveform
is converted as a time sequence of fixed-dimensional vectors, where the rate
corresponds to the reciprocal of the window shift. The obtained frequency pattern
vector may be used as it is, or further analyzed to obtain Mel-frequency cepstral
coefficients (MFCCs) [1] or perceptual linear predictive (PLP) [2]. In either the
case, the result is a sequence of vectors that contain useful information for speech
recognition, where a time position of a vector is referred to as a frame. The process
is called feature extraction.

Let O = 〈o1, o2, · · · , oT 〉 be a sequence of acoustic feature vectors of length T

extracted from an utterance, and W = 〈w1, w2, · · · , wN 〉 be a word sequence or a
text of length N . Speech recognition is formulated as a problem of finding Ŵ that
maximizes the conditional probability P (W |O) as shown in Eq. (4.1), or drawing a
sample W̃ from P (W |O) as shown in Eq. (4.2).

Ŵ = argmax
W

P (W |O) , (4.1)

Window width (e.g. 25ms)

shi� (e.g. 10ms)

Feature sequence: O

Time

Time

Sound waveform (e.g. 16kHz sampling)

(|)

Probability model

Hello Everyone

Recogni�on result:W

Maximiza�on
or sampling

Fig. 4.1 General framework of speech recognition. A sound signal is first converted to a sequence
of feature vectors O by applying a sliding window and frequency analysis, etc. The recognition
result is obtained from the posterior distribution P (W |O) of a word sequence W given the feature
sequence O by maximization or probability sampling

4 Automated Development of DNN Based Spoken Language Systems Using. . . 99

W̃ ∼ P (W |O) . (4.2)

Finding Ŵ means outputting the most likely recognition hypothesis, whereas
drawing a sample W̃ corresponds to output a hypothesis according to the probability.
While the former is more direct to the goal of speech recognition, the latter
sometimes have an advantage in the model training.

The conditional probability P (W |O) may be directly or indirectly modeled. In
the latter case, the Bayes’ rule is applied as shown in Eq. (4.3).

P (W |O) = P (O|W) P (W)

P (O)
∝ P (O|W) P (W) . (4.3)

The models of P (O|W) and P (W) are referred to as an acoustic model and
a language model, respectively. The acoustic model describes the generative
distribution of the acoustic feature sequence O given the text W , whereas the
language model describes the distribution of the text W . The denominator P (O)

in Eq. (4.3) may be ignored for the maximization or the sampling purposes, since it
is a constant in the processes. Hidden Markov model (HMM) has long been used for
acoustic modeling in traditional speech recognition systems. The direct modeling of
P (W |O) had been intricate until recently for large vocabulary speech recognition.
However, the approach is rapidly developing as end-to-end speech recognition with
the progress of deep learning.

4.1.2 Hidden Markov Model Based Acoustic Modeling

HMM consists of a finite set of internal states {0, 1, · · · , F }, a set of emission
distributions {P (o|s)} each of which is associated to a state s, and a set of state
transition probabilities

{
P

(
s′|s)} from a state s to a state s′ as shown in Fig. 4.2.

The initial state s = 0 and the final state s = F represent the beginning and
end of the state transitions, and they do not have the emission distribution. HMM
gives a model of joint probability of P (O, S) as shown in Eq. (4.4), where S =
〈s0 = 0, s1, s2, · · · , sT , sT +1 = F 〉 is a state sequence that starts with the initial
state and ends in the final state. By marginalizing over all possible state sequences S,
the probability of observing the feature sequence is obtained as shown in Eq. (4.5).

Pθ (O, S) = Pθ (sT +1|sT)

T∏

t=1

Pθ (st |st−1) Pθ (ot |st) , (4.4)

Pθ (O) =
∑

S

Pθ (O, S) , (4.5)

100 T. Shinozaki et al.

1 3 40 2

o o o

()opS1 ()opS2
()opS3

1.0

(1| 1)

(2| 1)

(2| 2) (3| 3)

(3| 2) (4| 3)

Time

Acous�c
feature
sequence

Fig. 4.2 Hidden Markov model. A circle represents a state, and a directed arc represents a
transition. This example HMM has a left-to-right structure with three emission states and an initial
and a final states

where θ indicates a set of all parameters of the emission distributions and the
transition probabilities. An acoustic model Pθ (O|W) is obtained by preparing an
HMM for each word sequence W as shown in Eq. (4.6).

P� (O|W) = PθW (O) =
∑

S

PθW (O, S) , (4.6)

where θW indicates W dependent parameter set, and � is a union of θW for all
W . Since the number of possible word sequences is exponential to the length
of the sequence, separately preparing an HMM for each sequence is intractable
both in terms of required memory and parameter estimation from finite training
data. Instead, a set of HMMs is prepared to model each phoneme p, and an
utterance HMM is composed by concatenating the phoneme HMMs according to
the pronunciation of the word sequence as shown in Fig. 4.3. The phoneme HMM
set is referred to as a mono-phone model.

A limitation of the mono-phone approach is that the same phoneme HMM
is used regardless of the surrounding phoneme context in the utterance. Since
human voice is generated by modulating the shape of the vocal tract by moving
mouth, the change is not instant. Therefore, the spectral pattern of a phoneme
is affected by surrounding phonemes. For example, spectral pattern of the same
phoneme /ih/ is notably different when it appears in pronunciations of “big” and
“bit.” Context-dependent phoneme model is used to improve the modeling accuracy,
where separate HMMs are prepared for the same phoneme for different preceding
and succeeding phoneme contexts. The most popular context-dependent phoneme
modeling is tri-phone, where a set of HMMs for a phoneme is prepared for one

4 Automated Development of DNN Based Spoken Language Systems Using. . . 101

/ah/

/ih/
:

/b/
:

/g/
:

/t/
:

big bag

Phone HMM set

/b/ /ih/ /g/ /b/ /ah/ /g/

bit big

/b/ /ih/ /t/ /b/ /ih/ /g/

U�erance HMMs

Fig. 4.3 Phoneme HMM based utterance modeling

preceding and one succeeding phonemes. When the number of phonemes is N ,
the number of tri-phone HMM is N3, which is much larger than N of the mono-
phone model. It causes a problem in the model parameter estimation especially
for rare context and phoneme pairs since few or even no samples are available in
the training set. To address the problem, clustering is performed for the context-
dependent HMM states to control the model complexity by merging the HMM states
[3].

The state emission distribution P (o|s) has traditionally been modeled by a
mixture of Gaussian distributions (GMM) as shown in Eq. 4.7, where wi is a mixture
weight (0 < wi and

∑
i wi = 1) and N (o|μi,�i) is a Gaussian distribution with

mean μi and variance �i .

P (o|s) =
∑

i

wiN (o|μi,�i) . (4.7)

Later, it has been replaced by deep neural networks (DNNs) as shown in Eq. 4.8,
where P (s|o) is obtained by the neural network.

P (o|s) = P (s|o)p (o)

P (s)
∝ P (s|o)

P (s)
. (4.8)

Figure 4.4 shows the whole structure of DNN-HMM. The DNN-HMM often
outperforms GMM-HMM with the recognition performance, especially when a
larger amount of training data is available. The number of clustered HMM states,
neural network structure, and their learning conditions are meta-parameters to be
tuned during the system development.

102 T. Shinozaki et al.

/a/ /i/ /N/

So�max

Input feature vector

Start
End

Fig. 4.4 Example of a DNN-HMM mono-phone model

4.1.3 End-to-End Speech Recognition System

For a simple speech recognition task such as vowel recognition from a single feature
vector, where W is a set of vowels instead of a variable-length sequence of words
and O is a single fixed-dimensional vector rather than the sequence of the vectors,
the probability of P (W |O) can be directly modeled by a simple feed-forward
neural network with a soft-max output layer as shown in Fig. 4.5. For general cases
where O is a feature vector sequence, and W is a word sequence, variable-length
input and output need to be handled. Neural networks realize it with some unique
architectures such as encoder-decoder network with an attention mechanism [4] and
Connectionist Temporal Classification (CTC) [5]. Figure 4.6 shows the architecture
of a simple encoder-decoder network without the attention mechanism. It consists
of an encoder network and a decoder network. The encoder network accepts a
variable-length input and embeds it to a fixed-dimensional vector. The decoder
network works by estimating a probability distribution of the next word given the
current word wt , from which an output word wt+1 is obtained by random sampling
following the distribution. Initially, a special word 〈S〉 that represents the beginning
of an utterance is input as w0, and a word w1 is sampled. Then, w2 is obtained
using w1 as the input. The process is repeated until a special word 〈/S〉 is sampled
that indicates the end of an utterance. The architecture has generality to handle
sequential input and output, and can be used for translation [6] and dialogue systems
[7], etc., by simply changing the training data and the input/output representations.
In addition, the extended architecture with the attention mechanism can explicitly
handle the alignment problem between input and output [8].

4 Automated Development of DNN Based Spoken Language Systems Using. . . 103

0.1 0.4 0.20.15 0.15
′ ′ ′ ′ ′

Output: Categorical distribu�on

Input: An acous�c feature vector

So�max

Fig. 4.5 Frame-wise vowel recognition using a feed-forward neural network. The network directly
models P (W |O)

<s>

name

Encoder network

Decoder network

</s>My is TS-800

Sampling from posterior

feature vector sequence
Input

Output
Word sequence

...

Fig. 4.6 End-to-end speech recognition system based on a simple encoder-decoder network
without an attention mechanism

These systems are referred to as end-to-end systems since they directly model
the input/output relationship from O to W by a monolithic neural network in
contradistinction to the approaches that construct a system from separately opti-
mized sub-models such as the acoustic and the language models, as discussed in
Sect. 4.1.1. The number of hidden layers in the encoder and the decoder networks,
the number of neuron units per a hidden layer, the learning conditions, etc., are
meta-parameters to be tuned.

104 T. Shinozaki et al.

4.1.4 Evaluation Measures

The results of speech recognition are evaluated by comparing the recognition
hypothesis R = 〈h1, h2, · · · , hm〉 with a reference word sequence R =
〈r1, r2, · · · , rn〉, where m and n are their lengths. Let hj corresponds to ri when
we make a word by word alignment of the hypothesis and the reference. Figure 4.7
shows an example of the alignment. The word hi is counted as correctly recognized
if it is the same as ri , and mistakenly substituted to another word if it is not. If there
is no hj for ri , it is counted as a deletion error, and if there is no ri for hj , it is
counted as an insertion error. Based on the alignment, word error rate (WER) is
defined by Eq. (4.9).

WER = Ns + Ni + Nd

n
= Ns + Ni + Nd

Nc + Ns + Nd

, (4.9)

where Nc is the number of correctly recognized words, and Ns , Ni , Nd are the
numbers of substitution, insertion, and deletion errors. The WER score depends on
the alignment, and the lowest score is used as the evaluation score of the recognition
hypothesis. The search of the best alignment is efficiently performed by using the
dynamic programming [9] algorithm. Smaller WER indicates better recognition
performance, and the minimum WER score is 0.0. The WER can take larger values
than 1.0 because of the existence of the insertion error. Another measure is word
accuracy (WACC), which is obtained by negating WER and adding 1.0 as shown in
Eq. (4.10). Larger WACC indicates better performance.

WACC = 1.0 − WER. (4.10)

The WER (or WACC) is evaluated for a development set and an evaluation set. The
former score is used during the training of the system for the meta-parameter tuning,
and the latter is used as the final performance measure. For dialogue and translation
systems where the correct answer is not unique, other measures such as BLEU [10]
are used which compare the system output and the reference in a somewhat more
relaxed manner in the alignment.

I have a pen

eye have up

Reference
(length n=4)

Hypothesis
(length m=3)

Subs�tu�on Correct Dele�on Subs�tu�on Inser�on

pen

Fig. 4.7 An example of a word alignment for scoring speech recognition results

4 Automated Development of DNN Based Spoken Language Systems Using. . . 105

Algorithm 1 Genetic algorithm (GA)
1: for k = 1 to K0 do
2: Initialize xk

3: end for
4: while not convergence do
5: for k = 1 to K (K0 for the first iteration) do
6: Decode gene xk to configuration Ck

7: Evaluate configuration Ck to obtain score yk = f (Ck)

8: end for
9: Generate child genes {xk}Kk=1 from current (parent) genes {xk}Kk=1 and their scores {yk}Kk=1

by selection, mating, and mutation
10: end while
11: return Extract the best gene x�

4.2 Evolutionary Algorithms

Let y = f (x) be an evaluation function that represents the accuracy of a speech
recognition system (or some performance measure of a spoken language processing
system) built from tuning meta-parameters represented by D-dimensional vector x.
The process of finding the optimal tuning parameter x∗ to maximize the accuracy
can be formulated as the following optimization problem:

x∗ = argmax
x∈X̂

f (x), (4.11)

where X̂ is a set of candidates for x. Because speech recognition systems are
extremely complex, there is no analytical form for the solution. We must address
this optimization problem without assuming specific knowledge for f , i.e., by
considering f as a black box. Another important aspect of this problem is that
evaluating the function value f (x) is expensive because training a large vocabulary
model and computing its development set accuracy can take considerable time.
Thus, the key point here is for the black-box optimization to generate an appropriate
set of hypotheses X̂ to find the best x∗ in the smallest number of the training and
evaluation steps (f (x)) as possible.

4.2.1 Genetic Algorithm

Genetic algorithm (GA) is a search heuristic motivated by the biological evolution
process. This algorithm is based on (1) the selection of genes (also called “chromo-
some representations”) according to their scores, pruning inferior genes for the next
iteration (generation); (2) mating pairs of genes to form child genes that mix the
properties of the parents, and (3) mutation of a part of a gene to produce new gene.

106 T. Shinozaki et al.

A popular selection method, which we will use in the later experiment, is the
tournament method. This method first extracts a subset of M(< K) hypotheses
(X̂k = {xk′ }M

k′=1) generated from a total of K genes randomly, and then it selects
the best gene xk∗ in the subset by their scores, i.e.,

xk∗ = argmax
xk′⊂X̂k

f (xk′). (4.12)

The random subset extraction step can provide variations of genes giving a chance
of survival not only to the best gene but also to superior genes, and the best selection
step in a subset guarantees the exclusion of inferior genes. This process is repeated
K times to obtain a set of survived genes.

For the mating process, a typical method is the one-point crossover, which first
finds a pair of (parent) genes (xp

k1
and x

p
k2

) from the selected genes and then swaps
the {1, · · · , d} elements to {d + 1, · · · ,D} elements of these two vectors to obtain
the following new (child) gene pair (xc

k1
and xc

k2
):

xc
k1

=

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

x
p
k1,1
...

x
p
k1,d

x
p
k2,d+1

...

x
p
k2,D

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, xc
k2

=

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

x
p
k2,1
...

x
p
k2,d

x
p
k1,d+1

...

x
p
k1,D

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

. (4.13)

The position d is randomly sampled. As the iteration increases, these processes
provide appropriate genes that encode optimal DNN configurations.

Algorithm 1 summarizes the GA procedure. The process is repeated until the
evaluation score is converged, and the best gene x∗ is extracted.

4.2.2 Evolution Strategy

Evolution strategy (ES) is a population-based meta-heuristic optimization algorithm
that is similar to GA. A difference from GA is that ES represents a gene x

by a real-valued vector. Covariance matrix adaptation ES (CMA-ES) [11] is an
ES, which is closely related to natural ES [12]. Although both CMA-ES and
natural ES have several variations, it has been shown that their core parts are
mathematically equivalent [13]. CMA-ES was proposed earlier than natural ES, but
the mathematical motivation of natural ES is more concise. Here, we follow the
derivation of natural ES as the explanation of CMA-ES.

CMA-ES uses a multivariate Gaussian distribution N(x|θ) having a parameter
set θ = {μ,�} to represent a gene distribution, where μ is a D-dimensional mean

4 Automated Development of DNN Based Spoken Language Systems Using. . . 107

vector, � is a D × D-dimensional covariance matrix, and D is the gene size.
It seeks a distribution that is concentrated in a region with high values of f (x)

such that sampling from the distribution provides superior genes. The search of
the distribution is formulated as a maximization problem of the expected value
E[f (x)|θ] of f (x) under a Gaussian distribution N(x|θ) as shown in Eqs. (4.14)
and (4.15).

E[f (x)|θ] =
∫

f (x)N(x|θ)dx, (4.14)

θ̂ = argmax
θ

E[f (x)|θ]. (4.15)

To maximize the expectation, the gradient ascent method can be used to
iteratively update the current parameter set θn starting from an initial parameter
set θ0, as shown in Eq. (4.16).

θ̂n = θ̂n−1 + ε∇θE[f (x)|θ] |
θ=θ̂n−1

, (4.16)

where n is an iteration index and ε (> 0) is a step size. To evaluate the gradient,
CMA-ES uses the relation of ∇θ logN(x|θ) = 1

N(x|θ)
∇θN(x|θ), which is called

a “log-trick.” By approximating the integration by sampling after applying the log-
trick, the gradient is expressed by Eq. (4.19).

∇θE[f (x)|θ] |
θ=θ̂n−1

(4.17)

=
∫

(f (x) ∇θ logN(x|θn−1))N(x|θn−1)dx (4.18)

≈ 1

K

K∑

k

yk∇θ logN(xk|θn−1), (4.19)

xk ∼ N(x|θn−1),

where xk is a gene sampled from the previously estimated distribution N(x|θ̂n−1),
and yk is the evaluated value of the function yk = f (xk). The set of K samples at
an iteration step corresponds to a set of individuals at a generation in an evolution.
By repeating the generations, it is expected that superior individuals are obtained.
Note the formulation is closely related to the reinforcement learning. If we interpret
the Gaussian distribution as a policy function taking no input assuming the world is
a constant, and regard the gene as an action, it is a special case of the policy gradient
based reinforcement learning [14].

Although simple gradient ascent may be directly performed using the obtained
gradient, CMA-ES uses the natural gradient ∇̃θE[f (x)|θ] = F−1∇θE[f (x)|θ]
rather than the original gradient ∇θE[f (x)|θ] to improve the convergence speed,

108 T. Shinozaki et al.

where F is a Fisher information matrix defined by Eq. (4.20).

F (θ) =
∫

N(x|θ)∇θ logN(x|θ)∇θ logN(x|θ)T dx. (4.20)

By substituting the concrete Gaussian form for N(x|θ), the update formulae for μ̂n

and �̂n are obtained as shown in Eq. (4.21).

⎧
⎪⎪⎨

⎪⎪⎩

μ̂n = μ̂n−1 + εμ

∑K
k=1 w(yk)(xk − μ̂n−1),

�̂n = �̂n−1 + ε�

∑K
k=1 w(yk)

·((xk − μ̂n−1)(xk − μ̂n−1)
ᵀ − �̂n−1

)
,

(4.21)

where ᵀ is the matrix transpose. Note that, as in [11], yk in Eq. (4.19) is approxi-
mated in Eq. (4.21) as a weight function w(yk), which is defined as:

w(yk) = max{0, log(K/2 + 1) − log(R(yk))}
∑K

k′=1 max{0, log(K/2 + 1) − log(R(yk′))} − 1

K
, (4.22)

where R(yk) is a ranking function that returns the descending order of yk among
y1:K (i.e., R(yk) = 1 for the highest yk, R(yk) = K for the smallest yk, and
so forth). This equation only considers the order of y, which makes the updates
less sensitive to the evaluation measurements (e.g., to prevent different results using
word accuracies and the negative sign of error counts).

Algorithm 2 summarizes the CMA-ES optimization procedure, which gradually
samples neighboring tuning parameters from the initial values. Because CMA-ES
uses a real-valued vector as a gene, it is naturally suited for tuning continuous-valued
meta-parameters. To tune discrete-valued meta-parameters, it needs a discretization
by some means. The evaluation of f (xk) can be performed independently for each
k. Therefore, it is easily adapted to parallel computing environments such as cloud
computing services for shorter turnaround times. The number of samples, K , is
automatically determined from the number of dimensions of x [11], or we can set it
manually by considering computer resources.

4.2.3 Bayesian Optimization

Even though Bayesian optimization (BO) is motivated differently from ES and GA,
in practice, there are several similarities. Especially when it is palatalized, a set
of individuals are evaluated at each update stage where a fixed-dimensional vector
specifies the configuration of an individual.

While CMA-ES involves a distribution of the tuning parameter x taking the
expectation over x, BO uses a probabilistic model of the output y to evaluate an
acquisition function that evaluates the goodness of x. Several acquisition functions

4 Automated Development of DNN Based Spoken Language Systems Using. . . 109

Algorithm 2 CMA-ES

1: Initialization of μ̂0 and �̂0, and y�
0 = ∅

2: for n = 1 to N do
3: for k = 1 to K do
4: Sample xk from N(x|μ̂n−1, �̂n−1)

5: Evaluate yk = f (xk)

6: end for
7: Rank {yk}Kk=1

8: Update μ̂n and �̂n

9: Store y�
n = max{y1:K, y�

n−1} corresponding x�
n

10: end for
11: return {x�

N , y�
N }

have been proposed [15]. Here, we use expected improvement, which is suggested
as a practical choice [16]. The expected improvement is defined as:

aEI (xk) =
∫

max{0, y − y∗
k−1}p(y|D1:k−1, xk)dy, (4.23)

where max
{
0, y − y∗

k−1

}
is an improvement measure based on the best score

y∗
k−1 = max1≤k′≤k−1 yk′ among k − 1 previous scores, and p (y|D1:k−1, xk) is

the predictive distribution of y given xk and the already observed data set D1:k−1 =
{x1:k−1, y1:k−1} modeled by a Gaussian process [17].

BO then performs a deterministic search for the next candidate x̂k by maximizing
the expected improvement over y:

x̂k = argmax
xk

aEI (xk). (4.24)

Equation (4.24) selects the xk that is likely to lead to a high score of yk.
The Gaussian process models the joint probability of the k scores [y�

1:k−1, y]� as
a k-dimensional multivariate Gaussian with a zero mean vector and a Gram matrix
K as covariance matrix:

p(y1:k−1, y | x1:k) = N
([

y1:k−1
y

] ∣
∣
∣0,K

)
, (4.25)

K =
[

G g(xk)

g(xk)
� g(xk, xk)

]
, (4.26)

where g(x, x′) is a kernel function, G is a Gram matrix with elements Gi,j =
g(xi , xj) for 1 ≤ i, j ≤ k − 1, and g(xk) = [g(x1, xk), . . . , g(xk−1, xk)]�.
The predictive distribution of y given y1:k−1 is obtained as a univariate Gaussian
distribution by using Bayes’ theorem:

p(y | D1:k−1, xk) = p(y | y1:k−1, x1:k)

= N(y | μ(xk), σ
2(xk)),

(4.27)

110 T. Shinozaki et al.

Algorithm 3 Bayesian optimization (BO)
1: Set the domain X of x̂0, and ŷ0 = ∅
2: for k = 1 to K do
3: Compute x̂k = argmaxxk

aEI (xk)

4: Evaluate yk = f (x̂k)

5: Store y�
k = max{yk, y

�
k−1} corresponding x�

k

6: end for
7: return {x�

K , y�
K }

where the mean μ(xk) and variance σ 2(xk) are given as:

{
μ(xk) = g(xk)

�G−1y1:k−1,

σ 2(xk)) = g(xk, xk) − g(xk)
�G−1g(xk).

(4.28)

Based on this predictive distribution, we can analytically evaluate the expected
improvement aEI (xk) by substituting Eq. (4.27) into (4.23), and numerically obtain
x̂k by Eq. (4.24).

The basic algorithm of BO is shown in Algorithm 3. While one needs to set initial
values for x for CMA-ES, one needs to set the domain of x for BO. Parallelization
can be performed when computing the expected improvement function aEI (xk)

with Monte Carlo sampling. However, the greedy search resulting from BO often
selects tuning parameters on the edges of the parameter domains, which leads to
extremely long function evaluations when the dimension of x is large. We have
observed that these actually make the evaluation difficult in our experiments.

4.3 Multi-Objective Optimization with Pareto Optimality

In Sect. 4.2, we explained meta-parameter optimization methods for single objec-
tives, such as the recognition accuracy. Sometimes, other objectives are also
important in real applications. For example, smaller DNN size is preferable because
it affects the computational costs for both training and decoding. In this section, we
explain multi-objective CMA-ES with Pareto optimality.

4.3.1 Pareto Optimality

Without loss of generality, assume that we wish to maximize J objectives with
respect to x jointly, which are defined as:

F(x) � [f1(x), f2(x), . . . , fJ (x)]. (4.29)

4 Automated Development of DNN Based Spoken Language Systems Using. . . 111

Because objectives may conflict, we adopt a concept of optimality known as
Pareto optimality [18]. For jointly optimizing multiple objectives, it needs to satisfy
the following terms:

{
fj (xk) ≥ fj (xk′) ∀ j = 1, .., J

fj (xk) > fj (xk′) ∃ j = 1, .., J.
(4.30)

Then, we say that xk dominates xk′ and write F(xk) � F(xk′). Given a set of
candidate solutions, xk is Pareto optimal iff no other xk′ exists such that F(xk′) �
F(xk).

Pareto optimality formalizes the intuition that a solution is good if no other
solution outperforms (dominates) it in all objectives. Given a set of candidates, there
are generally multiple Pareto-optimal solutions; this is known as the Pareto frontier.
Note that an alternative approach is to combine multiple objectives into a single
objective via a weighted linear combination:

∑

j

βjfj (x), (4.31)

where
∑

j βj = 1 and βj > 0. The advantage of the Pareto definition is that weights
βj need not be specified and it is more general, i.e., the optimal solution obtained
by any setting of βj is guaranteed to be included in the Pareto frontier. Every {x1:K }
can be ranked by using the Pareto frontier, which can adapt to meta-heuristics.

4.3.2 CMA-ES with Pareto Optimality

We realize multi-objective CMA-ES for a low WER and small model size by
modifying the rank function R(yk) used in Eq. (4.22). Given a set of solutions
{xk}, we first assign rank = 1 to those on the Pareto frontier. Then, we exclude
these rank 1 solutions and compute the Pareto frontier again for the remaining
solutions, assigning them rank 2. This process is iterated until no {xk} remain, and
we ultimately obtain a ranking of all solutions according to multiple objectives. The
remainder of CMA-ES remains unchanged; by this modification, future generations
are drawn to optimize multiple objectives rather than a single objective. With some
bookkeeping, this ranking can be computed efficiently in O(J · K2) [19].

Algorithm 4 summarizes the CMA-ES optimization procedure with Pareto
optimality, which is used to rank the multiple objectives F(xk). The obtained rank
is used to update the mean vector and covariance matrix of CMA-ES. CMA-ES
gradually samples neighboring tuning parameters from the initial values and finally
provides a subset of solutions, {x, F (x)}, that lie on the Pareto frontier (rank 1) of
all stored N × K samples.

112 T. Shinozaki et al.

Algorithm 4 Multi-objective CMA-ES

1: Initialization of μ̂0 and �̂0
2: for n = 1 to N do
3: for k = 1 to K do
4: Sample xk from N(x|μ̂n−1, �̂n−1)

5: Evaluate J objectives F(xk) � [f1(xk), f2(xk), . . . , fJ (xk)]
6: end for
7: Rank {F(xk)}Kk=1 according to Pareto optimality

8: Update μ̂n and �̂n

9: end for
10: return subset of solutions {x, F (x)} that lie on the Pareto frontier (rank 1) of all stored N ×K

samples

4.3.3 Alternative Multi-Objective Methods

There is a rich literature of multi-objective methods for genetic algorithms. Refer to
[20, 21] for a survey of techniques. One class of methods utilizes Pareto optimality
in estimating the fitness F(x) of each solution. Examples include the widely used
NSGA-II [19], and the Pareto CMA-ES method we described in Sect. 4.3.2 adopts
a very similar approach.

There are also multi-objective genetic algorithms that do not utilize the concept
of Pareto fitness. For example, VEGA [22] divides the selection of offspring
population into seperate groups based on different objectives, then allow crossover
operations across groups. HGLA [23] runs a genetic algorithm on a linear combina-
tion of objectives; the combination weights are not fixed but evolved simultaneously
with the solutions. All these methods should be applicable to the problem of
automatic optimization of the DNN meta-parameters, but we are not aware of any
large-scale empirical evaluation.

For Bayesian optimization, [24] proposed an acquisition function which chooses
the x to maximally reduce the entropy of the posterior distribution over the Pareto
set. This has been evaluated for automatic optimization of speed and accuracy of
DNNs on the MNIST image classification, with promising results. There are also
methods based on using a combination of multiple objectives to a single objective,
e.g. [25].

4.4 Experimental Setups

4.4.1 General Setups

We applied the evolutionary algorithms to tune large vocabulary speech recognition
systems [26]. Figure 4.8 shows the overall tuning process. The experiments were
performed using the Kaldi speech recognition toolkit with speech data from the

4 Automated Development of DNN Based Spoken Language Systems Using. . . 113

Evalua�on
Set

200
48

0.123
0.435

1
0
1
:

A set of
genes

HidSize1=205
hidSize2=121
Learnrate1=0.123
Learnrate3=0.435
Node2in=1
Node3in=1,2
Node4in=3

:

A set of
configura�on files

Development
Set

gene1 77.3
gene2 65.2
gene3 82.3
gene4 0
gene5 48.3

:

Score lists

CMA-ES / GA / BO

System Training
and evalua�on

Development
set scores

Evalua�on
set scores

Evolu�onary Algorithms

Fig. 4.8 Evolutionary tuning process of ASR systems

corpus of spontaneous Japanese (CSJ) [27], which is a popular Japanese speech
dataset. We performed two separate experiments with training sets having different
amounts of data: one consists of 240 h of academic presentations, whereas the
other is a 100-h subset. A common development set consisting of 10 academic
presentations was used in GA, CMA-ES, and BO to evaluate the individuals for
the black-box optimization. The official evaluation set defined in CSJ consisting of
10 academic presentations totalling 110 min was used as the evaluation set.

Acoustic models were trained by first creating a GMM-HMM by maximum like-
lihood estimation and then building a DNN-HMM by pre-training and fine-tuning
using alignments generated by the GMM-HMM. For the performance evaluation
of the system, the DNN-HMM was used as the final model. The language model
was a 3-gram model trained on CSJ with academic and other types of presentations,
which amounted to 7.5 million words in total. The vocabulary size was 72 k. Speech
recognition was performed using the OpenFST WFST decoder [28]. As an initial
configuration, we borrowed the settings from the Kaldi recipe for the Switchboard
corpus (i.e., egs/swbd/s5b). We chose the recipe because this task was similar, while
the language was different and because it was manually well tuned and publicly
available.

For the experiments, TSUBAME 2.5 supercomputer1 was used. A maximum
of 44 NVIDIA K20X GPGPUs was used in parallel through the message-passing

1https://www.gsic.titech.ac.jp/en/tsubame.

https://www.gsic.titech.ac.jp/en/tsubame

114 T. Shinozaki et al.

interface (MPI). We used the Spearmint package2 for BO and the Python version of
Hansen’s implementation3 for CMA-ES.

Further, we ran two additional experiments utilizing a newer version of the Kaldi
toolkit and the CSJ recipe to confirm the effect of the evolution.4 One is based on
the nnet1 script and the other is based on the chain script. While nnet1 adopts basic
neural network structure, chain adopts TDNN. The definitions of the training and the
evaluation sets are the same as before, but the development is different. The reason
is that the recipe scripts internally make the development set by holding-out a subset
of the training set, and the new recipe script has a different implementation from the
old one. The new development set amounted to 6.5 h having 4000 utterances from
39 academic presentations. The experiments were performed using TSUBAME 3.0
using 30 P100 GPGPUs in parallel.

4.4.2 Automatic Optimizations

In the evolution experiments, feature types, DNN structures, and learning param-
eters were optimized. The first and second columns of Table 4.1 describe these
variables. We specify three base feature types (feat_type) for the GMM-HMM
and DNN-HMM models: MFCC,PLP, and filter bank (FBANK). The dimensions
of these features were 13, 13, and 36, respectively. The GMM-HMMs were first
trained directly using the specified base features and their delta [29] and delta-
delta. Then, they were re-trained using 40-dimensional LDA [30]-compressed and
MLLT [31]-transformed features that were obtained from composite features made
by concatenating 9 frames of the base features, and fMLLR [31]-based speaker
adaptive training was performed. The DNN-HMMs were trained using features that
were expanded again from the fMLLR features, splicing 5 pre- and post-context
frames. The other settings were the same as those used in the Kaldi recipe.

CMA-ES uses genes represented as real-valued vectors, mappings from a real
scalar value to a required type are necessary, depending on the parameters. For the
mapping, we used ceil(10x) for converting positive continuous values to integers
(e.g., splice). Similarly, we used 10x for positive real values (e.g., learning rates),
and mod (ceil (abs (x) ∗ 3) , 3) for a multiple choice (feature type). For example,
if a value of feature type (feat_value) in a gene is −1.7, it is mapped to 0, and
indicates MFCC. If it is 1.4, it is mapped to 2, which corresponds to PLP in our
implementation. The third column of the tables presents the baseline settings, which
was also used as an initial meta-parameter configuration. The MFCC-based baseline
system with the 240-h training set and K20X GPGPU took 12 h for the RBM pre-
training and 70 h for fine-tuning.

2https://github.com/JasperSnoek/spearmint.
3https://www.lri.fr/~hansen/cmaes_inmatlab.html.
4We ran main experiments in 2015, and the additional experiments in 2018.

https://github.com/JasperSnoek/spearmint
https://www.lri.fr/~hansen/cmaes_inmatlab.html

4 Automated Development of DNN Based Spoken Language Systems Using. . . 115

T
ab

le
4.

1
M

et
a-

pa
ra

m
et

er
s

su
bj

ec
tt

o
op

ti
m

iz
at

io
n

an
d

th
ei

r
au

to
m

at
ic

al
ly

tu
ne

d
re

su
lt

s
fo

r
th

e
sy

st
em

us
in

g
24

0-
h

tr
ai

ni
ng

da
ta

V
al

ue
s

ob
ta

in
ed

by
ev

ol
ut

io
n

us
in

g
24

0
h

tr
ai

ni
ng

da
ta

N
am

e
of

m
et

a-
pa

ra
m

et
er

s
D

es
cr

ip
ti

on
B

as
el

in
e

ge
n1

ge
n2

ge
n3

ge
n4

ge
n5

ge
n6

fe
at

_t
yp

e
M

FC
C

,F
B

A
N

K
,o

r
PL

P
M

FC
C

M
FC

C
M

FC
C

M
FC

C
M

FC
C

M
FC

C
M

FC
C

sp
li

ce
Se

gm
en

tl
en

gt
h

fo
r

D
N

N
5

6
9

10
17

21
18

nn
_d

ep
th

N
um

be
r

of
hi

dd
en

la
ye

rs
6

7
6

6
6

5
7

hi
d_

di
m

U
ni

ts
pe

r
la

ye
r

20
48

17
55

19
07

25
75

19
05

29
04

33
04

pa
ra

m
_s

td
de

v_
fir

st
In

it
pa

ra
m

et
er

s
in

1s
tR

B
M

1.
0E

−1
1.

1E
−1

1.
3E

−1
1.

1E
−1

1.
2E

−1
0.

7E
−1

0.
6E

−1
pa

ra
m

_s
td

de
v

In
it

pa
ra

m
et

er
s

in
ot

he
r

R
B

M
s

1.
0E

−1
1.

0E
−1

1.
3E

−1
1.

0E
−1

2.
3E

−1
1.

9E
−1

1.
6E

−1
rb

m
_l

ra
te

R
B

M
le

ar
ni

ng
ra

te
4.

0E
−1

5.
2E

−1
5.

7E
−1

4.
1E

−1
4.

7E
−1

3.
6E

−1
3.

6E
−1

rb
m

_l
ra

te
_l

ow
L

ow
er

R
B

M
le

ar
ni

ng
ra

te
1.

0E
−2

1.
3E

−2
1.

1E
−2

0.
8E

−2
0.

7E
−2

0.
8E

−2
1.

1E
−2

rb
m

_l
2p

en
al

ty
R

B
M

L
as

so
re

gu
la

ri
za

ti
on

2.
0E

−4
2.

1E
−4

2.
2E

−4
1.

2E
−4

1.
6E

−4
1.

9E
−4

1.
5E

−4
le

ar
n_

ra
te

L
ea

rn
in

g
ra

te
fo

r
fin

e
tu

ni
ng

8.
0E

−3
7.

3E
−3

6.
5E

−3
7.

8E
−3

4.
4E

−3
5.

3E
−3

3.
7E

−3
m

om
en

tu
m

M
om

en
tu

m
fo

r
fin

e
tu

ni
ng

1.
0E

−5
0.

9E
−5

0.
9E

−5
0.

4E
−5

0.
9E

−5
0.

4E
−5

0.
7E

−5
C

M
A

-E
S

w
it

h
Pa

re
to

(C
M

A
-E

S+
P)

w
as

us
ed

fo
r

th
e

au
to

m
at

ic
tu

ni
ng

116 T. Shinozaki et al.

The population sizes of the black-box optimizations were 20 for the 100-h
training set and 44 for the 240-h training set. The WERs used for the optimizations
were evaluated using the development set. For the evaluations of each individual,
a limit was introduced for the training time at each generation. If a system did not
finish the training within 2.5 and 4 days for the 100-h training set and the 240-
h training set, respectively, the training was interrupted and the last model in the
iterative back-propagation training at that time was used as the final model. The GA-
based optimization was performed based on WER and DNN size, and it is referred
to as GA(WER, Size) in the following experiments. Ten initial genes (= N0) were
manually prepared. Basically, gene A wins over gene B if its WER is lower than that
of B. However, gene A having a higher WER wins over gene B if the difference of
the WER is less than 0.2% and the DNN size of gene A is less than 90% of that of
gene B. The tournament size M was three. For the mutation process, Gaussian noise
with zero mean and 0.05 standard deviation was uniformly added to the gene. For
CMA-ES, two types of experiments were performed. One was the single-objective
experiment based on WER, and the other was the multi-objective experiment based
on WER and DNN size using the Pareto optimality. In the following, the former
is referred to as CMA-ES, and the latter is referred to as CMA-ES+P. In both
cases, the initial mean vector of the multivariate Gaussian was set equal to the
baseline settings. For CMA-ES+P, the maximum WER thresholds were set so that
they included the top 1/2 and 1/3 of the populations at each generation for the
trainings using the 100- and 240-h data sets, respectively. The BO-based tuning was
performed using WER as the objective. The search range of the meta-parameters
was set from 20 to 600% of the baseline configuration.

For the additional experiments using the newer version of Kaldi, we reduced
the number of meta-parameters; our motivation is to evaluate the evolution in more
detail under a variety of conditions. For the experiment using nnet1, the optimized
meta-parameters were splice, nn_depth, hid_dim, learn_rate and momentum. These
were a subset of meta-parameters, deemed to be most important in modern
architectures, in Table 4.1. As an initial configuration of the evolution, we borrowed
values again from the SWB recipe. For the additional experiment using chain, we
used the initial value used in the CSJ recipe.

In these evolution experiments, TDNNs were trained using lattice-free MMI [32]
without the weight averaging based parallel processing.5 The initial TDNN structure
was slightly modified from its original version to make the meta-parameter setting
a little simpler for a variable number of layers as shown in Fig. 4.9. While in the
original structure, layers 2 to 4 had different sub-sampling structures than other
layers, all the layers had the same sub-sampling structure in our experiment. Note
if necessary, it is possible to allow different structures for each layer by preparing
separate meta-parameters for them. In total, 7 meta-parameters shown in Table 4.5
were optimized. Unlike the currently released nnet1 script in the CSJ recipe where

5We disabled the default option of the parallel training to make the experiments tractable in our
environment as it requires a large number of GPUs.

4 Automated Development of DNN Based Spoken Language Systems Using. . . 117

N ReLU

MFCC i-Vector

N ReLU

3888 Linear

N ReLU

3-3

3-3

3-3

LDA

-1 0 1

hi
dd

en
 la

ye
rs

Meta-parameters
• number of hidden layers

(Ini�al M = 9)
• units per layer

(Ini�al N = 625)

625 ReLU

MFCC i-Vector

625 ReLU

625 ReLU

1-1

1-1

LDA

-1 0 1

625 ReLU

-3
625 ReLU

(b) Ini�al structure(a) CSJ default

3888 Linear

625 ReLU

3

3-3
:

Layer 1

Layer M

Layer 1

Layer 9

:

N ReLU
3-3

N ReLU
3-3

N ReLU
3-3

Fig. 4.9 TDNN model structures for chain based systems. (a) is the original structure used in CSJ
recipe and (b) is the one used as an initial configuration in our evolution experiments. The arrows
with numbers at the hidden layers indicate the time splicing index

our evolution results had been integrated, the tuning of chain so far is based on
the human effort by the Kaldi community, and this is the first evolution based
optimization. The training set was the 240-h data set. The initial nnet1 and chain
systems spent 14 and 18 h, respectively, using a P100 GPGPU. If a system did not
finish the training within 24 h in the evolution processes, the training was interrupted
and the last model at that time was used as the final model. The population size was
30.

4.5 Results

Table 4.2 shows the WERs and DNN sizes for systems with the default configuration
using the 100- and 240-h training sets with one of the three types of features.
Among the features, MFCC was the default in the Switchboard recipe, and it

118 T. Shinozaki et al.

Table 4.2 WER of base
systems

Training data Dev set Eval set

MFCC 100 h 14.4 13.1

PLP 100 h 14.5 13.1

FBANK 100 h 15.1 13.8

MFCC 240 h 13.5 12.5

PLP 240 h 13.6 12.5

FBANK 240 h 14.1 13.0

yielded the lowest WERs for the development set for both of the training sets. The
corresponding WERs for the evaluation set were 13.1 and 12.5% for the 100- and
240-h training sets, respectively.

Figures 4.10, 4.11, 4.12, and 4.13 show the results when each optimization
method was used with the 100-h training data. The horizontal axis is the DNN
size, and the vertical axis is the WER of the evaluation set. The baseline marked
on the figure is the MFCC-based system. Ideally, we want systems on the lower
side of the plot when WER based single-objective optimizations (CMA-ES, BO)
were performed, and on lower-left side of the plot when WER and model size based
multi-objective optimizations (GA, CMA-ES+P) were performed. Figure 4.10 is a

Fig. 4.10 Results of
GA(WER, Size) when the
100-h training data were used

12.4

12.8

13.2

13.6

14.0

0 100 200 300 400 500

W
ER

 [
%

]

DNN size [MB]

gen1

gen2

gen3

gen4

gen5

gen6

gen7

baseline

Fig. 4.11 Results of
CMA-ES when the 100-h
training data were used

12.4

12.8

13.2

13.6

14.0

0 100 200 300 400 500

W
ER

 [
%

]

DNN size [MB]

gen1

gen2

gen3

gen4

gen5

gen6

gen7

baseline

4 Automated Development of DNN Based Spoken Language Systems Using. . . 119

Fig. 4.12 Results of
CMA-ES with Pareto
optimality(CMA-ES+P)
when the 100-h training data
were used

12.4

12.8

13.2

13.6

14.0

0 100 200 300 400 500
W

ER
 [

%
]

DNN size [MB]

gen1
gen2
gen3
gen4
gen5
gen6
gen7
baseline

Fig. 4.13 Results of BO
when the 100-h training data
were used

12.4

13.2

14.0

14.8

15.6

0 100 200 300 400 500

W
ER

 [
%

]

DNN size [MB]

gen1

gen2

gen3

gen4

gen5

gen6

gen7

baseline

scatter plot of the GA(WER, Size). The distribution is oriented to the left side of the
plot with the progress of generations, but the WER reduction was relatively small.
Figure 4.11 presents the results of the single-objective CMA-ES. The distribution
shifted towards lower WERs and lower DNN file sizes from the baseline with the
progress of generations. The reason that it trended to a lower DNN size was probably
due to the time limit imposed on the DNN training. In the evolution process, the ratio
of individuals that hit the limit was approximately 35%. If an individual has a large
DNN size, then it is likely that it hits the limit. Then, the WER is evaluated using a
DNN at that time before the back-propagation converges, which is a disadvantage
for that individual. Figure 4.12 presents the results of the multi-objective CMA-
ES+P. The result is similar to that produced by using CMA-ES, but the distribution
is oriented more to the lower-left side of the plot.

Figure 4.13 presents the results using BO for the optimization. In this case,
the initial configuration is not directly specified, but the ranges of the meta-
parameters are specified. We found that specifying a proper range was actually not
straightforward and required knowledge of the problem. That is, if the ranges are
too wide, then the initial samples are coarsely distributed in the space, and it is
likely that the systems have lower performance. Meanwhile, if the ranges are too
narrow, then it is likely that the optimal configuration is not included in the search
space. Consequently, the improvement by BO was smaller than that by the CMA-

120 T. Shinozaki et al.

12.6

12.8

13

13.2

13.4

13.6

13.8

W
ER

 [%
]

Number of genera�ons

GA(WER,Size) CMA-ES CMA-ES+P BO

Fig. 4.14 Number of generations and evaluation set WER. At each condition, the best system was
chosen by using the development set

Table 4.3 WER and DNN
size of the best system when
the 100-h training data was
used

WER [%]

Opt. method Dev Eval DNN size [MB]

Baseline 14.4 13.1 161.8

GA(WER, Size) 14.1 13.0 234.5

CMA-ES 14.0 12.7 225.5

CMA-ES+P 14.0 12.7 202.4

BO 14.2 13.1 110.6

ES. Carefully setting the ranges might solve the problem but would again assume
expert human knowledge.

Figure 4.14 shows the WER of the evaluation set based on the best systems
chosen by using the development set at each generation. CMA-ES evolved more
efficiently than GA(WER, Size) and BO. Table 4.3 shows the evaluation results of
the best systems chosen by the development set WER through all the generations.
The evaluation set WERs by CMA-ES and CMA-ES+P were both 12.7%.6

However, a smaller DNN model size was obtained by using CMA-ES with Pareto.
The DNN model size by CMA-ES was 225.5 Mb, whereas it was 202.4 Mb when
CMA-ES+P was used, which was 89.8% of the former. The selected feature type
was all MFCC except for the 7th generation, which was PLP.

6In the table, we scored the evaluation set WERs of systems that gave the lowest development set
WER through all the generations. Therefore, they were not necessarily the same as the minimum
of the generation wise evaluation set WERs shown in Fig. 4.14.

4 Automated Development of DNN Based Spoken Language Systems Using. . . 121

Figure 4.15 shows the results of CMA-ES+P using the 240-h training data.
Approximately 70% of the individuals completed the training within the limit of
4 days. This figure shows that the distributions shifted towards lower WERs and
lower DNN file sizes with the progress of generations.

Figure 4.16 shows the WERs of the best systems selected at each generation
based on the development set WER when the 240-h training set was used. Although
the development set error rate monotonically decreased with the number of the
generation, the evaluation set error rate appeared to be saturated after the fourth

12.4

12.8

13.2

13.6

14

14.4

14.8

15.2

0 100 200 300 400 500 600 700

W
ER

 [
%

]

DNN size [MB]

gen1
gen2
gen3
gen4
gen5
gen6
baseline

Fig. 4.15 The DNN model size and the development set WER when the 240-h training set was
used with CMA-ES+P. The results of the n-th generation are denoted as “gen n”

11.0

11.5

12.0

12.5

13.0

13.5

14.0

W
ER

 [
%

]

Number of genera�on

dev

eval

Fig. 4.16 The development and evaluation set WERs of the best systems at each generation when
the 240-h training set was used with CMA-ES+P. The systems were chosen by the development
set WER. In the figure “dev” and “eval” indicate the results of the development and the evaluation
sets, respectively

122 T. Shinozaki et al.

Fig. 4.17 Pareto frontier
derived from the results from
the initial to the 6th
generation using the 240-h
training data. In the figure
“dev” and “eval” indicate the
results of the development
and the evaluation sets,
respectively

11.6

12.0

12.4

12.8

13.2

13.6

14.0

14.4

14.8

15.2

0 100 200 300 400 500

W
ER

 [
%

]

DNN size [MB]

dev
baseline (dev)
eval
baseline (eval)

generation, which might have resulted from overfitting to the development set
because we used the same development set for all the generations. The lowest
WER of the development set was obtained at the 6th generation. The corresponding
evaluation set error rate was 12.1%. The difference in the evaluation set WERs
between the baseline (12.5%) and the optimized system (12.1%) was 0.48%, and
this was statistically significant under the MAPSSWE significance test [33]. The
relative WER was 3.8%.

If desired, we can choose a system from the Pareto frontier that best matches
the required balance of the WER and the model size. Figure 4.17 shows the Pareto
frontier derived from the results from the initial to the 6th generation using the 240-
h training data. This figure shows that if we choose a system with approximately
the same WER as the initial model, then we can obtain a reduced model size that is
only 41% of the baseline. That is, the model size was reduced by 59%. The decoding
time of the evaluation set by the reduced model was 79.5 min, which was 85.4% of
the 93.5 min by the baseline. Similarly, the training time of the reduced model was
54.3% of that of the baseline model.

Columns 4 to 9 of Table 4.1 show the meta-parameter configurations obtained as
the result of evolution using the 240-h training set. These are the configurations that
yielded the lowest development set WERs at each generation. When we analyze the
obtained meta-parameters, although the changes were not monotonic for most of the
meta-parameters, we found that splice size was increased by more than three times
from the initial model. We also note that the learning rate decreased by more than
half from the initial condition.

As a supplementary experiment, sequential training [34] was performed using the
best model at the 4th generation as an initial model. Because the sequential training
is computationally intensive, it took an additional 7 days. After the training, the
WER was further reduced, and a WER of 10.9% was obtained for the evaluation
set. This value was lower than the WER of 11.2% obtained with sequential training
using the baseline as the initial model. The difference was statistically significant,
which confirms the effectiveness of the proposed method.

4 Automated Development of DNN Based Spoken Language Systems Using. . . 123

Fig. 4.18 Evolution result of the nnet1 based system. The CMA-ES with Pareto based evolution
(CMA-ES+P) was applied to nnet1 of the newer version of Kaldi with reduced tuning meta-
parameters. The baseline is the initial model of the evolution. Only individuals on the Pareto
frontier at each generation are plotted for visibility

Figure 4.18 shows the result of the additional experiments of nnet1 using the
newer version of Kaldi with the reduced meta-parameters. The figure plots the
development set WER and DNN model size. The evolution was performed by CMA-
ES with Pareto (CMA-ES+P) and the process was repeated for 12 generations.
Approximately 77% of the individuals had completed the training within the 24-h
limit. In the figure, only the results of genes on the Pareto frontier at each generation
were plotted for visibility. The gene marked as “a” gave the smallest DNN size,
while the gene marked as “c” gave the lowest WER (There were three genes with
the smallest WER and c was the one with the smallest DNN size.). Gene “b” gave
both smaller DNN size and smaller WER than the initial system. Table 4.4 describes
properties of these representative genes. In this experiment, the improvement in the
evaluation set WER from the baseline initial configuration was minor even when

Table 4.4 Summary of three representative genes in the additional nnet1 experiment with CMA-
ES+P

WER [%]

Gene Generation Dev Eval DNN size [MB] Decoding time [min]

Baseline 0 9.1 11.9 161.0 90.5

a 10 9.0 12.0 66.5 70.9

b 9 8.9 11.8 93.6 80.4

c 12 8.8 11.8 207.3 99.4

Gene a gave the smallest model size, and gene c gave the lowest development set WER. Gene b

balances the model size and WER reductions. See Fig. 4.18 for their positions

124 T. Shinozaki et al.

choosing the gene with the lowest WER in the development set. We conjecture this
was probably because the initial meta-parameters were already close to optimal
in terms of WER. The reduction of the number of meta-parameters might also
have limited the room for improvement though we chose the ones that we thought
important based on our previous experiments. However, the evolution had an effect
of reducing the DNN size. When the gene “b” was chosen, it gave slightly lower
WER on the evaluation set and largely reduced DNN size of 93.6 (MB), which was
58% of the initial model of 161.0 (MB). If the gene “a” was chosen, the WER of
the evaluation set slightly increased from 11.9 to 12.0%, but the model size reduced
to 66.5 (MB), which was only 40% of the initial model. Accordingly, the decoding
time of the evaluation set was reduced from 90.5 to 70.9 min.

Figure 4.19 shows the result of the evolution based optimization of the chain
script. Approximately 63% of the individuals completed the training within the 24-
h limit. In this case, larger improvement than nnet1 was obtained both in reducing
the WER and the model size. Figure 4.20 shows the WERs of the best systems
selected at each generation based on the development set WER. While there was a
little random behavior in the evaluation set WER, overall, a consistent trend of WER
reduction was observed both in the development and the evaluation set. Table 4.5
shows corresponding changes of the meta-parameters. Different from the changes

Fig. 4.19 Evolution result of
the chain based system. The
CMA-ES with Pareto based
evolution (CMA-ES+P) was
applied to the chain script of
the newer version of Kaldi.
Only individuals on the
Pareto frontier at each
generation are plotted for
visibility

8.5

8.7

8.9

9.1

9.3

9.5

0 20 40 60 80 100

W
ER

 [
%

]

DNN size [MB]

gen1
gen2
gen3
gen4
gen5
gen6
gen7
gen8
gen9
gen10
gen11
gen12
baseline

a

b

c

Fig. 4.20 The development
and evaluation set WERs of
the best TDNN-based
systems at each generation
with CMA-ES+P. The
systems were chosen by the
development set WER. The
results of the development
and the evaluation sets are
indicated by “dev” and
“eval,” respectively 10.8

11

11.2

11.4

11.6

11.8

12

8.2

8.4

8.6

8.8

9.0

9.2

9.4

ba
se

lin
e

ge
n1

ge
n2

ge
n3

ge
n4

ge
n5

ge
n6

ge
n7

ge
n8

ge
n9

ge
n1

0
ge

n1
1

ge
n1

2

Ev
al

 se
t W

ER
 [

%
]

De
v

se
t W

ER
 [

%
]

Number of genera�on

dev
eval

4 Automated Development of DNN Based Spoken Language Systems Using. . . 125

T
ab

le
4.

5
M

et
a-

pa
ra

m
et

er
s

su
bj

ec
tt

o
op

ti
m

iz
at

io
n

an
d

th
ei

r
au

to
m

at
ic

al
ly

tu
ne

d
re

su
lts

fo
r

th
e

T
D

N
N

-b
as

ed
sy

st
em

D
es

cr
ip

ti
on

of
V

al
ue

s
ob

ta
in

ed
by

ev
ol

ut
io

n
us

in
g

24
0

h
tr

ai
ni

ng
da

ta

m
et

a-
pa

ra
m

et
er

s
B

as
el

in
e

ge
n1

ge
n2

ge
n3

ge
n4

ge
n5

ge
n6

ge
n7

ge
n8

ge
n9

ge
n1

0
ge

n1
1

ge
n1

2

N
um

be
r

of
hi

dd
en

la
ye

rs
9

8
12

9
8

11
9

8
9

10
9

12
10

U
ni

ts
pe

r
la

ye
r

62
5

64
1

30
8

39
6

51
8

32
0

35
4

38
4

34
9

46
1

31
1

28
2

42
7

L
ea

rn
in

g
ra

te
du

ri
ng

th
e

in
it

ia
li

te
ra

ti
on

1.
0E

−3
1.

1E
−3

1.
0E

−3
1.

5E
−3

1.
5E

−3
1.

2E
−3

1.
9E

−3
1.

4E
−3

1.
8E

−3
3.

0E
−3

1.
3E

−3
7.

0E
−3

1.
1E

−2

L
ea

rn
in

g
ra

te
du

ri
ng

th
e

fin
al

it
er

at
io

n
1.

0E
−4

0.
7E

−4
1.

4E
−4

1.
4E

−4
0.

8E
−4

1.
1E

−4
0.

9E
−4

0.
9E

−4
0.

6E
−4

0.
6E

−4
0.

7E
−4

0.
4E

−4
0.

9E
−4

W
ei

gh
to

f
cr

os
s-

en
tr

op
y

co
st

1.
0E

−1
1.

1E
−1

0.
7E

−1
1.

6E
−1

1.
7E

−1
1.

3E
−1

1.
4E

−1
1.

3E
−1

1.
4E

−1
0.

9E
−1

1.
5E

−1
1.

2E
−1

1.
4E

−1

C
oe

ffi
ci

en
tf

or
l2

no
rm

5.
0E

−5
3.

5E
−5

5.
5E

−5
4.

4E
−5

3.
2E

−5
3.

0E
−5

2.
1E

−5
2.

7E
−5

1.
7E

−1
1.

5E
−1

2.
9E

−5
0.

5E
−5

0.
7E

−5
C

oe
ffi

ci
en

tf
or

le
ak

y
hm

m
1.

0E
−1

1.
5E

−1
1.

1E
−1

1.
5E

−1
1.

0E
−1

1.
9E

−1
2.

1E
−1

1.
6E

−1
3.

0E
−1

4.
7E

−1
1.

0E
−1

4.
0E

−1
4.

0E
−1

C
M

A
-E

S
w

it
h

Pa
re

to
(C

M
A

-E
S+

P)
w

as
us

ed
fo

r
th

e
au

to
m

at
ic

tu
ni

ng
.A

ge
ne

w
as

se
le

ct
ed

at
ea

ch
ge

ne
ra

ti
on

th
at

ga
ve

th
e

be
st

de
ve

lo
pm

en
ts

et
W

E
R

126 T. Shinozaki et al.

Table 4.6 Summary of three representative genes in the additional chain
experiment

WER [%]

Gene Generation Dev Eval DNN size [MB] Decoding time [min]

CSJ default 9.3 11.7 53.7 22.6

Baseline 0 9.3 12.0 59.7 23.0

a 11 9.2 11.9 9.1 13.1

b 12 8.9 11.5 11.5 13.4

c 12 8.6 10.8 34.5 16.1

Gene a gave the smallest model size, and gene c gave the lowest development set WER. Gene b

balances the model size and WER reductions. See Fig. 4.19 for their positions

of the WERs, it is seen that none of their changes was monotonic revealing their
complex mutual interactions. A remarkable change after 12 generations was the
large reduction of units in the hidden layers (units per layer) from 625 of the baseline
to 427.

In Fig. 4.19, three representative genes are marked as in the nnet1 results.
Table 4.6 describes their details. The evaluation set WER of the gene b was 11.5%
and it was 0.5% lower than the baseline initial structure. While the improvement was
only 0.2% when compared to the CSJ default (11.7%), the model size reduction was
significant from 53.7 (MB) to 11.5 (MB). When the gene c was used, evaluation set
WER was 10.8% and the relative reduction was 7.8 and 9.7% compared to the CSJ
default and the baseline initial configuration, respectively. Their differences were
both statistically significant by the MAPSSWE test. Moreover, the model size was
reduced to 57.7% of the original size. The decoding time of 22.6 min of the CSJ
default settings was reduced to 16.1 min.

4.6 Conclusion

In this chapter, we have introduced the basic principles of spoken language process-
ing, focusing on speech recognition. We have performed an automatic optimization
of the meta-parameters by using evolutionary algorithms without human expert
elaboration. In the experiments using the 100-h training set, multi-objective GA,
CMA-ES, CMA-ES with Pareto (CMA-ES+P) and BO were compared. Both of
the CMA-ES methods and GA yielded lower WERs than the baseline. Among them,
CMA-ES and CMA-ES+P provided lower WERs than GA. By using CMA-ES+P
to jointly minimize the WER and the DNN model size, a smaller DNN size than
single-objective CMA-ES was obtained while keeping the WER. CMA-ES was
more convenient for optimizing speech recognition systems than BO, which requires
the ranges of the meta-parameters to be specified. Moreover, we ran additional
experiments using the newer version of the Kaldi toolkit and demonstrated the
consistent effectiveness of the CMA-ES+P based approach. Especially, the tuned

4 Automated Development of DNN Based Spoken Language Systems Using. . . 127

chain system was significantly superior to the default system both in WER and the
model size. Other than experiments introduced here, we have also applied CMA-ES
to language modeling and neural machine translation and have achieved automatic
performance improvements [35, 36].

When the meta-parameter tuning is applied to the neural network training, there
is a double structure of learning; one is the estimation of the neural network
connection weights, and the other is the meta-parameter tuning of the network
structure and the learning conditions. Currently, the tuning process only uses the
performance score, and the learned network weight parameters are all discarded
at each generation. Future work includes improving the optimization efficiency by
introducing a mechanism to transmit knowledge learned by ancestors to descen-
dants.

References

1. Davis, S.B., Mermelstein, P.: Comparison of parametric representations for monosyllabic word
recognition in continuously spoken sentences. IEEE Trans. Acoust. Speech Signal Process.
28(4), 357–366 (1980)

2. Hermansky, H.: Perceptual linear predictive (PLP) analysis of speech. J. Acoust. Soc. Am.
87(4), 1738–1752 (1990)

3. Odell, J.J.: The use of context in large vocabulary speech recognition, Ph.D. Thesis, Cambridge
University (1995)

4. Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based models
for speech recognition. In: Advances in Neural Information Processing Systems (NeurIPS),
pp. 577–585 (2015)

5. Graves, A., Mohamed, A.-R., Hinton, G.: Speech recognition with deep recurrent neural
networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6645–6649. IEEE, Piscataway (2013)

6. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems (NeurIPS), pp. 3104–3112 (2014)

7. Vinyals, O., Le, Q.: A neural conversational model. Preprint. arXiv:1506.05869 (2015)
8. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and

translate. Preprint. arXiv:1409.0473 (2014)
9. Bellman, R.E., Dreyfus, S.E.: Applied Dynamic Programming. Princeton University Press,

Princeton (1962)
10. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of

machine translation. In: Proceedings of the 40th Annual Meeting on Association for Com-
putational Linguistics, Stroudsburg, ACL ’02, pp. 311–318. Association for Computational
Linguistics, Stroudsburg (2002)

11. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1),
1–18 (2003)

12. Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., Schmidhuber, J.: Natural evolution
strategies. J. Mach. Learn. Res. 15(1), 949–980 (2014)

13. Akimoto, Y., Nagata, Y., Ono, I., Kobayashi, S.: Bidirectional relation between CMA evolution
strategies and natural evolution strategies. In: Proceedings of Parallel Problem Solving from
Nature (PPSN), pp. 154–163 (2010)

128 T. Shinozaki et al.

14. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement
learning with function approximation. In: Proceedings of the 12th International Conference on
Neural Information Processing Systems, NIPS’99, pp. 1057–1063 (1999)

15. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
Preprint. arXiv:1012.2599 (2010)

16. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning
algorithms. In: Advances in Neural Information Processing Systems 25 (2012)

17. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press,
Cambridge (2006)

18. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Berlin (1998)
19. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
20. Deb, K., Kalyanmoy, D.: Multi-Objective Optimization Using Evolutionary Algorithms. John

Wiley & Sons, Inc., New York (2001)
21. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and

the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
22. David Schaffer, J.: Multiple objective optimization with vector evaluated genetic algorithms.

In: Proceedings of the 1st International Conference on Genetic Algorithms, Hillsdale, pp. 93–
100. L. Erlbaum Associates Inc., Mahwah (1985)

23. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim.
4(2), 99–107 (1992)

24. Hernandez-Lobato, D., Hernandez-Lobato, J., Shah, A., Adams, R.: Predictive entropy search
for multi-objective Bayesian optimization. In: Balcan, M.F., Weinberger, K.Q. (eds.) Pro-
ceedings of The 33rd International Conference on Machine Learning, New York, 20–22 Jun.
Proceedings of Machine Learning Research, vol. 48, pp. 1492–1501 (2016)

25. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

26. Moriya, T., Tanaka, T., Shinozaki, T., Watanabe, S., Duh, K.: Evolution-strategy-based
automation of system development for high-performance speech recognition. IEEE/ACM
Trans. Audio Speech Lang. Process. 27(1), 77–88 (2019)

27. Furui, S., Maekawa, K., Isahara, H.: A Japanese national project on spontaneous speech corpus
and processing technology. In: Proceedings of ASR’00, pp. 244–248 (2000)

28. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFST: a general and efficient
weighted finite-state transducer library. In: Implementation and Application of Automata,
pp. 11–23. Sprinter, Berlin (2007)

29. Furui, S.: Speaker independent isolated word recognition using dynamic features of speech
spectrum. IEEE Trans. Acoustics Speech Signal Process. 34, 52–59 (1986)

30. Haeb-Umbach, R., Ney, H.: Linear discriminant analysis for improved large vocabulary
continuous speech recognition. In: Proceedings of International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, pp. 13–16 (1992)

31. Gales, M.J.F.: Maximum likelihood linear transformations for HMM-based speech recognition.
Comput. Speech Lang. 12, 75–98 (1998)

32. Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na, X., Wang, Y., Khu-
danpur, S.: Purely sequence-trained neural networks for ASR based on lattice-free MMI. In:
Interspeech, pp. 2751–2755 (2016)

33. Gillick, L., Cox, S.: Some statistical issues in the comparison of speech recognition algorithms.
In: Proceedings of International Conference on Acoustics, Speech, and Signal Processing,
pp. 532–535 (1989)

34. Vesely, K., Ghoshal, A., Burget, L., Povey, D.: Sequence-discriminative training of deep neural
networks. In: Proceedings of Interspeech, pp. 2345–2349 (2013)

4 Automated Development of DNN Based Spoken Language Systems Using. . . 129

35. Tanaka, T., Moriya, T., Shinozaki, T., Watanabe, S., Hori, T., Duh, K.: Automated structure
discovery and parameter tuning of neural network language model based on evolution strategy.
In: Proceedings of the 2016 IEEE Workshop on Spoken Language Technology, pp. 665–671
(2016)

36. Qin, H., Shinozaki, T., Duh, K.: Evolution strategy based automatic tuning of neural machine
translation systems. In: Proceeding of International Workshop on Spoken Language Transla-
tion (IWSLT), pp. 120–128 (2017)

	4 Automated Development of DNN Based Spoken Language Systems Using Evolutionary Algorithms
	4.1 Spoken Language Processing Systems
	4.1.1 Principle of Speech Recognition
	4.1.2 Hidden Markov Model Based Acoustic Modeling
	4.1.3 End-to-End Speech Recognition System
	4.1.4 Evaluation Measures

	4.2 Evolutionary Algorithms
	4.2.1 Genetic Algorithm
	4.2.2 Evolution Strategy
	4.2.3 Bayesian Optimization

	4.3 Multi-Objective Optimization with Pareto Optimality
	4.3.1 Pareto Optimality
	4.3.2 CMA-ES with Pareto Optimality
	4.3.3 Alternative Multi-Objective Methods

	4.4 Experimental Setups
	4.4.1 General Setups
	4.4.2 Automatic Optimizations

	4.5 Results
	4.6 Conclusion
	References

