
Chapter 12
Evolving Deep Neural Networks
for X-ray Based Detection
of Dangerous Objects

Ryotaro Tsukada, Lekang Zou, and Hitoshi Iba

Abstract In recent years, neural networks with an additional convolutional layer,
referred to as convolutional neural networks (CNN), have widely been recognized
as being effective in the field of image recognition. In the majority of these previous
researches, the structures of networks were designed by hand, and were based
on experience. However, there is no established theory explaining how to build
networks with higher learning abilities. In this chapter, we propose a framework
on automatically obtaining network structures with the highest learning ability for
image recognition, through the combination of the various core technologies. We
employ EC (evolutionary computation) for the automatic extraction and synthesis
of network structures. Additionally, we attempt to perform an effective search in a
larger parameter space by gradually increasing the number of training epochs during
the generation change process. In order to show the effectiveness of our approach,
we apply the proposed method to the task of detecting dangerous objects in an
X-ray image data set. Compared with the previous results, we have achieved an
improvement in the mAP value. We can also find several by-passes in the structures
that were actually obtained.

12.1 Introduction

In recent years, machine learning methods using neural networks have significantly
outperformed traditional methods in areas such as image recognition [5], speech
recognition [2], and natural language processing [1].

Neural networks with an additional convolutional layer, referred to as con-
volutional neural networks (CNN), are widely recognized as being effective in
the field of image recognition. In ILSVRC 2012, a worldwide image recognition
contest conducted in 2012, Hinton et al. [5] used a method of image recognition
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based on convolutional neural networks and achieved more than 10% significant
improvement (compared with previous methods) in terms of recognition accuracy.
Subsequently, this achievement has triggered a lot of proactive research on image
recognition based on convolutional neural networks; this has resulted in the numer-
ous proposals and performance enhancement of neural networks with more complex
and varied structures such as the GoogLeNet [18], ResNet [4], and YOLO [12].

Image recognition is the process of extracting features from images obtained
in the real world in order to recognize objects such as characters, symbols,
people’s faces, and animals that may appear in an image, and it has a wide
range of applications. Hence, building systems with increasingly higher recognition
accuracies is necessary.

A characteristic of convolutional neural networks is that networks can be
constructed by combining layers that perform specific functions, just like blocks
that are put together. In the majority of the previous research on image recognition
using convolutional neural networks, the structures of networks were designed
by hand, and were based on experience. In this context, the improvement in the
learning ability of various networks from various core technologies such as dropout,
batch normalization, GoogLeNet’s inception module [18], and residual learning
introduced in ResNet [4] has been empirically verified. However, there is no
established theory explaining how to combine these technologies to build networks
with higher learning abilities. In fact, networks that currently exhibit the highest
learning levels contain a huge number of parameters and are deep and complex.
Therefore, specialists must perform a lot of trial-and-error and craftwork in order
to yield the highest learning ability on a specific data set. Consequently, there
is ongoing research on the automatic design of network structures using genetic
programming (GP) [9, 17], and network structure search methods using neural
networks [11].

The present research focuses on automatically obtaining network structures with
the highest learning ability for image recognition, through the combination of the
various core technologies itemized above. We used genetic algorithms (GA) for the
automatic extraction and synthesis of network structures. The advantage of genetic
algorithms in the present research is that a simple network can gradually evolve
into a complex network during the search process with very little prior input from
a human. Additionally, we attempt to perform a search in a larger parameter space
by gradually increasing the number of training epochs that evaluate each individual
during the generation change process.
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12.2 Related Research

12.2.1 Neuro-Evolution

Neuro-evolution in the broad sense is an attempt to generate neural networks by
the use of evolutionary computation methods [9]. In the present research, our goal
is to optimize the structure of the convolutional neural network by using GA. This
process can be likened to an evolutionary computation; thus, this approach can be
considered as a form of neuro-evolution.

The NEAT (NeuroEvolution of Augmented Topologies [16]) method is an
example of neuro-evolution. The method is characterized by the growth of small
structures into larger structures as they get optimized. Using GA, the network
undergoes evolution by crossover and mutation, which, respectively, results in better
structures and changes in the connectional relationship between nodes. An example
of structural change resulting from a mutation in NEAT is illustrated in Fig. 12.1.

12.2.2 Genetic CNN

Genetic convolutional neural network (Genetic CNN) [19] is a proposed example
of a convolutional neural network structure search using GA. In Genetic CNN, a
stage composed of multiple convolutional layers and subsequent pooling layers is
repeated multiple times. The convolutional layers in each stage are connected in the
form of directed acyclic graphs. As shown in Fig. 12.2, the binary values 0 or 1 are
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Fig. 12.1 Example of structure change due to mutation in NEAT [16]
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Fig. 12.2 Example of network structure encoding in Genetic CNN [19]

encoded as a sequence, specifying which previous convolutional layer is connected
to itself. These codes are viewed as “genes,” and the process of searching for the
network structures with higher learning abilities using GA is referred to as Genetic
CNN. The number of stages and the number of convolutional layers in each stage
are preset; therefore, the length of the sequence that makes up the gene is also fixed.

To represent the fitness of GA, we use the recognition accuracy yielded by the
network pertaining to the individual based on a specific data set used for learning.
Crossover is achieved by exchanging bits between sequences, and mutations are
performed by bit reversal. For the selection, a roulette wheel selection process is
adopted where the probability of selection is proportional to the difference in fitness
with respect to the individual with the lowest fitness. Therefore, individuals having
networks with a structure that yields higher accuracy are more likely to survive
into the next generation. This way, trial-and-error involving the combinations of
network structures and mutations eventually results in the output of individuals
having networks with the highest accuracy. The Genetic CNN algorithm is described
in Algorithm 1:

12.2.3 Aggressive Selection and Mutation

In Genetic CNN, training is performed from scratch to evaluate the individuals. This
process is repeated multiple times for all individuals of the generation during the
generation change process. Hence, if the final number of generations is T and the
number of individuals in each generation is N , training is repeated T ×N times until
the end of the generation change process. However, the training of a convolutional
neural network normally takes a considerable amount of time for just one round.
Consequently, a drawback of these repetitions is the considerable amount of time
required.
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Algorithm 1 Genetic CNN
1: Input: data set D, final generation number T , number of individuals in each generation N ,

probabilities of crossover and mutation pC and pM, parameters qC, qM related to crossover
and mutation

2: Initialization: the initial generation is formed, containing N individuals. Each individual
consists of a structure where bits 0 and 1 are selected at random. The individual fitness is
evaluated (more on this later).

3: for t = 1, 2, . . . , T do
4: Selection: considering individuals from generation t − 1, N individuals are selected in a

roulette wheel scheme where the selection probability is proportional to the fitness difference
with regard to the individual with the lowest (worst) fitness; selection of the same individual
multiple times is allowed.

5: Crossover: for each pair of selected neighboring individuals in the same generation t , the
crossover is performed with probability pC (each bit is exchanged with probability qC).

6: Mutation: for individuals that did not undergo crossover as above, mutation is carried out
with probability pM (each bit is reversed with a probability qM).

7: Evaluation: the network of an individual is trained on data set D and tested using test
images to obtain fitness, which is the accuracy obtained.

8: end for
9: Output: individuals and their recognition accuracies in the final generation.

Additionally, due to the utilization of a roulette wheel selection scheme where the
selection probability is proportional to the difference with respect to the fitness of
the individual with the lowest fitness, it is possible that individuals having networks
with weak structures that are not expected to yield further improvements in accuracy
could avoid elimination from selection and survive.

Furthermore, elements not related to connections in the convolutional layer
(hyperparameters such as the layout of the pooling layer, number of channels in
each layer, filter size, and stride.) must be previously determined, resulting in a
small search space for the parameters subject to search.

In [7], the above problems are addressed in the following ways:

(i) evaluation of individuals is accelerated by roughly assessing the fitness of an
individual by training using a small number of epochs;

(ii) by introducing a selection and mutation scheme called “aggressive selection
and mutation,” weak individuals are eliminated early so that new individuals
based on strong ones can be born more easily;

(iii) the space of parameters to be searched is enlarged by increasing the elements
subject to mutation.

The training of convolutional neural networks is performed by repeatedly feeding
the same training data to the networks. The number of such repetitions is called
“number of epochs.” Usually, a sufficient level of recognition accuracy is not
achieved if the network is trained with a small number of epochs. However, to
estimate fitness as a reference for generational change in GA, a rough estimation
based on a small number of epochs is expected to be enough.
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Fig. 12.3 Different strategies. Aggressive selection and mutation for N = 6 and k = 2 are shown
in the right [7]

The aggressive selection and mutation method involve selecting only k(�N)

individuals with high fitness from the parents’ generation, complementing the
lacking part with clones, and applying mutation to those clones. The method is
similar to the random mutation hill-climbing method because it searches for a
solution based only on mutations. An example of aggressive selection and mutation
for N = 6 and k = 2 is illustrated in Fig. 12.3.

In Genetic CNN, only connectional relations in the convolutional layer are set
as a target for optimization. However, in aggressive selection and mutation, various
types of mutation operations are available, such as adding or deleting layers other
than convolutional layers or changing preset values of the convolutional layer itself
(hyperparameters). With this method, the parameter search space gets significantly
expanded.

Consequently, the time required to find the best individual is significantly reduced
and the recognition accuracy of the best individual is improved dramatically.

The aggressive selection and mutation algorithm is described in Algorithm 2.

Algorithm 2 Aggressive selection and mutation
1: Input: data set D, final generation number T , number of individuals per generation N , number

of elite individuals k to be added to the next generation, threshold d for the distance between
individuals

2: Initialization: the 0-th generation is formed by N individuals having a fixed initial structure.
The fitness of each individual is evaluated (to be explained later).

3: for t = 1, 2, . . . , T do
4: Selection: k individuals with high fitness are selected sequentially from generation t − 1.

The individual is added to generation t unless the distance with respect to the individuals
already added to generation t is less than d. A total of N − k clones of the k added individuals
are added.

5: Mutation: a mutation operation is selected and applied to each of the N − k cloned
individuals. Nothing is done to the remaining k individuals.

6: Evaluation: the network of each individual is trained on data set D, and the recognition
accuracy on test images is stored as the fitness value.

7: end for
8: Output: individuals in the final generation and the recognition accuracy for these individuals.
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Details on the initial structure and methods of mutation are explained in
Sect. 12.4.

12.2.4 YOLO

YOLO is one of single-shot object detection CNN models. YOLO first resizes the
input image into a square and divides it into equal-sized regions using S × S grids.
Each grid will predict B bounding boxes and probability values for C categories.
An example for S = 7, B = 2, and C = 20 is illustrated in Fig. 12.4 [13]. Each
bounding box needs to be represented by five parameters: the coordinate of the
center point on the x and y axes, the height h and width w of the bounding box, and
the confidence value c. Finally, YOLO selects the prediction box with the highest
confidence value as the detection result. In order to avoid multiple detections of the
same object, YOLO uses the non-maximum suppression method to ensure that each
object is detected only once.

As shown in Fig. 12.4, the entire YOLO network is composed of convolutional
layers and fully connected layers without any sub-network structure. Here, the
output dimension of YOLO is 7 × 7 × 30. This is because when S = 7, B = 2,
and C = 20, each grid predicts two bounding boxes, probability values for 20
categories, and each bounding box needs five parameters {x, y, h,w, c} in total
requiring 7 × 7 × (5 × 2 + 20) = 7 × 7 × 30 parameters.

S × S grid on input

Class probability map

Final detections

Fig. 12.4 The system model of YOLO [13]
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12.2.5 Transfer Learning

Transfer learning [10] is a framework in machine learning where data on related
problems and derived knowledge are used to effectively and efficiently solve the
target problem. The sender and the receiver of knowledge to be transferred are called
the source domain and target domain, respectively.

Humans learn various things from transfer learning. For instance, when someone
who can play the piano starts to learn the electronic organ at the same time as
someone who cannot play the piano, the former can learn to play the electronic
organ better and in a shorter amount time than the latter. In the framework of transfer
learning, the piano is the source domain, the electronic organ is the target domain,
and proficiency in playing the piano assists in the learning of the electronic organ.
Transfer learning is applied in various fields, including natural language processing,
voice recognition, and image processing.

Figure 12.5 shows a rough flow of transfer learning. In this example, the source
task concerns training on female speech and the target task is to recognize speech
from males. Learning is carried out using data and knowledge associated with
problems in the source and target domains to ultimately answer problems in the
target domain efficiently and with high precision. Usually it is assumed that the
source and the target domains have some structural relationship.

Transfer learning is very effective when there is little training data in the
target domain, but substantial data in the source domain. Moreover, transferring
knowledge from a domain that is highly similar to the target domain results in more
efficient learning. In contrast, the transfer of knowledge from a source domain with
low similarity results in a decrease in learning performance, which is called negative
transfer.

In transfer learning, the maximum limit of learning performance in the training
domain is normally limited by the learning performance in the source domain. In
other words, a higher learning precision in the source domain results in a better
chance of improving learning efficiency in the target domain.

Fig. 12.5 Image of transfer
learning

source target

Solu on to target task

Transfer knowledge
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An important problem in transfer learning is determining what knowledge to
transfer. If the data from the source domain is necessary, the most obvious approach
is to appropriately map the data and use it when learning in the target domain. On
the other hand, transferring feature values or parameters that exist both in the source
and target domains is also possible. What knowledge can be transferred and what
knowledge successfully works depends on each domain, and determining which to
apply is difficult.

12.3 Proposed Method

In Sect. 12.2, we have explained the aggressive selection and mutation scheme [7].
In this section, we further introduce an extended method, which we call ASM+,
where generation alternation is performed by increasing the number of epochs
according to the generation number during the evaluation training of the individuals.
Let nmin, nmax, and T be the minimum number of epochs, the maximum number of
epochs, and the number of total generations, respectively. In our method ASM+, the
number of epochs n(t) related to generation t is defined by the following equation:

n(t) = (T − t) · nmin + t · nmax

T

Thus, the interval between n(0) = nmin and n(T ) = nmax is uniform and depends
on the final generation number T .

Due to the slope with respect to the epoch number, the generation change cycle
is faster at the beginning of evolution, thereby enabling an evaluation of individuals
with various structures over a wide range. Subsequently, individuals exhibiting good
structures at the end of evolution are evaluated locally with higher accuracy.

12.4 Experiments on Evolutionary Synthesis
of Convolutional Neural Networks

Experiments were carried out using two types of combinations of data sets and
tasks. First, the effectiveness of the proposed method ASM+ is evaluated through
a relatively simple handwritten number classification task using MNIST [6] as the
data set. Second, we also apply ASM+ to the task of detecting dangerous objects in
an X-ray image data set simulating luggage inspection.
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12.4.1 MNIST Handwritten Number Classification Experiment

For the first experiment, the MNIST [6] data set is used. MNIST is a widely
used data set designed for the classification of handwritten numbers. MNIST was
selected because of a possible comparison with the previous researches [19] and [7]
mentioned in Sect. 12.2. Moreover, the task is simple, and it permits the evaluation
of the effectiveness of the method with a small number of computations.

The MNIST data set consists of 60,000 images for training and 10,000 images
for testing. Each image is formed by a 28 × 28-sized gray scale corresponding to an
Arabic number from 0 to 9 which are uniformly drawn on the image.

12.4.1.1 Initial Generation

As shown in Fig. 12.6, an individual in the initial generation has a network formed
by 3 layers: an input layer, a global max pooling layer, and a fully connected layer.
Global max pooling is the process of selecting the maximum value from all channels
of the input feature map, with an output to a 1 × 1-sized feature map with the
same number of channels. For the structure of the initial generation, the accuracy
on the MNIST data set is about 11%, which is approximately the same as a network
that just outputs random results. This network was selected as the initial structure
to confirm that it is unnecessary to introduce restrictions in the search range by
including human intervention.

12.4.1.2 Mutation Operations

In [7], the 15 types of operations described below were utilized for mutation
operations. In the following, “random” refers to the selection of candidates with
a uniform probability.

Fig. 12.6 Network structure
of an individual in the initial
generation. For details on the
notation of the figure, refer to
Fig. 12.8
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• add_convolution: inserts a convolutional layer with 32 channels, one
stride, 3 × 3 filter size, and one-pixel padding in a random position. The number
of dimensions of the feature maps for the input and output before and after this
operation does not change. The activation function used is ReLU.

• remove_convolution: selects a single convolutional layer at random and
deletes it.

• alter_channel_number: selects a single convolutional layer at random,
and selects a channel number out of {8, 16, 32, 48, 64, 96, 128} at random for
the replacement.

• alter_filter_size: selects a convolutional layer at random and selects a
filter size out of {1 × 1, 3 × 3 or 5 × 5} for the replacement.

• alter_stride: selects a convolutional layer at random and randomly selects
a stride out of {1 or 2} for the replacement.

• add_dropout: selects a convolutional layer at random and inserts a dropout
soon after. The dropout ratio is fixed at 0.5.

• remove_dropout: selects a dropout at random for removal.
• add_pooling: selects a convolutional layer at random and inserts a pooling

layer soon after. Max pooling is adapted and the kernel size is fixed as 2 × 2.
• remove_pooling: selects a pooling layer at random and deletes it.
• add_skip: inserts a residual network, which was introduced in ResNet [4]. It

precisely selects a random pair of layers where the feature maps of the outputs
have the same dimension and inserts a layer that has an output formed by the sum
of these outputs.

• remove_skip: selects at random one of the skip layers above and deletes it.
• add_concatenate: like add_skip, it selects a random pair of layers where

the feature maps of the outputs have the same dimension (however, the numbers
of channels may not be the same), and inserts a layer that has an output formed
by concatenating the previous outputs.

• remove_concatenate: selects one of the concatenate layers above at
random and deletes it.

• add_fully_connected: selects a random position just after other fully
connected layers or the last layer and inserts a fully connected layer. The
dimension of the output is selected at random from {50, 100, 150, 200}.

• remove_fully_connected: a single fully connected layer is selected at
random and deleted.

Selecting and applying one out of the 15 types of operations above is con-
sidered a mutation. However, to facilitate the evolution to more complex struc-
tures, in our method ASM+, the probability of selecting add_convolution,
add_skip, add_concatenate, alter_stride, alter_filter_size,
and alter_channel_number is two times higher than other operations.

In some cases, it may be impossible to apply a certain operation. For instance,
it is impossible to apply remove_convolution to an individual that does not
have a convolutional layer. In such cases, the operation is selected again. In other
cases, the network structure of a given individual may be considered invalid due
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to the dimensional mismatch after beginning the actual evaluation training. In such
cases, the fitness of such individual is set to 0.

12.4.1.3 Experimental Results

Experiments were conducted on a single GPU on Google Colaboratory. Two
patterns were defined as follows: with and without batch normalization process
inserted just after the convolutional layer.

Other settings were: T = 30 (final generation number), N = 10 (number of
individuals in each generation), k = 1 (number of elite individuals to be added
to the next generation), nmin = 3 (minimum number of epochs), and nmax = 12
(maximum number of epochs).

Figure 12.7 shows how the fitness for the best individual (or image recognition
accuracy) evolved along the generations for each pattern. The recognition accuracy
obtained for the best individual in the final generation re-evaluated with the
maximum number of epochs nmax and the time required for the entire evolution
process are shown in Table 12.1.

Fig. 12.7 Changes in fitness
value for the best individual
in each generation

Table 12.1 Comparison of the recognition accuracy for the best individual in the final generation
across different methods

Method Recognition accuracy Computation time

Genetic CNN [19] 0.9966 48 GPUH

Aggressive selection and mutation [7] 0.9969 35 GPUH

ASM + (without batch normalization) 0.9932 N.A.

ASM + (with batch normalization) 0.9913 9 GPUH
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Fig. 12.8 Network structure
for the best individual in the
final generation (with batch
normalization). InputLayer
represents the input layer;
Conv2D is a 2-dimensional
convolutional layer.
BatchNormalization
represents batch
normalization, and Activation
denotes the application of the
activation function (ReLU).
GlobalMaxPooling2D
represents the maximum
pooling operation in 2
dimensions across all
channels, and Dense
represents a fully connected
layer. The values in the input
and output fields are the
dimensions of the input and
output, respectively, and
individually represent batch
size, height, width, and
number of channels. “None”
indicates that the batch size is
arbitrary. Note that fully
connected layers have neither
height nor width, thus the
height and width notations
are not shown before and
after Dense layer

Figure 12.8 shows the network structure for the best individual in the final
generation obtained by inserting batch normalization. A list of all the mutation
operations that were selected in each generation resulting in that individual is given
in Table 12.2. The evolution of the best individual in each generation is illustrated
in Fig. 12.9 as a tree diagram.
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Table 12.2 Mutation operations performed on the best individual of each generation (with batch
normalization)

Generation Mutation operation Maximum recognition accuracy

0 initialize 0.1135

1 add_convolution 0.6254

2 - 0.6254

3 alter_channel_number 0.7398

4 - 0.7398

5 - 0.7398

6 alter_filter_size 0.7558

7 add_convolution 0.7695

8 add_convolution 0.9559

9 alter_filter_size 0.9728

10 alter_filter_size 0.9783

11 alter_channel_number 0.9825

12 - 0.9825

13 - 0.9825

14 alter_filter_size 0.9873

15 - 0.9873

16 alter_stride 0.9911

17 - 0.9911

18 - 0.9911

19 - 0.9911

20 alter_stride 0.9916

21 - 0.9916

22 - 0.9916

23 - 0.9916

24 alter_channel_number 0.9922

25 - 0.9922

26 - 0.9922

27 - 0.9922

28 alter_channel_number 0.9933

29 - 0.9933

30 - 0.9933

Blank fields denote that no operation took place on the best individual in that generation

12.4.2 Experiment on Detecting Dangerous Objects in X-ray
Images

The next stage involves experiments that are carried out on a data set of X-ray
images created by Zou [20]. This data set contains 6121 X-ray images with 3 types
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Fig. 12.9 Tree diagram showing the evolution process of the best individual in each generation
(partially omitted). The value accompanying the image of the network structure of an individual
represents its fitness. Individuals with a value written in red are those selected for the next
generation. Colored arrows indicate the selection flow. Red arrows indicate the occurrence of
mutation, and blue arrows indicate cloning
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Fig. 12.10 Portable X-ray
device (NS-100-L)

Table 12.3 Division of X-ray images into training and test groups

Training images Test images Total

Natural images 662 442 1104

(10.82%) (7.22%) (18.04%)

Synthetic images 3010 2007 5017

(49.17%) (32.79%) (81.96%)

Total 3672 2449 6121

(59.99%) (40.01%) (100.00%)

of dangerous objects (scissors, knives, PET bottles), with annotations related to each
image.1

Experiments were carried out after dividing the 6121 images into two groups:
one to be used for training and the other one for testing. The proportion of images
for training and for testing is approximately 6:4 (Table 12.3). This ratio is equal to
the previous research [20].2

12.4.2.1 Initial Generation

Individuals in the initial generation are defined as those having the network structure
described in Table 12.4. This network is the same as the one used in YOLOv2 [12],
which specialized in the detection of objects. In the original YOLOv2, another
network containing the layers indicated above the double line of the table is

1 Instead of multi-view X-ray devices which are expensive and heavy, we use a portable X-ray
device (see Fig. 12.10). While multi-view devices need to colorize images, our device can collect
single-view X-ray images in real time.
2More precisely, the actual images to be used for training and testing are randomly changed each
time and the system is run 20 times from Run 1 up to Run 20. Here, we used the set of images
corresponding to Run 11, whose results are the most representative of the average.
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Table 12.4 Network structure of individuals in the initial generation

Type Filters Size/Stride Output

Convolutional 32 3 × 3 416 × 416

Maxpool 2 × 2/2 208 × 208

Convolutional 64 3 × 3 208 × 208

Maxpool 2 × 2/2 104 × 104

Convolutional 128 3 × 3 104 × 104

Convolutional 64 1 × 1 104 × 104

Convolutional 128 3 × 3 104 × 104

Maxpool 2 × 2/2 52 × 52

Convolutional 256 3 × 3 52 × 52

Convolutional 128 1 × 1 52 × 52

Convolutional 256 3 × 3 52 × 52

Maxpool 2 × 2/2 26 × 26

Convolutional 512 3 × 3 26 × 26

Convolutional 256 1 × 1 26 × 26

Convolutional 512 3 × 3 26 × 26

Convolutional 256 1 × 1 26 × 26

Convolutional (*) 512 3 × 3 26 × 26

Maxpool 2 × 2/2 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 512 1 × 1 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 512 1 × 1 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 1024 3 × 3 13 × 13

Concatenate (**) 1024 + 256 – 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 40 1 × 1 13 × 13

The structure is the same as the network of YOLOv2 [12]. The outputs of convolutional layers
marked with (*) are also connected to concatenate layers marked with (**), being combined along
the direction of the channel number. Here, the outputs (*) are reduced to 64 channels by 64 filters
that perform 1 × 1 convolution. Furthermore, to obtain a 13 × 13 height and width for the output,
they are, respectively, reduced by 1

2 , and the channel number is converted to 64 × 22 = 256. The
by-pass described in Sect. 12.2.4 is realized by this concatenate layer

previously trained on the ImageNet [15] data set where it acquires the ability to
extract the features of object recognition. Subsequently, the layers below the double
line are replaced by those shown in Table 12.4 and the training for object recognition
is repeated, thereby characterizing a transfer learning method (see Fig. 12.11). Using
this as a reference, only the layers below the double line becomes the target of
evolution. The output is a 13 × 13 × 40 tensor because B = 5 and C = 3, similar
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Fig. 12.11 Transfer learning
for X-ray based detection of
dangerous objects

to the case mentioned in Sect. 12.2.4. Here, C = 3 represents the three classes of
scissors, knives, and PET bottles.

Since evaluating the fitness (mAP, see Sect. 12.4.2.4) of individuals from this
initial generation takes a certain amount of time, unlike the initial generation
described in Sect. 12.4.1.1 for the MNIST experiment, this process was skipped.
Therefore, the group of individuals for the initial generation was just a formality.
The experiment essentially began with the group of individuals of the 1st generation,
who were obtained by performing mutation operations on the initial generation.

12.4.2.2 Mutation Operations

As in Sect. 12.4.1.2, the following nine types of operations based on [7] were chosen
as mutation operations. As mentioned in Sect. 12.2.4, the output size of the last
layer is fixed in order to output results related to object recognition. Furthermore,
to avoid overfitting in YOLO, batch normalization is introduced; thus, dropout is
unnecessary [12]. Due to these restrictions, six operations, namely add_dropout,
remove_dropout, add_skip, remove_skip, add_fully_connected,
remove_fully_connected, were removed. In the following, “random” was
defined as the selection of each candidate with uniform probability.

• add_convolution: inserts a convolutional layer with 1024 channels, one
stride, a 3×3 filter size, and one-pixel padding in a random position. The numbers
of dimensions of the feature maps for the input and output before and after this
operation do not change. The activation function used is Leaky ReLU [8].

• remove_convolution: selects a single convolutional layer at random and
deletes it.

• alter_channel_number: selects a single convolutional layer at random
and selects a random channel number out of {512, 1024 or 2048} for the
replacement.
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• alter_filter_size: selects a convolutional layer at random and randomly
selects a filter size out of {1 × 1, 3 × 3 or 5 × 5} for the replacement.

• alter_stride: selects a convolutional layer at random and selects a stride
out of {1 or 2} at random for the replacement.

• add_pooling: inserts a pooling layer in a random position. Max pooling is
adapted, and the kernel size is fixed as 2 × 2.

• remove_pooling: selects a pooling layer at random and deletes it.
• add_concatenate: selects a layer above and a layer below the double line of

Table 12.4. It then inserts a layer with an output formed by concatenating those
layers. The insertion point is just after the selected lower layer.

• remove_concatenate: selects one of the concatenate layers above at
random and deletes it.

Mutation is defined here as the operation of selecting and applying one of
the nine operations above. As in Sect. 12.4.1.2, the probability of selecting
operations add_convolution, add_concatenate, alter_stride,
alter_filter_size, and alter_channel_number is set as twice as
large as other operations to help facilitate the evolution of the network structure of
an individual to a more complex one.

12.4.2.3 Restructuring of Network Structures Due to Mutation

The results of Sect. 12.4.1.3 indicate that in some cases a mutation operation
selected at random cannot be applied due to restrictions related to the number of
dimensions of the input and output before and after the layer. For these cases,
we introduced a method to enhance the probability that the selected operation
can be applied by trying to restructure the network as much as possible to make
dimensions match when add_concatenate is selected as a mutation operation.
The restructuring algorithm is shown in Algorithm 3. This algorithm imitates the
operations carried out in the concatenate layer marked with (**) in Table 12.4.

12.4.2.4 Fitness (mAP) Calculation Method

In the MNIST handwritten classification task mentioned in Sect. 12.4.1, the classi-
fication accuracy was used as a measure of fitness. However, in an object detection
task, it is necessary not only to classify the object but also to estimate the position
and area where the object exists. Therefore, it is not possible to introduce the concept
of correct and incorrect detection results as it is. For this reason, it is necessary to
redefine the concept of fitness.
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Algorithm 3 Restructure algorithm for the network structure to apply
add_concatenate
1: Input: input from the immediately preceding layer (height hin, width win, number of channels

cin), input from the source layer (height hsource, width wsource, channel csource)
2: if hsource = m · hin or hsource = 1

n
· hin (m, n ∈ N) then

3: Pointwise convolution: connects the input from the source layer to the convolutional layer
having 64 channels, one stride, 1 × 1 filter size, and one-pixel padding. Due to this operation,
the number of channels of the input from the source layer is fixed to 64. Hence, the number
of parameters is reduced, and the growth in the number of channels for the next operation is
suppressed.

4: Reorganization: performs a transformation where the height and width of the input from
the source layer are, respectively, reduced by 1

m
(magnified by n times), and the number of

channels is multiplied by m2 (reduction by 1
n2 ). As a result of this operation, we have hsource =

hin, wsource = win and the height and width dimensions of the inputs from the two layers
coincide. The number of parameters does not change before and after this operation.

5: Concatenation: the inputs from two layers whose height and width dimensions coincide
are concatenated along the channel number direction to form the output of this layer.

6: else
7: Failure: since restructuring is impossible, another mutation operation is selected.
8: end if
9: Output: formed by the concatenation of inputs from two layers along the channel number

direction

There are several performance evaluation criteria for the object detection task,
but here we consider mAP (mean Average Precision) as a fitness measure. Below
is an explanation of the mAP calculation method [3]. For simplicity, the subject of
detection is only one type of object.

If the image of the target of object detection is input to a network, several square
areas (set of numbers stating the coordinates of the center, width, and height) are
obtained. The output also includes the probability that an object exists in each
rectangular area (confidence). Of the above, we only consider the rectangular areas
where confidence is greater than or equal to a threshold c. Three terms are defined
below:

True Positive the number of predicted areas that was correctly “detected”
False Positive the number of predicted areas that was incorrectly not “detected”
False Negative the number of areas that should have been “detected” but was not.

Here a predicted area “detects” a correct area if the value of the intersection over
union (IoU) is equal to or greater than 0.5. Note that IoU is a measure of overlap
between the two areas. Figure 12.12 shows the definition of IoU. Hence, IoU is the
ratio of the intersection of two areas to the area of the union between them. If several
predicted areas cover a single correct area, only the predicted area of one of them is
counted as True Positive; all other predicted areas are counted as False Positive.
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Fig. 12.12 Definition of IoU

Fig. 12.13 Example of PR
curve. The blue-painted
region represents AP

Based on the definition above, the values of Recall and Precision are obtained by
counting the number of True Positive (TP), False Positive (FP), and False Negative
(FN) for all the given test images, as follows:

Recall = TP

TP + FN

Precision = TP

TP + FP

Recall is the ratio of “the number of actually detected objects to the number of all
objects to be detected,” while Precision is a ratio of “the number of areas where
objects actually exist out of the areas where they are predicted to exist.” Here, if
the threshold value c is changed, the number of predicted areas to be considered
also changes. Therefore, the values of TP, FP, and FN also change, and so do the
values of Recall and Precision. Thus, a plot such as the one in Fig. 12.13 (PR curve:
precision-recall curve) can be obtained by plotting Recall on the horizontal axis,
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Precision on the vertical axis, and connecting the points obtained when the value of
threshold c is changed from 0 to 1.

The area of the region delimited by the PR curve and the axes is called AP
(Average Precision) and assumes a value between 0 and 1. The higher the value
of the AP, the higher is the detection accuracy.

Even if the number of classes to be detected is increased, it is possible to calculate
the value of AP for each class. mAP is the average value of AP calculated for each
class.

12.4.2.5 Changing the Evaluation Method for Individuals in the Elite
Group of Each Generation

In the experiment described in Sect. 12.4.1, when individuals from the elite group
with the highest fitness in their generation are cloned into the next generation, their
fitness is just inherited without being re-evaluated. This results in an issue in the
proposed method ASM+ where the number of epochs for evaluation increases with
each generation. Furthermore, when individuals in the elite group are in a state of
overfitting where their fitness does not improve with the number of epochs, they are
not updated and enter a state of local stagnation. However, this issue was solved
by also re-evaluating those individuals in the elite group just like the other ones
using the number of epochs corresponding to the generation. Therefore, unlike the
MNIST experiment where the fitness of the best individual improves uniformly
with the generation, in some cases the fitness of the best individual decreases as
the generation advances.

12.4.2.6 Experimental Results

Experiments were conducted on an NVIDIA GeForce GTX 1080 Ti GPU. The
parameters used are shown in Table 12.5.

Table 12.5 Parameters used in the experiment

Parameter Value

Final generation number T 4

Number of individuals in each generation N 4

Number k of elite individuals to be added to the next generation 1

Batch size b 64

Number of training images Ltrain (Table 12.3) 3672

Number of testing images Ltest (Table 12.3) 2449

Minimum iteration number imin 10,000

Maximum iteration number imax 25,000



12 Evolving Deep Neural Networks for X-ray Based Detection of Dangerous Objects 347

For reasons related to implementation, instead of defining the minimum number
of epochs nmin and the maximum number of epochs nmax, the minimum and
maximum number of iterations, imin and imax, have, respectively, been defined.
Referring to the number of iterations as i and the number of epochs as n, the number
of epochs is converted to the number of iterations using the equation below:

n = b · i
Ltrain

Since batch size b = 64 and Ltrain = 3672, if we set imin = 10,000 and imax =
25,000, this is almost equivalent to setting nmin = 174, nmax = 436.

The method proposed ASM+ in Sect. 12.3 can be applied in the same way even
if the number of epochs is replaced by the number of iterations. Hence, in order to
split the interval between imin and imax uniformly with respect to generation number
T = 4, the number of iterations is varied from the first up to the 4th generation in
the following order: 10,000, 15,000, 20,000, and 25,000.

Figure 12.14 shows how the fitness (mAP) for an individual changed from
generation to generation. Table 12.6 shows the mAP for the best individual obtained
by evolution; it also shows the computation time required by the entire process.
Table 12.7 shows which mutation operations were selected in each generation.

Fig. 12.14 Change of fitness
of all individuals in each
generation. The red dot is the
result of reference [20] (Exp.
5/Run 11, including data
during the training), where
the number of epochs upon
evaluation is plotted after
conversion to the
corresponding generation
number

Table 12.6 Comparison of True Positive (TP), False Positive (FP), False Negative (FN), AP, mAP
(converted to %), and computation times for each method

AP

Method TP FP FN Scissors Knives PET bottles mAP Computation time

Zou [20] 5474 517 469 90.46% 88.82% 90.67% 89.98% 7 GPUH

ASM+ 5485 459 458 90.32% 89.16% 90.60% 90.03% 84 GPUH

The threshold used for the computation of TP, FP, and FN is c = 0.25
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Table 12.7 Mutation
operations performed on the
best individual of each
generation

Generation Mutation operation Maximum mAP

0 initialize –

1 add_concatenate 0.8988

2 - 0.8997

3 add_convolution 0.9003

4 add_concatenate 0.8999

Blank fields indicate that no update was carried out on a
specific individual/generation

The following Figs. 12.15 and 12.16 show the network structures of the indi-
viduals exhibiting the best and the second-best fitness during the evolution process.
Figure 12.17 is a tree diagram describing the evolution process of the best individual
of each generation.

However, note that, in Figs. 12.15, 12.16, and 12.17, batch normalization and
Leaky ReLU are applied immediately after all Conv2D (2-dimensional convolu-
tional layer) in all layers except the last one; however, this was abridged in the
figures.

12.5 Discussion

12.5.1 Handwritten Number Classification Experiment Using
MNIST

Compared with Genetic CNN [19] and aggressive selection and mutation [7], the
recognition accuracy for the best individual is slightly lower; however, the level of
accuracy achieved is approximately equivalent.

From the dimensional changes that occurred in the feature map of each layer of
the network that was eventually obtained, we observed that the vertical and horizon-
tal dimensions of the output feature map of the convolutional layer decreased, while
the number of channels increased. This structure is also seen in classical networks
such as LeNet [6] and is supposed to reflect the process of grasping the local features
of the image by changing the scale.

However, the final network has an extremely simple structure formed by
two convolutional layers. There is no pooling layer, dropout, or by-pass, which
could have been introduced by add_pooling, add_dropout, and add_skip,
respectively. This could be attributed to the strict conditions for the application of
mutations; therefore, the operations involving the addition of such structures were
not selected. Moreover, from Fig. 12.9 and Table 12.2, we observed that the addition
of a convolutional layer at an early stage of evolution produces a dramatic effect
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Fig. 12.15 Network
structure of an individual
from the 3rd generation,
which exhibited the best
fitness among all individuals
(fitness = 0.9003). For the
notation, refer to Fig. 12.8
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Fig. 12.16 Network
structure of an individual
from the 4th generation
whose network structure
yielded the second largest
fitness among all individuals
(fitness = 0.8999)
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[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 64)
Conv2D

input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 104, 104, 64)

(None, 13, 13, 4096)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Concatenate
input:

output:

[(None, 13, 13, 4096), (None, 13, 13, 1280)]

(None, 13, 13, 5376)

Conv2D
input:

output:

(None, 13, 13, 5376)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Conv2D
input:

output:

(None, 13, 13, 1280)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 64)
Conv2D

input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 52, 52, 64)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 1024), (None, 13, 13, 1024)]

(None, 13, 13, 2048)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 2048)]

(None, 13, 13, 2304)

Conv2D
input:

output:

(None, 13, 13, 2304)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 64)
Conv2D

input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Reshape
input:

output:

(None, 52, 52, 64)

(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Concatenate
input:

output:

[(None, 13, 13, 1024), (None, 13, 13, 1536)]

(None, 13, 13, 2560)

Conv2D
input:

output:

(None, 13, 13, 2560)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 64)
Conv2D

input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)
Reshape

input:

output:

(None, 13, 13, 64)

(None, 13, 13, 64)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 64), (None, 13, 13, 1280)]

(None, 13, 13, 1344)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1344)]

(None, 13, 13, 1600)

Conv2D
input:

output:

(None, 13, 13, 1600)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1280)

(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Conv2D
input:

output:

(None, 13, 13, 1280)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 64)
Conv2D

input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Reshape
input:

output:

(None, 52, 52, 64)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 1024), (None, 13, 13, 1024)]

(None, 13, 13, 2048)

Conv2D
input:

output:

(None, 13, 13, 2048)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)
Conv2D

input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Reshape
input:

output:

(None, 104, 104, 64)

(None, 13, 13, 4096)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 4096), (None, 13, 13, 1024)]

(None, 13, 13, 5120)

Conv2D
input:

output:

(None, 13, 13, 5120)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1280)

(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Conv2D
input:

output:

(None, 13, 13, 1280)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)
Conv2D

input:

output:

(None, 13, 13, 512)

(None, 13, 13, 64)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)
Reshape

input:

output:

(None, 13, 13, 64)

(None, 13, 13, 64)

Conv2D
input:

output:
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Fig. 12.17 Tree diagram showing the evolution process of the best individual of each generation.
The value accompanying the image of the network structure of an individual represents its fitness
(mAP). Individuals with a value written in red are those selected for the next generation. Colored
arrows indicate the selection flow. Red arrows indicate the occurrence of mutation, and blue arrows
indicate cloning
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on recognition accuracy; subsequently, only operations that change the hyperpa-
rameters in the convolutional layer (alter_stride, alter_filter_size,
alter_channel_number) are selected as operations that result in the birth of
better individuals.

Furthermore, from Fig. 12.7, we observe that evolution saturates around the 15th
generation. Similarly, the selection of operations to be applied to the individuals of
that generation is restricted, resulting in the selection of locally optimized solutions.
Another factor is that since the number of epochs increases as the generations
advance, overfitting tends to occur in new individuals, and the best individuals end
up not being updated.

Conversely, the computation time for the entire evolution process is shorter than
the previous results [19] and [7]. This is possibly due to a persisting situation where
only networks with simple structures that require short training times were obtained.

The presence or absence of batch normalization did not produce a significant
difference in the results.

12.5.2 Experiment on Detecting Dangerous Objects in X-ray
Images

Compared with the results of the method used by Zou [20], individuals showing an
improvement of 0.05% in the mAP value were obtained (Table 12.6). The number
of “detected” dangerous objects (True Positive) also increased. Additionally, the
number of other objects wrongly detected as dangerous (False Positive) decreased,
and the number of dangerous objects that were not detected (overlooked) also
decreased (False Negative). Therefore, for the dangerous object detection task,
both “Recall” and “Precision” improved, which denotes a definite performance
improvement. Figure 12.18 shows an example of a dangerous object that was not
detected by Zou’s method but was detected by the proposed method ASM+.

In the tree diagram of Fig. 12.17, we can find several by-passes generated by
add_concatenate in the structures that were actually obtained. This can be
contrasted with the case of the MNIST handwritten number classification task,
where no by-pass was observed due to restrictions on the application of mutation
operations (Sect. 12.5.1). Our assumption is that the network structure reconstruc-
tion algorithm for applying add_concatenate introduced in Sect. 12.4.2.3 has
produced effective results.

The network structure of one of the two individuals that yielded a better mAP
than Zou’s method, which exists in the last generation shown in Fig. 12.16, is
examined closely. In that structure, three by-pass lines stretch out from a layer with a
26×26 (width, height) output towards a layer having a 13×13 input located closer to
the final layer. This structure is similar to the U-type structure of U-Net [14], which
produced good results in medical image segmentation. As mentioned in Sect. 12.2.4,
employing a by-pass from the high-resolution output of a layer with a large feature
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Fig. 12.18 Example of where an image that was overlooked by the Zou’s method [20] was
correctly detected by the proposed method ASM+. Images of two PET bottles and a knife are
overlapped in the center of the image. (a) Detection results in Zou’s method. (b) Detection results
by ASM+
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Fig. 12.19 Comparison of evolved network structures. (a) Aggressive selection and mutation. (b)
U-Net [14]

map to a layer with a small feature map acts to improve the ability to detect small
objects (see Fig. 12.19).

Next, from Fig. 12.14, we observe that the fitness of the best individual of the
4th generation is lower than that of the 3rd generation. This is an indication that the
high number of epochs used in the evaluation results in overfitting and deterioration
in the mAP value in individuals that are cloned into the next generation as an elite.
As a result, the proposed method ASM+ of increasing the number of epochs as the
generations advance has the advantage of finding an optimal number of epochs that
does not result in overfitting.
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12.6 Conclusion

Optimizing the structure of convolutional neural networks is a task that requires
high-level specialized knowledge and a huge amount of trial-and-error work. To
enable the automatic search of optimal network structures using GA, we proposed a
method ASM+ in which the number of epochs upon evaluation is increased as the
number of generations advance during the evolution process in the present research.

In the MNIST handwritten number classification experiment, we showed that
ASM+ exhibited a slightly lower recognition accuracy, but is relatively fast in terms
of computation time. However, this might be because the algorithm was not able to
search for complex structures.

In the experiment related to detecting dangerous objects in X-ray images, we
introduced a method that made it easier for individuals to undergo mutation in view
of the results of the MNIST experiments where only simple structures emerged
from the search. Consequently, it became possible to evaluate individuals possessing
several by-pass structures, resulting in an enlarged search space. Additionally, with
respect to cloned individuals belonging to the elite group, a change was introduced
where fitness is re-evaluated with a higher number of epochs instead of being
inherited into the next generation.

Due to this change, we avoided the problem of individuals becoming overfitted
with an increasing number of epochs and stuck in local solutions. Moreover, we can
consequently detect the optimal number of epochs that do not cause overfitting.

A future task is the acceleration of evolution. The proposed method ASM+
requires at least 10 times more computation than the Zou’s method [20], as is
shown in Table 12.6. Pham et. al. [11], as in ASM+, attempted to optimize the
convolutional neural network structure by using neural networks instead of GA.
A considerable reduction in computation needed to evaluate individuals may be
possible through a transfer learning approach where the weight parameters are
shared to some extent.
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