
Chapter 11
Neuroevolution of Generative
Adversarial Networks

Victor Costa, Nuno Lourenço, João Correia, and Penousal Machado

Abstract Generative Adversarial Networks (GAN) is an adversarial model that
became relevant in the last years, displaying impressive results in generative tasks. A
GAN combines two neural networks, a discriminator and a generator, trained in an
adversarial way. The discriminator learns to distinguish between real samples of an
input dataset and fake samples. The generator creates fake samples aiming to fool
the discriminator. The training progresses iteratively, leading to the production of
realistic samples that can mislead the discriminator. Despite the impressive results,
GANs are hard to train, and a trial-and-error approach is generally used to obtain
consistent results. Since the original GAN proposal, research has been conducted
not only to improve the quality of the generated results but also to overcome
the training issues and provide a robust training process. However, even with the
advances in the GAN model, stability issues are still present in the training of GANs.
Neuroevolution, the application of evolutionary algorithms in neural networks, was
recently proposed as a strategy to train and evolve GANs. These proposals use
the evolutionary pressure to guide the training of GANs to build robust models,
leveraging the quality of results, and providing a more stable training. Furthermore,
these proposals can automatically provide useful architectural definitions, avoiding
the manual discovery of suitable models for GANs. We show the current advances
in the use of evolutionary algorithms and GANs, presenting the state-of-the-art
proposals related to this context. Finally, we discuss perspectives and possible
directions for further advances in the use of evolutionary algorithms and GANs.

11.1 Introduction

Generative Adversarial Networks (GAN) [16] is an adversarial model that makes
use of neural networks to produce samples based on an input distribution. GANs

V. Costa (�) · N. Lourenço · J. Correia · P. Machado
CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
e-mail: vfc@dei.uc.pt; naml@dei.uc.pt; jncor@dei.uc.pt; machado@dei.uc.pt

© Springer Nature Singapore Pte Ltd. 2020
H. Iba, N. Noman (eds.), Deep Neural Evolution, Natural Computing Series,
https://doi.org/10.1007/978-981-15-3685-4_11

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3685-4_11&domain=pdf
mailto:vfc@dei.uc.pt
mailto:naml@dei.uc.pt
mailto:jncor@dei.uc.pt
mailto:machado@dei.uc.pt
https://doi.org/10.1007/978-981-15-3685-4_11

294 V. Costa et al.

can be applied in several contexts, for example, in the generation of image, video,
sound, and text, being able to produce impressive results concerning the quality of
the created samples. This model gained a lot of relevance in recent years, leveraging
the interest of the community on improving the original proposal.

Despite the fact that GANs can be used as a generative component to produce
samples in a variety of areas, applications in the image domain are more frequently
reported by the production of realistic samples, representing significant advances
when compared to other methods [3, 21, 51]. Therefore, the focus of this chapter
is on the applications of GANs to the image domain. Nevertheless, the techniques
presented here can be extended and adapted to other contexts.

Although GANs have attained incredible results, their training is challenging,
and the presence of problems such as the vanishing gradient and the mode collapse
is common [7, 13]. The balance between the discriminator and the generator is
frequently the cause of these problems. In the case of the vanishing gradient, the
discriminator becomes so powerful that it can distinguish almost perfectly between
samples created by the generator and real samples. After this, because of the training
approach used in GANs, the process stagnates. Regarding the mode collapse, the
problem occurs when the generator fails to capture the entire representation of
the distribution used as input to the discriminator. This is an undesired behavior,
as we want not only to reproduce realistic samples but also to reproduce the
diversity of the input distribution. Although there is a diversity of strategies and
techniques to minimize the effect of these problems, they are still affecting the GAN
training [17, 39]. Most of the proposed solutions appeal to mathematical models to
deal with these problems, such as the use of more robust loss functions and stable
neural network layers [3, 5, 27, 51]. Other proposals also worked on the architecture
of the neural networks in order to avoid these issues [31, 35].

In spite of these issues, research was also conducted to improve the original GAN
model with respect to the quality of the results, leveraging it to impressive levels
[3, 21, 27]. Other researches also proposed changes on the model to introduce a
conditional input [20, 29, 32, 37]. Thus, a relevant effort is being made to improve
GANs, not only to overcome the difficulties on the original model but also to extend
the initial concept to different objectives.1

In GANs, the adversarial characteristics and the necessity of an equilibrium
between the generator and the discriminator make the design of the network crucial
for the quality of the results. Therefore, the topology and hyperparameters that
compose the neural networks of the generator and the discriminator are important to
keep the balance between them in the training process. If one component becomes
more powerful than the other, the GAN training will probably become unstable and
may not produce the desired outcome. In this case, the design of the neural network
is paramount to achieve convergence on training.

1A list of proposals related to GANs can be found at https://github.com/hindupuravinash/the-gan-
zoo.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo

11 Neuroevolution of Generative Adversarial Networks 295

The design of a neural network is usually defined by hand in an empirical
process, based on expert knowledge, which requires spending human time in
repetitive tasks, such as experimentation and fine-tuning [7]. Experiments are used
to validate and fine-tune the model, aiming to find efficient architectures to produce
a neural network for a specific problem. However, some approaches can be used
to automatize this process. In the field of evolutionary computation, neuroevolution
can be used to design and optimize neural networks [28, 42, 50]. An evolutionary
algorithm (EA) is based on the evolutionary mechanism found in nature, using
it to evolve a population of potential solutions, producing better outcomes for a
given problem [41]. In neuroevolution, this concept is adapted to the context of
neural networks. In this case, the population is composed of individuals encoded
through a genotype that represents, in some level of abstraction, neural networks.
The genotype is used in a transformation procedure that creates the phenotype of
an individual, which expresses the concrete implementation of a neural network.
As in a regular EA, the phenotypes are used to evaluate and select individuals for
reproduction to form the next generations of potentially better solutions.

Neuroevolution can be applied to evolve both the network architecture (e.g.,
topology, hyperparameters, and optimization method) and the internal parameters
(e.g., weights) [50]. NeuroEvolution of Augmented Topologies (NEAT) [42] is
a well-known neuroevolution method that evolves the weights and topologies of
neural networks. A further proposal originated DeepNEAT [28], a modification
of the model that expands NEAT to larger search spaces, such as in deep neural
networks.

Although neuroevolution is usually applied to standalone neural networks, the
concepts can also be applied in the context of GANs. Furthermore, in the mechanics
of the GAN model, the generator and discriminator are competing in a zero-sum
game in the task of creating and discriminating fake and real samples. Therefore,
a competitive model can be suitable to represent populations of individuals in
GANs. In EAs, coevolution is the simultaneous evolution of at least two distinct
species [19, 36, 43]. In competitive coevolution, individuals of these species are
competing together, and their fitness function directly represents this competition.
Thus, the applicability of a competitive coevolution environment in an EA to train
GANs can also be evaluated [9, 10, 14, 46].

In recent years, researchers have been applying the concepts of EAs to improve
the performance of GANs with different strategies [1, 9, 10, 14, 46, 47]. The authors
found advances not only in the quality of the outcome but also regarding the stability
issues in the training of GANs. We present in this chapter the state-of-the-art of
these proposals, discussing their main advantages and drawbacks, and presenting
further directions for improvements. The following proposals will be described in
this chapter: E-GAN [47], Pareto GAN [14], Lipizzaner [1], Mustangs [46], and
COEGAN [9, 10].

The remainder of this chapter is organized as follows. Section 11.2 introduces
the concepts of GANs, presenting the challenges and advances in this field.
Section 11.3 summarizes the possibilities regarding the application of EAs in the
context of GANs. Section 11.4 presents the current proposals that use EAs with

296 V. Costa et al.

GANs. Section 11.5 discusses the application of EAs in GANs, drawing particular
attention to the drawbacks and advantages of each approach, presenting directions
for further improvements. Finally, Sect. 11.6 concludes this chapter with the final
considerations about the subject.

11.2 Generative Adversarial Networks

Generative Adversarial Networks (GAN) [16] is an adversarial model that became
relevant mostly for the performance achieved in generative tasks on the image
domain, representing significant improvements over other generative methods. We
present in this section the model definition, the common issues found when training
a GAN, and how to evaluate and compare GANs using the state-of-the-art metrics.

11.2.1 Definition

A GAN combines two neural networks in a unified training algorithm: a discrimi-
nator D and a generator G. The discriminator D aims to distinguish between real
and fake examples. The generator G outputs fake samples, attempting to capture the
input distribution used in the training of D.

Both the discriminator and generator use backpropagation and gradient descent
in the GAN training. Thus, different loss functions are used in the GAN components.
The loss function of the discriminator is defined as follows:

J (D)(D,G) = −Ex∼pdata [log D(x)] − Ez∼pz [log(1 − D(G(z)))]. (11.1)

For the generator, the non-saturating version of the loss function is defined by

J (G)(G) = −Ez∼pz [log(D(G(z)))]. (11.2)

In Eq. (11.1), pdata represents the dataset used as input to the discriminator. In
Eqs. (11.1) and (11.2), z is the latent space used as input to the generator, pz is the
latent distribution, G is the generator, and D represents the discriminator.

GANs are hard to train, and training stability is an issue that systematically
affects the results. So, to achieve good outcomes in training, a trial-and-error
approach is frequently used. Some works developed a set of techniques to train
GANs to improve the probability to achieve convergence [35, 39]. However, these
strategies only minimize the effect of the problems that usually happen in the
training process. Several other variations of the original GAN model were proposed
to improve the effect of these problems [3, 17, 21, 27, 31]. In Sect. 11.2.2, we
describe some of these problems regarding the training of GANs.

11 Neuroevolution of Generative Adversarial Networks 297

11.2.2 Common Problems in GAN Training

The vanishing gradient and the mode collapse are among the most common
problems affecting the stability when training GANs. They are widespread and
represent a significant challenge to obtain useful representations for applying GANs
in different domains. These issues are often part of a bigger problem: the balance
between the discriminator and the generator during the training. Although several
approaches tried to minimize those obstacles, they still affect the training and remain
unsolved [3, 17, 39]. Following we describe the mode collapse and the vanishing
gradient issues, presenting how they affect the training of GANs.

11.2.2.1 Mode Collapse

In the mode collapse problem, the generator captures only a small portion of
the dataset distribution provided as input to the discriminator. This diminished
representation is not desirable since it is expected that a generative model reproduces
the whole distribution of the data to achieve variability on the output samples.

Figure 11.1 represents images created by a generator after a failed training of a
GAN using the MNIST dataset [24]. The effects of the mode collapse can be clearly
seen in these images. We can see in the samples on the left of Fig. 11.1 that only
the digits 9 and 7 are represented. However, in the samples on the right, the digits
cannot be identified correctly. The generator creates only a superposed combination
of digits. The lack of variability demonstrated in these examples characterizes the
problem as mode collapse.

Fig. 11.1 Samples created by a GAN after training that resulted in the mode collapse issue. Note
that the GAN was trained using the MNIST dataset, which contains digits from 0 to 9. However,
on the left, the generator can only create samples related to the digits 7 and 9. In the right, the
generator failed to create a real digit, outputting the same unrealistic pattern

298 V. Costa et al.

11.2.2.2 Vanishing Gradient

The vanishing gradient occurs when one of the GAN components, i.e., the discrim-
inator or the generator, becomes powerful enough to harm the balance required on
the training. For example, the discriminator can become too strong and not be fooled
anymore by the generator when distinguishing between fake and real samples.
Hence, the loss function is too small, the gradient does not flow through the neural
network of the generator, and the GAN progress stagnates. In the GAN training,
the equilibrium between the discriminator and generator is essential to the training
convergence. The vanishing gradient problem happens when this equilibrium is
violated in an irreversible way.

Figure 11.2 presents an example of a GAN training that suffers from the
vanishing gradient problem. We can see in this figure the progression of losses of the
generator and discriminator through iterations. Note that when the discriminator loss
becomes zero (marked by the dashed vertical line), the generator stops to improve
and stagnates until the end of the training. As such, the quality of samples created by
the generator will not improve anymore. It is important to note that the divergence
between the generator and discriminator, expressed by the losses, does not need to
always decrease [13]. Even when the loss increases, the training can reach a good
solution in the end. Therefore, regarding the vanishing gradient, the problem only
occurs when the loss approximates to zero. The GAN model tolerates steps with a
reduction in the loss without losing convergence capabilities.

11.2.3 Evaluation Metrics

Several metrics can be used to quantify the performance of a GAN [6, 49]. As the
generators are commonly the most relevant component of a GAN, these metrics
usually target them. However, the measurement of the performance when executing
generative tasks is a relevant problem and there is not a consensus yet in the
community about the best metric to use. We highlight here two of the most
commonly reported metrics for GANs in the literature: the Inception Score and the
Fréchet Inception Distance (FID) score.

Fig. 11.2 Losses of the
generator and discriminator
of a training experiment with
the vanishing gradient issue.
As the loss of the
discriminator approximates to
zero, the loss of generator
stagnates

11 Neuroevolution of Generative Adversarial Networks 299

Other metrics, such as the skill rating [33], were evaluated and obtained relevant
results. Despite this, they are still not widely used by the community, becoming hard
to use them in a comparison study to evaluate a proposal with other works. However,
they can still be useful to use in the context of EAs. They can be used not only as
comparison criteria between the solutions but also as fitness functions to guide the
evolution.

11.2.3.1 Inception Score

The Inception Score (IS) [39] is an automatic metric to evaluate synthetic image
samples that were created based on an input dataset. This method uses the Inception
Network [44, 45] to get the conditional label distribution of the images created by
a generative algorithm, such as a GAN. This network should be previously trained
using a dataset, usually the ImageNet dataset [38]. Therefore, the Inception Score is
defined as:

IS(x, y) = exp(ExKL(p(y|x)||p(y))), (11.3)

where x is the input data, y is the label of the data, p(y) is the label distribution,
p(y|x) is the conditional label distribution, and KL is the Kullback–Leibler diver-
gence between the distributions p(y|x) and p(y). It is recommended to evaluate the
IS metric on a large number of samples, such as 50,000, in order to provide enough
diversity to the score [39].

The IS metric has some drawbacks, such as the sensitivity to the weights of the
Inception Network used in the calculation [4]. Moreover, the network used in the
Inception Score, which was trained in the ImageNet dataset, may not be applicable
with consistent performance to other datasets.

11.2.3.2 Fréchet Inception Distance

Fréchet Inception Distance (FID) [18] is the state-of-the-art metric to compare the
generative components of GANs. The FID score outperforms other metrics, such as
the Inception Score, with respect to diversity and quality [26]. As in the Inception
Score, FID also uses a trained Inception Network in the computation process. In the
FID score, a hidden layer of Inception Net (also usually trained on ImageNet) is
used in the transformation of images into the feature space, which is interpreted as a
continuous multivariate Gaussian. This transformation is applied to a subset of the
real dataset and samples created by the generative method. The mean and covariance
of the two resulting Gaussians are estimated and the Fréchet distance between these
Gaussians is given by

FID(x, g) = ||μx − μg||22 + T r(�x + �g − 2(�x�g)1/2). (11.4)

300 V. Costa et al.

In Eq. (11.4), μx , �x , μg , and �g represent the mean and covariance estimated
for the real dataset x and fake samples g, respectively. In summary, the FID score
is given by the norm of the means and the trace of the covariances between real and
fake samples.

11.3 Exploring the Evolution of GANs

Several aspects that compose the GAN model can be actively used as evolvable
components in an evolutionary algorithm. However, it is important to keep in mind
that the EA should preserve the balance of these components in order to tackle
the issues listed in Sect. 11.2.2. We discuss in this section the possibilities for the
application of EAs to the GAN model. The options related to neuroevolution and
the aspects of GANs will be presented as possible choices to design an algorithm.

11.3.1 Neuroevolution

Neuroevolution is the application of EAs in the evolution of a neural network.
It can be applied to evolve weights, topology, and hyperparameters of a neural
network [50]. When used to discover the network topology, a substantial benefit
is the automation of the architecture design and parameter decision, transforming a
manual human effort into an automatic procedure. This automation is even more
critical with the rise of deep learning, which is producing deeper models and
increasing the search space [28]. However, the increase in the search space is also a
challenge for neuroevolution. These methods have high time-consuming executions
that may turn their application unfeasible.

Neuroevolution can be fully applied in the context of GANs. The evolution of the
topologies of the discriminator and the generator should take into account that the
equilibrium between them is paramount to the convergence of the training process.
Not only the structure (i.e., the number of layers and the connections between them)
but also the internal characteristics of each layer composing a neural network can
be the subject of evolution. For example, the type of a layer (e.g., convolution or
fully connected), the number of output features, and the activation function (e.g.,
ReLU, ELU, Tanh). Other aspects relevant to the network can also be a variable of
the individual, such as the choice for the optimizer used in the training, the learning
rate, the batch size, and the number of the training iterations.

We can also make use of other techniques regarding evolutionary computation
in neuroevolution, such as coevolution. Coevolution is the simultaneous evolution
of at least two distinct populations (also denominated species) [19, 36]. There are
two types of coevolution algorithms: cooperative and competitive. In cooperative
coevolution, individuals of different species cooperate in the search for efficient
solutions, and the fitness function of each species is designed to reward this coop-

11 Neuroevolution of Generative Adversarial Networks 301

eration. In competitive coevolution, individuals of different species are competing
between them in the search for better solutions. Here, their fitness function directly
represents this competition in a way that scores between species are inversely
related. For example, NEAT was successfully applied to a competitive coevolution
environment [43].

The coevolutionary approach used in an EA can lead to some issues, such as
intransitivity and disengagement [2, 30]. The intransitivity occurs when a solution
a is better than b and b is better than c, but this does not guarantee that a

is better than c. This issue can lead to cycling between these solutions during
the evolutionary process, preventing the progress of individuals toward optimal
solutions. Disengagement occurs when the equilibrium between the populations
is broken. In this case, individuals from one population are much better than
individuals from the other, leading to ineffective progression.

GANs can be modeled as a competitive coevolution problem. We can consider a
population of discriminators as competitors to a population of generators. Therefore,
an EA can make use of competitive coevolution concepts to match individuals from
these two populations at the evaluation phase. Furthermore, we can relate problems
that frequently affect the training of GANs (Sect. 11.2.2) to coevolution problems.
For example, the vanishing gradient can be linked to the disengagement issue. Thus,
the use of coevolution can be explored in combination with other techniques (e.g.,
neuroevolution) to solve the challenges of the GAN training process.

11.3.2 Variations of GANs

Several advances over the original GAN model were recently proposed. These
proposals focused not only on the improvement of the quality of the created samples
but also on the improvement of the training stability. These proposals can be divided
into two main categories: architecture improvements and alternative loss functions
[34, 48].

In the category of architecture improvements, we have DCGAN [35], a set of
constraints and rules that guide the design of the components of a GAN. DCGAN
became a reference architecture for the discriminator and the generator in GANs.
Some of these rules are:

• Use batch normalization in the generator and discriminator;
• Use the ReLU activation function in all hidden layers of the generator;
• Use LeakyReLU in all layers of the discriminator.

In the experiments presented with DCGAN, the training stability was improved, but
there are still issues such as the mode collapse problem in some executions [35].

302 V. Costa et al.

Other proposals introduced different aspects into the original GAN model [5,
7, 11, 12, 15, 21, 22, 51]. We can use some of these strategies as inspiration for
an EA. For example, the method described in [21] uses a predefined strategy
to grow a GAN during the training procedure. The main idea is to grow the
model progressively, increasing layers in both discriminator and generator. This
mechanism will make the model more complex while the training procedure runs,
resulting in the generation of higher resolution images at each phase. However, these
layers are added progressively in a preconfigured way, i.e., they are not produced by
a stochastic procedure. These concepts can be expanded to be used in an EA. Instead
of a predefined grow, the progression of the discriminator and the generator can be
guided by evolution, using a fitness function that can prevent and discard unfitted
individuals.

Other approaches use multiple components instead of only a single generator
and a single discriminator. For example, GMAN [11] proposed a model that
uses multiple discriminators in the training algorithm. On the other hand, MAD-
GAN [15] explored the use of multiple generators in the GAN training. An EA can
be aligned with these concepts with the proposal of a solution that contains two
entirely different populations of discriminators and generators.

Another strategy to overcome the training issues and improve the original GAN
model is the use of alternative loss functions. A variety of alternative loss functions
were proposed to minimize the problems and leverage the quality of the results,
such as WGAN [3], LSGAN [27], and SN-GAN [31]. WGAN proposes the use
of the Wasserstein distance to model the loss functions. LSGAN uses the least-
squares function as the loss for the discriminator. SN-GAN proposes the use of
spectral normalization to improve the training of the discriminator. An EA can
take advantage of these variations and use the loss function as an interchangeable
component.

11.4 Current Proposals

We present in this section the state-of-the-art on the application of evolutionary
algorithms in GANs. These proposals are aligned with the possibilities presented
in Sect. 11.3, presenting solutions to apply them and improve the GAN training
process. To the best of our knowledge, these are the proposals that use EAs in the
context of GANs: E-GAN [47], Pareto GAN [14], Lipizzaner [1], Mustangs [46],
and COEGAN [9, 10]. In this section we describe these solutions, focusing on
the choices concerning the aspects of the EA and the characteristics of GANs.
Therefore, we report the characteristics of the algorithms concerning the selection
method, fitness functions, variation operators, evaluation, and experiments.

11 Neuroevolution of Generative Adversarial Networks 303

11.4.1 E-GAN

A model called E-GAN2 was proposed to use EAs in GANs [47]. The approach
applies an EA to GANs using a mutation operator that can only switch the loss
function of the generator. Therefore, the evolution occurs only in the generator,
and a single-fixed discriminator is used as the adversarial for the population of
generators. The network architectures for the generator and the discriminator are
fixed and based on DCGAN [35].

The population of generators contains individuals that have different loss func-
tions. The mutation operator used in the process can change the loss function of
the individual to another one selected from a predefined set. Each loss function in
the predefined set focused on an objective to help in the GAN learning process.
A minimal population of individuals is used to capture all possibilities of the
predefined losses and provide an adaptive objective for the training. In this case, the
population of generators is composed of three individuals, each one representing
one of the possible losses.

The possibilities for losses are implemented through three mutation operators:
minimax, heuristic, and least-squares mutation. The minimax mutation follows the
original GAN objective given by Eq. (11.2), minimizing the probability of the
discriminator to detect fake samples. On the other hand, the heuristic mutation
aims to maximize the probability of the discriminator to make mistakes regarding
fake samples. The least-squares mutation is based on the objective function used in
LSGAN [27]. Only these operations are available and crossover is not used in the
E-GAN algorithm.

Two criteria were used as fitness in the evaluation phase of the algorithm. The
first, called quality fitness score, is defined as:

Fq = Ez[(D(G(z)))], (11.5)

that is similar to the loss function used in the generator of the original GAN model
(Eq. (11.1)). The second criteria, called the diversity fitness score, is defined as:

Fd = − log ‖∇D − Ex[log(D(x))] − Ez[log(1 − D(G(z)))]‖. (11.6)

In Eqs. (11.5) and (11.6), z, G, and D represent the latent space, the generator, and
the discriminator, respectively. These two fitness criteria are combined as follows:

F = Fq + γFd, (11.7)

where the γ parameter is used to regulate the influence of the diversity criteria on
the final fitness.

2Code available at https://github.com/WANG-Chaoyue/EvolutionaryGAN.

https://github.com/WANG-Chaoyue/EvolutionaryGAN

304 V. Costa et al.

At each generation, individuals are evaluated following their specific loss
function, and only the best-fitted generator survives for the next steps. In the next
generation, the survivor individual is used to train the discriminator and to generate
the three children for the next evaluation.

The E-GAN model was evaluated on the CIFAR-10, LSUN, and CelebA datasets.
The Inception Score was used as the metric to analyze the results. As specified in
E-GAN, the population used in the experiments consist of a single discriminator
and three generators. The authors concluded that E-GAN improved the training
stability and achieved satisfactory performance, outperforming other methods in
some scenarios.

11.4.2 Pareto GAN

A neuroevolution approach for training GANs was proposed in [14]. Although not
named by the authors, we refer to this solution as Pareto GAN.3 The proposal uses a
genetic algorithm to evolve the architecture of the neural networks used for both the
generator and the discriminator. A single individual (Gi,Di) is used to represent
both the generator and the discriminator in the EA.

The crossover operator combines two parents exchanging the discriminator
and the generator between them. For example, a crossover between the individ-
uals (G1,D1) and (G2,D2) produces the children (G1,D2) and (G2,D1). The
crossover operator does not change the internal state of the generator and the
discriminator in each individual. To accomplish this, a set of possible mutations
is applied to individuals when creating a new generation.

Regarding the architecture of the neural networks, the mutation can change, add,
or remove a layer. Mutation can also change the internal state of a layer, such as the
weights or the activation function. Some mutation operators also work on the GAN
algorithm level. There is an operator to change the loss function used in the GAN
algorithm by using a predefined set of possibilities. Another possibility is to change
the characteristics of the algorithm. Here, it is possible to change the number of
iterations for the generator and the discriminator when applying the GAN training
algorithm to an individual.

A benchmark for GANs based on the problem of Pareto set approximations was
also proposed [14]. The comparison between the Pareto front of a solution and
the real front is used to assess the quality of the samples and can also identify
issues, such as the mode collapse problem. Therefore, the inverted generational
distance (IGD) [8] was used as fitness to drive the EA. The IGD measures the

3Code available at https://github.com/unaigarciarena/GAN_Evolution.

https://github.com/unaigarciarena/GAN_Evolution

11 Neuroevolution of Generative Adversarial Networks 305

smallest distance between points in the true Pareto front and in the Pareto front
approximation and is given by

IGD = 1

|R|

(∑
r∈R

min
a∈A

d(r, a)p

) 1
p

, d(r, a) =
(

m∑
k=1

(rk − ak)
2

) 1
2

, (11.8)

where R is the real Pareto front, A is the Pareto approximation, and m is the number
of vectors in R.

The evaluation phase will transform each individual (Gi,Di) into a concrete
GAN, composed of a discriminator and a generator, that will be trained according
to the regular GAN algorithm. The fitness is calculated, and the selection uses the
Pareto dominance to compose the offspring that will form the next generation.

The proposed solution was evaluated using bi-objective functions as the input
data, each one with 10 input variables. A population of 20 individuals, evaluated
for 500 generations, was used in the experiments. The authors concluded that the
algorithm was able to discover architectures that improved the Pareto set approxima-
tion for discriminators and generators. The experiments do not include evaluations
with image datasets. However, experiments using the same data dimension as the
MNIST dataset, i.e., with 784 input variables, were also conducted. The authors
demonstrated that the solution is scalable to this dimension, as the results showed
that useful architectures were also found in this case.

11.4.3 Lipizzaner

A model called Lipizzaner4 defines a coevolutionary framework to train and evolve
GANs [1]. In Lipizzaner, the evolution occurs only on the internal parameters of
the generator and discriminator, such as the weights of their neural networks. Thus,
the network architecture used in both the discriminator and generator is fixed and
defined a priori. The architecture varies with the dataset used in the experiments.
For MNIST, an MLP network composed of four layers and 700 neurons was used.
On the other hand, an architecture based on DCGAN was used for the experiments
with the CelebA dataset.

The fitness used in Lipizzaner for the generators and discriminators is based on
the GAN objective function, defined as:

L(u, v) = Ex∼pdata [φ(Dv(x))] + Ex∼Gu [φ(1 − Dv(x))], (11.9)

4Code available at https://github.com/ALFA-group/lipizzaner-gan.

https://github.com/ALFA-group/lipizzaner-gan

306 V. Costa et al.

where φ is a concave function in the interval [0, 1], pdata is the input dataset, Gu

is the generator with the parameters u, and Dv represents the discriminator with its
parameters v.

At the evaluation step, L(ui, vj) is calculated for each pair (Gi,Dj), and the
fitness values are updated as fui −= L(ui, vj) and fvj += L(ui, vj) for generators
and discriminators, respectively.

Spatial coevolution was used to design the algorithm that trains and evolve the
generators and discriminators. Individuals are distributed over a two-dimensional
toroidal grid, where each cell contains individuals from the generator and discrimi-
nator populations. In the evaluation phase, the EA matches individuals in neighbor
cells following a coevolutionary pairing approach. A five-cell neighborhood was
used to determine these interactions. Figure 11.3 displays an example of a 3×3 grid
with the spatial coevolution strategy used in Lipizzaner. The generator is determined
as a mixture of generators in this neighborhood.

Lipizzaner uses two mutation operators. The first operator mutates the learning
rates of the optimization method used in the generator and the discriminator. In
this case, a normal distribution is used to change the learning rate at small steps
at each generation. The second operator is a gradient-based mutation that updates
the weights of the individuals in the populations of generators and discriminators.
Lipizzaner uses the Adam optimizer [23] to update the weights. Furthermore, an
evolution strategy combined with a performance metric (e.g., the Inception Score or
FID) is used to update the mixture of weights.

The model was evaluated on the MNIST and CelebA datasets, using a 2×2 grid,
forming a population of 4 generators and 4 discriminators. These populations were
evolved through 400 generations. The authors found that Lipizzaner was able to
avoid the mode collapse problem in most of the experiments. The model can recover

Fig. 11.3 A 3 × 3 grid
representing the spatial
coevolution mechanism used
in Lipizzaner. The
neighborhood of the central
cell includes the
four-highlighted nodes in the
grid. Each cell contains one
discriminator, one generator,
and a mixture of weights

11 Neuroevolution of Generative Adversarial Networks 307

from the mode collapse issue and continue to improve as the training advances
through the next generations.

11.4.4 Mustangs

The models E-GAN and Lipizzaner were combined in a hybrid approach to train and
evolve GANs, called Mutation Spatial GANs (Mustangs)5 [46]. As in Lipizzaner
and E-GAN, the topologies of the generator and discriminator are fixed during the
algorithm, i.e., the architectures are not a target of the EA.

Mustangs combines the mutation operators used in E-GAN and the spatial
coevolution mechanism used in Lipizzaner. The goal is to increase the diversity of
genomes in the population. Thus, the loss function of generators can be modified
by the mutation operator, as in E-GAN. As in Lipizzaner, the match between
individuals occurs in a toroidal grid, and the internal weights of the neural networks
are calculated based on the neighborhood.

The Mustangs model uses the same fitness strategy used in Lipizzaner, i.e., the
fitness is based on the GAN objective function L(u, v), defined by Eq. (11.9). Thus,
at the evaluation step, the value L(ui , vj) is also calculated for each pair (Gi,Dj),
and the fitness values are also updated as fui −= L(ui, vj) and fvj += L(ui , vj)

for generators and discriminators, respectively.
The operators used in Mustangs are a combination of the ones used in Lipizzaner

and E-GAN. Therefore, as in E-GAN, the loss function of the individuals can be
changed. However, the strategy used here is to randomly select one of the three
possibilities for the loss function, instead of evaluating the individuals using all
losses. The mutation operators used in Lipizzaner are also applied for Mustangs.
Mustangs also applies an evolution strategy to update the weights. Crossover is not
used in this proposal.

The evaluation phase follows the same proposal of Lipizzaner. Mustangs uses
spatial coevolution to pair discriminators and generators, using a toroidal grid to
spatially distribute the individuals. Therefore, individuals are matched using the grid
neighborhood to calculate the fitness and evaluate each individual. As in Lipizzaner,
the generator is determined as a mixture of generators in this neighborhood.

Mustangs was evaluated with the MNIST and the CelebA datasets. As the archi-
tectures of the neural networks that compose a GAN are fixed and predefined, the
authors chose different topologies according to the dataset used in the experiments.
A four-layer MLP network with 700 neurons and a DCGAN-based architecture were
used for the experiments with the MNIST and the CelebA dataset, respectively.
For MNIST, a grid size of 3 × 3 was used with a time limit of 9 h. For CelebA,
the experiments were executed with a 2 × 2 grid for 20 epochs. A comparison
between standard GAN, E-GAN, Lipizzaner, and Mustangs was presented. The

5Code available at https://github.com/mustang-gan/mustang.

https://github.com/mustang-gan/mustang

308 V. Costa et al.

authors found that Mustangs is able to generate the best results concerning the FID
score. They also concluded that spatial coevolution is an efficient way to model the
population of generators and discriminators to train GANs.

11.4.5 COEGAN

Coevolutionary Generative Adversarial Networks (COEGAN),6 a proposal combin-
ing neuroevolution and coevolution to train and evolve GANs, was proposed by us in
[9, 10]. This approach took inspiration on DeepNEAT [28], adapting and extending
the EA to the context of GANs.

An array of genes compose the genome of COEGAN. The genotype-phenotype
mapping transforms this array into a sequence of layers to compose a neural
network. Each gene represents either a linear, convolution, or transpose convolution
layer (also known as deconvolution layer). Moreover, each gene also has some
common internal parameters, such as the activation function, chosen from the fol-
lowing set: ReLU, Leaky ReLU, ELU, Sigmoid, and Tanh. The genes representing a
convolution or transpose convolution layer only have the number of output channels
as a variable parameter. The number of input channels is calculated dynamically,
based on the setup of the previous layer. The stride and the kernel size are previously
defined but are dynamically adjusted to fit the output size of a layer. Similarly, the
linear layer only has the number of output features as a variable parameter. The
previous layer is also used to calculate the number of input features. Thus, the
parameters subject to variation operations are the activation function, the number
of output features, and the number of output channels.

Figure 11.4 illustrates examples of the genotypes of a discriminator and a
generator. The genotype of the discriminator is composed of a convolutional section
and followed by a linear section (composed of fully connected layers). As in the
original GAN model, the discriminator outputs the probability that the input sample
is a real sample, drawn from the dataset. Similarly, the genotype of the generator
is composed of a linear section and followed by a transpose convolutional section
(also known as convolutional section). The generator outputs a fake sample, with
the same characteristics (i.e., dimension and channels) of a real sample.

Competitive coevolution was used to model the algorithm. Therefore, COEGAN
is composed of two separated subpopulations: a population of generators, where
each Gi represents a generator; and a population of discriminators, where each Dj

represents a discriminator. A speciation mechanism, inspired by the strategy used
in NEAT, was used in each subpopulation to promote innovation. The speciation
mechanism ensures that recently modified individuals will have the chance to
survive for enough generations to be as powerful as individuals from previous
generations. For this, each population is divided into species based on a similarity

6Code available at https://github.com/vfcosta/coegan.

https://github.com/vfcosta/coegan

11 Neuroevolution of Generative Adversarial Networks 309

Conv2d
activation_type: LeakyReLU

stride: 2
kernel_size: 5
in_channels: 3

out_channels: 128

Conv2d
activation_type: ReLU

stride: 2
kernel_size: 5

in_channels: 128
out_channels: 32

Linear
activation_type: Sigmoid

out_features: 1
in_features: 1569

(a)

Linear
activation_type: LeakyReLU

out_features: 16384
in_features: 100

Deconv2d
activation_type: Tanh

stride: 2
kernel_size: 5

in_channels: 256
out_channels: 128

Deconv2d
activation_type: Tanh

stride: 2
kernel_size: 5

in_channels: 128
out_channels: 3

(b)

Fig. 11.4 Genotypes of a discriminator (a) and a generator (b). In both cases, the genotype is
composed of three genes: two convolutions and one linear for the discriminator, one linear and
two deconvolutions for the generator. The phenotype transformation creates a network with three
layers in the same linear sequence as displayed in the genomes. For the discriminator, the output
layer is represented by the linear gene and outputs the probability of the input sample to be real
or fake. For the generator the final gene represents a deconvolution layer that outputs the samples
created by the generator

function (used to group similar individuals). Thus, the innovation, represented by
the addition of new genes into a genome, may cause the creation of new species in
order to fit the individuals containing these new genes. The individuals belonging
to new species will have a higher chance to survive because they will not directly
compete with more powerful individuals from other species.

COEGAN is only interested in the evolution of the neural network architectures.
Thus, the parameters of the layers in the phenotype (e.g., weights and bias) are not
part of the evolution, being modified by the training with a gradient descent method.
The variation operators are focused on the evolution of the network topology.

Different fitness functions for the generator and the discriminator were used in
COEGAN. For discriminators, the fitness is based on the loss function of the original
GAN model, i.e., the fitness is equivalent to Eq. (11.1) (Sect. 11.2). The same
approach was tested on the generator using Eq. (11.2) (Sect. 11.2), but preliminary
results presented instabilities when using this strategy, making it not suitable to
be used as fitness. Thus, the generator uses the FID score [18] as fitness, i.e.,
the fitness is represented by Eq. (11.4) (Sect. 11.2.3). FID is the state-of-the-art
metric to compare GANs and outperforms other metrics, such as the Inception Score
[39]. The use of the FID score as fitness puts selection pressure in COEGAN and
directs the evolution of the population towards the creation of better generators, and
consequently better discriminators.

310 V. Costa et al.

Only mutations are used as variation operators for COEGAN. The mutation
process is composed of three operations: add a new layer, remove a layer, and
change an existing layer. In the addition operation, a new layer is randomly selected
from the set of possible layers (linear or convolution for discriminators and linear
or transpose convolution for generators). The remove operation randomly selects
an existing layer and excludes it from the genotype, adjusting the connections
between the previous and the next layers. The change operation acts on the activation
function and the specific attributes of a layer. The activation function is randomly
drawn from the set of possibilities. The number of output features and the number of
output channels can be mutated for the linear and convolution layers, respectively.
These attributes are mutated using a uniform distribution with a predefined range
to limit the possible values. Crossover was also experimented and evaluated in
preliminary experiments but it was discarded as it promotes instability, decreasing
the performance of the system.

COEGAN keeps the parameters (weights and bias) of the genes involved in a
mutation operator when possible. So, the new individual will carry the information
from previous generations and the training continues from the last state, simulating
the transfer learning mechanism used in deep neural networks. However, in some
cases these parameters cannot be kept, such as when the change occurs in the
parameters of a linear or a convolution layer. In these cases, the new setup of the
layer is incompatible with the previous configuration, and the new layer will be
trained from the beginning.

In the evaluation step of the EA, individuals from the populations of discrimina-
tors and generators must be paired to be trained and to calculate the fitness for the
individuals. The pairing strategy is crucial to coevolution, and some challenges can
be related to the issues occurred in the GAN training (see Sect. 11.3.1). Two pairing
strategies were used to evaluate COEGAN: all vs. all and all vs. k-best.

In all vs. all, each discriminator is paired with each generator, resulting in all
possible matches. In this case, the fitness for discriminators is the average of the
losses obtained by the training with each generator. As the FID score does not use
the discriminator in the calculation, the pairing strategy does not affect the fitness
for generators. The all vs. all strategy is important to promote diversity in the GAN
training and improve the variability of the environment for both discriminators and
generators. However, the trade-off is the time to execute this approach. The all vs.
all approach was used in the experiments presented in [9].

In all vs. k-best, k individuals are selected from one population to be matched
against all individuals in the other population. Therefore, each generator is paired
with k best discriminators from the previous generation and, similarly, each
discriminator with k best generators. For the first generation, a random approach
is used, i.e., k random individuals are selected for pairing in the initial evaluation.
This approach provides less variability in the training but is more efficient, as fewer
matches will be executed per generation. The all vs. k-best approach with k = 3
was used in the experiments presented in [10]. The all vs. all strategy achieved
better results than all vs. k-best, presenting a more stable training for COEGAN [9].

11 Neuroevolution of Generative Adversarial Networks 311

For the selection phase, COEGAN uses a strategy based on NEAT [42]. The
populations of generators and discriminators are divided into subpopulations using
a speciation strategy based on the one used in NEAT. Each species is composed
of individuals with similar genomes, i.e., similar network structures. Therefore,
the similarity between individuals is based only on the parameters of each gene
composing the genome, excluding the weights of the similarity calculation. The
distance δ between two genomes i and j is defined as the number of genes that exist
only in i or j . The speciation approach uses the distance to cluster individuals based
on a δt threshold. This threshold is calculated at each generator in order to fit the
previously chosen number of species. Fitness sharing is used to adjust the fitness of
individuals inside each species. Individuals are selected in proportion to the average
fitness of the species they belong to. Besides this process, a tournament between kt

individuals is applied in each species to finally select the individuals to breed and
compose the next population.

To evaluate the COEGAN proposal, experiments using the MNIST and the
Fashion MNIST datasets were presented. These experiments compare COEGAN, a
DCGAN-based solution, and a random search method using the FID Score, Incep-
tion Score, and the root mean square error (RMSE) metrics. The size of the genome
was limited to six layers. The probabilities for the variation operators are 20%, 10%,
and 10% for the add, remove, and change mutations, respectively. The number of
output features and channels follows a uniform distribution, delimited by the interval
[32, 1024] and [16, 128], respectively. The experiments ran for 50 generations,
using 10 individuals for the populations of generators and discriminators.

Figure 11.5 presents the results of the FID score on the MNIST dataset (lower is
better). We can see that COEGAN outperforms the other approaches. The random

0 10 20 30 40
generation

50

100

150

200

250

FI
D

COEGAN
random
DCGAN

Fig. 11.5 The FID score on the MNIST dataset comparing COEGAN, the DCGAN-based
architecture, and the random search method. Note that, as expected, the random search does not
achieve good results and presents high variability on the FID score. The DCGAN-based result
shows the convergence of the GAN training. However, COEGAN presents the best results and a
smooth decreasing pattern on the FID score

312 V. Costa et al.

Fig. 11.6 Samples generated by COEGAN when training on the MNIST dataset

approach presented high variability and worse results in terms of this metric. This
is evidence that the choices for the fitness functions for COEGAN provide enough
evolutionary pressure to guide the evolution to better outcomes.

Figure 11.6 displays the samples created by the generator after the COEGAN
training process. We can see the samples in this figure resembling the data in
MNIST. No evidence of the vanishing gradient was found in the experiments with
COEGAN, and the mode collapse occurred only partially in some executions.
COEGAN avoids these issues by using the evolutionary pressure to discard failed
individuals from the population. As these individuals will perform worse than
others, they will eventually not be selected, and their issues will not persist
through generations. The diversity provided by the population of generators and
discriminators is also a factor that prevents these issues from happening. The
variability of the training with multiple instances of generators and discriminators,
instead of a single generator and discriminator, can be a way to provide a stronger
and stable training for GANs.

In order to assess the applicability of the solution in complex datasets, we expand
the experiments with COEGAN to include the results with the CelebA dataset [25].
For this, we use an experimental setup similar to the one applied in [9]. However,
for the sake of simplicity, we only use convolution and transpose convolution layers
when adding a new gene, excluding the linear layer from the set of possibilities.
Furthermore, we allow only ReLU and Leaky ReLU as possible activation functions
in the mutation operators. The populations of generators and discriminators contain
10 individuals each, divided into three species. The all vs. all pairing strategy was
applied, using 100 batches of 64 images to train each pair. The images from the
CelebA dataset were rescaled to 64 × 64. Each experiment was repeated three
times, and the presented results are the average of these executions with a confidence
interval of 95%.

Figure 11.7 presents the FID score for COEGAN through generations. As
expected, we can note the decreasing behavior of the FID score, resembling the
behavior presented in the MNIST results (Fig. 11.5). This is an indication of the
generalization ability of COEGAN to effectively work with more complex datasets
like CelebA. The average FID score achieved by COEGAN at the last generation is
89.8 ± 17.2. No evidence of the vanishing gradient and mode collapse was found in
the experiments.

11 Neuroevolution of Generative Adversarial Networks 313

0 10 20
generation

50

100

150

200

250

300

350

400

FI
D

COEGAN

Fig. 11.7 The FID score of COEGAN on the CelebA dataset. COEGAN achieves a FID score of
89.8 ± 17.2 at the last generation

Fig. 11.8 Samples generated by COEGAN when training on the CelebA dataset

Figure 11.8 displays samples created by COEGAN at the final generation of
one experiment. We can clearly see the formation of faces in each created sample,
with elements coherently positioned in each face. The variety achieved on samples
also demonstrates that COEGAN achieved convergence when training, avoiding
problems such as the mode collapse. However, the produced samples are not
perfect. Undesired artifacts can be seen in some samples, affecting the quality of
the outcome.

11.5 Discussion

Section 11.4 presented the current proposals that apply evolutionary algorithms in
the context of GANs. We can see that a variety of techniques frequently used in
EAs, and introduced here in Sect. 11.3, were used in these proposals. Following we
present and discuss these characteristics regarding the aspects of the GAN model
used in the proposals, the choices concerning the EA, and the experimental results.

314 V. Costa et al.

11.5.1 Characteristics of the GAN Model

Table 11.1 presents choices with respect to the GAN model used in each proposal.
These proposals are compared under the perspective of four attributes: the number
of discriminators used in the algorithm, the number of generators, the architecture
of each component, and the loss function used to train the GAN.

Except for E-GAN, all proposals used multiple discriminators in their model.
For the generators, all proposals used multiple generators, with E-GAN using a
fixed number of three generators, corresponding to the number of possible loss
functions designed in the algorithm. Thus, E-GAN works with small populations,
limiting the evolutionary options that can emerge through generations. On the other
hand, Mustangs adapted successfully the E-GAN model in the context of a larger
population, using the spatial coevolution approach of Lipizzaner to handle the
individuals.

Regarding the architecture, only the Pareto GAN and COEGAN used an
evolvable approach. The other proposals used a predefined and fixed architecture
for the neural networks of generators and discriminators. Therefore, Pareto GAN
and COEGAN work with larger search spaces, as the architectures that can emerge
from the EA have a high number of possibilities. They are also potentially able to
enhance the balance between generators and discriminators, as the complexity of
the architecture is determined by the algorithm.

Lipizzaner and COEGAN use a fixed loss function for the GAN training. E-
GAN, Pareto GAN, and Mustangs use an evolvable approach to the loss function.
This approach uses a set of predefined possibilities to select and attribute a loss
function to an individual. A more flexible approach can also be used instead
of a predefined set, using genetic programming to discover better loss functions
for GANs. However, the proposals analyzed in this chapter did not explore this
approach.

Table 11.1 Aspects of the GAN used in the evaluated proposals

Algorithm Discriminator Generator Architecture Loss function

E-GAN Single-fixed Three DCGAN-based Evolvablea

Pareto GAN Many Many Evolvable Evolvablea

Lipizzaner Many Many MLP and DCGAN-basedb Original GAN

Mustangs Many Many MLP and DCGAN-basedb Evolvablea

COEGAN Many Many Evolvable Original GAN
aThe loss function is selected using a predefined set of possibilities
bThe DCGAN-based architecture was used with the CelebA dataset and a simpler approach was
applied with the MNIST dataset (see Sects. 11.4.3 and 11.4.4)

11 Neuroevolution of Generative Adversarial Networks 315

11.5.2 Aspects of the Evolutionary Algorithm

Table 11.2 presents a comparison between the solutions presented in Sect. 11.4,
focusing on the aspects of the evolutionary algorithm. Four aspects of the EA were
analyzed: the pairing approach, the variation operators, the fitness function, and the
selection method.

As multiple generators and/or discriminators are used in all proposals, and
the GAN training occurs using generators and discriminators as adversarial, an
approach has to be used to pair the individuals. With the exception of Pareto
GAN, all other solutions use separated individuals to represent discriminators and
generators. In E-GAN, as there are only a single discriminator and three generators,
the policy for pairing is to use the discriminator to evaluate all three generators. In
COEGAN, the all vs. all and all vs. k-best were used. Lipizzaner and Mustangs
use the same spatial coevolution strategy to match generators and discriminators. It
is important to note that the spatial coevolution mechanism applied in Lipizzaner
and Mustangs uses the mixture of weights from the neighborhood to compose the
weights of the generator in each cell, taking advantage of multiple individuals to
produce a single model. The other solutions do not apply an analogous mechanism
to combine weights from different individuals. COEGAN and Pareto GAN have
individuals with diverse architectural characteristics in the population, preventing
the use of the mixture mechanism designed for Lipizzaner and Mustangs.

The variation operators are paramount to provide diversity in the search for good
solutions in an EA. Pareto GAN uses crossover and mutation as operators. It is
also the solution that provides the most variability regarding the elements that can
be evolved through generations in the EA. As Pareto GAN models its individual
as a representation of the entire GAN, i.e., encoding both the discriminator and
the generator into the genotype, the crossover works exchanging the generator and
the discriminator between two parents to form the offspring. The other solutions
modeled the GAN with independent genotypes to represent the generator and the
discriminator. Therefore, this approach is not applicable to them. COEGAN also
evaluated a strategy to apply crossover, using a cut point to share parts of the neural
network between parents. However, this strategy proved to be not efficient for the
method.

Table 11.2 Aspects of the evolutionary algorithm used in the evaluated proposals

Algorithm Pairing Variation operators Fitness Selection

E-GAN One-vs-three Mutation (loss) Custom Best individual

Pareto GAN – Crossover and mutation IGD Pareto dominance

Lipizzaner Spatial coevolution Mutation (weights) GAN objective Spatial

Mustangs Spatial coevolution Mutation (weights, loss) GAN objectivea Spatial

COEGAN all vs. (all | k-best)b mutation (architecture) FID and loss NEAT-based
aThe FID score is used as the performance metric to evolve the mixture of weights in Mustangs
bCOEGAN presented experiments using both the all vs. all and the all vs. k-best approaches

316 V. Costa et al.

COEGAN and Pareto GAN are the only solutions that have evolvable neural
network architectures. The mutation operator is used to provide small changes in
these architectures that are built through generations to produce strong discrimina-
tors and generators. E-GAN, Lipizzaner, and Mustangs use a restricted mutation
strategy. In E-GAN, only the loss function can be switched. In Lipizzaner, gradient-
based mutations are applied to update the weights of generators and discriminators.
Furthermore, Lipizzaner uses an evolution strategy to update the mixture of weights
used for generators. Mustangs combines the operators of E-GAN and Lipizzaner.
Different from Lipizzaner and Mustangs, COEGAN does not apply a mutation
operator directly to the weights. However, this option can be explored to develop
a hybrid approach that evolves the weights when the gradient descent training
stagnates for a number of generations.

The choice for fitness is diverse among the proposals. E-GAN uses a custom
function that represents the quality and diversity of the created samples. As only the
generator is subject to evolution, the discriminator does not have a fitness associated.
Pareto GAN based its fitness on the concepts of the Pareto front, using the inverted
generational distance (IGD) to represent the fitness value. Lipizzaner and Mustangs
use the GAN objective function to calculate the fitness for the individuals. In
addition, the FID score was used as the performance metric to evolve the mixture
of weights in [46]. COEGAN follows a distinct approach for the fitness function.
The loss function of discriminators of the original GAN model is used as fitness for
them. In the generator, the FID score is used as fitness. COEGAN takes advantage
of the capabilities in the FID distance to represent the diversity and quality of the
created samples. As the FID is commonly used by researchers to compare GANs,
the implementation of this metric into an EA is a way to provide automatic insight
about the solutions produced by the method.

The selection method used in E-GAN is based on the choice of the best generator.
As E-GAN has only three generators, each one with a specific loss function, the
fitness guides the evolution by selecting the function that fits the best generator
for the current environment. The switches between functions through generations
give to E-GAN sufficient training diversity to achieve convergence. In Pareto GAN,
Pareto dominance is used as the strategy to select individuals to form the next
generation. Lipizzaner and Mustangs have a selection strategy based on the spatial
coevolution mechanism used in the evaluation phase. The neighborhood is used to
evaluate and replace the individual in the center of a neighborhood according to the
fitness. COEGAN uses an approach based on classical NEAT selection. Therefore,
speciation is used to ensure that individuals from different species will have the
opportunity to develop the skills needed to survive. Some of these strategies can
be combined into a single solution to build a stronger algorithm. For example, the
mechanism that guides the selection for Lipizzaner and Mustangs can be applied in
COEGAN to reduce the complexity of the evaluation phase and bring the advantages
given by spatial coevolution.

11 Neuroevolution of Generative Adversarial Networks 317

11.5.3 Experiments and Results

Table 11.3 compares the proposals under the perspective of the experimental setup
used to assess the contributions of each solution. Four experimental attributes
are presented: the dataset used in the training, the number of generators and
discriminators in the populations, the number of generations used in training, and
the metric used to evaluate the results.

Except for Pareto GAN, all proposals used image datasets in the experiments.
Pareto GAN uses bi-objective functions to validate the model, also including a
function that simulates the data dimension of the MNIST dataset. In the category
of images, MNIST is a simple dataset and should be used carefully to draw generic
conclusions about the performance of a solution. The CelebA dataset is perhaps the
most commonly used data to validate GANs. Therefore, it would be important to
assess the performance of Pareto GAN in this dataset.

The populations used in the experiments vary a lot among the proposals.
Except for E-GAN, the solutions used multiple individuals for both populations
in the experiments. Although it is possible to use more individuals in E-GAN,
the experiments used only a single discriminator and three possibilities for gen-
erators (representing each possible loss function). In Pareto GAN, one individual
completely represents a GAN. Therefore, 20 individuals were used, meaning that
20 independent GANs with their own generator and discriminator was trained
through generations. Lipizzaner and Mustangs use spatial coevolution to distribute
the individuals in a grid of 2 × 2 for the MNIST dataset. For CelebA, Mustangs
used a grid of 3 × 3. As these grids hold a single generator and discriminator in
each cell, the population is composed of 4 and 9 individuals for the 2 × 2 and
3×3 setups, respectively. As a five-cell neighborhood is applied, spatial coevolution
reduces the number of iterations needed to evaluate the individuals. Thus, a larger
number of individuals can be used to evaluate Lipizzaner and Mustangs. Besides,
COEGAN can adopt the spatial coevolution approach to reduce the training time
and also increase the number of individuals in the experiments.

Table 11.3 Comparison of the experiments presented in the proposals

Algorithm Dataset Population (D × G) Generations Metric

E-GAN CIFAR-10,
LSUN, CelebA

1 × 3 200,000 Inception Score

Pareto GAN Bi-objective
functions

20a 500 IGD

Lipizzaner MNIST, CelebA 4 × 4 400 –

Mustangs MNIST, CelebA 4 × 4, 9 × 9 Time-limited, 20 FID score

COEGAN MNIST, Fashion
MNIST, CelebA

10 × 10 30, 50 FID score

aIn Pareto GAN one individual completely represents a GAN, i.e., it contains both a generator and
a discriminator

318 V. Costa et al.

The number of generations used to evaluate each approach also presents high
variability. Each approach adapted the experiments to use a number of generations
respecting their internal characteristics. For example, as E-GAN works with smaller
populations, the number of generations needed to converge is much higher than the
others. On the other hand, COEGAN used only 50 generations on the experiments
with MNIST and Fashion MNIST. For the experiments with CelebA (Sect. 11.4.5),
COEGAN ran for 30 generations. Mustangs used a time-limited strategy of 9 h for
the experiments with MNIST and a limit of 20 generations for experiments with
CelebA. The time-limited approach used in the MNIST experiments corresponds to
more than 150 generations.

Because COEGAN uses a population of 10 individuals for generators and
discriminators with the all vs. all pairing approach, each individual will execute
the training process for ten times at each generation. Furthermore, COEGAN uses
multiple batches when training a pair of generators and discriminators at each
generation. Mustangs uses a five-cell neighborhood to train the individuals, having
a lower number of samples in each training step when compared to COEGAN.
However, it is important to note that COEGAN also evolves the architecture of the
neural networks, requiring more samples per training step to achieve convergence.
On the other hand, the architectures of generators and discriminators in Mustangs
are fixed. Therefore, Mustangs is more efficient with respect to the number of
samples used at each training step, but COEGAN also provides neural architecture
search for discriminators and generators in the solution.

A metric is commonly used to evaluate the samples created by the generator.
COEGAN and Mustangs use the FID score to report and analyze the results. As
discussed in Sect. 11.2.3, the FID score is currently the state-of-the-art metric used
to evaluate and compare GANs. The Inception Score, the former most used metric
for GANs, was applied in the E-GAN experiments. Pareto GAN adopted the IGD
as the metric, that is adequate to its approach that is based on the Pareto set
approximations. Lipizzaner analyzed the results through visual inspections and does
not present an evaluation with respect to some objective measurement.

As the proposals use different metrics, we cannot directly compare the results
between all proposals. Only COEGAN and Mustangs share the same metric in the
evaluation of the results. The average FID for experiments with MNIST reported
by COEGAN [10] and Mustangs [46] are 49.2 and 42.235, respectively. Further
experiments for COEGAN [9] achieved an average of 42.6 for the FID score.
However, the difference between the average FID scores of COEGAN and Mustangs
is small and experiments with equal conditions should be made to better compare
these solutions.

For the CelebA dataset, the FID score reported in experiments with Mustangs
was 36.148, outperforming the FID score of 89.8 obtained by COEGAN. However,
this difference is not evident in a visual inspection of the samples produced by both
solutions.

11 Neuroevolution of Generative Adversarial Networks 319

11.6 Conclusions

We present in this chapter the state-of-the-art of evolutionary algorithms applied
to Generative Adversarial Networks (GANs). An overview of GANs introduces the
challenges of the training method and how the common problems affect the resulting
performance. We also explore the applicability of concepts related to evolutionary
computation in the context of GANs, showing components that can be evolved and
participate actively in an EA. These concepts are materialized into the state-of-the-
art proposals of EAs applied to GANs that can be found in the literature. We discuss
the characteristics of these proposals, demonstrating the drawbacks and possible
improvements for further research.

Despite the recent advances in GANs, it is possible to see that there are still
open problems. The stability of training remains a challenge, being tackled by
researches using different approaches, such as the proposal of new loss functions
and/or alternative architectures. GAN is a relatively new model, and the use of EAs
in this context is in its early years. With the rise of the computational power and new
methods to apply EAs with robust machine learning techniques (e.g., deep learning),
EAs can be viewed as a strong way to train and evolve GANs. In this way, the
proposals presented in this chapter showed advantages in the union between EAs
and GANs. A set of different techniques was used by them, with different choices
concerning the GAN model and the EA. The diversity of strategies present in GANs
and also in evolutionary computation composes a large number of open possibilities
for exploration.

As future work, the techniques used in the proposals presented in this chapter
can be combined in the development of new solutions. For example, the spatial
coevolution strategy used in Mustangs and Lipizzaner can be adapted to the other
proposals. On the other hand, the neuroevolution techniques used in Pareto GAN
and COEGAN can also be evaluated in the other solutions. Besides, the proposed
solutions can be explored in larger experiments. The algorithms can run on a larger
number of generations and, when possible, with a larger population of generators
and discriminators. These experiments can make possible to evaluate the quality of
the outcome and also the scalability of the proposals. Complex datasets can also
be used to assess the robustness of the proposed solutions. Different techniques
related to GANs can also be incorporated into the algorithm. For example, the use of
alternative loss functions (as in WGAN [3]), spectral normalization [31], or the self-
attention module for GANs [51]. Concerning neural networks, other techniques can
also be experimented, such as the recently proposed competitive gradient descent
algorithm [40]. Alternative fitness functions can also be investigated to better guide
the progress of GANs in an EA. For example, the skill rating metric [33] uses the
mechanism that classifies the skill of players in a game to quantify the performance
of generators and discriminators in GANs. The adversarial characteristics of GANs
and a competitive coevolution environment can leverage the advantage with the use
of this metric, providing an efficient evaluation of individuals in the population of
generators and discriminators.

320 V. Costa et al.

References

1. Al-Dujaili, A., Schmiedlechner, T., Hemberg, E., O’Reilly, U.M.: Towards distributed coevo-
lutionary GANs. In: AAAI 2018 Fall Symposium (2018)

2. Antonio, L.M., Coello, C.A.C.: Coevolutionary multiobjective evolutionary algorithms: survey
of the state-of-the-art. IEEE Trans. Evol. Comput. 22(6), 851–865 (2018)

3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In:
International Conference on Machine Learning, pp. 214–223 (2017)

4. Barratt, S., Sharma, R.: A note on the inception score. Preprint, arXiv:1801.01973 (2018)
5. Berthelot, D., Schumm, T., Metz, L.: BEGAN: Boundary equilibrium generative adversarial

networks. Preprint, arXiv:1703.10717 (2017)
6. Borji, A.: Pros and cons of GAN evaluation measures. Comput. Vis. Image Underst. 179,

41–65 (2019)
7. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image

synthesis. In: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, 6–9 May 2019

8. Coello, C.A.C., Sierra, M.R.: A study of the parallelization of a coevolutionary multi-objective
evolutionary algorithm. In: Mexican International Conference on Artificial Intelligence, pp.
688–697. Springer, Berlin (2004)

9. Costa, V., Lourenço, N., Correia, J., Machado, P.: COEGAN: evaluating the coevolution
effect in generative adversarial networks. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 374–382. ACM, New York (2019)

10. Costa, V., Lourenço, N., Machado, P.: Coevolution of generative adversarial networks. In:
International Conference on the Applications of Evolutionary Computation (Part of EvoStar),
pp. 473–487. Springer, Berlin (2019)

11. Durugkar, I., Gemp, I., Mahadevan, S.: Generative multi-adversarial networks. Preprint,
arXiv:1611.01673 (2016)

12. Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: Creative adversarial networks,
generating “art” by learning about styles and deviating from style norms. Preprint,
arXiv:1706.07068 (2017)

13. Fedus, W., Rosca, M., Lakshminarayanan, B., Dai, A.M., Mohamed, S., Goodfellow, I.: Many
paths to equilibrium: GANs do not need to decrease a divergence at every step. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, 30 April–3
May 2018, Conference Track Proceedings (2018)

14. Garciarena, U., Santana, R., Mendiburu, A.: Evolved GANs for generating Pareto set approxi-
mations. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
’18, pp. 434–441. ACM, New York (2018)

15. Ghosh, A., Kulharia, V., Namboodiri, V.P., Torr, P.H., Dokania, P.K.: Multi-agent diverse
generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 8513–8521 (2018)

16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing
Systems, pp. 2672–2680 (2014)

17. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of
Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5769–5779
(2017)

18. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a
two time-scale update rule converge to a local NASH equilibrium. In: Advances in Neural
Information Processing Systems, pp. 6629–6640 (2017)

19. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure.
Physica D 42(1–3), 228–234 (1990)

11 Neuroevolution of Generative Adversarial Networks 321

20. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional
adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1125–1134 (2017)

21. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality,
stability, and variation. In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, 30 April–3 May 2018, Conference Track Proceedings (2018)

22. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial
networks. Preprint, arXiv:1812.04948 (2018)

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, 7–9 May 2015, Conference
Track Proceedings (2015)

24. LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
(1998)

25. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

26. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs created equal? A
large-scale study. Preprint, arXiv:1711.10337 (2017)

27. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative
adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 2813–2821. IEEE, Piscataway (2017)

28. Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju,
B., Navruzyan, A., Duffy, N., Hodjat, B.: Evolving deep neural networks. Preprint,
arXiv:1703.00548 (2017)

29. Mirza, M., Osindero, S.: Conditional generative adversarial nets. Preprint, arXiv:1411.1784
(2014)

30. Mitchell, M.: Coevolutionary learning with spatially distributed populations. In: Computa-
tional Intelligence: Principles and Practice, pp. 137–154. IEEE Computational Intelligence
Society, Piscataway (2006)

31. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative
adversarial networks. In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, 30 April–3 May 2018, Conference Track Proceedings (2018)

32. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs.
In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp.
2642–2651. JMLR.org (2017)

33. Olsson, C., Bhupatiraju, S., Brown, T., Odena, A., Goodfellow, I.: Skill rating for generative
models. Preprint, arXiv:1808.04888 (2018)

34. Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., Zheng, Y.: Recent progress on generative adversarial
networks (GANs): A survey. IEEE Access 7, 36322–36333 (2019)

35. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolu-
tional generative adversarial networks. Preprint, arXiv:1511.06434 (2015)

36. Rawal, A., Rajagopalan, P., Miikkulainen, R.: Constructing competitive and cooperative agent
behavior using coevolution. In: 2010 IEEE Symposium on Computational Intelligence and
Games (CIG), pp. 107–114 (2010)

37. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text
to image synthesis. Preprint, arXiv:1605.05396 (2016)

38. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

39. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved
techniques for training GANs. In: Advances in Neural Information Processing Systems, pp.
2234–2242 (2016)

40. Schäfer, F., Anandkumar, A.: Competitive gradient descent. Preprint, arXiv:1905.12103 (2019)
41. Sims, K.: Evolving 3d morphology and behavior by competition. Artif. Life 1(4), 353–372

(1994)

http://yann.lecun.com/exdb/mnist/

322 V. Costa et al.

42. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.
Evol. Comput. 10(2), 99–127 (2002)

43. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexifica-
tion. J. Artif. Intell. Res. 21, 63–100 (2004)

44. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–9 (2015)

45. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception
architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2818–2826 (2016)

46. Toutouh, J., Hemberg, E., O’Reilly, U.M.: Spatial evolutionary generative adversarial net-
works. Preprint, arXiv:1905.12702 (2019)

47. Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. Preprint,
arXiv:1803.00657 (2018)

48. Wang, Z., She, Q., Ward, T.E.: Generative adversarial networks: a survey and taxonomy.
Preprint, arXiv:1906.01529 (2019)

49. Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., Weinberger, K.: An empirical study on
evaluation metrics of generative adversarial networks. Preprint, arXiv:1806.07755 (2018)

50. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)
51. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial

networks. Preprint, arXiv:1805.08318 (2018)

	11 Neuroevolution of Generative Adversarial Networks
	11.1 Introduction
	11.2 Generative Adversarial Networks
	11.2.1 Definition
	11.2.2 Common Problems in GAN Training
	11.2.2.1 Mode Collapse
	11.2.2.2 Vanishing Gradient

	11.2.3 Evaluation Metrics
	11.2.3.1 Inception Score
	11.2.3.2 Fréchet Inception Distance

	11.3 Exploring the Evolution of GANs
	11.3.1 Neuroevolution
	11.3.2 Variations of GANs

	11.4 Current Proposals
	11.4.1 E-GAN
	11.4.2 Pareto GAN
	11.4.3 Lipizzaner
	11.4.4 Mustangs
	11.4.5 COEGAN

	11.5 Discussion
	11.5.1 Characteristics of the GAN Model
	11.5.2 Aspects of the Evolutionary Algorithm
	11.5.3 Experiments and Results

	11.6 Conclusions
	References

