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Abstract Machine learning techniques are capable of talking, interpreting, creat-
ing, and even reasoning about virtually any subject. Also, their learning power has
grown exponentially throughout the last years due to advances in hardware archi-
tecture. Nevertheless, most of these models still struggle regarding their practical
usage since they require a proper selection of hyper-parameters, which are often
empirically chosen. Such requirements are strengthened when concerning deep
learning models, which commonly require a higher number of hyper-parameters.
A collection of nature-inspired optimization techniques, known as meta-heuristics,
arise as straightforward solutions to tackle such problems since they do not employ
derivatives, thus alleviating their computational burden. Therefore, this work pro-
poses a comparison among several meta-heuristic optimization techniques in the
context of Deep Belief Networks hyper-parameter fine-tuning. An experimental
setup was conducted over three public datasets in the task of binary image recon-
struction and demonstrated consistent results, posing meta-heuristic techniques as a
suitable alternative to the problem.

3.1 Introduction

In the past years, multimedia-based applications fostered the generation of a massive
amount of data. These data provide a wide range of opportunities for machine
learning applications in several areas of knowledge, such as medicine, financial
market, intelligent manufacturing, and event classification. Among such machine
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learning approaches, deep learning methods have received significant attention due
to their excellent results, often surpassing even humans.

Deep learning models try to simulate the human-brain behavior on how the
information is processed. The basic idea is to use multiple layers to extract higher-
level features progressively, where each layer learns to transform input data into
a more abstract representation. Regarding applications in the image processing
area, lower layers may identify edges, while higher layers may identify human-
meaningful items such as human faces and objects. Among the most employed
methods, one can include Convolutional Neural Networks (CNNs) [8], Deep Belief
Networks (DBN5s) [5], and Deep Boltzmann Machines (DBMs) [23], among others.

Since “deep” in deep learning refers to the architecture complexity, the more
complex it becomes, the higher the number of hyper-parameters to fit. Yosinski and
Lipson [36], for instance, highlighted some approaches for visualizing the behavior
of a single Restricted Boltzmann Machine (RBM) [24], which is an energy-based
model that can be used to build DBNs and DBMs, during its learning procedure, and
provided an overview toward such complexities comprehension. Such a problem
was usually tackled using auto-learning tools, which combine parameter fine-
tuning with feature selection techniques [26]. Despite, it can also be posed as an
optimization task in which one wants to choose suitable hyper-parameters.

Therefore, meta-heuristic algorithms have become a viable alternative to solve
optimization problems due to their simple implementation. Kuremoto et al. [7], for
instance, employed the Particle Swarm Optimization (PSO) [6] to the context of
hyper-parameter fine-tuning concerning RBMs, while Liu et. al [10] and Levy et
al. [9] applied Genetic Algorithms (GA) [29] for model selection and automatic
painter classification using RBMs, respectively. Later, Rosa et al. [22] addressed the
Firefly Algorithm to fine-tune DBN hyper-parameters. Finally, Passos et al. [15, 16]
proposed a similar approach comparing several meta-heuristic techniques to fine-
tune hyper-parameters in DBMs, infinity Restricted Boltzmann Machines [13, 18],
and RBM-based models in general [14].

Following this idea, this chapter presents a comparison among ten different
swarm- and differential evolution-based meta-heuristic algorithms in the context
of fine-tuning DBN hyper-parameters. We present a discussion about the viability
of such approaches in three public datasets, as well as the statistical evaluation
through the Wilcoxon signed-rank test. The remainder of this chapter is organized
as follows. Section 3.2 introduces the theoretical background concerning RBMs and
DBNS. Sections 3.4 and 3.5 present the methodology and the experimental results,
respectively. Finally, Sect. 3.6 states conclusions and future works.

3.2 Theoretical Background

In this section, we present a theoretical background concerning Restricted Boltz-
mann Machines and Deep Belief Networks.
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3.2.1 Restricted Boltzmann Machines

Restricted Boltzmann Machines are well-known stochastic-nature neural networks
inspired by physical laws of statistical mechanics and parameterized by concepts
like energy and entropy. These networks are commonly employed in the field of
unsupervised learning, having at least two layers of neurons, i.e., one visible and
one hidden.

The Restricted Boltzmann Machine basic architecture is composed of a visible
layer v = {v1, v2, ..., vy} with m units and a hidden layer h = {hy, ha, ..., hy}
with # units. Furthermore, a real-valued matrix W, «, is responsible for modeling
the restricted connections, i.e., the weights, between the visible and hidden neurons,
where w;; represents the connection between the visible unit v; and the hidden unit
h ;. Figure 3.1 describes the vanilla RBM architecture.

Regarding the learning process, a layer composed of visible units represents the
input data to be processed, while the hidden layer is employed to extract deep-
seated patterns and information from this data. Besides, both visible and hidden
units assume only binary values, i.e., v € {0, 1} and h € {0, 1}", once sampling
process is derived from a Bernoulli distribution [4]. Finally, the training process
is performed by minimizing the system’s energy considering both the visible and
hidden layers units, as well as the biases associated with each layer. The energy can
be computed as follows:

m n m n
E(v,h):—Zaivi—ijhj—ZZvihjwij, (3-1)
i=1 j=1

i=1 j=1

where a and b represent the biases of visible and hidden units, respectively.

Computing the system’s probability is an intractable task due to the computa-
tional cost. However, one can estimate the probability of activating a single visible
neuron i given the hidden units through Gibbs sampling over a Markov chain, as
follows:

n
Pi=1h)=¢ > wjhj+al, (3.2)
j=1
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and, in a similar fashion, the probability of activating a single hidden neuron j given
the visible units is stated as follows:

P(hj=1|v)=¢ (Zwijvi +b,~>, (3.3)
i=1

where ¢ (-) stands for the logistic-sigmoid function.

The training process consists of maximizing the product of probabilities given
a set of parameters 6 = (W, a, b) and the data probability distribution over the
training samples. Such a process can be easily computed using either the Con-
trastive Divergence (CD) [3] or the Persistent Contrastive Divergence (PCD) [27]
algorithms.

3.2.2 Contrastive Divergence

Hinton [3] introduced a faster methodology to compute the energy of the system
based on contrastive divergence. The idea is to initialize the visible units with a
training sample, to compute the states of the hidden units using Eq. (3.3), and then
to compute the states of the visible unit (reconstruction step) using Eq.(3.2). In
short, this is equivalent to perform Gibbs sampling using k£ = 1 and to initialize the
chain with the training samples.

Therefore, the equation below leads to a simple learning rule for updating the
weights matrix W, and biases a and b at iteration ¢:

W = W 4+ p(Phiv)v] — P9V + @, (3.4)
—Aw

atl=a' +n(v—7¥) +pAa’ !, (3.5)

~
=Aa’

b = b’ + n(P(v) — P(a[9) + pAb !, (3.6)

-~
=Ab!

where n stands for the learning rate, ¢ denotes the momentum, v stands for the
reconstruction of the visible layer given h, and h denotes an estimation of the hidden
vector h given v. In a nutshell, Egs. (3.4), (3.5), and (3.6) show the optimization
algorithm, the well-known Gradient Descent. The additional term @ in Eq. (3.4) is
used to control the values of matrix W during the convergence process, and it is
described as follows:

@ =W + AW !, (3.7)

where A stands for the weight decay.
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3.2.3 Persistent Contrastive Divergence

Most of the issues related to the Contrastive Divergence approach concern the
number of iterations employed to approximate the model to the real data. Although
the approach proposed by Hinton [3] takes k = 1 and works well for real-world
problems, one can settle different values for k [1].!

Notwithstanding, Contrastive Divergence provides a good approximation to the
likelihood gradient, i.e., it gives a reasonable estimation of the model to the data
when k& — oo. However, its convergence might become poor when the Markov
chain has a “low mixing,” as well as a good convergence only on the early iterations,
getting slower as iterations go by, thus, demanding the use of parameters decay.

Therefore, Tieleman [27] proposed the Persistent Contrastive Divergence, an
interesting alternative for contrastive divergence using higher values for k while
keeping the computational burden relatively low. The idea is quite simple: on CD-1,
each training sample is employed to start an RBM and rebuild a model after a single
Gibbs sampling iteration. Once every training sample is presented to the RBM, we
have a so-called epoch. The process is repeated for each next epoch, i.e., the same
training samples are used to feed the RBM, and the Markov chain is restarted at
each epoch.

3.2.4 Deep Belief Networks

Deep Belief Networks [5] are graphical models composed of a visible and L hidden
layers, where each layer is connected to the latter through a weight matrix W,
I €{1,2,..., L}, and there is no connection between units from the same layer. In
a nutshell, one can consider each set of two subsequent layers as an RBM trained in
a greedy fashion such that the trained hidden layer of the bottommost RBM feeds
the next RBM’s visible layer, and so on. Figure 3.2 depicts the model. Notice v and
h; stand for the visible and the /-th hidden layers.

Although this work focuses on image reconstruction, one can use DBNs for
supervised classification tasks. Such an approach requires, after the greedy feed-
forward pass mentioned above, fine-tuning the network weights using either
backpropagation or gradient descent. Afterward, a softmax layer is added at the
top of the model to attribute the predicted labels.

1Usually, contrastive divergence with a single iteration is called CD-1.
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3.3 Meta-heuristic Optimization Algorithms

This section presents a brief description of the meta-heuristic optimization tech-
niques employed in this work.

Improved Harmony Search (IHS) [11]: an improved version of the Harmony
Search optimization algorithm that employs dynamic values for both the Pitch
Adjusting Rate (PAR), considering values in the range [PARpin,PARnax], and
the Harmony Memory Considering Rate (HMCR), which assumes values in the
range [HMCRpin, HMCRyax]. Additionally, the algorithm uses the bandwidth
variable ¢ in the range [Omin, Omax] to calculate PAR.

Particle Swarm Optimization with Adaptive Inertia Weight (AIWPSO) [12]: an
improved version of the Particle Swarm Optimization that employs self-adjusting
inertia weights w over each particle along with the search space aiming to
balance the global exploration and local exploitation. Notice the method uses
the variables ¢ and c; to control the particles’ acceleration.

Flower Pollination Algorithm (FPA) [21, 35]: a meta-heuristic optimization
algorithm that tries to mimic the pollination process performed by flowers. The
algorithm employs four basic rules: (1) the cross-pollination, which stands for the
pollination performed by birds and insects, (2) the self-pollination, representing
the pollination performed by the wind diffusion or similar approaches, (3) the
constancy of birds/insects, representing the probability of reproduction, and (4)
the interaction of local and global pollination, controlled by the probability
parameter p. Additionally, the algorithm employs an additional parameter 8 to
control the amplitude of the distribution.

Bat Algorithm (BA) [34]: based on the bats’ echolocation system while searching
for food and prey. The algorithm employs a swarm of virtual bats randomly flying
in the search space at different velocities, even following a random walk approach
for local search intensification. Additionally, it applies a dynamically updated
wavelength frequency in the range { fmin, fmax} according to the distance from
the objective, as well as loudness A and the pulse rate 7.
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» Firefly Algorithm (FA) [31]: the algorithm is based on the fireflies’ approach
for attracting potential preys and mating partners. It employs the attractiveness
B parameter, which influences the brightness of each agent, depending on its
position and light absorption coefficient y. Moreover, the model employs a
random perturbation o used to perform a random walk and avoid local optima.

¢ Cuckoo Search (CS) [20, 32, 33]: the model combines some cuckoo species
parasitic behavior with a t-step random walk over a Markov chain. It employs
three basic concepts: (1) each cuckoo lays a single egg for iteration at another
bird’s randomly chosen nest, (2) p, € [0, 1] defines the probability of this bird
discover and discard the cuckoo’s egg or abandon it and create a new chest,
i.e., a new solution, and (3) the nests with best eggs will carry over to the next
generations.

 Differential Evolution (DE) [25]: evolution algorithm maintains a population of
candidate solutions which are combined and improved in following generations
aiming to find the characteristics that best fit the problem. The algorithm employs
a mutation factor to control the mutation amplitude, as well as a parameter to
control the crossover probability.

* Backtracking Search Optimization Algorithm (BSA) [2, 17]: an evolution algo-
rithm that employs a random selection of a historical population for mutation
and crossover operations to generate a new population of individuals based on
past experiences. The algorithm controls the number of elements to be mutated
using a mixing rate (mix_rate) parameter, as well as the amplitude of the search-
direction matrix with the parameter F.

» Differential Evolution Based on Covariance Matrix Learning and Bimodal
Distribution Parameter Setting Algorithm (CoBiDE) [28]: a differential evolution
model that represents the search space coordinate system using a covariance
matrix according to the probability parameter Pp, and the proportion of indi-
viduals employed in the process using the P; variable. Moreover, it employs a
binomial distribution to control the mutation and crossover rates, aiming a better
trade-off between exploitation and exploration.

» Adaptive Differential Evolution with Optional External Archive (JADE) [19, 37]:
JADE is a differential evolution-based algorithm that employs the “DE/current-
to-p-best” strategy, i.e., only the p — best agents are used in the mutation
process. Further, the algorithm employs both a historical population and a control
parameter, which is adaptively updated. Finally, it requires a proper selection of
the rate of adaptation parameter c, as well as the mutation greediness parameter g.

3.4 Methodology

This section introduces the intended procedure for DBN hyper-parameter fine-
tuning. Additionally, it describes the employed datasets and the experimental setup.
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Fig. 3.3 DBN hyper-parameter optimization approach

3.4.1 Modeling DBN Hyper-parameter Fine-tuning

The learning procedure of each RBM employs four hyper-parameters, as specified
in Sect.3.2.1: the learning rate n, weight decay A, momentum ¢, and the number
of hidden units n. Since DBNs are built over RBM blocks, they employ a similar
process to fine-tune each of their layers individually. In short, a four-dimensional
search space composed of three real- and one integer-valued variables should be
selected for each layer. Notice the variable values are intrinsically real numbers,
thus requiring a type casting to obtain the nearest integer. Such an approach
aims at electing the assortment of DBN hyper-parameters that minimizes the
training images reconstruction error, denoted by the minimum squared error (MSE).
Subsequently, the selected set of parameters is applied to reconstruct the unseen
images of the test set. Figure 3.3 depicts the procedure.

3.4.2 Datasets

We employed three datasets, as described below:

« MNIST dataset’: a dataset composed of “0”—“9” handwritten digits images.
Regarding the pre-processing, the images were converted from gray-scale to

2http://yann.lecun.com/exdb/mnist/.
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Fig. 3.4 Some training examples from (a) MNIST, (b) Semeion, and (c¢) CalTech 101 Silhouettes
datasets

binary, as well as resized to 14 x 14. Additionally, the training was performed
over 2% of the training set, i.e., 1200 images, due to the demanded computational
burden. Moreover, the complete set of 10,000 was employed for testing.

¢ Semeion Handwritten Digit Dataset>: similar to the MNIST, Semeion is also a
dataset composed of “0”—“9” handwritten digits images formed by 1593 images.
In this paper, we resized the samples to 16 x 16 and binarized each pixel.

* CalTech 101 Silhouettes Dataset*: a dataset composed of 101 classes of silhou-
ettes with a resolution of 28 x 28. No pre-processing step was applied to the
image samples.

Figure 3.4 displays some training examples from the above datasets.

3https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit.
“https://people.cs.umass.edu/~marlin/data.shtml.


https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
https://people.cs.umass.edu/~marlin/data.shtml

76 L. A. Passos et al.

Table 3.1 Meta-heuristic

- Algorithm  Parameters
algorithms’ parameter

configuration IHS HMCR=0.7| PARyiny =0.1
PARyax =0.7 | omin =1
omax = 10

AIWPSO ¢ =17|c; =17
w=0.7 | WMIN =0.5 ‘ WpMAX = 1.5

FPA B=15|p=08

BA Smin =0 fmax =100 A=15]r=0.5

FA a=02]8=10|y =10

CS B=15]p=025|a=038

BSA mix_rate=10| F =3

CoBiDE P,=04|P; =05

DE mutation_factor = 0.8
cross_over_probability = 0.7

JADE c=0.1]g=0.05

3.4.3 Experimental Setup

Experiments were conducted over 20 runs and a 2-fold cross-validation for statis-
tical analysis using the Wilcoxon signed-rank test [30] with 5% of significance.
Each meta-heuristic technique employed five agents (particles) over 50 iterations
for convergence purposes over the three configurations, i.e., DBNs with 1, 2,
and 3 layers. Additionally, the paper compares different techniques ranging from
music composition process, swarm-based, and evolutionary-inspired methods, in
the context of DBN hyper-parameter fine-tuning, as presented in Sect. 3.3:

Table 3.1 exhibits the parameter configuration for every meta-heuristic tech-
nique.’

Finally, each DBN layer is composed of an RBM whose hyper-parameters are
randomly initialized according to the following ranges: n € [5, 100], n € [0.1, 0.9],
X €[0.1,09],and ¢ € [10’5, 1071]. Additionally, the experiments were conducted
over three different depth configurations, i.e., DBNs composed of 1, 2, and 3 RBM
layers, which implies on fine-tuning a 4—, 8—, and 12—dimensional set of hyper-
parameters. We also have employed 7 = 10 as the number of epochs for DBN
learning weights procedure with mini-batches of size 20. In order to present a
more in-depth experimental validation, all DBNs were trained with the Contrastive
Divergence (CD) [3] and Persistent Contrastive Divergence (PCD) [27]. Figure 3.5
depicts the pipeline proposed in this paper.

SNote that these values were empirically chosen according to their author’s definition.
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Fig. 3.5 Proposed pipeline to the task of DBN hyper-parameter fine-tuning

3.5 Experimental Results

This section introduces the results obtained during the experiments. Further, a
detailed discussion about them is provided. Tables 3.2, 3.3, and 3.4 present the
average MSE, and their standard deviation regarding MNIST, Semeion Handwritten
Digit, and CalTech 101 Silhouettes datasets, respectively. The best results accord-
ingly to the Wilcoxon signed-rank test with 5% of significance level are presented
in bold.
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Table 3.2 presents the results concerning the MNIST dataset. IHS obtained the
lowest errors using the Contrastive Divergence algorithm over one single layer. BA
and AIWPSO obtained statistically similar results using the PCD algorithm over two
and three layers, respectively. One can notice that FPA using CD over a single layer
also obtained the same average errors as the IHS, although the Wilcoxon signed-
rank test does not consider both statistically similar. Moreover, the evolutionary
algorithms also obtained good results, though not statistically similar as well.

Regarding Semeion Handwritten Digit dataset, Table 3.3 demonstrates the best
results were obtained using CoBiDe technique over the CD algorithm with one layer.
Worth pointing that none of the other methods achieved similar statistical results,
which confirms the robustness of evolutionary-based meta-heuristic optimization
algorithms.

Similar to MNIST dataset, the best results over CalTech 101 Silhouettes dataset
was obtained using the THS method with the CD algorithm over a single-layered
DBN, as presented in Table 3.4. IHS was also the sole technique to achieve the
lowest errors since none of the other methods obtained statistically similar results.

3.5.1 Training Evaluation

Figure 3.6 depicts the learning steps considering MNIST dataset. Except for the BA
algorithm (and the random search), all techniques converged equally to the same
point since the initial iterations. Notice FA outperformed such results, achieving
the lowest error at iteration number 20. However, the training error regresses to
the initial values, which suggests the problem presents a local optimum hard to be
overpassed, given the set of optimized parameters.

An interesting behavior is depicted in Fig.3.7. One can observe AIWPSO
converges faster than the other techniques obtaining an average MSE of 0.2 after ten
iterations. However, AIWPSO gets stuck at this time step and is outperformed by
both JADE and DE after approximately 15 iterations. Moreover, DE still improves
its performance until reaching its optimum at nearly 40 iterations. The behavior is
not observed over the testing set, where although DE obtained good results, CoBiDE
was the most accurate technique.

Regarding the Caltech 101 Silhouettes, the learning curve depicted in Fig. 3.8
showed that AIWPSO presented a similar behavior as presented over Semeion
dataset, and a faster convergence in the 15 initial iterations, being outperformed by
JADE afterward. Notice that IHS and FPA also demonstrated a good convergence,
which is expected since IHS obtained the best results over the testing set and FPA
achieved very close results. Additionally, CoBiDE and BSA are also among the
best techniques together with JADE and DE, confirming the robustness of evolution
techniques to the task of DBN meta-parameter fine-tuning.
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Fig. 3.6 Training convergence (a) MSE and (b) log pseudo-likelihood using the CD algorithm

and a single layer of hidden units over the MNIST dataset

3.5.2 Time Analysis

Tables 3.5, 3.6, and 3.7 present the computational burden, in hours, regarding
MNIST, Semeion Handwritten Digit, and Caltech 101 Silhouettes datasets, respec-
tively. One can observe that CS is the fastest technique, followed by IHS. Such
a result is expected since IHS evaluates a single solution per iteration, and CS
employs a probability of evaluating or not each solution. On the other hand, the
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(a) Semeion Handwritten Digit : CD : MSE
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Fig. 3.7 Training convergence (a) MSE and (b) log pseudo-likelihood using the CD algorithm
and a single layer of hidden units over the Semeion Hand Written Digit dataset

remaining techniques evaluate every solution for each iteration, contributing to a
higher computational burden.

Additionally, evolutionary algorithms, in general, present a higher computation
burden than swarm-based approaches. AIWPSO stands for an exception, offering
itself as the most costly technique among all the others, due to its updating
mechanism.

In most cases, the best results were obtained using a single layer as well as the
CD algorithm. Such behavior is probably related to the limited number of epochs
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(a) CalTech 101 Silhouettes : CD : MSE
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Fig. 3.8 Training convergence (a) MSE and (b) log pseudo-likelihood using the CD algorithm
and a single layer of hidden units over the CalTech 101 Silhouettes dataset

employed for training, i.e., more complex models composed of a more significant
amount of layers would require a higher number of epochs for convergence than
the 10 epochs employed in this work. However, running the experiments over such
conditions is not plausible in this context due to the massive amount of executions
performed for the comparisons presented in the chapter. The same is valid for the
PCD algorithm.
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3.5.3 Hpyper-Parameters Analysis

This section provides a complete list of the average values of hyper-parameters
obtained during the execution of every possible experimental configuration. Notice
that values in bold stand for the configuration that obtained the best results
accordingly to the Wilcoxon signed-rank test.

Table 3.8 presents the average hyper-parameter values considering the MNIST
dataset. The similarity between both IHS and FPA considering a single layer over the
Contrastive Divergence algorithm is evident, which is expected since both obtained
similar results. However, comparing these results with the ones obtained with a
higher number of layers, i.e., BA with 2 layers and AIWPSO with 3 layers, over the
PCD algorithm denotes a harder task, since the number of hyper-parameters is also
higher, and each one exerts a degree of influence over the others.

Regarding the Semeion Handwritten Digit dataset, presented in Table 3.9, one
can once again identify some relation between the set of hyper-parameters and the
final results. Although IHS did not obtain the best results over the CD algorithm
with a single layer, its results are pretty close to the best obtained using the CoBiDE
algorithm. The resemblance is reflected in their hyper-parameter sets. Another
example of this resemblance is observed in the 1-layered FPA and BSA over the CD
algorithm: a close set of hyper-parameters leads to close results in the experiments.

An analogous behavior is observed in Table 3.10 regarding Caltech 101 Silhou-
ettes dataset. Although FPA, BSA, and CoBiDE did not obtain statistically similar
results to IHS according to the Wilcoxon signed-rank test, their results are very
much alike, which is perceptible in their selected sets of hyper-parameter. Regarding
more complex models, i.e., with two and three layers, one can still observe some
likeness. Notice, for instance, the similarity between AIWPSO trained with both
CD and PCD, and BSA trained with CD over three layers. However, since they
require a larger number of hyper-parameters to be fine-tuned, the combination is
exponentially larger, thus providing more diverse combination sets.

3.6 Conclusions and Future Works

This chapter dealt with the problem of Deep Belief Network’s hyper-parameter
parameter fine-tuning through meta-heuristic approaches. Experiments were con-
ducted using three architectures, i.e., one (naive RBM), two, and three layers, which
were trained using both the Contrastive Divergence and the Persistent Contrastive
Divergence algorithms. Further, the performance of ten techniques, as well as a
random search, were compared over three public binary image datasets. Results
demonstrated that Improved Harmony Search obtained the best results in two
out of three datasets, while CoBiDE obtained the best values regarding Semeion
Handwritten Digit dataset, denoting the efficiency of differential evolution-based
techniques. Concerning the training steps, in general, AIWPSO converges faster
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than the other methods on the initial iterations. However, it is outperformed by
evolution techniques after approximately 15 iterations. Finally, one can also verify
that CS is the fastest technique, followed by IHS. On the other hand, ATIWPSO is
the slowest one.

Regarding future works, we intend to compare meta-heuristic approaches to fine-
tuning DBNSs to the task of classification.
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