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Preface

The scientific interest in designing synergic systems using neural networks (NN) and
evolutionary computation (EC) together, which began long ago, created the field of
neuroevolution. The ultimate goal of this subfield of artificial intelligence is to create
optimally designed neural networks, capable of exhibiting intelligent behavior, with
no or minimum human intervention. Towards this aim, over the last decades, the
concepts of neuroevolution have been effectively used with a wide range of neural
network models and evolutionary algorithms resulting in many fruitful applications.

In the last decade, deep learning (DL) revolutionized the field of machine
learning with its record-breaking performance in diverse application domains. The
enormous research and investment in DL have resulted in many powerful models
and algorithms progressing the field at an exponential rate. The extraordinary
advancement in DL research has also uncovered some limitations and weaknesses
that need immediate attention. The focus of this book is the collaborative efforts
from the EC community to solve some of the challenges deep learning is facing
today which gave birth to the field of deep neuroevolution.

The emerging field of deep neuroevolution is primarily concentrating on the
design of optimal deep neural networks (DNN) automatically. The manual design
process is laborious and intractable at that scale of network design. Therefore,
the current efforts are largely applied in DNN hyper-parameter optimization,
architectural design, and weight training. Lately, some exciting applications of EC
have been seen with other aspects of DL research. The purpose of the book is to
introduce the readers to the contemporary research topics of deep neuroevolution
for the development of the field.

The concepts presented in this book are expected to be useful and valuable to
different classes of readers. The contents are chosen to promote and facilitate the
research in DL with EC in both theory and practice. The book also presents some
interesting applications in real-world problems. The chapters cover cutting-edge
research topics that encompass deep neural network and evolutionary computation.
Therefore, a larger audience of researchers and practitioners from different fields
of computer science (e.g., machine learning, artificial intelligence, evolutionary
computation) will find this book interesting. Beginning with the essentials of EC
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and DL, the book covers state-of-the-art research methodology of the field as well
as the growing research trends. Therefore, it is expected to be equally attractive to
the novice, intermediate, and expert readers from related fields.

In order to cater to the needs of readers from diverse research backgrounds, we
have organized the book into five parts. The outline of the book in terms of different
parts is as follows.

The first part containing only two chapters gives an introductory background
to the field. Taking into account the readers coming from different research
backgrounds, a general introduction for beginners in EC is given in the first chapter.
This chapter covers different classes of evolutionary algorithms and nature-inspired
algorithms, many of which as well as their variants and hybrids are utilized in
later chapters. Thereafter, Chap. 2 presents the relevant concepts and notions of
deep learning necessary for readers who are novice to the area. This chapter
narrates the origin of DNN from artificial neural networks (ANN) and makes
readers acquainted with different DNN models, their architectural characteristics,
and various algorithms used for learning those. Most of the DNN models discussed
in this chapter appear in the subsequent chapters in the book.

The second part of the book presents the usage of EC and meta-heuristics based
approaches for optimizing hyper-parameters in DNNs. These approaches usually
work with a fixed DNN architecture and apply a meta-algorithm for finding the
optimal setting of its hyper-parameters. EC approaches have proven to be effective
for enhancing the performance of DNNs via hyper-parameter adjustments and three
such works are presented in this section of the book. The third chapter presents
a comparative study among various evolutionary and nature-inspired algorithms
for tuning a deep belief network’s hyper-parameters in the context of binary
image reconstruction. Chapter 4 uses both single- and multi-objective evolutionary
algorithms for the hyper-parameter optimization of DNN-based implementation of
spoken language processing systems. The final chapter in this part shows the use of
heuristic methods for structuring deep belief networks for time series forecasting.

The focus of the third part of the book is the architectural design of DNN
using EC. Performance of a DNN is heavily dependent on the number and
types of network layers used alongside their organization; however, identifying
the optimal architecture of the DNN for a given task is perplexing. Chapter 6
describes an encoding strategy for effectively encoding the convolutional neural
network (CNN) architectures and utilizes the particle swarm optimization (PSO)
algorithm for learning variable-length CNN architecture. The method is used for
image classification in both single- and multi-objective settings where the objectives
are classification accuracy and computational cost. In Chap. 7, Cartesian genetic
programming (CGP) is used for designing high-performing CNN architectures
consisting of predefined modules. The success of the CGP-based CNN architecture
design technique is verified by applying it in two types of computer vision tasks:
image classification and image restoration. In Chap. 8, a genetic algorithm (GA) is
used for optimizing the number of blocks and layers as well as some other hyper-
parameters in the vanilla CNN structure for image classification.



Preface vii

The fourth part of the book compiled works on the application of EC in automatic
construction and optimization of DNN architecture as well as weight training which
is commonly known as deep neuroevolution. In deep neuroevolution, EC can be
used as the sole method for weight training or can be used along with traditional
backpropagation algorithm. In Chapter 9, the structure of long short-term memory
(LSTM) nodes is optimized using a genetic programming-based approach. It is
shown that evolutionary optimization of LSTM can result in design which is more
complex and powerful compared to human design. Chapter 10 investigates the use
of EC for evolving deep recurrent connections in recurrent neural networks (RNNs)
consisting of a suite of memory cells and simple neurons. Chapter 11 explores the
applicability of EC in handling the challenges in structural design and training of
generative adversarial networks (GANs).

Finally, the last part of this book focuses on real-world and interesting applica-
tions of DNN with EC and other usages of EC in contemporary DNN research.
These applications harness the representation power of DNN and the ability of
evolutionary computation in creating complex systems. These usages have shown
promising signs for a new research philosophy and methodology worth further
investigation and exploration. Chapter 12 presents an evolutionary framework for
automatic construction of network structure for detecting dangerous objects in an X-
ray image. Chapter 13 utilizes an evolutionary search to determine the architecture
and tune hyper-parameters of DNN for malware classification. In Chap. 14, the
training of GANs with less data is investigated on a spatially distributed evolutionary
GAN training framework. Chapter 15 focuses on the application of EC in designing
adversarial examples as well as improving the robustness of DNNs against adver-
sarial attacks.

All the chapters are authored by well-known researchers and experienced
practitioners in the relevant topic. Therefore, their knowledge, experience, and
guidance will reveal the current state and the future promises and obstacles of the
field as well as the necessary solutions and workarounds to take the field to the next
level.

We hope readers will expand the topics explained in this book and make an
academic venture in EC and DL.

Tokyo, Japan Hitoshi Iba
Newcastle, Australia Nasimul Noman
February 2020
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Chapter 1
Evolutionary Computation
and Meta-heuristics

Hitoshi Iba

Abstract This chapter presents several methods of evolutionary computation and
meta-heuristics. Evolutionary computation is a computation technique that mimics
the evolutionary mechanism of life to select, deform, and convolute data structures.
Because of its high versatility, its applications are found in various fields. Meta-
heuristics described in this chapter are considered as representatives of swarm
intelligence, such as particle swarm optimization (PSO), artificial bee colony
optimization (ABC), ant colony optimization (ACO), firefly algorithms, cuckoo
search, etc. A benefit of these methods is global searching as well as local searching.
Existence of local minima or saddle points could lead to a locally optimum solution
when using gradient methods such as the steepest descent search. By contrast, the
methods described in this chapter can escape from such local solutions by means
of various kinds of operations. Methods of evolutionary computation and meta-
heuristics are used in combination with deep learning to establish a framework of
deep neural evolution, which will be described in later chapters.

1.1 Introduction

Let us consider the following questions:

• “Why are the peacock’s feathers so incredibly beautiful?”
• “Why did the giraffe’s neck become so long?”
• “If a worker bee cannot have any offspring of its own, why does it work so hard

to serve the queen bee?”

If we make a serious effort to answer these mysteries, we realize that we are solving
one of the problems of optimization for each species, i.e., the process of evolution
of species. It is the objective of the bio-inspired method to exploit this concept

H. Iba (�)
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to establish an effective computing system. Evolutionary computation (EC) and
meta-heuristics attempt to “borrow” Nature’s methods of problem solving and have
been widely applied to find solutions to optimization problems, to automatically
synthesize programs, and to accomplish other AI (artificial intelligence) tasks for
the sake of the effective learning and the formation of hypotheses. These methods
imitate the evolutionary or biological mechanisms of living organisms to create,
to combine, and to select data structures. They are widely applied in deep neural
evolution fields.

In the following sections, we will explain these methodologies in details.

1.2 Evolutionary Algorithms: From Bullet Trains to Finance
and Robots

Evolutionary computation is an engineering method that imitates the mechanism of
evolution in organisms and applies this to the deforming, synthesis, and selection
of data structures. Using this method, we aim to solve the problem of optimization
and generate a beneficial structure. Common examples of this are the computational
algorithms known as genetic algorithms (GA) and genetic programming (GP).

The basic data structures in evolutionary computation are based on knowledge of
genetics. Hereafter, we shall provide an explanation of these.

The information used in evolutionary computation is formed from the two-layer
structures of PTYPE and GTYPE. GTYPE (genotype, also called genetic codes, and
equating to the chromosomes within the cells) are, in a genetic type analogy, a low-
level, locally-regulating set. This is the evolutionary computation to be operated
on, as described later. The PTYPE is a phenotype, and expresses the emergence
of behavior and structures over a wide area, accompanied by development within
a GTYPE environment. Fitness is determined by the PTYPE adapting to its
environment, and selection relies on the fitness of the PTYPE (Fig. 1.1). For a time,
the higher the fitness score taken, the better. Therefore, for individuals with a fitness
of 1.0 and 0.3, the former can adapt better to their environment, and it is easier for
them to survive (however, in other areas of this book, there are cases when it is better
to have a smaller score).

We shall explain the basic framework of the evolution computation, based on
the above description (Fig. 1.2). Here, we configure a set containing several dogs.
We shall call this generation t . This dog has a genetic code for each GTYPE,
and its fitness is determined according to the generated PTYPE. In the diagram,
the fitness of each dog is shown as the value near the dog (remember that the
larger the better). These dogs reproduce and create the descendants in the next
generation t + 1. In terms of reproduction, the better (higher) the fitness, the more
descendants they are able to create, and the worse (lower) the fitness, the easier it
is for them to become extinct (in biological terminology, this refers to choice and
selection). In the diagram, the elements undergoing slight change in the phenotypes
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Fig. 1.1 GTYPE and PTYPE

due to reproduction are drawn schematically. As a result of this, the fitness of each
individual in the following generation t + 1 is expected to be better than that of
the previous generation. Furthermore, the fitness as seen in the set as a whole
also increases. In the same way, the dogs in the generation t + 1 become parents
and produce the descendants in the generation t + 2. As this is repeated and the
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Fig. 1.2 Image of evolutionary computation

generations progress, the set as a whole improves and this is the basic mechanism
of evolutionary computation.

In the case of reproduction, the operator shown in Fig. 1.3 is applied to the
GTYPE, and produces the next generation of GTYPEs. To simplify things, here,
the GTYPE is expressed as a 1-dimensional matrix. Each operator is an analogy
for the genetic recombination and mutation, etc., in the organism. The application
frequency and the application area of these operators are randomly determined in
general.

Normally, the following kinds of methods are used for selection.

• Roulette selection: This is a method of selecting individuals in a ratio propor-
tionate to their fitness. A roulette is created with an area proportionate to fitness.
This roulette is spun, and individuals in the location where it lands are selected.
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Fig. 1.3 Genetic operators

• Tournament selection: Only the number of individuals from within the set
(tournament size) are chosen at random and individuals from these with the
highest fitness are selected. This process is repeated for the number of sets.

• Elite strategy: Several individuals with the highest fitness are left as is to the
next generation. This can prevent individuals with the highest fitness not being
selected coincidentally and left to perish. This strategy is used in combination
with the above two methods.

With the elite strategy, the results will not get worse in the next generation as
long as the environment does not change. For this reason, it is frequently applied in
engineering applications. However, note that the flip side of this is that diversity is
lost.

To summarize, in the evolutionary computation, generational change is as shown
in Fig. 1.4. In the figure, G is the elite rate (rate of upper level individuals that were
copied and left results). We can refer to the reproduction rate as 1−G.

There are many riddles remaining biologically in terms of the evolution of
mimicry. Research into solving these mysteries is flourishing with the use of
computer simulation using evolutional computation.

Evolutional computation is used in a variety of areas of our everyday lives. For
example, the front carriage model of the Japanese N700 series bullet train plays
a major role in creating original forms (Fig. 1.5a). The N700 has the performance
to take curves at 270 km, speeds 20 km faster than the previous model. However, in
the traditional form of the front carriage, speeding up meant that the microbarometic
waves in the tunnel increased, which are a cause of noise. To solve this difficulty, the
original form known as “Aero double wing” has been derived from approximately
5000 simulations using evolutionary computation. Furthermore, in the wing design
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Fig. 1.4 Selection and reproduction of GA

of the MRJ (Mitsubishi regional jet, which is the first domestic jet in Japan), a
method known as multi-objective evolutionary computation was used (Fig. 1.5b).
Using this method, the two objectives of improving the fuel efficiency of passenger
jet devices and reduction in noise external to the engine were optimized simul-
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(a) (b) (c)

Fig. 1.5 EC applications. (a) N700 series bullet train. (b) MRJ (Mitsubishi regional jet). (c)
Collaborative transportation by humanoid robots

taneously, and they succeeded in improving performance compared to competing
models.

In fields other than engineering, such as the financial field, the use of evolutionary
computation methods is spreading. Investment funds are using this as a practical
technology for portfolio construction and market prediction (see [10] for details).
Furthermore, it has practical application in such fields as scheduling design to
optimize the work shifts of nurses and allocating crews for aircraft.

Another field that is using evolutionary computation is the field of evolutionary
robotics. For example, Fig. 1.5c is an example of cooperative work (collaborative
transportation) of evolutionary humanoid robots. Here, a learning model is used
that applies co-evolution to evolutionary computation. Furthermore, module robots,
which modify themselves in accordance with geographical features, environment,
and work content, by combining blocks, are gaining attention. This technology
is even being used by NASA (National Aeronautics and Space Administration)
for researching the form of robots optimized for surveying amidst the limited
environment of Mars. The form of organisms we know about may be only those
species that are remaining on earth. These may be types that match the earth
environment, and it is not known if these are optimal. Through evolutionary
computation, if we can reproduce the process of evolution on a computer, new forms
may emerge that we do not yet know about. The result of this may be the evolution
of robots compatible with Mars and unknown planets (see [17]).

1.3 Multi-Objective Optimization

An evolutionary algorithm can take competing goals into consideration. It complies
to any policies from its users regarding limits and preferences on these goals.
Evolutionary algorithms that deal with multiple objectives are usually called
MOEAs (Multi-Objective Evolutionary Algorithms).

Assume you are engaged in transport planning for a town [6]. The means of
reducing traffic accidents range from installing traffic lights, placing more traffic
signs, and regulating traffic, to setting up checkpoints (Fig. 1.6). Each involves
a different cost, and the number of traffic accidents will vary with the chosen
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Fig. 1.6 Cost vs. expected numbers of accidents

approach. Let us assume that five means (A, B, C, D, and E) are available, and
that the cost and the predicted accident numbers are

A = (2, 10)

B = (4, 6)

C = (8, 4)

D = (9, 5)

E = (7, 8),

where the first element is the cost and the second is the predicted accident number,
as plotted in Fig. 1.6. The natural impulse is to desire attainment of both goals in
full: the lowest cost and the lowest predicted accident number. Unfortunately, it is
not necessarily possible to attain both objectives by the same means and thus not
possible to optimize both at the same time.

In such situations, the concept of “Pareto optimality” is useful. For a given
developmental event to represent a Pareto optimal solution, it must be the case that
no other developmental events exist which are of equal or greater desirability, for all
evaluation functions, that is, fitness functions.

Let us look again at Fig. 1.6. Note that the points in the graph increase in
desirability as we move toward the lower left. A, B, and C in particular appear to
be good candidates. None of these three candidates is the best in both dimensions,
that is, in both “evaluations,” but for each there is no other candidate that is better
in both evaluations. Such points are called “non-dominated” points. Points D and E,
in contrast, are both “dominated” by other points and therefore less desirable. E is
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dominated by B, as B is better than E in both evaluations:

Cost of B(4) < Cost of E(7)

Predicted accidents for B(6) < Predicted accidents for E(8).

D is similarly dominated by C. In this example, therefore, the Pareto optimums are
A, B, and C. As this suggests, the concept of the Pareto optimum cannot be used to
select just one candidate from a group of candidates, and thus it cannot be concluded
which of A, B, and C is the best.

Pareto optimality may be defined more formally as follows. Let two points x =
(x1, . . . , xn) and y = (y1, . . . , yn) exist in an n-dimensional search space, with each
dimension representing an objective (an evaluation) function, and with the objective
being a minimization of each to the degree possible. The domination of y by x

(written as x <p y) may be, therefore, defined as

x <p y ⇐⇒ (∀i)(xi ≤ yi) ∧ (∃i)(xi < yi). (1.1)

In the following, we will refer to n (the number of different evaluation functions)
as the “dimension number.” Any point that is not inferior to any other point will be
called “non-dominated” or “non-inferior,” and the curve (or curved surface) formed
by the set of Pareto optimal solutions will be called the “Pareto front.”

The main problem that MOEAs face is how to combine the multiple objectives
into a metric that can be used to perform selection. In other words, how to take into
account all objectives when selecting individuals from one generation for crossover.
The readers should refer to [2, 5, 13] for the studies on multi-objective optimization
methods.

1.4 Genetic Programming and Its Genome Representation

1.4.1 Tree-based Representation of Genetic Programming

The aim of genetic programming (GP) is to extend genetic forms from genetic
algorithm (GA) to the expression of trees and graphs and to apply them to the
synthesis of programs and the formation of hypotheses or concepts. Researchers
are using GP to attempt to improve their software for the design of control systems
and structures for robots.

The procedures of GA are extended in GP in order to handle graph structures
(in particular, tree structures). Tree structures are generally well described by S-
expressions in LISP. Thus, it is quite common to handle LISP programs as “genes”
in GP. As long as the user understands that the program is expressed in a tree format,
then he or she should have little trouble reading a LISP program (the user should
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recall the principles of flow charts). The explanations below have been presented so
as to be quickly understood by a reader who does not know LISP.

A tree is a graph with a structure as follows, incorporating no cycles:

A

B C

D

More precisely, a tree is an acyclical connected graph, with one node defined as the
root of the tree. A tree structure can be expressed as an expression with parentheses.
The above tree would be written as follows:

(A (B)
(C (D))).

In addition, the above can be simplified to the following expression:

(A B
(C D)).

This notation is called an “S-expression” in LISP. Hereinafter, a tree structure will
be identified with its corresponding S-expression. The following terms will be used
for the tree structure:

• Node: Symbolized with A, B, C, D, etc.
• Root: A
• Terminal node: B, D (also called a “terminal symbol” or “leaf node”)
• Non-terminal node: A, C (also called a “non-terminal symbol” and an “argument

of the S-expression”)
• Child: From the viewpoint of A, nodes B and C are children (also, “arguments of

function A”)
• Parent: The parent of C is A

Other common phrases will also be used as convenient, including “number
of children,” “number of arguments,” “grandchild,” “descendant,” and “ancestor.”
These are not explained here, as their meanings should be clear from the context.

The following genetic operators acting on the tree structure will be incorpo-
rated:

1. Gmutation Alteration of the node label
2. Ginversion Reordering of siblings
3. Gcrossover Exchange of a subtree

These are natural extensions of existing genetic operators and act on sequences
of bits. These operators are shown below in examples where they have been applied
in LISP expression trees (S-expressions) (Fig. 1.7). The underlined portion of the
statement is the expression that is acted upon:
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Fig. 1.7 Genetic operators in
GP
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Table 1.1 Program changes due to GP operators

Operator Program before operation Program after operation

Mutation Add x and y Add x and z

Inversion 1. Add 1 to x 1. Set x = 2

2. Set x = 2 2. Add 1 to x

3. Print x(= 2) and return 2 3. Print x(= 3) and return 3

Crossover Parent1: Child1:

1. Add 1 to x 1. Add 1 to x

2. Set x = 2 2. Take square root of x

3. Set y = x(= 2) and return 2 3. Set y = x and return the value

Parent2: Child2:

1. Subtract 1 from x 1. Subtract 1 from x

2. Set x = √x × x 2. Set x = 2 and its value (= 2) is

multiplied by x(= 2). The result

value (= 4) is set to x again

3. Print x and return the value. 3. Print x(= 4) and return 4.

Gcrossover Parent1:(progn (incf x) (setq x 2) (setq y x))

Parent2:(progn (decf x) (setq x (∗ (sqrt x) x)) (print x))

⇓
Child1:(progn (incf x) (sqrt x) (setq y x))

Child2:(progn (decf x) (setq x (∗ (setq x 2) x)) (print x)).

Table 1.1 provides a summary of how the program was changed as a result of
these operators. “progn” is a function acting on the arguments in the order of their
presentation and returns the value of the final argument. The function “setq” sets
the value of the first argument to the evaluated value of the second argument. It is
apparent on examining this table that mutation has caused a slight change to the
action of the program, and that crossover has caused replacement of the actions in
parts of the programs of all of the parents. The actions of the genetic operators
have produced programs that are individual children but that have inherited the
characteristics of the parent programs.

1.4.2 Cartesian Genetic Programming (CGP)

CGP [18] is a genetic programming (GP) technique proposed by Miller et al. CGP
represents a tree structure with a feed-forward-type network. It is a method by
which all nodes are described genotypically beforehand to optimize connection
relations. This is supposed to enable handling the problem of bloat, in which
the tree structure becomes too large as a consequence of the number of GP
genetic operations. Furthermore, by reusing a partial tree, the tree structure can be
represented compactly.
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Fig. 1.8 Example of a genotype and a phenotype

Fig. 1.9 Example of a genotype and a phenotype

The CGP network comprises three varieties of node: input nodes, intermediate
nodes, and output nodes. Figure 1.8 shows a CGP configuration with n inputs, m

outputs, and r × c intermediate layers. Here, connecting nodes in the same column
is not permitted. CGP networks are also restricted to being feed-forward networks.

CGP uses a one-dimensional numeric string for the genotypes. These describe
the functional type and connection method of the intermediate nodes, and the
connection method of the output nodes. Normally, all functions have the largest
argument as the input and ignore unused connections. For example, consider the
following genotypes for the CGP configuration shown in Fig. 1.9.

0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3

The function symbol numbers 0, 1, 2, and 3 (underlined above) correspond
to addition, subtraction, multiplication, and division, respectively. The network
corresponding to the genotype at this time is as shown in Fig. 1.9. For example,
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the inputs of the first node 0 are input 0 and input 1, and the addition computation
is functional. Note that the output of the fifth node is not used anywhere (0 4 4),
making it an intron (i.e., a non-coding region).

1.5 Ant Colony Optimization (ACO)

Ants march in a long line. There is food at one end, a nest at the other. This is a
familiar scene in gardens and on roads, but the sophisticated distributed control by
these small insects was recognized by humans only a few decades ago. Marching
is a cooperative ant behavior that can be explained by the pheromone trail model
(Fig. 1.10, [12]).

Optimization algorithms based on the collective behavior of ants are called ant
colony optimization (ACO) [3]. ACO using a pheromone trail model for the TSP

(b)(a)

(d)(c)

Fig. 1.10 Pheromone trails of ants (a) The first random search phase. (b) The closer lower right
and lower left food is found, and the pheromone trail is formed. The upper left is in the middle of the
formation. (c) Pheromone trails are formed for all three sources, which makes the transport more
efficient. The lower right source is almost exhaustively picked. (d) The lower right food source
finishes, and the pheromone trail has already dissipated. As a result, a vigorous transportation for
the two sources on the left is being done
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uses the following algorithm to optimize the travel path:

Step 1 Ants are placed randomly in each city.
Step 2 Ants move to the next city. The destination is probabilistically

determined based on the information on pheromones and given
conditions.

Step 3 Repeat until all cities are visited.
Step 4 Ants that make one full cycle secrete pheromones on the route

according to the length of the route.
Step 5 Return to Step1 if a satisfactory solution has not been obtained.

The ant colony optimization (ACO) algorithm can be outlined as follows. Take
ηij as the distance between cities i and j (Fig. 1.11). The probability pk

ij (t) that an
ant k in city i will move to city j is determined by the reciprocal of the distance
1/ηij and the amount of pheromone τij (t) as follows:

pk
ij (t) =

τij (t)× ηα
ij

∑
h∈J k

i
τih(t)× ηα

ih

. (1.2)

Here, J k
i is the set of all cities that the ant k in city i can move to (has not

visited). The condition that ants are more likely to select a route with more
pheromone reflects the positive feedback from past searches as well as a heuristic for
searching for a shorter path. The ACO can thereby include an appropriate amount
of knowledge unique to the problem.

The pheromone table is updated by the following equations:

Q(k) = the reciprocal of the path that the ant k found (1.3)

Δτij (t) =
∑

k∈Aij

Q(k) (1.4)

τij (t + 1) = (1− ρ) · τij (t)+Δτij (t). (1.5)

Fig. 1.11 Path selection
rules of ants
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The amount of pheromone added to each path after one iteration is inversely
proportional to the length of the paths that the ants found (Eq. (1.3)). The results
for all ants that moved through a path are reflected in the path (Eq. (1.4)). Here, Aij

is the set of all ants that moved on a path from city i to city j . Negative feedback
to avoid local solutions is given as an evaporation coefficient (Eq. (1.5)), where the
amount of pheromone in the paths, or information from the past, is reduced by a
fixed factor (ρ).

The ACO is an effective method to solve the traveling salesman problem (TSP)
compared to other search strategies. The characteristic that specialized methods
perform better in static problems is shared by many meta-heuristics (high-level
strategies which guide an underlying heuristic to increase their performance). Com-
plicated problems, such as TSPs where the distances between cities are asymmetric
or where the cities change dynamically, do not have established programs and the
ACO is considered to be one of the most promising methods.

1.6 Particle Swarm Optimization (PSO)

Kennedy et al. designed an effective optimization algorithm using the mechanism
behind swarming boids [16]. This is called particle swarm optimization (PSO), and
numerous applications are reported.

The classic PSO was intended to be applied to optimization problems. It
simulates the motion of a large number of individuals (or “particles”) moving in
a multi-dimensional space [16]. Each individual stores its own location vector (xi),
velocity vector (vi), and the position at which the individual obtained the highest
fitness value (pi). All individuals also share information regarding the position with
the highest fitness value for the group (pg).

As generations progress, the velocity of each individual is updated using the
best overall location obtained up to the current time for the entire group and the
best locations obtained up to the current time for that individual. This update is
performed using the following formula:

vi = χ
(
ωvi + φ1 · (pi − xi)+ φ2 · (pg − xi)

)
. (1.6)

The overall flow of the PSO is as shown in Fig. 1.12. Let us now consider
the specific movements of each individual (see Fig. 1.13). A flock consisting of a
number of birds is assumed to be in flight. We focus on one of the individuals (Step
1). In the figure, the© symbols and linking line segments indicate the positions and
paths of the bird. The nearby ◦© symbol (on its path) indicates the position with the
highest fitness value on the individual’s path (Step 2). The distant ◦© symbol (on the
other bird’s path) marks the position with the highest fitness value for the flock (Step
2). One would expect that the next state will be reached in the direction shown by
the arrows in Step 3. Vector 1© shows the direction followed in the previous steps;
vector 2© is directed towards the position with the highest fitness for the flock; and
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Fig. 1.12 Flow chart of the PSO algorithm

vector 3© points to the location where the individual obtained its highest fitness
value so far. Thus, all these vectors, 1©, 2©, and 3©, in Step 3 are summed to obtain
the actual direction of movement in the subsequent step (see Step 4).

The efficiency of this type of PSO search is certainly high because focused
searching is available near optimal solutions in a relatively simple search space.
However, the canonical PSO algorithm often gets trapped in local optimum in
multimodal problems. Because of that, some sort of adaptation is necessary in order
to apply PSO to problems with multiple sharp peaks.

To overcome the above limitation, a GA-like mutation can be integrated with
PSO [8]. This hybrid PSO does not follow the process by which every individual
of the simple PSO moves to another position inside the search area with a
predetermined probability without being affected by other individuals, but leaves a
certain ambiguity in the transition to the next generation due to Gaussian mutation.
This technique employs the following equation:

mut(x) = x × (1+ gaussian(σ )), (1.7)

where σ is set to be 0.1 times the length of the search space in one dimension.
The individuals are selected at a predetermined probability and their positions
are determined at the probability under the Gaussian distribution. Wide-ranging
searches are possible at the initial search stage and search efficiency is improved at
the middle and final stages by gradually reducing the appearance ratio of Gaussian
mutation at the initial stage. Figure 1.14 shows the PSO search process with
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Fig. 1.13 In which way do birds fly?

Fig. 1.14 Concept of searching process by PSO with Gaussian mutation

Gaussian mutation. In the figure, Vlbest represents the velocity based on the local
best, i.e., pi − xi in Eq. (1.6), whereas Vgbest represents the velocity based on the
global best, i.e., pg − xi.
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1.7 Artificial Bee Colony Optimization (ABC)

Bees, along with ants, are well-known examples of social insects. Bees are classified
into three types:

• employed bees
• onlooker bees
• and scout bees

Employed bees fly in the vicinity of feeding sites they have identified, sending
information about food to onlooker bees. Onlooker bees use the information from
employed bees to perform selective searches for the best food sources from the
feeding site. When information about a feeding site is not updated for a given period
of time, its employed bees abandon it and become scout bees that search for a new
feeding site. The objective of a bee colony is to find the highest-rated feeding sites.
The population is approximately half employed bees and scout bees (about 10–15%
of the total), the rest are onlooker bees.

The waggle dance (a series of movements) performed by employed bees to
transmit information to onlooker bees is well known (Fig. 1.15). The dance involves
shaking the hindquarters and indicating the angle with which the sun will be
positioned when flying straight to the food source, with the sun represented as
straight up. For example, a waggle dance performed horizontally and to the right
with respect to the nest combs means “fly with the sun at 90 ◦ to the left.” The

Fig. 1.15 Waggle dance
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speed of shaking the rear indicates the distance to the food; when the rear is
shaken quickly, the food source is very near, and when shaken slowly it is far away.
Communication via similar dances is also performed with regard to pollen and water
collection, as well as the selection of locations for new hives.

The artificial bee colony (ABC) algorithm [14, 15] initially proposed by
Karaboga et al. is a swarm optimization algorithm that mimics the foraging behavior
of honey bees. Since ABC was designed, it has been proved that ABC, with fewer
control parameters, is very effective and competitive with other search techniques
such as genetic algorithm (GA), particle swarm optimization (PSO), and differential
evolution (DE [9]).

In ABC algorithms, an artificial swarm is divided into employed bees, onlooker
bees, and scouts. N d-dimensional solution candidates to the problem are randomly
initialized in the domain and referred to as food sources. Each employed bee is
assigned to a specific food source xi and searches for a new food source vi by using
the following operator:

vij = xij + rand(−1, 1)× (xij − xkj ), (1.8)

where k ∈ {1, 2, . . . , N}, k �= i, and j ∈ {1, 2, . . . , d} are randomly chosen indices.
vij is the j th element of the vector vi . If the trail to a food source is outside of
the domain, it is reset to an acceptable value. The obtained vi is then evaluated and
put into competition with xi for survival. The bee prefers the better food source.
Unlike employed bees, each onlooker bee chooses a preferable source according
to the food source’s fitness to do further searches in the food space using Eq. (1.8).
This preference scheme is based on the fitness feedback information from employed
bees. In classic ABC [14], the probability of the food source xi that can be exploited
is expressed as

pi = f iti
∑N

j=1 f itj
, (1.9)

where f iti is the fitness of the ith food source, xi . For the sake of simplicity, we
assume that the fitness value is non-negative and that the larger, the better. If the trail
vi is superior to xi in terms of profitability, this onlooker bee informs the relevant
employed bee associated with the ith food source, xi , to renew its memory and
forget the old one. If a food source cannot be improved upon within a predetermined
number of iterations, defined as Limit, this food source is abandoned. The bee that
was exploiting this food site becomes a scout and associates itself with a new food
site that is chosen via some principle. In canonical ABC [14], the scout looks for a
new food site by random initialization.

The details of the ABC algorithm are described as below. The pseudocode of the
algorithm is shown in Algorithm 1.
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Algorithm 1 The ABC algorithm
Require: Tmax , #. of employed bees (= #. of onlooker bees), Limit

Initialize food sources
Evaluate food sources
i = 1
while i < Tmax do

Use employed bees to produce new solutions
Evaluate the new solutions and apply greedy selection process
Calculate the probability values using fitness values
Use onlooker bees to produce new solutions
Evaluate new solutions and apply greedy selection process
Determine abandoned solutions and use scouts to generate new ones randomly
Remember the best solution found so far
i = i + 1

end while
Return best solution

Step 0: Preparation The total number of search points (N), total number of trips
(Tmax), and a scout control parameter (Limit) are initialized. The numbers of
employed bees and onlooker bees are set to be the same as the total number
of search points (N). The value of the objective function f is taken to be non-
negative, with larger values being better.

Step 1: Initialization 1 The trip counter k is set to 1, and the number of search
point updates si is set to 0. The initial position vector for each search point xi =
(xi1, xi2, xi3, . . . , xid)T is assigned random values. Here, the subscript i (i =
1, . . . , N) is the index of the search point, and d is the number of dimensions in
the search space.

Step 2: Initialization 2 Determine the initial best solution best.

ig = argmax
i

f (xi ) (1.10)

best = xig . (1.11)

Step 3: Employed bee search The following equation is used to calculate a new
position vector vij from the current position vector xij :

vij = xij + φ · (xij − xkj ). (1.12)

Here, j is a randomly chosen dimensional number, k is the index for some
randomly chosen search point other than i, and φ is a uniform random number in
the range [−1, 1]. The position vector xi and the number of search point updates
si are determined according to the following equation:

I = {i | f (xi ) < f (vi )} (1.13)
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xi =
{

vi i ∈ I

xi i /∈ I
(1.14)

si =
{

0 i ∈ I

si + 1 i /∈ I.
(1.15)

Step 4: Onlooker bee search The following two steps are performed.

1. Relative ranking of search points
The relative probability Pi is calculated from the fitness f iti , which is based
on the evaluation score of each search point. Note that f iti = f (xi ). The
onlooker bee search counter l is set to 1.

Pi = f iti
∑N

j=1 f itj
. (1.16)

2. Roulette selection and search point updating
Search points are selected for updating based on the probability Pi , calculated
above. After search points have been selected, perform a procedure as in Step
3 to update the search point position vectors. Then, let l = l + 1 and repeat
until l = N .

Step 5: Scout bee search Given a search point for which si ≥Limit, random
numbers are used to exchange generated search points.

Step 6: Update best solution Update the best solution best.

ig = argmax
i

f (xi ) (1.17)

best = xig when f (xig ) > f (best). (1.18)

Step 7: End determination End if k = Tmax. Otherwise, let k = k+1 and return
to Step 3.

ABC has recently been improved in many aspects. For instance, we analyzed the
mechanism of ABC to show a possible drawback of using parameter perturbation.
To overcome this deficiency, we have proposed a new non-separable operator and
embedded it in the main framework of the cooperation mechanism of bee foraging
(see [7] for details).

1.8 Firefly Algorithms

Fireflies glow owing to a luminous organ and fly around. This glow is meant
to attract females. The light generated by each firefly differs depending on the
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Algorithm 2 Firefly algorithm
Initialize a population of fireflies xi (i = 1, 2, · · · , n) � Minimizing objective function
f (x), x = (x1, · · · , xd )T .
Define light absorption coefficient γ

t = 1 � Generation count.
while t < MaxGeneration and the stop criterion is not satisfied do

for i = 1 to n do � for all n fireflies
for j = 1 to n do � for all n fireflies

Light intensity Ii , Ij at xi , xj is determined by f

if Ii > Ij then
Move firefly i towards j in all d dimensions

end if
Attractiveness varies with distance r via e−γ r

Evaluate new solutions and update light intensity
end for

end for
Rank the fireflies and find the current best
t = t + 1

end while
Postprocess results and visualization

individual insect, and it is considered that they attract others following the rules
described below:

• The extent of attractiveness is in proportion to the luminosity.
• Female fireflies are more strongly attracted by males that produce a strong

glow.
• Luminosity decreases as a function of distance.

The firefly algorithm (FA) is a search method based on blinking fireflies [22].
This algorithm does not discriminate gender. That is, all fireflies are attracted to
each other. In this case, the luminosity is determined by an objective function. To
solve the minimization problem, fireflies at a lower functional value (with a better
adaptability) glow much more strongly. The most glowing firefly moves around at
random.

Algorithm 2 describes the outline of the FA. The moving formula for a firefly i

attracted by firefly j is as follows:

xnew
i = xold

i + βi,j

(
xj − xold

i

)
+ α

(

rand(0, 1)− 1

2

)

, (1.19)

where rand(0, 1) is a uniform random numbers between 0 and 1. α is a parameter to
determine the magnitude of the random numbers, and βi,j represents how attractive
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firefly j is to firefly i, i.e.,

βi,j = β0e
−γ r2

i,j . (1.20)

The variable β0 represents how attractive fireflies are when ri,j = 0, which indicates
that the two are in the same position. Since ri,j represents the Euclid distance
between firefly i and j , their attractiveness varies depending on the distance between
them.

The most glowing firefly moves around at random, according to the following
formula:

xk(t + 1) = xk(t)+ α

(

rand(0, 1)− 1

2

)

. (1.21)

The reason for this is that the entire population converges to the locally best solution
in an initial allocation.

As the distance becomes greater, the attractiveness becomes weaker. Therefore,
under the firefly algorithms, fireflies form groups with each other at a distance
instead of gathering at one spot.

The firefly algorithms are suitable for optimization problems on multimodality
and are considered to yield better results compared to those obtained using PSO. It
has another extension that separates fireflies into two groups and limits the effect
on those in the same group. This enables global solutions and local solutions to be
searched simultaneously.

1.9 Cuckoo Search

The cuckoo search (CS) [23] is meta-heuristics based on brood parasitic behavior.
Brood parasitism is an animal behavior in which an animal depends on a member of
another species (or induces this behavior) to sit on its eggs. Some species of cuckoos
are generally known to exhibit this behavior. They leave their eggs in the nests of
other species of birds such as the great reed warblers, Siberian meadow buntings,
bullheaded shrikes, azure-winged magpies, etc.1 Before leaving, they demonstrate
an interesting behavior referred to as egg mimicry: they take out one egg of a host
bird (foster parent) already in the nest and lay an egg that mimics the other eggs in
the nest, thus keeping the numbers balanced.2 This is because a host bird discards
an egg when it determines that the laid egg is not its own.

1Parasitized species are almost always fixed for each female cuckoo.
2Furthermore, a cuckoo chick having just been hatched expels all the eggs of its host. For this
reason, a cuckoo chick has a pit in its back to place its host’s egg, clambers up inside the nest
and throw the egg out of the nest. This behavior was discovered by Edward Jenner, famous for
smallpox vaccination.
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A cuckoo chick has a remarkably large and bright bill; therefore, it is excessively
fed by its foster parent. This is referred to as “supernormal stimulus.” Furthermore,
there is an exposed skin region at the back of the wings with the same color as its
bill. When the foster parent carries foods, the chick spreads its wings to make the
parent aware of the region. The foster parent mistakes it for its own chicks. Thus,
the parent believes that it has more chicks to feed than it actually has and carries
more food to the nest. It is considered to be an evolutional strategy for cuckoos to
be fed corresponding to their size because a grown cuckoo is many times larger than
the host.

The CS models the cuckoos’ brood parasitic behavior based on three rules as
described below:

Algorithm 3 Cuckoo search
Initialize a population of n host nests � Minimizing objective function
f (x), x = (x1, · · · , xd )T .
Produce one egg x0

i in each host i = 1, · · · , n
t = 1 � Generation count.
while t < MaxGeneration and the stop criterion is not satisfied do

Choose a nest i randomly
Produce a new egg xt

i by performing Lèvy flights � Brood parasite of the cuckoo.

Choose a nest j randomly and let its egg be xt−1
j

if f (xt−1
j ) > f (xt

i ) then � The new egg is better.
Replace j ’s egg by the new egg, i.e., xt

i

end if
Sort the nests according to their eggs’ performance
A fraction (pa ) of the worse nests are abandoned and new ones are built by performing Lèvy

flights
t = t + 1

end while
Postprocess results and visualization

• A cuckoo lays one egg at a time and leaves it in a randomly selected nest.
• The highest quality egg (difficult to be noticed by the host bird) is carried

over to the next generation.
• The number of nests is fixed, and a parasitized egg is noticed by a host bird

with a certain probability. In this case, the host bird either discards the egg
or rebuilds the nest.

Algorithm 3 shows the CS algorithm. Based on this algorithm, a cuckoo lays a
new egg in a randomly selected nest, according to Lévy flight. This flight presents
mostly a short distance random walk with no regularity. However, it sometimes
exhibits a long-distance movement. This movement has been identified in several
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Fig. 1.16 Lévy distribution

animals and insects. It is considered to be able to represent stochastic fluctuations
observed in various natural and physical phenomena such as flight patterns, feeding
behaviors, etc.

Specifically, Lévy distribution is represented by the following probability density
function referred to in Fig. 1.16:

f (x;μ, σ) =
⎧
⎨

⎩

√
σ

2π
exp

[
− σ

2(x−μ)

]
(x − μ)−3/2 (μ < x),

0 (otherwise),
(1.22)

where μ represents a positional parameter, and σ represents a scale parameter.
Based on this distribution, Lévy flight mostly presents a short distance movement,
while it also presents a random walk for a long-distance movement with a certain
probability. For optimization, it facilitates an effective search compared to using
random walk (Gaussian flight) according to a regular distribution [23].

Let us consider an objective function represented as f (x), x = (x1, . . . , xd)T .
A cuckoo then creates a new solution candidate for the nest i given by the following
equation:

xt+1
i = xt

i + α ⊗ Lévy(λ), (1.23)

where α(> 0) is related to the scale of the problem. In most cases, α = 1. The
operation ⊗ represents multiplication of each element by α. Lévy(λ) represents a
random number vector whereby each element follows a Lévy distribution, and this
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is accomplished as follows:

Lévy(λ) ∼ rand(0, 1) = t−λ 1 < λ ≤ 3, (1.24)

where rand(0, 1) is a uniform random number between 0 and 1. This formula is
essentially a random walk with the distribution achieved by powered steps with a
heavy tail. Therefore, it includes infinite averages and infinite standard deviation.
An exponential distribution with exponents from −1 to −3 is normally used for a
long-distance movement of Lévy flight.

pa represents a parameter referred to as the switching probability, and its fraction
of the worse nests are abandoned from the nest by a host bird and new ones are built
by performing Lèvy flights. This probability strikes a balance between exploration
and exploitation.

CS is considered to be robust, compared with PSO and ACO [1].

1.10 Harmony Search (HS)

Harmony search (HS) [4] is a meta-heuristic based on jazz session (generation pro-
cess of human improvisation). Musicians are considered to perform improvisation
mainly using any one of the methods as outlined below:

• Use already-known scales (stored in their memory).
• Partially change or modify the already-known scales. Play scales next to the one

stored in their memory.
• Create new scales. Play random scales within their playable area.

A process whereby musicians combine various scales in their memory for the
purpose of composition is regarded as a sort of optimization. While many meta-
heuristics are based on swarm intelligence of life such as fish, insects, etc., HS
significantly differs from them in terms of exploiting ideas from musical processes
to search for harmony, according to an aesthetic standard.

Harmony search algorithms (referred to as “HS,” hereinafter) search for the
optimum solution by imitating a musician’s processes according to the following
three rules:

• Select an arbitrary value from HS memory.
• Select a value next to the arbitrary one from HS memory.
• Select a random value within a selectable range.

With HS, a solution candidate vector is referred to as a harmony, and a set of solution
candidates is referred to as a harmony memory (HM). Solution candidates are
replaced within HM by a specific order. This process is repeated a certain number of
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Algorithm 4 Harmony search
for i = 1 to HMS do � HM initialization.

for j = 1 to n do � n: harmony length.
Randomly initialize xi

j in HM � xi
j : j -th position of i-th harmony.

end for
end for
while the stop criterion is not satisfied do � Generate a new solution candidate x.

for j = 1 to n do
if rand(0,1)< HMCR then

Let xj in x be the j -th dimension of a randomly selected HM member
if rand(0,1)< PAR then

Apply pitch adjustment distance bw to mutate xj

xj = xj ± rand(0, 1) × bw

end if
else

Let xj in x be a random value
end if

end for
Evaluate the fitness of x by f (x)

if f (x) is better than the fitness of the worst HM member then
Replace the worst HM member with x � HM update

else
Disregard x

end if
end while
Postprocess results and visualization

times (or until the conditions for termination are met), and finally, the best harmony
is selected among those that survive in HM as a final solution.

Algorithm 4 shows a harmony search algorithm. HMCR (Harmony Memory
Considering Rate) represents the probability of selecting a harmony from HM, while
PAR (Pitch Adjust Rate) represents the probability of amending a harmony selected
from HM. HMS is the number of harmonies (sets), which is normally set to between
50 and 100.

A new solution candidate (harmony) is generated from HM based on HMCR.
HMCR is the probability of selecting component elements3 among the present
HM. Thus, new elements are randomly generated by the probability of 1−HMCR.
Subsequently, mutation occurs according to the probability of PAR. The bw

parameter (Bandwidth) represents the largest size of the mutation. In case a newly
generated solution candidate (harmony) is better than the poorest solution of HM,
they are replaced.

This method is also similar to a genetic algorithm (GA); however, it differs in
that all the members of HM become a parent candidate in HS while only one or two
existing range(s) of chromosomes (parent individual) is/are used to generate a child
chromosome in GA.

3It corresponds to allele in genotype under GA.
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The coefficients employed here are the convergence coefficient χ (a random
value between 0.9 and 1.0) and the attenuation coefficient ω, while φ1 and φ2 are
random values unique to each individual and the dimension, with a maximum value
of 2. When the calculated velocity exceeds some limit, it is replaced by a maximum
velocity Vmax. This procedure allows us to hold the individuals within the search
region during the search.

The locations of each of the individuals are updated at each generation by the
following formula:

xi = xi + vi. (1.25)

1.11 Conclusion

This chapter introduced several methods of evolutionary computation and meta-
heuristics used in deep neural evolution.

In concluding, we will describe some critical opinions against meta-heuristics
and further discussions.

Meta-heuristics frequently uses unusual names, terms associating with nature,
and metaphors. For example, in the harmony search, the following terms are used:

• harmony,
• pitch, note,
• sounds better.

However, these are just saying the following words listed below in another way:

• solution,
• decision variable,
• has a better objective function value.

Although critics insist that these replaced words cause confusion [19, 20], it is
considered that use of metaphorical expressions itself does not influence the ease
of understanding. For example, David Hilbert4 is quoted as saying geometry does
work even if a point, line, and face are expressed as a table, chair, and beer
mug in discussing mathematical forms. That is to say, it does not matter at all in
precise discussions when it is axiomatically defined. Nevertheless, we should be
careful about insisting on the novelty of meta-heuristics. It is important to recognize
the distinct difference with existing methods for further discussions. Wayland has

4David Hilbert (1862–1943): German mathematician. At the second International Congress of
Mathematicians (ICM) in Paris in 1900, he made a speech on “problems in mathematics,” where
he stressed the importance of 23 unsolved problems and presented a prospect for future creative
research through these problems. Some of them continue to be themes for research on mathematics
and computer science.
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criticized the harmony search as simply a special example of evolution strategy
(μ+ 1)ES [21].5

It does matter that researchers who propose meta-heuristics do not recognize
other similar methods [19]. When developing a new method, we never fail to have
discussions on the basis of past investigations (see [11] for further discussion).
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Chapter 2
A Shallow Introduction to Deep Neural
Networks

Nasimul Noman

Abstract Deep learning is one of the two branches of artificial intelligence that
merged to give rise to the field of deep neural evolution. The other one is
evolutionary computation introduced in the previous chapter. Deep learning, the
most active research area in machine learning, is a powerful family of computational
models that learns and processes data using multiple levels of abstractions. Over the
last years, deep learning methods have shown amazing performances in a diverse
field of applications. This chapter familiarizes the readers with the major classes of
deep neural networks that are frequently used, namely CNN (Convolutional Neural
Network), RNN (Recurrent Neural Network), DBN (Deep Belief Network), Deep
autoencoder, GAN (Generative Adversarial Network) and Deep Recursive Network.
For each class of networks, we introduced the architecture, type of layers, processing
units, learning algorithms and other relevant information. This chapter aims to
provide the readers with necessary background information in deep learning for
understanding the contemporary research in deep neural evolution presented in the
subsequent chapters of the book.

2.1 Introduction

Deep learning (DL) is one of the top buzzwords of the moment. In 2013, it made
its place in MIT’s 10 breakthrough technologies for the first time, and since then
almost every year deep learning and its related research have hit this top list, directly
or indirectly. There is no doubt that the stunning success of DL at superhuman level
in diverse fields that ranges from speech recognition to automatic game playing has
brought it to the centre of attention.
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Deep learning is a branch of machine learning which falls under the domain of
artificial intelligence. There are some problems which are effortlessly and robustly
solved by people but it is difficult to explain how they solve those problems, like face
and object recognition, interpretation of spoken language, etc. Traditional machine
learning and pattern recognition approaches achieved limited success in these tasks,
primarily, because of their dependence on data representation or features. Since the
basic idea of machine learning is to “learn from data”, the representation of the data
is particularly important for the performance of a learning algorithm. Crafting the
most effective features is not straightforward, moreover, it requires human expertise
and prior knowledge related to the task which make the learning process human-
dependent.

Representation learning which has emerged as an alternative to feature engi-
neering is capable of automatically extracting useful representation [1]. Using
representation learning the raw data can be mapped to useful representation that
makes the subsequent learning task easier for the classifier or predictor. Deep
learning is a formalism that learns a complex representation by aggregating simple
representations which in turn depend on other simpler representations and so on. By
utilizing this hierarchy of complex mapping the deep neural network can learn very
complex concepts and exhibit human-like intelligence [2].

The advent of deep learning has triggered the resurgence of AI (Artificial
Intelligence) hype. The volume of research being carried out on the topic and the
number of research papers being published is enormous—contributing to the depth
and breadth of the field. It is impossible to cover everything in a single book let
alone a chapter. The purpose of the chapter, as the title suggests, is to give a very
brief overview of the dominant methodologies in the field. The following chapters
present a range of nature inspired algorithms for various kinds of optimization
in deep neural networks. The readers who are new to deep learning will find the
deep neural network concepts introduced in this chapter useful in understanding the
subsequent chapters. There are many comprehensive and systematic reviews on the
topic [3–6] as well as application specific reviews [7–14] which the reader can find
very useful.

Keeping the above mentioned purpose of the chapter in mind, we have organized
the contents of the chapter as follows. First in Sect. 2.2, we present the basic
concepts of neural networks and the algorithm to train them. Section 2.3 explains
the idea of generic deep neural network. Section 2.4 presents the prominent
architectures in deep neural network followed by their application in Sect. 2.5.
Finally we conclude the chapter in Sect. 2.6.

2.2 (Shallow) Neural Networks

The history of Neural Networks (NNs) can be traced back to 1940s when McCulloch
and Pitts created the first mathematical model of the neural network to mimic the
working of a human brain [15]. Starting from that elementary model, the capacity,
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capability and applications of NNs have seen tremendous progress until the end
of the past century with two significant pauses in their development known as
AI winters. Today NNs are the largest and the most developed branch of AI that
has harvested most success in our quest for creating human-like intelligence in
a machine. This section presents a very brief overview of shallow NNs before
introducing their deep counterpart in the next section.

NNs a.k.a. artificial neural networks (ANNs) are computational models consist-
ing of many simple information processing units called neurons. A neuron, Nj , like
biological neuron, receives input signals (xi; i = 1, . . . , n) via connecting links.
Each connection has a weight wij to modulate the corresponding input xi . The
weighted sum of the inputs added with a bias term bj is mapped via an activation
function ϕ(·) to generate the output yj of the neuron as shown below:

yj = ϕ(zj ) = ϕ

(
n∑

i=1

xiwij + bj

)

. (2.1)

The bias term bj is used to control the net input to the activation function. By
renaming bj as w0j and setting x0 = 1, Eq. (2.1) can be presented in a more compact
form

yj = ϕ(zj ) = ϕ

(
n∑

i=0

xiwij

)

. (2.2)

The activation function ϕ(·), also called transfer function, limits the output range
of a neuron and a non-linear activation function is required for exhibiting com-
plex behaviour. Traditionally, the sigmoid function (Eq. (2.3)), also called logistic
function, has been used as the activation function. Other commonly used activation
functions are hyperbolic tangent and rectified linear unit (ReLU). Figure 2.1a shows
the model of the neuron.

ϕ(zj ) = 1

1+ exp(−zj )
. (2.3)

A feedforward neural network (FFNN) also loosely referred as multi-layer
perceptrons (MLPs) consists of neurons organized into layers (Fig. 2.1b). The
leftmost and the rightmost layer of the network are called the input layer and output
layer, respectively, and the intermediate layers are called the hidden layers. A neuron
in a particular layer is connected to all or a subset of neurons in the subsequent layer.
Figure 2.1b shows a fully connected FFNN with a 3-neuron input layer, 4-neuron
hidden layer and 2-neuron output layer (bias are not shown for simplicity). The
neurons in the input layer (shown in dotted circles) do not perform any processing
on the received data but just pass that to the next layer. When input data is placed
to the input layer of a FFNN it is passed to the connected neurons which process
the inputs and generate the outputs. The generated outputs work as the inputs to



38 N. Noman

Fig. 2.1 Artificial neural network. (a) Model of a neuron (b) Structure of a fully connected
feedforward neural network with one hidden layer

the neurons in the following layer. Thus passing through the intermediate (hidden)
layers the network output is generated. A neural network actually implements a
function f (·), characterized by the parameters W, that maps the input to output.

2.2.1 Backpropagation Algorithm for Training NNs

In a supervised learning problem we are given a set of input–output paired samples
{x(k), y(k)}; k = 1, . . . ,K and we are required to learn the underlying function
in terms of NN parameters. An elegant algorithm called backpropagation lies in
the core of learning parameters in different types of NNs. The backpropagation
algorithm is a gradient based method that searches for network parameters to
minimize the discrepancy between the NN predicted output and the target output
in the given data. A commonly used error function to measure how far we are from
the goal is

E(k) = 1

2

∑

j∈L

(
e
(k)
j

)2 = 1

2

∑

j∈L

(
y

(k)
j − ŷ

(k)
j

)2
(2.4)

where y
(k)
j and ŷ

(k)
j are the target output and the NN generated output at the j -

th output unit in response to input x(k); e
(k)
j denotes the corresponding error and

L represents the set of neurons in the output layer. In backpropagation algorithm,
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this error signal is propagated through the network layer by layer in the backward
direction making successive adjustment to the connection weights.

Suppose we have an L+1 layered FFNN, where l = 0 represents the input layer,
L represents the output layers and l = 1, . . . , L− 1 represent the hidden layers. For
the given training dataset {x(k), y(k)}; k = 1, . . . ,K , the backpropagation algorithm
can be described as follows:

Step 1: Initialization: Without any prior information, the weights and biases of
the networks are initialized to small random numbers sampled from a
uniform distribution.

Step 2: Iterate through the batch of training examples: Until termination criteria
are not satisfied, for each example {x(k), y(k)} in the given K training
samples, chosen in some specific order, perform the forward pass and
the backward pass described in Step 2.1 and 2.2, respectively.

Step 2.1: Forward Pass: In this step, the input x is presented to the network and
the outputs of the different neurons are calculated (layer by layer) going
from the input layer towards the output layer.

yj =
{

xj : if yj is a neuron in input layer
ϕ(zj ) : if yj is a neuron in hidden or output layer,

(2.5)

where zj represents the weighted sum of neuron inputs and the bias
as shown in Eq. (2.2). Next calculate the error signal from the network
outputs

ej = yj − ŷj . (2.6)

Step 2.2: Backward Pass: In this phase, the error is propagated backward by
adjusting the network weights and biases (layer by layer) going from
the output layer towards the input layer. The weight, wij , of the network
connection to the node Nj in layer l is adjusted by

wij = wij + ηδjyi, (2.7)

where η is the learning rate parameter typically having a value between
0.0 and 1.0. δj is the local gradient of the network defined as

δj =
{

ϕ′j (zj )ej : if Nj is a neuron in output layer

ϕ′j (zj )
∑

i δiwji : if Nj is a neuron in hidden layer,
(2.8)
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where ϕ′j (·) represents differentiation with respect to the argument. For
the sigmoid function Eq. (2.8) takes the following form:

δj =
{

yj (1− yj )ej : if Nj is a neuron in output layer
yj (1− yj )

∑
i δiwji : if Nj is a neuron in hidden layer,

(2.9)

where yj (1− yj ) is the derivative of the sigmoid function.

The weight adjustment method in the above algorithm, where the network
weights are updated for each training sample, is known as online updating.
Alternatively, the weights can be update after presenting a batch of samples to
the network. This setup is known as batch updating. After all the K samples of
training dataset have been presented to the network it is called one epoch of training.
Networks are trained epoch after epoch until the termination criteria is satisfied.

In this section, we only introduced FFNN—the most widely known type of
NN. There are several other types of NNs such as Recurrent Neural Networks
(RNN), Autoencoder (AE), Restricted Boltzmann Machine (RBM), Time Delay
Neural Network (TDNN), etc. which have been studied by the researchers for many
years. Many of these models have been extended to their deep architectures. The
relevant models of those NNs will be introduced along with their deep architectures
in Sect. 2.4.

2.3 Deep Neural Networks: What, Why and How?

Based on the brief introduction of NN in the previous section, a deep learning
architecture can be defined as a representation learning technique that draws
attention to successively learning more meaningful representations in a sequence
of layers of processing units (neurons). Therefore, the central idea of deep learning
lies in exploiting many non-linear layers of information processing for useful
feature extraction and transformation for supervised or unsupervised learning. So
it is a logical extension of the classical MLPs. Today, a deep neural network can
utilize hundreds even thousands of layers those collectively learn a hierarchy of
representations. There is no strict division between shallow and deep NN based on
the number of layers; however, any architecture more than two or three layers can
be considered as deep.

Ideally, we would like the NNs to learn a large volume of information at different
abstract levels and utilize those to exhibit human-like intelligence in solving
different complex problems. Let us consider the well-known cats and dogs photos
classification problem from Kaggle1 competition. We intend to capture different

1www.kaggle.com.

www.kaggle.com
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common features, e.g. eyes, ears, and discriminating features, e.g. shape of the face,
relative position of eyes and nose etc., in our network and utilize those in solving
the task. NNs, whether shallow or deep, are universal, i.e. they can approximate
arbitrarily well any continuous function on a compact domain of Rn. Now what are
the merits/demerits of using a deep architecture over a shallow architecture?

Using representation learning, we want to extract useful information from the
raw data that can be used for our purpose. One immediate benefit of creating the
abstract representation in an hierarchical manner is the sharing and reusability of the
lower level representations [3]. By using many layers of incremental abstractions, a
deep architecture can learn very complex and effective representation for the task.
The experimental results in speech-to-text transcription problem show that for a
fixed number of parameters, a deep model is clearly better than a shallow one
[16]. Besides, the ability of learning these incremental representations at different
levels simultaneously makes deep learning an efficient learner. The depth of the
NN architecture is also related to the “compactness” of the expression of the
learned function and the necessary data to learn it. According to theoretical results,
a function that can be compactly represented in a deep architecture may need
exponential number of elements to represent in a shallow architecture. Furthermore,
an increasing number of elements in the representation may need a lot of training
examples to tune them [17]. It has been also suggested that deep architectures are
more suitable for representing highly varying functions (functions that requires a
large number of elements for its piece-wise approximation) [3].

Although the theory of deep learning was familiar to the AI community in the
1980s, it essentially took off only recently. The beginning of the era of the modern
deep learning is marked by the proposal of Hinton et al. in which they showed how
to learn a deep belief network layer by layer [18]. But the practical applications
and successes of deep learning become noticeable only after 2012. Progress in
three areas has worked as the driving force behind this accomplishment: data
availability, computing power and algorithmic advancement. Like in any machine
learning method, data is the key ingredient for converting an abstract model into
intelligence machine. Over the past 20 years, an exponential increase in capacity as
well as decrease in price of storage hardware and a tremendous growth in internet
and communication technology have made the collection, storage and distribution of
very large dataset possible. The speed of CPU has increased by more than thousands
times from 1990s. However, the major leap forward came from the usage of GPUs
(graphical processing units) which are capable of doing massive parallel operations
necessary for deep learning. Today the training of a deep learning network with
millions of parameters is possible in less than an hour using a standard GPU.
The availability of data and hardware made the experimentation with deep NN
feasible and the researchers achieved remarkable progress in developing improved
activation functions, optimization schemes and weight-initialization schemes. These
algorithmic improvements helped to overcome a key hurdle in training deep
neural networks—gradient propagation through the stacks of layers in deep neural
networks.
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2.4 Architectures of Deep Networks

In the previous section, deep neural network (DNN) was introduced as a logical
extension of FFNN; however, deep networks are frequently built by using special-
ized types of layers or by assembling larger networks from smaller networks using
them as building blocks. Based on their architectural characteristics, DNNs can
be broadly categorized into different types. In this section, we will introduce the
dominant variants of DNNs based on their architectural design.

2.4.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is one of the most well-known and widely
used DNN architectures which has shown tremendous success in various computer
vision applications. CNNs are inspired by the animal visual system, in particular,
by the model, proposed by Hube and Wiesel, consisting of simple and complex
cells [19, 20]. Neocognitron, a model of ANN that works by hierarchical organized
transformation of image, is considered as the predecessor of CNN [21].

CNNs are feedforward neural networks in which inputs are transformed through
many layers in sequence for generating the outputs, yet there are some noteworthy
architectural differences between them. A CNN consists of multiple layer types
in contrast to one layer type in FFNN. Another key difference between CNN and
FFNN is that the layers in a CNN consist of neurons organized in three-dimensional
volumes. Among the other distinguishing features of CNNs are local connectivity
of neurons and weight sharing among connections which will be explained in the
following subsections.

A CNN consists of three main types of layer (1) convolutional layers, (2) pooling
layers and (3) fully connected layers. Figure 2.2 shows pipeline of the vanilla CNN
architecture for the image classification task. As shown in Fig. 2.2, the input itself is

Fig. 2.2 Architecture of a basic convolutional neural network
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considered as a three-dimensional entity, e.g. in case of an image the dimensions are
width, height and colour channels. Once the raw input date (image) is placed in the
network input layer, it passes through several stages of convolutional and pooling
layers then the generated representation is processed by one or more fully connected
layers to generate the final output of the network for classification of the image.

2.4.1.1 Convolutional Layers

Convolutional layers, which are considered to be the core building blocks of a
CNN, are essentially feature-extractors. Each neuron in the convolutional layer is
connected to at a small region in the previous layer called receptive field via a set of
trainable weights. The set of trainable weights for a neuron in the convolutional layer
is called filter or kernel which connects the neuron through the full depth of previous
layer. By replicating the same filter across the entire visual field (i.e. across the
width and height of the previous layer), it creates a feature map. By convolving the
input with the learned filter the feature map is generated which actually represents
the response of a given convolutional layer to the same feature. By using multiple
filters, various features can be extracted from the same receptive field and multiple
feature maps can be created. The number of learned filters determines the extent of
the depth dimension of the convolutional layer.

Designing a convolutional layer requires choosing the values of many hyperpa-
rameters. The depth of the convolutional layer depends on the number of filters we
want to learn from the previous layer. The width and height of the output volume
are controlled by filter size, stride size and zero-padding. The spatial dimension
of the filter is called filter size or kernel size. Stride size determines the stride
with which we slide the filter to create the feature map and padding the input
with zeros on the border of the input, we can control the spatial size of the output
volume. Although the sigmoid and hyperbolic tangent functions are used for ANN
traditionally, ReLU and its successors such as Leaky ReLU (LReLU), Parametric
ReLU (PReLU), Exponential Linear Unit (ELU) can contribute to improve CNN
performance. Therefore, the choice of the best activation function has become
another design parameter for CNN.

2.4.1.2 Pooling Layers

Pooling layers are used to achieve spatial invariance to translations. Generally,
pooling layers are inserted between successive convolution layers to reduce the
spatial size of the feature maps. Pooling layers reduce the number of parameters
and the amount of computation progressively and also help to control overfitting.
Pooling function operates along the spatial dimension of the input volume and
downsample it but keeps the depth unchanged.
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Max-pooling and average-pooling are the most common types of pooling used
in CNN. Like convolution, pooling operations are performed with a filter size and a
stride size. A max-pooling operation with filter size 2 × 2 and stride size two will
reduce a feature map from 8×8 to 4×4. This operation will move the filter spatially
performing the max operation on four inputs (in the 2× 2 region of the filter). The
average-pooling, under the same setting, will only replace the max operation with
the average. Other well-known approaches related to pooling layers are stochastic
pooling, spatial pyramid pooling and def-pooling [8].

2.4.1.3 Fully Connected Layers

After multiple runs of successive convolution and pooling layers, CNNs extract very
high-level features from the input data. In order to perform high-level reasoning
based on the extracted representation a few fully connected layers are used at
the end. Similar to FFNN, fully connected layers are one dimensional and all
neurons of fully connected layer are connected to every neuron in the previous
layer. Fully connected layers contain most of the parameters of a CNN and impose
a computational burden for training [8].

Besides these three layers, many types of normalization layers have been used in
CNNs among which the batch normalization is most common. Some studies have
shown that batch normalization can help to speed up the training and reduce the
sensitivity of training toward weight initialization [22].

2.4.1.4 Training Strategies

CNNs can be trained using backpropagation algorithm introduced before. However,
overfitting is a major challenge faced in training deep neural network because of
their large number of parameters. In order to deal with the issue of overfitting,
various regularization techniques have been proposed. Dropout is one of the
most effective regularization methods in which the hidden units are randomly
omitted with some probability, called dropout rate, during the training period. This
prohibits complex co-adaptation of features on training data and thereby improves
generalizations. During testing, all hidden units are multiplied by the dropout
rate which generates a strong regularization effect reducing the overfitting. Data
augmentation is another popular technique for creating additional data without extra
cost of labelling. By applying translation, reflection and changing image channel
intensities supplementary samples are created which can improve the classification
performance. Besides the regularization techniques, pre-training and fine-tuning
for network parameters, utilizing weight-decay and weight-tying can improve the
generalization of the network [8, 9].
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2.4.1.5 Popular CNN Models

Over the last few years various CNN architectures came out with some innovative
ideas. Utilization of novel architectural design, regularization tricks and reorgani-
zation of processing units have presented some powerful CNN models which have
become widely known standards in the field. Some of the most prominent CNN
architectures are briefly introduced in this section.

AlexNet, proposed by Krizhevsky et al. [23], won the ILSVRC (ImageNet
Large Scale Visual Recognition Challenge) 2012 and popularized CNN in computer
vision. AlexNet has relatively simple architecture consisting of five convolutional
layers, max-pooling layers, ReLU and three fully connected layers and dropout.
Szegedy et al. introduced the concept of inception module in their developed
architecture called GoogLeNet which won ILSVRC 2014 [24]. Their proposal
showed that CNN layers can be arranged in ways other than traditional sequential
manner. VGGNet is a CNN model proposed by the Visual Geometry Group (VGG)
from the University of Oxford [25]. Among several versions of the model VGG-
16 and VGG-19 consisting of 16 and 19 weight layers, respectively, became very
popular. ResNet, developed by Microsoft, won ILSVRC 2016 [26]. ResNet network
is well known for its very deep architecture (152 layers) and the introduction of
residual blocks. In their Xception model, Google has taken the inception hypothesis
to eXtreme from which the name was derived [27]. In this architecture, the inception
modules are replaced with modified depthwise separable convolutions which is
pointwise convolution followed by depthwise convolution. Khan et al. introduced
the idea of channel boosting to improve the representative capacity of DNN
by learning from multiple input channels and transfer learning. Their designed
Channel Boosted CNN (CB-CNN) architecture, evaluated on complex classification
problem, exhibited superior performance compared to many existing methods [28].

2.4.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs) differ from the other FFNNs in their capability
to selectively pass information over time. Cyclic connection, a distinguishing
characteristic feature of RRN, enables them to update the current state based on the
previous state and the current input. Therefore, they can be used to model a sequence
of elements which are not independent. Naturally, RRNs have been widely used in
applications related to sequence processing such as text, audio and video.

2.4.2.1 RNN Architecture

An RNN is a feedforward neural networks in which the hidden layers are replaced
by recurrent layers consisting of recurrent nodes a.k.a. recurrent cells. The recurrent
cells have connections that span adjacent time steps incorporating the concept of
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Fig. 2.3 Recurrent neural network: firm arrows represent feedfoward connections and dashed
arrows represent recurrent connections. (a) RNN with one recurrent layer with two recurrent cells
(b) RNN unrolled along time axis

time to the model. Design of a cell determines its capacity in remembering previous
information. Additionally, the recurrent layers can be organized various ways giving
different RNN architectures. Therefore, it is possible to design different RNNs by
blending different types of cells and architectures which obviously leads to RNNs
with different characteristics [29].

A simple recurrent cell is a standard neuron augmented with recurrent connec-
tions which causes its state to be affected by the networks past state (via recurrent
connection) as well as by the current inputs it receives (via feedforward connection).
In other words, a recurrent connection connects the output of a recurrent neuron as
an input to the recurrent neurons in the same layer (Fig. 2.3a). The mathematical
expression for a simple recurrent cell is given by

h(t) = ϕ
(
Wxhx(t)+Whhh(t − 1)+ bh

)
(2.10)

y(t) = h(t) (2.11)

where x(t), h(t) and y(t) denote the input, recurrent information and the cell output
at time t , respectively. Wxh is the weight matrix between the input and the hidden
layer and Whh is the recurrent weight matrix between the hidden layer and itself.
bh represents the bias vector. Figure 2.3b illustrates the dynamics of the network
across time steps to visually understand it by unrolling the network of Fig. 2.3a. The
unrolled network can be considered as a deep network in which information flows
through in a feedforward manner over time but the weights remain constant.
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2.4.2.2 RNN Training

Considering the unfolded representation of RNN, it is understandable that the
network can be trained across many time steps in backpropagation algorithm. This
algorithm is called backpropagation through time (BPTT). BPTT is called ‘through
time’ because it will have error signals flowing backward from future time steps as
well as from layer above. Training RNN with BPTT is computationally expensive,
moreover, two well-known phenomena in training deep neural network are vanish-
ing gradient and exploding gradient problems (which occur when backpropagating
error across many layers) are obvious. A variant of BPTT called Truncated BPTT
(TBPTT) that places a limit on the number of time steps the error can be propagated,
can better handle some of the above problems. However, by limiting the propagation
of errors, TBPTT can end up reducing the length of the dependency learned [30].

2.4.2.3 Memory Cells

In general, it is difficult for the simple recurrent cells to capture the long-term
dependency in the data—as the gap between the related inputs increases it becomes
difficult to learn it. A class of improved cells have been designed to enhance
the memorizing capacity of a simple recurrent cell by incorporating the gating
mechanism in the cell. The first and the most well-known member of this family
is Long Short Time Memory (LSTM) proposed by Hochreiter and Schmidhuber
[31]. Figure 2.4 shows the most widely used variant of LSTM: LSTM with a forget
gate [32]. Among the other well-known variants are LSTM without a forget gate
and LSTM with peephole connection.

The LSTM cell, shown in Fig. 2.4, consists of three gates: forget gate, input gate
and output gate. The forget gate decides what information to be discarded from its
internal cell state, the input gate chooses what information to be stored in the cell
state and the output gate decides what information to be exposed based on the cell
state. The mathematical model for the LSTM cell with forget gate is

f (t) = σ
(
Wf hh(t − 1)+Wf xx(t)+ bf

)
(2.12)

i(t) = σ
(
Wihh(t − 1)+Wixx(t)+ bi

)
(2.13)

c̃(t) = tanh
(
Wc̃hh(t − 1)+Wc̃xx(t)+ bc̃

)
(2.14)

c(t) = f (t) · c(t − 1)+ i(t) · c̃(t) (2.15)

o(t) = σ
(
Wohh(t − 1)+Woxx(t)+ bo

)
(2.16)

h(t) = o(t) · tanh (c(t)) . (2.17)
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Fig. 2.4 LSTM cell with a forget gate

Several study found that RNN constructed with LSTM cells is better in handling
long-term dependency than simple cells. However, learning with LSTM is com-
putationally expensive because of the additional parameters the cell has. Another
memory cell, named Gated Recurrent Unit (GRU), proposed by Cho et al. [33] has
become popular because of its simpler architecture but competitive performance in
many applications. The mathematical equations for GRU is

r(t) = σ
(
Wrhh(t − 1)+Wrxx(t)+ br

)
(2.18)

z(t) = σ
(
Wzhh(t − 1)+Wzxx(t)+ bz

)
(2.19)

h̃(t) = tanh
(
Wh̃h(r(t) · h(t − 1))+Wh̃xx(t)+ bh̃

)
(2.20)

h(t) = (1− z(t)) · h(t − 1)+ z(t) · h̃(t). (2.21)

A GRU cell actually consists of two gates: reset gate and update gate, where
the update gate is essentially combination of LSTM’s input gate and forget gate.
A couple of variants of GRU and some other memory cells have also came out in
recent years.

When unrolled in time, RNNs can be considered as a deep neural network. These
indefinite number of layers in RNN are intended for memory not for hierarchical
processing which is the case in other DNNs [34]. The most obvious way to build



2 A Shallow Introduction to Deep Neural Networks 49

deep RNN is via stacking up recurrent layers, however, there are other ways a RNN
can be extended to a deep RNN. Pascanu et al. proposed new deep neural network
architectures by extending the input-to-hidden function, hidden-to-hidden transition
and hidden-to-output function of a RNN [35].

2.4.3 Deep Autoencoder

An autoencoder is a special type of ANN that is used to learn a compressed
representation of a dataset. They are popular models for dimensionality reduction
or learning efficient encoding for a given dataset. An autoencoder is an ANN that
is used to reconstruct its input to its output in unsupervised learning. Learning to
copy the input to output may seem to be trivial but by imposing some constraints on
the network structure, autoencoders capture the most important aspects of the data
filtering the noise.

Structurally, autoencoders are very similar to FFNN: in the simplest form they
have one input layer, one hidden layer and one output layer. The key structural
difference from the FFNN is that autoencoders have the same number of nodes in
their input and output layers. Figure 2.5 shows an autoencoder with one hidden
layer. As shown in Fig. 2.5, an autoencoder consists of two parts: an encoder and a
decoder. The encoder maps the input data x into a different representation h using
a neural network

h = ϕ
(
W 1x + b1

)
(2.22)

Fig. 2.5 An autoencoder
with one input, one output
and one hidden layer
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where W 1 and b1 represent weights and biases of the encoder network, respectively.
The job of the decoder is to map h to x̂ which is of the same dimension as x

x̂ = ϕ
(
W 2h+ b2

)
(2.23)

where W 2 and b2 represent weights and biases of the decoder network, respectively.
With the aim of reconstructing x, the autoencoder’s weights are adjusted to
minimize difference between x and x̂, also known as loss

J =
∑

k

||x − x̂||2, (2.24)

where k is the number of input samples. When the data is highly non-linear, we
can design autoencoders using more than one hidden layers, and we call them deep
autoencoder.

One major difference between autoencoder and FFNN lies in their learning
process–autoencoders utilize unlabelled data instead of labelled data as in FFNN.
Autoencoders are trained using unsupervised training with backpropagation algo-
rithm. Training deep autoencoders with many hidden layers is problematic using
backpropagation. The errors, as those are backpropagated towards the input layer,
become very small and fail to perform effective adjustments to the network weights.
This results in very slow and poor learning. Deep autoencoders can be learned using
a layer-wise approach which is explained in the next section.

Different variants of autoencoder have been developed to improve its per-
formance in extracting more effective and complex representation. Compression
autoencoders (CAE) are used to learn a compact or compressed representation of the
data. This is usually achieved by using smaller number of nodes in its hidden layer
than the number of nodes in the input layer. Such bottleneck forces a CAE to extract
input features, e.g. correlation in the input data before expanding back to output.
Sparse autoencoders (SAE) create the information bottleneck without reducing the
number of nodes in the hidden layer rather may increase it. However, they impose a
sparsity constraint in which the average activation of hidden units is required to be
very small. The sparsity of activation can be achieved by exploiting KL divergence
and using regularization terms. Denoising autoencoders (DAE) are trained using
partially corrupted input and attempt to reconstruct the original uncorrupted input.
As the name suggests the aim of DAE is to filter noise from the input. Through
the mapping of corrupted input into a hidden representation and retrieval of it,
DAE extract more robust features of the data [36]. Variational autoencoders (VAE)
are mathematically most dissimilar from the other members in the autoencoder
family. Figure 2.6 shows a VAE and elucidates that the similarity between VAEs
and other autoencoders lies in their architecture. A second similarity between them
is that these models can be trained using backpropagation algorithm. VAEs are
generative models that can be used to generate examples of input data by learning
its distribution. To generate a sample from the model, VAE first draws a sample
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Fig. 2.6 Architecture of variational autoencoder

zi ∼ p(z) from a prior distribution and then the data instance is generated from a
conditional distribution xi ∼ p(x|z). In VAE the encoder is used to approximate
the distribution p(z|x) and the decoder is used to approximate p(x|z). There
are other types of autoencoders like contractive autoencoder, non-linear predictive
autoencoder, etc.

2.4.4 Deep Belief Network (DBN)

Deep Belief Networks (DBN) are graphical models which can be used to learn a
model of the input data using a greedy layer-wise learning algorithm. The layers
of DBN are constructed using Restricted Boltzmann machines (RBMs) which
are probabilistic graphical models. Boltzmann machines are a class of stochastic
recurrent neural networks invented by Geoffrey Hinton and Terry Sejnowski. They
are based on physical systems and consists of stochastic neurons which can have
one of the two possible states 0 or 1. RBMs are simplified version of Boltzmann
machines that imposes restriction on the connectivity.

An RBM is an undirected graphical model which consists of two types of
neurons: visible units and hidden units. The two layers of neurons in RBM form
a bipartite graph as shown in Fig. 2.7a. In other words RBM does not allow
connections between the neurons in the same layer—this is the restriction it imposes
on the network architecture. Let us consider the RBM shown in Fig. 2.7a with m

visible nodes v = {v1, v2, . . . , vm} and n hidden nodes h = {h1, h2, . . . , hn} where
vi, hj ∈ {0, 1}. Being an energy based model, RBMs associate a scalar energy to
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Fig. 2.7 (a) An RBM with m visible nodes and n hidden nodes. (b) A DBN constructed from
three RBMs

.

each configuration of variables to capture dependencies between variables [37]. The
energy function is given by

E(v,h, θ) = −
m∑

i=1

aivi −
n∑

j=1

bjhj −
m∑

i=1

n∑

j=1

wij vihj , (2.25)

where θ = {W,a, b} are the model parameters: W , a and b represent the connection
weights and biases on visible and hidden nodes, respectively. The probability that
the model assigns to a particular visible vector v is given by

p(v|θ) = 1

Z(θ)

∑

h

exp (−E(v,h, θ )) , (2.26)

where Z(θ) is a normalizing term given by

Z(θ) =
∑

v

∑

h

exp (−E(v,h, θ)) . (2.27)
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The conditional probability of activating a single visible neuron (vi) or hidden
neuron (hj ) is given by

p(vi = 1|h) = ϕ

⎛

⎝
n∑

j=1

wijhj + ai

⎞

⎠ (2.28)

p(hj = 1|v) = ϕ

(
m∑

i=1

wij vi + bj

)

, (2.29)

where ϕ represents the sigmoid function (Eq. (2.3)). RBMs have the property that
given the visible units, all the hidden units become independent and vice versa.
Therefore, the conditional probabilities of hidden and visible variables become

p(h|v) =
n∏

j=1

p(hj |v) and p(v|h) =
m∏

i=1

p(vi |h) (2.30)

The objective of RBM training is to adjust the weights and biases in such way
that maximizes the average log-likelihood of the given data. This is usually achieved
by using gradient descent on the log-likelihood. The derivative of the log-likelihood
with respect to a weight takes a simple form giving a very simple learning rule for
parameter update [38]:

�wij = η
(〈vihj 〉data − 〈vihj 〉model

)
, (2.31)

where η denotes learning rate and 〈·〉 represents expectations with which visible
unit vi and hidden unit hj are on together under the distribution of data and model.
For the bias term a similar but simple update rule can be derived. Calculation
of 〈vihj 〉data is straightforward but 〈vihj 〉model can be estimated using Gibbs
sampling. However, each parameter update using Gibbs sampling may take very
long time and can be computationally expensive.

Contrastive Divergence (CD) [39] presents a much faster learning mechanism in
which two tricks are used to speed up the sampling process (1) Gibbs chain is started
by setting the visible units to a training sample and (2) the Gibbs chain is run for only
k-steps (in practice k = 1 is usually used). Persistent contrastive divergence (PCD)
[40] is a direct descendant of CD. PCD uses a persistent Markov chain (i.e. the chain
is not reinitialized between parameter updates). For each parameter update, the chain
is run for k-steps to obtain new samples; then the status of the chain is retained for
the following update. PCD makes the training more efficient by allowing the Markov
chain to approach thermal equilibrium faster.

DBNs consist of several middle layers of RBMs with which they model many
layers of hidden causal variables. An RBM can be used for extracting features from
the training data. The output of its hidden layer can be used as the input to the visible
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layer of another RBM. This process can be considered as a higher-level feature
extraction from the previously extracted features from the data. By repeating this
process DBN can extract hierarchical features from the training data. Figure 2.7b
shows a DBN constructed by stacking three RBMs (DBNs are usually drawn
top to bottom rather left to right). The top two layers have undirected symmetric
connections and the lower layers have top to bottom directed connections.

Hinton et al. [18] have developed a greedy layer by layer unsupervised training
procedure for DBN which works very efficiently. The method first trains the first
layer of DBN as an RBM that models the input data x = h0. After learning the
parameters W 0 it freezes it and uses the output of this RBM as the input data of
the next layer and train the second layer as an RBM. By repeating this process,
we get a DBN whose parameters are trained for extracting higher-level complex
features of the data. This algorithm can be followed by other learning procedure
for fine-tuning the network weights for better generalization. The training of DBN
is unsupervised; however, the learned representation can be used for supervised
prediction. For example, by adding an additional network layer and training it using
backpropagation the extracted features of DBN can be used for classification.

2.4.5 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GANs), which are deep generative models based
on game theory, have attracted much attention as an innovative machine learning
approach. Like in any generative model, the goal of a GAN is to learn the underlying
distribution of the given training dataset as accurately as possible. Generative
models try to learn the probability distribution either explicitly (i.e. the method
operates by using an explicit probability density function, therefore, evaluation of
its likelihood is straightforward) or implicitly (i.e. the method does not represent
the likelihood explicitly but able to generate data using some sampling mechanism)
[41]. GANs primarily fall under the second category and utilize two adversarial
networks called a generator and a discriminator in the form of a minimax game.
The goal of the generator is to fool the discriminator by creating realistic samples
that are intended to come from the distribution of the training dataset. On the other
hand the job of the discriminator is to correctly classify the presented samples as
real or fake. By simultaneously training both the generator and the discriminator
networks, the GAN framework drives them to improve in their respective objectives
until the fake samples are indistinguishable from the real samples [42]. Figure 2.8
shows the GAN framework with interactions between its components.

2.4.5.1 GAN Architecture

GANs are based on the principle of game theory in which the discriminator (D)
competes with the generator (G) until they achieve the Nash Equilibrium, i.e. each
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Fig. 2.8 Illustration of the Generative Adversarial Network (GAN) framework

network attains its best performance with respect to the other. Given a distribution
z ∼ pz, G learns the probability distribution pg over data x. The discriminator D

and the generator G are represented by two functions D(x; θd) and G(z; θg) with θd

and θg as parameters, respectively. G maps the noise vector z into the fake sample,
G(z), which is a multi-dimensional vector, whereas D maps the real samples and
the fake samples from G into a single scalar. Both D and G are represented by deep
neural networks and can be trained by backpropagation algorithm. The loss function
of the discriminator can be given by [43]

J (D) = −1

2
Ex∼pdata logD(x)− 1

2
Ez∼pz log(1−D(G(z))), (2.32)

where pdata represents the dataset used. In zero sum game, in which the sum of
losses of both players is zero, the generator’s loss function is given by

JG = −J (D). (2.33)

Consequently, the optimization of a GAN is transformed into the two-player
minimax game with value function V (D,G):

min
G

max
D

V (D,G) = Ex∼pdata logD(x)+ Ez∼pz log(1−D(G(z))). (2.34)

2.4.5.2 GAN Training

For training a GAN, the minimax game is implemented using an iterative approach
(Algorithm 1) [42]. As shown in Algorithm 1, the generator is kept constant during
the training of the discriminator. In the same way, the discriminator does not change
during the training of the generator. The training procedure alternates between the
k steps of optimizing the discriminator and one step of optimizing the generator. In
the original proposal, Goodfellow et al. have used k = 1 to keep to computational
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Algorithm 1: Training of Generative Adversarial Networks (GANs)

initialization;
for i iterations do

for k steps do
Sample a minibatch of m fake samples (z) from noise prior.
Sample minibatch of m examples (x) from the dataset.
Update θd to reduce discriminator’s loss function.

end
Sample a minibatch of m fake samples (z) from noise prior.
Update θg to reduce generator’s loss function.

end

cost minimum [42]. The update of the generator and discriminator weights can be
done using any stochastic gradient descent method.

In GAN training, if the generator’s performance becomes better, then the
discriminator’s performance becomes poorer because the discriminator struggles
to differentiate between the real and fake samples. If the generator achieves the
perfection in generating fake samples, then the discriminator’s accuracy drops to
50%. This is problematic for the convergence of GAN training because if the
discriminator’s accuracy drops, then the feedback the generator receives becomes
poor and in turn its quality drops. Therefore, in practice, GANs often seem to
oscillate without converging to an equilibrium.

2.4.5.3 Progresses in GAN Research

Over the last few years, a significant amount of research effort has been noticed
in GAN which basically focuses on overcoming some well-known GAN problems.
The most well-known problem in GAN is mode collapse in which the generator
fails to learn the distribution of the complete dataset and concentrates on a few
or even on one model. The result is lack of diversity in the generated samples.
As mentioned earlier, if one of the networks, e.g. the discriminator, becomes very
accurate, then the training of the generator may fail due to vanishing gradients.
Maintaining the equilibrium between the discriminator and the generator is another
challenge. The solutions to these problems usually came in two forms (1) designing
new architectures and (2) proposing novel loss functions. We will briefly introduce
some of the prominent proposals.

Goodfellow et al. [42] used fully connected NNs for both generator and dis-
criminator in their original proposal. Following them, several architectural variants
of GANs have been proposed for improving performance in different applications.
Deep Convolutional GAN (DCGAN) was proposed by replacing the fully connected
layers with a number of modifications, like use of strided convolution (discrimi-
nator) and fractional-strided convolutions (generator), batch normalization, use of
ReLU activation (generator) and LeakyReLU activation (discriminator), etc., for
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generating high resolution images [44]. Boundary Equilibrium GAN (BEGAN)
proposed to use an autoencoder as a discriminator and aims to match autoencoder’s
loss distribution instead of data distribution directly [45]. The key idea behind
Progressive GAN is to expand the network architecture by adding new layers to
both generator and discriminator progressively. The method allows to generate
high quality images at higher speed and stable training [46]. Self-Attention GAN
(SAGAN) incorporates self-attention mechanism into the GAN framework which
was shown to be effective in modelling long-range dependencies [47]. Motivated
by style transfer literature, the researchers from NVIDIA proposed an alternative
generative architecture for GANs [48]. In contrast to traditional generator, the style-
based generator first maps the input latent code into an intermediate latent space
which then uses adaptive instance normalization for controlling the generator.

Wasserstein GAN (WGAN) is a variant of the vanilla GAN proposal which
uses Wasserstein distance, instead of Jensen–Shannon divergence, to measure
the difference between the model and target distributions [49]. To overcome the
vanishing gradients problem, the author of Least Squares GAN (LSGAN) proposed
to use the least squares loss function for the discriminator instead of sigmoid cross-
entropy loss used in the original proposal [50]. Unrolled GAN (UGAN) uses the
unrolling optimization of the discriminator objective during training for solving the
problem of unstable optimization and mode collapse [51]. The basic idea behind
UGAN is to update the generator by adding a gradient term that captures the reaction
of the discriminator in response to the change in the generator. In Loss-Sensitive
Generative Adversarial Network (LS-GAN) the authors introduce a loss function to
measure the quality of the generated samples. Utilizing a constraint, it makes sure
that the loss of a real sample should be smaller than that of a generated sample [52].
A comprehensive list of different GAN architectures and loss functions can be found
in GAN zoo.2

2.4.6 Recursive Neural Networks

Recursive Neural Network is a family of neural network models that operates on
structured inputs, particularly on directed acyclic graphs. Like Recurrent Neural
Networks (RNN), recursive neural networks are used to process variable-length
inputs, however, they can be seen as a generalization over RNN [53]. Recursive
neural networks can identify the hierarchical structure in dataset, therefore, have
been applied in natural language processing, image analysis, theorem proving,
bioinformatics, etc. [54].

The simplest member in the class of recursive neural networks is the standard
recursive neural network in which the same set of weights is recursively applied
within a structural setting to generate a structured prediction. Given a positional

2https://github.com/hindupuravinash/the-gan-zoo.

https://github.com/hindupuravinash/the-gan-zoo
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Fig. 2.9 Architecture of
standard recursive neural
network (reproduced from
[55])

directed acyclic graph (e.g. binary tree), it will generate the parent representation by
recursively applying transformations on the children representations in a bottom-
up fashion. Figure 2.9 shows a model of recursive neural network for sentiment
analysis. The recursive neural network model will compute the representation of
an internal node if its children are already computed. Therefore, in the example of
Fig. 2.9, it will compute parent representation p1 and p2 in order

p1 = ϕ

(

W

[
x2

x3

])

and p2 = ϕ

(

W

[
x1

p1

])

, (2.35)

where W is the weight matrix (bias is not shown for simplicity) and ϕ(·) represents
the activation function often hyperbolic tangent. The parent representations must
have the same dimensionality so that those can be recursively used to generate
higher-level representations. The model also applies a task-specific output from the
representation given by

yi = ϕ′
(
W ′pi

)
, (2.36)

where W ′ represents the output weight matrix and yi represents the prediction of
the class label in supervised learning. Like many other deep architectures, deep
recursive neural networks are constructed by stacking recursive layers one on top of
the other.

Recursive neural networks are trained using a variant of backpropagation called
backpropagation through structure (BPTS) [56]. The forward pass starts from the
leaves and proceeds bottom-up and the backward pass begins at the root and
proceeds top-down. Similar to standard backpropagation, BPTS can operate in batch
or online mode. Training of a deep recursive neural network can be considered as
interleaved application of standard backpropagation that operates across multiple
stacked layers and BPTS that operates through the structure of a layer [53]. There
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are a number of variants of recursive neural networks. The most prominent ones are
recursive autoencoder and recursive neural tensor network.

2.5 Applications of Deep Learning

By virtue of its envious performance, deep learning has made its way in a wide
variety of domains. In a very short span of time, the scope of deep learning has
been expanded from the area of computer vision and natural language processing,
to include diverse applications in the domains of science, engineering, business,
medicine even art. Deep learning is being applied in new problems on a regular basis
and exhibiting sensational performance outperforming other traditional machine
learning and non-machine learning methods. In this section, we will enumerate only
the major application areas of deep learning.

Computer Vision: Applications are image classification, image segmentation,
object detection/localization/tracking, human face/action/pose recognition, style
transfer, image reconstruction, image synthesis, image enhancement, image caption-
ing. Because of their unique capability in feature learning, majority of the methods
use CNN on different applications in computer vision. Among the other DL models
used in computer vision are deep autoencoder, deep belief network, deep Boltzmann
machines and GANs.

Natural language processing: Applications are Name Entity Recognition
(NER), sentence classification, sentiment analysis, sarcasm detection, query-
document matching, semantic matching, natural language generation, language
modelling, etc. Because of their capability to process sequences, RNNs and their
variants are widely used in various NLP applications. CNN and its variants have
been used simple NLP tasks such NER and more complex tasks involving varying
lengths of texts. Recursive neural networks have been used for parsing, semantic
relationship classification, sentence relatedness.

Speech and audio processing: Applications are phone recognition, speech
recognition, speech synthesis, music signal processing, music information retrieval,
music analysis, music similarity estimation, acoustic surveillance, localization and
tracking of sound sources, source separation, audio enhancement. Different types
of deep learning models like DNN, CNN, RNN, RBM, DBN, GAN, VAE and their
hybrids have been applied in these applications.

Biology: Deep learning found many applications in high-throughput biology
and ‘omics’ studies, e.g. molecular target prediction, protein structures prediction,
protein residue-residue contacts prediction, functional genomics elements (e.g.
promoter) prediction, gene expression data analysis, etc. Among the most frequently
used DL model in these applications are CNN, deep RNN and denoising autoen-
coder.

Health and medicine: Applications are medical, biological image classification,
drug discovery, novel drug-target prediction, disease sub-typing, early diagnosis
of disease, patient categorization, information retrieval, electronic health record
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analysis, etc. CNN, deep autoencoder, DBN and RNN are the most commonly used
models in these applications.

Business applications: Among the most prominent applications of DNN in
business are stock market analysis, financial fraud detection, mobile advertis-
ing, customer relationship management, social marketing, recommender systems,
anomaly detection, risk prediction, cybersecurity. Most of these applications use
CNN and RNN.

Besides, DNNs have found many applications in control engineering, robotics,
smart manufacturing, automatic game playing, networking, cybersecurity, big data
analysis, visual art processing, military and defence.

2.6 Conclusion

Deep learning is the fastest growing branch of machine learning that has shown
remarkable achievements in different real-life applications in which machines had
limited success so far. The surge of thriving applications of deep learning in diverse
fields is sufficient to advocate its strength and versatility. However, the ultimate goal
of this field is far-reaching and more general than its superhuman performance in
specific tasks. Towards this goal we need integration and unification of our gathered
knowledge from other branches of machine learning and artificial intelligence.

Although deep learning has yielded astonishing performance outperforming the
state-of-the-art methods in numerous fields, it is not a panacea to all problems
which we want artificial intelligence to solve for us. As researchers are working
to understand and enhance the capabilities of deep learning, they are identifying
the challenges and limitations the field needs to overcome for achieving human-like
intelligence. Some of the well-known criticisms for deep learning are requirement of
large volume of training data, uninterpretable knowledge, non-transferable extracted
patterns/knowledge and lack of common sense.

In this chapter, we presented a very general and preliminary introduction to
deep learning. The main objective of the chapter is to walk the readers through the
principal categories of deep neural networks used in various applications. Starting
with the vanilla DNN we introduced CNN, RNN, DBN, deep autoencoder, GAN
and recursive neural network. The architectures of these deep neural networks were
presented along with the different types of layers and processing units used in them.
The major variants of different architectures and basic learning algorithms used for
each architecture were also introduced. In the rest of the book, the readers will get to
know about the state-of-the-art research in which different evolutionary and meta-
heuristics algorithms, introduced in the previous chapter, are applied in designing
these deep architectures and optimizing their various aspects.
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Chapter 3
On the Assessment of Nature-Inspired
Meta-Heuristic Optimization Techniques
to Fine-Tune Deep Belief Networks

Leandro Aparecido Passos, Gustavo Henrique de Rosa, Douglas Rodrigues,
Mateus Roder, and João Paulo Papa

Abstract Machine learning techniques are capable of talking, interpreting, creat-
ing, and even reasoning about virtually any subject. Also, their learning power has
grown exponentially throughout the last years due to advances in hardware archi-
tecture. Nevertheless, most of these models still struggle regarding their practical
usage since they require a proper selection of hyper-parameters, which are often
empirically chosen. Such requirements are strengthened when concerning deep
learning models, which commonly require a higher number of hyper-parameters.
A collection of nature-inspired optimization techniques, known as meta-heuristics,
arise as straightforward solutions to tackle such problems since they do not employ
derivatives, thus alleviating their computational burden. Therefore, this work pro-
poses a comparison among several meta-heuristic optimization techniques in the
context of Deep Belief Networks hyper-parameter fine-tuning. An experimental
setup was conducted over three public datasets in the task of binary image recon-
struction and demonstrated consistent results, posing meta-heuristic techniques as a
suitable alternative to the problem.

3.1 Introduction

In the past years, multimedia-based applications fostered the generation of a massive
amount of data. These data provide a wide range of opportunities for machine
learning applications in several areas of knowledge, such as medicine, financial
market, intelligent manufacturing, and event classification. Among such machine

L. A. Passos (�) · G. H. de Rosa · M. Roder · J. P. Papa
Department of Computing, São Paulo State University, Bauru, Brazil
e-mail: leandro.passos@unesp.br; gustavo.rosa@unesp.br; mateus.roder@unesp.br;
joao.papa@unesp.br

D. Rodrigues
Department of Computing, São Carlos Federal University, São Carlos, Brazil

© Springer Nature Singapore Pte Ltd. 2020
H. Iba, N. Noman (eds.), Deep Neural Evolution, Natural Computing Series,
https://doi.org/10.1007/978-981-15-3685-4_3

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3685-4_3&domain=pdf
mailto:leandro.passos@unesp.br
mailto:gustavo.rosa@unesp.br
mailto:mateus.roder@unesp.br
mailto:joao.papa@unesp.br
https://doi.org/10.1007/978-981-15-3685-4_3


68 L. A. Passos et al.

learning approaches, deep learning methods have received significant attention due
to their excellent results, often surpassing even humans.

Deep learning models try to simulate the human-brain behavior on how the
information is processed. The basic idea is to use multiple layers to extract higher-
level features progressively, where each layer learns to transform input data into
a more abstract representation. Regarding applications in the image processing
area, lower layers may identify edges, while higher layers may identify human-
meaningful items such as human faces and objects. Among the most employed
methods, one can include Convolutional Neural Networks (CNNs) [8], Deep Belief
Networks (DBNs) [5], and Deep Boltzmann Machines (DBMs) [23], among others.

Since “deep” in deep learning refers to the architecture complexity, the more
complex it becomes, the higher the number of hyper-parameters to fit. Yosinski and
Lipson [36], for instance, highlighted some approaches for visualizing the behavior
of a single Restricted Boltzmann Machine (RBM) [24], which is an energy-based
model that can be used to build DBNs and DBMs, during its learning procedure, and
provided an overview toward such complexities comprehension. Such a problem
was usually tackled using auto-learning tools, which combine parameter fine-
tuning with feature selection techniques [26]. Despite, it can also be posed as an
optimization task in which one wants to choose suitable hyper-parameters.

Therefore, meta-heuristic algorithms have become a viable alternative to solve
optimization problems due to their simple implementation. Kuremoto et al. [7], for
instance, employed the Particle Swarm Optimization (PSO) [6] to the context of
hyper-parameter fine-tuning concerning RBMs, while Liu et. al [10] and Levy et
al. [9] applied Genetic Algorithms (GA) [29] for model selection and automatic
painter classification using RBMs, respectively. Later, Rosa et al. [22] addressed the
Firefly Algorithm to fine-tune DBN hyper-parameters. Finally, Passos et al. [15, 16]
proposed a similar approach comparing several meta-heuristic techniques to fine-
tune hyper-parameters in DBMs, infinity Restricted Boltzmann Machines [13, 18],
and RBM-based models in general [14].

Following this idea, this chapter presents a comparison among ten different
swarm- and differential evolution-based meta-heuristic algorithms in the context
of fine-tuning DBN hyper-parameters. We present a discussion about the viability
of such approaches in three public datasets, as well as the statistical evaluation
through the Wilcoxon signed-rank test. The remainder of this chapter is organized
as follows. Section 3.2 introduces the theoretical background concerning RBMs and
DBNs. Sections 3.4 and 3.5 present the methodology and the experimental results,
respectively. Finally, Sect. 3.6 states conclusions and future works.

3.2 Theoretical Background

In this section, we present a theoretical background concerning Restricted Boltz-
mann Machines and Deep Belief Networks.
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3.2.1 Restricted Boltzmann Machines

Restricted Boltzmann Machines are well-known stochastic-nature neural networks
inspired by physical laws of statistical mechanics and parameterized by concepts
like energy and entropy. These networks are commonly employed in the field of
unsupervised learning, having at least two layers of neurons, i.e., one visible and
one hidden.

The Restricted Boltzmann Machine basic architecture is composed of a visible
layer v = {v1, v2, . . . , vm} with m units and a hidden layer h = {h1, h2, . . . , hn}
with n units. Furthermore, a real-valued matrix Wm×n is responsible for modeling
the restricted connections, i.e., the weights, between the visible and hidden neurons,
where wij represents the connection between the visible unit vi and the hidden unit
hj . Figure 3.1 describes the vanilla RBM architecture.

Regarding the learning process, a layer composed of visible units represents the
input data to be processed, while the hidden layer is employed to extract deep-
seated patterns and information from this data. Besides, both visible and hidden
units assume only binary values, i.e., v ∈ {0, 1}m and h ∈ {0, 1}n, once sampling
process is derived from a Bernoulli distribution [4]. Finally, the training process
is performed by minimizing the system’s energy considering both the visible and
hidden layers units, as well as the biases associated with each layer. The energy can
be computed as follows:

E(v, h) = −
m∑

i=1

aivi −
n∑

j=1

bjhj −
m∑

i=1

n∑

j=1

vihjwij , (3.1)

where a and b represent the biases of visible and hidden units, respectively.
Computing the system’s probability is an intractable task due to the computa-

tional cost. However, one can estimate the probability of activating a single visible
neuron i given the hidden units through Gibbs sampling over a Markov chain, as
follows:

P(vi = 1|h) = φ

⎛

⎝
n∑

j=1

wijhj + ai

⎞

⎠ , (3.2)

Fig. 3.1 Vanilla RBM
architecture
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and, in a similar fashion, the probability of activating a single hidden neuron j given
the visible units is stated as follows:

P(hj = 1|v) = φ

(
m∑

i=1

wij vi + bj

)

, (3.3)

where φ(·) stands for the logistic-sigmoid function.
The training process consists of maximizing the product of probabilities given

a set of parameters θ = (W, a, b) and the data probability distribution over the
training samples. Such a process can be easily computed using either the Con-
trastive Divergence (CD) [3] or the Persistent Contrastive Divergence (PCD) [27]
algorithms.

3.2.2 Contrastive Divergence

Hinton [3] introduced a faster methodology to compute the energy of the system
based on contrastive divergence. The idea is to initialize the visible units with a
training sample, to compute the states of the hidden units using Eq. (3.3), and then
to compute the states of the visible unit (reconstruction step) using Eq. (3.2). In
short, this is equivalent to perform Gibbs sampling using k = 1 and to initialize the
chain with the training samples.

Therefore, the equation below leads to a simple learning rule for updating the
weights matrix W, and biases a and b at iteration t:

Wt+1 = Wt + η(P (h|v)vT − P(h̃|ṽ)ṽT )+Φ
︸ ︷︷ ︸

=ΔWt

, (3.4)

at+1 = at + η(v− ṽ)+ ϕΔat−1
︸ ︷︷ ︸

=Δat

, (3.5)

bt+1 = bt + η(P (h|v)− P(h̃|ṽ))+ ϕΔbt−1
︸ ︷︷ ︸

=Δbt

, (3.6)

where η stands for the learning rate, ϕ denotes the momentum, ṽ stands for the
reconstruction of the visible layer given h, and h̃ denotes an estimation of the hidden
vector h given ṽ. In a nutshell, Eqs. (3.4), (3.5), and (3.6) show the optimization
algorithm, the well-known Gradient Descent. The additional term Φ in Eq. (3.4) is
used to control the values of matrix W during the convergence process, and it is
described as follows:

Φ = −λWt + ϕΔWt−1, (3.7)

where λ stands for the weight decay.
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3.2.3 Persistent Contrastive Divergence

Most of the issues related to the Contrastive Divergence approach concern the
number of iterations employed to approximate the model to the real data. Although
the approach proposed by Hinton [3] takes k = 1 and works well for real-world
problems, one can settle different values for k [1].1

Notwithstanding, Contrastive Divergence provides a good approximation to the
likelihood gradient, i.e., it gives a reasonable estimation of the model to the data
when k → ∞. However, its convergence might become poor when the Markov
chain has a “low mixing,” as well as a good convergence only on the early iterations,
getting slower as iterations go by, thus, demanding the use of parameters decay.

Therefore, Tieleman [27] proposed the Persistent Contrastive Divergence, an
interesting alternative for contrastive divergence using higher values for k while
keeping the computational burden relatively low. The idea is quite simple: on CD-1,
each training sample is employed to start an RBM and rebuild a model after a single
Gibbs sampling iteration. Once every training sample is presented to the RBM, we
have a so-called epoch. The process is repeated for each next epoch, i.e., the same
training samples are used to feed the RBM, and the Markov chain is restarted at
each epoch.

3.2.4 Deep Belief Networks

Deep Belief Networks [5] are graphical models composed of a visible and L hidden
layers, where each layer is connected to the latter through a weight matrix Wl ,
l ∈ {1, 2, . . . , L}, and there is no connection between units from the same layer. In
a nutshell, one can consider each set of two subsequent layers as an RBM trained in
a greedy fashion such that the trained hidden layer of the bottommost RBM feeds
the next RBM’s visible layer, and so on. Figure 3.2 depicts the model. Notice v and
hl stand for the visible and the l-th hidden layers.

Although this work focuses on image reconstruction, one can use DBNs for
supervised classification tasks. Such an approach requires, after the greedy feed-
forward pass mentioned above, fine-tuning the network weights using either
backpropagation or gradient descent. Afterward, a softmax layer is added at the
top of the model to attribute the predicted labels.

1Usually, contrastive divergence with a single iteration is called CD-1.
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Fig. 3.2 DBN architecture
with two hidden layers

3.3 Meta-heuristic Optimization Algorithms

This section presents a brief description of the meta-heuristic optimization tech-
niques employed in this work.

• Improved Harmony Search (IHS) [11]: an improved version of the Harmony
Search optimization algorithm that employs dynamic values for both the Pitch
Adjusting Rate (PAR), considering values in the range [PARmin,PARmax], and
the Harmony Memory Considering Rate (HMCR), which assumes values in the
range [HMCRmin,HMCRmax]. Additionally, the algorithm uses the bandwidth
variable � in the range [�min, �max] to calculate PAR.

• Particle Swarm Optimization with Adaptive Inertia Weight (AIWPSO) [12]: an
improved version of the Particle Swarm Optimization that employs self-adjusting
inertia weights w over each particle along with the search space aiming to
balance the global exploration and local exploitation. Notice the method uses
the variables c1 and c2 to control the particles’ acceleration.

• Flower Pollination Algorithm (FPA) [21, 35]: a meta-heuristic optimization
algorithm that tries to mimic the pollination process performed by flowers. The
algorithm employs four basic rules: (1) the cross-pollination, which stands for the
pollination performed by birds and insects, (2) the self-pollination, representing
the pollination performed by the wind diffusion or similar approaches, (3) the
constancy of birds/insects, representing the probability of reproduction, and (4)
the interaction of local and global pollination, controlled by the probability
parameter p. Additionally, the algorithm employs an additional parameter β to
control the amplitude of the distribution.

• Bat Algorithm (BA) [34]: based on the bats’ echolocation system while searching
for food and prey. The algorithm employs a swarm of virtual bats randomly flying
in the search space at different velocities, even following a random walk approach
for local search intensification. Additionally, it applies a dynamically updated
wavelength frequency in the range {fmin, fmax} according to the distance from
the objective, as well as loudness A and the pulse rate r .
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• Firefly Algorithm (FA) [31]: the algorithm is based on the fireflies’ approach
for attracting potential preys and mating partners. It employs the attractiveness
β parameter, which influences the brightness of each agent, depending on its
position and light absorption coefficient γ . Moreover, the model employs a
random perturbation α used to perform a random walk and avoid local optima.

• Cuckoo Search (CS) [20, 32, 33]: the model combines some cuckoo species
parasitic behavior with a τ -step random walk over a Markov chain. It employs
three basic concepts: (1) each cuckoo lays a single egg for iteration at another
bird’s randomly chosen nest, (2) pa ∈ [0, 1] defines the probability of this bird
discover and discard the cuckoo’s egg or abandon it and create a new chest,
i.e., a new solution, and (3) the nests with best eggs will carry over to the next
generations.

• Differential Evolution (DE) [25]: evolution algorithm maintains a population of
candidate solutions which are combined and improved in following generations
aiming to find the characteristics that best fit the problem. The algorithm employs
a mutation factor to control the mutation amplitude, as well as a parameter to
control the crossover probability.

• Backtracking Search Optimization Algorithm (BSA) [2, 17]: an evolution algo-
rithm that employs a random selection of a historical population for mutation
and crossover operations to generate a new population of individuals based on
past experiences. The algorithm controls the number of elements to be mutated
using a mixing rate (mix_rate) parameter, as well as the amplitude of the search-
direction matrix with the parameter F .

• Differential Evolution Based on Covariance Matrix Learning and Bimodal
Distribution Parameter Setting Algorithm (CoBiDE) [28]: a differential evolution
model that represents the search space coordinate system using a covariance
matrix according to the probability parameter Pb, and the proportion of indi-
viduals employed in the process using the Ps variable. Moreover, it employs a
binomial distribution to control the mutation and crossover rates, aiming a better
trade-off between exploitation and exploration.

• Adaptive Differential Evolution with Optional External Archive (JADE) [19, 37]:
JADE is a differential evolution-based algorithm that employs the “DE/current-
to-p-best” strategy, i.e., only the p − best agents are used in the mutation
process. Further, the algorithm employs both a historical population and a control
parameter, which is adaptively updated. Finally, it requires a proper selection of
the rate of adaptation parameter c, as well as the mutation greediness parameter g.

3.4 Methodology

This section introduces the intended procedure for DBN hyper-parameter fine-
tuning. Additionally, it describes the employed datasets and the experimental setup.
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Fig. 3.3 DBN hyper-parameter optimization approach

3.4.1 Modeling DBN Hyper-parameter Fine-tuning

The learning procedure of each RBM employs four hyper-parameters, as specified
in Sect. 3.2.1: the learning rate η, weight decay λ, momentum ϕ, and the number
of hidden units n. Since DBNs are built over RBM blocks, they employ a similar
process to fine-tune each of their layers individually. In short, a four-dimensional
search space composed of three real- and one integer-valued variables should be
selected for each layer. Notice the variable values are intrinsically real numbers,
thus requiring a type casting to obtain the nearest integer. Such an approach
aims at electing the assortment of DBN hyper-parameters that minimizes the
training images reconstruction error, denoted by the minimum squared error (MSE).
Subsequently, the selected set of parameters is applied to reconstruct the unseen
images of the test set. Figure 3.3 depicts the procedure.

3.4.2 Datasets

We employed three datasets, as described below:

• MNIST dataset2: a dataset composed of “0”–“9” handwritten digits images.
Regarding the pre-processing, the images were converted from gray-scale to

2http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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(b)(a)

(c)

Fig. 3.4 Some training examples from (a) MNIST, (b) Semeion, and (c) CalTech 101 Silhouettes
datasets

binary, as well as resized to 14 × 14. Additionally, the training was performed
over 2% of the training set, i.e., 1200 images, due to the demanded computational
burden. Moreover, the complete set of 10,000 was employed for testing.

• Semeion Handwritten Digit Dataset3: similar to the MNIST, Semeion is also a
dataset composed of “0”–“9” handwritten digits images formed by 1593 images.
In this paper, we resized the samples to 16× 16 and binarized each pixel.

• CalTech 101 Silhouettes Dataset4: a dataset composed of 101 classes of silhou-
ettes with a resolution of 28 × 28. No pre-processing step was applied to the
image samples.

Figure 3.4 displays some training examples from the above datasets.

3https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit.
4https://people.cs.umass.edu/~marlin/data.shtml.

https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
https://people.cs.umass.edu/~marlin/data.shtml


76 L. A. Passos et al.

Table 3.1 Meta-heuristic
algorithms’ parameter
configuration

Algorithm Parameters

IHS HMCR = 0.7 | PARMIN = 0.1

PARMAX = 0.7 | �MIN = 1

�MAX = 10

AIWPSO c1 = 1.7 | c2 = 1.7

w = 0.7 | wMIN = 0.5 | wMAX = 1.5

FPA β = 1.5 | p = 0.8

BA fmin = 0 | fmax = 100 | A = 1.5 | r = 0.5

FA α = 0.2 | β = 1.0 | γ = 1.0

CS β = 1.5 | p = 0.25 | α = 0.8

BSA mix_rate = 1.0 | F = 3

CoBiDE Pb = 0.4 | Ps = 0.5

DE mutation_f actor = 0.8

cross_over_probability = 0.7

JADE c = 0.1 | g = 0.05

3.4.3 Experimental Setup

Experiments were conducted over 20 runs and a 2-fold cross-validation for statis-
tical analysis using the Wilcoxon signed-rank test [30] with 5% of significance.
Each meta-heuristic technique employed five agents (particles) over 50 iterations
for convergence purposes over the three configurations, i.e., DBNs with 1, 2,
and 3 layers. Additionally, the paper compares different techniques ranging from
music composition process, swarm-based, and evolutionary-inspired methods, in
the context of DBN hyper-parameter fine-tuning, as presented in Sect. 3.3:

Table 3.1 exhibits the parameter configuration for every meta-heuristic tech-
nique.5

Finally, each DBN layer is composed of an RBM whose hyper-parameters are
randomly initialized according to the following ranges: n ∈ [5, 100], η ∈ [0.1, 0.9],
λ ∈ [0.1, 0.9], and ϕ ∈ [10−5, 10−1]. Additionally, the experiments were conducted
over three different depth configurations, i.e., DBNs composed of 1, 2, and 3 RBM
layers, which implies on fine-tuning a 4−, 8−, and 12−dimensional set of hyper-
parameters. We also have employed T = 10 as the number of epochs for DBN
learning weights procedure with mini-batches of size 20. In order to present a
more in-depth experimental validation, all DBNs were trained with the Contrastive
Divergence (CD) [3] and Persistent Contrastive Divergence (PCD) [27]. Figure 3.5
depicts the pipeline proposed in this paper.

5Note that these values were empirically chosen according to their author’s definition.
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Fig. 3.5 Proposed pipeline to the task of DBN hyper-parameter fine-tuning

3.5 Experimental Results

This section introduces the results obtained during the experiments. Further, a
detailed discussion about them is provided. Tables 3.2, 3.3, and 3.4 present the
average MSE, and their standard deviation regarding MNIST, Semeion Handwritten
Digit, and CalTech 101 Silhouettes datasets, respectively. The best results accord-
ingly to the Wilcoxon signed-rank test with 5% of significance level are presented
in bold.
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Table 3.2 presents the results concerning the MNIST dataset. IHS obtained the
lowest errors using the Contrastive Divergence algorithm over one single layer. BA
and AIWPSO obtained statistically similar results using the PCD algorithm over two
and three layers, respectively. One can notice that FPA using CD over a single layer
also obtained the same average errors as the IHS, although the Wilcoxon signed-
rank test does not consider both statistically similar. Moreover, the evolutionary
algorithms also obtained good results, though not statistically similar as well.

Regarding Semeion Handwritten Digit dataset, Table 3.3 demonstrates the best
results were obtained using CoBiDe technique over the CD algorithm with one layer.
Worth pointing that none of the other methods achieved similar statistical results,
which confirms the robustness of evolutionary-based meta-heuristic optimization
algorithms.

Similar to MNIST dataset, the best results over CalTech 101 Silhouettes dataset
was obtained using the IHS method with the CD algorithm over a single-layered
DBN, as presented in Table 3.4. IHS was also the sole technique to achieve the
lowest errors since none of the other methods obtained statistically similar results.

3.5.1 Training Evaluation

Figure 3.6 depicts the learning steps considering MNIST dataset. Except for the BA
algorithm (and the random search), all techniques converged equally to the same
point since the initial iterations. Notice FA outperformed such results, achieving
the lowest error at iteration number 20. However, the training error regresses to
the initial values, which suggests the problem presents a local optimum hard to be
overpassed, given the set of optimized parameters.

An interesting behavior is depicted in Fig. 3.7. One can observe AIWPSO
converges faster than the other techniques obtaining an average MSE of 0.2 after ten
iterations. However, AIWPSO gets stuck at this time step and is outperformed by
both JADE and DE after approximately 15 iterations. Moreover, DE still improves
its performance until reaching its optimum at nearly 40 iterations. The behavior is
not observed over the testing set, where although DE obtained good results, CoBiDE
was the most accurate technique.

Regarding the Caltech 101 Silhouettes, the learning curve depicted in Fig. 3.8
showed that AIWPSO presented a similar behavior as presented over Semeion
dataset, and a faster convergence in the 15 initial iterations, being outperformed by
JADE afterward. Notice that IHS and FPA also demonstrated a good convergence,
which is expected since IHS obtained the best results over the testing set and FPA
achieved very close results. Additionally, CoBiDE and BSA are also among the
best techniques together with JADE and DE, confirming the robustness of evolution
techniques to the task of DBN meta-parameter fine-tuning.
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(b)

(a)

Fig. 3.6 Training convergence (a) MSE and (b) log pseudo-likelihood using the CD algorithm
and a single layer of hidden units over the MNIST dataset

3.5.2 Time Analysis

Tables 3.5, 3.6, and 3.7 present the computational burden, in hours, regarding
MNIST, Semeion Handwritten Digit, and Caltech 101 Silhouettes datasets, respec-
tively. One can observe that CS is the fastest technique, followed by IHS. Such
a result is expected since IHS evaluates a single solution per iteration, and CS
employs a probability of evaluating or not each solution. On the other hand, the
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(b)

(a)

Fig. 3.7 Training convergence (a) MSE and (b) log pseudo-likelihood using the CD algorithm
and a single layer of hidden units over the Semeion Hand Written Digit dataset

remaining techniques evaluate every solution for each iteration, contributing to a
higher computational burden.

Additionally, evolutionary algorithms, in general, present a higher computation
burden than swarm-based approaches. AIWPSO stands for an exception, offering
itself as the most costly technique among all the others, due to its updating
mechanism.

In most cases, the best results were obtained using a single layer as well as the
CD algorithm. Such behavior is probably related to the limited number of epochs
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(b)

(a)

Fig. 3.8 Training convergence (a) MSE and (b) log pseudo-likelihood using the CD algorithm
and a single layer of hidden units over the CalTech 101 Silhouettes dataset

employed for training, i.e., more complex models composed of a more significant
amount of layers would require a higher number of epochs for convergence than
the 10 epochs employed in this work. However, running the experiments over such
conditions is not plausible in this context due to the massive amount of executions
performed for the comparisons presented in the chapter. The same is valid for the
PCD algorithm.
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3.5.3 Hyper-Parameters Analysis

This section provides a complete list of the average values of hyper-parameters
obtained during the execution of every possible experimental configuration. Notice
that values in bold stand for the configuration that obtained the best results
accordingly to the Wilcoxon signed-rank test.

Table 3.8 presents the average hyper-parameter values considering the MNIST
dataset. The similarity between both IHS and FPA considering a single layer over the
Contrastive Divergence algorithm is evident, which is expected since both obtained
similar results. However, comparing these results with the ones obtained with a
higher number of layers, i.e., BA with 2 layers and AIWPSO with 3 layers, over the
PCD algorithm denotes a harder task, since the number of hyper-parameters is also
higher, and each one exerts a degree of influence over the others.

Regarding the Semeion Handwritten Digit dataset, presented in Table 3.9, one
can once again identify some relation between the set of hyper-parameters and the
final results. Although IHS did not obtain the best results over the CD algorithm
with a single layer, its results are pretty close to the best obtained using the CoBiDE
algorithm. The resemblance is reflected in their hyper-parameter sets. Another
example of this resemblance is observed in the 1-layered FPA and BSA over the CD
algorithm: a close set of hyper-parameters leads to close results in the experiments.

An analogous behavior is observed in Table 3.10 regarding Caltech 101 Silhou-
ettes dataset. Although FPA, BSA, and CoBiDE did not obtain statistically similar
results to IHS according to the Wilcoxon signed-rank test, their results are very
much alike, which is perceptible in their selected sets of hyper-parameter. Regarding
more complex models, i.e., with two and three layers, one can still observe some
likeness. Notice, for instance, the similarity between AIWPSO trained with both
CD and PCD, and BSA trained with CD over three layers. However, since they
require a larger number of hyper-parameters to be fine-tuned, the combination is
exponentially larger, thus providing more diverse combination sets.

3.6 Conclusions and Future Works

This chapter dealt with the problem of Deep Belief Network’s hyper-parameter
parameter fine-tuning through meta-heuristic approaches. Experiments were con-
ducted using three architectures, i.e., one (naïve RBM), two, and three layers, which
were trained using both the Contrastive Divergence and the Persistent Contrastive
Divergence algorithms. Further, the performance of ten techniques, as well as a
random search, were compared over three public binary image datasets. Results
demonstrated that Improved Harmony Search obtained the best results in two
out of three datasets, while CoBiDE obtained the best values regarding Semeion
Handwritten Digit dataset, denoting the efficiency of differential evolution-based
techniques. Concerning the training steps, in general, AIWPSO converges faster



88 L. A. Passos et al.

T
ab

le
3.

8
A

ve
ra

ge
hy

pe
r-

pa
ra

m
et

er
va

lu
es

co
ns

id
er

in
g

M
N

IS
T

da
ta

se
t

L
ay

er
A

lg
L

.
St

at
is

ti
cs

IH
S

A
IW

PS
O

B
A

C
S

FA
FP

A
B

SA
C

oB
iD

E
D

E
JA

D
E

R
A

N
D

O
M

1
C

D
1

H
id

de
n

un
it

s
24

47
39

53
32

22
29

25
27

30
40

L
ea

rn
in

g
ra

te
0.

40
10

8
0.

58
22

2
0.

39
29

5
0.

49
51

7
0.

45
68

8
0.

45
35

7
0.

53
07

0
0.

55
66

9
0.

49
45

7
0.

52
72

9
0.

60
50

3

W
ei

gh
td

ec
ay

0.
50

89
6

0.
63

65
8

0.
50

95
8

0.
56

22
3

0.
55

47
6

0.
46

45
5

0.
62

39
3

0.
66

22
9

0.
62

94
2

0.
59

76
6

0.
64

49
1

M
om

en
tu

m
0.

00
53

8
0.

00
46

8
0.

00
43

8
0.

00
57

5
0.

00
41

2
0.

00
49

6
0.

00
42

2
0.

00
45

8
0.

00
51

7
0.

00
51

4
0.

00
47

1
PC

D
1

H
id

de
n

un
it

s
31

49
58

54
45

26
30

33
28

35
36

L
ea

rn
in

g
ra

te
0.

58
89

6
0.

49
63

8
0.

46
76

8
0.

56
15

4
0.

60
27

6
0.

54
86

2
0.

59
34

5
0.

47
16

4
0.

59
36

4
0.

63
21

5
0.

44
54

8

W
ei

gh
td

ec
ay

0.
61

42
9

0.
70

23
4

0.
68

81
4

0.
42

89
5

0.
61

43
4

0.
57

97
0

0.
68

17
2

0.
54

69
0

0.
56

72
8

0.
64

27
6

0.
57

21
3

M
om

en
tu

m
0.

00
53

2
0.

00
49

7
0.

00
56

3
0.

00
35

5
0.

00
57

0
0.

00
55

8
0.

00
48

0
0.

00
46

9
0.

00
52

6
0.

00
58

6
0.

00
57

5
2

C
D

1
H

id
de

n
un

it
s

33
38

35
57

39
39

29
23

23
34

47

L
ea

rn
in

g
ra

te
0.

63
87

3
0.

48
99

1
0.

52
93

1
0.

53
65

9
0.

51
59

6
0.

46
24

6
0.

48
49

3
0.

40
54

2
0.

53
67

9
0.

52
99

8
0.

56
50

3

W
ei

gh
td

ec
ay

0.
65

39
7

0.
67

94
8

0.
60

55
5

0.
61

63
5

0.
60

65
0

0.
69

14
5

0.
72

09
2

0.
64

38
0

0.
73

77
4

0.
73

38
0

0.
67

74
7

M
om

en
tu

m
0.

00
51

8
0.

00
55

2
0.

00
51

1
0.

00
56

8
0.

00
41

4
0.

00
47

5
0.

00
31

7
0.

00
52

9
0.

00
54

2
0.

00
45

2
0.

00
40

1
2

H
id

de
n

un
it

s
61

55
53

60
62

52
56

54
65

49
55

L
ea

rn
in

g
ra

te
0.

55
10

4
0.

55
01

7
0.

50
50

5
0.

45
78

9
0.

59
36

0
0.

50
32

7
0.

43
34

5
0.

46
47

9
0.

44
13

2
0.

49
40

8
0.

42
77

3

W
ei

gh
td

ec
ay

0.
52

75
3

0.
50

56
2

0.
45

09
4

0.
51

44
4

0.
51

90
6

0.
41

65
2

0.
51

25
0

0.
41

73
8

0.
54

72
5

0.
42

86
5

0.
48

08
7

M
om

en
tu

m
0.

00
50

3
0.

00
49

0
0.

00
46

4
0.

00
49

2
0.

00
41

4
0.

00
41

2
0.

00
45

7
0.

00
48

1
0.

00
59

7
0.

00
38

7
0.

00
52

6
PC

D
1

H
id

de
n

un
it

s
36

40
40

43
47

35
35

25
24

47
43

L
ea

rn
in

g
ra

te
0.

56
11

6
0.

59
38

4
0.

51
54

4
0.

54
89

6
0.

60
73

6
0.

53
85

6
0.

49
30

5
0.

55
22

2
0.

69
30

3
0.

47
32

2
0.

48
47

5

W
ei

gh
td

ec
ay

0.
74

88
6

0.
65

18
9

0.
64

48
4

0.
49

60
0

0.
61

31
1

0.
64

87
4

0.
63

99
5

0.
58

53
8

0.
72

70
3

0.
66

85
1

0.
71

59
3

M
om

en
tu

m
0.

00
40

6
0.

00
55

9
0.

00
51

6
0.

00
41

7
0.

00
50

0
0.

00
47

7
0.

00
45

9
0.

00
51

2
0.

00
40

6
0.

00
52

8
0.

00
43

0
2

H
id

de
n

un
it

s
51

58
44

47
59

45
56

53
56

52
44

L
ea

rn
in

g
ra

te
0.

52
31

6
0.

55
52

1
0.

43
45

3
0.

55
17

2
0.

55
60

7
0.

44
42

7
0.

46
96

4
0.

49
45

9
0.

49
10

7
0.

46
36

7
0.

60
98

0

W
ei

gh
td

ec
ay

0.
48

90
1

0.
54

54
2

0.
44

23
6

0.
44

56
7

0.
53

14
4

0.
51

67
0

0.
51

33
0

0.
51

88
5

0.
52

58
2

0.
48

42
1

0.
54

84
9

M
om

en
tu

m
0.

00
45

5
0.

00
41

0
0.

00
37

5
0.

00
57

5
0.

00
50

0
0.

00
49

0
0.

00
48

6
0.

00
42

4
0.

00
61

1
0.

00
42

8
0.

00
47

1

(c
on

ti
nu

ed
)



3 On the Assessment of Nature-Inspired Meta-Heuristic Optimization. . . 89

T
ab

le
3.

8
(c

on
ti

nu
ed

)

L
ay

er
A

lg
L

.
St

at
is

ti
cs

IH
S

A
IW

PS
O

B
A

C
S

FA
FP

A
B

SA
C

oB
iD

E
D

E
JA

D
E

R
A

N
D

O
M

3
C

D
1

H
id

de
n

un
it

s
29

40
44

51
43

30
30

30
29

38
43

L
ea

rn
in

g
ra

te
0.

33
71

5
0.

48
69

2
0.

40
53

9
0.

39
28

0
0.

56
62

6
0.

63
31

6
0.

43
00

6
0.

57
98

7
0.

51
19

2
0.

56
59

0
0.

47
16

8

W
ei

gh
td

ec
ay

0.
76

89
0

0.
64

49
0

0.
59

87
9

0.
54

97
9

0.
61

01
7

0.
59

38
0

0.
69

18
8

0.
67

87
0

0.
70

87
1

0.
70

02
6

0.
68

84
1

M
om

en
tu

m
0.

00
45

1
0.

00
57

3
0.

00
38

5
0.

00
51

2
0.

00
59

2
0.

00
43

0
0.

00
49

1
0.

00
46

4
0.

00
47

4
0.

00
59

7
0.

00
49

4
2

H
id

de
n

un
it

s
54

64
59

65
42

51
52

55
40

57
48

L
ea

rn
in

g
ra

te
0.

62
89

7
0.

54
76

3
0.

53
96

2
0.

50
16

3
0.

60
94

0
0.

58
99

6
0.

52
70

8
0.

52
66

7
0.

48
95

8
0.

51
28

7
0.

43
87

8

W
ei

gh
td

ec
ay

0.
52

16
9

0.
47

78
3

0.
50

37
6

0.
50

00
2

0.
58

92
1

0.
59

68
6

0.
46

75
0

0.
45

81
9

0.
58

48
1

0.
56

36
7

0.
50

65
8

M
om

en
tu

m
0.

00
45

4
0.

00
51

7
0.

00
35

7
0.

00
49

3
0.

00
59

2
0.

00
47

2
0.

00
51

6
0.

00
47

9
0.

00
45

4
0.

00
48

8
0.

00
48

0
3

H
id

de
n

un
it

s
47

44
63

54
53

65
59

51
51

56
56

L
ea

rn
in

g
ra

te
0.

56
23

6
0.

60
00

1
0.

40
76

9
0.

56
11

1
0.

60
79

1
0.

52
33

4
0.

50
62

8
0.

46
75

7
0.

50
15

6
0.

44
18

1
0.

44
10

4

W
ei

gh
td

ec
ay

0.
47

33
3

0.
43

48
8

0.
47

47
5

0.
54

80
8

0.
52

98
7

0.
57

11
1

0.
47

50
1

0.
50

39
4

0.
47

85
5

0.
44

16
6

0.
45

78
3

M
om

en
tu

m
0.

00
52

9
0.

00
45

0
0.

00
61

9
0.

00
40

4
0.

00
59

2
0.

00
54

2
0.

00
47

5
0.

00
48

3
0.

00
52

0
0.

00
49

3
0.

00
50

3
PC

D
1

H
id

de
n

un
it

s
24

38
46

55
47

31
25

25
28

38
25

L
ea

rn
in

g
ra

te
0.

51
94

5
0.

59
82

8
0.

55
54

0
0.

48
85

4
0.

61
87

0
0.

59
20

0
0.

52
84

7
0.

52
22

3
0.

51
15

9
0.

59
22

8
0.

56
34

1

W
ei

gh
td

ec
ay

0.
73

24
1

0.
70

84
0

0.
61

02
3

0.
63

88
5

0.
63

20
5

0.
72

09
1

0.
64

64
4

0.
69

68
0

0.
74

13
5

0.
63

62
6

0.
66

01
7

M
om

en
tu

m
0.

00
59

4
0.

00
53

5
0.

00
53

7
0.

00
60

4
0.

00
63

6
0.

00
53

1
0.

00
54

0
0.

00
62

1
0.

00
51

7
0.

00
46

2
0.

00
65

4
2

H
id

de
n

un
it

s
53

60
43

42
47

41
54

50
60

45
52

L
ea

rn
in

g
ra

te
0.

45
76

2
0.

45
89

7
0.

47
63

1
0.

46
64

5
0.

65
03

3
0.

56
47

7
0.

48
94

9
0.

42
14

9
0.

39
93

4
0.

51
28

4
0.

49
13

1

W
ei

gh
td

ec
ay

0.
49

81
9

0.
50

31
7

0.
52

90
3

0.
50

41
0

0.
55

89
4

0.
49

77
5

0.
49

80
6

0.
50

53
8

0.
52

40
2

0.
49

92
7

0.
43

49
2

M
om

en
tu

m
0.

00
48

6
0.

00
52

0
0.

00
49

7
0.

00
43

6
0.

00
63

6
0.

00
46

4
0.

00
50

7
0.

00
54

8
0.

00
44

0
0.

00
55

2
0.

00
60

3
3

H
id

de
n

un
it

s
45

46
52

56
47

43
65

45
67

60
50

L
ea

rn
in

g
ra

te
0.

42
48

1
0.

48
18

1
0.

46
64

0
0.

50
39

3
0.

58
70

3
0.

44
24

2
0.

47
47

3
0.

48
10

8
0.

44
31

8
0.

53
14

1
0.

51
46

5

W
ei

gh
td

ec
ay

0.
43

72
7

0.
57

75
2

0.
51

21
1

0.
52

33
1

0.
63

72
9

0.
46

75
8

0.
44

45
0

0.
51

49
9

0.
48

33
5

0.
52

18
7

0.
46

25
5

M
om

en
tu

m
0.

00
39

5
0.

00
41

7
0.

00
56

6
0.

00
53

3
0.

00
63

6
0.

00
50

5
0.

00
41

8
0.

00
41

7
0.

00
59

5
0.

00
51

9
0.

00
50

0

B
ol

d
va

lu
es

de
no

te
th

e
lo

w
es

ta
ve

ra
ge

M
SE

or
va

lu
es

w
ho

se
W

il
co

xo
n’

s
p-

va
lu

e
is

ab
ov

e
0.

05
,i

.e
.,

va
lu

es
th

at
ar

e
st

at
is

ti
ca

ll
y

si
m

il
ar



90 L. A. Passos et al.

T
ab

le
3.

9
A

ve
ra

ge
hy

pe
r-

pa
ra

m
et

er
va

lu
es

co
ns

id
er

in
g

Se
m

ei
on

H
an

dw
ri

tt
en

D
ig

it
da

ta
se

t

L
ay

er
A

lg
L

.
St

at
is

ti
cs

IH
S

A
IW

PS
O

B
A

C
S

FA
FP

A
B

SA
C

oB
iD

E
D

E
JA

D
E

R
A

N
D

O
M

1
C

D
1

H
id

de
n

un
it

s
70

36
51

50
45

60
55

69
73

55
55

L
ea

rn
in

g
ra

te
0.

48
84

8
0.

42
68

8
0.

48
04

2
0.

47
40

5
0.

39
17

9
0.

41
75

3
0.

45
06

0
0.

39
45

8
0.

45
12

5
0.

45
55

0
0.

46
82

1

W
ei

gh
td

ec
ay

0.
10

00
0

0.
30

20
7

0.
39

28
0

0.
25

30
4

0.
45

16
8

0.
13

61
2

0.
13

87
6

0.
10

12
8

0.
16

78
6

0.
32

84
6

0.
10

97
2

M
om

en
tu

m
0.

00
45

5
0.

00
35

7
0.

00
40

1
0.

00
49

9
0.

00
27

4
0.

00
45

5
0.

00
42

4
0.

00
40

9
0.

00
44

4
0.

00
51

8
0.

00
60

6
PC

D
1

H
id

de
n

un
it

s
38

42
45

49
34

53
48

49
35

43
49

L
ea

rn
in

g
ra

te
0.

44
05

2
0.

60
33

8
0.

48
16

6
0.

48
27

8
0.

44
03

4
0.

61
62

3
0.

47
05

3
0.

42
23

2
0.

41
34

5
0.

51
67

7
0.

44
18

7

W
ei

gh
td

ec
ay

0.
10

01
0

0.
18

88
7

0.
33

53
2

0.
20

51
8

0.
47

42
2

0.
10

00
0

0.
14

01
4

0.
10

29
1

0.
14

62
0

0.
29

31
3

0.
11

50
9

M
om

en
tu

m
0.

00
43

9
0.

00
43

0
0.

00
44

6
0.

00
44

9
0.

00
49

1
0.

00
43

5
0.

00
50

5
0.

00
51

7
0.

00
53

8
0.

00
47

1
0.

00
57

7
2

C
D

1
H

id
de

n
un

it
s

16
24

43
33

40
23

18
27

16
27

29

L
ea

rn
in

g
ra

te
0.

64
26

9
0.

50
74

0
0.

63
04

6
0.

48
66

1
0.

60
85

6
0.

51
43

9
0.

63
14

8
0.

60
70

8
0.

67
22

1
0.

51
43

6
0.

54
41

8

W
ei

gh
td

ec
ay

0.
77

73
6

0.
73

48
0

0.
70

93
7

0.
62

45
4

0.
66

91
0

0.
71

70
0

0.
64

48
9

0.
77

16
7

0.
78

75
5

0.
76

89
5

0.
71

00
1

M
om

en
tu

m
0.

00
55

8
0.

00
50

9
0.

00
44

6
0.

00
39

5
0.

00
64

7
0.

00
34

6
0.

00
71

4
0.

00
49

1
0.

00
40

1
0.

00
44

5
0.

00
55

5
2

H
id

de
n

un
it

s
49

62
52

41
51

51
48

50
55

45
57

L
ea

rn
in

g
ra

te
0.

47
36

4
0.

48
70

5
0.

51
97

5
0.

56
35

6
0.

59
65

0
0.

52
14

5
0.

51
64

5
0.

46
14

4
0.

46
61

4
0.

59
40

6
0.

50
00

9

W
ei

gh
td

ec
ay

0.
51

64
4

0.
45

94
0

0.
51

38
5

0.
51

22
0

0.
56

52
9

0.
47

77
4

0.
56

55
2

0.
38

14
3

0.
35

23
5

0.
54

78
6

0.
49

23
0

M
om

en
tu

m
0.

00
43

5
0.

00
55

9
0.

00
48

8
0.

00
48

7
0.

00
66

6
0.

00
46

0
0.

00
51

9
0.

00
42

0
0.

00
52

8
0.

00
50

8
0.

00
40

9
PC

D
1

H
id

de
n

un
it

s
30

38
36

46
47

46
26

24
16

28
21

L
ea

rn
in

g
ra

te
0.

51
14

5
0.

52
39

9
0.

48
58

0
0.

61
58

9
0.

53
79

1
0.

57
94

0
0.

54
08

0
0.

58
48

5
0.

55
22

6
0.

55
49

0
0.

50
45

6

W
ei

gh
td

ec
ay

0.
76

03
5

0.
73

03
8

0.
66

89
5

0.
69

92
3

0.
66

61
0

0.
76

14
6

0.
70

81
9

0.
74

70
2

0.
70

49
3

0.
77

94
9

0.
64

61
8

M
om

en
tu

m
0.

00
50

6
0.

00
54

6
0.

00
57

0
0.

00
56

5
0.

00
41

7
0.

00
46

0
0.

00
53

5
0.

00
35

4
0.

00
45

8
0.

00
46

3
0.

00
51

6
2

H
id

de
n

un
it

s
49

59
39

50
49

44
46

59
37

55
53

L
ea

rn
in

g
ra

te
0.

40
69

3
0.

54
97

9
0.

45
28

6
0.

51
86

2
0.

61
28

4
0.

54
67

7
0.

53
12

1
0.

51
76

2
0.

62
38

8
0.

67
46

5
0.

47
35

5

W
ei

gh
td

ec
ay

0.
52

69
0

0.
49

35
8

0.
52

55
1

0.
48

62
1

0.
54

84
3

0.
46

49
9

0.
53

90
8

0.
44

29
0

0.
44

68
4

0.
52

84
1

0.
56

10
7

M
om

en
tu

m
0.

00
61

7
0.

00
65

6
0.

00
42

9
0.

00
59

8
0.

00
41

7
0.

00
41

1
0.

00
55

1
0.

00
57

6
0.

00
57

7
0.

00
53

3
0.

00
53

0

(c
on

ti
nu

ed
)



3 On the Assessment of Nature-Inspired Meta-Heuristic Optimization. . . 91

T
ab

le
3.

9
(c

on
ti

nu
ed

)

L
ay

er
A

lg
L

.
St

at
is

ti
cs

IH
S

A
IW

PS
O

B
A

C
S

FA
FP

A
B

SA
C

oB
iD

E
D

E
JA

D
E

R
A

N
D

O
M

3
C

D
1

H
id

de
n

un
it

s
25

31
35

40
36

21
15

21
13

23
19

L
ea

rn
in

g
ra

te
0.

45
62

3
0.

47
94

5
0.

44
84

4
0.

49
55

4
0.

65
54

3
0.

58
81

6
0.

46
25

5
0.

49
09

1
0.

67
92

4
0.

43
84

9
0.

47
58

5

W
ei

gh
td

ec
ay

0.
83

62
7

0.
71

30
1

0.
70

61
8

0.
67

92
3

0.
72

17
4

0.
68

00
5

0.
65

42
1

0.
70

85
8

0.
77

79
2

0.
70

63
5

0.
73

26
2

M
om

en
tu

m
0.

00
53

4
0.

00
58

7
0.

00
42

1
0.

00
54

9
0.

00
65

0
0.

00
43

8
0.

00
50

2
0.

00
41

1
0.

00
47

1
0.

00
57

5
0.

00
48

0
2

H
id

de
n

un
it

s
48

66
57

57
57

55
56

53
46

65
43

L
ea

rn
in

g
ra

te
0.

49
21

8
0.

50
46

9
0.

51
41

9
0.

47
70

4
0.

61
15

5
0.

51
27

7
0.

44
38

3
0.

47
91

8
0.

40
48

7
0.

58
14

4
0.

49
83

7

W
ei

gh
td

ec
ay

0.
56

20
3

0.
64

63
4

0.
56

88
9

0.
50

80
4

0.
61

12
5

0.
60

21
3

0.
53

53
8

0.
42

73
4

0.
46

88
0

0.
48

68
4

0.
51

26
9

M
om

en
tu

m
0.

00
51

5
0.

00
49

3
0.

00
43

4
0.

00
41

9
0.

00
65

0
0.

00
34

0
0.

00
39

9
0.

00
60

7
0.

00
54

9
0.

00
56

0
0.

00
53

7
3

H
id

de
n

un
it

s
49

47
47

50
63

54
53

47
60

48
52

L
ea

rn
in

g
ra

te
0.

44
24

1
0.

47
27

9
0.

46
07

6
0.

48
64

6
0.

63
86

6
0.

45
88

1
0.

44
88

5
0.

42
20

3
0.

44
06

7
0.

52
48

1
0.

51
37

4

W
ei

gh
td

ec
ay

0.
58

61
6

0.
41

99
6

0.
51

01
1

0.
48

67
3

0.
65

42
0

0.
42

82
2

0.
53

62
7

0.
48

01
8

0.
52

05
6

0.
55

74
5

0.
57

89
6

M
om

en
tu

m
0.

00
42

0
0.

00
64

1
0.

00
50

7
0.

00
63

6
0.

00
65

0
0.

00
51

0
0.

00
39

8
0.

00
43

6
0.

00
38

3
0.

00
39

6
0.

00
47

5
PC

D
1

H
id

de
n

un
it

s
25

35
34

32
35

13
29

29
13

24
21

L
ea

rn
in

g
ra

te
0.

54
73

6
0.

50
87

4
0.

44
83

5
0.

46
83

0
0.

58
63

1
0.

61
60

3
0.

63
40

1
0.

55
63

0
0.

55
68

9
0.

53
53

4
0.

52
18

4

W
ei

gh
td

ec
ay

0.
78

85
3

0.
75

42
8

0.
68

73
8

0.
65

38
6

0.
70

35
0

0.
72

06
5

0.
68

35
1

0.
76

31
4

0.
76

54
1

0.
71

39
1

0.
66

48
9

M
om

en
tu

m
0.

00
39

1
0.

00
43

7
0.

00
52

1
0.

00
56

0
0.

00
40

6
0.

00
55

1
0.

00
54

5
0.

00
45

8
0.

00
34

2
0.

00
44

0
0.

00
51

4
2

H
id

de
n

un
it

s
52

39
53

45
53

51
60

57
55

45
58

L
ea

rn
in

g
ra

te
0.

54
36

1
0.

44
70

7
0.

51
94

8
0.

52
62

8
0.

63
19

2
0.

49
61

1
0.

45
51

6
0.

44
57

5
0.

51
72

4
0.

44
79

3
0.

52
34

1

W
ei

gh
td

ec
ay

0.
41

55
8

0.
50

27
5

0.
46

62
5

0.
47

22
6

0.
59

22
8

0.
52

34
1

0.
46

94
7

0.
53

05
5

0.
38

02
1

0.
46

04
7

0.
57

22
2

M
om

en
tu

m
0.

00
46

3
0.

00
52

4
0.

00
42

8
0.

00
47

1
0.

00
40

6
0.

00
45

1
0.

00
45

3
0.

00
53

3
0.

00
47

3
0.

00
38

0
0.

00
56

0
3

H
id

de
n

un
it

s
52

53
55

60
50

51
53

50
43

47
61

L
ea

rn
in

g
ra

te
0.

39
71

4
0.

56
68

3
0.

58
97

3
0.

55
10

0
0.

56
34

7
0.

50
74

5
0.

46
44

6
0.

53
93

7
0.

44
09

0
0.

64
07

9
0.

55
21

0

W
ei

gh
td

ec
ay

0.
49

57
6

0.
54

00
1

0.
42

10
8

0.
44

53
7

0.
63

78
5

0.
51

18
3

0.
51

32
9

0.
58

29
6

0.
49

07
4

0.
57

68
9

0.
47

67
5

M
om

en
tu

m
0.

00
50

2
0.

00
46

2
0.

00
54

7
0.

00
42

7
0.

00
40

6
0.

00
49

8
0.

00
47

4
0.

00
45

0
0.

00
48

9
0.

00
48

1
0.

00
30

5

B
ol

d
va

lu
es

de
no

te
th

e
lo

w
es

ta
ve

ra
ge

M
SE

or
va

lu
es

w
ho

se
W

il
co

xo
n’

s
p-

va
lu

e
is

ab
ov

e
0.

05
,i

.e
.,

va
lu

es
th

at
ar

e
st

at
is

ti
ca

ll
y

si
m

il
ar



92 L. A. Passos et al.

T
ab

le
3.

10
A

ve
ra

ge
hy

pe
r-

pa
ra

m
et

er
va

lu
es

co
ns

id
er

in
g

C
al

Te
ch

10
1

Si
lh

ou
et

te
s

da
ta

se
t

L
ay

er
A

lg
L

.
St

at
is

ti
cs

IH
S

A
IW

PS
O

B
A

C
S

FA
FP

A
B

SA
C

oB
iD

E
D

E
JA

D
E

R
A

N
D

O
M

1
C

D
1

H
id

de
n

un
it

s
79

63
63

62
43

80
79

77
74

85
65

L
ea

rn
in

g
ra

te
0.

42
07

5
0.

50
65

0
0.

53
68

5
0.

52
47

4
0.

33
13

1
0.

50
05

9
0.

32
52

0
0.

36
89

5
0.

44
64

2
0.

44
91

7
0.

38
53

3

W
ei

gh
td

ec
ay

0.
10

00
0

0.
14

97
9

0.
28

27
9

0.
31

00
2

0.
36

29
4

0.
16

18
0

0.
11

27
0

0.
11

12
4

0.
14

44
7

0.
10

52
4

0.
11

62
2

M
om

en
tu

m
0.

00
39

5
0.

00
57

5
0.

00
57

9
0.

00
48

0
0.

00
30

1
0.

00
44

8
0.

00
58

1
0.

00
59

5
0.

00
44

5
0.

00
61

5
0.

00
43

9
PC

D
1

H
id

de
n

un
it

s
70

54
52

35
49

72
63

71
74

65
62

L
ea

rn
in

g
ra

te
0.

48
99

4
0.

51
60

6
0.

53
89

8
0.

54
82

3
0.

30
06

9
0.

43
23

8
0.

39
70

7
0.

49
55

3
0.

44
64

2
0.

46
90

6
0.

43
33

0

W
ei

gh
td

ec
ay

0.
10

06
3

0.
18

31
6

0.
36

68
2

0.
27

41
6

0.
18

86
7

0.
10

04
8

0.
11

24
5

0.
10

60
5

0.
14

44
7

0.
10

45
1

0.
11

55
8

M
om

en
tu

m
0.

00
55

6
0.

00
48

4
0.

00
51

7
0.

00
49

6
0.

00
44

9
0.

00
44

5
0.

00
42

5
0.

00
56

6
0.

00
44

5
0.

00
41

1
0.

00
54

7
2

C
D

1
H

id
de

n
un

it
s

52
52

38
46

53
50

39
37

32
57

59

L
ea

rn
in

g
ra

te
0.

43
48

4
0.

42
89

3
0.

48
04

2
0.

47
49

5
0.

55
44

3
0.

47
32

8
0.

49
38

8
0.

52
19

5
0.

51
05

1
0.

53
28

4
0.

57
38

6

W
ei

gh
td

ec
ay

0.
68

47
6

0.
73

54
9

0.
62

37
4

0.
64

52
5

0.
63

41
1

0.
67

39
0

0.
72

06
8

0.
68

48
2

0.
65

16
0

0.
64

46
9

0.
71

29
6

M
om

en
tu

m
0.

00
51

5
0.

00
53

5
0.

00
55

2
0.

00
36

8
0.

00
60

0
0.

00
39

0
0.

00
42

5
0.

00
34

4
0.

00
53

3
0.

00
44

4
0.

00
45

4
2

H
id

de
n

un
it

s
47

53
50

41
59

48
43

59
67

50
50

L
ea

rn
in

g
ra

te
0.

51
38

9
0.

47
24

1
0.

60
25

8
0.

48
25

0
0.

56
61

8
0.

39
81

7
0.

57
39

8
0.

55
23

8
0.

53
21

2
0.

50
47

5
0.

55
51

1

W
ei

gh
td

ec
ay

0.
40

14
3

0.
46

01
1

0.
56

41
9

0.
51

76
4

0.
58

57
0

0.
50

44
5

0.
55

29
4

0.
42

68
6

0.
47

89
5

0.
48

92
7

0.
54

92
8

M
om

en
tu

m
0.

00
36

5
0.

00
45

3
0.

00
56

4
0.

00
38

7
0.

00
60

0
0.

00
45

0
0.

00
59

0
0.

00
43

1
0.

00
54

4
0.

00
54

0
0.

00
59

7
PC

D
1

H
id

de
n

un
it

s
45

64
37

48
51

66
38

50
32

64
38

L
ea

rn
in

g
ra

te
0.

55
22

7
0.

51
45

0
0.

48
68

1
0.

46
71

4
0.

47
94

6
0.

37
42

0
0.

49
99

0
0.

50
91

5
0.

51
05

1
0.

52
56

8
0.

47
17

9

W
ei

gh
td

ec
ay

0.
58

96
7

0.
64

59
2

0.
60

82
3

0.
54

18
5

0.
59

37
0

0.
64

97
4

0.
66

56
8

0.
67

03
6

0.
65

16
0

0.
68

88
7

0.
55

18
2

M
om

en
tu

m
0.

00
42

5
0.

00
45

9
0.

00
55

2
0.

00
56

5
0.

00
55

4
0.

00
60

1
0.

00
45

7
0.

00
37

1
0.

00
53

3
0.

00
36

3
0.

00
48

1
2

H
id

de
n

un
it

s
64

62
54

51
39

52
45

51
67

47
54

L
ea

rn
in

g
ra

te
0.

59
71

0
0.

63
04

4
0.

50
15

0
0.

46
48

8
0.

52
30

2
0.

53
36

8
0.

52
45

2
0.

42
60

3
0.

53
21

2
0.

53
13

4
0.

47
99

1

W
ei

gh
td

ec
ay

0.
44

18
4

0.
44

81
1

0.
49

72
5

0.
53

91
8

0.
45

02
5

0.
48

50
1

0.
47

06
6

0.
51

20
8

0.
47

89
5

0.
50

28
8

0.
42

35
9

M
om

en
tu

m
0.

00
57

8
0.

00
58

4
0.

00
57

5
0.

00
51

2
0.

00
55

4
0.

00
42

8
0.

00
39

9
0.

00
56

5
0.

00
54

4
0.

00
57

2
0.

00
49

5



3 On the Assessment of Nature-Inspired Meta-Heuristic Optimization. . . 93

3
C

D
1

H
id

de
n

un
it

s
43

51
51

34
45

48
31

39
59

37
50

L
ea

rn
in

g
ra

te
0.

52
23

9
0.

51
20

7
0.

52
09

7
0.

48
69

0
0.

63
75

1
0.

52
36

2
0.

51
77

3
0.

42
34

6
0.

38
35

9
0.

47
50

3
0.

56
58

1

W
ei

gh
td

ec
ay

0.
71

34
2

0.
72

27
9

0.
61

37
4

0.
62

58
3

0.
68

43
7

0.
67

40
6

0.
69

57
0

0.
68

19
3

0.
67

82
1

0.
71

96
1

0.
73

12
0

M
om

en
tu

m
0.

00
43

1
0.

00
51

4
0.

00
49

7
0.

00
55

3
0.

00
42

8
0.

00
60

0
0.

00
44

6
0.

00
39

1
0.

00
51

2
0.

00
54

6
0.

00
57

7
2

H
id

de
n

un
it

s
49

54
52

41
43

47
49

49
61

49
44

L
ea

rn
in

g
ra

te
0.

52
92

4
0.

51
31

6
0.

53
61

0
0.

42
10

2
0.

49
93

9
0.

52
68

4
0.

50
96

0
0.

57
53

3
0.

57
92

5
0.

52
41

3
0.

54
93

8

W
ei

gh
td

ec
ay

0.
61

27
1

0.
48

06
8

0.
44

03
0

0.
44

93
0

0.
57

06
2

0.
53

08
5

0.
40

44
9

0.
46

72
7

0.
56

39
6

0.
40

06
1

0.
44

17
2

M
om

en
tu

m
0.

00
44

2
0.

00
49

5
0.

00
59

7
0.

00
47

3
0.

00
42

8
0.

00
50

5
0.

00
60

4
0.

00
41

9
0.

00
42

2
0.

00
50

6
0.

00
60

5
3

H
id

de
n

un
it

s
55

52
55

63
46

67
50

59
57

51
55

L
ea

rn
in

g
ra

te
0.

51
65

8
0.

48
73

6
0.

45
94

0
0.

53
80

2
0.

55
10

6
0.

53
75

2
0.

55
45

6
0.

51
27

9
0.

55
41

8
0.

55
91

4
0.

50
36

5

W
ei

gh
td

ec
ay

0.
39

92
2

0.
52

71
9

0.
58

71
4

0.
45

85
5

0.
58

37
7

0.
58

71
6

0.
54

71
9

0.
51

08
6

0.
42

59
7

0.
54

94
9

0.
49

73
9

M
om

en
tu

m
0.

00
59

4
0.

00
39

9
0.

00
63

3
0.

00
51

8
0.

00
42

8
0.

00
45

7
0.

00
58

8
0.

00
39

6
0.

00
57

5
0.

00
38

7
0.

00
52

3
PC

D
1

H
id

de
n

un
it

s
56

53
49

51
49

58
51

37
59

48
49

L
ea

rn
in

g
ra

te
0.

46
39

9
0.

40
62

3
0.

37
43

2
0.

50
30

7
0.

48
36

4
0.

59
60

0
0.

53
47

3
0.

44
43

9
0.

38
35

9
0.

43
94

8
0.

49
81

1

W
ei

gh
td

ec
ay

0.
69

43
2

0.
63

47
6

0.
59

46
5

0.
51

97
0

0.
59

72
4

0.
63

55
3

0.
61

45
5

0.
60

31
0

0.
67

82
1

0.
63

08
7

0.
65

15
5

M
om

en
tu

m
0.

00
34

1
0.

00
55

0
0.

00
47

7
0.

00
53

1
0.

00
45

1
0.

00
47

2
0.

00
51

6
0.

00
50

4
0.

00
51

2
0.

00
40

8
0.

00
44

4
2

H
id

de
n

un
it

s
56

51
51

52
59

40
52

49
61

40
51

L
ea

rn
in

g
ra

te
0.

51
05

4
0.

42
22

7
0.

52
61

8
0.

55
58

0
0.

50
24

3
0.

42
24

8
0.

57
54

9
0.

55
89

3
0.

57
92

5
0.

56
30

4
0.

52
40

3

W
ei

gh
td

ec
ay

0.
55

40
9

0.
42

98
7

0.
47

07
6

0.
46

79
3

0.
42

59
6

0.
43

44
0

0.
47

74
8

0.
49

20
6

0.
56

39
6

0.
54

59
2

0.
51

34
2

M
om

en
tu

m
0.

00
58

6
0.

00
45

2
0.

00
49

3
0.

00
37

8
0.

00
45

1
0.

00
62

3
0.

00
50

8
0.

00
49

9
0.

00
42

2
0.

00
49

2
0.

00
44

6
3

H
id

de
n

un
it

s
59

49
52

42
42

55
50

49
57

44
50

L
ea

rn
in

g
ra

te
0.

49
21

5
0.

53
76

2
0.

52
21

4
0.

59
45

1
0.

45
66

9
0.

49
24

1
0.

58
85

5
0.

51
76

2
0.

55
41

8
0.

48
23

0
0.

58
39

7

W
ei

gh
td

ec
ay

0.
53

42
7

0.
55

75
0

0.
46

41
1

0.
45

42
1

0.
51

05
0

0.
51

24
6

0.
47

17
3

0.
51

04
6

0.
42

59
7

0.
52

16
3

0.
44

84
7

M
om

en
tu

m
0.

00
52

2
0.

00
46

7
0.

00
54

0
0.

00
45

7
0.

00
45

1
0.

00
45

4
0.

00
52

7
0.

00
53

6
0.

00
57

5
0.

00
43

4
0.

00
61

9

B
ol

d
va

lu
es

de
no

te
th

e
lo

w
es

ta
ve

ra
ge

M
SE

or
va

lu
es

w
ho

se
W

il
co

xo
n’

s
p-

va
lu

e
is

ab
ov

e
0.

05
,i

.e
.,

va
lu

es
th

at
ar

e
st

at
is

ti
ca

ll
y

si
m

il
ar



94 L. A. Passos et al.

than the other methods on the initial iterations. However, it is outperformed by
evolution techniques after approximately 15 iterations. Finally, one can also verify
that CS is the fastest technique, followed by IHS. On the other hand, AIWPSO is
the slowest one.

Regarding future works, we intend to compare meta-heuristic approaches to fine-
tuning DBNs to the task of classification.
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Chapter 4
Automated Development of DNN Based
Spoken Language Systems Using
Evolutionary Algorithms

Takahiro Shinozaki, Shinji Watanabe, and Kevin Duh

Abstract Spoken language processing is one of the research areas that has con-
tributed significantly to the recent revival in neural network research. For example,
speech recognition has been at the forefront of deep learning research, inventing
various novel models. Their dramatic performance improvements compared to
previous state-of-the-art implementations have resulted in spoken language systems
being deployed in a wide range of applications today. However, these systems
require intensive tuning of their network designs and the training setups in order to
achieve maximal performance. The laborious effort by human experts is becoming
a prominent obstacle in system development. In this chapter, we first explain the
basic concepts and the neural network-based implementations of spoken language
processing systems. Several types of neural network models will be described. We
then introduce our effort to automate the tuning of the system meta-parameters using
evolutionary algorithms.

4.1 Spoken Language Processing Systems

An automatic speech recognition system takes a waveform signal of an utterance and
outputs the corresponding text as the recognition result. It functionally corresponds
to the human ear. Contrary, a speech synthesis system takes text as input and outputs
a waveform signal of the synthesized voice as the output, which corresponds to
the human mouth. Depending on the applications, they are used as a stand-alone
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application or as a sub-component of other systems such as spoken dialogue systems
and spoken translation systems.

4.1.1 Principle of Speech Recognition

In speech recognition systems, the input waveform is typically analyzed by short-
time Fourier transform by segmenting the waveform with overlapping short win-
dows as shown in Fig. 4.1. The window width and the shift are typically 25 and
10 ms to balance the frequency and time resolutions to capture temporal changes of
frequency patterns of sub-phone units. As a result of the analysis, the waveform
is converted as a time sequence of fixed-dimensional vectors, where the rate
corresponds to the reciprocal of the window shift. The obtained frequency pattern
vector may be used as it is, or further analyzed to obtain Mel-frequency cepstral
coefficients (MFCCs) [1] or perceptual linear predictive (PLP) [2]. In either the
case, the result is a sequence of vectors that contain useful information for speech
recognition, where a time position of a vector is referred to as a frame. The process
is called feature extraction.

Let O = 〈o1, o2, · · · , oT 〉 be a sequence of acoustic feature vectors of length T

extracted from an utterance, and W = 〈w1, w2, · · · , wN 〉 be a word sequence or a
text of length N . Speech recognition is formulated as a problem of finding Ŵ that
maximizes the conditional probability P (W |O) as shown in Eq. (4.1), or drawing a
sample W̃ from P (W |O) as shown in Eq. (4.2).

Ŵ = argmax
W

P (W |O) , (4.1)

Window width (e.g. 25ms)

shi� (e.g. 10ms)

Feature sequence: O

Time

Time

Sound waveform (e.g. 16kHz sampling)

( | )

Probability model

Hello Everyone

Recogni�on result:W

Maximiza�on
or sampling

Fig. 4.1 General framework of speech recognition. A sound signal is first converted to a sequence
of feature vectors O by applying a sliding window and frequency analysis, etc. The recognition
result is obtained from the posterior distribution P (W |O) of a word sequence W given the feature
sequence O by maximization or probability sampling
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W̃ ∼ P (W |O) . (4.2)

Finding Ŵ means outputting the most likely recognition hypothesis, whereas
drawing a sample W̃ corresponds to output a hypothesis according to the probability.
While the former is more direct to the goal of speech recognition, the latter
sometimes have an advantage in the model training.

The conditional probability P (W |O) may be directly or indirectly modeled. In
the latter case, the Bayes’ rule is applied as shown in Eq. (4.3).

P (W |O) = P (O|W) P (W)

P (O)
∝ P (O|W) P (W) . (4.3)

The models of P (O|W) and P (W) are referred to as an acoustic model and
a language model, respectively. The acoustic model describes the generative
distribution of the acoustic feature sequence O given the text W , whereas the
language model describes the distribution of the text W . The denominator P (O)

in Eq. (4.3) may be ignored for the maximization or the sampling purposes, since it
is a constant in the processes. Hidden Markov model (HMM) has long been used for
acoustic modeling in traditional speech recognition systems. The direct modeling of
P (W |O) had been intricate until recently for large vocabulary speech recognition.
However, the approach is rapidly developing as end-to-end speech recognition with
the progress of deep learning.

4.1.2 Hidden Markov Model Based Acoustic Modeling

HMM consists of a finite set of internal states {0, 1, · · · , F }, a set of emission
distributions {P (o|s)} each of which is associated to a state s, and a set of state
transition probabilities

{
P

(
s′|s)} from a state s to a state s′ as shown in Fig. 4.2.

The initial state s = 0 and the final state s = F represent the beginning and
end of the state transitions, and they do not have the emission distribution. HMM
gives a model of joint probability of P (O, S) as shown in Eq. (4.4), where S =
〈s0 = 0, s1, s2, · · · , sT , sT+1 = F 〉 is a state sequence that starts with the initial
state and ends in the final state. By marginalizing over all possible state sequences S,
the probability of observing the feature sequence is obtained as shown in Eq. (4.5).

Pθ (O, S) = Pθ (sT+1|sT )

T∏

t=1

Pθ (st |st−1) Pθ (ot |st ) , (4.4)

Pθ (O) =
∑

S

Pθ (O, S) , (4.5)
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( )opS1
( )opS2
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1.0

( 1| 1)

( 2| 1)

( 2| 2) ( 3| 3)

( 3| 2) ( 4| 3)

Time

Acous�c 
feature 
sequence

Fig. 4.2 Hidden Markov model. A circle represents a state, and a directed arc represents a
transition. This example HMM has a left-to-right structure with three emission states and an initial
and a final states

where θ indicates a set of all parameters of the emission distributions and the
transition probabilities. An acoustic model Pθ (O|W) is obtained by preparing an
HMM for each word sequence W as shown in Eq. (4.6).

P� (O|W) = PθW (O) =
∑

S

PθW (O, S) , (4.6)

where θW indicates W dependent parameter set, and � is a union of θW for all
W . Since the number of possible word sequences is exponential to the length
of the sequence, separately preparing an HMM for each sequence is intractable
both in terms of required memory and parameter estimation from finite training
data. Instead, a set of HMMs is prepared to model each phoneme p, and an
utterance HMM is composed by concatenating the phoneme HMMs according to
the pronunciation of the word sequence as shown in Fig. 4.3. The phoneme HMM
set is referred to as a mono-phone model.

A limitation of the mono-phone approach is that the same phoneme HMM
is used regardless of the surrounding phoneme context in the utterance. Since
human voice is generated by modulating the shape of the vocal tract by moving
mouth, the change is not instant. Therefore, the spectral pattern of a phoneme
is affected by surrounding phonemes. For example, spectral pattern of the same
phoneme /ih/ is notably different when it appears in pronunciations of “big” and
“bit.” Context-dependent phoneme model is used to improve the modeling accuracy,
where separate HMMs are prepared for the same phoneme for different preceding
and succeeding phoneme contexts. The most popular context-dependent phoneme
modeling is tri-phone, where a set of HMMs for a phoneme is prepared for one
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/ah/

/ih/
:

/b/
:

/g/
:

/t/
:

big bag

Phone HMM set

/b/ /ih/ /g/ /b/ /ah/ /g/

bit big

/b/ /ih/ /t/ /b/ /ih/ /g/

U�erance HMMs

Fig. 4.3 Phoneme HMM based utterance modeling

preceding and one succeeding phonemes. When the number of phonemes is N ,
the number of tri-phone HMM is N3, which is much larger than N of the mono-
phone model. It causes a problem in the model parameter estimation especially
for rare context and phoneme pairs since few or even no samples are available in
the training set. To address the problem, clustering is performed for the context-
dependent HMM states to control the model complexity by merging the HMM states
[3].

The state emission distribution P (o|s) has traditionally been modeled by a
mixture of Gaussian distributions (GMM) as shown in Eq. 4.7, where wi is a mixture
weight (0 < wi and

∑
i wi = 1) and N (o|μi,�i) is a Gaussian distribution with

mean μi and variance �i .

P (o|s) =
∑

i

wiN (o|μi,�i) . (4.7)

Later, it has been replaced by deep neural networks (DNNs) as shown in Eq. 4.8,
where P (s|o) is obtained by the neural network.

P (o|s) = P (s|o)p (o)

P (s)
∝ P (s|o)

P (s)
. (4.8)

Figure 4.4 shows the whole structure of DNN-HMM. The DNN-HMM often
outperforms GMM-HMM with the recognition performance, especially when a
larger amount of training data is available. The number of clustered HMM states,
neural network structure, and their learning conditions are meta-parameters to be
tuned during the system development.
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/a/ /i/ /N/

So�max

Input feature vector

Start
End

Fig. 4.4 Example of a DNN-HMM mono-phone model

4.1.3 End-to-End Speech Recognition System

For a simple speech recognition task such as vowel recognition from a single feature
vector, where W is a set of vowels instead of a variable-length sequence of words
and O is a single fixed-dimensional vector rather than the sequence of the vectors,
the probability of P (W |O) can be directly modeled by a simple feed-forward
neural network with a soft-max output layer as shown in Fig. 4.5. For general cases
where O is a feature vector sequence, and W is a word sequence, variable-length
input and output need to be handled. Neural networks realize it with some unique
architectures such as encoder-decoder network with an attention mechanism [4] and
Connectionist Temporal Classification (CTC) [5]. Figure 4.6 shows the architecture
of a simple encoder-decoder network without the attention mechanism. It consists
of an encoder network and a decoder network. The encoder network accepts a
variable-length input and embeds it to a fixed-dimensional vector. The decoder
network works by estimating a probability distribution of the next word given the
current word wt , from which an output word wt+1 is obtained by random sampling
following the distribution. Initially, a special word 〈S〉 that represents the beginning
of an utterance is input as w0, and a word w1 is sampled. Then, w2 is obtained
using w1 as the input. The process is repeated until a special word 〈/S〉 is sampled
that indicates the end of an utterance. The architecture has generality to handle
sequential input and output, and can be used for translation [6] and dialogue systems
[7], etc., by simply changing the training data and the input/output representations.
In addition, the extended architecture with the attention mechanism can explicitly
handle the alignment problem between input and output [8].
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0.1 0.4 0.20.15 0.15
′ ′ ′ ′ ′

Output: Categorical distribu�on

Input: An acous�c feature vector

So�max

Fig. 4.5 Frame-wise vowel recognition using a feed-forward neural network. The network directly
models P (W |O)

<s>

name

Encoder network

Decoder network

</s>My is TS-800

Sampling from posterior

feature vector sequence
Input

Output
Word sequence

...

Fig. 4.6 End-to-end speech recognition system based on a simple encoder-decoder network
without an attention mechanism

These systems are referred to as end-to-end systems since they directly model
the input/output relationship from O to W by a monolithic neural network in
contradistinction to the approaches that construct a system from separately opti-
mized sub-models such as the acoustic and the language models, as discussed in
Sect. 4.1.1. The number of hidden layers in the encoder and the decoder networks,
the number of neuron units per a hidden layer, the learning conditions, etc., are
meta-parameters to be tuned.
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4.1.4 Evaluation Measures

The results of speech recognition are evaluated by comparing the recognition
hypothesis R = 〈h1, h2, · · · , hm〉 with a reference word sequence R =
〈r1, r2, · · · , rn〉, where m and n are their lengths. Let hj corresponds to ri when
we make a word by word alignment of the hypothesis and the reference. Figure 4.7
shows an example of the alignment. The word hi is counted as correctly recognized
if it is the same as ri , and mistakenly substituted to another word if it is not. If there
is no hj for ri , it is counted as a deletion error, and if there is no ri for hj , it is
counted as an insertion error. Based on the alignment, word error rate (WER) is
defined by Eq. (4.9).

WER = Ns +Ni +Nd

n
= Ns + Ni +Nd

Nc +Ns +Nd

, (4.9)

where Nc is the number of correctly recognized words, and Ns , Ni , Nd are the
numbers of substitution, insertion, and deletion errors. The WER score depends on
the alignment, and the lowest score is used as the evaluation score of the recognition
hypothesis. The search of the best alignment is efficiently performed by using the
dynamic programming [9] algorithm. Smaller WER indicates better recognition
performance, and the minimum WER score is 0.0. The WER can take larger values
than 1.0 because of the existence of the insertion error. Another measure is word
accuracy (WACC), which is obtained by negating WER and adding 1.0 as shown in
Eq. (4.10). Larger WACC indicates better performance.

WACC = 1.0−WER. (4.10)

The WER (or WACC) is evaluated for a development set and an evaluation set. The
former score is used during the training of the system for the meta-parameter tuning,
and the latter is used as the final performance measure. For dialogue and translation
systems where the correct answer is not unique, other measures such as BLEU [10]
are used which compare the system output and the reference in a somewhat more
relaxed manner in the alignment.

I have a pen

eye have up

Reference
(length n=4)

Hypothesis
(length m=3)

Subs�tu�on Correct Dele�on Subs�tu�on Inser�on

pen

Fig. 4.7 An example of a word alignment for scoring speech recognition results
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Algorithm 1 Genetic algorithm (GA)
1: for k = 1 to K0 do
2: Initialize xk

3: end for
4: while not convergence do
5: for k = 1 to K (K0 for the first iteration) do
6: Decode gene xk to configuration Ck

7: Evaluate configuration Ck to obtain score yk = f (Ck)

8: end for
9: Generate child genes {xk}Kk=1 from current (parent) genes {xk}Kk=1 and their scores {yk}Kk=1

by selection, mating, and mutation
10: end while
11: return Extract the best gene x�

4.2 Evolutionary Algorithms

Let y = f (x) be an evaluation function that represents the accuracy of a speech
recognition system (or some performance measure of a spoken language processing
system) built from tuning meta-parameters represented by D-dimensional vector x.
The process of finding the optimal tuning parameter x∗ to maximize the accuracy
can be formulated as the following optimization problem:

x∗ = argmax
x∈X̂

f (x), (4.11)

where X̂ is a set of candidates for x. Because speech recognition systems are
extremely complex, there is no analytical form for the solution. We must address
this optimization problem without assuming specific knowledge for f , i.e., by
considering f as a black box. Another important aspect of this problem is that
evaluating the function value f (x) is expensive because training a large vocabulary
model and computing its development set accuracy can take considerable time.
Thus, the key point here is for the black-box optimization to generate an appropriate
set of hypotheses X̂ to find the best x∗ in the smallest number of the training and
evaluation steps (f (x)) as possible.

4.2.1 Genetic Algorithm

Genetic algorithm (GA) is a search heuristic motivated by the biological evolution
process. This algorithm is based on (1) the selection of genes (also called “chromo-
some representations”) according to their scores, pruning inferior genes for the next
iteration (generation); (2) mating pairs of genes to form child genes that mix the
properties of the parents, and (3) mutation of a part of a gene to produce new gene.
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A popular selection method, which we will use in the later experiment, is the
tournament method. This method first extracts a subset of M(< K) hypotheses
(X̂k = {xk′ }Mk′=1) generated from a total of K genes randomly, and then it selects
the best gene xk∗ in the subset by their scores, i.e.,

xk∗ = argmax
xk′⊂X̂k

f (xk′). (4.12)

The random subset extraction step can provide variations of genes giving a chance
of survival not only to the best gene but also to superior genes, and the best selection
step in a subset guarantees the exclusion of inferior genes. This process is repeated
K times to obtain a set of survived genes.

For the mating process, a typical method is the one-point crossover, which first
finds a pair of (parent) genes (xp

k1
and x

p
k2

) from the selected genes and then swaps
the {1, · · · , d} elements to {d + 1, · · · ,D} elements of these two vectors to obtain
the following new (child) gene pair (xc

k1
and xc

k2
):

xc
k1
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x
p
k1,1
...

x
p
k1,d

x
p
k2,d+1

...

x
p
k2,D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, xc
k2
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x
p
k2,1
...

x
p
k2,d

x
p
k1,d+1

...

x
p
k1,D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.13)

The position d is randomly sampled. As the iteration increases, these processes
provide appropriate genes that encode optimal DNN configurations.

Algorithm 1 summarizes the GA procedure. The process is repeated until the
evaluation score is converged, and the best gene x∗ is extracted.

4.2.2 Evolution Strategy

Evolution strategy (ES) is a population-based meta-heuristic optimization algorithm
that is similar to GA. A difference from GA is that ES represents a gene x

by a real-valued vector. Covariance matrix adaptation ES (CMA-ES) [11] is an
ES, which is closely related to natural ES [12]. Although both CMA-ES and
natural ES have several variations, it has been shown that their core parts are
mathematically equivalent [13]. CMA-ES was proposed earlier than natural ES, but
the mathematical motivation of natural ES is more concise. Here, we follow the
derivation of natural ES as the explanation of CMA-ES.

CMA-ES uses a multivariate Gaussian distribution N(x|θ) having a parameter
set θ = {μ,�} to represent a gene distribution, where μ is a D-dimensional mean
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vector, � is a D × D-dimensional covariance matrix, and D is the gene size.
It seeks a distribution that is concentrated in a region with high values of f (x)

such that sampling from the distribution provides superior genes. The search of
the distribution is formulated as a maximization problem of the expected value
E[f (x)|θ ] of f (x) under a Gaussian distribution N(x|θ) as shown in Eqs. (4.14)
and (4.15).

E[f (x)|θ] =
∫

f (x)N(x|θ)dx, (4.14)

θ̂ = argmax
θ

E[f (x)|θ]. (4.15)

To maximize the expectation, the gradient ascent method can be used to
iteratively update the current parameter set θn starting from an initial parameter
set θ0, as shown in Eq. (4.16).

θ̂n = θ̂n−1 + ε∇θE[f (x)|θ ] |
θ=θ̂n−1

, (4.16)

where n is an iteration index and ε (> 0) is a step size. To evaluate the gradient,
CMA-ES uses the relation of ∇θ logN(x|θ) = 1

N(x|θ)
∇θN(x|θ), which is called

a “log-trick.” By approximating the integration by sampling after applying the log-
trick, the gradient is expressed by Eq. (4.19).

∇θE[f (x)|θ ] |
θ=θ̂n−1

(4.17)

=
∫

(f (x)∇θ logN(x|θn−1))N(x|θn−1)dx (4.18)

≈ 1

K

K∑

k

yk∇θ logN(xk|θn−1), (4.19)

xk ∼ N(x|θn−1),

where xk is a gene sampled from the previously estimated distribution N(x|θ̂n−1),
and yk is the evaluated value of the function yk = f (xk). The set of K samples at
an iteration step corresponds to a set of individuals at a generation in an evolution.
By repeating the generations, it is expected that superior individuals are obtained.
Note the formulation is closely related to the reinforcement learning. If we interpret
the Gaussian distribution as a policy function taking no input assuming the world is
a constant, and regard the gene as an action, it is a special case of the policy gradient
based reinforcement learning [14].

Although simple gradient ascent may be directly performed using the obtained
gradient, CMA-ES uses the natural gradient ∇̃θE[f (x)|θ] = F−1∇θE[f (x)|θ ]
rather than the original gradient ∇θE[f (x)|θ ] to improve the convergence speed,
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where F is a Fisher information matrix defined by Eq. (4.20).

F (θ) =
∫

N(x|θ)∇θ logN(x|θ)∇θ logN(x|θ)T dx. (4.20)

By substituting the concrete Gaussian form for N(x|θ), the update formulae for μ̂n

and �̂n are obtained as shown in Eq. (4.21).

⎧
⎪⎪⎨

⎪⎪⎩

μ̂n = μ̂n−1 + εμ

∑K
k=1 w(yk)(xk − μ̂n−1),

�̂n = �̂n−1 + ε�

∑K
k=1 w(yk)

·((xk − μ̂n−1)(xk − μ̂n−1)
ᵀ − �̂n−1

)
,

(4.21)

where ᵀ is the matrix transpose. Note that, as in [11], yk in Eq. (4.19) is approxi-
mated in Eq. (4.21) as a weight function w(yk), which is defined as:

w(yk) = max{0, log(K/2+ 1)− log(R(yk))}
∑K

k′=1 max{0, log(K/2+ 1)− log(R(yk′))}
− 1

K
, (4.22)

where R(yk) is a ranking function that returns the descending order of yk among
y1:K (i.e., R(yk) = 1 for the highest yk, R(yk) = K for the smallest yk, and
so forth). This equation only considers the order of y, which makes the updates
less sensitive to the evaluation measurements (e.g., to prevent different results using
word accuracies and the negative sign of error counts).

Algorithm 2 summarizes the CMA-ES optimization procedure, which gradually
samples neighboring tuning parameters from the initial values. Because CMA-ES
uses a real-valued vector as a gene, it is naturally suited for tuning continuous-valued
meta-parameters. To tune discrete-valued meta-parameters, it needs a discretization
by some means. The evaluation of f (xk) can be performed independently for each
k. Therefore, it is easily adapted to parallel computing environments such as cloud
computing services for shorter turnaround times. The number of samples, K , is
automatically determined from the number of dimensions of x [11], or we can set it
manually by considering computer resources.

4.2.3 Bayesian Optimization

Even though Bayesian optimization (BO) is motivated differently from ES and GA,
in practice, there are several similarities. Especially when it is palatalized, a set
of individuals are evaluated at each update stage where a fixed-dimensional vector
specifies the configuration of an individual.

While CMA-ES involves a distribution of the tuning parameter x taking the
expectation over x, BO uses a probabilistic model of the output y to evaluate an
acquisition function that evaluates the goodness of x. Several acquisition functions
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Algorithm 2 CMA-ES

1: Initialization of μ̂0 and �̂0, and y�
0 = ∅

2: for n = 1 to N do
3: for k = 1 to K do
4: Sample xk from N(x|μ̂n−1, �̂n−1)

5: Evaluate yk = f (xk)

6: end for
7: Rank {yk}Kk=1

8: Update μ̂n and �̂n

9: Store y�
n = max{y1:K, y�

n−1} corresponding x�
n

10: end for
11: return {x�

N , y�
N }

have been proposed [15]. Here, we use expected improvement, which is suggested
as a practical choice [16]. The expected improvement is defined as:

aEI (xk) =
∫

max{0, y − y∗k−1}p(y|D1:k−1, xk)dy, (4.23)

where max
{
0, y − y∗k−1

}
is an improvement measure based on the best score

y∗k−1 = max1≤k′≤k−1 yk′ among k − 1 previous scores, and p (y|D1:k−1, xk) is
the predictive distribution of y given xk and the already observed data set D1:k−1 =
{x1:k−1, y1:k−1} modeled by a Gaussian process [17].

BO then performs a deterministic search for the next candidate x̂k by maximizing
the expected improvement over y:

x̂k = argmax
xk

aEI (xk). (4.24)

Equation (4.24) selects the xk that is likely to lead to a high score of yk.
The Gaussian process models the joint probability of the k scores [y�1:k−1, y]� as

a k-dimensional multivariate Gaussian with a zero mean vector and a Gram matrix
K as covariance matrix:

p(y1:k−1, y | x1:k) = N
([

y1:k−1
y

] ∣
∣
∣0,K

)

, (4.25)

K =
[

G g(xk)

g(xk)
� g(xk, xk)

]

, (4.26)

where g(x, x′) is a kernel function, G is a Gram matrix with elements Gi,j =
g(xi , xj ) for 1 ≤ i, j ≤ k − 1, and g(xk) = [g(x1, xk), . . . , g(xk−1, xk)]�.
The predictive distribution of y given y1:k−1 is obtained as a univariate Gaussian
distribution by using Bayes’ theorem:

p(y | D1:k−1, xk) = p(y | y1:k−1, x1:k)

= N(y | μ(xk), σ
2(xk)),

(4.27)
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Algorithm 3 Bayesian optimization (BO)
1: Set the domain X of x̂0, and ŷ0 = ∅
2: for k = 1 to K do
3: Compute x̂k = argmaxxk

aEI (xk)

4: Evaluate yk = f (x̂k)

5: Store y�
k = max{yk, y

�
k−1} corresponding x�

k

6: end for
7: return {x�

K , y�
K }

where the mean μ(xk) and variance σ 2(xk) are given as:

{
μ(xk) = g(xk)

�G−1y1:k−1,

σ 2(xk)) = g(xk, xk)− g(xk)
�G−1g(xk).

(4.28)

Based on this predictive distribution, we can analytically evaluate the expected
improvement aEI (xk) by substituting Eq. (4.27) into (4.23), and numerically obtain
x̂k by Eq. (4.24).

The basic algorithm of BO is shown in Algorithm 3. While one needs to set initial
values for x for CMA-ES, one needs to set the domain of x for BO. Parallelization
can be performed when computing the expected improvement function aEI (xk)

with Monte Carlo sampling. However, the greedy search resulting from BO often
selects tuning parameters on the edges of the parameter domains, which leads to
extremely long function evaluations when the dimension of x is large. We have
observed that these actually make the evaluation difficult in our experiments.

4.3 Multi-Objective Optimization with Pareto Optimality

In Sect. 4.2, we explained meta-parameter optimization methods for single objec-
tives, such as the recognition accuracy. Sometimes, other objectives are also
important in real applications. For example, smaller DNN size is preferable because
it affects the computational costs for both training and decoding. In this section, we
explain multi-objective CMA-ES with Pareto optimality.

4.3.1 Pareto Optimality

Without loss of generality, assume that we wish to maximize J objectives with
respect to x jointly, which are defined as:

F(x) � [f1(x), f2(x), . . . , fJ (x)]. (4.29)
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Because objectives may conflict, we adopt a concept of optimality known as
Pareto optimality [18]. For jointly optimizing multiple objectives, it needs to satisfy
the following terms:

{
fj (xk) ≥ fj (xk′) ∀ j = 1, .., J

fj (xk) > fj (xk′) ∃ j = 1, .., J.
(4.30)

Then, we say that xk dominates xk′ and write F(xk) � F(xk′). Given a set of
candidate solutions, xk is Pareto optimal iff no other xk′ exists such that F(xk′) �
F(xk).

Pareto optimality formalizes the intuition that a solution is good if no other
solution outperforms (dominates) it in all objectives. Given a set of candidates, there
are generally multiple Pareto-optimal solutions; this is known as the Pareto frontier.
Note that an alternative approach is to combine multiple objectives into a single
objective via a weighted linear combination:

∑

j

βjfj (x), (4.31)

where
∑

j βj = 1 and βj > 0. The advantage of the Pareto definition is that weights
βj need not be specified and it is more general, i.e., the optimal solution obtained
by any setting of βj is guaranteed to be included in the Pareto frontier. Every {x1:K }
can be ranked by using the Pareto frontier, which can adapt to meta-heuristics.

4.3.2 CMA-ES with Pareto Optimality

We realize multi-objective CMA-ES for a low WER and small model size by
modifying the rank function R(yk) used in Eq. (4.22). Given a set of solutions
{xk}, we first assign rank= 1 to those on the Pareto frontier. Then, we exclude
these rank 1 solutions and compute the Pareto frontier again for the remaining
solutions, assigning them rank 2. This process is iterated until no {xk} remain, and
we ultimately obtain a ranking of all solutions according to multiple objectives. The
remainder of CMA-ES remains unchanged; by this modification, future generations
are drawn to optimize multiple objectives rather than a single objective. With some
bookkeeping, this ranking can be computed efficiently in O(J ·K2) [19].

Algorithm 4 summarizes the CMA-ES optimization procedure with Pareto
optimality, which is used to rank the multiple objectives F(xk). The obtained rank
is used to update the mean vector and covariance matrix of CMA-ES. CMA-ES
gradually samples neighboring tuning parameters from the initial values and finally
provides a subset of solutions, {x, F (x)}, that lie on the Pareto frontier (rank 1) of
all stored N ×K samples.
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Algorithm 4 Multi-objective CMA-ES

1: Initialization of μ̂0 and �̂0
2: for n = 1 to N do
3: for k = 1 to K do
4: Sample xk from N(x|μ̂n−1, �̂n−1)

5: Evaluate J objectives F(xk) � [f1(xk), f2(xk), . . . , fJ (xk)]
6: end for
7: Rank {F(xk)}Kk=1 according to Pareto optimality

8: Update μ̂n and �̂n

9: end for
10: return subset of solutions {x, F (x)} that lie on the Pareto frontier (rank 1) of all stored N×K

samples

4.3.3 Alternative Multi-Objective Methods

There is a rich literature of multi-objective methods for genetic algorithms. Refer to
[20, 21] for a survey of techniques. One class of methods utilizes Pareto optimality
in estimating the fitness F(x) of each solution. Examples include the widely used
NSGA-II [19], and the Pareto CMA-ES method we described in Sect. 4.3.2 adopts
a very similar approach.

There are also multi-objective genetic algorithms that do not utilize the concept
of Pareto fitness. For example, VEGA [22] divides the selection of offspring
population into seperate groups based on different objectives, then allow crossover
operations across groups. HGLA [23] runs a genetic algorithm on a linear combina-
tion of objectives; the combination weights are not fixed but evolved simultaneously
with the solutions. All these methods should be applicable to the problem of
automatic optimization of the DNN meta-parameters, but we are not aware of any
large-scale empirical evaluation.

For Bayesian optimization, [24] proposed an acquisition function which chooses
the x to maximally reduce the entropy of the posterior distribution over the Pareto
set. This has been evaluated for automatic optimization of speed and accuracy of
DNNs on the MNIST image classification, with promising results. There are also
methods based on using a combination of multiple objectives to a single objective,
e.g. [25].

4.4 Experimental Setups

4.4.1 General Setups

We applied the evolutionary algorithms to tune large vocabulary speech recognition
systems [26]. Figure 4.8 shows the overall tuning process. The experiments were
performed using the Kaldi speech recognition toolkit with speech data from the
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Fig. 4.8 Evolutionary tuning process of ASR systems

corpus of spontaneous Japanese (CSJ) [27], which is a popular Japanese speech
dataset. We performed two separate experiments with training sets having different
amounts of data: one consists of 240 h of academic presentations, whereas the
other is a 100-h subset. A common development set consisting of 10 academic
presentations was used in GA, CMA-ES, and BO to evaluate the individuals for
the black-box optimization. The official evaluation set defined in CSJ consisting of
10 academic presentations totalling 110 min was used as the evaluation set.

Acoustic models were trained by first creating a GMM-HMM by maximum like-
lihood estimation and then building a DNN-HMM by pre-training and fine-tuning
using alignments generated by the GMM-HMM. For the performance evaluation
of the system, the DNN-HMM was used as the final model. The language model
was a 3-gram model trained on CSJ with academic and other types of presentations,
which amounted to 7.5 million words in total. The vocabulary size was 72 k. Speech
recognition was performed using the OpenFST WFST decoder [28]. As an initial
configuration, we borrowed the settings from the Kaldi recipe for the Switchboard
corpus (i.e., egs/swbd/s5b). We chose the recipe because this task was similar, while
the language was different and because it was manually well tuned and publicly
available.

For the experiments, TSUBAME 2.5 supercomputer1 was used. A maximum
of 44 NVIDIA K20X GPGPUs was used in parallel through the message-passing

1https://www.gsic.titech.ac.jp/en/tsubame.

https://www.gsic.titech.ac.jp/en/tsubame
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interface (MPI). We used the Spearmint package2 for BO and the Python version of
Hansen’s implementation3 for CMA-ES.

Further, we ran two additional experiments utilizing a newer version of the Kaldi
toolkit and the CSJ recipe to confirm the effect of the evolution.4 One is based on
the nnet1 script and the other is based on the chain script. While nnet1 adopts basic
neural network structure, chain adopts TDNN. The definitions of the training and the
evaluation sets are the same as before, but the development is different. The reason
is that the recipe scripts internally make the development set by holding-out a subset
of the training set, and the new recipe script has a different implementation from the
old one. The new development set amounted to 6.5 h having 4000 utterances from
39 academic presentations. The experiments were performed using TSUBAME 3.0
using 30 P100 GPGPUs in parallel.

4.4.2 Automatic Optimizations

In the evolution experiments, feature types, DNN structures, and learning param-
eters were optimized. The first and second columns of Table 4.1 describe these
variables. We specify three base feature types (feat_type) for the GMM-HMM
and DNN-HMM models: MFCC,PLP, and filter bank (FBANK). The dimensions
of these features were 13, 13, and 36, respectively. The GMM-HMMs were first
trained directly using the specified base features and their delta [29] and delta-
delta. Then, they were re-trained using 40-dimensional LDA [30]-compressed and
MLLT [31]-transformed features that were obtained from composite features made
by concatenating 9 frames of the base features, and fMLLR [31]-based speaker
adaptive training was performed. The DNN-HMMs were trained using features that
were expanded again from the fMLLR features, splicing 5 pre- and post-context
frames. The other settings were the same as those used in the Kaldi recipe.

CMA-ES uses genes represented as real-valued vectors, mappings from a real
scalar value to a required type are necessary, depending on the parameters. For the
mapping, we used ceil(10x) for converting positive continuous values to integers
(e.g., splice). Similarly, we used 10x for positive real values (e.g., learning rates),
and mod (ceil (abs (x) ∗ 3) , 3) for a multiple choice (feature type). For example,
if a value of feature type (feat_value) in a gene is −1.7, it is mapped to 0, and
indicates MFCC. If it is 1.4, it is mapped to 2, which corresponds to PLP in our
implementation. The third column of the tables presents the baseline settings, which
was also used as an initial meta-parameter configuration. The MFCC-based baseline
system with the 240-h training set and K20X GPGPU took 12 h for the RBM pre-
training and 70 h for fine-tuning.

2https://github.com/JasperSnoek/spearmint.
3https://www.lri.fr/~hansen/cmaes_inmatlab.html.
4We ran main experiments in 2015, and the additional experiments in 2018.

https://github.com/JasperSnoek/spearmint
https://www.lri.fr/~hansen/cmaes_inmatlab.html
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The population sizes of the black-box optimizations were 20 for the 100-h
training set and 44 for the 240-h training set. The WERs used for the optimizations
were evaluated using the development set. For the evaluations of each individual,
a limit was introduced for the training time at each generation. If a system did not
finish the training within 2.5 and 4 days for the 100-h training set and the 240-
h training set, respectively, the training was interrupted and the last model in the
iterative back-propagation training at that time was used as the final model. The GA-
based optimization was performed based on WER and DNN size, and it is referred
to as GA(WER, Size) in the following experiments. Ten initial genes (= N0) were
manually prepared. Basically, gene A wins over gene B if its WER is lower than that
of B. However, gene A having a higher WER wins over gene B if the difference of
the WER is less than 0.2% and the DNN size of gene A is less than 90% of that of
gene B. The tournament size M was three. For the mutation process, Gaussian noise
with zero mean and 0.05 standard deviation was uniformly added to the gene. For
CMA-ES, two types of experiments were performed. One was the single-objective
experiment based on WER, and the other was the multi-objective experiment based
on WER and DNN size using the Pareto optimality. In the following, the former
is referred to as CMA-ES, and the latter is referred to as CMA-ES+P. In both
cases, the initial mean vector of the multivariate Gaussian was set equal to the
baseline settings. For CMA-ES+P, the maximum WER thresholds were set so that
they included the top 1/2 and 1/3 of the populations at each generation for the
trainings using the 100- and 240-h data sets, respectively. The BO-based tuning was
performed using WER as the objective. The search range of the meta-parameters
was set from 20 to 600% of the baseline configuration.

For the additional experiments using the newer version of Kaldi, we reduced
the number of meta-parameters; our motivation is to evaluate the evolution in more
detail under a variety of conditions. For the experiment using nnet1, the optimized
meta-parameters were splice, nn_depth, hid_dim, learn_rate and momentum. These
were a subset of meta-parameters, deemed to be most important in modern
architectures, in Table 4.1. As an initial configuration of the evolution, we borrowed
values again from the SWB recipe. For the additional experiment using chain, we
used the initial value used in the CSJ recipe.

In these evolution experiments, TDNNs were trained using lattice-free MMI [32]
without the weight averaging based parallel processing.5 The initial TDNN structure
was slightly modified from its original version to make the meta-parameter setting
a little simpler for a variable number of layers as shown in Fig. 4.9. While in the
original structure, layers 2 to 4 had different sub-sampling structures than other
layers, all the layers had the same sub-sampling structure in our experiment. Note
if necessary, it is possible to allow different structures for each layer by preparing
separate meta-parameters for them. In total, 7 meta-parameters shown in Table 4.5
were optimized. Unlike the currently released nnet1 script in the CSJ recipe where

5We disabled the default option of the parallel training to make the experiments tractable in our
environment as it requires a large number of GPUs.
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Fig. 4.9 TDNN model structures for chain based systems. (a) is the original structure used in CSJ
recipe and (b) is the one used as an initial configuration in our evolution experiments. The arrows
with numbers at the hidden layers indicate the time splicing index

our evolution results had been integrated, the tuning of chain so far is based on
the human effort by the Kaldi community, and this is the first evolution based
optimization. The training set was the 240-h data set. The initial nnet1 and chain
systems spent 14 and 18 h, respectively, using a P100 GPGPU. If a system did not
finish the training within 24 h in the evolution processes, the training was interrupted
and the last model at that time was used as the final model. The population size was
30.

4.5 Results

Table 4.2 shows the WERs and DNN sizes for systems with the default configuration
using the 100- and 240-h training sets with one of the three types of features.
Among the features, MFCC was the default in the Switchboard recipe, and it
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Table 4.2 WER of base
systems

Training data Dev set Eval set

MFCC 100 h 14.4 13.1

PLP 100 h 14.5 13.1

FBANK 100 h 15.1 13.8

MFCC 240 h 13.5 12.5

PLP 240 h 13.6 12.5

FBANK 240 h 14.1 13.0

yielded the lowest WERs for the development set for both of the training sets. The
corresponding WERs for the evaluation set were 13.1 and 12.5% for the 100- and
240-h training sets, respectively.

Figures 4.10, 4.11, 4.12, and 4.13 show the results when each optimization
method was used with the 100-h training data. The horizontal axis is the DNN
size, and the vertical axis is the WER of the evaluation set. The baseline marked
on the figure is the MFCC-based system. Ideally, we want systems on the lower
side of the plot when WER based single-objective optimizations (CMA-ES, BO)
were performed, and on lower-left side of the plot when WER and model size based
multi-objective optimizations (GA, CMA-ES+P) were performed. Figure 4.10 is a

Fig. 4.10 Results of
GA(WER, Size) when the
100-h training data were used
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Fig. 4.11 Results of
CMA-ES when the 100-h
training data were used
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Fig. 4.12 Results of
CMA-ES with Pareto
optimality(CMA-ES+P)
when the 100-h training data
were used
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Fig. 4.13 Results of BO
when the 100-h training data
were used
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scatter plot of the GA(WER, Size). The distribution is oriented to the left side of the
plot with the progress of generations, but the WER reduction was relatively small.
Figure 4.11 presents the results of the single-objective CMA-ES. The distribution
shifted towards lower WERs and lower DNN file sizes from the baseline with the
progress of generations. The reason that it trended to a lower DNN size was probably
due to the time limit imposed on the DNN training. In the evolution process, the ratio
of individuals that hit the limit was approximately 35%. If an individual has a large
DNN size, then it is likely that it hits the limit. Then, the WER is evaluated using a
DNN at that time before the back-propagation converges, which is a disadvantage
for that individual. Figure 4.12 presents the results of the multi-objective CMA-
ES+P. The result is similar to that produced by using CMA-ES, but the distribution
is oriented more to the lower-left side of the plot.

Figure 4.13 presents the results using BO for the optimization. In this case,
the initial configuration is not directly specified, but the ranges of the meta-
parameters are specified. We found that specifying a proper range was actually not
straightforward and required knowledge of the problem. That is, if the ranges are
too wide, then the initial samples are coarsely distributed in the space, and it is
likely that the systems have lower performance. Meanwhile, if the ranges are too
narrow, then it is likely that the optimal configuration is not included in the search
space. Consequently, the improvement by BO was smaller than that by the CMA-
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Fig. 4.14 Number of generations and evaluation set WER. At each condition, the best system was
chosen by using the development set

Table 4.3 WER and DNN
size of the best system when
the 100-h training data was
used

WER [%]

Opt. method Dev Eval DNN size [MB]

Baseline 14.4 13.1 161.8

GA(WER, Size) 14.1 13.0 234.5

CMA-ES 14.0 12.7 225.5

CMA-ES+P 14.0 12.7 202.4

BO 14.2 13.1 110.6

ES. Carefully setting the ranges might solve the problem but would again assume
expert human knowledge.

Figure 4.14 shows the WER of the evaluation set based on the best systems
chosen by using the development set at each generation. CMA-ES evolved more
efficiently than GA(WER, Size) and BO. Table 4.3 shows the evaluation results of
the best systems chosen by the development set WER through all the generations.
The evaluation set WERs by CMA-ES and CMA-ES+P were both 12.7%.6

However, a smaller DNN model size was obtained by using CMA-ES with Pareto.
The DNN model size by CMA-ES was 225.5 Mb, whereas it was 202.4 Mb when
CMA-ES+P was used, which was 89.8% of the former. The selected feature type
was all MFCC except for the 7th generation, which was PLP.

6In the table, we scored the evaluation set WERs of systems that gave the lowest development set
WER through all the generations. Therefore, they were not necessarily the same as the minimum
of the generation wise evaluation set WERs shown in Fig. 4.14.
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Figure 4.15 shows the results of CMA-ES+P using the 240-h training data.
Approximately 70% of the individuals completed the training within the limit of
4 days. This figure shows that the distributions shifted towards lower WERs and
lower DNN file sizes with the progress of generations.

Figure 4.16 shows the WERs of the best systems selected at each generation
based on the development set WER when the 240-h training set was used. Although
the development set error rate monotonically decreased with the number of the
generation, the evaluation set error rate appeared to be saturated after the fourth
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Fig. 4.15 The DNN model size and the development set WER when the 240-h training set was
used with CMA-ES+P. The results of the n-th generation are denoted as “gen n”
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Fig. 4.16 The development and evaluation set WERs of the best systems at each generation when
the 240-h training set was used with CMA-ES+P. The systems were chosen by the development
set WER. In the figure “dev” and “eval” indicate the results of the development and the evaluation
sets, respectively
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Fig. 4.17 Pareto frontier
derived from the results from
the initial to the 6th
generation using the 240-h
training data. In the figure
“dev” and “eval” indicate the
results of the development
and the evaluation sets,
respectively
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generation, which might have resulted from overfitting to the development set
because we used the same development set for all the generations. The lowest
WER of the development set was obtained at the 6th generation. The corresponding
evaluation set error rate was 12.1%. The difference in the evaluation set WERs
between the baseline (12.5%) and the optimized system (12.1%) was 0.48%, and
this was statistically significant under the MAPSSWE significance test [33]. The
relative WER was 3.8%.

If desired, we can choose a system from the Pareto frontier that best matches
the required balance of the WER and the model size. Figure 4.17 shows the Pareto
frontier derived from the results from the initial to the 6th generation using the 240-
h training data. This figure shows that if we choose a system with approximately
the same WER as the initial model, then we can obtain a reduced model size that is
only 41% of the baseline. That is, the model size was reduced by 59%. The decoding
time of the evaluation set by the reduced model was 79.5 min, which was 85.4% of
the 93.5 min by the baseline. Similarly, the training time of the reduced model was
54.3% of that of the baseline model.

Columns 4 to 9 of Table 4.1 show the meta-parameter configurations obtained as
the result of evolution using the 240-h training set. These are the configurations that
yielded the lowest development set WERs at each generation. When we analyze the
obtained meta-parameters, although the changes were not monotonic for most of the
meta-parameters, we found that splice size was increased by more than three times
from the initial model. We also note that the learning rate decreased by more than
half from the initial condition.

As a supplementary experiment, sequential training [34] was performed using the
best model at the 4th generation as an initial model. Because the sequential training
is computationally intensive, it took an additional 7 days. After the training, the
WER was further reduced, and a WER of 10.9% was obtained for the evaluation
set. This value was lower than the WER of 11.2% obtained with sequential training
using the baseline as the initial model. The difference was statistically significant,
which confirms the effectiveness of the proposed method.
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Fig. 4.18 Evolution result of the nnet1 based system. The CMA-ES with Pareto based evolution
(CMA-ES+P) was applied to nnet1 of the newer version of Kaldi with reduced tuning meta-
parameters. The baseline is the initial model of the evolution. Only individuals on the Pareto
frontier at each generation are plotted for visibility

Figure 4.18 shows the result of the additional experiments of nnet1 using the
newer version of Kaldi with the reduced meta-parameters. The figure plots the
development set WER and DNN model size. The evolution was performed by CMA-
ES with Pareto (CMA-ES+P) and the process was repeated for 12 generations.
Approximately 77% of the individuals had completed the training within the 24-h
limit. In the figure, only the results of genes on the Pareto frontier at each generation
were plotted for visibility. The gene marked as “a” gave the smallest DNN size,
while the gene marked as “c” gave the lowest WER (There were three genes with
the smallest WER and c was the one with the smallest DNN size.). Gene “b” gave
both smaller DNN size and smaller WER than the initial system. Table 4.4 describes
properties of these representative genes. In this experiment, the improvement in the
evaluation set WER from the baseline initial configuration was minor even when

Table 4.4 Summary of three representative genes in the additional nnet1 experiment with CMA-
ES+P

WER [%]

Gene Generation Dev Eval DNN size [MB] Decoding time [min]

Baseline 0 9.1 11.9 161.0 90.5

a 10 9.0 12.0 66.5 70.9

b 9 8.9 11.8 93.6 80.4

c 12 8.8 11.8 207.3 99.4

Gene a gave the smallest model size, and gene c gave the lowest development set WER. Gene b

balances the model size and WER reductions. See Fig. 4.18 for their positions
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choosing the gene with the lowest WER in the development set. We conjecture this
was probably because the initial meta-parameters were already close to optimal
in terms of WER. The reduction of the number of meta-parameters might also
have limited the room for improvement though we chose the ones that we thought
important based on our previous experiments. However, the evolution had an effect
of reducing the DNN size. When the gene “b” was chosen, it gave slightly lower
WER on the evaluation set and largely reduced DNN size of 93.6 (MB), which was
58% of the initial model of 161.0 (MB). If the gene “a” was chosen, the WER of
the evaluation set slightly increased from 11.9 to 12.0%, but the model size reduced
to 66.5 (MB), which was only 40% of the initial model. Accordingly, the decoding
time of the evaluation set was reduced from 90.5 to 70.9 min.

Figure 4.19 shows the result of the evolution based optimization of the chain
script. Approximately 63% of the individuals completed the training within the 24-
h limit. In this case, larger improvement than nnet1 was obtained both in reducing
the WER and the model size. Figure 4.20 shows the WERs of the best systems
selected at each generation based on the development set WER. While there was a
little random behavior in the evaluation set WER, overall, a consistent trend of WER
reduction was observed both in the development and the evaluation set. Table 4.5
shows corresponding changes of the meta-parameters. Different from the changes

Fig. 4.19 Evolution result of
the chain based system. The
CMA-ES with Pareto based
evolution (CMA-ES+P) was
applied to the chain script of
the newer version of Kaldi.
Only individuals on the
Pareto frontier at each
generation are plotted for
visibility
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Table 4.6 Summary of three representative genes in the additional chain
experiment

WER [%]

Gene Generation Dev Eval DNN size [MB] Decoding time [min]

CSJ default 9.3 11.7 53.7 22.6

Baseline 0 9.3 12.0 59.7 23.0

a 11 9.2 11.9 9.1 13.1

b 12 8.9 11.5 11.5 13.4

c 12 8.6 10.8 34.5 16.1

Gene a gave the smallest model size, and gene c gave the lowest development set WER. Gene b

balances the model size and WER reductions. See Fig. 4.19 for their positions

of the WERs, it is seen that none of their changes was monotonic revealing their
complex mutual interactions. A remarkable change after 12 generations was the
large reduction of units in the hidden layers (units per layer) from 625 of the baseline
to 427.

In Fig. 4.19, three representative genes are marked as in the nnet1 results.
Table 4.6 describes their details. The evaluation set WER of the gene b was 11.5%
and it was 0.5% lower than the baseline initial structure. While the improvement was
only 0.2% when compared to the CSJ default (11.7%), the model size reduction was
significant from 53.7 (MB) to 11.5 (MB). When the gene c was used, evaluation set
WER was 10.8% and the relative reduction was 7.8 and 9.7% compared to the CSJ
default and the baseline initial configuration, respectively. Their differences were
both statistically significant by the MAPSSWE test. Moreover, the model size was
reduced to 57.7% of the original size. The decoding time of 22.6 min of the CSJ
default settings was reduced to 16.1 min.

4.6 Conclusion

In this chapter, we have introduced the basic principles of spoken language process-
ing, focusing on speech recognition. We have performed an automatic optimization
of the meta-parameters by using evolutionary algorithms without human expert
elaboration. In the experiments using the 100-h training set, multi-objective GA,
CMA-ES, CMA-ES with Pareto (CMA-ES+P) and BO were compared. Both of
the CMA-ES methods and GA yielded lower WERs than the baseline. Among them,
CMA-ES and CMA-ES+P provided lower WERs than GA. By using CMA-ES+P
to jointly minimize the WER and the DNN model size, a smaller DNN size than
single-objective CMA-ES was obtained while keeping the WER. CMA-ES was
more convenient for optimizing speech recognition systems than BO, which requires
the ranges of the meta-parameters to be specified. Moreover, we ran additional
experiments using the newer version of the Kaldi toolkit and demonstrated the
consistent effectiveness of the CMA-ES+P based approach. Especially, the tuned
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chain system was significantly superior to the default system both in WER and the
model size. Other than experiments introduced here, we have also applied CMA-ES
to language modeling and neural machine translation and have achieved automatic
performance improvements [35, 36].

When the meta-parameter tuning is applied to the neural network training, there
is a double structure of learning; one is the estimation of the neural network
connection weights, and the other is the meta-parameter tuning of the network
structure and the learning conditions. Currently, the tuning process only uses the
performance score, and the learned network weight parameters are all discarded
at each generation. Future work includes improving the optimization efficiency by
introducing a mechanism to transmit knowledge learned by ancestors to descen-
dants.
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Chapter 5
Search Heuristics for the Optimization
of DBN for Time Series Forecasting

Takashi Kuremoto, Takaomi Hirata, Masanao Obayashi,
Kunikazu Kobayashi, and Shingo Mabu

Abstract A deep belief net (DBN) with multi-stacked restricted Boltzmann
machines (RBMs) was proposed by Hinton and Salakhutdinov for reducing the
dimensionality of data in 2006. Comparing to the conventional methods, such
as the principal component analysis (PCA), the superior performance of DBN
received the most attention by the researchers of pattern recognition, and it even
brought out a new era of artificial intelligence (AI) with a keyword “deep learning”
(DL). Deep neural networks (DNN) such as DBN, deep auto-encoders (DAE),
and convolutional neural networks (CNN) have been successfully applied to the
fields of dimensionality reduction, image processing, pattern recognition, etc.,
nevertheless, there are more AI disciplines in which they could be applied such as
computational cognition, behavior decision, forecasting, and others. Furthermore,
the architectures of conventional deep models are usually handcrafted, i.e., the
optimization of the structure of DNN is still a problem. In this chapter, we mainly
introduce how DBNs were firstly adopted to time series forecasting systems by our
original studies, and two kinds of heuristic optimization methods for structuring
DBNs are discussed: particle swarm optimization (PSO), a well-known method
in swarm intelligence; and random search (RS), which is a simpler and useful
algorithm for high dimensional hyper-parameter exploration.

5.1 Introduction

Human-level software such as game control [1], Alpha-Go [2, 3] were developed
and attracted people all over the world in recent years. Deep learning and rein-
forcement learning [4] were the key techniques of these remarkable inventions.
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Deep learning (DL), which indicates a kind of machine learning methods using
multi-layered artificial neural networks, is studied from the middle of the 2000s.
Hinton et al. proposed a stacked auto-encoder (SAE) which used multiple restricted
Boltzmann machines (RBM), a kind of stochastic neural networks, to compose
a deep belief net (DBN) successfully applied to dimensionality reduce and high
dimensional data classification [5–7]. Since deep conventional neural networks
(DCNN) [8] won the champion of image recognition competition ILSVRC 2012
[9], DL has become the most popular method of artificial intelligence (AI) research.
However, a problem of deep learning is how to configure an optimal deep learning
model for different tasks. The number of units and the number of layers affect the
performance of models seriously, and during learning process, i.e., the optimization
of parameters including weights of connections between units and suitable learning
rates are also very important. So the structure of deep neural networks (DNN) has
been designed by grid and manual search, and even was called “a work of art.”
In [10], Bergstra and Bengio proposed a random search method which is more
efficient. In [11], Ba and Frey proposed a dropout method for optimizing DNNs
and it is popularly used now. Recently, Nowakowski, Dorogyy, and Doroga-Ivaniuk
proposed to use a genetic algorithm (GA) to construct and optimizing DNNs [12]. In
our previous study [13–15], particle swarm optimization (PSO) [16], a well-known
swarm intelligent method proposed by Kennedy and Eberhart in 1995, was adopted
to find the optimal number of units in different restricted Boltzmann machines
(RBM) which were used in DBN for time series forecasting. However, the main
problem of PSO-based DBN architecture optimization is the large computation cost
for the reason that each DBN needs to be trained with learning of RBMs and fine-
tuning of DBN whereas one particle presents one DBN. In our experiment with
a personal computer (3.2 Hz×1 CPU, 8 GB×2 RAM) for 5000 data training, it
needs almost 1 week [13, 14]. Instead of PSO, we applied Bergstra and Bengio’s
random search (RS) to decide the number of units and layers of RBMs in DBNs
which were composed by RBMs or RBMs and multi-layered perceptron (MLP).
The RS algorithm is simpler than PSO and more available to obtain the optimal
hyper-parameters than conventional grid search (GS), i.e., manual exploration. For
the same problem in the experiment, RS spent only about half of the time that PSO
took for the training of DBN [17–19]. For other state-of-the-art DL models, such as
VGG16 [20], ResNet [21], the architectures were also designed by trial and error
until 2 years ago [22, 23]. In [22], Wang et al. firstly evolved CNN architecture by
PSO in 2017. Recently, Fernandes Junior and Yen proposed a novel PSO algorithm
which has a variable size of particles for CNN architecture optimization [23].

In this chapter, it is firstly, and consistently to explain how a DBN is optimized its
architecture by PSO or RS according to our a series of original works [13–15, 17–
19]. Experimental results using chaotic time series such as Lorenz chaos [24] and
Hénon map [25], and benchmark CATS data [26, 27] showed the effectiveness of
the optimized DBNs.
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5.2 DBNs with RBMs and MLP

A deep belief net (DBN) proposed by Hinton et al. [5–7] inspired the study of deep
learning. DBN is composed by multiple restricted Boltzmann machines (RBM)
which have the ability of representation for the high dimensional data, such as
images and audio processing. In [5], Hinton and Salakhutdinov showed the powerful
compression and reconstruction functions of DBN with 4 RBMs as encoder and
4 RBMs as decoder, comparing to the conventional principal component analysis
(PCA).

5.2.1 RBM

RBM is a variation of a Boltzmann machine, a stochastic neural network, but with 2
layers: visible layer and hidden layer (See Fig. 5.1). The connection between units
(neurons) in a RBM is restricted to those in different layers, and the weights of those
synaptic connections are the same in both directions, i.e., wij = wji . The output of
each unit in the visible layer and the hidden layer is 0 or 1,

p(hj = 1|v) = 1

exp
(−bj −∑

i viwij

) , (5.1)

p(vi = 1|h) = 1

exp
(
−bi −∑

j hiwji

) , (5.2)

So the likelihood functions of layers are as follows.

p(h|v) =
∏

j

p(hj |v), (5.3)

Fig. 5.1 A restricted Boltzmann machine (RBM)



134 T. Kuremoto et al.

p(v|h) =
∏

i

p(vj |h). (5.4)

Network energy of RBM is given by

E(v, h) = −
∑

i

bivi −
∑

j

bjhj −
∑

ij

vihjwij . (5.5)

To represent an input vector, Markov chain Monte Carlo (MCMC) method is used
for RBM. The state of hidden layer h can be obtained by sampling with p(h|v).
Then according to the probability p(1)(v|h) the new state of the visible layer v(1) ∈
{0, 1} can be obtained by the stochastic sampling. After repeating this process with
k = 1, 2, . . . ,∞ steps, i.e., a MCMC process, the state of RBM convergences to
stable.

5.2.2 Training of RBM and DBN

Parameters (wij , bi, bj ) ≡ θ of RBM are optimized by the gradient of the log
likelihood function.

θ ← θ + α
∂p(v, h)

∂θ
, (5.6)

where 0 ≤ α ≤ 1 is a learning rate.
In fact, the learning rule of RBM is as follows.

�wij = p(k−1)(vi = 1)pk−1(hj = 1)− p(k)(vi = 1)p(k)(hj = 1), (5.7)

�bj = pk−1(hj = 1)− p(k)(hj = 1), (5.8)

�bi = pk−1(vi = 1)− p(k)(vi = 1), (5.9)

where k = 1, 2, . . . ,K is the step of MCMC. In practice, when the number of
training iterations (epochs) is large enough, K = 1 also works well, and this kind of
contrastive divergence (CD) algorithm is called CD-1. Furthermore, instead of the
original data input to the visible units, it is possible to “initialize a Markov chain
at the state in which it ended for the previous model,” which training algorithm is
called persistent contrastive divergence (PCD) [28, 29].

For DBN training, each RBM is trained separately using the above learning rules
as pre-training, and then using error back-propagation (BP) [30] as fine-tuning to
modify the parameters obtained from the pre-training.
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Now, let vL
i ∈ {0, 1} and hL

j ∈ {0, 1} be the visible unit i and hidden unit j ’s

state in layer L, and the connection between i and j with a weight wL
ij = wL

ji ∈
[0,1], and a bias bL

i = bL
j , the training rule of BP for these parameters’ modification

is given as follows.

�wL
ij = −ε

(
∑

i

∂E

∂wL+1
ji

wL+1
ji

)
(

1− hL
j

)
vL
i , (5.10)

�bL
i = −ε

(
∑

i

∂E

∂wL+1
ji

wL+1
ji

)
(

1− hL
j

)
, (5.11)

where E =∑T
t=1(yt − ŷt )

2 is the squared errors of output of the network.

5.2.3 DBNs used in Time Series Forecasting

There have been thousands of studies of time series forecasting approached by
artificial neural networks [31, 32]. The principle of neural forecasting systems is
illustrated in Fig. 5.2 For a time series data y(t), t = 1, 2, . . . , T , n ≤ T data are
used as the input of a neural network: x(t) = (y(t), y(t − τ ), y(t − 2τ ), . . . , y(t −
nτ)), where nτ ≤ T , τ is an integer that indicates time lag, and n is the dimension
of the input. The output of the network is a scalar ŷ(t + τ ). Using N samples
(x(t), y(t + τ )), (x(t + 1), y(t + 1 + τ )), . . . , (x(t + N − 1), y(t + N − 1 + τ )),

Fig. 5.2 Time series forecasting by artificial neural networks
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the neural network can be trained by gradient methods of loss (error) functions, or
cross entropy functions.

For example, a feed-forward neural network (See Fig. 5.2) with an input layer, a
hidden layer, and an output layer, named multi-layered perceptron (MLP) [30] can
be trained by BP algorithm as follows.

Algorithm I: Error Back-Propagation (BP Algorithm)

Step 1 Input data x(t) = (y(t), y(t − τ ), . . . , y(t − nτ)) to MLP.
Step 2 Predict a future data y(t + τ ) according to Eqs. (5.12) and (5.13).

f (y + τ ) = 1

1+ exp
(
−∑K+1

j=1 wjf (zj )
) , (5.12)

f (zj ) = 1

1+ exp
(−∑n

i=0 viy(t − iτ )
) , (5.13)

where vi and wj are the connection weights of input units with hidden
units, and hidden units with output unit.

Step 3 Calculate the modification of connection weights, �wj , �vji according
to Eqs. (5.14) and (5.15).

�wj = −ε(y(t + τ )− ŷ(t + τ ))y(t + τ )(1− y(t + τ ))zj , (5.14)

�vji =−ε(y(t + τ )− ŷ(t + τ ))y(t + τ )(1− y(t + τ ))zjwj (1− zj )xi.

(5.15)

Step 4 Modify the connections, wj ← wj +�wj ,
vji ← vji +�vji .

Step 5 For the next time step t + 1, return to step 1.

For the powerful representation ability of DBN with RBMs, it is utilized to
capture the feature of time series data then to forecast future values. In [13–15],
DBNs with 2–4 RBMs were proposed in the field of time series forecasting firstly,
(Fig. 5.3 gives a sample of DBN with 2 RBMs) and in [17–19], DBNs with 0–3
RBMs and a multi-layered perceptron (MLP) were constructed (Fig. 5.4 shows a
sample of DBN with 1 RBM and 1 MLP) as forecasting systems.

The training of DBN with RBMs and MLP is the same as DBN with RBMs only,
which was introduced in Sect. 5.2.2, but adding BP training to MLP as shown in
Algorithm I.
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Fig. 5.3 A DBN with 2 RBMs [14]

Fig. 5.4 A DBN with 2 RBMs and MLP [17]

5.3 Design DBN with PSO or Random Search

5.3.1 Design DBN with PSO

To design the optimal structure of DBN, Kennedy and Eberhart’s particle swarm
optimization (PSO) [16] is adopted in [13–15].
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PSO is a well-known evolutionary computation method for optimization prob-
lems. Let candidate solutions (particles) xk

i ∈ "n be positions in the hyper-
parameter space at time k, i = 1, 2, . . . ,m is the number of particles. They are
evaluated and improved by the cost function minx f (x) using its moment xk

i + vk
i ,

its historic best position pbestki , and the best particle gbestk in the swarm.

xk+1
i = xk

i + vk
i (5.16)

vk+1
i = wvk

i + c1r1

(
pbestki − xk

i

)
+ c2r2

(
gbestk − xk

i

)
, (5.17)

where the initial values of x, v are random numbers, k = 1, 2, . . . ,K is the iteration
number, damping coefficient w ≥ 0, parameters c1, c2 ≥ 0, r1, r2 ∈[0,1] are random
numbers. Repeat Eqs. (5.16) and (5.17), the gbestk is modified and converges to the
optimal solution.

For DBN structure design, the number of layers, the number of units, and the
learning rate of different RBMs are set as elements of input vector of PSO. The cost
function is the mean squared error (MSE) between the teacher data y(t + τ ) and
the output of DBN ŷ(t + τ ). The procedure of PSO for DBN architecture design is
shown in Algorithm II.

Algorithm II: Design a DBN with PSO

Step 1 Select hyper-parameters, such as the number of RBMs, the number of units
in different RBMs, the learning rate of RBM pre-training, the learning rate
of fine-tuning of DBN, as the exploration space of particles of PSO.

Step 2 Decide the population size of particles P and limitation of iteration number
I .

Step 3 Initialize the start position xk=0
i and vk=0

i using random integer or real
numbers in exploration ranges of hyper-parameter space.

Step 4 Evaluate each particle using the mean squared error (MSE) between the
prediction value ŷ(t + τ ) and teacher data y(t + τ ), and find the best
position pbestki of a particle from its history, and the best particle position
of the swarm gbestk .

Step 5 Renew positions xk+1
i and velocities vk+1

i of particles by Eqs. (5.16) and
(5.17), respectively. Notice that integer elements in these vectors need to
be rounded off for Step 4.

Step 6 Finish: if the evaluation function (prediction MSE of training data)
converged, or k = I ; else return to Step 4.
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5.3.2 Design DBN with RS

To find an optimal architecture of neural network, grid search (GS) is conventionally
used. The number of layers, the number of units on each units and the learning rate,
etc., are considered as elements in a hyper-parameter vector space. In GS, the value
of each element is tuned according to the reduction of loss function of the network,
whereas values of other elements are fixed in the previous values, and this process
is iterated for all elements of the hyper-parameter space. For the tuning intervals of
GS are usually fixed, the optimal parameter in the continuous space may be leaked
(See Fig. 5.5).

As an alternative to GS, Bergstra and Bengio proposed a random search (RS)
method in [10]. As shown in Fig. 5.6, various values of elements of hyper-
parameters can be selected as candidates, and repeating this process enough times,
the optimal architecture of neural networks is available to be found more than GS.
In [17–19], RS was used to find the number of RBMs, the number of units, learning
rates of RBMs, and learning rate of fine-tuning to construct a DBN with multiple
RBMs and a MLP instead of PSO. The algorithm of RS is very simple which is
shown in Algorithm III.

Algorithm III: Design a DBN with RS

Step 1 Select hyper-parameters, such as the number of RBMs, the number of
units in different RBMs, the learning rate of RBM pre-training, the
learning rate of fine-tuning of DBN, as the exploration space of RS.

Step 2 Decide the iteration number I of exploration.
Step 3 Initialize the hyper-parameter vector xk=0 using random real numbers (in

limited intervals of different elements).
Step 4 Store the current mean squared error (MSE) between the prediction value

ŷ(t + τ ) and teacher data y(t + τ ).
Step 5 Compare the stored MSEs to find the smallest one and using the corre-

sponding hyper-parameter xk as the optimal structure of DBN.
Step 6 Finish: if the evaluation function (prediction MSE of training data)

converged, or k = I ;
else return to Step 3.
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5.4 Experimental Comparison of PSO and RS

Time series forecasting experiments with different DBNs structured by PSO and RS
are reported in this section. Three time series data were utilized in the experiments:
Lorenz chaos [24], Hénon map [25], and CATS benchmark [26, 27].

Chaos is a complex nonlinear phenomena in which dynamical states are sensitive
to initial conditions, and impossible for long-term prediction in general. In our
experiments, for the chaotic time series forecasting (Lorenz chaos and Hénon
map), one-ahead forecasting was performed. Meanwhile, for CATS data, long-term
forecasting, which uses the output of predicted values as the next input to DBN, was
executed.

5.4.1 One-ahead Prediction of Lorenz Chaos

Lorenz chaos [24] is given by 3-dimension nonlinear formulae as follows.

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt
= σx + σy;

dy
dt
= −xz+ rx − y;

dz
dt
= xy − bz.

(5.18)
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Fig. 5.7 Lorenz chaos [24]

Let parameter σ = 10, b = 28, r = 8/3,�t = 0.01, an attractor, i.e., the well-
known “butterfly effect,” can be obtained as in Fig. 5.7.

The chaotic time series of x− axis of Lorenz chaos were used in the forecasting
experiment. The length of time series was 1000, and within it, 600 data were used
as training samples, 200 for validation, and 200 unknown data were used as a test
set.

The exploration ranges of the number of RBMs were 1–4 for DBN with RBMs
and 0–4 for DBN with RBMs and MLP. The ranges of number of units for input and
hidden layers of DBNs were 2–20. For learning rates of RBMs and MLP were 0.1–
0.00001, and the limitations of training iterations (epochs) were 5000 for RBM’s
pre-training and 10,000 for fine-tuning using BP algorithm.

5.4.1.1 DBN Decided by PSO for Lorenz Chaos

Four neural networks were optimized by PSO algorithm (See Algorithm II) for
Lorenz chaos forecasting: a MLP, a DBN with 2 RBMs [13, 14], a DBN with 1
RBM and 1 MLP [15], and a DBN with 2 RBMs and 1 MLP [15]. The number of
particles (population) was 10, the number of iterations was 15, and the exploration
ranges of the number of units in each layers were [2–20] except the output layer
which had 1 unit, respectively. The interval of time lag τ = 1, the range of learning
rates of RBM and BP were [10−1, 10−5]. The upper number of training iterations
(epochs) were 5000 for RBM’s pre-training and 10,000 for fine-tuning using BP
algorithm. The exploration results of PSO are shown in Table 5.1.

The training and one-ahead forecasting results by the 2-RBM DBN decided by
PSO are shown in Figs. 5.8 and 5.9, respectively. Prediction accuracy (MSE) in
detail is shown in Table 5.2, where the model composed by 1 RBM and 1 MLP
had the lowest training and forecasting error (in bold values).
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Table 5.1 Hyper-parameters optimized by PSO for Lorenz chaos

Model Structure
Learning rate of
RBM1

Learning rate of
RBM2

Learning rate of
BP

MLP 5-2-1 – – 0.1

2 RBMs 7-7-1 0.093 0.074 0.092

1 RBM +MLP 5-9-2-1 0.1 – 0.1

2 RBMs +MLP 7-12-19-2-1 0.09 0.22 0.089

Fig. 5.8 Training result of Lorenz chaos using a 2-RBM DBN with PSO structuring

5.4.1.2 DBN Decided by RS for Lorenz Chaos

Different from the experiment reported in Sect. 5.4.1.1, the number of RBMs and
MLP were also adopted in the hyper-parameter space in the case of RS for DBN
architecture decision. So the four models described in Sect. 5.4.1.1 were able to be
investigated in one optimization process. Other conditions used in this experiment
were the same as in the case of PSO for Lorenz chaotic time series forecasting. The
explored hyper-parameters are shown in Table 5.3 which means that the optimal
architecture of DBN was composed by one RBM (5-11) and MLP (11-2-1), i.e., 5-
11-2-1, and the learning rates of RBM (CD-1 learning) and BP learning were 0.042
and 0.091, respectively.

The prediction accuracies of a DBN decided by RS for Lorenz chaos are shown
in Table 5.4. The training MSE (= 0.94 × 10−5) was lower than PSO method (=
1.0 × 10−5), but RS’s forecasting MSE was higher than PSO (RS = 0.5 × 10−5,
PSO = 0.3× 10−5).
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Fig. 5.9 One-ahead prediction result of Lorenz chaos using a 2-RBM DBN with PSO structuring

Table 5.2 Prediction
accuracies (MSE) for Lorenz
chaos by different models
optimized by PSO

Model Training error Forecasting error

MLP 2.7 1.0

2 RBMs 3.2 1.3

1 RBM +MLP 1.0 0.3
2 RBMs +MLP 1.6 0.7

Unit: ×10−5

Table 5.3 Hyper-parameters optimized by RS for Lorenz chaos

Model Structure Learning rate of RBM Learning rate of BP

1 RBM +MLP 5-11-2-1 0.42 0.1

Table 5.4 Prediction
accuracies (MSE) of Lorenz
chaos by the optimal model
given by RS

Model Training error Forecasting error

1 RBM +MLP 0.94 0.5

Unit:×10−5

5.4.2 One-ahead Prediction of Hénon Map

Hénon [25] is given by 2-dimension nonlinear formulae as follows.

{
x(t + 1) = 1− ax(t)2 + y(t);
y(t + 1) = bx(t).

(5.19)
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Fig. 5.10 Hénon map [24]

Fig. 5.11 Training result of Hénon map using a DBN with 2 RBMs and MLP by RS structuring

Let parameter a = 1.4, b = 0.3, the attractor can be obtained as in Fig. 5.10.
The chaotic time series of x − axis of Hénon map were used. The length of time
series was 1000, and within it, 600 data were used as training samples, 200 for
validation, and 200 unknown data were used as a test set. The training and one-
ahead forecasting results using a DBN with 2 RBMs and MLP structured by RS are
shown in Fig. 5.11.

In experiment conditions for Hénon map time series forecasting with PSO/RS
structure optimization process were as same as in the case of Lorenz chaos
(Sect. 5.4.1) Hyper-parameters of DBN optimized by PSO and RS are shown in
Tables 5.5 and 5.6. From Table 5.6, as same as for Lorenz chaos, DBN with 1 RBM
and 1 MLP was chosen for Hénon map by RS, meanwhile, DBN with 2 RBMs and
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Table 5.5 Hyper-parameters optimized by PSO for Hénon map

Model Structure
Learning rate of
RBM1

Learning rate of
RBM2

Learning rate of
BP

MLP 2-16-1 – – 0.1

2 RBMs 2-16-1 0.025 0.082 0.041

1 RBM +MLP 2-9-9-1 0.1 – 0.1

2 RBMs +MLP 2-11-20-15-1 0.1 0.1 0.085

Table 5.6 Hyper-parameters optimized by RS for Lorenz chaos

Model Structure Learning rate of RBM Learning rate of BP

1 RBM + MLP 14-18-14-1 0.0001 0.0895

Table 5.7 Comparison of
accuracies (MSE) between
PSO and RS using Hénon
map

Model
Training Forecasting

PSO/RS PSO/RS

MLP 288/– 79/–

2 RBMs 3912/– 918/–

1 RBM +MLP 135/5.52 36/9.09
2 RBMs +MLP 130/– 31/–

Unit: ×10−5

1 MLP was chosen by PSO. The one-ahead prediction accuracies (MSEs) of DBNs
structured by PSO and RS using Hénon map data are listed in Table 5.7. The highest
training accuracy and forecasting accuracy were achieved by the DBN with 1 RBM
and MLP found by RS, which MSE are 5.52 × 10−5 and 9.09 × 10−5 (in bold
values).

5.4.3 Long-term Prediction of CATS Benchmark

Since the middle of the 1980s, there have been thousands of publications of time
series forecasting using the method of artificial neural networks (ANN). In 2004
International Joint Conference on Neural Networks (IJCNN’04), Lendasse et al.
organized a time series forecasting competition with a benchmark data CATS [26],
and the results were reported in [27]. CATS includes 5000 time points data, which
are separated into 5 blocks, and the last 20 data in each block are hidden by the
organizer (See Fig. 5.12).

The evaluation of the competition is the prediction accuracies which are the
average MSEs of the five blocks named E1, and the average MSEs of the first four
blocks E2. So for the unknown 20 data, long-term prediction is necessary, i.e., using
the output of the predictor as input recurrently.

E1 =
∑1000

t=981(yt − ŷt )
2

100
+

∑2000
t=1981(yt − ŷt )

2

100
+

∑3000
t=2981(yt − ŷt )

2

100
(5.20)
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Fig. 5.12 CATS benchmark [26, 27]

Table 5.8 Comparison of
accuracies (MSE) between
PSO and Random Search
(RS) using CATS benchmark
(∗)

Model E1 E2

The best of IJCNN’04 [27] 408 222

DBN with 2 RBMs using PSO [13, 14] 1215 979

DBN with 1 RBM and MLP using RS 257 252

∗ long-term forecasting

+
∑4000

t=3981(yt − ŷt )
2

100
+

∑5000
t=4981(yt − ŷt )

2

100
(5.21)

E2 =
∑1000

t=981(yt − ŷt )
2

80
+

∑2000
t=1981(yt − ŷt )

2

80
(5.22)

+
∑3000

t=2981(yt − ŷt )
2

80
+

∑4000
t=3981(yt − ŷt )

2

80
. (5.23)

The prediction results by conventional methods and DBNs with PSO and RS are
shown in Table 5.8. Comparing to the best of IJCNN’04 E1 = 408 which used
a Kalman smoother method [27], the DBN structured by RS had a remarkable
advance with E1 = 257. In the case of E2, the DBN had a similar accuracy to
the best of IJCNN’04, which used ensemble models [27]. Hyper-parameters of
DBNs optimized by PSO and RS for different block data are shown in Table 5.9. It
seems that RS had better prediction accuracies than PSO from Table 5.8; however,
a fact is that MLP was not composed in the DBN optimized by PSO in [13, 14]. In
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Table 5.9 Hyper-parameters optimized by PSO and RS for CATS benchmark

Model
Structure Learning rate of RBM(s) Learning rate of BP

PSO/RS PSO/RS PSO/RS

First block 20-18-1/18-20-14-1 0.47, 0.99/0.083 0.96/0.082

Second block 11-3-1/16-19-15-1 0.85, 0.95/0.0046 0.99/0.076

Third block 8-13-1/18-18-13-1 0.90, 0.77/0.046 0.87/0.088

Fourth block 20-7-1/18-14-19-1 0.92, 0.88/0.12 0.53/0.083

Fifth block 20-14-1/19-19-17-1 0.17, 0.19/0.079 0.39/0.075

Fig. 5.13 The training result of a DBN for the 1st block of CATS structured by RS

Figs. 5.13 and 5.14, the training result and long-term prediction (20 future unknown
data) of a DBN (18-20-14-1) for the first block of CATS are shown, respectively.
The DBN was given by RS, which has 1 RBM and 1 MLP. The number of input
units of RBM was 18, and output 20. The number of MLP units was 20, and
hidden units were 14, output 1. The learning rates of RBM and MLP were 0.083
and 0.082, respectively. Details of DBNs for different blocks of CATS are shown
in Table 5.9. The efficiencies of PSO and RS can be observed by the change of
prediction errors (MSE) during training iteration. For example, the change of MSE
of the DBN optimized in RS learning is shown in Fig. 5.15, and the evolution of
10 particles in PSO algorithm during training can be confirmed by Fig. 5.16. The
change of the number of input layers and the number of hidden layers of RBMs was
yielded by the best particle of swarm during PSO exploration (See Figs. 5.17 and
5.18, respectively).
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Fig. 5.14 The long-term predict result of a DBN for the 1st block of CATS structured by RS
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Fig. 5.15 The change of MSE in RS learning for a DBN with 1 RBM and 1 MLP

5.5 Advanced Forecasting Systems Using DBNs

The study of time series forecasting has a long history because it plays an important
role in social activities such as finance, economy, industry, etc., and natural sciences.
The most famous linear prediction model is the autoregressive integrated moving
average (ARIMA) which was proposed in the 1970s [33]. Artificial neural networks
(ANN) became novel efficient predictors as nonlinear models since the 1980s
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Fig. 5.16 The evolution of particles in PSO learning for a DBN with 2 RBMs

Fig. 5.17 The number of input units

[26, 27, 31]. Considering the linear and nonlinear features of time series data, Zhang
proposed a hybrid forecasting method which using ARIMA to forecast the unknown
data in the future, then using a trained ANN which can forecast the residual of
predicted data by ARIMA. In [17, 34], Zhang’s hybrid model was modified by
using a DBN, which was structured by RS introduced in Sect. 5.3, to forecast
the unknown data in future, and then using ARIMA to forecast residuals. It is
confirmed by the comparison experiments that the hybrid models ARIMA+DBN
and DBN+ARIMA were priority to using ARIMA or DBN independently. For real
time series forecasting, a DBN with reinforcement learning method “stochastic
gradient ascent (SGA)” [35] is proposed recently [19, 36]. SGA was used as fine-
tuning method instead of the conventional BP method. In forecasting experiments,
the number of Sunspot, sea level pressure, atmospheric CO2 concentration, etc.
provided by Aalto University [37], Hyndman [38] were utilized. All of these
advanced DBNs were designed by the RS algorithm, i.e., Algorithm III, and the
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Fig. 5.18 The number of hidden units

reason is that RS may be considered a simplified PSO in which population size is
one, and the process is simpler than PSO. However, the comparison of precisions
and computational costs between them still remains to be done.

5.6 Conclusion

To find the optimal structure of deep neural networks (DNN), particle swarm opti-
mization (PSO) and random search (RS) methods were introduced in this chapter.
As a novel nonlinear model of time series forecasting, deep belief nets (DBN)
composed by multiple restricted Boltzmann machines (RBM) and multi-layered
perceptron (MLP) were structured by PSO and RS, and these DBNs were superior
to conventional methods according to chaotic time series and benchmark data
forecasting experiment results. However, as we know, the evolutionary computation
including swarm intelligence methods is developed rapidly, meanwhile PSO and
RS utilized in the papers mentioned here were the original versions. So it is very
interesting to adopt advanced optimization methods to decide the optimal structure
of DNNs.
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Chapter 6
Particle Swarm Optimization
for Evolving Deep Convolutional Neural
Networks for Image Classification:
Single- and Multi-Objective Approaches

Bin Wang, Bing Xue, and Mengjie Zhang

Abstract Convolutional neural networks (CNNs) are one of the most effective deep
learning methods to solve image classification problems, but the design of the CNN
architectures is mainly done manually, which is very time consuming and requires
expertise in both problem domains and CNNs. In this chapter, we will describe
an approach to the use of particle swarm optimization (PSO) for automatically
searching for and learning the optimal CNN architectures. We will provide an
encoding strategy inspired by computer networks to encode CNN layers and to allow
the proposed method to learn variable-length CNN architectures by focusing only on
the single objective of maximizing the classification accuracy. A surrogate dataset
will be used to speed up the evolutionary learning process. We will also include a
multi-objective way for PSO to evolve CNN architectures in the chapter. The PSO-
based algorithms are examined and compared with state-of-the-art algorithms on a
number of widely used image classification benchmark datasets. The experimental
results show that the proposed algorithms are strong competitors to the state-of-the-
art algorithms in terms of classification error. A major advantage of the proposed
methods is the automated design of CNN architectures without requiring human
intervention and good performance of the learned CNNs.

6.1 Introduction

Image classification has been attracting increasing interest both from the academic
and industrial researchers due to the exponential growth of images in terms of
both the number and the resolution, and the meaningful information extracted from
images. Convolutional neural networks (CNNs) have been investigated to solve the
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image classification tasks and are considered a state-of-the-art approach to image
classification. However, designing the architectures of CNNs for specific tasks can
be extremely complex, which can be seen from some existing efforts done by
researchers, such as LeNet [20, 21], AlexNet [17], VGGNet [27], and GoogLeNet
[34]. In addition, one cannot expect to get the optimal performance by applying the
same architecture on various tasks, and the CNN architecture needs to be adjusted
for each specific task, which will bring tremendous work as there are a large number
of types of image classification tasks in industry.

In order to solve the complex problem of the CNN architecture design, evolu-
tionary computation (EC) has recently been leveraged to automatically design the
architecture without much human effort involved. Interested researchers have done
excellent work on the automated design of the CNN architectures by using genetic
programming (GP) [31] and genetic algorithms (GAs) [30, 33], such as large-scale
evolution of image classifiers (LEIC) method [24] recently proposed by Google,
which have shown that EC can be used in learning CNN architectures that are
competitive with the state-of-the-art algorithms designed by humans. However, the
learning process for large data is too slow due to the high computational cost for
most of the methods and it might not be practical for industrial use.

A lot of work has been done in order to improve using EC to evolve a CNN
architecture, such as the recent proposed EvoCNN using GAs [32]. One of the
improvements in EvoCNN is that during the fitness evaluation, instead of training
the model for 25,600 steps in LEIC, it only trains each individual by 10 epochs,
which dramatically speeds up the learning process. The rationale behind EvoCNN
using 10 epochs is that the researchers believe that training 10 epochs can obtain
the major trend towards a good CNN architecture, which would be decisive to
the final performance of a model, having been verified by their experiments.
However, not a lot of research has been done by using other EC methods to evolve
the architectures of CNNs, so we would like to introduce another EC method
for evolving the architectures of CNNs without any human interference. Since
particle swarm optimization (PSO) has the advantages of easy implementation,
lower computational cost, and fewer parameters to adjust, a PSO method will be
introduced in this chapter. As the fixed-length encoding of the particle in traditional
PSO is a big challenge for evolving the architectures of CNN since the optimal CNN
architecture varies for different tasks, a pseudo-variable-length PSO with a flexible
encoding scheme inspired by computer networks will be introduced to break the
fixed-length constraint. In order to reduce the computational cost, a small subset,
which samples from the training dataset, will be used as a surrogate dataset to speed
up the evolutionary process of the PSO method.

The classification accuracy has been significantly improved on hard problems in
recent years because the rapid development of hardware capacity makes it possible
to train very deep CNNs. A couple of years ago, VGG [27], which was deemed
as a very deep CNN, only had 19 layers, but the recently proposed ResNet [10]
and DenseNet [12] were capable of effectively training CNNs of more than 100
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layers, which dramatically reduced the classification error rate. However, it is hard
to deploy CNNs in real-life applications mainly because a trade-off between the
classification accuracy and inference latency needs to be made, which is hard to
be decided by application developers. Taking DenseNet as an example, although
several DenseNet architectures are manually evaluated [12], there are two obstacles
for applying DenseNet in real-life applications: Firstly, the hyperparameters may
not be optimized, and for different tasks, the optimal model is not fixed, so before
integrating DenseNet into applications, the hyperparameters have to be fine-tuned,
which can be very complicated; Secondly, since an optimal DenseNet for a specific
task may be extremely deep, the inference latency can be too long in some real-life
applications such as web applications or mobile applications given limited hardware
resource. This means that the classification accuracy may need to be compromised
by reducing the complexity of DenseNet in order to reduce the inference latency to
an acceptable amount of time. This chapter will also include a multi-objective PSO
method to evolve CNN architectures, which will produce a Pareto set of solutions,
so the real-world end users can choose one according to the computing resource and
the classification requirement.

6.1.1 Goals

1. The first overall goal of this chapter is demonstrate how to develop an effective
and efficient PSO method to automatically discover good architectures of CNNs.
The specific objectives of this goal are to:

(a) Design a new particle encoding scheme that has the ability of effectively
encoding a CNN architecture, and develop a new PSO algorithm based on
the new encoding strategy.

(b) Design a method to break the constraint of the fixed-length encoding of
traditional PSO in order to learn variable-length architectures of CNNs. We
will introduce a new layer called disabled layer to attain a pseudo-variable-
length particle.

(c) Develop a fitness evaluation method using a surrogate dataset instead of the
whole dataset to significantly speed up the evolutionary process.

2. The second overall goal is to depict a multi-objective particle swarm optimization
(MOPSO) method to balance the trade-off between the classification accuracy
and the inference latency, which is named MOCNN. MOCNN automatically
tunes the hyperparameters of CNNs and deploys the trained model for better
industrial use. To be more specific, an MOPSO method will be developed to
search for a Pareto front of models. Therefore, industrial users can obtain the
most suitable model for their specific problem based on their image classification
task and the target devices. The specific objectives of this goal are listed below:



158 B. Wang et al.

(a) As DenseNet achieved the competitive classification accuracy comparing the
state-of-the-art methods, in order to reduce the search space, this work will
focus on optimizing the hyperparameters of each dense block by pre-defining
the number of dense blocks, such as the growth rate of each dense block,
and the number of layers of each dense block. An encoding strategy will be
introduced to encode the dense blocks;

(b) There are two major factors—classification accuracy and computational cost,
which are decisive to the performance of the neural network. An MOPSO
application will be developed to optimize the hyperparameters of dense
blocks by jointly considering the classification accuracy and the computa-
tional cost. The two specific objectives are classification accuracy and FLOPs
(floating point operations) where FLOPs can reflect the computational cost
of both training and inference;

6.2 Background

6.2.1 CNN Architecture

Figure 6.1 exhibits a general architecture of a CNN with two convolutional (Conv)
layers, two pooling layers, and two fully-connected layers—one hidden layer and
one output layer at the end [14]. It is well-known that when designing a deep CNN
architecture, the number of Conv layers, pooling layers, and fully-connected layers
before the last output layer have to be properly defined along with their positions and
configurations. Different types of layers have different configurations as follows:
filter size, stride size, and feature maps are the main attributes of the configuration
for the Conv layer; Kernel size, stride size, and pooling type—max-pooling or
average pooling—are the important parameters for the configuration of the pooling
layer; and the number of neurons is the key attribute of the fully-connected layer.

Input Convolu�on1 Pool1

Feature extrac�on Classifica�on

Convolu�on2 Pool2 Hidden Output

Fig. 6.1 A general architecture of the convolutional neural network [14]
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6.2.2 Internet Protocol Address

An Internet Protocol address (IP address) is a numerical label assigned to each
device connected to a computer network that uses the Internet Protocol for
communication [23]. In order to identify the network of an IP address, the subnet
is introduced, which is often described in CIDR (Classless Inter-Domain Routing)
style [7] by combining the starting IP address and the length of the subnet mask
together. Both the IP address used for identifying the host and its corresponding
subnet used for distinguishing different networks are carried by a network interface.
For example, a standard IP address of a 32-bit number could be 192.168.1.251,
and a standard subnet carries the starting IP address and the length of the subnet
mask could be 192.168.1.0/8, which indicates the IP address in the subnet starts
from 192.168.1.0 and the length of the subnet mask is 8 defining an IP range from
192.168.1.0 to 192.168.1.255.

Although the outlook of the IP address is a sequence of decimal numbers
delimited by full stops, the binary string under the hood is actually used for the
network identification, which inspires the new PSO encoding scheme. As there are
several attributes in the configuration of each type of CNN layers, each of which
is an integer value within a range, each value of the attribute can be smoothly
converted to a binary string, and several binary strings, each of which represents
the value of an attribute, can be concatenated to a large binary string to represent
the whole configuration of a specific layer. It is obvious that the binary string suits
the requirement of encoding CNN layers to particles. However, in this way, a huge
number converted from the binary string will have to be used as one dimension
of the particle vector, which may result in a horrendous searching time in PSO.
On the other hand, in the IP structure, instead of utilizing one huge integer to
mark the identification (ID) of a device in a large network, in order to make the
IP address readable and memorable, it divides a huge ID number into several
decimal values less than 256, each of which is stored in one byte of the IP address.
In this way, the binary string can be divided into several bytes, and each byte
comprises one dimension of the particle vector. The convergence of PSO can be
facilitated by splitting one dimension of a large number to several dimensions of
small numbers because in each round of the particle updates, all of the dimensions
can be concurrently learned and the search space of one split dimension is much
smaller. In this chapter, the new particle encoding scheme will use this idea to gain
the flexibility of encoding various types of layers into a particle, and drastically cut
down the learning process, which will be described in the next section.

6.2.3 DenseNet

A DenseNet is composed of several dense blocks, which are connected by a convolu-
tional layer followed by a pooling layer, and before the first dense block, the input is



160 B. Wang et al.

Fig. 6.2 DenseNet architecture (image taken from [12])

filtered by a convolutional layer. An example of a DenseNet comprising three dense
blocks is outlined in Fig. 6.2. Apart from the dense blocks, the hyperparameters of
the other layers are fixed. The hyperparameters for the convolutional layer before the
first block are problem-specific based on the image size in order to reduce the image
size of the input feature maps passed to the first block; while the hyperparameters
of the layers between blocks are problem-agnostic, which are a 1× 1 convolutional
layer and a 2 × 2 average pooling layer. However, the hyperparameters of dense
blocks vary depending on specific image classification tasks, which are the number
of layers in the dense block and the growth rate of the dense block. The growth rate
is the number of output feature maps for each convolutional layer in the dense block.
The output xl is calculated according to Formula (6.1), where [x0, x1, . . . , xl−1]
refers to the concatenation of the feature maps obtained from layer 0, 1, . . ., l−1, and
Hl represents a composite function of three consecutive operations, which are batch
normalization (BN) [13], a rectified linear unit (ReLU) [9], and 3 × 3 convolution
(Conv).

xl = Hl([x0, x1, . . . , xl−1]) (6.1)

Algorithm 1 OMOPSO
1: P,A← Initialize swarm, initialize empty ε-archive;
2: g ← Set the current generation g to 0;
3: L← Select leaders from P ;
4: Send L to A;
5: crowding(L)
6: while g < gmax do
7: for particle in P do
8: Select leader, updating, mutation and evaluation
9: Update pbest

10: end for
11: L ← Update leaders
12: Send L to A;
13: crowding(L)
14: g ← g + 1
15: end while
16: Report results in A
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6.2.4 OMOPSO

OMOPSO [26] is a multi-objective optimization approach based on Pareto domi-
nance. The crowding distance is established as a second discrimination criterion in
addition to Pareto dominance to select the leaders. To calculate the crowding dis-
tance of a particular solution, it calculates the average distance of two surrounding
points on either side of the particular solution along each of the objectives. The
pseudocode of OMOPSO is written in Algorithm 1. There are a few items in the
algorithm that need to be pointed out. First of all, there are two archives used by the
algorithm: the first archive stores the current leaders that are used for performing
the updating, and the other one carries the final solutions. The final solutions are the
non-dominant solutions according to ε-Pareto dominance [19]. In addition, when the
maximum number of leaders is exceeded, the crowding distance [6, 22] is used to
filter out the leaders in order to keep the number of leaders within the maximum
number limit. The solution set comprised of the selected leaders is represented
by L in Algorithm 1, and the final solution set is called ε-archive represented
by A in Algorithm 1. Thirdly, for each particle, when selecting a leader for the
updating of OMOPSO, the binary tournament based on the crowding distance is
applied. Finally, PSO update is performed for the leaders. Then, the particles are
divided into three parts of equal size, and three mutation schemes are applied on
the three parts, respectively. The first part has no mutation at all, the second part
has uniform mutation (i.e., the variability range allowed for each decision variable
is kept constant over generations), and the third part has non-uniform mutation (i.e.,
the variability range allowed for each decision variable decreases over time).

6.3 The Methods

This section provides two main methods in details—one with single objective and
the other with multiple objectives.

6.3.1 Single-Objective PSO Method

In this sub-section, the new IP-based PSO (IPPSO) method for evolving deep
CNNs, which focuses solely on a single objective of classification accuracy, will
be presented in detail.
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6.3.1.1 Algorithm Overview

Algorithm 2 Framework of IPPSO
P ← Initialize the population with the proposed particle encoding strategy;
Pid ← empty;
Pgd ← empty;
while termination criterion is not satisfied do

update velocity and position of each particle shown in Algorithm 4;
evaluate the fitness value of each particle;
update Pid and Pgd ;

end while

Algorithm 2 outlines the framework of the single-objective PSO method. There
are mainly four steps, which are initializing the population by using the particle
encoding strategy, updating the position and velocity, fitness evaluation, and
checking whether the termination criterion is met.

6.3.1.2 Particle Encoding Strategy to Encode CNN Layers

The IPPSO encoding strategy is inspired by how the Network IP address works.
Although the CNN architecture is comprised of three types of layers—convolutional
layer, pooling layer, and fully-connected layer, and the encoded information of
different types of layers varies in terms of both the number of parameters and the
range in each parameter shown in Table 6.1, a Network IP address with a fixed
length of enough capacity can be designed to accommodate all the types of CNN

Table 6.1 The parameters of different types of CNN layers—convolutional, pooling, fully-
connected, and disabled layer with an example in the example column

Layer type Parameter Range # of Bits Example value

Conv Filter size [1,8] 3 2(001)

# of feature maps [1,128] 7 32(000 1111)

Stride size [1,4] 2 2(01)

Summary 12 001 000 1111 01

Pooling Kernel size [1,4] 2 2(01)

Stride size [1,4] 2 2(01)

Type: 1 (maximal), 2 (average) [1,2] 1 2(1)

Place holder [1,128] 6 32(00 1111)

Summary 11 01 01 0 00 1111

Fully-connected # of Neurons [1,2048] 11 1024(011 11111111)

Summary 11 011 11111111

Disabled Place holder [1,2048] 11 1024(011 11111111)

Summary 11 011 11111111



6 PSO for Evolving Deep CNNs for Image Classification 163

layers, and then the Network IP can be divided into numerous subsets, each of which
can be used to define a specific type of CNN layers.

First of all, the length of the binary string under the IP-based encoding scheme
needs to be designed. With regard to Conv layers, firstly, there are three key
parameters—filter size, number of feature maps, and stride size listed in the
column of parameter in Table 6.1, which are the fundamental factors affecting the
performance of CNNs. Secondly, based on the size of benchmark datasets, the range
of the parameters is set to [1,8], [1,128], and [1,4] for the aforementioned three
parameters, respectively, shown in the column of range in table 6.1. Thirdly, taking
a CNN architecture with the filter size of 2, number of feature maps of 7, and stride
size of 2 as an example, the decimal values can be converted to the binary strings of
001, 000 1111, and 01, where the binary string converted from the decimal value is
filled with 0s until the length reaches the corresponding number of bits, illustrated
in the column of Example Value in Table 6.1. Lastly, the total number of bits of
12 and the sample binary string of 001 000 1111 01 by concatenating the binary
strings of the three parameters are displayed in the summary row of Conv layer in
Table 6.1. In terms of pooling layers and fully-connected layers, the total number of
bits and the sample binary string can be obtained by following the same process of
Conv layers, which are listed in the summary rows of pooling and fully-connected
layers in Table 6.1. As the largest number of bits to represent a layer is 12 as shown
in Table 6.1 and the unit of an IP address is one byte—8 bits, there will be 2 bytes
required to accommodate the 12 bits IP address.

In addition, the subnets for all types of CNN layers need to be defined according
to the number of bits of each layer illustrated in Table 6.1 and CIDR style will
be used to represent the subnet. As there are three types of CNN layers, we need
to define three subnets with enough capacity to represent all the types of layers.
Starting with the Conv layer, 0.0 is designed as the starting IP address of the subnet;
in addition, the total length of the designed 2-byte IP address is 16 and the total
number of bits required by the Conv layer is 12, so the subnet mask length is 4
calculated by subtracting the total number of bits from the length of the IP address,
which brings the subnet representation to 0.0/4 with the range from 0.0 to 15.255.
Regarding the pooling layer, the starting IP address is 16.0 obtained by adding 1
to the last IP address of the Conv layer, and the subnet mask length is 5 calculated
in the same way as that of the Conv layer, which results in 16.0/5 with the range
from 16.0 to 23.255 as the subnet representation of the pooling layer. Similarly,
the subnet 24.0/5 with the range from 24.0 to 31.255 is designed as the subnet of
the fully-connected layer. In order to make the subnets clear, all of the subnets are
depicted in Table 6.2.

6.3.1.3 Pseudo-Variable-Length Representation by Introducing Disabled
Layers

As the particle length of PSO is fixed after initialization, in order to cope with the
variable length of the architectures of CNNs, an effective way of disabling some
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Table 6.2 Four subnets
distributed to the three types
of CNN layers and the
disabled layer

Layer type Subnet (CIDR) IP range

Convolutional layer 0.0/4 0.0−15.255

Fully-connected layer 16.0/5 16.0−23.255

Pooling layer 24.0/5 24.0−31.255

Disabled layer 32.0/5 32.0−39.255

Table 6.3 An example of IP
addresses—one for each type
of CNN layers

Layer type Binary (filled to 2 bytes) IP address

Convolutional layer (0000)001 000 1111 01 2.61

Pooling layer (00000)01 01 0 00 1111 18.143

Fully-connected layer (00000)011 11111111 27.255

Disabled layer (00000)01111111111 35.255

of the layers in the encoded particle vector will be used to achieve this purpose.
Therefore, another layer type called the disabled layer and the corresponding subnet
named the disabled subnet are introduced. To achieve a comparable probability for
the disabled layer, the least total number of bits of 11 among all three types of CNN
layers is set as the number of bits of the disabled layer, so the disabled subnet comes
to 32.0/5 with the range from 32.0 to 39.255, shown in Table 6.2, where each layer
will be encoded into an IP address of 2 bytes. Table 6.3 shows how the example in
Table 6.1 is encoded into IP addresses by combining all the binary string of each
parameter of a specific layer into one binary string, filling the combined binary
string with zeros until reaching the length of 2 bytes, applying the subnet mask on
the binary string, and converting the final binary string to an IP address with one
byte as a unit delimited by full stops. For instance, the sample binary string of the
Conv layer in Table 6.1 is 001 000 1111 01, which is filled to 0000 001 000 1111
01 to reach the length of 2 bytes. Then, 2-byte binary string—0000 0010 and 0011
1101, can be obtained by applying the subnet mask, in which the starting IP address
of the subnet is added to the binary string. Finally, the IP address of 2.61 is achieved
by converting the first byte to the decimal value of 2 and the second byte to 61.

6.3.1.4 An Example of the Encoding Strategy

After converting each layer into a 2-byte IP address, the position and velocity of
PSO can be defined. However, there are a few parameters that need to be mentioned
first—max_length (maximum number of CNN layers), max_fully_connected (maxi-
mum fully-connected layers with the constraint of at least one fully-connected layer)
listed in Table 6.4. The encoded data type of the position and the velocity will be a
byte array with a fixed length of max_length × 2 and each byte will be deemed as
one dimension of the particle.
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Table 6.4 Parameter list

Parameter name Parameter meaning Value

max_length Maximum length of CNN layers 9

max_fully_connected Maximum fully-connected layers given 3

at least there is one fully-connected layer

N Population size 30

k The training epoch number before evaluating 10

the trained CNN

num_of_batch The batch size for evaluating the CNN 200

c1 Acceleration coefficient array for Pid [1.49618,1.49618]

c2 Acceleration coefficient array for Pgd [1.49618,1.49618]

w Inertia weight for updating velocity 0.7298

vmax Maximum velocity [4,25.6](0.1× search
range)

2 61 18 143 2 61 35 255 27 255

2.61(C)

(a)

(b)

18.143(P) 2.61(C) 35.255(D) 27.255(F)

Fig. 6.3 An example IP Address and its corresponding particle vector. (a) An example of IP
addresses in a particle containing 5 CNN layers. (b) An example of a particle vector with 5 CNN
layers encoded

Here is an example of a particle vector to explain how the CNN architecture
is encoded and how it copes with variable length of CNN architecture. Assume
max_length is 5, a sequence of IP addresses representing a CNN architecture with
the maximum number of 5 layers can be encoded into 5 IP addresses in Fig. 6.3a
by using the sample IP addresses in Table 6.3, where C represents a Conv layer, P
represents a pooling layer, F represents a fully-connected layer, and D represents a
disabled layer. The corresponding particle vector with the dimension of 10 is shown
in Fig. 6.3b. Since there is one disabled layer in the example, the actual number of
layers is 4. However, after a few PSO updates, the seventh dimension and the eighth
dimension of the particle vector may become 18 and 143, respectively, which turns
the third IP address representing a disabled layers to a pooling layer, so the updated
particle carries a CNN architecture of 5 layers. Conversely, after a few updates, the
fifth dimension and the sixth dimension of the particle vector may become 35 and
255, respectively, which makes the third IP address fall into the disabled subnet,
so the actual number of layers is 3. To conclude, as shown in this example, the
particle with IPPSO encoding scheme is capable of representing variable-length
architectures of CNNs—3, 4, and 5 in this example.
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6.3.1.5 Population Initialization

In terms of the population initialization, after the size of the population is set
up, individuals are randomly created until reaching the population size. For each
individual, an empty vector is initialized first, and each element in it will be used to
store a Network Interface containing the IP address and subnet information. The
first element will always be a Conv layer. From the second to (max_length −
max_f ully_connected) layer, each element can be filled with a Conv layer,
pooling layer, or disabled layer. From (max_length − max_f ully_connected) to
(max_length−1) layer, it can be filled with any of the four types of layers until the
first fully-connected is added, and after that only fully-connected layers or disabled
layers are allowed. The last element will always be a fully-connected layer with the
size the same as the number of classes. In addition, each layer will be generated
with the random settings—a random IP address in a valid subnet.

6.3.1.6 Fitness Evaluation

Algorithm 3 Fitness evaluation
Input: The population P , the training epoch number k, the training set Dtrain, the fitness

evaluation dataset Df itness , the batch size batch_size;
Output: The population with fitness P ;

for individual ind in P do
i ← 1;
while i <= k do

Train the connection weights of the CNN
represented by individual ind;

end while
accy_list ← Batch-evaluate the trained model on the dataset Df itness with the batch size
batch_size and store the accuracy for each batch;
mean ← Calculate the mean value of acc_list

f itness ← mean;
P ← Update the fitness of the individual ind in the population P ;

end for
return P ;

In order to speed up the CNN training process in fitness evaluation, a small
subset is randomly sampled from the whole training dataset, which is used as the
surrogate dataset. The surrogate dataset is then split into the training set Dtrain and
the fitness evaluation dataset Dfitness, shown in Algorithm 3. Before performing the
fitness evaluation, a proper weight initialization method has to be chosen, and Xavier
weight initialization [8] is chosen as it has been proved as an effective way, and has
been implemented in most of deep learning frameworks. With regard to the fitness
evaluation (shown in Algorithm 3), each individual is decoded to a CNN architecture
with its settings, which will be trained for k epochs on the first part of the training
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dataset. Then the partially trained CNN will be batch-evaluated on the second part of
the training dataset, which will produce a series of accuracies. Finally, we calculate
the mean value of the accuracies for each individual, which will be stored as the
individual fitness.

6.3.1.7 Update Particle with Velocity Clamping

vid (t + 1) = w ∗ vid (t)+ c1 ∗ r1 ∗ (Pid − xid(t))+
c2 ∗ r2 ∗ (Pgd − xid(t))

(6.2)

xid (t + 1) = xid(t)+ vid (t + 1) (6.3)

Algorithm 4 Update particle with velocity clamping
Input: particle individual vector ind, acceleration coefficient array for Pid c1, acceleration

coefficient array for Pgd c2, inertia weight w, max velocity array vmax ;
Output: updated individual vector ind;

for element interf ace in ind do
i ← 0;
for i < number of bytes of IP address in interf ace do

x ← the ith byte of the IP address in the interf ace;
(r1, r2)) ← uniformly generate r1, r2 between [0, 1];
vnew ← Update velocity based on Equation 6.4;
vnew ← Apply velocity clamping using vmax ;
xnew ← x + vnew

if xnew > 255 then
xnew ← xnew − 255;

end if
end for

end for
f itness ← evaluate the updated individual ind;
(Pid , Pgd) ← Update pbest and gbest by comparing their f itness;
return ind;

In Algorithm 4, as each layer is encoded into an interface with 2 bytes in the
particle vector, and we want to control the acceleration coefficients for each byte,
the two acceleration coefficients implemented as two float arrays with the size of
2 are required shown in Eq. 6.4. v and x are decimal values of the ith byte of the
2-byte IP address and its corresponding velocity, Pid and Pgd are decimal values of
the ith byte of the IP address of the local best and the global bet, respectively, and
w, r1, r2 are the same as traditional PSO in Eq. 6.2. The major difference is how
the acceleration coefficients are implemented—c1[i] and c2[i] are the acceleration
coefficients for the ith byte of the IP address, where i is 1 or 2 in the case of 2-byte
IP encoding, comparing to a singular value for each of the acceleration coefficients
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in traditional PSO. The reason of separating the acceleration coefficients for each
byte of the IP address is that different parameters may fall into different bytes of the
IP address, and the ability to explore a specific parameter more than others may be
needed when fine-tuning the learning process.

After the coefficients defined, the velocity is initialized as a vector of all zeros.
Then, we go through each byte in the particle and update the velocity and position
by using the corresponding coefficients for that byte. The updated position may be
an array of real value, but our proposed byte array must contain integer values, so
each byte of the updated position needs to be rounded off to achieve a byte array.
Since there are some constraints for each interface in the particle vector according
to its position in the particle vector, e.g. the second interface can only be a Conv
layer, a pooling layer, or a disabled layer, the new interface needs to be replaced by
an interface with a random IP address in a valid subnet if the new interface does not
fall in a valid subnet. After all the bytes being updated, the new particle is evaluated,
and the fitness value is compared with the local best and the global best in order to
update the two bests if needed.

vnew = w × v + c1[i] × r1 × (Pid − x)+ c2[i] × r2 × (Pgd − x) (6.4)

6.3.1.8 Best Individual Selection and Decoding

The global best of PSO will be reported as the best individual. In terms of the
decoding, a list of network interfaces, stored in every 2 bytes from left to right in the
particle vector of the global best, can be extracted from a particle vector. According
to the subnets in Table 6.2, the type of layer can be distinguished, and then based
on Table 6.1, the IP address can be decoded into different sets of binary string,
which indicates the parameter values of the layer. After decoding all the interfaces
in the global best, the final CNN architecture can be attained by connecting all of
the decoded layers in the same order as that of the interfaces in the particle vector.

6.3.2 Multi-Objective PSO Method

This sub-section describes a multi-objective method for evolving CNNs.

6.3.2.1 Algorithm Overview

The framework of the multi-objective PSO method named MOCNN has three steps.
The first step is to initialize the population based on the proposed particle encoding
strategy. At the second step, the multi-objective PSO algorithm called OMOPSO
[26] is applied to optimize the two objectives, which are the classification accuracy
and the FLOPs. Lastly, the non-dominant solutions in the Pareto set are retrieved,
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Fig. 6.4 The flowchart of the experimental process

from which the actual user of the CNNs can choose one based on the usage
requirements.

Figure 6.4 shows the overall structure of the system. The dataset is split into
a training set and a test set, and the training set is further divided into a gradient
training set and a evolutionary training set. The gradient training set and the
evolutionary training set are passed to the proposed OMOPSO method for the
objective evaluation. The proposed OMOPSO method produces non-dominant
solutions, which are the optimized CNN architectures. Depending on the trade-off
between the classification accuracy and the hardware resource capability, one of the
non-dominant solutions can be selected for actual use. The CNN evaluation needs
to be fine-tuned for the selected CNN architecture, and the whole training set and
the test set are used to obtain the final classification accuracy.

6.3.2.2 Particle Encoding Strategy

In DenseNet, the hyperparameters, which need to be optimized, are the number of
bocks, the number of layers in each block, and the growth rate of each block. For
each of the block, a vector with the length of two can represent the number of layers
and the growth rate in the block. Once the number of blocks is defined, the number
of layers and the growth rate in each block can be encoded into a vector with the
fixed length of 2× the number of blocks. Figure 6.5 shows an example of the vector,
which carries the hyperparameters of DenseNets with 3 blocks.

Fig. 6.5 An example of a particle vector
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6.3.2.3 Population Initialization

Before initializing the population, the range of each dimension has to be worked out
first based on the effectiveness of the network and the capacity of hardware resource.
If the number of layers in a block is too small, e.g. the number of layers is smaller
than 2, there will not be any shortcut connections built in the dense block, and a very
small number of feature maps, i.e. a too small growth rate, will not produce effective
feature maps either. On the other hand, if the number of layers or the growth rate
is too big, the hardware resource required to run the experiment will likely exceed
the actual capacity of the hardware. The specific range of each dimension of our
experiment will be designed and listed in Sect. 6.4.3.

The initial population is randomly generated based on the range of each
dimension, whose pseudocode is composed in Algorithm 5. To be more specific,
when randomly generating an individual, a random value is generated according to
the range of each dimension from the first dimension until the last dimension; by
repeating the individual generation process until the population size is satisfied, the
whole initial population with a fixed population size will be successfully generated.

Algorithm 5 Population initialization
Input: particle dimension d, population size ps , a list of dimension value range r;
1: P ← Empty population set;
2: i ← 0;
3: while i < ps do
4: ind ← Empty particle;
5: while j < d do
6: ind[j ] ← Generate a random number within the range r[j ];
7: end while
8: P ← Append ind to P ;
9: end while

10: return P ;

6.3.2.4 Objective Evaluation

As MOCNN simultaneously optimizes the classification accuracy and the FLOPs,
in the objective evaluation of MOCNN, both of them are calculated and returned
as the objectives of the individual shown in Algorithm 6. When obtaining the
classification accuracy, before training the individual representing a DenseNet with
its specific hyperparameters, the training dataset is divided into two parts, which are
the gradient training set and the evolutionary training set, and then the individual
is trained on the gradient training set and evaluated on the evolutionary training
set using a back propagation algorithm with an adaptive learning rate called Adam
optimization [15] with the default settings, which are α = 0.001, β1 = 0.9, β2 =
0.999, and ε = 10−8. The optimization target of MOCNN is to maximize the
classification accuracy; in regard to the computational cost, the FLOPs is calculated
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for the individual, which is used as the second objective, and MOCNN will try to
minimize the number of FLOPs. Since the number of FLOPs is fixed once the CNN
architecture is defined, the calculation of FLOPs can be performed at any stage
regardless of the CNN training process.

Algorithm 6 Objective evaluation
Input: individual ind, maximum epochs emax , accuracy list of trained CNNs accsaved ;
1: if ind in accsaved then
2: accbest ← retrieve the accuracy of ind from accsaved ;
3: else
4: accbest , ebest , e ← 0, 1, 0;
5: while e < emax do
6: Apply Adam optimization [15] to train ind on the gradient training set dt ;
7: acct ← evaluate the trained ind on the evolutionary training set dt ;
8: if acct > accbest then
9: accbest , ebest ← acct , e;

10: else if e − ebest > 10 then
11: break
12: end if
13: end while
14: accsaved ← Append ind and accbest to accsaved ;
15: end if
16: f lops ← calculated FLOPs of ind;
17: ind ← update the accuracy and FLOPs of ind by accbest and f lops;
18: return ind;

Since training CNNs takes much longer time than that of calculating FLOPs,
a couple of methods have been implemented to reduce the computational cost of
getting the classification accuracy. First of all, an early stop criterion of terminating
the training process when the accuracy does not increase in the next 10 epochs
is adopted to potentially reduce the epochs of the training process, which as
a result, decreases the training time. It worked particularly effective to search
for CNN architectures because the complexity of different individuals may vary
significantly, which may require a various number of epochs to completely train
different individuals. For example, as the CNN architecture can be as simple as one
or two layers with a very small number of feature maps, the number of epochs
needed to train the CNN can be very small. When the CNN architecture is as
complicated as one containing hundreds of layers with a really large number of
feature maps in each layer, it will require many more epochs to completely train the
complicated CNN. Therefore, it is hard to define a fixed number of epochs to be
used by the objective evaluation to train CNNs with various complexities. Instead,
MOCNN sets a maximum number of epochs, which is large enough to fully train the
most complicated CNNs in our search space, and utilizes the early stop criterion to
stop the training process at an earlier stage in order to save the computational cost.
In addition, since each individual will be evaluated by the objective evaluation in
each generation, there may be a large number of CNNs evaluated across the whole
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evolutionary process, among which there may be individuals representing the same
CNN architecture duplicately trained and evaluated. For the purpose to prevent the
same CNN from the duplicate training, the classification accuracy obtained for each
individual in the objective evaluation is stored in the memory, which is persisted
just before the program finishes, and loaded at the beginning of the program. In the
objective evaluation, before training the individual, a search for the individual in the
stored classification accuracy is performed first, and the training procedure will be
executed only when the search result is empty.

Adam optimization [15] is chosen as the backpropagation algorithm, and the
whole training dataset is used to evaluate the CNNs. As to our best knowledge,
two other methods of objective evaluation were found being used in the area of
using EC method to automatically design CNN architectures. The first method used
in [24] is to use stochastic gradient descent (SGD) [3] with a scheduled learning
rate, e.g. 0.1 as the learning rate before 150 epochs, and the learning rate divided
by 10 at the epoch of 150 and 200, respectively. From the settings of SGD for
training VGGNet [27], ResNet [10], and DenseNet [12], it can be observed that
the SGD settings are quite different, which means that a set of SGD settings may be
good for a specific type of CNNs, but may not work well for other types of CNNs.
Therefore, it is very hard to perform a fair comparison between two various CNNs
that need SGDs with different settings to optimize, which results in the preference
of a specific set of CNNs in the EC algorithm. The second method is to train
the CNN for a small number of epochs used in [2, 36, 37, 39]. It speeds up the
training process by restraining the number of training epochs, which relies on the
assumption that the CNN architecture with a good performance at the beginning
would perform well in the end, but to our best effort, a strong evidence has not been
found to prove the assumption in either theoretical or empirical study. As a result,
the evolutionary process may prefer the CNN architectures that perform well at the
beginning without any guarantee of achieving a good classification accuracy in the
end, but it is the classification accuracy in the end that should be used to select CNN
architectures. Both of these two methods may introduce some bias toward a specific
set of CNN architectures. However, by using the Adam optimization to train the
CNNs on the whole training dataset, it could mitigate or even eliminate the bias
of the aforementioned two methods because the learning rate will be automatically
adapted during the training process based on the CNN architecture and the dataset,
and the training process will stop until the convergence of the Adam optimization.
So, the objective evaluation method in MOCNN is expected to be able to reduce the
bias.
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6.4 Experiment Design

6.4.1 Benchmark Datasets

To examine the performance of the IPPSO method, three datasets are chosen from
the widely used image classification benchmark datasets. They are the MNIST Basic
(MB) [18], the MNIST with Rotated Digits plus Background Images (MRDBI), [18]
and the Convex Sets (CS) [18].

The first two benchmark datasets are two of the MNIST [21] variants for
classifying 10 hand-written digits (i.e., 0–9). There are a couple of reasons for
using MNIST variants instead of MNIST. Firstly, as the classification accuracy of
MNIST has achieved 97%, in order to challenge the algorithm, different noises
(e.g., random backgrounds, rotations) are added into these MNIST variants from
the MNIST to improve the complexity of the dataset. Secondly, there are 12,000
training images and 50,000 test images in these variants, which further challenges
the classification algorithms due to the much less training data but more test data.
The third benchmark dataset is for recognizing the shapes of objects (i.e., convex
or not), which contains 8,000 training images and 50,000 test images. Since it is a
two-class classification problem comparing to 10 classes of MNIST dataset, and the
images contain shapes rather than digits, it is chosen as a supplement benchmark to
the two MNIST variants in order to thoroughly test the performance of IPPSO.

Each image in these benchmarks is with the size 28 × 28. Another reason for
choosing these three benchmark datasets is that different algorithms have reported
their promising results, so it is convenient for comparing the performance of IPPSO
with these existing algorithms.

However, for examining the performance of MOCNN, based on the computa-
tional cost of the algorithm that needs to be evaluated and the hardware resource to
run the experiment, the CIFAR-10 dataset will be chosen as the benchmark dataset.
It consists of 60,000 color images with the size of 32× 32 in 10 classes, and each
class contains 6000 images. The whole dataset is divided into the training dataset of
50,000 images and the test dataset of 10,000 images [16].

6.4.2 Peer Competitors

In the experiments of IPPSO, state-of-the-art algorithms, that have reported promis-
ing classification errors on the chosen benchmarks, are collected as the peer
competitors of IPPSO. To be specific, the peer competitors on the three benchmarks
are CAE-2 [25], TIRBM [28], PGBM+DN1 [29], ScatNet-2 [4], RandNet-2 [5],
PCANet-2 (softmax) [5], LDANet-2 [5], SVM+RBF [18], SVM+Poly [18], NNet
[18], SAA-3 [18], and DBN-3 [18], which are from the literature [5] recently
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Table 6.5 Parameter list Parameter Value

Objective evaluation

Initial learning rate 0.1

Batch size 128

Maximum epochs 300

Particle encoding

Number of blocks 4

The range of growth rate in
all four blocks

8 to 32

The range of number of
layers in the first block

4 to 6

The range of number of
layers in the second block

4 to 12

The range of number of
layers in the third block

4 to 24

The range of number of
layers in the fourth block

4 to 16

OMOPSO

ε values in the format of
[accuracy, FLOPs]

[0.01, 0.05]

published and the provider of the benchmarks.1 However, for MOCNN, we will
focus on the quality of the Pareto set, and will compare the non-dominated solution
with the best classification accuracy with DenseNet.

6.4.3 Parameter Settings

All the parameter settings of IPPSO are set based on the conventions in the
communities of PSO [35] and deep learning [11] which are listed in Table 6.4.

IPPSO is implemented in TensorFlow [1], and each copy of the code runs on a
computer equipped with two GPU cards with the identical model number GTX1080.
Due to the stochastic nature of IPPSO, 30 independent runs are performed on
each benchmark dataset, and the mean results are used for the comparisons unless
otherwise specified.

As the multi-objective PSO method consists of two parts, which are the multi-
objective EC algorithm called OMOPSO and the process of training deep CNNs in
the objective evaluation, the parameters listed in Table 6.5 are set according to the
conventions of the communities of EC and deep learning with the consideration of
the computational cost and complexity of the search space in MOCNN method.

1http://www.iro.umontreal.ca/lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML
2007.

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007
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However, several parameters are specific to MOCNN method, which will be
discussed in details in the following paragraphs.

First of all, since the proposed particle encoding strategy is exclusively designed
for MOCNN, the parameters are customized for effectively and efficiently running
our MOCNN experiment. As the purpose of MOCNN is to explore the Pareto front
of the multi-objective problem of deep CNNs, MOCNN is not focusing on setting
a new benchmark of the classification accuracy. DenseNet-121, which is the least
complex DenseNet reported in the DenseNet paper [12], is chosen as the most com-
plex CNN to be searched by MOCNN due to our limited memory, computational
capacity of our GPU resource and time constraint. Although DenseNet-121 was
not the best DenseNet reported in its paper, the classification accuracy was only
slightly worse than the more complicated DenseNets, and the computational cost
of training DenseNet-121 is quite high, so the least complex DenseNet is set as the
maximum complexity given that the training process needs to be performed 400
(20 individuals× 20 generations) times in the evolutionary process. As a result, the
number of blocks is fixed to 4; 32, which is the growth rate of DenseNet-121, is set
as the maximum value of the growth rate; and the maximum number of layers for the
first, second, third, and fourth block is configured as 6, 12, 24, and 16, respectively,
which is the same as that of DenseNet-121. In terms of the lower bound of the
parameters, if there are too few layers in a block, the dense connection will not
work effectively, and if the growth rate is too small, it will cause the issue of a very
limited number of extracted features, which will not provide enough useful features
for the classification algorithm. Therefore, 4 and 8 are chosen as the lower bounds
of the number of layers in each block and the growth rate, respectively.

In addition, the maximum epochs used to train the CNNs in objective evaluation
is set to 300 based on the number of epochs used to train the most complex CNN
in the search space. To be more specific, 100, 200, and 300 epochs were examined
for training DenseNet-121 to see whether DenseNet-121 could be fully trained. It
turned out training DenseNet-121 for 300 epochs can guarantee the convergence on
the CIFAR-10 dataset used as the benchmark dataset in our experiment.

Furthermore, as the ε value defines the number of non-dominant solutions, which
is demonstrated in Sect. 6.2.4. A few ε values are investigated for each of the
objectives. A smaller value of ε produces fewer non-dominant solutions, while
more non-dominant solutions are obtained by increasing the value of ε. However,
ε value does not affect the evolutionary process of MOCNN, so the ε value is
configured purely based on the number of non-dominant solutions that are preferred
to be displayed in the final result, where the actual industrial users of the proposed
method can choose the best solution by considering the classification accuracy and
the computational cost.

Finally, the population size and the maximum generation need to be designed for
the experiment. 20 and 50 are chosen from the widely used population sizes based
on the convention of the EC community and the high computational cost of our
experiment. The reason for running two experiments with different population sizes
is to explore how population size will affect the results of MOCNN method. Due
to the time constraint, 400 to 500 evaluations are used, which may take 2 weeks.
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Therefore, the experiment with 20 individuals will run for 20 generations and the
other one with 50 individuals will run for 10 generations. In order to better refer
these two experiments, the experiment with 20 individuals and 20 generations is
called EXP-20-20, and EXP-50-10 represents the experiment with 50 individuals
and 10 generations.

6.5 Results and Analysis

6.5.1 Results and Analysis of Single-Objective PSO Method

6.5.1.1 Overall Performance

Experimental results on all the three benchmark datasets are shown in Table 6.6
where the last three rows denote the mean classification errors, the best classification
errors, and the standard deviations of the classification errors obtained by IPPSO
from the 30 runs, and the other rows show the best classification errors reported by
peer competitors.2 In order to conveniently investigate the comparisons, the terms
“(+)” and “(−)” are provided to indicate whether the result generated by IPPSO is
better or worse than the best result obtained by the corresponding peer competitor.
The term “—” means there is no available result reported from the provider or
cannot be counted.

It is clearly shown in Table 6.6 that by comparing the mean classification errors
of IPPSO with the best performance of the peer competitors, IPPSO performs the
second best on the MB dataset, which is only a little bit worse than LDANet-2.
IPPSO is the best on the MDRBI dataset, which is the most complicated dataset
among these three, and the fifth best on the CS dataset, which is not ideal but very
competitive.

6.5.1.2 Evolved CNN Architectures

Although IPPSO is performed on each benchmark with 30 independent runs, only
one is chosen on each benchmark for this description purpose shown in Table 6.7.
Since disabled layers have been removed during the decoding process, they do not
show up in the learned CNN architectures. Therefore, it turns out that IPPSO is
able to learn a variable-length CNN architecture, which can be obviously seen from
the listed architectures—6 CNN layers for the MB and CS benchmark and 8 CNN
layers for the MDRBI benchmark.

2Most deep learning methods only report the best result.
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Table 6.6 The classification
errors of IPPSO against the
peer competitors on the MB,
MDRBI, and CS benchmark
datasets

Classifier MB MDRBI CS

CAE-2 2.48(+) 45.23(+) —

TIRBM — 35.50(+) —

PGBM+DN-1 — 36.76(+) —

ScatNet-2 1.27(+) 50.48(+) 6.50(−)

RandNet-2 1.25(+) 43.69(+) 5.45(−)

PCANet-2 (softmax) 1.40(+) 35.86(+) 4.19(−)

LDANet-2 1.05(−) 38.54(+) 7.22(−)

SVM+RBF 3.03(+) 55.18(+) 19.13(+)

SVM+ Poly 3.69(+) 56.41(+) 19.82(+)

NNet 4.69(+) 62.16(+) 32.25(+)

SAA-3 3.46(+) 51.93(+) 18.41(+)

DBN-3 3.11(+) 47.39(+) 18.63(+)

IPPSO(mean) 1.21 34.50 12.06

IPPSO(best) 1.13 33 8.48

IPPSO(standard deviation) 0.103 2.96 2.25

Table 6.7 An evolved
architecture for the MB
benchmark

Layer type Configuration

An evolved architecture for the MB benchmark

Conv Filter size: 2, stride size: 1, feature maps: 26

Conv Filter size: 6, stride size: 3, feature maps: 82

Conv Filter size: 8, stride size: 4, feature maps: 114

Conv Filter size: 7, stride size: 4, feature maps: 107

Full Neurons: 1686

Full Neurons: 10

An evolved architecture for the MDRBI benchmark

Conv Filter size: 2, stride size: 1, feature maps: 32

Conv Filter size: 6, stride size: 3, feature maps: 90

Conv Filter size: 7, stride size: 4, feature maps: 101

Conv Filter size: 7, stride size: 4, feature maps: 97

Pool Kernel size: 4, stride size: 4, type: average

Conv Filter size: 5, stride size: 3, feature maps: 68

Full Neurons: 1577

Full Neurons: 10

An evolved architecture for the CS benchmark

Conv Filter size: 1, stride size: 1, feature maps: 11

Conv Filter size:7, stride size: 4, feature maps: 108

Conv Filter size: 1, stride size: 1, feature maps: 8

Conv Filter size: 6, stride size: 3, feature maps: 92

Full Neurons: 906

Full Neurons: 2
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6.5.1.3 Visualization

In order to achieve a better understanding of IPPSO, we visualize two parts of
the evolutionary process—the accuracy distribution of the PSO vectors, where the
architectures of CNNs are encoded, and the PSO trajectory of the evolving process.

In terms of the accuracy distribution, first of all, we obtained the PSO vectors
and their corresponding accuracies from 10 runs of the experiments; in addition,
the first two principal components from principal component analysis (PCA) are
extracted for the usage of visualization. A 3-D triangulated surface with the data
containing the first two components and the corresponding accuracy is plotted
shown in Fig. 6.6a. It is observed that there are a lot of steep hills on the surface
whose summits are at the similar level, which means that there are quite a number
of local optima, but most of them are very close to each other, which means that
those local optima are acceptable as a good solution of the task.

Regarding the trajectory, the best result of the particles of each generation and
the global best in each generation from one run of the experiments are obtained and
plotted in blue color and red color, respectively, in Fig. 6.6b. It can be seen that after
only a few generations, the global best is found, after which the particles are still
flying in the search space, but none of them can obtain a better accuracy, which
means the optimum has been reached by PSO after only a few steps. Even though
the surface of the optimization task shown in Fig. 6.6a is extremely complicated,
the PSO method with only 30 particles can climb up to the optimum very quickly,
which proves the effectiveness and efficiency of PSO on optimization tasks.

(a) (b)

Fig. 6.6 (a) The surface of CNN accuracies after training 10 epochs with IPPSO encod-
ing. (b) PSO trajectory
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6.5.2 Results and Analysis of Multi-Objective PSO Method

6.5.2.1 Pareto Optimality Analysis

Figures 6.7 and 6.8 show the experimental results of EXP-20-20 and EXP-50-
10, respectively, each of which is composed of four sub-figures. From the left
to the right, the first sub-figure contains all of the solutions evaluated through
the evolutionary process, where the x-axis represents the negative value of the
FLOPs and y-axis shows the accuracy. The non-dominant solutions based on ε-
Pareto dominance [19] are in orange color and the blue points indicate the others.
The second sub-figure illustrates the evolutionary progress of the accuracy of
non-dominant solutions based on ε-Pareto dominance by each generation with
the generation as x-axis and the classification accuracy as y-axis. The third sub-
figure shows the changes of FLOPs of non-dominant solutions based on ε-Pareto
dominance during the evolutionary process, where the negative value of FLOPs is
drawn toward the vertical axis and the generation is plotted toward the horizontal
axis. The fourth sub-figure is generated by combining the second and third sub-
figures into a 3D figure with x-axis, y-axis, and z-axis represents the generation,
the negative FLOPs value, and the classification accuracy, respectively. The level of
transparency reflects the depth in the 3D figure, i.e. the negative value of FLOPs

A
cc

ur
ac

y

Pareto front (20 inds 20 gens)

0.84

0.82

0.80

0.78

0.76

0.74

0.72

–7 –6 –5 –4 –3 –2 –1 0
1e8

1e8

–0.5

–1.0

–1.5

FL
O

Ps

–2.0

–2.5

–3.0

FLOPs

0.86
Accuracy by generation (20 inds 20 gens)

A
cc

ur
ac

y

0.84

0.82

0.80

0.78

0.76

Generations
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Generations
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

FLOPs by generation (20 inds 20 gens)

Fig. 6.7 Twenty individuals and 20 generations

0.86

A
cc

ur
ac

y

Pareto front (50 inds 10 gens)

0.84

0.82

0.80

0.78

0.76

0.86

Accuracy by generation (50 inds 10 gens) FLOPs by generation (50 inds 10 gens)

A
cc

ur
ac

y

0.84

0.82

0.80

0.78

0.76

0 2 4 6 8
Generations

0 2 4 6 8
Generations

0.74
–7 –6 –5 –4 –3 –2 –1 0

1e8

1e8

FLOPs

0

–1

–2

–3

–4

FL
O

Ps

–5

–6

Fig. 6.8 Fifty individuals and 10 generations



180 B. Wang et al.

carried by the point with less transparency is smaller than that represented by the
more transparent point.

It can be observed that the negative value of FLOPs is plotted in the figure instead
of the positive value, which is because by using the negative value of FLOPs, it
converts the optimization of this objective to a maximization problem in order to
make it consistent to the other objective of maximizing the classification accuracy.
After the conversion, the two objectives have the same optimization direction, which
is easier to be understood and analyzed. By looking into the first sub-figure of
Figs. 6.7 and 6.8, the non-dominant solutions achieved by both the experiments have
formed a clear curve, which defines the Pareto front. When further investigating the
Pareto front, it can be found that the two objectives contradict each other at some
stage, i.e. the classification accuracy cannot be improved without increasing the
FLOPs reflecting the complexity of CNNs, which means the problem of optimizing
the two objectives of the classification accuracy and the FLOPs is an obvious
multi-objective optimization problem. By comparing the Pareto fronts of the two
experiments, especially the points with the lowest FLOPs and the highest accuracy,
it can be learnt that EXP-50-10 provides more diverse non-dominant solutions,
which also means the coverage of the non-dominant solutions of EXP-50-10 is larger
than that of EXP-20-20, even though the maximum generation of EXP-50-10 is only
half of the generation of EXP-20-20, so a larger population size in MOCNN tends
to produce more diverse non-dominant solutions, which therefore, provides more
options for industrial users to choose.

In regard with the convergence analysis, the second and third sub-figures can
be utilized to analyze the convergence of the classification accuracy and FLOPs,
respectively, and the fourth sub-figure presents an overview of the convergence of
both of the objectives. Firstly, EXP-20-20 can be considered to be converged for
both of the objectives. The classification accuracy changes a lot during the first 7
generations of evolution, and starts to fluctuate a bit until the end of the evolutionary
process. As after the 12th generation, only very few non-dominant solutions shift
a little bit, so EXP-20-20 can be deemed converged in terms of the classification
accuracy. As shown in the third sub-figure of Fig. 6.7, the number of non-dominant
solutions grows fast and the value of FLOPs quickly spreads to both directions
before the 8th generation, but it is stabilizing until the 14th generation, after which
the FLOPs hardly shift. Therefore, the FLOPs of EXP-20-20 is converged as well.
The convergence progress of both objectives can be noticed in the fourth figure of
Fig. 6.7. Secondly, EXP-50-10 was not able to converge due to the small number
of generations. From the second sub-figure, there are obvious changes at the 1st,
3rd, and 10th generations, and between those generations, the shifts rarely happen,
which indicates that the convergence speed of the experiment with 50 individuals is
much slower and it needs more generations to converge in terms of the classification
accuracy. For the FLOPs, the same pattern can be found as well, which is that at
the 1st and 10th generations, the changes of non-dominant solutions are clearly
seen, and rare changes take place for the other generations, so the objective of
FLOPs also needs more time to converge. Therefore, EXP-50-10 has not reached
the convergence, which can also be observed in the 3D sub-figure of Fig. 6.8. To
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summarize, the experiment with 20 individuals converges faster than that with
50 individuals, but the experiment with 50 individuals tend to provide more non-
dominant solutions, which gains more coverage of the potential solutions.

6.5.2.2 MOCNN vs DenseNet-121

As described in Sect. 6.3.2.2, DenseNet-121 was set as the maximum complex-
ity of the optimized CNNs, so DenseNet-121 is set as a benchmark, which is
used as a comparison to the optimized non-dominant solution that has the best
accuracy. As the classification accuracy of DenseNet-121 on CIFAR-10 was not
reported in their paper, DenseNet-121 needs to be evaluated and compared with
the optimized MOCNN. The same training process and the common-used data
augmentation specified in [12] are adopted to train both DenseNet-121 and the
optimized MOCNN. The classification accuracy of DenseNet-121 is 94.77% and
the classification accuracy for the optimized MOCNN is 95.51%, which shows that
the optimized MOCNN outperforms DenseNet-121 on CIFAR-10 dataset in terms
of both the classification accuracy and the computational cost. The classification
accuracies of DenseNet(k = 12) of 40 layers (DenseNet40) and DenseNet(k = 12)
of 100 layers (DenseNet100_12) are reported in [12], which are 94.76% and
95.90%, respectively. The optimized MOCNN performs better than (DenseNet40),
while a bit worse than (DenseNet100_12). However, (DenseNet100_12) is beyond
the search space because it is more complex than DenseNet-121. Therefore, the
optimized MOCNN has achieved a promising result among the DenseNets within
the search space, and it may possibly outperform (DenseNet100_12) if the search
space is extended to include (DenseNet100_12).

6.5.2.3 Computational Cost

As described in Sect. 6.3.2.4, the CNNs represented by individuals are fully trained
by Adam optimization, which consumes quite a large amount of computation. At
the beginning, the experiment EXP-20-20 was tried on one GPU card, which took
almost 3 weeks to finish the experiment, so a server-client infrastructure [38] was
adopted to leverage as many as GPU cards across multiple machines to reduce the
wall-clock running time. The experiment EXP-20-20 ran for about 3 days to finish
the evolutionary process on 8 GPU cards, and the result of the experiment EXP-50-
10 was achieved by running the program on 10 GPU cards for 3 days as well.

6.6 Conclusions

The first goal of this chapter was to develop a new PSO approach with variable
length to automatically evolve the architectures of CNNs for image classification
problems. This goal has been successfully achieved by proposing a new encoding
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scheme of using a network interface containing an IP address and its corresponding
subnet to carry the configurations of a CNN layers, the design of four subnets
including a disabled subnet in order to simulate a pseudo-variable-length PSO, and
an efficient fitness evaluation method by using a surrogate dataset. This approach
was examined and compared with 12 peer competitors including the most state-of-
the-art algorithms on three benchmark datasets commonly used in deep learning and
the experimental results show that IPPSO can achieve a very competitive accuracy
by outperforming all others on the MDRBI benchmark dataset, being the second
best on the MNIST benchmark dataset and ranking above the middle line on the CS
benchmark dataset.

The second goal of this chapter was to propose a multi-objective EC method
called MOCNN to search for the non-dominant solutions at the Pareto front
by optimizing the two objectives of both the classification accuracy and the
FLOPs reflecting the computational cost. MOCNN was designed and developed by
designing a new encoding strategy to encode CNNs, choosing the two objectives that
are critical to measuring the performance of CNNs, and applying a multi-objective
particle swarm optimization algorithm called OMOPSO. As non-dominant solutions
generated by MOCNN can be provided to the industrial users for them to choose one
that suits their usage best, the overall goal of streamlining the usage of the state-of-
the-art CNNs for image classification has been achieved.

This chapter only provides two example pieces of work for automated design
of CNN architectures using PSO, and the results have shown that evolutionary
computation techniques can play a major role in such AutoML tasks. Clearly, this
only represents an early stage of such work, but the potential of EC techniques has
been demonstrated. In the future, we will continue such investigations to make EC
a general tool/approach to AutoML.
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Chapter 7
Designing Convolutional Neural Network
Architectures Using Cartesian Genetic
Programming

Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao

Abstract Convolutional neural networks (CNNs), among the deep learning mod-
els, are making remarkable progress in a variety of computer vision tasks, such
as image recognition, restoration, and generation. The network architecture in
CNNs should be manually designed in advance. Researchers and practitioners have
developed various neural network structures to improve performance. Despite the
fact that the network architecture considerably affects the performance, the selection
and design of architectures are tedious and require trial-and-error because the best
architecture depends on the target task and amount of data. Evolutionary algorithms
have been successfully applied to automate the design process of CNN architectures.
This chapter aims to explain how evolutionary algorithms can support the automatic
design of CNN architectures. We introduce a method based on Cartesian genetic
programming (CGP) for the design of CNN architectures. CGP is a form of
genetic programming and searches the network-structured program. We represent
the CNN architecture via a combination of pre-defined modules and search for the
high-performing architecture based on CGP. The method attempts to find better
architectures by repeating the architecture generation, training, and evaluation. The
effectiveness of the CGP-based CNN architecture search is demonstrated through
two types of computer vision tasks: image classification and image restoration.
The experimental result for image classification shows that the method can find a
well-performing CNN architecture. For the experiment on image restoration tasks,
we show that the method can find a simple yet high-performing architecture of a
convolutional autoencoder that is a type of CNN.
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7.1 Introduction

Many types of CNN architecture have been developed by researchers during the
last few years aiming at achieving good scores on computer vision tasks. Despite
the success of CNNs, a question remains given recent developments: what CNN
architectures are good and how can we design such architectures? One possible
direction to address this question is neural architecture search (NAS) [5], in which
CNN architectures are automatically designed by an algorithm such as evolutionary
computation and reinforcement learning to maximize performance on targeted tasks.
NAS can automate the design process of neural networks and aids in reducing the
trial-and-error of developers.

This chapter is based on the works of [34–36] and explains a genetic
programming-based approach to automatically design CNN architectures. In the
next section, we briefly review NAS methods by categorizing them into three
approaches: evolutionary computation, reinforcement learning, and gradient-
descent-based approaches. Then, we describe the Cartesian genetic programming
(CGP)-based NAS method for a CNN, which is categorized as an evolutionary-
computation-based approach. In Sect. 7.3, the CGP-based architecture search
method for image classification, termed CGP-CNN, is explained. In Sect. 7.4, the
CGP-based architecture search method is extended to the convolutional autoencoder
(CAE), a type of CNN, for image restoration.

7.2 Progress of Neural Architecture Search

Automatic design of neural network structures is an active topic initially presented
several decades ago, e.g., [30, 33, 45]. These methods optimize the connection
weights and/or network structure of low-level neurons using an evolutionary
algorithm, and are also known as evolutionary neural networks. These traditional
structure optimization methods target relatively small neural networks whereas
recent deep neural networks, including CNNs, have greater than one million
parameters though the architectures are still designed by human experts. Aiming
at the automatic design of deep neural network architectures, various architecture
search methods have been developed since 2017. Nowadays, the automatic design
method of deep neural network architectures is termed a neural architecture search
(NAS) [5].

To address large-scale architectures, neural network architectures are designed
using a certain search method but the network weights are optimized by a stochastic
gradient descent method through back-propagation. Evolutionary algorithms are
often used to search the architectures. Real et al. [28] optimized large-scale neural
networks using an evolutionary algorithm and achieved better performance than that
of modern CNNs in image classification tasks. In this method, they represent the
CNN architecture as a graph structure and optimize it via the evolutionary algorithm.
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The connection weights of the reproduced architecture are optimized by stochastic
gradient descent as typical neural network training; the accuracy for the architecture
evaluation dataset is assigned as the fitness. Miikkulainen et al. [20] proposed a
method termed CoDeepNEAT that is an extended version of NeuroEvolution of
Augmenting Topologies (NEAT). This method designs the network architectures
using blueprints and modules. The blueprint chromosome is a graph in which each
node has a pointer to a particular module species. Each module chromosome is
a graph that represents a small DNN. Specifically, each node in the blueprint is
replaced with a module selected from a particular species to which that node points.
During the evaluation phase, the modules and blueprints are combined to generate
assembled networks and the networks are evaluated. Xie and Yuille [42] designed
CNN architectures using the genetic algorithm with a binary string representation.
They proposed a method for encoding a network structure in which the connectivity
of each layer is defined by a binary string representation. The type of each layer,
number of channels, and size of a receptive field are not evolved in this method.
The method explained in this chapter is also an evolutionary-algorithm-based NAS.
Different from the aforementioned methods, it optimizes the architecture based on
genetic programming and adopts well-designed modules as the node function.

Another approach is to use reinforcement learning to search the neural archi-
tectures. In [49], a recurrent neural network (RNN) was used to generate neural
network architectures. The RNN was trained with policy-gradient-based reinforce-
ment learning to maximize the expected accuracy on a learning task. Baker et al. [2]
proposed a meta-modeling approach based on reinforcement learning to produce
CNN architectures. A Q-learning agent explores and exploits a space of model
architectures with an ε-greedy strategy and experience replay.

As these methods need neural network training to evaluate the candidate architec-
tures, they often require a considerable computational cost. For instance, the work
of [49] used 800 graphics processing units (GPUs). To reduce the computational
cost of NAS is an active topic. A promising approach is jointly optimizing
the architecture parameter and connection weights. This approach, termed one-
shot NAS (aka weight sharing), finds better architecture during single training.
In one-shot NAS, the non-differentiable objective function consisting of discrete
architecture parameters is transformed into a differentiable objective by continuous
[17, 43] or stochastic relaxation [1, 27, 31]; both the architecture parameters and
connection weights are optimized by gradient-based optimizers.

7.3 Designing CNN Architecture for Image Classification

In this section, we introduce the architecture search method based on CGP for image
classification. We term the method CGP-CNN. In CGP-CNN, we directly encode
the CNN architectures based on CGP and use highly functional modules as node
functions. The CNN architecture defined by CGP is trained by a stochastic gradient
descent using a model training dataset and assigns the fitness value based on the
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Fig. 7.1 Overview of CGP-CNN. The method represents the CNN architectures based on CGP.
The CNN architecture is trained on a learning task and assigned a fitness based on the accuracies
of the trained model for the architecture evaluation dataset. The evolutionary algorithm searches
for better architectures

accuracies of another training dataset (i.e. the architecture evaluation dataset). Then,
the architecture is optimized to maximize the accuracy of the architecture evaluation
dataset using the evolutionary algorithm. Figure 7.1 shows an overview of CGP-
CNN. In the following, we describe the network representation and the evolutionary
algorithm used in CGP-CNN.

7.3.1 Representation of CNN Architectures

For CNN architecture representation, we use the CGP encoding scheme that rep-
resents an architecture of CNNs as directed acyclic graphs with a two-dimensional
grid. CGP was proposed as a general form of genetic programming in [22]. The
graph corresponding to a phenotype is encoded to a string termed a genotype and
optimized using the evolutionary algorithm.

Let us assume that the grid has Nr rows by Nc columns; then, the number of
intermediate nodes is Nr ×Nc and the number of inputs and outputs depends on the
task. The genotype consists of a string of integers of a fixed length and each gene
determines the function type of the node and the connection between nodes. The
c-th column’s node is only allowed to be connected from the (c − 1) to (c − l)-th
column’s nodes, in which l is termed a level-back parameter. Figure 7.2 shows an
example of the genotype, phenotype, and corresponding CNN architecture. As seen
in Fig. 7.2, the CGP encoding scheme has a possibility that not all of the nodes are
connected to the output nodes (e.g., node No. 5 in Fig. 7.2). We term these nodes
inactive nodes. Whereas the genotype in CGP is a fixed-length representation, the
number of nodes in the phenotypic network varies because of the inactive nodes.
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Fig. 7.2 Examples of a genotype and phenotype. The genotype (left) defines the CNN architecture
(right). Node No. 5 on the left is inactive and does not appear in the path from the inputs to the
outputs. The summation node applies max pooling to downsample the first input to the same size
as the second input

This is a desirable feature because the number of layers can be determined using the
evolutionary algorithm.

Referring to modern CNN architectures, we select the highly functional modules
as the node function. The frequently used processes in the CNN are convolution
and pooling; the convolution processing uses local connectivity and spatially shares
the learnable weights and the pooling is nonlinear downsampling. We prepare
the six types of node functions, termed ConvBlock, ResBlock, max pooling,
average pooling, concatenation, and summation. These nodes operate on the three-
dimensional (3-D) tensor (also known as the feature map) defined by the dimensions
of the row, column, and channel.

The ConvBlock consists of a convolutional layer with a stride of one followed by
the batch normalization [10] and the rectified linear unit (ReLU) [23]. To maintain
the size of the input, we pad the input with zero values around the border before
the convolutional operation. Therefore, the ConvBlock takes the M ×N ×C tensor
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Fig. 7.3 The ResBlock
architecture
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as an input and produces the M × N × C′ tensor, where M , N , C, and C′ are the
number of rows, columns, input channels, and output channels, respectively. We
prepare several ConvBlocks with different output channels and receptive field sizes
(kernel sizes) in the function set of CGP.

As shown in Fig. 7.3, the ResBlock is composed of the ConvBlock, batch
normalization, ReLU, and tensor summation. The ResBlock is a building block of
the modern successful CNN architectures, e.g., [8, 47] and [13]. Following this
recent trend of human architecture design, we decided to use ResBlock as the
building block in CGP-CNN. The ResBlock performs identity mapping via the
shortcut connection as described in [8]. The row and column sizes of the input
are preserved in the same manner as those of the ConvBlock after convolution.
As shown in Fig. 7.3, the output feature maps of the ResBlock are calculated via
the ReLU activation and the summation with the input. The ResBlock takes the
M × N × C tensor as an input and produces the M × N × C′ tensor. We prepare
several ResBlocks with different output channels and receptive field sizes (kernel
sizes) in the function set of CGP.

The max and average poolings perform the maximum and average operations,
respectively, over the local neighbors of the feature maps. We use the pooling with a
2×2 receptive field size and a stride of two. The pooling layer takes the M×N×C

tensor and produces the M ′ ×N ′ ×C tensor, where M ′ = #M/2$ and N ′ = #N/2$.
The concatenation function takes two feature maps and concatenates them in the

channel dimension. When concatenating the feature maps with different numbers
of rows and columns, we downsample the larger feature map by max pooling to
make them the same sizes as the inputs. Let us assume that we have two inputs of
size M1 × N1 × C1 and M2 × N2 × C2, then the size of the output feature maps is
min(M1,M2)×min(N1, N2)× (C1 + C2).

The summation performs element-wise summation of two feature maps, channel-
by-channel. Similar to the concatenation, when summing the two feature maps with
different numbers of rows and columns, we downsample the larger feature map
by max pooling. In addition, if the inputs have different numbers of channels, we
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Table 7.1 Node functions
and abbreviated symbols used
in the experiments

Node type Symbol Variation

ConvBlock CB (C′, k) C′ ∈ {32, 64, 128}
k ∈ {3× 3, 5× 5}

ResBlock RB (C′, k) C′ ∈ {32, 64, 128}
k ∈ {3× 3, 5× 5}

Max pooling MP –

Average pooling AP –

Concatenation Concat –

Summation Sum –

C′: Number of output channels
k: Receptive field size (kernel size)

expand the channels of the feature maps with a smaller channel size by filling
with zero. Let us assume that we have two inputs of size M1 × N1 × C1 and
M2 × N2 × C2, then the sizes of the output feature maps are min(M1,M2) ×
min(N1, N2) × max(C1, C2). In Fig. 7.2, the summation node applies the max
pooling to downsample the first input to the same size as the second input. By using
the summation and concatenation operations, our method can express the shortcut
connection or branch layers, such as those used in GoogLeNet [37] and residual
network (ResNet) [8].

The output node represents the softmax function to produce a distribution over
the target classes. The outputs fully connect to all elements of the input. The node
functions used in the experiments are listed in Table 7.1.

7.3.2 Evolutionary Algorithm

Following the standard CGP, we use a point mutation as the genetic operator. The
function and the connection of each node randomly change to valid values according
to the mutation rate. The fitness evaluation of the CNN architecture involves CNN
training and requires approximately 0.5 to 1 h in our setting. Therefore, we need
to efficiently evaluate some candidate solutions in parallel at each generation.
To efficiently use the computational resource, we repeatedly apply the mutation
operator while an active node does not change and obtain the candidate solutions
to be evaluated. We term this mutation forced mutation. Moreover, to maintain a
neutral drift, which is effective for CGP evolution [21, 22], we modify a parent by
neutral mutation if the fitness of the offspring do not improve. The neutral mutation
operates only on the genes of inactive nodes without modification of the phenotype.
We use the modified (1+λ) evolution strategy (with λ = 2 in the experiment) using
the aforementioned artifice. The procedure of our evolutionary algorithm is listed in
Algorithm 1.

The (1 + λ) evolution strategy, the default evolutionary algorithm in CGP, is an
algorithm with fewer strategy parameters: the mutation rate and offspring size. We
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Algorithm 1 Evolutionary algorithm for CGP-CNN and CGP-CAE
1: Input: G (number of generations), r (mutation probability), λ (children size), S (Training set),

V (architecture evaluation set).
2: Initialization: (i) Generate a parent , (ii) train the model on the S, and (iii) assign the fitness

Fp using the set V .
3: for g = 1 to G do
4: for i = 1 to λ do
5: childreni ←Mutation(parent , r) # forced mutation
6: modeli ← Train(childreni , S)
7: f itnessi ← Evaluate(modeli , V )
8: end for
9: best ← argmaxi=1,2,...,λ {f itnessi }

10: if f itnessbest ≥ Fp then
11: parent ← childrenbest

12: Fp ← f itnessbest

13: else
14: parent ←Modify(parent, r) # neutral mutation
15: end if
16: end for
17: Output: parent (the best architecture found by the evolutionary search).

do not need to expend considerable effort to tune such strategy parameters. Thus,
we use the (1+ λ) evolution strategy in CGP-CNN.

7.3.3 Experiment on Image Classification Tasks

7.3.3.1 Experimental Setting

We apply CGP-CNN to the CIFAR-10 and CIFAR-100 datasets consisting of 60,000
color images (32×32 pixels) in 10 and 100 classes, respectively. Each dataset is split
into a training set of 50,000 images and a test set of 10,000 images. We randomly
sample 45,000 examples from the training set to train the CNN and the remaining
5000 examples are used for architecture evaluation (i.e. fitness evaluation of CGP).

To assign the fitness value to the candidate CNN architecture, we train the CNN
by stochastic gradient descent (SGD) with a mini-batch size of 128. The softmax
cross-entropy loss is used as the loss function. We initialize the weights using the
method described in [7] and use the Adam optimizer [11] with an initial learning
rate α = 0.01 and momentum β1 = 0.9 and β2 = 0.999. We train each CNN for
50 epochs and use the maximum accuracy of the last 10 epochs as the fitness value.
We reduce the learning rate by a factor of 10 at the 30th epoch.

We preprocess the data with pixel-mean subtraction. To prevent overfitting, we
use a weight decay with the coefficient 1.0× 10−4. We also use data augmentation
based on [8]: padding 4 pixels on each size and randomly cropping a 32× 32 patch
from the padded image or its horizontally flipped image.
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Table 7.2 Parameter setting
for the CGP-CNN on image
classification tasks

Parameters Values

Mutation rate 0.05

# Offspring (λ) 2

# Rows (Nr ) 5

# Columns (Nc) 30

Minimum number of active nodes 10

Maximum number of active nodes 50

Levels-back (l) 10

The parameter setting for CGP is shown in Table 7.2. We use a relatively large
number of columns to generate deep architectures. The number of active nodes
in the individual of CGP is restricted. Therefore, we apply the mutation operator
until the CNN architecture that satisfies the restriction of the number of active
nodes is generated. The offspring size λ is two, the same number of GPUs in our
experimental machines. We test two node function sets termed ConvSet and ResSet
for CGP-CNN. The ConvSet contains ConvBlock, max pooling, average pooling,
summation, and concatenation in Table 7.1 and the ResSet contains ResBlock, max
pooling, average pooling, summation, and concatenation. The difference between
these two function sets is whether the set contains ConvBlock or ResBlock. The
number of generations is 500 for ConvSet and 300 for ResSet.

The best CNN architecture from the CGP process is retrained using all 50,000
images in the training set. Then, we compute the test accuracy. We optimize the
weights of the obtained architecture for 500 epochs using a different training
procedure; we use SGD with a momentum of 0.9, a mini-batch size of 128, and
a weight decay of 5.0× 10−4. Following the learning rate schedule in [8], we start
with a learning rate of 0.01 and set it to 0.1 at the 5th epoch. We reduce it by a factor
of 10 at the 250th and 370th epochs. We report the test accuracy at the 500th epoch
as the final performance.

We implement CGP-CNN using the Chainer framework [40] (version 1.16.0)
and run it on a machine with two NVIDIA GeForce GTX 1080 or two GTX 1080
Ti GPUs. We use a GTX 1080 and 1080 Ti for the experiments on the CIFAR-
10 and 100 datasets, respectively. Because of the memory limitation, the candidate
CNNs occasionally take up the GPU memory, and the network training process fails
because of an out-of-memory error. In this case, we assign a zero fitness to the
candidate architecture.

7.3.3.2 Experimental Result

We run CGP-CNN 10 times on each dataset and report the classification errors.
We compare the classification performance to the hand-designed CNNs and auto-
matically designed CNNs using the architecture search methods on the CIFAR-10
and 100 datasets. A summary of the classification performances is provided in
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Table 7.3 Comparison of the error rates (%), number of learnable weight parameters, and search
costs on the CIFAR-10 dataset

Model # Params Test error GPU days

Maxout [6] – 9.38 –

Network in network [15] – 8.81 –

VGG [32] 15.2 M 7.94 –

ResNet [8] 1.7 M 6.61 –

FractalNet [14] 38.6 M 5.22 –

Wide ResNet [47] 36.5 M 4.00 –

CoDeepNEAT [20] – 7.30 –

Genetic CNN [42] – 7.10 17

MetaQNN [2] 3.7 M 6.92 80–100

Large-scale evolution [28] 5.4 M 5.40 2750

Neural architecture search [49] 37.4 M 3.65 16,800–22,400

CGP-CNN (ConvSet) 1.50 M 5.92 31

(6.48 ± 0.48)

CGP-CNN (ResSet) 2.01 M 5.01 30

(6.10 ± 0.89)

The classification error is reported in the format of “best (mean ± std).” In CGP-CNN, the number
of learnable weight parameters of the best architecture is reported. The values of other models are
referenced from the literature. The bold value indicates the best test error among the compared
models

Tables 7.3 and 7.4. The models, Maxout, Network in Network, VGG, ResNet,
FractalNet, and Wide ResNet, are the hand-designed CNN architectures whereas
MetaQNN, Neural Architecture Search, Large-Scale Evolution, Genetic CNN, and
CoDeepNEAT are the models obtained using the architecture search methods. The
values of other models, except for VGG and ResNet on CIFAR-100, are referenced
from the literature. We implement the VGG net and ResNet for CIFAR-100 because
they were not applied to the dataset in [32] and [8]. The architecture of VGG is
identical to that of configuration D in [32]. In Tables 7.3 and 7.4, the number of
learnable weight parameters in the models is also listed. In CGP-CNN, the number
of learnable weight parameters of the best architecture is reported.

On the CIFAR-10 dataset, the CGP-CNNs outperform most of the hand-designed
models and show a good balance between the classification errors and the number
of parameters. CGP-CNN (ResSet) shows better performance compared to that of
CGP-CNN (ConvSet). Compared to other architecture search methods, CGP-CNN
(ConvSet and ResSet) outperforms MetaQNN [2], Genetic CNN [42], and CoDeep-
NEAT [20]. The best architecture of CGP-CNN (ResSet) outperforms Large-Scale
Evolution [28]. The Neural Architecture Search [49] achieved the best error rate,
but this method used 800 GPUs and required considerable computational costs to
search for the best architecture. Table 7.3 also lists the number of GPU days (the
computational time multiplied by the number of GPUs used during the experiments)
for the architecture search. As seen, CGP-CNN can find a good architecture at
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Table 7.4 Comparison of the error rates (%) and number of learnable weight parameters on the
CIFAR-100 dataset

Model # Params Test error

Maxout [6] – 38.57

Network in network [15] – 35.68

VGG [32] 15.2 M 33.45

ResNet [8] 1.7 M 32.40

FractalNet [14] 38.6 M 23.30

Wide ResNet [47] 36.5 M 19.25
CoDeepNEAT [20] – –

Neural architecture search [49] 37.4 M –

Genetic CNN [42] – 29.03

MetaQNN [2] 3.7 M 27.14

Large-scale evolution [28] 40.4 M 23.0

CGP-CNN (ConvSet) 2.01 M 26.7 (28.1 ± 0.83)

CGP-CNN (ResSet) 4.60 M 25.1 (26.8 ± 1.21)

The classification errors are reported in the format of “best (mean ± std).” In CGP-CNN, the
number of learnable weight parameters of the best architecture is reported. The values of other
models except for VGG and ResNet are referenced from the literature. The bold value indicates
the best test error among the compared models

a reasonable computational cost. We assume that CGP-CNN, particularly with
ResSet, could reduce the search space and find better architectures in an early
iteration by using the highly functional modules. The CIFAR-100 dataset is a very
challenging task because there are many classes. CGP-CNN finds the competitive
network architectures within a reasonable computational time. Even though the
obtained architecture is not at the same level as the state-of-the-art architectures,
it shows a good balance between the classification errors and number of parameters.

The error rates of the architecture search methods (not only CGP-CNN) do not
reach those of Wide ResNet, a human-designed architecture. However, these human-
designed architectures are developed with the expenditure of tremendous human
effort. An advantage of architecture search methods is that they can automatically
find a good architecture for a new dataset. Another advantage of CGP-CNN is
that the number of weight parameters in the discovered architectures is less than
that in the human-designed architectures, which is beneficial when we want to
implement CNN on a mobile device. Note that we did not introduce any criteria
for the architecture complexity in the fitness function. It might be possible to find
more compact architectures by introducing the penalty term into the fitness function,
which is an important research direction, such as in [4, 29, 39].

Figure 7.4 shows the examples of the CNN architectures obtained by CGP-CNN
(ConvSet and ResSet). Figure 7.4 shows the complex architectures that are difficult
to manually design. Specifically, CGP-CNN (ConvSet) uses the summation and
concatenation nodes leading to a wide network and allowing for the formation of
skip connections. Therefore, the CGP-CNN (ConvSet) architecture is wider than
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Fig. 7.4 CNN architectures obtained by CGP-CNN with ConvSet (left) and ResSet (right) on the
CIFAR-10 dataset

that of CGP-CNN (ResSet). Additionally, we also observe that CGP-CNN (ResSet)
has a similar structure to that of ResNet [8]. ResNet consists of a series of two types
of modules: a module with several convolutions and shortcut connections without
downsampling and a downsampling convolution with a stride of 2. Although CGP-
CNN cannot downsample in the ConvBlock and ResBlock, we see that CGP-CNN
(ResSet) uses a pooling layer as an alternative to the downsampling convolution. We
can say that CGP-CNN can find an architecture similar to that designed by human
experts.
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7.4 Designing CNN Architectures for Image Restoration

In this section, we apply the CGP-based architecture search method to an image
restoration task of recovering a clean image from its degraded version. We term
this method CGP-CAE. Recently, learning-based approaches based on CNNs have
been applied to image restoration tasks and have significantly improved the state-
of-the-art performance. Researchers have approached this problem mainly from
three directions: designing new network architectures, loss functions, and training
strategies. In this section, we focus on designing a new network architecture
for image restoration and report that simple convolutional autoencoders (CAEs)
designed by evolutionary algorithms can outperform existing image restoration
methods which are designed manually.

7.4.1 Search Space of Network Architectures

In this work, we consider CAEs that are built only on convolutional layers with
downsampling and skip connections. In addition, we use symmetric CAEs such that
their first half (encoder part) is symmetric to the second half (decoder part). The
final layer is attached to top of the decoder part to obtain images of fixed channels
(i.e. single-channel grayscale or three-channel color images), for which either one
or three filters of 3 × 3 size are used. Therefore, specifying the encoder part of a
CAE solely determines its entire architecture. The encoder part can have an arbitrary
number of convolutional layers up to a specified maximum, which is selected by the
evolutionary algorithm. Each convolutional layer can have an arbitrary number and
size of filters, and is followed by ReLU [23]. In addition, each layer can have an
optional skip connection [8, 18] that connects the layer to its mirrored counterpart in
the decoder part. Specifically, the output feature maps (obtained after ReLU) of the
layer are passed to and are added element-wise to the output feature maps (obtained
before ReLU) of the counterpart layer. We can use additional downsampling after
each convolutional layer depending on the task. Whether to use downsampling is
determined in advance and thus it is not selected by the architectural search, as
explained later.

7.4.2 Representation of CAE Architectures

Following [34], we represent architectures of CAEs via a directed acyclic graph
which is defined on a two-dimensional grid. This graph is optimized by the
evolutionary algorithm, in which the graph is termed a phenotype and is encoded
by a data structure termed a genotype.
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Fig. 7.5 An example of a genotype and a phenotype of CGP-CAE. A phenotype is a graph
representation of a network architecture and a genotype encodes a phenotype. They encode only
the encoder part of a CAE and its decoder part is automatically created such that it is symmetrical
to the encoder part. In this example, the phenotype is defined on a grid of three rows and three
columns

Figure 7.5 shows an example of a genotype and a phenotype of CGP-CAE. Each
node of the graph represents a convolutional layer followed by a ReLU in a CAE.
An edge connecting two nodes represents the connectivity of the two corresponding
layers. The graph has two additional special nodes termed input and output nodes.
The former represents the input layer of the CAE and the latter represents the output
of the encoder part, or equivalently the input of the decoder part of the CAE. As
the input of each node is connected to at most one node, there is a single unique
path starting from the input node and ending at the output node. This unique path
identifies the architecture of the CAE, as shown in the middle row of Fig. 7.5.
Note that the nodes depicted in the neighboring two columns are not necessarily
connected. Thus, the CAE can have a different number of layers depending on how
the nodes are connected. Because the maximum number of layers (of the encoder
part) of the CAE is Nmax, the total number of layers is 2Nmax + 1 including the
output layer. To control how the number of layers will be chosen, we introduce a
hyper-parameter termed level-back l, such that nodes given in the c-th column are
allowed to be connected from nodes given in the columns ranging from c − l to
c − 1. If we use a smaller l, then the resulting CAEs will tend to be deeper.

A genotype encodes a phenotype and is manipulated by the evolutionary
algorithm. The genotype encoding a phenotype with Nr rows and Nc columns has
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NrNc+1 genes, each of which represents attributes of a node with two integers (i.e.
type and connection). The type specifies the number F and size k of the filters of
the node, and whether the layer has skip connections or not, by an integer encoding
their combination. The connection specifies the node that is connected to the input
of this node. The last (NrNc+1)-st gene represents the output node that stores only
the connection determining the node connected to the output node. An example
of a genotype is shown in the top row of Fig. 7.5, where F ∈ {64, 128, 256} and
k ∈ {1× 1, 3× 3, 5× 5}.

We use the same evolutionary algorithm as used in the previous section to
perform a search in the architecture space (see Algorithm 1).

7.4.3 Experiment on Image Restoration Tasks

We conducted experiments to test the effectiveness of CGP-CAE. We chose two
tasks: image inpainting and denoising.

7.4.3.1 Experimental Settings

Inpainting
We followed the procedures suggested in [46] for experimental design. We used
three benchmark datasets: the CelebFaces Attributes Dataset (CelebA) [16], the
Stanford Cars Dataset (Cars) [12], and the Street View House Numbers (SVHN)
[24]. The CelebA contains 202,599 images, from which we randomly selected
100,000, 1000, and 2000 images for training, architecture evaluation, and testing,
respectively. All images were cropped to properly contain the entire face and resized
to 64 × 64 pixels. For Cars and SVHN, we used the provided training and testing
split. The images of Cars were cropped according to the provided bounding boxes
and resized to 64× 64 pixels. The images of SVHN were resized to 64× 64 pixels.

We generated images with missing regions of the following three types: a central
square block mask (Center), random pixel masks such that 80% of all the pixels
were randomly masked (Pixel), and half-image masks such that a randomly chosen
vertical or horizontal half of the image was masked (Half ). For the latter two, a
mask was randomly generated for each training mini-batch and each test image.

Considering the nature of this task, we consider CAEs endowed with down-
sampling. To be specific, the same counts of downsampling and upsampling with
stride= 2 were employed such that the entire network had a symmetric hourglass
shape. For simplicity, we used a skip connection and downsampling in an exclusive
manner; in other words, every layer (in the encoder part) employed either a skip
connection or downsampling.
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Denoising
We followed the experimental procedures described in [18, 38]. We used grayscale
300 and 200 images belonging to the BSD500 dataset [19] to generate training and
test images, respectively. For each image, we randomly extracted 64 × 64 patches,
to each of which Gaussian noise with different σ = 30, 50, and 70 are added. As
utilized in the previous studies, we trained a single model for all different noise
levels.

For this task, we used CAE models without downsampling following the
previous studies [18, 38]. We zero-padded the input feature maps computed in each
convolution layer not to change the size of the input and output feature space of the
layer.

Configurations of the Architectural Search
For the evolutionary algorithm, we chose the mutation probability as r = 0.1,
number of children as λ = 4, and number of generations as G = 250. For the
phenotype, we used the graph with Nr = 3, Nc = 20, and level-back l = 5. For the
number F and size k of the filters at each layer, we chose them from {64, 128, 256}
and {1× 1, 3× 3, 5× 5}, respectively. During an evolution process, we trained each
CAE for I = 20,000 iterations with a mini-batch of size b = 16. We set the learning
rate of the ADAM optimizer to be 0.001. For the training loss, we used the mean
squared error (MSE) between the restored images and their ground truths:

L(θD) = 1

|S|
|S|∑

i=1

||D(yi; θD)− xi ||22, (7.1)

where the CAE and its weight parameters are D and θD , respectively; S is the
training set, xi is a ground truth image, and yi is a corrupted image. For the fitness
function of the evolutionary algorithm, we use the peak signal-to-noise ratio (PSNR)
of which the higher value indicates the better image restoration.

Following completion of the evolution process, we fine-tuned the best CAE using
the training set of images for additional 500,000 iterations, in which the learning
rate is reduced by a factor of 10 at the 200,000 and 400,000 iterations. We then
calculated its performance using the test set of images. We implemented CGP-
CAE using PyTorch [25] and performed the experiments using four P100 GPUs.
Execution of the evolutionary algorithm and the fine-tuning of the best model took
approximately 3 days for the inpainting tasks and 4 days for the denoising tasks.

7.4.3.2 Results of the Inpainting Tasks

We use two standard evaluation measures, the PSNR and structural similarity index
(SSIM) [41], to evaluate the restored images. Higher values of these measures
indicate better image restoration.
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Table 7.5 Inpainting results

PSNR SSIM

Dataset Type Rand BASE CE SII CGP-CAE Rand BASE CE SII CGP-CAE

CelebA Center 15.3 27.1 28.5 19.4 29.9 0.740 0.883 0.912 0.907 0.934
Pixel 25.5 27.5 22.9 22.8 27.8 0.766 0.836 0.730 0.710 0.887
Half 12.7 11.8 19.9 13.7 21.1 0.549 0.604 0.747 0.582 0.771

Cars Center 17.1 19.5 19.6 13.5 20.9 0.704 0.767 0.767 0.721 0.846
Pixel 17.0 19.2 15.6 18.9 19.5 0.533 0.679 0.408 0.412 0.738
Half 13.0 11.6 14.8 11.1 16.2 0.511 0.541 0.576 0.525 0.610

SVHN Center 23.5 29.9 16.4 19.0 33.3 0.819 0.895 0.791 0.825 0.953
Pixel 29.0 40.1 30.5 33.0 40.4 0.687 0.899 0.888 0.786 0.969
Half 11.3 12.9 21.6 14.6 24.8 0.574 0.617 0.756 0.702 0.848

Comparison of two baseline architectures (RAND and BASE), Context Autoencoder (CE) [26],
Semantic Image Inpainting (SII) [46], and CAEs designed by CGP-CAE using three datasets
and three masking patterns. The bold values indicate the best performance among the compared
architectures

As previously mentioned, we follow the experimental procedure employed in
[46]. In the paper, the authors reported the performances of their proposed method,
Semantic Image Inpainting (SII), and Context Autoencoder (CE) [26]. However, we
found that CE can provide considerably better results than those reported in [46]
in terms of PSNR. Thus, we report here PSNR and SSIM values for CE that we
obtained by running the code provided by the authors.1 To calculate SSIM values of
SII, which were not reported in [46], we run the authors’ code2 for SII.

To further validate the effectiveness of the evolutionary search, we evaluate two
baseline architectures; an architecture generated by a random search (RAND) and
an architecture with same depth as the best-performing architecture found by CGP-
CAE but having a constant number (64) of fixed size (3 × 3) filters in each layer
with a skip connection (BASE). In the random search, we generate 10 architectures
at random in the same search space as ours and report their average PSNR and SSIM
values. All other experimental setups are the same.

Table 7.5 shows the PSNR and SSIM values obtained using five methods on
three datasets and three masking patterns. We run the evolutionary algorithm three
times and report the average accuracy values of the three optimized CAEs. As
shown, CGP-CAE outperforms the other four methods for each of the dataset-
mask combinations. Notably, CE and SII use mask patterns for inference. To be
specific, their networks estimate only pixel values of the missing regions specified
by the provided masks, and then they are merged with the unmasked regions of
clean pixels. Thus, the pixel intensities of the unmasked regions are identical to
their ground truths. On the other hand, CGP-CAE does not use masks yet outputs

1https://github.com/pathak22/context-encoder.
2https://github.com/moodoki/semantic_image_inpainting.

https://github.com/pathak22/context-encoder
https://github.com/moodoki/semantic_image_inpainting
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Fig. 7.6 Examples of inpainting results obtained by CGP-CAE (CAEs designed by the evolution-
ary algorithm)

Table 7.6 Denoising results on BSD200

PSNR SSIM

Noise σ Rand BASE RED MemNet
CGP-
CAE Rand BASE RED MemNet

CGP-
CAE

30 27.25 27.00 27.95 28.04 28.23 0.7491 0.7414 0.8019 0.8053 0.8047

50 25.11 24.88 25.75 25.86 26.17 0.6468 0.6229 0.7167 0.7202 0.7255
70 23.50 23.22 24.37 24.53 24.83 0.5658 0.5349 0.6551 0.6608 0.6636

Comparison of results of two baseline architectures (RAND and BASE), RED [18], MemNet [38],
and CGP-CAE. The bold values indicate the best performance among the compared architectures

complete images such that the missing regions are hopefully correctly inpainted.
We then calculate the PSNR of the output image against the ground truth without
identifying missing regions. This difference should help CE and SII to achieve high
PSNR and SSIM values, but nevertheless CGP-CAE performs better.

Sample inpainted images obtained by CGP-CAE along with the masked inputs
and the ground truths are shown in Fig. 7.6. It is observed that overall CGP-CAE
stably performs; the output images do not have large errors for all types of masks. It
performs particularly well for random pixel masks (the middle column of Fig. 7.6);
the images are realistic and sharp. It is also observed that CGP-CAE tends to yield
less sharp images for those with a filled region of missing pixels. However, CGP-
CAE can accurately infer their contents, as shown in the examples of inpainting
images of numbers (the rightmost column of Fig. 7.6).

7.4.3.3 Results of the Denoising Task

We compare CGP-CAE to two baseline architectures (i.e. RAND and BASE
described in Sect. 7.4.3.2) and two state-of-the-art methods RED [18] and MemNet
[38]. Table 7.6 shows the PSNR and SSIM values for three versions of the BSD200
test set with different noise levels σ = 30, 50, and 70, in which the performance
values of RED and MemNet are obtained from [38]. CGP-CAE again achieves the
best performance for all cases except for a single case (MemNet for σ = 30). It
is worth noting that the networks of RED and MemNet have 30 and 80 layers,
respectively, whereas our best CAE has only 15 layers (including the decoder part
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Fig. 7.7 Examples of images reconstructed by CGP-CAE for the denoising task. The first column
shows the input image with noise level σ = 50

and output layer), showing that our evolutionary method was able to find simpler
architectures that can provide more accurate results.

An example of an image recovered by CGP-CAE is shown in Fig. 7.7. As we can
see, CGP-CAE correctly removes the noise and produces an image as sharp as the
ground truth.

7.4.3.4 Analysis of Optimized Architectures

Table 7.7 shows the top five best-performing architectures designed by CGP-CAE
for the image inpainting task using center masks on the CelebA dataset and the
denoising task, along with their performances measured on their test datasets. One
of the best-performing architectures for each task is shown in Fig. 7.8. We can see
that although their overall structures do not appear unique, mostly because of the
limited search space of CAEs, the number and size of filters are quite different
across layers, which is difficult to manually determine. Although it is difficult to
provide a general interpretation of why the parameters of each layer are selected, we
can make the following observations: (1) regardless of the task, almost all networks
have a skip connection in the first layer, implying that the input images contain
essential information to yield accurate outputs; (2) 1×1 convolution seems to be an
important ingredient for both tasks; 1×1 convolution layers dominate the denoising
networks, and all the inpainting networks employ two 1× 1 convolution layers; (3)
when comparing the inpainting networks to the denoising networks, the following
differences are apparent: the largest filters of size 5× 5 tend to be employed by the
former more often than the latter (2.8 vs. 0.8 layers on average), and 1 × 1 filters
tend to be employed by the former less often than the latter (2.0 vs. 3.2 layers on
average).
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Table 7.7 Best-performing five architectures of CGP-CAE

Architecture (Inpainting) PSNR SSIM

CS(128, 3) − C(64, 3) − CS(128, 5) − C(128, 1) − CS(256, 5) −
C(256, 1) − CS(64, 5)

29.91 0.9344

C(256, 3) − CS(64, 1) − C(128, 3) − CS(256, 5) − CS(64, 1) −
C(64, 3) − CS(128, 5)

29.91 0.9343

CS(128, 5) − CS(256, 3) − C(64, 1) − CS(128, 3) − CS(64, 5) −
CS(64, 1) − C(128, 5) − C(256, 5)

29.89 0.9334

CS(128, 3) − CS(64, 3) − C(64, 5) − CS(256, 3) − C(128, 3) −
CS(128, 5) − CS(64, 1) − CS(64, 1)

29.88 0.9346

CS(64, 1)−C(128, 5)−CS(64, 3)−C(64, 1)−CS(256, 5)−C(128, 5) 29.63 0.9308

Architecture (Denoising) PSNR SSIM

CS(64, 3) − C(64, 1) − C(128, 3) − CS(64, 1) − CS(128, 5) −
C(128, 3) − C(64, 1)

26.67 0.7313

CS(64, 5) − CS(256, 1) − C(256, 1) − C(64, 3) − CS(128, 1) −
C(64, 3) − CS(128, 1) − C(128, 3)

26.28 0.7113

CS(64, 3) − C(64, 1) − C(128, 3) − CS(64, 1) − CS(128, 5) −
C(128, 3) − C(64, 1)

26.28 0.7107

CS(128, 3) − CS(64, 1) − C(64, 3) − C(64, 3) − CS(64, 1) − C(64, 3) 26.20 0.7047

CS(64, 5) − CS(128, 1) − CS(256, 3) − CS(128, 1) − CS(128, 1) −
C(64, 1) − CS(64, 3)

26.18 0.7037

C(F, k) indicates that the layer has F filters of size k × k without a skip connection. CS indicates
that the layer has a skip connection. This table shows only the encoder part of CAEs. For denoising,
the average PSNR and SSIM values of three noise levels are shown

Fig. 7.8 One of the best-performing architectures given in Table 7.7 for inpainting (upper) and
denoising (lower) tasks
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7.5 Summary

This chapter introduced a neural architecture search for CNNs: a CGP-based
approach for designing deep CNN architectures. Specifically, the methods, CGP-
CNN for image classification and CGP-CAE for image restoration, were explained.
The methods generate CNN architectures based on the CGP encoding scheme
with highly functional modules and use the evolutionary algorithm to find good
architectures. The effectiveness and potential of CGP-CNN and CGP-CAE were
verified through numerical experiments. The experimental results of image classi-
fication showed that CGP-CNN can find a well-performing CNN architecture. In
the experiment on image restoration tasks, we showed that CGP-CAE can find a
simple yet high-performing architecture of a CAE. We believe that evolutionary
computation is a promising solution for NAS.

The bottleneck of the architecture search of DNN is the computational cost.
Simple yet effective acceleration techniques, termed rich initialization and early
termination of network training, can be found in [36]. Another possible acceleration
technique is starting with a small data size and increasing the training data for the
neural networks as the generation progresses. Moreover, to simplify and compact the
CNN architectures, we may introduce regularization techniques to the architecture
search process. Alternatively, we may be able to manually simplify the obtained
CNN architectures by removing redundant or less effective layers.

Considerable room remains for exploration of search spaces of architectures of
classical convolutional networks, which may apply to other tasks such as single
image colorization [48], depth estimation [3, 44], and optical flow estimation [9].
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Chapter 8
Fast Evolution of CNN Architecture
for Image Classification

Ali Bakhshi, Stephan Chalup, and Nasimul Noman

Abstract The performance improvement of Convolutional Neural Network (CNN)
in image classification and other applications has become a yearly event. Generally,
two factors are contributing to achieving this envious success: stacking of more
layers resulting in gigantic networks and use of more sophisticated network
architectures, e.g. modules, skip connections, etc. Since these state-of-the-art CNN
models are manually designed, finding the most optimized model is not easy. In
recent years, evolutionary and other nature-inspired algorithms have become human
competitors in designing CNN and other deep networks automatically. However,
one challenge for these methods is their very high computational cost. In this
chapter, we investigate if we can find an optimized CNN model in the classic CNN
architecture and if we can do that automatically at a lower cost. Towards this aim,
we present a genetic algorithm for optimizing the number of blocks and layers and
some other network hyperparameters in classic CNN architecture. Experimenting
with CIFAR10, CIFAR100, and SVHN datasets, it was found that the proposed GA
evolved CNN models which are competitive with the other best models available.

8.1 Introduction

In recent years many pieces of research have been directed towards designing
deep neural networks (DNNs). The performance of DNNs is very depended
on its architecture and its hyperparameters’ setting. The state-of-the-art DNN
models are designed by qualified experts in various areas of machine learning.
Moreover, all of these networks are designed for specific problems or data. For
example, convolutional neural networks (CNNs) are most widely used in various
image related applications in computer vision. Although the state-of-the-art DNNs
proposed in the literature can be used for solving similar problems using some
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techniques like transfer learning, the same network model is not suitable for a
diverse class of problems. For best performance, we need to design a DNN tailored
to the problem under consideration. Consequently, many researchers are working
towards automatic methods that can identify suitable DNN architecture as well as
hyperparameters for a certain problem.

Evolutionary algorithms (EAs) are a class of the generic population-based meta-
heuristic optimization algorithms that can be used to identify the suitable network
architecture and hyperparameters [1]. There are remarkable efforts in the literature
that used the variants of evolutionary algorithms such as the genetic algorithm
(GA) and particle swarm optimization (PSO) to solve a variety of optimization
problems [2]. Considering the promising success of the artificial neural networks
(ANNs) and evolutionary algorithm in solving different machine learning problems,
finding efficient ways to combine these two methods has been an active research
area for the past two decades. There exists a good survey that classifies different
approaches for combining ANNs and GAs into two categories: the supportive
combination and collaborative combination [3]. In supportive combination, either
GA or ANN is the main problem solver, and the other assists it in accomplishing
that, whereas, in collaborative combination, both GA and ANN work in synergy
to solve the problem. An example of a supporting combination is using GA
for selecting features for a neural network, and an example of a collaborative
combination is designing the ANN topology using GA.

With the emergence of DNNs as a powerful machine learning method for solving
different problems, there has been a growing interest in designing and training these
networks using evolutionary algorithms. Considering the success of gradient base
algorithms in training the DNNs, and due to other considerations such as very large
search space, there has been limited interest in training the DNNs using evolutionary
algorithms. Although there exist examples of outstanding efforts in training deep
neural networks for reinforcement learning using GA [4], the majority of researches
concentrated on evolving DNN architectures and finding the best combination of
hyperparameters for a range of classification and regression tasks [1].

Convolutional Neural Network (CNN) is one of the most successful deep
architectures as manifested by its remarkable achievements in many real-world
applications. The state-of-the-art CNN architectures such as VGGNet [5], ResNet
[6], GoogLeNet [7], designed by experienced researchers, exhibited performance
competitive to humans. However, crafting such powerful and well-designed net-
works requires extensive domain knowledge and expertise in neural network design.
These requirements often make it a difficult task for inexperienced researchers and
application engineers to design a suitable architecture according to the problem
and available data. Hence, in recent years, we have seen several attempts to
automatically designing CNN architectures as well as network hyperparameters
using evolutionary algorithms.

In this work, we used a conventional GA to evolve optimized CNN architectures
and to find the best combination of hyperparameters for the image classification
task on multiple datasets. We considered the optimization of the classical CNN
architecture (i.e., VGG-like networks) consisting of blocks of convolutional layers.
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The proposed GA was used to optimize the number of convolutional blocks, as
well as the number of layers in each block. Using a fixed-sized chromosome, we
explored the search space of CNN architectures with the variable number of layers.
The algorithm also searched for the optimal set of hyperparameters for the network
from the selected ranges.

One particular challenge in the evolution of all kinds of DNNs is the high
computational cost. The computational burden originates from the fitness evaluation
of each individual in the evolutionary algorithm, which requires training of many
deep neural networks. Recent research has shown that partial training is sufficient
for estimating the quality of CNN architecture [8, 9]. In this work, we adopted
this strategy and trained the CNN architectures for a few epochs in the evolution
phase. Later, the best evolved CNN model was trained completely for evaluating
its performance. The proposed GA was applied to three well-known datasets, and
the evolved CNN models were compared with many existing models designed by
human and automatically.

The rest of the chapter is organized as follows. A brief overview of CNN is
presented in Sect. 8.2. Section 8.3 reviews the related work. The proposed GA is
described in Sect. 8.4. Section 8.5 details the experimental setup and the experimen-
tal results are presented in Sect. 8.6. Section 8.7 contains a brief discussion on the
results and Sect. 8.8 concludes the chapter.

8.2 A Brief Overview of CNNs

Convolutional neural networks (CNNs) that were inspired by the organization of
the animal cortex [10] are mostly used for two-dimensional data like images. CNNs
consist of three major types of network layers, namely: convolutional, pooling, and
fully connected. The learning in a convolutional layer depends on three concepts:
sparse interaction, equivariant representation, and parameter sharing [11]. Unlike
the feed-forward neural network layers that utilize layer-wide matrix multiplication
for relating the inputs with the outputs, convolutional layers implement sparse
interactions by using filters smaller than the inputs. By sharing the same filter across
the input surface, convolutional layers can achieve spatial equivariance as well as
reduce the computational volume considerably. Using multiple learnable filters the
convolutional layer can learn different features from the input. Pooling layers are
usually placed after one or more convolutional layers to reduce the dimensionality
of the data. Multiple blocks of convolutional and pooling layers are used to extract
hierarchical features from the data. Also, depending on the nature of the problem,
the final convolutional or pooling layer is followed by one or more fully connected
or recurrent layers.

There are many hyperparameters involved in designing a CNN architecture,
such as the number of layers in a convolutional block, the kernel size, stride
size, and channel size (number of feature maps) of a convolution layer, the stride
size of the pooling layer, type of pooling operation, number of fully connected
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layers, the number of nodes in a fully connected layer, etc. In human-designed
CNNs, these hyperparameters are selected on a trial and error basis with the
help of prior knowledge about the functionality of these layers. As discussed in
Sect. 8.3, meta-heuristic algorithms can help to automatically select an optimal set
of hyperparameters for a CNN in a given task.

8.3 Related Works

In recent years, we have seen a increasing interest in the evolutionary computation
community in evolving DNN architectures and their hyperparameters. David and
Greental [12] proposed a simple GA-assisted method to improve the performance
of the deep autoencoder on the MNIST dataset. They stored the sets of weights of
an autoencoder in the chromosomes of individuals in their GA population. Then, by
calculating the root mean square error (RMSE) of each chromosome for the training
sample, they set the fitness score of each individual as the inverse of RMSE. After
sorting all chromosomes from the fittest to the least fit, they tuned the weights of the
high ranking chromosomes using backpropagation and replaced the low-ranking
members with the offspring of high ranking ones. However, they just used the
fitness score as a criterion for removing the low ranking members, and selection
is implemented uniformly and applied to the outstanding chromosomes with equal
likelihood. The authors showed that compared to the traditional backpropagation,
the GA-assisted method gives better reconstruction error and network sparsity.

Suganuma et al. [8] used Cartesian Genetic Programming (CGP) to construct the
CNN structure and network connectivities. To reduce the search space, high-level
functional modules, such as convolutional block and tensor concatenation, were
used as the node functions of CGP. Following the training of the network using the
training data, they utilized the validation accuracy as the fitness score. By evaluating
the performance of the evolved CNN models on the CIFAR10 dataset, they achieved
the error rates of 6.34 and 6.05% for the CGP-CNN (ConvSet) and the CGP-CNN
(ResSet), respectively. Loshchilov and Hutter [13] introduced the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) as an optimization method for selecting
the hyperparameters of the deep neural networks (DNNs). In their experiments,
the performance of CMA-ES and other state-of-the-art algorithms were evaluated
for tuning 19 hyperparameters of a DNN on the MNIST dataset. They pointed out
that the CMA-ES algorithm shows competitive performance, especially in parallel
evaluations.

In another study, Sun et al. [14] used a GA to design the CNN architectures
automatically for image classification. They used skip layers, composed of two
convolutional layers and one skip connection borrowed from ResNet [6], to increase
the depth of the network. Moreover, they used the same filter size and stride for
all convolutional layers, and the number of feature maps was selected by their
method. The fully connected layers were omitted in their model, but the pooling
layers were used. They evaluated the performance of their model on several popular
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benchmarks, such as CIFAR10 and CIFAR100. The other work conducted by Sun
et al. [15] utilized the ResNet and DenseNet blocks [16] for automatically evolving
the CNN architectures. In their approach, a combination of three different units,
ResNet block units, DenseNet block units, and pooling layer units, have been used
to generate the CNN architecture. In their encoding strategy, to increase the depth
of the network as well as the speed of heuristic search by changing the depth of the
network, each ResNet or DenseNet unit composed of multiple ResNet and DenseNet
blocks. They showed the superiority of their model by comparing their model
generated results with 18 state-of-the-art algorithms on CIFAR10 and CIFAR100
datasets. Ali et al. [17] proposed a GA model to evolve a CNN architecture and other
network hyperparameters. They used a generic GA to find the best combination of
network hyperparameters, such as the number of layers, learning rate, and weight
decay factor. Using some design rules and constraints for genotype to phenotype
mapping, they evolved a CNN architecture on CIFAR10 dataset. They compared
the performance of the best CNN architecture evolved by their method with 13 other
models in terms of classification accuracy and GPU days. Sun et al. [9] introduced a
GA model for evolving CNN architecture as well as connection weight initialization
values in image classification tasks. They used an efficient variable-length gene
encoding method, representing various building blocks, to find the optimal depth
of the CNN. Furthermore, to avoid trapping in local minima, a major problem in
gradient-based training, they introduced a new representation scheme for initializing
the connection weights of DNN. They showed the effectiveness of their proposed
method by comparing their results with 22 existing algorithms involving state-of-
the-art models on nine popular image classification tasks.

8.4 The Proposed Genetic Algorithm for Designing CNNs

In this work, using a GA, we evolved CNN architectures with the best combination
of hyperparameters for the image classification task. Our GA operates in the search
space of VGG-like architectures, i.e., we assumed that the CNN architecture consists
of a sequence of convolutional blocks, each followed by a pooling layer, and a fully
connected layer at the end. The GA is used to optimize the number of convolutional
blocks, the number of convolutional layers in each block as well as some other
hyperparameters of the CNN architecture. The assumption about the organization of
the CNN architecture confines the GA to discover only the classical CNN models,
i.e., it does not allow to design CNN architectures with more sophisticated modules
like residual blocks [6] or inception modules [7]. However, by exploring the
limited search space, the proposed GA was able to design CNNs, which exhibited
competitive performance with the other state-of-the-art CNN models.
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Fig. 8.1 The flowchart of the genetic algorithm for evolving CNN model

The proposed algorithm for optimizing CNN architecture works in the generic
GA framework with standard GA operations (Fig. 8.1). The algorithm begins with
an initial population created by the random selection of genes for each individual.
The chromosome of each individual uniquely determines the architecture of a CNN
as well as some of its hyperparameters. Then, each CNN model is trained and
validated using the training dataset, and the average classification accuracy of the
network in the validation phase is used as the individual’s fitness score. Next, the
population of individuals is sorted in descending order of their fitness scores. Then,
by applying a chain of genetic operations such as elite selection, random selection,
and breeding of the new members, the next generation of the population is created.
This process is repeated until the satisfaction of the termination criterion. The
pseudocode of the genetic algorithm for CNN architecture optimization is shown
in Algorithm 1, and the details of each module are presented in the following
subsections.

Algorithm 1: Proposed GA framework for evolving CNN models
Input: Population size (NP ), Maximum number of generation (Gmax ), the range of values

for the selected hyperparameters (LH ), the RGB images of training dataset
Output: The best CNN architecture with its hyperparameters

1 Initialize the population using a random combination of hyperparameters [Algorithm 2]
2 Train the CNN model designated by each individual in the population, and calculate the

corresponding fitness score [Algorithm 3]
3 Store the population of individuals and their fitness scores in a list called P

4 NG ← 0
5 while NG < Gmax do
6 Create a new generation Pnew consisting of elite individuals, random individuals and

offspring created from P [Algorithm 4]
7 Evaluate individuals in Pnew

8 Set P ← Pnew and NG ← NG + 1
9 end

10 Return the best CNN architecture in P along with its hyperparameters
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Fig. 8.2 The chromosome of an individual showing different hyperparameters of the CNN model

8.4.1 Population Initialization

As mentioned earlier, the proposed GA is used to seek the optimal CNN model in
the search space of classical CNN architectures. We limited the maximum number
of convolutional layers in a CNN to 20 divided into a maximum of 5 blocks
B1, B2, B3, B4, B5. Each of the blocks can have any number of layers between
0 and 4. The number of feature maps for each block is also optimized by GA, which
can be chosen from {32, 64, 128, 256, 512}. The other hyperparameters, optimized
by our GA, are learning rate (LR), weight decay (WD), momentum (M), and dropout
rate (DR). The structure of the chromosome is shown in Fig. 8.2.

From the chromosome structure, it becomes clear that the proposed GA works
with a fixed size chromosome. However, by allowing a block size to be zero, the
GA can actually search for variable-length CNN models having variable number of
blocks with any number of layers between 0 and 20. The example in Fig. 8.2 shows
a CNN architecture with 11 layers where the first block consists of 2 convolutional
layers with a feature map size of 256. The second block does not exist, the third,
fourth, and fifth block have 3, 2, and 4 layers and their corresponding feature map
sizes are 32, 512, and 256, respectively.

In genotype to phenotype mapping, a couple of additional layers are added in
each CNN model. Each convolutional block is followed by a max-pooling layer
with kernel size 2 and stride size 2, an average-pooling layer with a kernel size
2 and a stride size 1 is added after the final max-pooling layer, and a linear fully
connected layer is placed at the end of the network. Moreover, each convolutional
layer is followed by a batch normalization layer [18] and a Rectified Linear Unit
(ReLU) layer [19], and a dropout layer is added at the rear of each convolutional
block.

Algorithm 2 summarizes the process of population initialization for the GA. Each
gene in a chromosome can take a range of values, and the proposed GA searches for
the optimal combination of these values through the evolution process. The range
of possible values for each gene (shown in Table 8.1) is selected according to the
previous experiences in different classification problems using CNNs. Following the
random selection of the hyperparameters, the CNN architecture is created without
any constraints on the number or the order of convolutional layers or feature maps.
Often, human-designed CNN architectures are created following some rules, e.g.,
an increasing number of feature maps are used in successive convolutional blocks.
However, in the proposed GA model, no such restriction was imposed, and the
architecture of a CNN is completely guided by the chromosome.
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Algorithm 2: For generating initial population
Input: The population size NP

Output: The initialized population Pinit

Data: The ranges of values for different hyperparameter are stored in a list called LH

1 Pinit ← ∅
2 while |Pinit | < NP do
3 Select the learning rate (lr) randomly from the LH [LR]
4 Select the weight decay factor (wd) randomly from the LH [WD]
5 Select the momentum (m) randomly from the LH [M]
6 Select the dropout (d) randomly from the LH [DR]
7 Select the number of convolutional layer in each block {B1, B2, B3, B4, B5}

randomly from the LH [NL]
8 Select the number of feature maps corresponding to each block {F 1, F 2, F 3, F 4, F 5}

randomly from the LH [NF]
9 Create an individual (Ind) with the selected hyperparameters

10 Pinit ← Pinit ∪ Ind

11 Return Pinit

Table 8.1 The range of possible values for different hyperparameters to be searched by the GA

Hyperparameter Values

Learning rate (LR) 0.1, 0.01, 0.001, 0.0001

Weight decay (WD) 0.1, 0.01, 0.001, 0.0001, 0.00001

Momentum (M) 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9

Dropout rate (DR) 0.25, 0.5, 0.75

Block size (NL) in B1-B5 0, 1, 2, 3, 4

Feature map size (NF) in F1-F5 32, 64, 128, 256, 512

Finally, it should be noted that the chromosome structure and the algorithm
are flexible enough to make it more general by considering the optimization of
additional hyperparameters, e.g., activation function, individual kernel size for
each convolutional block, etc. Nevertheless, increasing the search space size will
necessitate more extensive searching. We did some preliminary study with some
other variants of the chromosome, but later fixed those hyperparameter values (e.g.,
fixed the kernel size of convolutional layers to 3) to reduce the computational
burden.

8.4.2 Fitness Evaluation

In order to assess the quality of a CNN model constructed from the chromosome of
an individual, we need to train it and evaluate its classification performance. Train-
ing and evaluating a deep neural network is the computationally most expensive
part of any deep neuroevolution algorithm. Recent studies have suggested that it is
possible to roughly assess the architectural quality of a CNN model based on its
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evaluation after partial training [8, 9]. Henceforth, during the evolution process, we
evaluated the performance of the CNN networks after partially training them for
only Nepoch = 10 epoch, which significantly accelerated the genetic algorithm.

Algorithm 3: For fitness evaluation of an individual
Input: The individual (Ind), training data (Dtrain), validation data (Dvalid ), the number of

epoch in training phase (Nepoch)
Output: The fitness score of the individual

1 Create the CNN model (net) from the hyperparameters of Ind augmented with pooling,
fully connected, batch-normalization, ReLU and dropout layers (details in Sect. 8.4.1)

2 Acc ← ∅
3 step ← 0
4 Accavg ← 0
5 while step < Nepoch do
6 Train the model net using the Dtrain

7 Calculate the classification accuracy (acc) using the Dvalid

8 Acc ← Acc ∪ acc

9 step ← step + 1
10 end

11 Accavg ← Average of accuracies in Acc

12 Return Accavg

We used the average validation accuracy of the constructed CNN model as the
fitness score of the corresponding individual. 90% of the training data is used during
the training phase, and the rest 10% is utilized for validation. The constructed CNN
model is trained by the stochastic gradient descent (SGD) algorithm [20], for a
constant number of epochs (Nepoch = 10), and the average classification accuracy of
the validation phase is used as the fitness score of the individual. In all experiments,
during the training phase, the cross-entropy loss is used as the loss function, and the
learning rate is reduced by a factor of 10 in every 10 epochs during complete training
for the model after the evolutionary phase. The details of the fitness evaluation of an
individual are summarized in Algorithm 3.

8.4.3 Creating New Generation

In the proposed GA, the next generation of individuals is created from the current
generation using elite selection, random selection, and offspring generation. First,
the individuals in the current generation are sorted based on their fitness scores. Top
e% of the individuals, known as elites, are selected from the current population
and added to the next generation. To maintain the population diversity and to
prevent premature convergence, some random individuals are also added [21, 22].
Specifically, from the rest of the current population, individuals are randomly
selected with a probability of pr and added to the next generation. Finally, the
selected elite and random individuals form the parent pool to breed offspring.
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Algorithm 4: For creating a new generation of individuals
Input: The current population of individuals with their fitness scores (P ), the percentage of

population preserved as the elite (e), the probability of preserving an individual from
the non-elite section of the current population (pr ), the probability of mutation (pm),
and the population size (Np)

Output: The new population (Pnew)
1 Pnew ← ∅
2 Sort the individuals in P in descending order of their fitness scores
3 Add top e% individuals from P to the new population Pnew

4 Select the individuals from the bottom (1 − e)% of P with probability pr and add them to
Pnew

5 Pparents ← Pnew

6 while |Pnew | < Np do
7 Par1 ← An individual randomly selected from Pparents

8 Par2 ← An individual randomly selected from Pparents

9 if Par1 �= Par2 then
10 Create two children from the selected parents using uniform crossover operation

and save them in Children

11 for each Child in Children do
12 r← Randomly generate a number from the range (0,1)
13 if pm > r then
14 Randomly replace a gene in Child with the randomly selected value
15 end

16 end

17 Pnew ← Pnew ∪ Children

18 end

19 end

20 Return Pnew

The process of generating the offspring starts with the random selection of
two dissimilar individuals from the parent pool. The selected parents participate
in uniform crossover operation to create two offspring. Each child may inherit
various combinations of genes from the parents because its genes are randomly
selected from the parents. Then, the child undergoes the mutation operation with
a predefined mutation probability of pm. If the mutation condition is met, one
randomly selected gene in the offspring chromosome is randomly modified from
a set of predefined values (shown in Table 8.1). Newly created offspring are added
to the next generation. The process of creating new children is repeated until the
number of individuals in the new generation reaches the population size. Finally,
the new generation, consisting of parent pool and children pool, replaces the current
generation. The process of generation alternation is repeated Gmax times so that the
GA can search for the best network architecture and hyperparameters. The process
of creating a new generation from the current generation is shown in Algorithm 4.
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8.5 Experimental Setup

8.5.1 Datasets

In this work, we used three popular datasets CIFAR10, CIFAR100, and SVHN
as the benchmark for image classification problems. These datasets have been
used in many pieces of research for evaluation of the state-of-the-art deep neural
network models which makes our evolved models comparable with those models.
The CIFAR10 dataset includes 60,000 color RGB images belonging to 10 classes
and is mostly used for image classification tasks. These images are of dimension
32 × 32 and are divided into training and testing parts. The training set contains
50,000 images, and the rest of 10,000 images are used as the testing set. There is an
equal number of training and testing samples for each class.

The CIFAR100 dataset is similar to the CIFAR10, except with 100 classes that
are categorized into 20 superclasses each of which contains five classes. There exist
only 500 training images and 100 testing images, per class, making classification
more challenging in this dataset.

The SVHN (Street View House Numbers) dataset that can be considered in
essence similar to the MNIST dataset but with more labeled data contains 73257
and 26032 digits for training and testing, respectively. Compared to the MNIST
dataset, the SVHN dataset originates from a more difficult real-world problem. This
dataset contains the original, colored, and variable resolution images from the house
numbers in Google Street View images. However, all digits of the house numbers
have been resized to a fixed resolution 32 × 32 and originate from 10 different
classes [23].

8.5.2 Experimental Environment

In this work, we used the Pytorch framework (Version 1.2.0) of the python
programming language (Version 3.7) in all experiments. Besides, we ran the codes
using both high-performance computing (HPC) services and the DGX station
machine at the University of Newcastle. All codes ran with two GPUs at all stages
including the evolution of various CNN architectures, complete training of the
selected models with a larger epoch, and testing the best-performing models.

8.5.3 Parameter Selection

As stated before, our proposed framework is very flexible for increasing the search
space. In other words, many hyperparameters can be evolved through the GA
framework, but because of the limitation imposed by computational resources, we
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just evolved some of the selected hyperparameters. Also, according to our earlier
experimental results, a specific value is always selected by the GA for some of these
hyperparameters, namely activation function, optimizer. Hence, in all experiments,
the ReLU activation function and SGD optimizer have been used. Besides, the
kernel size of the convolutional layers was set to 3 and the stride size of the
convolutional layer and the max-pooling layer was set to 2.

The GA parameters were set as follows: maximum number of generation Gmax =
40, population size NP = 30, the percentage of population retained as the elite
e = 40%, the probability of retaining an individual from the non-elite part of
the population pr = 0.1, and the probability of the mutation pm = 0.2. These
parameters were set based on our experience with evolutionary algorithms and using
some primary studies. Moreover, to decrease the computational burden and speed
up the evolution process, during evolution, we trained the networks with a smaller
number of the epochs Nepoch = 10. After the evolutionary phase, the best CNN
model is trained completely before it is evaluated with the test dataset. Precisely, the
best model evolved by the GA is trained for a higher number of epoch Nepoch = 350
using the full training set.

8.6 Experimental Results

In our experiments, we applied the proposed GA for evolving the CNN architectures
for each dataset. Considering the stochastic nature of the algorithm, we repeated
each experiment 5 times and the best CNN model evolved in each experiment is
later trained completely and tested on the corresponding dataset. Table 8.2 shows
the performance of the evolved models in different datasets in terms of their average
accuracy, standard deviation, best accuracy, and the worst accuracy. The CNN
models designed by the GA was able to achieve a good performance in all three
datasets. Considering the average, best, and worst accuracies as well as the standard
deviations shown in Table 8.2, it is evident that the evolutionary algorithm was pretty
reliable in finding CNN models of similar quality over multiple experimental runs.

The average convergence graph of GA from a single representative run is shown
in Figs. 8.3 and 8.4 for all three datasets. Note that the fitness score in these graphs is
the average validation accuracy of the CNN models in each generation which were

Table 8.2 The average accuracy, standard deviation, best and worst accuracy of the best CNN
models evolved by multiple GA runs in each dataset

Dataset Average accuracy STD Best accuracy Worst accuracy

CIFAR10 94.75 0.650 95.82 94.01

CIFAR100 75.90 0.521 76.79 75.34

SVHN 95.11 0.48 95.57 94.52

Each network was trained for 350 epochs
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Fig. 8.3 The average convergence graph of the GA population in one representative run on (a)
CIFAR10 dataset and (b) CIFAR100 dataset
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Fig. 8.4 The average convergence graph of the GA population in one representative run on SVHN
dataset

trained only for 10 epochs. As shown in these graphs, the proposed algorithm was
successful to improve the overall fitness of the population on all datasets. The fitness
of the population improved quickly in the first 10 generations and then slowed down
gradually. However, this behavior is expected because of the high selection pressure
from the elitism strategy and the participation of the elite individuals in offspring
generation.

Table 8.3 shows the structures of the best networks evolved in different GA
runs for each dataset. Each row of Table 8.3 shows the CNN architecture in
terms of the number of blocks, number of convolutional layers in each block,
and the feature map size of each block. The convolutional blocks are separated
by comma and in each block we show the number of layers and the feature map
size (in parenthesis) for each layer in that block. For example in the first row of
Table 8.3, 4×(128) represents that the first convolutional block of the CNN consists
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Table 8.3 The best structures evolved in different GA runs for different datasets

Dataset Network ID No. parameters Evolved architecture

CIFAR10 Net 1 14.3 M [4× (128), 4× (256), 2× (256), 3× (512),
2× (512)]

CIFAR10 Net 2 25.4 M [4× (512), 3× (512), 4× (512), 2× (256)]

CIFAR10 Net 3 5.8 M [2× (512), 4× (256), 2× (128)]

CIFAR10 Net 4 6.7 M [2× (256), 3× (512), 2× (32)]

CIFAR10 Net 5 20.7 M [3× (512), 2× (512), 4× (512), 2× (256)]

CIFAR100 Net 1 1.7 M [4× (256), 2× (512), 4× (256)]

CIFAR100 Net 2 14.2 M [3× (512), 4× (512)]

CIFAR100 Net 3 11.2 M [2× (256), 4× (512), 4× (512)]

CIFAR100 Net 4 18.3 M [3× (512), 3× (512), 4× (256)]

CIFAR100 Net 5 14.8 M [2× (256), 2× (512), 3× (512)]

SVHN Net 1 19 M [3× (512), 4× (512), 4× (256)]

SVHN Net 2 7.8 M [3× (32), 3× (512), 4× (512), 2× (512)]

SVHN Net 3 17.1 M [3× (32), 3× (512), 4× (512), 4× (512)]

SVHN Net 4 23.8 M [3× (256), 3× (256), 2× (256), 4× (512)]

SVHN Net 5 11.9 M [3× (32), 3× (512), 4× (512), 2× (512)]

of 4 convolutional layer each having a feature map size of 128. The complete
CNN model is constructed by adding ReLU, batch normalization, dropout, average
pooling layer and fully connected layers as described in Sect. 8.4.1. This table also
shows the number of trainable parameters for different evolved models. The other
hyperparameters of each evolved network for CIFAR10, CIFAR100, and SVHN
dataset are shown in Tables 8.4, 8.5, and 8.6, respectively. Figure 8.5 visualizes the
architecture of the best CNN models evolved by GA over five repeated runs in three
datasets.

It can be seen from Table 8.3 that different evolutionary runs evolved quite
different CNN architectures in terms of the number of blocks, number of layers,
and number of trainable parameters even for the same dataset. However, with these
different architecture the models achieved very similar accuracy in the respective
datasets as shown in Tables 8.4, 8.5, and 8.6. One interesting observation in evolved
architectures by the GA is the feature map sizes in different blocks. In human-
designed architectures, usually the feature map size increases in later convolutional
blocks as we have seen in case of different VGG models. In some of the evolved
models we notice the same characteristics, e.g. Net 1 for CIFAR10, however, in
general, this order was not maintained in the evolved models. Some architecture has
it in decreasing order (Net 3 for CIFAR10) and some has it in no specific order (Net
4 for CIFAR10). From this observation we can infer that use of increased feature
map size in later convolutional block is not absolutely necessary for good CNN
architecture design.

In order to further assess the merit of the evolved models, we trained each evolved
model with the other datasets and tested its accuracy. Specifically, Table 8.4 shows
the best evolved models for the CIFAR10 datasets and then applied in CIFAR10,
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Table 8.4 Hyperparameters of the top five CNN models evolved by different GA runs for
CIFAR10 dataset

Hyperparameters CIFAR10 CIFAR100 SVHN

Net name LR WD M DR No. blocks No. layers accuracy accuracy accuracy

Net 1 0.01 0.01 0.65 0.5 5 15 95.82 79.48 96.93

Net 2 0.01 0.001 0.8 0.5 4 13 95.09 76.95 96.60

Net 3 0.1 0.001 0.7 0.25 3 8 94.64 74.41 95.64

Net 4 0.01 0.01 0.7 0.5 3 7 94.21 71.53 92.80

Net 5 0.01 0.0001 0.8 0.5 4 11 94.01 76.07 96.27

Table 8.5 Hyperparameters of the top five CNN models evolved by different GA runs for
CIFAR100 dataset

Hyperparameters CIFAR10 CIFAR100 SVHN

Net name LR WD M DR No. blocks No. layers accuracy accuracy accuracy

Net 1 0.01 0.001 0.8 0.5 3 10 93.28 76.79 96.03

Net 2 0.1 0.0001 0.75 0.5 2 7 94.14 76.04 95.87

Net 3 0.01 0.0001 0.8 0.5 3 10 94.66 75.59 96.54

Net 4 0.01 0.001 0.8 0.25 3 10 94.56 75.52 96.35

Net 5 0.01 0.0001 0.9 0.5 3 7 94.34 75.34 96.03

Table 8.6 Hyperparameters of the top five CNN models evolved by different GA runs for SVHN
dataset

Hyperparameters CIFAR10 CIFAR100 SVHN

Net name LR WD M DR No. blocks No. layers accuracy accuracy accuracy

Net 1 0.01 0.0001 0.9 0.25 3 11 95.10 73.95 95.57

Net 2 0.01 0.0001 0.7 0.5 4 12 93.21 73.53 95.51

Net 3 0.01 0.0001 0.7 0.5 4 14 92.58 72.89 95.43

Net 4 0.01 0.001 0.7 0.5 4 12 94.19 73.18 94.53

Net 5 0.01 0.0001 0.8 0.5 4 12 94.05 73.10 94.52

CIFAR100 and SVHN datasets. Similarly, Tables 8.5 and 8.6 show the performance
of the evolved models for the CIFAR100 and SVHN datasets, respectively, in all
three datasets.

It was expected that the model evolved for a particular dataset will exhibit
the best performance in that dataset. However, we notice that in general the
best performance was exhibited by the models evolved for CIFAR10 dataset
(Table 8.4). We hypothesize that for more complex datasets like CIFAR100 and
SVHN, the training of 10 epochs is not sufficient to assess the quality of the network
architecture, therefore, the evolved model did not perform the best in the respective
datasets. One particular point to note in Tables 8.4, 8.5, and 8.6 is that evolutionary
runs selected network hyperparameters pretty consistently. For example almost in
every model, dropout rate was chosen as 0.5 and learning rate was chosen as 0.01.



224 A. Bakhshi et al.

Input RGB Images

3 × 3 Conv, 128

3 × 3 Conv, 128

3 × 3 Conv, 128

3 × 3 Conv, 128

MaxPooling, Stride 2

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

3 × 3 Conv, 512

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

AvgPooling, Stride 1

Fully Connected

Input RGB Images

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

AvgPooling, Stride 1

Fully Connected

Input RGB Images

3 × 3 Conv, 512

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

3 × 3 Conv, 512

3 × 3 Conv, 512

3 × 3 Conv, 512

3 × 3 Conv, 512

MaxPooling, Stride 2

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

3 × 3 Conv, 256

MaxPooling, Stride 2

AvgPooling, Stride 1

Fully Connected

Fig. 8.5 Architectures of top CNN models evolved by GA (left to right for: CIFAR10, CIFAR100,
and SVHN datasets)



8 Fast Evolution of CNN Architecture for Image Classification 225

Table 8.7 The comparisons between the GA-evolved CNN model and the state-of-the-art CNN
algorithms in terms of the classification accuracy (%)

Algorithm Accuracy Accuracy GPU Parameter

name CIFAR10 CIFAR100 days setting

VGG16 93.05 74.94 – Manually

VGG19 92.59 74.04 – Manually

ResNet101 94.08 75.39 – Manually

DenseNet 94.52 76.61 – Manually

Maxouta 90.70 61.40 – Manually

Genetic CNNa 92.90 70.97 17 Semi-auto

Hierarchical evol.a 96.37 – 300 Semi-auto

Block-QNN-Sa 95.62 79.35 90 Semi-auto

Large-scale evol.a 94.60 77 2750 Automatic

CGP-CNNa 94.02 – 27 Automatic

NASa 93.99 – 22,400 Automatic

Meta-QNNa 93.08 72.86 100 Automatic

CNN-GAa 95.22 77.97 35 Automatic

Fast-CNN [17] 94.70 75.63 14 Automatic

This work (CIFAR10) 95.82 79.48 6 Automatic
aThe values of this algorithm reported in [14]

The purpose of partial training (with a smaller number of epochs) of different
models during evolutionary phase was to reduce the computation burden. Some
other work [8, 9] and our previous experiments [17] showed that such partial training
can be sufficient for assessing network architecture in image classification. In this
work we aimed to investigate it further by training the network for only 10 epochs.
No doubt it accelerates the evolution process greatly—the average time for evolving
the networks was only 6 GPU days. However, based on the performance of the
networks evolved for CIFAR100 and SVHN datasets, we infer that such minimum
training will be useful for simpler dataset but will not be sufficient for assessing the
network’s quality in complex datasets.

Finally, to assess the competitiveness of the GA-evolved models with the other
state-of-the-art CNN models, we compared their performance in Table 8.7 (best
performances are shown in bold). We contrasted the performance of three cate-
gories of networks, manually designed, designed semi-automatically, and designed
completely automatically [14]. Among the manually designed networks are VGG16
[5], VGG19 [5], ResNet101 [6], DenseNet [16], and Maxout [24]. Among the
semi-automatically designed networks are Genetic CNN, Hierarchical Evolution,
Block-QNN-S and from the fully automatically designed networks are Large-
scale Evolution, CGP-CNN, NAS, Meta-QNN, CNN-GA, and Fast-CNN [17]. We
compared the performance of the best model evolved by the proposed GA for
CIFAR10 dataset on both CIFAR10 and CIFAR100 datasets (last row). Besides
comparing these models in terms of their accuracy in CIFAR10 and CIFAR100
datasets, for the automatically designed networks, we compared them in terms of
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GPU days required to design those networks. The GPU days are a rough estimation
for determining the speed of the algorithm, but it is not applicable to the manually
designed models. It should be noted that some of the results have been reproduced
by us, while others (indicated in the table footnote) were just copied from [14].

From Table 8.7 it can be seen that the CNN model evolved by our proposed
GA was obviously better than VGG models as well as other human designed CNN
models in CIFAR10 dataset. The CNN model was also better than all other models
designed automatically. Its performance was second best among the compared
models in CIFAR10 dataset. The best performance was exhibited by the model
designed by hierarchical evolution which is a semi-automatically designed network.
In terms of performance on CIFA100 dataset, the evolved model in this work
exhibited the best accuracy compared to all other CNN models whether designed
manually, semi-automatically, or automatically. Finally, when compared in terms
of required computational power, the proposed GA was really fast, requiring only
6 GPU days, in finding the optimal CNN architecture compared to other semi-
automatic and automatic methods. Although the Hierarchical Evolutionary model
in the semi-automatic category shows better classification accuracy on CIFAR10,
its GPU days is 50 times bigger than that required by the proposed method in this
work.

8.7 Discussion

This chapter basically investigates if a genetic algorithm can help to find an
optimized VGG-like CNN model for image classification. Using a fixed length
chromosome, the proposed GA explored the search space of CNN architectures
consisting of variable number of layers divided into a variable number of blocks.
Experiments with three widely used datasets show that the proposed GA is able
to design CNN models optimizing both its structure and hyperparameters. The
evolved models were better than the classic VGG models and several other human-
designed CNN models. Despite having a VGG-like architecture, the GA designed
models were also very competitive with other state-of-the-art CNN models designed
by semi-automatic and automatic methods. Additionally, the GA designed CNN
models sometimes had structural characteristics different from those designed by
humans. We also evaluated the performance of the CNN model, evolved by GA
for one dataset, on other datasets. The high-quality performance of the models on
other datasets indicates the superiority of the architectures evolved by GA. Based
on these results, we conclude that the proposed GA is capable of optimizing classic
CNN models for higher performance.

For the answer to our second question, if we can reduce the high cost of
evolving CNN architecture by using partial training of the models, we evaluated
the performance of networks after a few epochs of training. From our experiments
with the CIFAR10 dataset, we found that partial training of the models with only a
few epochs was good for finding very good architectures. However, the CNN models
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evolved for CIFAR10 dataset exhibited an overall better performance in CIFAR100
and SVHN datasets than those evolved for these two datasets. Based on these
results, we hypothesize that perhaps partial training was not effective in evaluating
network’s performance in complex datasets. Nevertheless, a more detailed study by
varying the training epochs on multiple datasets is required for a more general and
accurate conclusion.

In our experiments, some of the structural parameters and hyperparameters of
CNN were kept fixed. Although the presented framework is ready to be extended for
the evolution of those parameters, the expansion of the search space will necessitate
more computational power to find the optimal CNN model. On the other hand, at
that expense, it might be possible to find a more efficient CNN model. Besides, the
size of the evolved networks is big compared to many other architectures because
no measure was taken to restrict the network size. The current framework can also
be extended to incorporate that criterion either in a single or multi-objective setup.
Optimizing a larger set of parameters may also help in finding smaller network
models.

8.8 Conclusion and Future Work

In this chapter, we showed how a simple genetic algorithm (GA) can be used to
automatically discover the optimized CNN model. Exploring the search space of
the classic CNN models, the proposed GA optimized the number of convolutional
blocks, number of convolutional layers in each blocks, the size of feature maps for
each block and other training related hyperparameters such as dropout rate, learning
rate, weight decay, and momentum. To reduce the computational burden in model
training, which is a common challenge for all deep neuroevolution algorithms, we
trained the models partially during evolution. The proposed GA, when evaluated in
three popular datasets, CIFAR10, CIFAR100 and SVHN, designed very high quality
CNN models over multiple repeated experiments. Performance of the evolved
CNN model is compared with 14 state-of-the-art models, chosen from different
categories, in terms of classification accuracy and GPU days. The best CNN model
evolved on the CIFAR10 dataset was found very competitive with other human
designed and automatically designed CNN models in terms of the classification
accuracy and better in terms of GPU days to evolve them.

The proposed GA framework can be used for searching more structure and train-
ing related hyperparameters of CNN, e.g. kernel size, stride size, activation function,
optimizer choice, etc., with very minimum changes. Besides, the framework can
be extended for finding a smaller network model in terms of parameter numbers.
Additionally, the performance of proposed GA can be tested in other applications
of CNN as well as for optimizing other types of deep neural networks.
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Part IV
Deep Neuroevolution



Chapter 9
Discovering Gated Recurrent Neural
Network Architectures

Aditya Rawal, Jason Liang, and Risto Miikkulainen

Abstract Gated recurrent networks such as those composed of Long Short-Term
Memory (LSTM) nodes have recently been used to improve state of the art in many
sequential processing tasks such as speech recognition and machine translation.
However, the basic structure of the LSTM node is essentially the same as when it
was first conceived 25 years ago. Recently, evolutionary and reinforcement-learning
mechanisms have been employed to create new variations of this structure. This
chapter proposes a new method, evolution of a tree-based encoding of the gated
memory nodes, and shows that it makes it possible to explore new variations more
effectively than other methods. The method discovers nodes with multiple recurrent
paths and multiple memory cells, which lead to significant improvement in the
standard language modeling benchmark task. The chapter also shows how the search
process can be speeded up by training an LSTM network to estimate performance
of candidate structures, and by encouraging exploration of novel solutions. Thus,
evolutionary design of complex neural network structures promises to improve
performance of deep learning architectures beyond human ability to do so.

9.1 Introduction

In many areas of engineering design, the systems have become so complex that
humans can no longer optimize them, and instead, automated methods are needed.
This has been true in VLSI design for a long time, but it has also become
compelling in software engineering: The idea in “programming by optimization”
is that humans should design only the framework and the details should be left
for automated methods such as optimization [1]. Recently similar limitations

A. Rawal (�)
Uber AI Labs, San Francisco, CA, USA
e-mail: aditya.rawal@uber.com

J. Liang · R. Miikkulainen (�)
Cognizant Technologies, Teaneck, NJ, USA
e-mail: Jason.Liang@cognizant.com; risto@cs.utexas.edu; risto@cognizant.com

© Springer Nature Singapore Pte Ltd. 2020
H. Iba, N. Noman (eds.), Deep Neural Evolution, Natural Computing Series,
https://doi.org/10.1007/978-981-15-3685-4_9

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3685-4_9&domain=pdf
mailto:aditya.rawal@uber.com
mailto:Jason.Liang@cognizant.com
mailto:risto@cs.utexas.edu
mailto:risto@cognizant.com
https://doi.org/10.1007/978-981-15-3685-4_9


234 A. Rawal et al.

have started to emerge in deep learning. The neural network architectures have
grown so complex that humans can no longer optimize them; hyperparameters
and even entire architectures are now optimized automatically through gradient
descent [2], Bayesian parameter optimization [3], reinforcement learning [4, 5], and
evolutionary computation [6–8]. Improvements from such automated methods are
significant: the structure of the network matters.

This work shows that the same approach can be used to improve architectures
that have been used essentially unchanged for decades. The case in point is the Long
Short-Term Memory (LSTM) network [9]. It was originally proposed in 1997; with
the vastly increased computational power, it has recently been shown a powerful
approach for sequential tasks such as speech recognition, language understanding,
language generation, and machine translation, in some cases improving perfor-
mance 40% over traditional methods [10]. The basic LSTM structure has changed
very little in this process, and thorough comparisons of variants concluded that there
is little to be gained by modifying it further [11, 12].

However, very recent studies on meta-learning methods such as neural architec-
ture search and evolutionary optimization have shown that LSTM performance can
be improved by complexifying it further [4, 6]. This chapter develops a new method
along these lines, recognizing that a large search space where significantly more
complex node structures can be constructed could be beneficial. The method is based
on a tree encoding of the node structure so that it can be efficiently searched using
genetic programming. Indeed, the approach discovers significantly more complex
structures than before, and they indeed perform significantly better: Performance
in the standard language modeling benchmark, where the goal is to predict the
next word in a large language corpus, is improved by 6 perplexity points over the
standard LSTM [13], and 0.9 perplexity points over reinforcement-learning based
neural architecture search [4].

These improvements are obtained by constructing a homogeneous layered
network architecture from a single gated recurrent node design. A second innovation
in this work shows that further improvement can be obtained by constructing such
networks from multiple different designs. As a first step, allocation of different
kinds of LSTM nodes into slots in the network is shown to improve performance
by another 0.5 perplexity points. This result suggests that further improvements are
possible with more extensive network-level search.

A third contribution of this work is to show that evolution of neural network
architectures in general can be speeded up significantly by using an LSTM network
to predict the performance of candidate neural networks. After training the candidate
for a few epochs, such a Meta-LSTM network predicts what performance a
fully trained network would have. That prediction can then be used as fitness
for the candidate, speeding up evolution fourfold in these experiments. A fourth
contribution is to encourage exploration by using an archive of already-explored
areas. The effect is similar to that of novelty search, but does not require a separate
novelty objective, simplifying the search.

Interestingly, when the recurrent node evolved for language modeling was
applied to another task, music modeling, it did not perform well. However, it was
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possible to evolve another solution for that task that did. As a fifth contribution, the
results in this work demonstrate that it is not simply the added complexity in the
nodes that matter, but that it is the right kind, i.e. complexity customized for each
task.

Thus, evolutionary optimization of complex deep learning architectures is a
promising approach that can yield significant improvements beyond human ability
to do so.

9.2 Background and Related Work

In recent years, LSTM-based recurrent networks have been used to achieve strong
results in the supervised sequence learning problems such as in speech recognition
[10] and machine translation [10]. Further techniques have been developed to
improve performance of these models through ensembling [13], shared embeddings
[14], and dropouts [15].

In contrast, previous studies have shown that modifying the LSTM design itself
did not provide any significant performance gains [12, 16, 17]. However, a recent
paper from Zoph and Le [4] showed that policy gradients can be used to train an
LSTM network to find better LSTM designs. The network is rewarded based on the
performance of the designs it generates. While this approach can be used to create
new designs that perform well, its exploration ability is limited (as described in more
detail in Sect. 9.3.3). The setup detailed in Zoph and Le [4] is used for comparison
in this work. In a subsequent paper [18], the same policy gradient approach is used
to discover new recurrent highway networks to achieve even better results.

Neuroevolution methods like NEAT [19] are an alternative to policy gradient
approaches, and have also been shown to be successful in the architecture search
problem [6, 7]. For instance, Cartesian genetic programming was recently used to
achieve state of the art results in CIFAR-10 [20]. Along similar lines, a tree-based
variant of genetic programming is used in this work to evolve recurrent nodes. These
trees can grow in structure and can be pruned as well, thus providing a flexible
representation.

Novelty search is a particularly useful technique to increase exploration in
evolutionary optimization [21]. Novelty is often cast as a secondary objective to be
optimized. It allows searching in areas that do not yield immediate benefit in terms
of fitness, but make it possible to discover stepping stones that can be combined
to form better solutions later. This work proposes an alternative approach: keeping
an archive of areas already visited and exploited, achieving similar goals without
additional objectives to optimize.

Most architecture search methods reduce compute time by evaluating individuals
only after partial training [7, 20]. This chapter proposes a meta-LSTM framework
to predict final network performance based on partial training results.

These techniques are described in detail in the next section.
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9.3 Methods

Evolving recurrent neural networks is an interesting problem because it requires
searching the architecture of both the node and the network. As shown by recent
research [4, 14], the recurrent node in itself can be considered a deep network. In
this chapter, Genetic Programming (GP) is used to evolve such node architectures.
In the first experiment, the overall network architecture is fixed, i.e. constructed
by repeating a single evolved node to form a layer (Fig. 9.1b). In the second, it is
evolved by combining several different types of nodes into a layer (Fig. 9.1c). In the
future more complex coevolution approaches are also possible.

Evaluating the evolved node and network is costly. Training the network for 40
epochs takes 2 h on a 1080 NVIDIA GPU. A sequence to sequence model called
meta-LSTM is developed to speed up evaluation. Following sections describe these
methods in detail.

9.3.1 Genetic Programming for Recurrent Nodes

As shown in Fig. 9.1a, a recurrent node can be represented as a tree structure,
and GP can, therefore, be used to evolve it. However, standard GP may not be
sufficiently powerful to do it. In particular, it does not maintain sufficient diversity
in the population. Similar to the GP-NEAT approach by Trujillo et al. [22], it can be
augmented with ideas from NEAT speciation.

A recurrent node usually has two types of outputs. The first, denoted by symbol
h in Fig. 9.1a, is the main recurrent output. The second, often denoted by c, is
the native memory cell output. The h value is weighted and fed to three locations:
(1) to the higher layer of the network at the same time step, (2) to other nodes in

Fig. 9.1 (a) Tree-based representation of the recurrent node. Tree outputs h(t) and c(t) are fed
as inputs in the next time step. (b) In standard recurrent network, the tree node is repeated several
times to create each layer in a multi-layered network. Different node colors depict various element
activations. (c) The heterogeneous layer consists of different types of recurrent nodes
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the network at the next time step, and (3) to the node itself at the next time step.
Before propagation, h are combined with weighted activations from the previous
layer, such as input word embeddings in language modeling, to generate eight node
inputs (termed as base eight by Zoph and Le [4]). In comparison, the standard LSTM
node has four inputs (see Fig. 9.6a). The native memory cell output is fed back,
without weighting, only to the node itself at the next time step. The connections
within a recurrent cell are not trainable by backpropagation and they all carry a
fixed weight of 1.0.

Thus, even without an explicit recurrent loop, the recurrent node can be
represented as a tree. There are two type of elements in the tree: (1) linear activations
with arity two (add, multiply), and (2) non-linear activations with arity one (tanh,
sigmoid, ReLU).

There are three kind of mutation operations in the experiments: (1) Mutation to
randomly replace an element with an element of the same type, (2) Mutation to
randomly insert a new branch at a random position in the tree. The subtree at the
chosen position is used as child node of the newly created subtree. (3) Mutation
to shrink the tree by choosing a branch randomly and replacing it with one of the
branch’s arguments (also randomly chosen). These mutations are also depicted in
Fig. 9.2b.

One limitation of standard tree is that it can have only a single output: the root.
This problem can be overcome by using a modified representation of a tree that
consists of Modi outputs [23]. In this approach, with some probability pm (termed
Modi rate), non-root nodes can be connected to any of the possible outputs. A higher

Fig. 9.2 (a) Homologous crossover: the two trees on the top look different but in-fact they are
almost mirror images of each other. These two trees will therefore belong in the same species. The
line drawn around the trees marks the homologous regions between the two. A crossover point is
randomly selected and one point crossover is performed. The bottom two networks are the resultant
offsprings. (b) Mutations: Three kinds of mutation operators are shown from top to bottom. For
each mutation operator, a node in the existing tree is randomly selected. Insert mutation can add
new subtree at the selected node. Shrink mutation can replace the selected node with one of its
branches. Node mutation can replace the selected node with another node of the same type
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Modi rate would lead to many subtree nodes connected to different outputs. A node
is assigned Modi (i.e., connected to memory cell outputs c or d) only if its subtree
has a path from native memory cell inputs.

This representation allows searching for a wide range of recurrent node structures
with GP.

9.3.2 Speciation and Crossover

One-point crossover is the most common type of crossover in GP. However, since
it does not take into account the tree structure, it can often be destructive. An
alternative approach, called homologous crossover [24], is designed to avoid this
problem by crossing over the common regions in the tree. Similar tree structures
in the population can be grouped into species, as is often done in NEAT [22].
Speciation achieves two objectives: (1) it makes homologous crossover effective,
since individuals within species are similar, and (2) it helps keep the population
diverse, since selection is carried out separately in each species. A tree distance
metric proposed by Tujillo et al. [22] is used to determine how similar the trees are

δ(Ti , Tj ) = β
Ni,j − 2nSi,j

Ni,j − 2
+ (1− β)

Di,j − 2dSi,j

Di,j − 2
, (9.1)

where

nTx = number of nodes in GP tree Tx,

dTx = depth of GP tree Tx,

Si,j = shared tree between Ti and Tj ,

Ni,j = nTi + nTj ,

Di,j = dTi + dTj ,

β ∈ [0, 1],
δ ∈ [0, 1].

On the right-hand side of Eq. (9.1), the first term measures the difference with
respect to size, while the second term measures the difference in depth. Thus, setting
β = 0.5 gives an equal importance to size and depth. Two trees will have a distance
of zero if their structure is the same (irrespective of the actual element types).

In most GP implementations, there is a concept of the left and the right branch. A
key extension in this work is that the tree distance is computed by comparing trees
after all possible tree rotations, i.e. swaps of the left and the right branch. Without
such a comprehensive tree analysis, two trees that are mirror images of each other
might end up into different species. This approach reduces the search space by not
searching for redundant trees. It also ensures that crossover can be truly homologous
Fig. 9.2a.

The structural mutations in GP, i.e. insert and shrink, can lead to recycling of
the same structure across multiple generations. In order to avoid such repetitions,
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Fig. 9.3 Hall of Shame: An archive of stagnant species called Hall of Shame (shown in red) is
built during evolution. This archive is looked up during reproduction, to make sure that newly
formed offsprings do not belong to any of the stagnant species. At a time, only 10 species are
actively evaluated (shown in green). This constraint ensures that active species get enough spawns
to ensure a comprehensive search in its vicinity before it is added to the Hall of Shame. Offsprings
that belong to new species are pushed into an inactive species list (shown in yellow) and are only
moved to the active list whenever an active species moves to Hall of Shame

an archive called Hall of Shame is maintained during evolution (Fig. 9.3). This
archive consists of individuals representative of stagnated species, i.e. regions in the
architecture space that have already been discovered by evolution but are no longer
actively searched. During reproduction, new offsprings are repeatedly mutated until
they result in an individual that does not belong to Hall of Shame. Mutations that
lead to Hall of Shame are not discarded, but instead used as stepping stones to
generate better individuals. Such memory based evolution is similar to novelty
search. However, unlike novelty search [21], there is no additional fitness objective,
simply an archive.

9.3.3 Search Space: Node

GP evolution of recurrent nodes starts with a simple fully connected tree. During
the course of evolution, the tree size increases due to insert mutations and decreases
due to shrink mutations. The maximum possible height of the tree is fixed at 15.
However, there is no restriction on the maximum width of the tree.

The search space for the nodes is more varied and several orders of magnitude
larger than in previous approaches. More specifically, the main differences from
the state-of-the-art Neural Architecture Search (NAS) [4] are: (1) NAS searches
for trees of fixed height 10 layers deep; GP searches for trees with height varying
between six (the size of fully connected simple tree) and 15 (a constraint added to
GP). (2) Unlike in NAS, different leaf elements can occur at varying depths in GP.
(3) NAS adds several constraints to the tree structure. For example, a linear element
in the tree is always followed by a non-linear element. GP prevents only consecutive
non-linearities (they would cause loss of information since the connections within a
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cell are not weighted). (4) In NAS, inputs to the tree are used only once; in GP, the
inputs can be used multiple times within a node.

Most gated recurrent node architectures consist of a single native memory cell
(denoted by output c in Fig. 9.1a). This memory cell is the main reason why LSTMs
perform better than simple RNNs. One key innovation introduced in this work is to
allow multiple native memory cells within a node (for example, see outputs c and
d in Fig. 9.6c). The memory cell output is fed back as input in the next time step
without any modification, i.e. this recurrent loop is essentially a skip connection.
Adding another memory cell in the node, therefore, does not affect the number of
trainable parameters: it only adds to the representational power of the node.

Also, since the additional recurrent skip connection introduced as a result of the
extra memory cell is local within the recurrent node, no overhead logic is required
when combining different recurrent nodes with varying number of memory cells
into a single heterogeneous layer (as described in the next section).

9.3.4 Search Space: Network

Standard recurrent networks consist of layers formed by repetition of a single type of
node. However, the search for better recurrent nodes through evolution often results
in solutions with similar task performance but very different structure. Forming a
recurrent layer by combining such diverse node solutions is potentially a powerful
idea, related to the idea of ensembling, where different models are combined
together to solve a task better.

In this chapter, such heterogenous recurrent networks are constructed by combin-
ing diverse evolved nodes into a layer (Fig. 9.1c). A candidate population is created
that consists of top-performing evolved nodes that are structurally very different
from other nodes. The structure difference is calculated using the tree distance
formula detailed previously. Each heterogenous layer is constructed by selecting
nodes randomly from the candidate population. Each node is repeated 20 times in a
layer; thus, if the layer size is, e.g. 100, it can consist of five different node types,
each of cardinality 20.

The random search is an initial test of this idea. As described in Sect. 9.5, in the
future the idea is to search for such heterogenous recurrent networks using a genetic
algorithm as well.

9.3.5 Meta-LSTM for Fitness Prediction

In both node and network architecture search, it takes about 2 h to fully train a
network until 40 epochs. With sufficient computing power it is possible to do it: for
instance, Zoph and Le [4] used 800 GPUs for training multiple such solutions in
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Fig. 9.4 Learning curve comparison of LSTM node, NAS node, and GP nodes. Y -axis is the
validation perplexity (lower is better) and X-axis is the epoch number. Notice that LSTM node
learns quicker than the other two initially but eventually settles at a larger perplexity value.
This graph demonstrates that the strategy to determine network fitness using partial training (say
based on epoch 10 validation perplexity) is faulty. A fitness predictor model like meta-LSTM can
overcome this problem

parallel. However, if training time could be shortened, no matter what resources are
available, those resources could be used better.

A common strategy for such situations is early stopping [20], i.e. selecting
networks based on partial training. For Example, in case of recurrent networks, the
training time would be cut down to one fourth if the best network could be picked
based on the 10th epoch validation loss instead of 40th. Figure 9.4 demonstrates that
this is not a good strategy, however. Networks that train faster in the initial epochs
often end up with a higher final loss.

To overcome costly evaluation and to speed up evolution, a meta-LSTM frame-
work for fitness prediction was developed. Meta-LSTM is a sequence to sequence
model [25] that consists of an encoder RNN and a decoder RNN (see Fig. 9.5a).
Validation perplexity of the first 10 epochs is provided as sequential input to the
encoder, and the decoder is trained to predict the validation loss at epoch 40
(show figure). Training data for these models is generated by fully training sample
networks (i.e., until 40 epochs). The loss is the mean absolute error percentage
at epoch 40. This error measure is used instead of mean squared error because it
is unaffected by the magnitude of perplexity (poor networks can have very large
perplexity values that overwhelm MSE). The hyperparameter values of the meta-
LSTM were selected based on its performance in the validation dataset. The best
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Fig. 9.5 (a) Meta LSTM model: this is a sequence to sequence (seq2seq) model that takes
the validation perplexity of the first 10 epochs as sequential input and predicts the validation
perplexity at epoch 40. The green rectangles denote the encoder and the orange rectangles denote
the decoder. Two variants of the model are averaged to generate one final prediction. In one
variant (top), the decoder length is 30 and in the other variant (bottom), the decoder length is 1.
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configuration that achieved an error rate of 3% includes an ensemble of two seq2seq
models: one with a decoder length of 30 and the other with a decoder length of 1
(Fig. 9.5a).

Recent approaches to network performance prediction include Bayesian model-
ing [26] and regression curve fitting [27]. The learning curves for which the above
methods are deployed are much simpler as compared to the learning curves of
structures discovered by evolution. Note that meta-LSTM is trained separately and
only deployed for use during evolution. Thus, networks can be partially trained with
a 4× speedup, and assessed with near-equal accuracy as with full training.

9.4 Experiments

Neural architectures were constructed for the language modeling and music model-
ing tasks. In the first experiment, homogeneous networks were constructed from
single evolved recurrent nodes, and in the second, heterogeneous networks that
consisted of multiple evolved recurrent nodes. Both the experiments were targeted
for the language modeling. In the third experiment, homogeneous networks were
constructed from single evolved recurrent nodes for the music modeling task.

9.4.1 Natural Language Modeling Task

Experiments focused on the task of predicting the next word in the Penn Tree
Bank corpus (PTB), a well-known benchmark for language modeling [28]. LSTM
architectures in general tend to do well in this task, and improving them is difficult
[12, 13, 15]. The dataset consists of 929k training words, 73k validation words,
and 82k test words, with a vocabulary of 10k words. During training, successive
minibatches of size 20 are used to traverse the training set sequentially.

9.4.2 Music Modeling Task

Music consists of a sequence of notes that often exhibit temporal dependence.
Predicting future notes based on the previous notes can, therefore, be treated as a

�

Fig. 9.5 (continued) (b) Meta LSTM performance: Two evolution experiments are conducted—
one, where epoch 10 validation perplexity of the network is used as the fitness and second, where
the value predicted by meta-LSTM is used as the network fitness. After evolution has completed,
the best individuals from each generation are picked and fully trained till epoch 40. For both the
experiments, this graph plots the epoch 40 performance of the best network in a given generation.
The plot shows that as evolution progresses, meta-LSTM framework selects better individuals
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sequence prediction problem. Similar to natural language, musical structure can be
captured using a music language model (MLM). Just like natural language models
form an important component of speech recognition systems, polyphonic music
language model is an integral part of automatic music transcription (AMT). AMT is
defined as the problem of extracting a symbolic representation from music signals,
usually in the form of a time–pitch representation called piano-roll, or in a MIDI-
like representation.

MLM predicts the probability distribution of the notes in the next time step.
Multiple notes can be turned on at a given time step for playing chords. The input
is a piano-roll representation, in the form of an 88×T matrix M , where T is the
number of timesteps, and 88 corresponds to the number of keys on a piano, between
MIDI notes A0 and C8. M is binary, such that M[p, t] = 1 if and only if the
pitch p is active at timestep t . In particular, held notes and repeated notes are not
differentiated. The output is of the same form, except it only has T − 1 timesteps
(the first timestep cannot be predicted since there is no previous information).

The dataset piano-midi.de is used as the benchmark data. This dataset holds 307
pieces of classical piano music from various composers. It was made by manually
editing the velocities and the tempo curve of quantized MIDI files in order to give
them a natural interpretation and feeling [29]. MIDI files encode explicit timing,
pitch, velocity and instrumental information of the musical score.

9.4.3 Network Training Details

During evolution, each network has two layers of 540 units each, and is unrolled
for 35 steps. The hidden states are initialized to zero; the final hidden states
of the current minibatch are used as the initial hidden states of the subsequent
minibatch. The dropout rate is 0.4 for feedforward connections and 0.15 for
recurrent connections [15]. The network weights have L2 penalty of 0.0001. The
evolved networks are trained for 10 epochs with a learning rate of 1; after six epochs
the learning rate is decreased by a factor of 0.9 after each epoch. The norm of the
gradients (normalized by minibatch size) is clipped at 10. Training a network for 10
epochs takes about 30 min on an NVIDIA 1080 GPU. The following experiments
were conducted on 40 such GPUs.

The meta-LSTM consists of two layers, 40 nodes each. To generate training data
for it, 1000 samples from a preliminary node evolution experiment was obtained,
representing a sampling of designs that evolution discovers. Each of these sample
networks was trained for 40 epochs with the language modeling training set; the
perplexity on the language modeling validation set was measured in the first 10
epochs, and at 40 epochs. The meta-LSTM network was then trained to predict the
perplexity at 40 epochs, given a sequence of perplexity during the first 10 epochs
as input. A validation set of 500 further networks was used to decide when to stop
training the meta-LSTM, and its accuracy measured with another 500 networks.
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Table 9.1 Single model perplexity on test set of Penn Tree Bank

Model Parameters Test perplexity

Gal and Ghahramani [15]—variational LSTM 66M 73.4

Zoph and Le [4] 20M 71.0

GP node evolution 20M 68.2

Zoph and Le [4] 32M 68.1

GP node evolution 32M 66.5

Zilly et al.[14], shared embeddings 24M 66.0

Zoph and Le [4], shared embeddings 25M 64.0

GP evolution, shared embeddings 25M 63.0

Heterogeneous, shared embeddings 25M 62.2

Zoph and Le [4], shared embeddings 54M 62.9

Node evolved using GP outperforms the node discovered by NAS (Zoph and Le [4]) and Recurrent
Highway Network (Zilly et al. [14]) in various configurations

In line with meta-LSTM training, during evolution each candidate is trained for
10 epochs, and tested on the validation set at each epoch. The sequence of such
validation perplexity values is fed into the trained meta-LSTM model to obtain
its predicted perplexity at epoch 40; this prediction is then used as the fitness for
that candidate. The individual with the best fitness after 30 generations is scaled
to a larger network consisting of 740 nodes in each layer. This setting matches the
32 Million parameter configuration used by Zoph and Le [4]. A grid search over
dropout rates is carried out to fine-tune the model. Its performance after 180 epochs
of training is reported as the final result (Table 9.1).

9.4.4 Experiment 1: Evolution of Recurrent Nodes

A population of size 100 was evolved for 30 generations with a crossover rate of 0.6,
insert and shrink mutation probability of 0.6 and 0.3, respectively, and Modi rate
(i.e., the probability that a newly added node is connected to memory cell output)
of 0.3. A compatibility threshold of 0.3 was used for speciation; species is marked
stagnated and added to the Hall of Shame if the best fitness among its candidates
does not improve in four generations. Each node is allowed to have three outputs:
one main recurrent output (h) and two native memory cell outputs (c and d).

The best evolved node is shown Fig. 9.6. The evolved node reuses inputs as well
as utilize the extra memory cell pathways. As shown in Table 9.1, the evolved node
(called GP Node evolution in the table) achieves a test performance of 68.2 for 20
Million parameter configuration on Penn Tree Bank. This is 2.8 perplexity points
better than the test performance of the node discovered by NAS (Zoph and Le [4]
in the table) in the same configuration. Evolved node also outperforms NAS in the
32 Million configuration (66.5 v/s. 68.1). Recent work has shown that sharing input
and output embedding weight matrices of neural network language models improves
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Fig. 9.6 Comparing evolved recurrent node with NASCell and LSTM. The green input elements
denote the native memory cell outputs from the previous time step (c, d). The red colored inputs
are formed after combining the node output from the previous time step h(t−1) and the new input
from the current time step x(t). In all three solutions, the memory cell paths include relatively few
non-linearities. The evolved node utilizes the extra memory cell in different parts of the node. GP
evolution also reuses inputs unlike the NAS and LSTM solution. Evolved node also discovered
LSTM like output gating. (a) LSTM. (b) NASCell. (c) Evolved cell

performance [30]. The experimental results obtained after including this method are
marked as shared embeddings in Table 9.1.

It is also important to understand the impact of using meta-LSTM in evolution.
For this purpose, an additional evolution experiment was conducted, where each
individual was assigned a fitness equal to its 10th epoch validation perplexity. As
evolution progressed, in each generation, the best individual was trained fully till
epoch 40. Similarly, the best individual from an evolution experiment with meta-
LSTM enabled was fully trained. The epoch 40 validation perplexity in these two
cases has been plotted in Fig. 9.5b. This figure demonstrates that individuals that are
selected based upon meta-LSTM prediction perform better than the ones selected
using only partial training.

9.4.5 Experiment 2: Heterogeneous Recurrent Networks

Top 10% of the population from 10 runs of Experiment 1 was collected into a pool
100 nodes. Out of these, 20 that were the most diverse, i.e. had the largest tree
distance from the others, were selected for constructing heterogeneous layers (as
shown in Fig. 9.1c). Nodes were chosen from this pool randomly to form 2000 such
networks. Meta-LSTM was again used to speed up evaluation.
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After hyperparameter tuning, the best network (for 25 Million parameter con-
figuration) achieved a perplexity of 62.2, i.e. 0.8 better than the homogeneous
network constructed from the best evolved node. This network is also 0.7 perplexity
point better than the best NAS network double its size (54 Million parameters).
Interestingly, best heterogeneous network was also found to be more robust to
hyperparameter changes than the homogeneous network. This result suggests that
diversity not only improves performance, but also adds flexibility to the internal
representations. The heterogeneous network approach, therefore, forms a promising
foundation for future work, as discussed next.

9.4.6 Experiment 3: Music Modeling

The piano-midi.de dataset is divided into train (60%), test (20%), and validation
(20%) sets. The music model consists of a single recurrent layer of width 128. The
input and output layers are 88 wide each. The network is trained for 50 epochs with
Adam at a learning rate of 0.01. The network is trained by minimizing cross entropy
between the output of the network and the ground truth. For evaluation, F1 score
is computed on the test data. F1 score is the harmonic mean of precision and recall
(higher is better). Since the network is smaller, regularization is not required.

Note, this setup is similar to that of Ycart and Benetos [29]. The goal of this
experiment is not to achieve state-of-the-art results but to perform apples-to-apples
comparison between LSTM nodes and evolved nodes (discovered for language) in
a new domain, i.e. music.

In this transfer experiment, three networks were constructed: the first with LSTM
nodes, the second with NAS nodes, and the third with evolved nodes. All the three
networks were trained under the same setting as described in the previous section.
The F1 score of each of the three models is shown in Table 9.2. LSTM nodes
outperform both NAS and evolved nodes. This result is interesting because both
NAS and evolved nodes significantly outperformed LSTM nodes in the language
modeling task. This result suggests that NAS and evolved nodes are custom solution
for a specific domain, and do not necessarily transfer to other domains.

Table 9.2 F1 scores
computed on Piano-Midi
dataset

Model F1 score

LSTM 0.548

Zoph and Le [4] 0.48

GP evolution (language) 0.49

GP evolution (music) 0.599

LSTM outperforms both the evolved
node and NAS node for language,
but not the node evolved specifi-
cally for music, demonstrating that
the approach discovers solutions cus-
tomized for the task
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Fig. 9.7 Evolved node for music. The node evolved to solve the music task is very different from
the node for the natural language task. For example, this node only uses a single memory cell
(green input d in the figure) unlike the language node that used both c and d. This results indicates
that ‘architecture does matter’ and that custom evolved solution perform better than hand-designed
ones

However, the framework developed for evolving recurrent nodes for natural
language can be transferred to the music domain as well. The setup is the same,
i.e. at each generation a population of recurrent nodes represented as trees will be
evaluated for their performance in the music domain. The validation performance
of the network constructed from the respective tree node will be used as the node
fitness. The performance measure of the network in music domain is the F1 score,
therefore, it is used as the network fitness value.

The evolution parameters are the same as those used for language modeling.
Meta-LSTM is not used for this evolution experiment because the run-time of each
network is relatively small (<600 s). The results from evolving custom node for
music are shown in Table 9.2. The custom node (GP Evolution (Music)) achieves
an improvement of five points in F1 score over LSTM (Fig. 9.7). Thus, evolution
was able to discover custom structure for the music modeling domain as well—and
it was different from structure in the language domain.

9.5 Discussion and Future Work

The experiments in this chapter demonstrate how evolutionary optimization can
discover improvements to designs that have been essentially unchanged for 25
years. Because it is a population-based method, it can harness more extensive
exploration than other meta-learning techniques such as reinforcement learning,
Bayesian parameter optimization, and gradient descent. It is therefore in a position
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to discover novel, innovative solutions that are difficult to develop by hand
or through gradual improvement. Remarkably, the node that performed well in
language modeling performed poorly in music modeling, but evolution was able
to discover a different node that performed well in music. Apparently, the approach
discovers regularities in each task and develops node structures that take advantage
of them, thus customizing the nodes separately for each domain. Analyzing what
those regularities are and how the structures encode them is an interesting direction
of future work.

The GP-NEAT evolutionary search method in this chapter is run in the same
search space used by NAS [4], resulting in significant improvements. In a recent
paper [18], the NAS search space was extended to include recurrent highway
connections as well, improving the results further. An interesting direction of future
work is thus to extend the GP-NEAT search space in a similar manner; similar
improvements should result.

The current experiments focused on optimizing the structure of the gated
recurrent nodes, cloning them into a fixed layered architecture to form the actual
network. The simple approach of forming heterogeneous layers by choosing from
a set of different nodes was shown to improve the networks further. A compelling
next step is thus to evolve the network architecture as well, and further, coevolve it
together with the LSTM nodes [6].

9.6 Conclusion

Evolutionary optimization of LSTM nodes can be used to discover new variants
that perform significantly better than the original 25-year old design. The tree-based
encoding and genetic programming approach makes it possible to explore larger
design spaces efficiently, resulting in structures that are more complex and more
powerful than those discovered by hand or through reinforcement-learning based
neural architecture search. Further, these structures are customized to each specific
domain. The approach can be further enhanced by optimizing the network level as
well, in addition to the node structure, by training an LSTM network to estimate
the final performance of candidates instead of having to train them fully, and by
encouraging novelty through an archive. Evolutionary neural architecture search is,
therefore, a promising approach to extending the abilities of deep learning networks
to ever more challenging tasks.
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Chapter 10
Investigating Deep Recurrent
Connections and Recurrent Memory
Cells Using Neuro-Evolution

Travis Desell, AbdElRahman A. ElSaid, and Alexander G. Ororbia

Abstract Neural architecture search poses one of the most difficult problems
for statistical learning, given the incredibly vast architectural search space. This
problem is further compounded for recurrent neural networks (RNNs), where every
node in an architecture can be connected to any other node via recurrent connections
which pass information from previous passes through the RNN via a weighted
connection. Most modern-day RNNs focus on recurrent connections which pass
information from the immediately preceding pass by utilizing gated constructs
known as memory cells; however, connections farther back in time, or deep recur-
rent connections, are also possible. A novel neuro-evolutionary metaheuristic called
EXAMM is utilized to conduct extensive experiments evolving RNNs consisting
of a suite of memory cells and simple neurons, with and without deep recurrent
connections. These experiments evolved and trained 10.56 million RNNs, with
results showing that networks with deep recurrent connections perform significantly
better than those without, and in some cases the best evolved RNNs consist of only
simple neurons and deep recurrent connections. These results strongly suggest that
utilizing complex recurrent connectivity patterns in RNNs deserves further study
and also showcases the strong potential for using neuro-evolutionary metaheuristic
algorithms as tools for understanding and training effective RNNs.

10.1 Introduction

Research in artificial neural networks has exploded in recent years as a result of
the many successes achieved using them to solve problems in tasks such as image
classification [1, 2], video categorization [3], sentence modeling [4], and speech
recognition [5]. This success has largely been driven by highly engineered, carefully
hand-crafted networks, e.g., convolutional architectures in computer vision such
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as AlexNet [1], VGGNet [6], GoogleNet [7], and, more recently, ResNet [8]. In
addition, for handling the modeling of sequential data with temporal dependencies,
such as in natural language processing, recurrent neural networks (RNNs) have
become very useful, especially that those that utilize complex memory cell struc-
tures to capture long-term dependencies, e.g., �-RNN units [9], gated recurrent
units (GRUs) [10], long short-term memory cells (LSTMs) [11], minimal gated units
(MGUs) [12], and update gate RNN cells (UGRNNs) [13].

Due to the largely intractable problem of determining an optimal neural net-
work architecture for a given learning task, neuro-evolution [14–29] and neural
architecture search algorithms [30–34] have become increasingly popular. Much
of this work has focused on feedforward architectures (such as convolutional
neural networks), restricting itself to selecting parameters of networks that are
hierarchically structured in layers. However, artificial neural networks (ANNs)
can be represented as completely unstructured graphs (without layers) with each
node representing a neuron, and each edge representing a neuronal connection,
which, even argued classically [35], could potentially be more expressive (and
exhibit better generalization across data) while at the same time less complex
computationally. Unfortunately, when relaxing constraints on the type of topological
organization such networks may have, the search space of potential architectures
expands dramatically.

RNNs provide particularly unique challenges for neuro-evolution given that they
operate over potentially very long temporal sequences of input data. This neces-
sitates designing more complicated internal memory cell structures or employing
recurrent connections that transmit information from varying time delays in the past.
As a result, the architecture search space becomes even larger now that neurons
not only connect to one another via complex feedforward patterns but also through
complicated recurrent pathways that could potentially span an indeterminate amount
of time. Most modern RNNs avoid complex recurrent connectivity structures by
using gated memory cells, resting on the assumption that while the recurrent
connections within these memory cells only go back explicitly to the immediately
preceding time step, their internal gates might provide a means to accurately latch
on to long-term information and ensure good predictive ability. Nonetheless, there
exists a body of literature which suggests that recurrent connections which skip
more than one time step, which we will call deep recurrent connections, can play a
vital role in RNN design when aiming to better capture long-term dependencies in
sequential data [27, 36–42].

This work investigates the capabilities of both recurrent memory cells and
deep recurrent connections through the use of a novel neuro-evolution algorithm
called EXAMM (Evolutionary eXploration of Augmenting Memory Models) [43].
Instead of simply testing a few hand-crafted RNNs that employ various memory
cell types and that either use or do not use deep recurrent connections, we take
a neuro-evolutionary approach to the experimental process—we allow EXAMM
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to search for connectivity patterns and make memory cell choices, allowing each
particular design choice to evolve architectures that best suit it, ultimately providing
a more rigorous analysis. A variety of experiments were performed evolving RNNs
consisting of LSTM, GRU, MGU, UGRNN, �-RNN memory cells as well as
simple neurons, allowing EXAMM to design deep recurrent connectivity patterns of
varying complexity. The RNNs were evolved to perform time series data prediction
on four real world benchmark problems. In total 10.56 million RNNs were trained
to collect the results we report in this chapter.

The results of our neuro-evolutionary architecture search demonstrate that RNNs
with deep recurrent connections perform significantly better than those without,
and in some cases, the best performing RNNs consisted of only simple neurons
and deep recurrent connections—in other words, no memory cells were deemed
necessary to attain strong predictive performance. These results strongly suggest
that utilizing deep recurrent connections in RNNs for time series data prediction
not only deserves further study, but also showcases neuro-evolution as a potentially
powerful tool for studying, understanding, and training effective RNN models.
Further, with respect to memory cell types, we find that EXAMM uncovers that
the more recently proposed and far simpler �-RNN unit performs better and more
reliably than the other memory cells when modeling sequences.

10.2 Related Work

10.2.1 Elman, Jordan and Arbitrary Recurrent Connections

Elman and Jordan RNNs are traditional RNN architectures that have been studied
extensively. Both typically only have a single hidden layer. Elman RNNs [44] have
hidden layer nodes that are (recurrently) self-connected as well as fully connected
to all other hidden nodes in the same layer. Jordan RNNs [45] have recurrent
connections from the output node(s) to all the hidden layer node(s). In both RNN
types, each hidden node can be viewed as a simple neuron, meaning that no internal
gating or latching structure is employed during neural computation.

In EXAMM, simple neurons are represented as point-wise neurons with poten-
tially both recurrent and feedforward inputs. I is the set of all nodes with a
feedforward connection to simple neuron j , while R is the set of all nodes with a
recurrent connection to simple neuron j . At time step t , the input signal to a neuron
j is a weighted summation of all feedforward inputs, where wij is the feedforward
weight connecting node i to node j , plus a weighted summation of recurrent inputs,
where vrjk is the recurrent weight from node r at time step t − k to the node j ,
where k is the time span of the recurrent connection. Thus the state function s for
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computing a simple neuron is1

sj (t) = φs

(∑

i∈I

wij · si (t)+
∑

r∈R,k

vrjk · sr (t − k)

)

(10.1)

where si(t) marks the state of the neuronal unit si at time step t . The overall state is a
linear combination of the projected input and an affine transformation of the vector
summary of the past. The post-activation function, φs(·), can be any differentiable
element-wise function; however, in this chapter it was limited it to be the hyperbolic
tangent, φ(v) = tanh(v) = (e(2v) − 1)/(e(2v) + 1).

Fundamentally, the EXAMM metaheuristic has the capability of evolving Elman-
style connections when its add recurrent edge mutation operator adds a recurrent
edge from a simple neuron back to itself (see Sect. 10.3). Jordan-style connections
are added when EXAMM decides to add a recurrent edge from an output to any
simple neuron (we generalize this to include connections back to input neurons
as well as to other output neurons). EXAMM supports a generalization of Elman
and Jordan-style connectivity patterns (which traditionally only span a single time
step) by incorporating temporal skipping—deep recurrent connections over varying
time delays are possible. Figure 10.1 depicts an RNN that is composed of a variety
of connections (all of which could be evolved by EXAMM). In essence, it is
possible for EXAMM to automatically craft RNNs that have arbitrary feedforward
and recurrent connectivity topologies, allowing the networks to make use of the
increased computational power afforded by deep recurrent connections in both time
and structure.

10.2.2 Recurrent Memory Cells

One of the more popularly used recurrent neural cell types is the long short-term
memory (LSTM) cell developed by Hochreiter and Schmidhuber in 1997 [11].
The original motivation behind the LSTM was to implement the “constant error
carousal” in order to mitigate the problem of vanishing gradients. This means that
long-term memory can be explicitly represented with a separate cell state ct . Using
the notation presented earlier (Sect. 10.2.1), the LSTM state function (without

1The bias is omitted for clarity and simplicity of presentation.
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Fig. 10.1 RNNs can have a wide variety of connections. Most RNNs consist of feedforward, self-
recurrent, and backward recurrent connections with a single time step; however, it is also possible
to also have forward recurrent connections and recurrent connections which span/skip multiple
time steps

extensions, such as “peephole” connections) is implemented by the following
equations:

fj = σ

(∑

i∈I

w
f
ij · si (t)+

∑

r∈R,k

v
f
rjk · sr (t − k)

)

(10.2)

ij = σ

(∑

i∈I

wi
ij · si (t)+

∑

r∈R,k

vi
rjk · sr (t − k)

)

(10.3)

c̃j = tanh

(∑

i∈I

wc
ij · si(t)+

∑

r∈R,k

vc
ijk · sr (t − k)

)

(10.4)
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oj = σ

(∑

i∈I

wo
ij · si (t)+

∑

r∈R,k

vo
ijk · sr (t − k)

)

(10.5)

cj (t) = fj (t) · cj (t − 1)+ ij · c̃j , sj (t) = oj · φs(cj (t)) (10.6)

where we separate the computation of a neural state as a composition of four
internal calculations, i.e., the forget gate (ft ), input gate (it ), the cell-state proposal
(̃ct ), and the output gate (ot ). This cellular structure, while conceptually appealing,
is computationally complex with each cell having 11 trainable parameters (and 8
weights and 3 biases).

In more recent times, the gated recurrent unit (GRU; [10]), developed by Cho et
al. in 2014, can be viewed as an early attempt to simplify the LSTM cell. Among
the changes made, the model fuses the LSTM input and forget gates into one single
gate, merging the cell state and hidden state back together. The state function for the
GRU is computed using the following equations:

zj = σ

(∑

i∈I

wz
ij · si(t)+

∑

r∈R,k

vz
ijk · sr (t − k)

)

(10.7)

rj = σ

(∑

i∈I

wr
ij · si(t)+

∑

r∈R,k

vr
ijk · sr (t − k)

)

(10.8)

s̃j (t) = φs

(∑

i∈I

ws
ij · si(t)+

∑

r∈R,k

vs
ijk · (rj · sr (t − k)

)

(10.9)

sj (t) = zj · s̃j + (1− zj ) · sj (t − 1) (10.10)

noting that φs(v) = tanh(v). Note that the GRU requires fewer internal operations
than the LSTM cell, and, as a result, requires only adapting 9 trainable parameters.

The MGU model, proposed by Zhou et al. in 2016, is very similar in structure to
the GRU, reducing the number of required parameters by merging the reset and
update gates into one forget gate [12]. The state computation then proceeds as
follows:

fj = σ

(∑

i∈I

w
f

ij · si(t)+
∑

r∈R,k

v
f

ijk · sr (t − k)

)

(10.11)

s̃j (t) = φs

(∑

i∈I

ws
ij · si (t)+

∑

r∈R,k

vs
ijk · (fj · sr (t − k)

)

(10.12)

sj (t) = zj · s̃j + (1− zj ) · sj (t − 1). (10.13)

The MGU is one of the simpler memory cells, with only 6 trainable parameters.
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Update gate RNN cells (UGRNNs) were introduced in 2016 by Collins et al. [13].
UGRNN updates are defined in the following manner:

cj = φs

(∑

i∈I

wc
ij · si (t)+

∑

r∈R,k

vc
ijk · sr (t − k)

)

(10.14)

gj = σ

(∑

i∈I

w
g

ij · si (t)+
∑

r∈R,k

v
g

ijk · sr (t − k)

)

(10.15)

sj (t) = gj · sj (t − 1)+ (1− gj ) · cj . (10.16)

UGRNNs require the same number of trainable parameters as MGUs (6); however,
it also requires one less multiplication, making it a bit faster computationally. The
UGRNN is a simple cell, essentially working very much like an Elman-RNN but
with a single update gate. This extra gate decides whether a hidden state is carried
over from the previous time step or if the state should be updated.

Most recently, the �-RNN unit was derived from recently developed framework
known as the differential state framework (DSF) [9], from which one can further-
more derive all other more complex gated RNN cells, including the LSTM, GRU,
and MGU. The �-RNN is one of the simplest RNN models proposed, featuring only
a few extra bias vector parameters to control its own internal gating, making it the
closest to an Elman-RNN in terms of computational efficiency while also offering
competitive generalization in problem tasks ranging from language modeling [9, 46]
to image decoding [47]. With {α, β1, β2, bj } as learnable coefficient scalars, the �-
RNN state is defined as:

ew
j =

∑

i∈I

wij · si(t), ev
j =

∑

r∈R,k

vrjk · sr (t − k) (10.17)

d1
j = α · ev

j · ew
j , d2

j = β1 · ev
j + β2 · ew

j (10.18)

s̃j (t) = φs(d
1
j + d2

j ), rj = σ(ew
j + bj ) (10.19)

sj (t) = �s((1− rj ) · s̃j (t)+ rj · sj (t − 1) (10.20)

�-RNN cells only require 6 trainable parameters, and though in matrix-vector they
can be shown to be more efficient than most modern-day gated cell types, from
a single neuronal cell point-of-view that are equal in terms of scalar parameter
complexity as the UGRNN and MGU. From a functional perspective, the �-RNN is
more nonlinear than both the UGRNN and MGU given that it can require up to three
activation functions, i.e., an inner activation (tanh) for the state proposal function,
an outer activation (tanh) for the state mixing function, and an activation (σ ) for the
sigmoidal latch.
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10.2.3 Temporal Skip Connections

As memory cells have proven to be quite useful in capturing some longer term
dependencies in sequential data, ANN research has largely chosen to focus on them
almost exclusively. However, there exists a great deal of classical work that has
shown the utility of deep recurrent or temporal skip connections, i.e., recurrent
connections that explicitly go back farther in time than the previous time step.
Some of these prior efforts even suggest that fairly deep recurrent connections yield
the best performance [40, 41], and even showing these kinds of connections can
even yield RNN predictive models that even outperform those that use memory cell
architectures instead [41]. Results from this work provide evidence that, at least in
the case of time series data prediction, deep recurrent connections could be a major
overlooked factor that might significantly improve the forecasting ability of RNNs.

Lin et al. investigated locally recurrent and globally recurrent RNNs as well as
NARX neural networks with increasing embedded memory orders (EMO), which
involved recurrent connections to nodes or layers further back in time [36, 37]. For
example, a network with an EMO of one would have its units connected to time step
t − 1, units with EMO of two would be connected to time t − 1 and t − 2, units
with EMO of three would be connected to t − 1, t − 2, and t − 3. The globally
recurrent networks had their hidden layers fully connected back in time according
to their EMO, and, due to this complexity, were only tested up to an EMO of 3.
The locally recurrent RNNs and NARX required fewer recurrent synapses and thus
were tested up to an EMO of 6. These networks were tested on a latching problem,
where a sequence’s class only depends on the first few time steps (or sub-sequence
of patterns) of which are then followed by uniform noise (vectors). In addition,
these models were tested on a grammatical inference problem where the sequence
class was only dependent on an input symbol that occurred at a predetermined
time t . Increasing the EMO resulted in significant performance improvements for
both test problems. Additional work went on to show that the order of a NARX
network plays a critical role in determining well an RNN generalizes, allowing to
learn complex temporal functions as the EMO approaches the order of the target,
unknown recursive system/data generating process [38, 39].

El Hihi and Bengio also investigated RNNs with recurrent connections that
spanned multiple time steps in order to ascertain if their inclusion improved
an RNN’s ability to extract long-term sequential data dependencies [48]. Their
hierarchical RNNs consisted of neurons with connections that looped back at
different time-scales (up to six time steps in the past). Unlike the work of Lin
et al., where nodes and/or layers were connected recurrently to all previous time
steps (up to their embedded memory order), in this work, each neuron’s loop-back
connection was to a specific step in time—in other words, a deep recurrent synaptic
connection as focused on in this chapter. Similarly, this work uncovered significant
improvements in network performance when deeper recurrent connections were
employed. According to their experimental results, RNN models that only used
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recurrence that explicitly spanned one step in time were not be able to generalize
nearly as well those that spanned K steps.

Kalini and Sagiroglu extended the embedded memory NARX RNNs developed
by Lin et al. (described above) by combining them with Elman recurrent synapses
(which have a fully connected set of recurrent connections between hidden layers
at subsequent time steps) [49]. This work utilized EMOs similar to the order of
the linear and nonlinear systems that they were learning to recognize, i.e., up to
an EMO of 3. By adding embedded memory to the Elman networks, they found
identification performance increased when attempting to recognize these systems,
improving model training as well as memory storage capacity especially when
compared to four other ANNs (which were variations of Elman and Jordan RNNs).

Diaconescu utilized embedded memory NARX RNNs for modeling chaotic time
series generated by the chaotic Mackney-Glass, Fractal Weierstrass, and BET-
index benchmark time series processes [40]. This work also showed that the EMO
(referred to as a time window in this work) of the NARX model was crucial—best
results were found in EMO range of 12–30. Furthermore, sparser networks with
fewer neurons tended to perform better for these time series prediction problems.
Lastly, they noted challenges in training these RNNs due to the wide variance of the
backpropagation (backprop) based estimator used to compute gradients (random
restarts were also used) as well as due to vanishing and exploding gradients [50].

Chen and Chaudhari later propose a segmented-memory recurrent neural net-
work (SMRNN) [41], which utilizes a two layer recurrent structure which first
passes input symbols to a symbol layer, and then connects the symbol layers to
a segmentation layer. Both the symbol and segmentation layers have recurrent
connections to themselves. The first 1..d symbols are passed to the first segment
(where d is the segment width), after which the next d + 1..2d symbols are passed
to the next segment, and so on and so forth. The state of the first hidden layer
(the symbol layer) is updated after each symbol, while the state of the second
hidden layer (the segmentation) layer is only updated after every d symbols—in
effect, this creates time-scales of different speeds. The SMRNN was compared
to both Elman RNNs and LSTM RNNs on the latching problem (as described
above), a two-sequence problem which classified input sequences into two classes,
and a protein secondary structure (PSS) problem, and was shown to adapt/learn
faster while achieving higher accuracy. This work showed that intervals 10 <=
d <= 50 provided the best results on this data, given that a lower d required
more computation each iteration, i.e., the segmentation was used too frequently,
slowing convergence. In contrast, at higher values of d the model approximated
to a conventional RNN, i.e., the segmentation layer was not used at all. In this
work, the segment interval d operates quite similarly to a deep recurrent connection
where information is efficiently passed from past states forward along the unrolled
network. SMRNNs were originally trained in the original study using a variation of
real-time recurrent learning (RTRL) [51] called extended RTRL (eRTRL) algorithm.
The eRTRL procedure was later replaced with a variation of backprop through
time (BPTT) known as extended BPTT (eBPTT) by Gläge et al. , yielding further
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improvements to model generalization and information latching over longer periods
of time [52].

ElSaid et al. later utilized a combination of embedded memory order with LSTM
cells to craft RNNs that predicted engine vibration from time series data gathered
from aircraft flight data recorders [42]. This dataset was particularly challenging
in that data included engine vibration events which occurred in sharp spikes as
compared to prior data, and 26 correlated data sequences were used as inputs. This
work investigated a number of architectures and found that a two-level architecture
with an EMO/time window of 10 was able to provide good predictions of engine
vibration up to 20 s in the future. This architecture was quite similar to the SMRNNs
proposed by Chen and Chaudhari, except that each neuron was an LSTM cell and
the model utilized multiple input (time) series. This work was also interesting in
that, unlike most other time series research studies, it investigated an RNN’s ability
to forecast for horizons greater than 1 (a single time step into the future).

10.2.4 Evolving Recurrent Neural Networks

While neuro-evolution (applying evolutionary processes to the automatic devel-
opment of ANNs) has been well applied to feedforward and even convolutional
architectures for tasks involving static inputs [14–22, 34], far less effort has been
put into exploring the evolution of recurrent memory structures that operate with
complex, temporal data sequences. The forms and structures of optimal models that
could be uncovered by neuro-evolution are largely unknown, a primary motivation
behind the work that composes this chapter.

Several methods for evolving ANN topologies, along with synaptic weights
value, have been searched and deployed, with NeuroEvolution of Augmenting
Topologies (NEAT) [21] being perhaps one of the most well-known algorithms.
The EXAMM metaheuristic differs quite a bit from NEAT in that it includes more
advanced node-level mutations (see Sect. 10.3.1.2), utilizes Lamarckian weight
initialization (see Sect. 10.3.2), and integrates BPTT to evolve candidate model
weights locally (as opposed to using a genetic strategy to adjust the weights).
Notably, a hallmark of EXAMM is its focus on large-scale concurrency in mind,
i.e., an asynchronous steady state approach is utilized that allows it to naturally
scale to potentially millions of compute nodes [53].

Other related work by Rawal and Miikkulainen has investigated an information
maximization objective [23] strategy for evolving RNNs. This strategy essentially
utilizes NEAT with LSTM cells instead of regular neurons. While powerful,
EXAMM offers a stronger potential for a much more in-depth study of RNN
model composition given that it already selects both simple neurons as well a larger
and easily-extensible library of different cell structures beyond exclusively LSTM
units. Rawal and Miikkulainen have also utilized a tree-based encoding [24] to
evolve recurrent cellular structures within fixed architectures built from layers of
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the evolved cell types. Combining this evolution of cell structure along with the
overall RNN structure adjustment of EXAMM we view as interesting future work.

Ant colony optimization (ACO) has also been investigated as a way to select
which connections should be utilized in RNNs and LSTM RNNs by Desell and
ElSaid [25–27]. In particular, this ACO approach was shown to reduce the number
of trainable connections in half while providing a significant improvement in
the prediction of engine vibration [26]. However, this approach only operated
within a fixed RNN architecture and could not evolve an overall RNN structure.
Very recently, the ant swarm neuro-evolution metaheuristic was proposed [54],
combining a novel nature-inspired optimization procedure that formalized ant
colony role-specialization with key elements of neuro-evolution. Notably, this work
provided empirical data that corroborated the classical results (described earlier) that
demonstrated the value of utilizing deep recurrent connectivity patterns to model
long sequences of patterns.

10.3 Evolutionary eXploration of Augmenting Memory
Models

The EXAMM algorithm presented in this work expands on two earlier algorithms:
Evolutionary eXploration of Augmenting LSTM Topologies (EXALT) [25] which
can evolve RNNs with either simple neurons or LSTM cells and Evolutionary
eXploration of Augmenting Convolutional Topologies (EXACT) which evolves
convolutional neural networks for image classification [28, 55]. It further refines
EXALT’s mutation operations to reduce the need for various hyperparameters by
using statistical information extracted from parental RNN genomes. Additionally,
EXALT only uses a single steady state population, while EXAMM, on the other
hand, expands on this to use multiple island-based populations, which have been
shown by Alba and Tomassini to greatly improve performance of distributed
evolutionary algorithms, providing potentially even a superlinear speedup [56].

Figure 10.2 provides a high-level view of EXAMM’s asynchronous operation. A
master process maintains the populations for each island and generates new RNN
candidate models from the islands in a round robin manner. Candidate models are
locally trained upon request by workers. When a worker completes training an RNN,
the RNN is inserted into the island it was generated from if and only if its fitness
(mean squared error on the validation data) is better than the worst fitness score in
the island. The insertion of this RNN is then followed by removal of the worst RNN
in the island. This asynchrony is particularly important as the generated RNNs will
have different architectures, each taking a different amount of time to train. It allows
the workers to complete the training of the generated RNNs at whatever speed
they can, yielding an algorithm that is naturally load balanced. Unlike synchronous
parallel evolutionary strategies, EXAMM easily scales up to the number of available
processors, allowing population sizes that are independent of processor availability.
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Fig. 10.2 EXAMM is designed using an asynchronous island-based evolution strategy. Each
worker process requests and trains an RNN independently, reports its fitness (mean squared error
(MSE) on validation data after training), and requests new work as necessary. The master process
sends new RNNs generated by mutation (intra- or inter-island crossover), created from islands in
a round robin fashion in order to fulfill work requests. New RNNs are inserted into their island
populations if they are better than the worst performing RNN in the population (which is then
removed). The number of workers is completely independent of the number islands and their
population size

The EXAMM codebase has a multithreaded implementation for multicore CPUs
as well as an MPI [57] implementation that allows EXAMM to operate using high
performance computing resources.

10.3.1 Mutation and Recombination Operations

RNNs are evolved with both edge-level operations, as is done in NEAT, and with
novel high level node mutations, as originally proposed in EXALT and EXACT.
Whereas NEAT only requires innovation numbers for new edges, EXAMM requires
innovation numbers for both new nodes, new edges, and new recurrent edges. The
master process keeps track of all node, edge, and recurrent edge innovations made,
which are required to perform the crossover operation in linear time without a graph
matching algorithm. Figures 10.3, 10.4 10.5, 10.6, 10.7, 10.8, 10.9, 10.10, 10.11
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Fig. 10.3 Split Edge: The edge between Input 1 and Output 1 is selected to be split. A new node
with innovation number (IN) 1 is created

Fig. 10.4 Add Edge: Input 3 and Node IN 1 are selected to have an edge between them created
and added

Fig. 10.5 Enable Edge: The edge between Input 3 and Output 1 is enabled

and 10.12 display a visual walkthrough of all the mutation operations used by
EXAMM. Figure 10.13 provides a visual example of the crossover operation itself.
Nodes and edges selected for modification are highlighted (new elements to the
RNN are shown in green). Edge innovation numbers are not shown for clarity.
Enabled edges are in black while disabled edges are in gray.

It should be noted that for the operations described in the next section, whenever
an edge is added, unless otherwise specified, it is probabilistically selected to be a
recurrent connection with the following recurrent probability: p = nre

nff+nre
, where
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Fig. 10.6 Add Recurrent Edge: A recurrent edge is added between Output 1 and Node IN 1

Fig. 10.7 Disable Edge: The edge between Input 3 and Output 1 is disabled

Fig. 10.8 Add Node: A node with IN 2 is selected to be added at a depth which is between the
inputs and Node IN 1. Edges are randomly added to Input 2 and 3, and Node IN 1 and Output 1

nre is the number of enabled recurrent edges and nff is the number of enabled
feedforward edges in the parent RNN. A recurrent connection will span a randomly
selected number of time steps with the bound specified as a search parameter (in this
work, we allow between 1 and 10 time steps), allowing for recurrent connections of
variable time spans. Any newly created node is selected uniformly at random as
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Fig. 10.9 Split Node: Node IN 1 is selected to be split. It is disabled along with its input/output
edges. The node is split into Nodes IN 3 and 4, which get half of the inputs. Both have an output
edge to Output 1 since there was only one output from Node IN 1

Fig. 10.10 Merge Node: Nodes IN 2 and 3 are selected for a merger (note that input/output edges
are disabled). Node IN 5 is created with edges to all of their inputs/outputs

a simple neuron or from the memory cell types specified by the EXAMM input
parameters.

10.3.1.1 Edge Mutations

• Split Edge (Fig. 10.3): This operation selects an enabled edge at random and
disables it. It creates a new node and two new edges, and connects the input node
of the split edge to the new node, and the new node to the output node of the split
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Fig. 10.11 Enable Node: Node IN 1 is selected to be enabled, along with all of its input and
output edges

Fig. 10.12 Disable Node: Node IN 5 is selected to be disabled, along with all of its input and
output edges

edge. The depth of this node is the average of the input and output node of the
split edge. If the split edge was recurrent, the new edges will also be recurrent
(with the same time skip); otherwise they will be feedforward.

• Add Edge (Fig. 10.4): This operation selects two nodes n1 and n2 within the
RNN genome at random, such that depthn1 < depthn2 and such that there is
not already an edge between those nodes in this RNN genome. Then an edge is
added from n1 to n2.
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Fig. 10.13 Crossover: Two parent RNNs are selected, either from the same island (for intra-
island crossover) or between islands (for inter-island crossover). All reachable nodes and edges are
combined within the child RNN

• Enable Edge (Fig. 10.5): If there are any disabled edges or recurrent edges in the
RNN genome, this operation selects a disabled edge or recurrent edge at random
and enables it.

• Add Recurrent Edge (Fig. 10.6): This operation selects two nodes n1 and n2
within the RNN genome at random and then adds a recurrent edge from n1
to n2 (selecting a time span as described before). The same two nodes can be
connected with multiple recurrent connections, each spanning different lengths
of time. However, the edge will not create a duplicate recurrent connection with
the same time span.

• Disable Edge (Fig. 10.7): This operation randomly selects an enabled edge or
recurrent edge in an RNN genome and disables it so that it is not used. The edge
remains in the genome. Given that the disable edge operation can potentially
make an output node unreachable, after all mutation operations have been
performed to generate a child RNN genome, if any output node is unreachable,
then that RNN genome is discarded without training.

10.3.1.2 Node Mutations

• Add Node (Fig. 10.8): This operation selects a random depth between 0 and 1,
noninclusive. Given that the input nodes are always at depth 0 and the output
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nodes are always at depth 1, this depth will split the RNN in two. A new node is
created at that depth, and the number of input and output edges and recurrent
edges are generated using normal distributions each with mean and variance
equal to the mean and variance used for the input/output edges and recurrent
edges of all nodes in the parent RNN.

• Split Node (Fig. 10.9): This operation takes one non-input, non-output node
at random and splits it. This node is disabled (as is done in the disable node
operation) and two new nodes are created at the same depth as their parent. At
least one input and one output edge are assigned to each of the new nodes, both
of a duplicate type of the parent. Other edges are assigned randomly, ensuring
that the newly created nodes have both inputs and outputs.

• Merge Node (Fig. 10.10): This operation takes two non-input, non-output nodes
at random and combines them. Selected nodes are disabled (as in the disable node
operation) and a new node is created at a depth equal to the average of its parents.
This node is connected to the inputs and outputs of its parents with a duplicate
type from the parent given that input edges connected to lower depth nodes and
output edges connect to greater depth nodes.

• Enable Node (Fig. 10.11): This operation selects a random (disabled) node and
enables it along with all of its incoming and outgoing edges.

• Disable Node (Fig. 10.12): This operation selects a random non-output node
and disables it along with all of its incoming and outgoing edges. Note that this
allows for input nodes to be dropped, which can prove to be useful when it is not
previously known which input parameters are correlated to the output.

10.3.1.3 Other Operations

• Crossover (Fig. 10.13): This operation creates a child RNN using all reachable
nodes and edges from two parents. A node or edge is reachable if there is a path of
enabled nodes and edges from an input node to itself, as well as a path of enabled
nodes and edges from itself to an output node. In other words, a node or edge
is reachable if and only if it actually affects the RNN. The crossover operator
can be performed either within an island (intra-island) or between islands (inter-
island). Inter-island crossover selects a random parent in the target island as well
as the best RNN from the other islands.

• Clone: This operation creates a copy of the parent genome (initializing weights
with the same values as the parent). This allows a particular genome to continue
training in cases where further training may be more beneficial than simply
performing a mutation or crossover operation.
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10.3.2 Lamarckian Weight Initialization

For RNNs generated during population initialization, weights are initialized uni-
formly at random between −0.5 and 0.5. Biases and weights for new nodes and
edges are initialized from a normal distribution based on the average, μ, and
variance, σ 2, of the parents’ weights. However, RNNs generated through mutation
or crossover re-use parental weights. This allows RNNs to train from where the
parents left off, i.e., a “Lamarckian” weight initialization scheme.

During crossover, in the case where an edge or node exists in both parents, the
child’s weights are generated by recombining the parents’ weights. Given a random
number−0.5 <= r <= 1.5, a child’s weight wc is set to wc = r(wp2−wp1)+wp1,
where wp1 is the weight from the more fit parent, and wp2 is the weight taken from
the less fit parent. This allows a child RNN’s weights to be set along a gradient
calculated from the weights of its two parents.

This weight initialization strategy is particularly important since, within this
scheme, newly generated RNNs do not need to be completely retrained from scratch.
In fact, the RNNs only need to be trained for a few epochs to investigate the benefits
of newly added structures. In this work, the generated RNNs are only trained for 10
epochs (see Sect. 10.5.2). In contrast, training a static, hand-crafted RNN structure
from scratch often requires hundreds or even thousands of epochs to achieve good
generalization.

10.4 Datasets

This work utilizes two datasets to benchmark the memory cells and RNNs evolved
by EXAMM. The first comes from a selection of 10 flights worth of data from
the National General Aviation Flight Information Database (NGAFID).2 The other
comes from data selected from 12 burners of a coal-fired power plant (which
has requested to remain anonymous). Both datasets are multivariate (26 and
12 parameters, respectively), non-seasonal, and the parameter recordings are not
independent. Furthermore, the series samples are very long—the aviation time series
ranges from 1 to 3 h worth of per-second data, while the power plant data consists of
10 days worth of per-minute readings. These datasets are provided openly through
the EXAMM GitHub repository,3 in part for reproducibility, but also to provide a
valuable resource to the field. To the authors’ knowledge, real world time series
datasets of this size and at this scale are not freely available.

2https://ngafid.org.
3https://github.com/travisdesell/exact.

https://ngafid.org
https://github.com/travisdesell/exact
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10.4.1 Aviation Flight Recorder Data

With permission, data from 10 flights was extracted from the NGAFID. Each of the
10 flight data files last over an hour and consists of per-second data recordings from
26 parameters:

1. Altitude Above Ground Level (Alt-
AGL)

2. Engine 1 Cylinder Head Temperature
1 (E1 CHT1)

3. Engine 1 Cylinder Head Temperature
2 (E1 CHT2)

4. Engine 1 Cylinder Head Temperature
3 (E1 CHT3)

5. Engine 1 Cylinder Head Temperature
4 (E1 CHT4)

6. Engine 1 Exhaust Gas Temperature 1
(E1 EGT1)

7. Engine 1 Exhaust Gas Temperature 2
(E1 EGT2)

8. Engine 1 Exhaust Gas Temperature 3
(E1 EGT3)

9. Engine 1 Exhaust Gas Temperature 4
(E1 EGT4)

10. Engine 1 Oil Pressure (E1 OilP)
11. Engine 1 Oil Temperature (E1 OilT)
12. Engine 1 Rotations Per minute (E1

RPM)
13. Fuel Quantity Left (FQtyL)
14. Fuel Quantity Right (FQtyR)
15. GndSpd - Ground Speed (GndSpd)
16. Indicated Air Speed (IAS)
17. Lateral Acceleration (LatAc)
18. Normal Acceleration (NormAc)
19. Outside Air Temperature (OAT)
20. Pitch
21. Roll
22. True Airspeed (TAS)
23. Voltage 1 (volt1)
24. Voltage 2 (volt2)
25. Vertical Speed (VSpd)
26. Vertical Speed Gs (VSpdG)

These files had identifying information (fleet identifier, tail number, date and
time, as well as latitude/longitude coordinates) which was removed in order to
protect the identity of the pilots. The data is provided unnormalized.

RPM and pitch were selected as prediction parameters from the aviation data
since RPM is a product of engine activity, with other engine-related parameters
being correlated. Pitch itself is directly influenced by pilot controls. As a result,
both of these target variables are particularly challenging to predict. Figure 10.14
provides an example of the RPM and pitch time series from Flight 8 of this dataset.
In addition, the pitch parameter represents how many degrees above or below
horizontal the aircraft is angled. As a result, the parameter typically remains steady
around a value of 0; however, it increases or decreases depending on whether or not
the aircraft is angled to fly upward or downward, based on pilot controls and external
conditions. On the other hand, RPM will mostly vary between an idling speed, i.e., if
the plane is on the ground, and a flight speed, with some variation between takeoff
and landing. Since the majority of the flights in NGAFID (and, by extension, all
of the flights in the provided sample) are student training flights, multiple practice
takeoffs and landings can be found in the data. This results in two different types
of time series, both of which are dependent on the other flight parameters but each
sporting highly different characteristics—creating excellent time series benchmarks
for evaluating RNNs.
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Fig. 10.14 Example parameters of Flight 8 from the NGAFID dataset

10.4.2 Coal-Fired Power Plant Data

This dataset consists of 10 days of per-minute data readings extracted from 12 of
the plant’s burners. Each of these 12 data files has 12 parameters of time series data:

1. Conditioner Inlet Temp
2. Conditioner Outlet Temp
3. Coal Feeder Rate
4. Primary Air Flow
5. Primary Air Split
6. System Secondary Air Flow Total

7. Secondary Air Flow
8. Secondary Air Split
9. Tertiary Air Split

10. Total Combined Air Flow
11. Supplementary Fuel Flow
12. Main Flame Intensity

In order to protect the confidentiality of the power plant which provided the data
(along with any other sensitive data elements) all identifying data has been scrubbed
from the datasets (such as dates, times, locations, and facility names). This data
was normalized to lie in the range [0, 1] which serves as one more additional data
anonymization step. So while the data cannot be reverse engineered to identify the
originating power plant or actual parameter values—it still provide an extremely
valuable test platform for times series data prediction given that it consists of “in-
the-wild” data from a highly complex system composed of interdependent data
streams.

For the coal plant data, main flame intensity and supplementary fuel flow were
selected as parameters of interest. Figure 10.15 provides examples of these two
parameters from Burner # 2 found in the dataset. Main flame intensity is mostly
a product of conditions within the burner and parameters related to coal quality
which causes it to vary over time. However, sometimes planned outages occur or
conditions in the burner deteriorate so badly that the burner is temporarily shut
down. In these cases, sharp spikes occur during the shutdown, which last for an
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Fig. 10.15 Example parameters of Burner 2 from the coal dataset

unspecified period of time before the burner turns back on again (and the parameter
value sharply increases). The burners can also potentially operate at different output
levels, depending on power generation needs. As a result, step-wise behavior is
observed.

On the other hand, supplementary fuel flow remains fairly constant. Nonetheless,
it yields sudden and drastic spikes in response to decisions made by plant operators.
When conditions in the burners become poor due to coal quality or other effects, the
operator may need to provide supplementary fuel to prevent the burner from going
into shutdown. Of particular interest is to see if an RNN can successfully learn
to detect these spikes given the conditions of the other parameters. Similar to the
key parameters (RPM and pitch) selected in the NGAFID data, main flame intensity
itself is mostly a product of conditions within the (coal) burner, while supplementary
fuel flow is more directly controlled by human operators. Despite these similarities,
the characteristics of these time series are different from each other as well as
from the NGAFID flight data, providing additional, unique benchmark prediction
challenges.

10.5 Results

10.5.1 Experiments

The first set of (5) experiments only permitted the use of a single memory cell
type, i.e., exclusively �-RNN, GRU, LSTM, MGU, or UGRNN (one experiment per
type), and no simple neurons. All of these experiments only allowed the generation
of feedforward connections between cell nodes (these experiments were denoted as
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delta, gru, lstm, mgu, or ugrnn). The second set of (2) experiments were conducted
where the first one only permitted the use of simple neurons and feedforward
connections (denoted as simple), while the second permitted EXAMM to make
use of feedforward connections and simple neurons as well as the choice of any
memory cell type (denoted as all). The next set of experiments (5) were identical
to the first set with the key exception that EXAMM could choose either between
simple neurons and one specified specific memory cell type (these experiments
are appended with a +simple, i.e., lstm+simple). The final set of (12) experiments
consisted of taking the setting of each of the prior 12 (5 + 2 + 5) runs and re-
ran them but with the modification that EXAMM was permitted to generate deep
recurrent connections of varying time delays (these runs are appended with a +rec).
For example, lstm from the previous set of experiments is lstm+rec in this set
of experiments, and similarly lstm+simple in the previous set of experiments is
lstm+simple+rec in this set of experiments.

This full set of (24) experiments was conducted for each of the four prediction
parameters, i.e., RPM, pitch, main flame intensity, and supplementary fuel flow.
K-fold cross validation was carried out for each prediction parameter, with a fold
size of 2. This resulted in 5 folds for the NGAFID data (as it had 10 flight data
files), and 6 folds for the coal plant data (as it has 12 burner data files). Each fold
and EXAMM experiment was repeated 10 times. In total, each of the 24 EXAMM
experiments was conducted 220 times (50 times each for the NGAFID parameter
k-fold validation and 60 times each for the coal data parameter k-fold validation),
for a grand total of 5280 separate EXAMM experiments/simulations.

10.5.2 EXAMM and Backpropagation Hyperparameters

All RNNs were locally trained with backpropagation through time (BPTT) [58] and
stochastic gradient descent (SGD) using the same hyperparameters. SGD was run
with a learning rate of η = 0.001, utilizing Nesterov momentum with mu = 0.9.
No dropout regularization was used since, in prior work, it has been shown to result
in worse performance when training RNNs for time series prediction [26]. For the
LSTM cells that EXAMM could make use of, the forget gate bias had a value of
1.0 added to it since [59] has shown that doing so improves (LSTM) training time
significantly. Otherwise, RNN weights were initialized via EXAMM’s Lamarckian
strategy.

To control for exploding and vanishing gradients, we apply re-scaling to the full
gradient of the RNN, g, which is one single vector of all the partial derivatives
of the cost function with respect to the individual weights (in terms of a standard
RNN, this amounts to flattening and concatenating all of the individual derivative
matrices into one single gradient vector). Re-scaling was done in this way due to
the unstructured/unlayered RNNs evolved by EXAMM. Computing the stabilized
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gradient proceeds formally as follows:

g =

⎧
⎪⎪⎨

⎪⎪⎩

g ∗ th‖g‖2
, if ‖g‖2 > th

g ∗ tl‖g‖2
, if ‖g‖2 < tl

g otherwise

noting that || · ||2 is the Euclidean norm operator. th is the (high) threshold for
preventing diverging gradient values, while tl is the (low) threshold for preventing
shrinking gradient values. In essence, the above formula is composed of two types
of gradient re-scaling. The first part re-projects the gradient to a unit Gaussian ball
(“gradient clipping” as prescribed by Pascanu et al. [60]) when the gradient norm
exceeds a threshold th = 1.0. The second part, on the other hand, is a trick we
propose called “gradient boosting,” where, when the norm of the gradient falls below
a threshold tl = 0.05, we up-scale it by the factor tl||g||2 .

For EXAMM, each neuro-evolution run consisted of 10 islands, each with a
population size of 5. New RNNs were generated via intra-island crossover (at a rate
of 20%), mutation at a rate 70%, and inter-island crossover at 10% rate. All of the
EXAMM’s mutation operations (except for the split edge operator) were utilized,
each chosen with a uniform 10% chance. The experiments labeled all were able to
select any type of memory cell or simple (Elman) neurons at random, each with an
equal probability. Each EXAMM run generated 2000 RNNs, with each RNN being
trained locally (using the BPTT settings described above) for 10 epochs. Recurrent
connections that could span a time skip between 1 and 10 could be chosen (selected
uniformly at random). These runs were performed utilizing 20 processors in parallel,
and, on average, required approximately 0.5 compute hours. In total, the results we
report come from training 10,560,000 RNNs which required ~52,800 CPU hours
of compute time.

10.5.3 Experimental Results

Figure 10.16 shows the range of the fitness values of the best found RNNs across
all of the EXAMM experiments. This combines the results from all folds and all
trial repeats—each box in the box plots represents 110 different fitness values. The
box plots are ordered according to mean fitness (calculated as mean absolute error,
or MAE) of the RNNs for that experiment/setting (across all folds), with the top
being the highest average MAE, i.e., the worst performing simulation setting, and
the bottom containing the lowest average MAE, i.e., the best performing setting.
Means are represented by green triangles and medians by orange bars. Run type
names with deep recurrent connections are highlighted in red.

Experimental runs were also analyzed by calculating the mean and standard
deviation of all best evolved fitness scores from each repeated experiment across
each fold. This was done since each fold of the test data had a different range of
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Fig. 10.16 Consolidated range of fitness (mean absolute error) of the best found neural networks
for the flame dataset, fuel flow, pitch, and RPM prediction parameters for each of the 24
experiments across all 6 folds, with 10 repeats per fold. Run types are ordered top-down by mean



278 T. Desell et al.

potential best results. It was then possible to rank the simulations in terms of their
deviation from the mean (providing a less biased metric of improvement). Table 10.1
presents how well each experiment performed as an average of how many standard
deviations each was from the mean in their average case performance. Table 10.2 is
constructed in the same way but is instead based on best case performance. Search
types which utilized deep recurrent connections (+rec) are highlighted in bold.

10.5.4 Memory Cell Performance

Table 10.3 shows the frequency of a particular memory cell experiment/setting
appearing in the three best (Top 3) or three worst (Bottom 3) slots (in a ranked list)
for each prediction parameter for the experiment’s average and best RNN fitness
score. The simple row includes only the simple and simple+rec runs and the all
row includes the all and all+rec runs, while the other memory cell rows include
the +simple and +rec versions (e.g., the delta row includes occurrences of delta,
delta+simple, delta+rec, and delta+simple+rec).

Based on these count results, the �-RNN memory cells performed the best,
appearing in the top 3 for the average and best cases 4 times each. Furthermore,
it did not appear in the bottom 3 for the average and best cases at all, making these
particular memory cells more reliable than others. MGU memory cells performed
the next best, appearing twice in the average case and 3 times in the best case.
However, they also showed up 4 times in the bottom, 3 on the average case, and
once in the bottom 3 for the best case networks. Interestingly enough, while the
popular LSTM memory cells showed up frequently for the average performance
case (3 times), they did not show up at all in the top 3 for the best found RNNs.
They also occurred once in the bottom three for average performance and twice in
the bottom 3 for best performance.

The experimental results indicate that simple neurons perform rather well when
combined with deep recurrent connections. The simple+rec configuration showed
up once in the top 3 for the average case, and twice in the top 3 for the best case.
When simple neurons did appear in the bottom 3, it was only for the experiments
when no deep recurrent connections were permitted. As a result, aside from the
� and MGU memory cells, simple+rec performed better than the other more
complicated memory cells, e.g., LSTM, GRU, and was, furthermore, more reliable
than the MGU cells.

The performance of the GRU memory cells was intriguing—they showed up 3
times in the top 3 for the best case RNNs, 0 times for the top 3 average case runs,
but 2 and 5 times in the bottom 3 for average and best case networks. This seems
to indicate that, while GRU memory cells have the potential to find performant
networks, they are highly unreliable for these time series datasets. We hypothesize
that this might be due to either high sensitivity to initialization conditions or to
unknown limitations in the way they gate/carry temporal information.
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Table 10.1 EXAMM experiments ranked by how their average fitness performed in how many
standard deviations from the mean of all experiments

(a) Flame Std Devs: Avg MAE

Type Devs from mean

gru+simple 0.45466

gru 0.38537

mgu+simple 0.27395

ugrnn+simple 0.26383

ugrnn 0.24459

all 0.22218

mgu 0.21171

lstm+simple 0.05836

delta+simple 0.04819

lstm 0.03707

simple 0.01420

delta 0.00741

ugrnn+simple+rec −0.04944

mgu+rec −0.05957

lstm+rec −0.09531

all+rec −0.10439

delta+rec −0.13052

gru+rec −0.15598

gru+simple+rec −0.16988

ugrnn+rec −0.18138

mgu+simple+rec −0.20289

simple+rec −0.30881

lstm+simple+rec −0.33808

delta+simple+rec −0.42524

(b) Fuel Flow Std Devs: Avg MAE

Type Devs from mean

simple 0.21337

mgu+simple 0.18593

ugrnn+simple 0.17120

all+rec 0.12609

lstm 0.11196

delta 0.08607

lstm+simple+rec 0.07886

mgu+rec 0.07732

gru 0.04823

ugrnn 0.04216

gru+rec 0.03564

simple+rec 0.01922

lstm+simple 0.01803

mgu 0.00344

ugrnn+simple+rec −0.00456

all −0.00649

ugrnn+rec −0.02236

delta+simple −0.03849

delta+rec −0.08420

gru+simple+rec −0.12883

gru+simple −0.13948

delta+simple+rec −0.22414

lstm+rec −0.28345

mgu+simple+rec −0.28552

(continued)
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Table 10.1 (continued)

(c) Pitch Std Devs: Avg MAE

Type Devs from mean

lstm+simple 0.23909

mgu+simple 0.20029

ugrnn+simple 0.14481

simple 0.14432

gru+simple 0.13351

gru 0.13152

delta 0.10322

all+rec 0.09201

all 0.06990

delta+simple 0.05982

simple+rec 0.03136

ugrnn+rec 0.00369

lstm+rec −0.03673

lstm −0.03996

delta+rec −0.06630

mgu+rec −0.08360

mgu+simple+rec −0.08452

gru+rec −0.11290

gru+simple+rec −0.11699

ugrnn −0.13281

lstm+simple+rec −0.14307

delta+simple+rec −0.15425

ugrnn+simple+rec −0.18647

mgu −0.19593

(d) RPM Std Devs: Avg MAE

Type Devs from mean

ugrnn+simple 0.49582

ugrnn 0.32738

mgu 0.30650

simple 0.26625

mgu+simple 0.23401

gru+simple 0.20177

gru 0.19246

delta 0.17695

all 0.10472

lstm 0.02485

lstm+simple 0.01335

delta+simple 0.00523

ugrnn+simple+rec −0.00490

lstm+rec −0.02911

mgu+rec −0.06871

all+rec −0.08791

ugrnn+rec −0.09029

delta+simple+rec −0.15970

gru+simple+rec −0.17044

simple+rec −0.21730

gru+rec −0.27053

delta+rec −0.36819

mgu+simple+rec −0.40717

lstm+simple+rec −0.47505

Lower values indicate better performance

Lastly, UGRNN memory cells performed the worst overall. They only appeared
once in the top 3 for the average case and not at all in the top 3 for the best case. At
the same time they occurred 4 and 3 times in the bottom 3 for the average and best
case performance rankings.

The all configurations did not show up at all in the top 3 or bottom 3, most likely
due to the significant size of its particular search space. Given the additional option
to select from a large pool of different memory cell types, the EXAMM neuro-
evolution procedure might just simply require far more time to decide which cell
types would yield better/top performing networks.
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Table 10.2 EXAMM experiments ranked by how their best found fitness scores performed with
respect to how many standard deviations from the mean of all experiments they fall

(a) Flame Std Devs: Best MAE

Type Devs from mean

gru+simple −1.02844

mgu+rec −1.15701

ugrnn+simple −1.21079

mgu −1.24655

mgu+simple −1.26880

gru −1.29390

simple −1.30901

lstm+simple −1.35475

lstm −1.35496

delta+simple −1.37473

ugrnn+rec −1.42362

ugrnn −1.43371

delta −1.48912

mgu+simple+rec −1.55717

gru+simple+rec −1.58618

lstm+simple+rec −1.63655

all+rec −1.64301

all −1.66893

lstm+rec −1.70057

ugrnn+simple+rec −1.71172

gru+rec −1.73098

delta+rec −1.95685

simple+rec −1.97756

delta+simple+rec −2.08205

(b) Fuel Flow Std Devs: Best MAE

Type Devs from mean

gru+rec −1.10116

ugrnn+simple −1.18567

lstm+simple −1.18625

mgu+rec −1.18778

lstm+simple+rec −1.21500

mgu+simple −1.21509

all −1.22138

gru+simple −1.27796

gru+simple+rec −1.29070

simple+rec −1.29699

simple −1.30479

ugrnn −1.30559

ugrnn+simple+rec −1.31366

delta −1.33034

delta+rec −1.35481

all+rec −1.37338

lstm −1.38003

delta+simple −1.38368

lstm+rec −1.38510

ugrnn+rec −1.42369

mgu −1.45259

mgu+simple+rec −1.50962

gru −1.53812

delta+simple+rec −1.54667

(continued)
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Table 10.2 (continued)

(c) Pitch Std Devs: Best MAE

Type Devs from mean

ugrnn+simple −0.99073

gru −1.01889

lstm+simple −1.09707

gru+simple −1.10143

delta −1.19651

lstm −1.24966

all −1.25872

delta+rec −1.42943

mgu+simple −1.48976

all+rec −1.55755

ugrnn+rec −1.58235

mgu+rec −1.60397

lstm+rec −1.63888

ugrnn+simple+rec −1.64192

mgu −1.67690

ugrnn −1.70299

delta+simple+rec −1.77567

delta+simple −1.78042

gru+rec −1.81352

lstm+simple+rec −1.89858

simple −2.05128

mgu+simple+rec −2.09451

gru+simple+rec −2.09545

simple+rec −2.24764

(d) RPM Std Devs: Best MAE

Type Devs from mean

gru −0.94516

simple −0.99991

gru+simple −1.08121

mgu −1.17371

ugrnn+simple −1.19714

all+rec −1.34347

ugrnn −1.36917

ugrnn+simple+rec −1.44366

gru+simple+rec −1.49508

mgu+simple −1.49991

lstm −1.50167

delta+simple+rec −1.51271

delta+simple −1.51795

mgu+rec −1.52494

delta −1.57259

lstm+simple −1.64965

all −1.69526

lstm+simple+rec −1.71450

ugrnn+rec −1.72680

lstm+rec −1.74024

simple+rec −1.74335

gru+rec −1.88070

mgu+simple+rec −1.89718

delta+rec −2.05063

Lower values mean better performance

Table 10.3 How often a
memory cell type appeared in
the top 3 or bottom 3
experiments in the best and
average cases

Memory Top 3 Bottom 3

cell Avg Best Avg Best

all 0 0 0 0

simple 1 2 1 1

delta 4 4 0 0

gru 0 3 2 5

lstm 3 0 1 2

mgu 2 3 4 1

ugrnn 1 0 4 3
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Table 10.4 Performance
improvement (in std. dev.
from the mean) for adding
simple neurons

Type Dev for avg Dev for best

delta −0.07663 −0.07420

gru −0.02369 0.04575

lstm −0.02973 0.02485

mgu −0.03463 −0.18857

ugrnn 0.07991 0.15908

overall −0.02365 −0.02018

Table 10.5 Performance
improvement (in std. dev.
from the mean) for adding
deep recurrent connections

Type Dev for avg Dev for best

all −0.09113 −0.01828

simple −0.27842 −0.40014

delta −0.25571 −0.30079

gru −0.31534 −0.43257

lstm −0.14463 −0.24462

mgu −0.11507 0.01901

ugrnn −0.19291 −0.08625

overall −0.19903 −0.20909

10.5.5 Effects of Simple Neurons

Table 10.4 provides measurements for how the addition of simple neurons changed
the performance of the varying memory cell types. In it, we show how many
standard deviations from the mean the average case moved when averaging the
differences of mgu to mgu+simple and mgu+rec to mgu+simple+rec (over all four
prediction parameters). In the average case, adding simple neurons did appear to
yield a modest improvement, improving deviations from the mean by−0.02 overall,
and improving deviation from the mean for all memory cells except for UGRNNs.
Adding simple neurons had a similar overall improvement for the best found RNNs;
however, this incurred a much wider variance. Nonetheless, despite this variance,
2 of the 3 best found networks had +simple as an option, with a third being
simple+rec. This seems to indicate that most memory cell types could either benefit
by mixing or combining them with simple neurons.

10.5.6 Effects of Deep Recurrent Connections

Table 10.5 provides similar measurements for EXAMM settings that permitted the
addition of deep recurrent edges to the varying memory cell types, as well as the
all and simple runs. Compared to adding +simple, the +rec setting showed an order
of magnitude difference, improving deviations from the mean by −0.2 overall. In
addition, for each of the prediction parameters, the best found RNN utilized deep
recurrent connections. Looking at the top 3 best and top 3 average case RNNs, 11
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Fig. 10.17 Scatter plots of the fitness of the best found RNNs for the flame, oil, pitch, and RPM
datasets against the average time skip of their recurrent connections (with fit trendlines)

out of 12 utilized deep recurrent connections. Similarly, in the bottom 3 best, +rec
occurs twice and does not appear at all in the bottom 3 average case run types. For
the Flame and RPM parameters, on the average case, even the worst performing run
type with +rec performs better than any of the simulations/experiments without it.

Figures 10.17 plots the average time skip of all recurrent connections (not
counting the recurrent connections within the memory cells) in the best found
RNN of each EXAMM run against their fitness. RNNs that had a 0 average
(measurement) were those without any time skip recurrent connections. While the
average number of time skip connections for all these RNNs were centered around
5.5 (which makes sense as the depth of the time skips ranged from 1 to 10, and
were selected uniformly at random), many of the search types exhibit negative
trendlines indicating that deeper time skips resulted in more accurate RNNs, with
RPM prediction demonstrating particularly strong trendlines.
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10.6 Discussion

The results presented in this chapter provide some significant insights to the domain
of recurrent neural network-based time series data prediction. The main findings of
this study include:

• Deep Time Skip Connections: The most significant improvements in recurrent
neural network (RNN) performance were shown with networks that included
deep time skip connections, and in some experiments were more important
than the use of memory cells, i.e., the simple+rec search types performing
quite strongly. For all four benchmark datasets, the best found RNNs included
deep recurrent connections. Overall, adding deep recurrent connections to the
evolutionary process resulted in large shifts of improvement in terms of the
standard deviations from mean measurements. These results are particularly
significant given that the common story told is that LSTM and other memory
cells are the only effective means of capturing long-term time dependencies when
their internal connections only go back a single time step.

• Strong simple+rec Performance: Another very interesting finding was that only
using simple neurons and deep time skip connections without any memory cells
(the simple+rec search type) could perform quite well, finding the best RNN in
the case of the Pitch dataset, second best on the Flame dataset, and fourth best
on the RPM dataset. This shows that, at least in some cases, it might be more
important to effectively utilize deep temporal/recurrent connections than to use
more complicated memory cells.

• Strong �-RNN Memory Cell Performance: While there is no free lunch in
statistical learning, the newer �-RNN memory cell did stand out as performing
better than the other memory cells. In three out of the four datasets, runs based on
it found the best performing RNN, and for the average case performance, these
runs made it into the top 3 search types across all four datasets. Furthermore,
unlike the other memory cells search types, the �-RNN based searches did not
perform in the bottom 3 for any of the search types, either in the average or best
cases. The only other search type to boast top 3 best performance and no bottom
3 performance was the simple+rec search type. However, this did not perform
as well in the average case, only appearing in the top 3 twice. Though it is a
rather newer memory cell, these results indicate that the �-RNN cell warrants
strong consideration when designing and developing RNN-based predictors in
the future.

10.7 Future Work

This work raises a number of points that warrant of further study. Admittedly,
the choice of selecting time skip depths uniformly at random between the hyper-
parameters of 1 and 10 was somewhat arbitrarily chosen. Given that some of
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the experiments demonstrated strong improvements in fitness as the average time
skip depth of recurrent connections increased, further investigation exploring even
deeper time skips/delays could be an avenue to further predictive accuracy improve-
ment. In addition, an adaptive approach for selecting the span of the time skips based
on previously well performing connections might provide better accuracy while
removing the need for any external tuning of these hyperparameters. Perhaps the
most interesting direction to pursue is to extend gated neural structures and memory
cells to utilize synaptic connections that go back (explicitly) in time farther than
the last time step. This might yield improved memory retention and generalization,
potentially even alleviate the need for evolutionary-driven selection of additional
deep time skip connections (which EXAMM in this study found necessary to do).

The general question of hyperparameter optimization is also of particular interest
given that there are a large number of parameters that could be adjusted to improve
performance of EXAMM, e.g., the probabilities at which the various mutation and
crossover operations are selected and the rates at which different memory cell
types are selected. These rates could be adapted at run-time to better generate
new neural networks (incrementally). However, there are challenges in doing this
as noted in prior work—local selections of memory cell types based on how well
they improve the evolving populations does not necessarily result in the selection of
the best memory cell types for the problem at hand [43]. Additionally, investigating
the co-evolution of the (local) backprop hyperparameters jointly with the network
topology/structure be particularly valuable as indicated by results (in other work)
that show to evolve more efficient convolutional neural networks [61].

The strong performance of the simple+rec search type might also suggest that
generating and training RNNs using an evolutionary process with Lamarckian
weight initialization may make training RNNs with non-gated recurrent connections
easier since RNNs that use backprop to adjust weights progress to poor regions
of the search space, often due to the vanishing and exploding gradient problems.
In neuro-evolution, these RNNs will be discarded and thus not be added to the
populations used to generate children—this means the evolutionary process will
tend to preserve RNNs which have been training well. In future work, this will be
examined by retraining the best found architectures from scratch and comparing
their performance.

More recently, work by Camero et al. has shown that a mean absolute error
(MAE) random sampling strategy can provide good estimates of RNN perfor-
mance [62] and has successfully used it to speed up the neuro-evolution of LSTM
RNNs [63]. By determining the sampled MAEs of randomly initializations of
an RNN, performance can be estimated in a manner that is potentially faster
than using backprop (locally) itself. In this work, EXAMM trained RNNs for
10 epochs and Camaro et al.’s work utilized 100 forward pass samples, so this
estimation method is more computationally complex (assuming one backprop epoch
is approximately equal to two sampling forward passes). However, it is of interest
to see if the estimation could be a potentially more accurate estimation of an
RNN’s performance, given that an uninformed stochastic backprop could potentially
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traverse a poor path through the search space, discarding RNNs that may otherwise
be well performing.

One of the central motivations behind using EXAMM as an analysis tool is that
it could potentially evolve better RNNs than methods using a singular memory cell
type (since EXAMM chooses from a pool of different types, mixing them with
complex recurrent connectivity structures) while being more robust. While the all
and all+rec search types did not perform poorly in any case—they avoided the
bottom 3 for the best and average cases—they also did not find top-performing
RNNs and did not appear in the top 3 for best or average cases either. This may,
in part, be due to the fact that these search types induced a much larger search
space, where the add node mutation was selecting from seven possible neurons
(each memory cell and simple neurons) as opposed to only one or two. This
additional complexity can slow down the evolutionary process and, thus, it is worth
investigating to see if all or all+rec can outperform the other search types if more
computation time is allocated.

Another potential avenue for enhancing EXAMM would utilize layer-based
mutations. Previous work has shown that adding node-level mutations (described
in Sect. 10.3.1.2) increased the speed of evolution allowing neuro-evolution meta-
heuristic approaches to find better performant ANN structures [28, 61]. This would
entail adding an even higher level type of mutation where layers of memory cell
types are added at once. Incorporating such a mechanism might provide model
generalization improvements, while at the same time further improving EXAMM’s
ability to break out of local minima when searching complex spaces.

10.8 Conclusions

While most work in the field of neuro-evolution focuses on the evolution of
artificial neural networks that can outperform hand-crafted architectures, this work
showcases the potential of neuro-evolution for a different purpose: a robust analysis
and investigation of the performance capabilities of different neural network com-
ponents (in this chapter’s case, recurrent memory cells). Rigorously investigating a
new neural network component can be quite challenging since its performance can
be tied to the architectures it is used within. For most work, new architectural com-
ponents or strategies are typically only investigated using a few select architectures.
This may not necessarily represent how well such a new component would perform
given the much wider range of possible architectures. Neuro-evolution can help
alleviate this issue by allowing the most successful networks with given components
to guide how the architectures are designed, providing a more fair comparison. In
short, neuro-evolution metaheuristics might be using in developing an automated
and strong experimental methodology for investigating various machine learning
methodologies, especially those based on complex, black-box models such as
recurrent neural networks.
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Chapter 11
Neuroevolution of Generative
Adversarial Networks

Victor Costa, Nuno Lourenço, João Correia, and Penousal Machado

Abstract Generative Adversarial Networks (GAN) is an adversarial model that
became relevant in the last years, displaying impressive results in generative tasks. A
GAN combines two neural networks, a discriminator and a generator, trained in an
adversarial way. The discriminator learns to distinguish between real samples of an
input dataset and fake samples. The generator creates fake samples aiming to fool
the discriminator. The training progresses iteratively, leading to the production of
realistic samples that can mislead the discriminator. Despite the impressive results,
GANs are hard to train, and a trial-and-error approach is generally used to obtain
consistent results. Since the original GAN proposal, research has been conducted
not only to improve the quality of the generated results but also to overcome
the training issues and provide a robust training process. However, even with the
advances in the GAN model, stability issues are still present in the training of GANs.
Neuroevolution, the application of evolutionary algorithms in neural networks, was
recently proposed as a strategy to train and evolve GANs. These proposals use
the evolutionary pressure to guide the training of GANs to build robust models,
leveraging the quality of results, and providing a more stable training. Furthermore,
these proposals can automatically provide useful architectural definitions, avoiding
the manual discovery of suitable models for GANs. We show the current advances
in the use of evolutionary algorithms and GANs, presenting the state-of-the-art
proposals related to this context. Finally, we discuss perspectives and possible
directions for further advances in the use of evolutionary algorithms and GANs.

11.1 Introduction

Generative Adversarial Networks (GAN) [16] is an adversarial model that makes
use of neural networks to produce samples based on an input distribution. GANs
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can be applied in several contexts, for example, in the generation of image, video,
sound, and text, being able to produce impressive results concerning the quality of
the created samples. This model gained a lot of relevance in recent years, leveraging
the interest of the community on improving the original proposal.

Despite the fact that GANs can be used as a generative component to produce
samples in a variety of areas, applications in the image domain are more frequently
reported by the production of realistic samples, representing significant advances
when compared to other methods [3, 21, 51]. Therefore, the focus of this chapter
is on the applications of GANs to the image domain. Nevertheless, the techniques
presented here can be extended and adapted to other contexts.

Although GANs have attained incredible results, their training is challenging,
and the presence of problems such as the vanishing gradient and the mode collapse
is common [7, 13]. The balance between the discriminator and the generator is
frequently the cause of these problems. In the case of the vanishing gradient, the
discriminator becomes so powerful that it can distinguish almost perfectly between
samples created by the generator and real samples. After this, because of the training
approach used in GANs, the process stagnates. Regarding the mode collapse, the
problem occurs when the generator fails to capture the entire representation of
the distribution used as input to the discriminator. This is an undesired behavior,
as we want not only to reproduce realistic samples but also to reproduce the
diversity of the input distribution. Although there is a diversity of strategies and
techniques to minimize the effect of these problems, they are still affecting the GAN
training [17, 39]. Most of the proposed solutions appeal to mathematical models to
deal with these problems, such as the use of more robust loss functions and stable
neural network layers [3, 5, 27, 51]. Other proposals also worked on the architecture
of the neural networks in order to avoid these issues [31, 35].

In spite of these issues, research was also conducted to improve the original GAN
model with respect to the quality of the results, leveraging it to impressive levels
[3, 21, 27]. Other researches also proposed changes on the model to introduce a
conditional input [20, 29, 32, 37]. Thus, a relevant effort is being made to improve
GANs, not only to overcome the difficulties on the original model but also to extend
the initial concept to different objectives.1

In GANs, the adversarial characteristics and the necessity of an equilibrium
between the generator and the discriminator make the design of the network crucial
for the quality of the results. Therefore, the topology and hyperparameters that
compose the neural networks of the generator and the discriminator are important to
keep the balance between them in the training process. If one component becomes
more powerful than the other, the GAN training will probably become unstable and
may not produce the desired outcome. In this case, the design of the neural network
is paramount to achieve convergence on training.

1A list of proposals related to GANs can be found at https://github.com/hindupuravinash/the-gan-
zoo.

https://github.com/hindupuravinash/the-gan-zoo
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The design of a neural network is usually defined by hand in an empirical
process, based on expert knowledge, which requires spending human time in
repetitive tasks, such as experimentation and fine-tuning [7]. Experiments are used
to validate and fine-tune the model, aiming to find efficient architectures to produce
a neural network for a specific problem. However, some approaches can be used
to automatize this process. In the field of evolutionary computation, neuroevolution
can be used to design and optimize neural networks [28, 42, 50]. An evolutionary
algorithm (EA) is based on the evolutionary mechanism found in nature, using
it to evolve a population of potential solutions, producing better outcomes for a
given problem [41]. In neuroevolution, this concept is adapted to the context of
neural networks. In this case, the population is composed of individuals encoded
through a genotype that represents, in some level of abstraction, neural networks.
The genotype is used in a transformation procedure that creates the phenotype of
an individual, which expresses the concrete implementation of a neural network.
As in a regular EA, the phenotypes are used to evaluate and select individuals for
reproduction to form the next generations of potentially better solutions.

Neuroevolution can be applied to evolve both the network architecture (e.g.,
topology, hyperparameters, and optimization method) and the internal parameters
(e.g., weights) [50]. NeuroEvolution of Augmented Topologies (NEAT) [42] is
a well-known neuroevolution method that evolves the weights and topologies of
neural networks. A further proposal originated DeepNEAT [28], a modification
of the model that expands NEAT to larger search spaces, such as in deep neural
networks.

Although neuroevolution is usually applied to standalone neural networks, the
concepts can also be applied in the context of GANs. Furthermore, in the mechanics
of the GAN model, the generator and discriminator are competing in a zero-sum
game in the task of creating and discriminating fake and real samples. Therefore,
a competitive model can be suitable to represent populations of individuals in
GANs. In EAs, coevolution is the simultaneous evolution of at least two distinct
species [19, 36, 43]. In competitive coevolution, individuals of these species are
competing together, and their fitness function directly represents this competition.
Thus, the applicability of a competitive coevolution environment in an EA to train
GANs can also be evaluated [9, 10, 14, 46].

In recent years, researchers have been applying the concepts of EAs to improve
the performance of GANs with different strategies [1, 9, 10, 14, 46, 47]. The authors
found advances not only in the quality of the outcome but also regarding the stability
issues in the training of GANs. We present in this chapter the state-of-the-art of
these proposals, discussing their main advantages and drawbacks, and presenting
further directions for improvements. The following proposals will be described in
this chapter: E-GAN [47], Pareto GAN [14], Lipizzaner [1], Mustangs [46], and
COEGAN [9, 10].

The remainder of this chapter is organized as follows. Section 11.2 introduces
the concepts of GANs, presenting the challenges and advances in this field.
Section 11.3 summarizes the possibilities regarding the application of EAs in the
context of GANs. Section 11.4 presents the current proposals that use EAs with
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GANs. Section 11.5 discusses the application of EAs in GANs, drawing particular
attention to the drawbacks and advantages of each approach, presenting directions
for further improvements. Finally, Sect. 11.6 concludes this chapter with the final
considerations about the subject.

11.2 Generative Adversarial Networks

Generative Adversarial Networks (GAN) [16] is an adversarial model that became
relevant mostly for the performance achieved in generative tasks on the image
domain, representing significant improvements over other generative methods. We
present in this section the model definition, the common issues found when training
a GAN, and how to evaluate and compare GANs using the state-of-the-art metrics.

11.2.1 Definition

A GAN combines two neural networks in a unified training algorithm: a discrimi-
nator D and a generator G. The discriminator D aims to distinguish between real
and fake examples. The generator G outputs fake samples, attempting to capture the
input distribution used in the training of D.

Both the discriminator and generator use backpropagation and gradient descent
in the GAN training. Thus, different loss functions are used in the GAN components.
The loss function of the discriminator is defined as follows:

J (D)(D,G) = −Ex∼pdata [log D(x)] − Ez∼pz [log(1−D(G(z)))]. (11.1)

For the generator, the non-saturating version of the loss function is defined by

J (G)(G) = −Ez∼pz [log(D(G(z)))]. (11.2)

In Eq. (11.1), pdata represents the dataset used as input to the discriminator. In
Eqs. (11.1) and (11.2), z is the latent space used as input to the generator, pz is the
latent distribution, G is the generator, and D represents the discriminator.

GANs are hard to train, and training stability is an issue that systematically
affects the results. So, to achieve good outcomes in training, a trial-and-error
approach is frequently used. Some works developed a set of techniques to train
GANs to improve the probability to achieve convergence [35, 39]. However, these
strategies only minimize the effect of the problems that usually happen in the
training process. Several other variations of the original GAN model were proposed
to improve the effect of these problems [3, 17, 21, 27, 31]. In Sect. 11.2.2, we
describe some of these problems regarding the training of GANs.
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11.2.2 Common Problems in GAN Training

The vanishing gradient and the mode collapse are among the most common
problems affecting the stability when training GANs. They are widespread and
represent a significant challenge to obtain useful representations for applying GANs
in different domains. These issues are often part of a bigger problem: the balance
between the discriminator and the generator during the training. Although several
approaches tried to minimize those obstacles, they still affect the training and remain
unsolved [3, 17, 39]. Following we describe the mode collapse and the vanishing
gradient issues, presenting how they affect the training of GANs.

11.2.2.1 Mode Collapse

In the mode collapse problem, the generator captures only a small portion of
the dataset distribution provided as input to the discriminator. This diminished
representation is not desirable since it is expected that a generative model reproduces
the whole distribution of the data to achieve variability on the output samples.

Figure 11.1 represents images created by a generator after a failed training of a
GAN using the MNIST dataset [24]. The effects of the mode collapse can be clearly
seen in these images. We can see in the samples on the left of Fig. 11.1 that only
the digits 9 and 7 are represented. However, in the samples on the right, the digits
cannot be identified correctly. The generator creates only a superposed combination
of digits. The lack of variability demonstrated in these examples characterizes the
problem as mode collapse.

Fig. 11.1 Samples created by a GAN after training that resulted in the mode collapse issue. Note
that the GAN was trained using the MNIST dataset, which contains digits from 0 to 9. However,
on the left, the generator can only create samples related to the digits 7 and 9. In the right, the
generator failed to create a real digit, outputting the same unrealistic pattern
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11.2.2.2 Vanishing Gradient

The vanishing gradient occurs when one of the GAN components, i.e., the discrim-
inator or the generator, becomes powerful enough to harm the balance required on
the training. For example, the discriminator can become too strong and not be fooled
anymore by the generator when distinguishing between fake and real samples.
Hence, the loss function is too small, the gradient does not flow through the neural
network of the generator, and the GAN progress stagnates. In the GAN training,
the equilibrium between the discriminator and generator is essential to the training
convergence. The vanishing gradient problem happens when this equilibrium is
violated in an irreversible way.

Figure 11.2 presents an example of a GAN training that suffers from the
vanishing gradient problem. We can see in this figure the progression of losses of the
generator and discriminator through iterations. Note that when the discriminator loss
becomes zero (marked by the dashed vertical line), the generator stops to improve
and stagnates until the end of the training. As such, the quality of samples created by
the generator will not improve anymore. It is important to note that the divergence
between the generator and discriminator, expressed by the losses, does not need to
always decrease [13]. Even when the loss increases, the training can reach a good
solution in the end. Therefore, regarding the vanishing gradient, the problem only
occurs when the loss approximates to zero. The GAN model tolerates steps with a
reduction in the loss without losing convergence capabilities.

11.2.3 Evaluation Metrics

Several metrics can be used to quantify the performance of a GAN [6, 49]. As the
generators are commonly the most relevant component of a GAN, these metrics
usually target them. However, the measurement of the performance when executing
generative tasks is a relevant problem and there is not a consensus yet in the
community about the best metric to use. We highlight here two of the most
commonly reported metrics for GANs in the literature: the Inception Score and the
Fréchet Inception Distance (FID) score.

Fig. 11.2 Losses of the
generator and discriminator
of a training experiment with
the vanishing gradient issue.
As the loss of the
discriminator approximates to
zero, the loss of generator
stagnates
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Other metrics, such as the skill rating [33], were evaluated and obtained relevant
results. Despite this, they are still not widely used by the community, becoming hard
to use them in a comparison study to evaluate a proposal with other works. However,
they can still be useful to use in the context of EAs. They can be used not only as
comparison criteria between the solutions but also as fitness functions to guide the
evolution.

11.2.3.1 Inception Score

The Inception Score (IS) [39] is an automatic metric to evaluate synthetic image
samples that were created based on an input dataset. This method uses the Inception
Network [44, 45] to get the conditional label distribution of the images created by
a generative algorithm, such as a GAN. This network should be previously trained
using a dataset, usually the ImageNet dataset [38]. Therefore, the Inception Score is
defined as:

IS(x, y) = exp(ExKL(p(y|x)||p(y))), (11.3)

where x is the input data, y is the label of the data, p(y) is the label distribution,
p(y|x) is the conditional label distribution, and KL is the Kullback–Leibler diver-
gence between the distributions p(y|x) and p(y). It is recommended to evaluate the
IS metric on a large number of samples, such as 50,000, in order to provide enough
diversity to the score [39].

The IS metric has some drawbacks, such as the sensitivity to the weights of the
Inception Network used in the calculation [4]. Moreover, the network used in the
Inception Score, which was trained in the ImageNet dataset, may not be applicable
with consistent performance to other datasets.

11.2.3.2 Fréchet Inception Distance

Fréchet Inception Distance (FID) [18] is the state-of-the-art metric to compare the
generative components of GANs. The FID score outperforms other metrics, such as
the Inception Score, with respect to diversity and quality [26]. As in the Inception
Score, FID also uses a trained Inception Network in the computation process. In the
FID score, a hidden layer of Inception Net (also usually trained on ImageNet) is
used in the transformation of images into the feature space, which is interpreted as a
continuous multivariate Gaussian. This transformation is applied to a subset of the
real dataset and samples created by the generative method. The mean and covariance
of the two resulting Gaussians are estimated and the Fréchet distance between these
Gaussians is given by

FID(x, g) = ||μx − μg||22 + T r(�x +�g − 2(�x�g)1/2). (11.4)
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In Eq. (11.4), μx , �x , μg , and �g represent the mean and covariance estimated
for the real dataset x and fake samples g, respectively. In summary, the FID score
is given by the norm of the means and the trace of the covariances between real and
fake samples.

11.3 Exploring the Evolution of GANs

Several aspects that compose the GAN model can be actively used as evolvable
components in an evolutionary algorithm. However, it is important to keep in mind
that the EA should preserve the balance of these components in order to tackle
the issues listed in Sect. 11.2.2. We discuss in this section the possibilities for the
application of EAs to the GAN model. The options related to neuroevolution and
the aspects of GANs will be presented as possible choices to design an algorithm.

11.3.1 Neuroevolution

Neuroevolution is the application of EAs in the evolution of a neural network.
It can be applied to evolve weights, topology, and hyperparameters of a neural
network [50]. When used to discover the network topology, a substantial benefit
is the automation of the architecture design and parameter decision, transforming a
manual human effort into an automatic procedure. This automation is even more
critical with the rise of deep learning, which is producing deeper models and
increasing the search space [28]. However, the increase in the search space is also a
challenge for neuroevolution. These methods have high time-consuming executions
that may turn their application unfeasible.

Neuroevolution can be fully applied in the context of GANs. The evolution of the
topologies of the discriminator and the generator should take into account that the
equilibrium between them is paramount to the convergence of the training process.
Not only the structure (i.e., the number of layers and the connections between them)
but also the internal characteristics of each layer composing a neural network can
be the subject of evolution. For example, the type of a layer (e.g., convolution or
fully connected), the number of output features, and the activation function (e.g.,
ReLU, ELU, Tanh). Other aspects relevant to the network can also be a variable of
the individual, such as the choice for the optimizer used in the training, the learning
rate, the batch size, and the number of the training iterations.

We can also make use of other techniques regarding evolutionary computation
in neuroevolution, such as coevolution. Coevolution is the simultaneous evolution
of at least two distinct populations (also denominated species) [19, 36]. There are
two types of coevolution algorithms: cooperative and competitive. In cooperative
coevolution, individuals of different species cooperate in the search for efficient
solutions, and the fitness function of each species is designed to reward this coop-
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eration. In competitive coevolution, individuals of different species are competing
between them in the search for better solutions. Here, their fitness function directly
represents this competition in a way that scores between species are inversely
related. For example, NEAT was successfully applied to a competitive coevolution
environment [43].

The coevolutionary approach used in an EA can lead to some issues, such as
intransitivity and disengagement [2, 30]. The intransitivity occurs when a solution
a is better than b and b is better than c, but this does not guarantee that a

is better than c. This issue can lead to cycling between these solutions during
the evolutionary process, preventing the progress of individuals toward optimal
solutions. Disengagement occurs when the equilibrium between the populations
is broken. In this case, individuals from one population are much better than
individuals from the other, leading to ineffective progression.

GANs can be modeled as a competitive coevolution problem. We can consider a
population of discriminators as competitors to a population of generators. Therefore,
an EA can make use of competitive coevolution concepts to match individuals from
these two populations at the evaluation phase. Furthermore, we can relate problems
that frequently affect the training of GANs (Sect. 11.2.2) to coevolution problems.
For example, the vanishing gradient can be linked to the disengagement issue. Thus,
the use of coevolution can be explored in combination with other techniques (e.g.,
neuroevolution) to solve the challenges of the GAN training process.

11.3.2 Variations of GANs

Several advances over the original GAN model were recently proposed. These
proposals focused not only on the improvement of the quality of the created samples
but also on the improvement of the training stability. These proposals can be divided
into two main categories: architecture improvements and alternative loss functions
[34, 48].

In the category of architecture improvements, we have DCGAN [35], a set of
constraints and rules that guide the design of the components of a GAN. DCGAN
became a reference architecture for the discriminator and the generator in GANs.
Some of these rules are:

• Use batch normalization in the generator and discriminator;
• Use the ReLU activation function in all hidden layers of the generator;
• Use LeakyReLU in all layers of the discriminator.

In the experiments presented with DCGAN, the training stability was improved, but
there are still issues such as the mode collapse problem in some executions [35].
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Other proposals introduced different aspects into the original GAN model [5,
7, 11, 12, 15, 21, 22, 51]. We can use some of these strategies as inspiration for
an EA. For example, the method described in [21] uses a predefined strategy
to grow a GAN during the training procedure. The main idea is to grow the
model progressively, increasing layers in both discriminator and generator. This
mechanism will make the model more complex while the training procedure runs,
resulting in the generation of higher resolution images at each phase. However, these
layers are added progressively in a preconfigured way, i.e., they are not produced by
a stochastic procedure. These concepts can be expanded to be used in an EA. Instead
of a predefined grow, the progression of the discriminator and the generator can be
guided by evolution, using a fitness function that can prevent and discard unfitted
individuals.

Other approaches use multiple components instead of only a single generator
and a single discriminator. For example, GMAN [11] proposed a model that
uses multiple discriminators in the training algorithm. On the other hand, MAD-
GAN [15] explored the use of multiple generators in the GAN training. An EA can
be aligned with these concepts with the proposal of a solution that contains two
entirely different populations of discriminators and generators.

Another strategy to overcome the training issues and improve the original GAN
model is the use of alternative loss functions. A variety of alternative loss functions
were proposed to minimize the problems and leverage the quality of the results,
such as WGAN [3], LSGAN [27], and SN-GAN [31]. WGAN proposes the use
of the Wasserstein distance to model the loss functions. LSGAN uses the least-
squares function as the loss for the discriminator. SN-GAN proposes the use of
spectral normalization to improve the training of the discriminator. An EA can
take advantage of these variations and use the loss function as an interchangeable
component.

11.4 Current Proposals

We present in this section the state-of-the-art on the application of evolutionary
algorithms in GANs. These proposals are aligned with the possibilities presented
in Sect. 11.3, presenting solutions to apply them and improve the GAN training
process. To the best of our knowledge, these are the proposals that use EAs in the
context of GANs: E-GAN [47], Pareto GAN [14], Lipizzaner [1], Mustangs [46],
and COEGAN [9, 10]. In this section we describe these solutions, focusing on
the choices concerning the aspects of the EA and the characteristics of GANs.
Therefore, we report the characteristics of the algorithms concerning the selection
method, fitness functions, variation operators, evaluation, and experiments.
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11.4.1 E-GAN

A model called E-GAN2 was proposed to use EAs in GANs [47]. The approach
applies an EA to GANs using a mutation operator that can only switch the loss
function of the generator. Therefore, the evolution occurs only in the generator,
and a single-fixed discriminator is used as the adversarial for the population of
generators. The network architectures for the generator and the discriminator are
fixed and based on DCGAN [35].

The population of generators contains individuals that have different loss func-
tions. The mutation operator used in the process can change the loss function of
the individual to another one selected from a predefined set. Each loss function in
the predefined set focused on an objective to help in the GAN learning process.
A minimal population of individuals is used to capture all possibilities of the
predefined losses and provide an adaptive objective for the training. In this case, the
population of generators is composed of three individuals, each one representing
one of the possible losses.

The possibilities for losses are implemented through three mutation operators:
minimax, heuristic, and least-squares mutation. The minimax mutation follows the
original GAN objective given by Eq. (11.2), minimizing the probability of the
discriminator to detect fake samples. On the other hand, the heuristic mutation
aims to maximize the probability of the discriminator to make mistakes regarding
fake samples. The least-squares mutation is based on the objective function used in
LSGAN [27]. Only these operations are available and crossover is not used in the
E-GAN algorithm.

Two criteria were used as fitness in the evaluation phase of the algorithm. The
first, called quality fitness score, is defined as:

Fq = Ez[(D(G(z)))], (11.5)

that is similar to the loss function used in the generator of the original GAN model
(Eq. (11.1)). The second criteria, called the diversity fitness score, is defined as:

Fd = − log ‖∇D − Ex[log(D(x))] − Ez[log(1−D(G(z)))]‖. (11.6)

In Eqs. (11.5) and (11.6), z, G, and D represent the latent space, the generator, and
the discriminator, respectively. These two fitness criteria are combined as follows:

F = Fq + γFd, (11.7)

where the γ parameter is used to regulate the influence of the diversity criteria on
the final fitness.

2Code available at https://github.com/WANG-Chaoyue/EvolutionaryGAN.

https://github.com/WANG-Chaoyue/EvolutionaryGAN
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At each generation, individuals are evaluated following their specific loss
function, and only the best-fitted generator survives for the next steps. In the next
generation, the survivor individual is used to train the discriminator and to generate
the three children for the next evaluation.

The E-GAN model was evaluated on the CIFAR-10, LSUN, and CelebA datasets.
The Inception Score was used as the metric to analyze the results. As specified in
E-GAN, the population used in the experiments consist of a single discriminator
and three generators. The authors concluded that E-GAN improved the training
stability and achieved satisfactory performance, outperforming other methods in
some scenarios.

11.4.2 Pareto GAN

A neuroevolution approach for training GANs was proposed in [14]. Although not
named by the authors, we refer to this solution as Pareto GAN.3 The proposal uses a
genetic algorithm to evolve the architecture of the neural networks used for both the
generator and the discriminator. A single individual (Gi,Di) is used to represent
both the generator and the discriminator in the EA.

The crossover operator combines two parents exchanging the discriminator
and the generator between them. For example, a crossover between the individ-
uals (G1,D1) and (G2,D2) produces the children (G1,D2) and (G2,D1). The
crossover operator does not change the internal state of the generator and the
discriminator in each individual. To accomplish this, a set of possible mutations
is applied to individuals when creating a new generation.

Regarding the architecture of the neural networks, the mutation can change, add,
or remove a layer. Mutation can also change the internal state of a layer, such as the
weights or the activation function. Some mutation operators also work on the GAN
algorithm level. There is an operator to change the loss function used in the GAN
algorithm by using a predefined set of possibilities. Another possibility is to change
the characteristics of the algorithm. Here, it is possible to change the number of
iterations for the generator and the discriminator when applying the GAN training
algorithm to an individual.

A benchmark for GANs based on the problem of Pareto set approximations was
also proposed [14]. The comparison between the Pareto front of a solution and
the real front is used to assess the quality of the samples and can also identify
issues, such as the mode collapse problem. Therefore, the inverted generational
distance (IGD) [8] was used as fitness to drive the EA. The IGD measures the

3Code available at https://github.com/unaigarciarena/GAN_Evolution.

https://github.com/unaigarciarena/GAN_Evolution
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smallest distance between points in the true Pareto front and in the Pareto front
approximation and is given by

IGD = 1

|R|

(
∑

r∈R

min
a∈A

d(r, a)p

) 1
p

, d(r, a) =
(

m∑

k=1

(rk − ak)
2

) 1
2

, (11.8)

where R is the real Pareto front, A is the Pareto approximation, and m is the number
of vectors in R.

The evaluation phase will transform each individual (Gi,Di) into a concrete
GAN, composed of a discriminator and a generator, that will be trained according
to the regular GAN algorithm. The fitness is calculated, and the selection uses the
Pareto dominance to compose the offspring that will form the next generation.

The proposed solution was evaluated using bi-objective functions as the input
data, each one with 10 input variables. A population of 20 individuals, evaluated
for 500 generations, was used in the experiments. The authors concluded that the
algorithm was able to discover architectures that improved the Pareto set approxima-
tion for discriminators and generators. The experiments do not include evaluations
with image datasets. However, experiments using the same data dimension as the
MNIST dataset, i.e., with 784 input variables, were also conducted. The authors
demonstrated that the solution is scalable to this dimension, as the results showed
that useful architectures were also found in this case.

11.4.3 Lipizzaner

A model called Lipizzaner4 defines a coevolutionary framework to train and evolve
GANs [1]. In Lipizzaner, the evolution occurs only on the internal parameters of
the generator and discriminator, such as the weights of their neural networks. Thus,
the network architecture used in both the discriminator and generator is fixed and
defined a priori. The architecture varies with the dataset used in the experiments.
For MNIST, an MLP network composed of four layers and 700 neurons was used.
On the other hand, an architecture based on DCGAN was used for the experiments
with the CelebA dataset.

The fitness used in Lipizzaner for the generators and discriminators is based on
the GAN objective function, defined as:

L(u, v) = Ex∼pdata [φ(Dv(x))] + Ex∼Gu [φ(1−Dv(x))], (11.9)

4Code available at https://github.com/ALFA-group/lipizzaner-gan.

https://github.com/ALFA-group/lipizzaner-gan
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where φ is a concave function in the interval [0, 1], pdata is the input dataset, Gu

is the generator with the parameters u, and Dv represents the discriminator with its
parameters v.

At the evaluation step, L(ui, vj ) is calculated for each pair (Gi,Dj ), and the
fitness values are updated as fui −= L(ui, vj ) and fvj += L(ui, vj ) for generators
and discriminators, respectively.

Spatial coevolution was used to design the algorithm that trains and evolve the
generators and discriminators. Individuals are distributed over a two-dimensional
toroidal grid, where each cell contains individuals from the generator and discrimi-
nator populations. In the evaluation phase, the EA matches individuals in neighbor
cells following a coevolutionary pairing approach. A five-cell neighborhood was
used to determine these interactions. Figure 11.3 displays an example of a 3×3 grid
with the spatial coevolution strategy used in Lipizzaner. The generator is determined
as a mixture of generators in this neighborhood.

Lipizzaner uses two mutation operators. The first operator mutates the learning
rates of the optimization method used in the generator and the discriminator. In
this case, a normal distribution is used to change the learning rate at small steps
at each generation. The second operator is a gradient-based mutation that updates
the weights of the individuals in the populations of generators and discriminators.
Lipizzaner uses the Adam optimizer [23] to update the weights. Furthermore, an
evolution strategy combined with a performance metric (e.g., the Inception Score or
FID) is used to update the mixture of weights.

The model was evaluated on the MNIST and CelebA datasets, using a 2×2 grid,
forming a population of 4 generators and 4 discriminators. These populations were
evolved through 400 generations. The authors found that Lipizzaner was able to
avoid the mode collapse problem in most of the experiments. The model can recover

Fig. 11.3 A 3× 3 grid
representing the spatial
coevolution mechanism used
in Lipizzaner. The
neighborhood of the central
cell includes the
four-highlighted nodes in the
grid. Each cell contains one
discriminator, one generator,
and a mixture of weights
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from the mode collapse issue and continue to improve as the training advances
through the next generations.

11.4.4 Mustangs

The models E-GAN and Lipizzaner were combined in a hybrid approach to train and
evolve GANs, called Mutation Spatial GANs (Mustangs)5 [46]. As in Lipizzaner
and E-GAN, the topologies of the generator and discriminator are fixed during the
algorithm, i.e., the architectures are not a target of the EA.

Mustangs combines the mutation operators used in E-GAN and the spatial
coevolution mechanism used in Lipizzaner. The goal is to increase the diversity of
genomes in the population. Thus, the loss function of generators can be modified
by the mutation operator, as in E-GAN. As in Lipizzaner, the match between
individuals occurs in a toroidal grid, and the internal weights of the neural networks
are calculated based on the neighborhood.

The Mustangs model uses the same fitness strategy used in Lipizzaner, i.e., the
fitness is based on the GAN objective function L(u, v), defined by Eq. (11.9). Thus,
at the evaluation step, the value L(ui , vj ) is also calculated for each pair (Gi,Dj ),
and the fitness values are also updated as fui −= L(ui, vj ) and fvj += L(ui , vj )

for generators and discriminators, respectively.
The operators used in Mustangs are a combination of the ones used in Lipizzaner

and E-GAN. Therefore, as in E-GAN, the loss function of the individuals can be
changed. However, the strategy used here is to randomly select one of the three
possibilities for the loss function, instead of evaluating the individuals using all
losses. The mutation operators used in Lipizzaner are also applied for Mustangs.
Mustangs also applies an evolution strategy to update the weights. Crossover is not
used in this proposal.

The evaluation phase follows the same proposal of Lipizzaner. Mustangs uses
spatial coevolution to pair discriminators and generators, using a toroidal grid to
spatially distribute the individuals. Therefore, individuals are matched using the grid
neighborhood to calculate the fitness and evaluate each individual. As in Lipizzaner,
the generator is determined as a mixture of generators in this neighborhood.

Mustangs was evaluated with the MNIST and the CelebA datasets. As the archi-
tectures of the neural networks that compose a GAN are fixed and predefined, the
authors chose different topologies according to the dataset used in the experiments.
A four-layer MLP network with 700 neurons and a DCGAN-based architecture were
used for the experiments with the MNIST and the CelebA dataset, respectively.
For MNIST, a grid size of 3 × 3 was used with a time limit of 9 h. For CelebA,
the experiments were executed with a 2 × 2 grid for 20 epochs. A comparison
between standard GAN, E-GAN, Lipizzaner, and Mustangs was presented. The

5Code available at https://github.com/mustang-gan/mustang.

https://github.com/mustang-gan/mustang
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authors found that Mustangs is able to generate the best results concerning the FID
score. They also concluded that spatial coevolution is an efficient way to model the
population of generators and discriminators to train GANs.

11.4.5 COEGAN

Coevolutionary Generative Adversarial Networks (COEGAN),6 a proposal combin-
ing neuroevolution and coevolution to train and evolve GANs, was proposed by us in
[9, 10]. This approach took inspiration on DeepNEAT [28], adapting and extending
the EA to the context of GANs.

An array of genes compose the genome of COEGAN. The genotype-phenotype
mapping transforms this array into a sequence of layers to compose a neural
network. Each gene represents either a linear, convolution, or transpose convolution
layer (also known as deconvolution layer). Moreover, each gene also has some
common internal parameters, such as the activation function, chosen from the fol-
lowing set: ReLU, Leaky ReLU, ELU, Sigmoid, and Tanh. The genes representing a
convolution or transpose convolution layer only have the number of output channels
as a variable parameter. The number of input channels is calculated dynamically,
based on the setup of the previous layer. The stride and the kernel size are previously
defined but are dynamically adjusted to fit the output size of a layer. Similarly, the
linear layer only has the number of output features as a variable parameter. The
previous layer is also used to calculate the number of input features. Thus, the
parameters subject to variation operations are the activation function, the number
of output features, and the number of output channels.

Figure 11.4 illustrates examples of the genotypes of a discriminator and a
generator. The genotype of the discriminator is composed of a convolutional section
and followed by a linear section (composed of fully connected layers). As in the
original GAN model, the discriminator outputs the probability that the input sample
is a real sample, drawn from the dataset. Similarly, the genotype of the generator
is composed of a linear section and followed by a transpose convolutional section
(also known as convolutional section). The generator outputs a fake sample, with
the same characteristics (i.e., dimension and channels) of a real sample.

Competitive coevolution was used to model the algorithm. Therefore, COEGAN
is composed of two separated subpopulations: a population of generators, where
each Gi represents a generator; and a population of discriminators, where each Dj

represents a discriminator. A speciation mechanism, inspired by the strategy used
in NEAT, was used in each subpopulation to promote innovation. The speciation
mechanism ensures that recently modified individuals will have the chance to
survive for enough generations to be as powerful as individuals from previous
generations. For this, each population is divided into species based on a similarity

6Code available at https://github.com/vfcosta/coegan.

https://github.com/vfcosta/coegan
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Fig. 11.4 Genotypes of a discriminator (a) and a generator (b). In both cases, the genotype is
composed of three genes: two convolutions and one linear for the discriminator, one linear and
two deconvolutions for the generator. The phenotype transformation creates a network with three
layers in the same linear sequence as displayed in the genomes. For the discriminator, the output
layer is represented by the linear gene and outputs the probability of the input sample to be real
or fake. For the generator the final gene represents a deconvolution layer that outputs the samples
created by the generator

function (used to group similar individuals). Thus, the innovation, represented by
the addition of new genes into a genome, may cause the creation of new species in
order to fit the individuals containing these new genes. The individuals belonging
to new species will have a higher chance to survive because they will not directly
compete with more powerful individuals from other species.

COEGAN is only interested in the evolution of the neural network architectures.
Thus, the parameters of the layers in the phenotype (e.g., weights and bias) are not
part of the evolution, being modified by the training with a gradient descent method.
The variation operators are focused on the evolution of the network topology.

Different fitness functions for the generator and the discriminator were used in
COEGAN. For discriminators, the fitness is based on the loss function of the original
GAN model, i.e., the fitness is equivalent to Eq. (11.1) (Sect. 11.2). The same
approach was tested on the generator using Eq. (11.2) (Sect. 11.2), but preliminary
results presented instabilities when using this strategy, making it not suitable to
be used as fitness. Thus, the generator uses the FID score [18] as fitness, i.e.,
the fitness is represented by Eq. (11.4) (Sect. 11.2.3). FID is the state-of-the-art
metric to compare GANs and outperforms other metrics, such as the Inception Score
[39]. The use of the FID score as fitness puts selection pressure in COEGAN and
directs the evolution of the population towards the creation of better generators, and
consequently better discriminators.
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Only mutations are used as variation operators for COEGAN. The mutation
process is composed of three operations: add a new layer, remove a layer, and
change an existing layer. In the addition operation, a new layer is randomly selected
from the set of possible layers (linear or convolution for discriminators and linear
or transpose convolution for generators). The remove operation randomly selects
an existing layer and excludes it from the genotype, adjusting the connections
between the previous and the next layers. The change operation acts on the activation
function and the specific attributes of a layer. The activation function is randomly
drawn from the set of possibilities. The number of output features and the number of
output channels can be mutated for the linear and convolution layers, respectively.
These attributes are mutated using a uniform distribution with a predefined range
to limit the possible values. Crossover was also experimented and evaluated in
preliminary experiments but it was discarded as it promotes instability, decreasing
the performance of the system.

COEGAN keeps the parameters (weights and bias) of the genes involved in a
mutation operator when possible. So, the new individual will carry the information
from previous generations and the training continues from the last state, simulating
the transfer learning mechanism used in deep neural networks. However, in some
cases these parameters cannot be kept, such as when the change occurs in the
parameters of a linear or a convolution layer. In these cases, the new setup of the
layer is incompatible with the previous configuration, and the new layer will be
trained from the beginning.

In the evaluation step of the EA, individuals from the populations of discrimina-
tors and generators must be paired to be trained and to calculate the fitness for the
individuals. The pairing strategy is crucial to coevolution, and some challenges can
be related to the issues occurred in the GAN training (see Sect. 11.3.1). Two pairing
strategies were used to evaluate COEGAN: all vs. all and all vs. k-best.

In all vs. all, each discriminator is paired with each generator, resulting in all
possible matches. In this case, the fitness for discriminators is the average of the
losses obtained by the training with each generator. As the FID score does not use
the discriminator in the calculation, the pairing strategy does not affect the fitness
for generators. The all vs. all strategy is important to promote diversity in the GAN
training and improve the variability of the environment for both discriminators and
generators. However, the trade-off is the time to execute this approach. The all vs.
all approach was used in the experiments presented in [9].

In all vs. k-best, k individuals are selected from one population to be matched
against all individuals in the other population. Therefore, each generator is paired
with k best discriminators from the previous generation and, similarly, each
discriminator with k best generators. For the first generation, a random approach
is used, i.e., k random individuals are selected for pairing in the initial evaluation.
This approach provides less variability in the training but is more efficient, as fewer
matches will be executed per generation. The all vs. k-best approach with k = 3
was used in the experiments presented in [10]. The all vs. all strategy achieved
better results than all vs. k-best, presenting a more stable training for COEGAN [9].
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For the selection phase, COEGAN uses a strategy based on NEAT [42]. The
populations of generators and discriminators are divided into subpopulations using
a speciation strategy based on the one used in NEAT. Each species is composed
of individuals with similar genomes, i.e., similar network structures. Therefore,
the similarity between individuals is based only on the parameters of each gene
composing the genome, excluding the weights of the similarity calculation. The
distance δ between two genomes i and j is defined as the number of genes that exist
only in i or j . The speciation approach uses the distance to cluster individuals based
on a δt threshold. This threshold is calculated at each generator in order to fit the
previously chosen number of species. Fitness sharing is used to adjust the fitness of
individuals inside each species. Individuals are selected in proportion to the average
fitness of the species they belong to. Besides this process, a tournament between kt

individuals is applied in each species to finally select the individuals to breed and
compose the next population.

To evaluate the COEGAN proposal, experiments using the MNIST and the
Fashion MNIST datasets were presented. These experiments compare COEGAN, a
DCGAN-based solution, and a random search method using the FID Score, Incep-
tion Score, and the root mean square error (RMSE) metrics. The size of the genome
was limited to six layers. The probabilities for the variation operators are 20%, 10%,
and 10% for the add, remove, and change mutations, respectively. The number of
output features and channels follows a uniform distribution, delimited by the interval
[32, 1024] and [16, 128], respectively. The experiments ran for 50 generations,
using 10 individuals for the populations of generators and discriminators.

Figure 11.5 presents the results of the FID score on the MNIST dataset (lower is
better). We can see that COEGAN outperforms the other approaches. The random
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Fig. 11.5 The FID score on the MNIST dataset comparing COEGAN, the DCGAN-based
architecture, and the random search method. Note that, as expected, the random search does not
achieve good results and presents high variability on the FID score. The DCGAN-based result
shows the convergence of the GAN training. However, COEGAN presents the best results and a
smooth decreasing pattern on the FID score
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Fig. 11.6 Samples generated by COEGAN when training on the MNIST dataset

approach presented high variability and worse results in terms of this metric. This
is evidence that the choices for the fitness functions for COEGAN provide enough
evolutionary pressure to guide the evolution to better outcomes.

Figure 11.6 displays the samples created by the generator after the COEGAN
training process. We can see the samples in this figure resembling the data in
MNIST. No evidence of the vanishing gradient was found in the experiments with
COEGAN, and the mode collapse occurred only partially in some executions.
COEGAN avoids these issues by using the evolutionary pressure to discard failed
individuals from the population. As these individuals will perform worse than
others, they will eventually not be selected, and their issues will not persist
through generations. The diversity provided by the population of generators and
discriminators is also a factor that prevents these issues from happening. The
variability of the training with multiple instances of generators and discriminators,
instead of a single generator and discriminator, can be a way to provide a stronger
and stable training for GANs.

In order to assess the applicability of the solution in complex datasets, we expand
the experiments with COEGAN to include the results with the CelebA dataset [25].
For this, we use an experimental setup similar to the one applied in [9]. However,
for the sake of simplicity, we only use convolution and transpose convolution layers
when adding a new gene, excluding the linear layer from the set of possibilities.
Furthermore, we allow only ReLU and Leaky ReLU as possible activation functions
in the mutation operators. The populations of generators and discriminators contain
10 individuals each, divided into three species. The all vs. all pairing strategy was
applied, using 100 batches of 64 images to train each pair. The images from the
CelebA dataset were rescaled to 64 × 64. Each experiment was repeated three
times, and the presented results are the average of these executions with a confidence
interval of 95%.

Figure 11.7 presents the FID score for COEGAN through generations. As
expected, we can note the decreasing behavior of the FID score, resembling the
behavior presented in the MNIST results (Fig. 11.5). This is an indication of the
generalization ability of COEGAN to effectively work with more complex datasets
like CelebA. The average FID score achieved by COEGAN at the last generation is
89.8± 17.2. No evidence of the vanishing gradient and mode collapse was found in
the experiments.
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Fig. 11.7 The FID score of COEGAN on the CelebA dataset. COEGAN achieves a FID score of
89.8 ± 17.2 at the last generation

Fig. 11.8 Samples generated by COEGAN when training on the CelebA dataset

Figure 11.8 displays samples created by COEGAN at the final generation of
one experiment. We can clearly see the formation of faces in each created sample,
with elements coherently positioned in each face. The variety achieved on samples
also demonstrates that COEGAN achieved convergence when training, avoiding
problems such as the mode collapse. However, the produced samples are not
perfect. Undesired artifacts can be seen in some samples, affecting the quality of
the outcome.

11.5 Discussion

Section 11.4 presented the current proposals that apply evolutionary algorithms in
the context of GANs. We can see that a variety of techniques frequently used in
EAs, and introduced here in Sect. 11.3, were used in these proposals. Following we
present and discuss these characteristics regarding the aspects of the GAN model
used in the proposals, the choices concerning the EA, and the experimental results.
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11.5.1 Characteristics of the GAN Model

Table 11.1 presents choices with respect to the GAN model used in each proposal.
These proposals are compared under the perspective of four attributes: the number
of discriminators used in the algorithm, the number of generators, the architecture
of each component, and the loss function used to train the GAN.

Except for E-GAN, all proposals used multiple discriminators in their model.
For the generators, all proposals used multiple generators, with E-GAN using a
fixed number of three generators, corresponding to the number of possible loss
functions designed in the algorithm. Thus, E-GAN works with small populations,
limiting the evolutionary options that can emerge through generations. On the other
hand, Mustangs adapted successfully the E-GAN model in the context of a larger
population, using the spatial coevolution approach of Lipizzaner to handle the
individuals.

Regarding the architecture, only the Pareto GAN and COEGAN used an
evolvable approach. The other proposals used a predefined and fixed architecture
for the neural networks of generators and discriminators. Therefore, Pareto GAN
and COEGAN work with larger search spaces, as the architectures that can emerge
from the EA have a high number of possibilities. They are also potentially able to
enhance the balance between generators and discriminators, as the complexity of
the architecture is determined by the algorithm.

Lipizzaner and COEGAN use a fixed loss function for the GAN training. E-
GAN, Pareto GAN, and Mustangs use an evolvable approach to the loss function.
This approach uses a set of predefined possibilities to select and attribute a loss
function to an individual. A more flexible approach can also be used instead
of a predefined set, using genetic programming to discover better loss functions
for GANs. However, the proposals analyzed in this chapter did not explore this
approach.

Table 11.1 Aspects of the GAN used in the evaluated proposals

Algorithm Discriminator Generator Architecture Loss function

E-GAN Single-fixed Three DCGAN-based Evolvablea

Pareto GAN Many Many Evolvable Evolvablea

Lipizzaner Many Many MLP and DCGAN-basedb Original GAN

Mustangs Many Many MLP and DCGAN-basedb Evolvablea

COEGAN Many Many Evolvable Original GAN
aThe loss function is selected using a predefined set of possibilities
bThe DCGAN-based architecture was used with the CelebA dataset and a simpler approach was
applied with the MNIST dataset (see Sects. 11.4.3 and 11.4.4)
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11.5.2 Aspects of the Evolutionary Algorithm

Table 11.2 presents a comparison between the solutions presented in Sect. 11.4,
focusing on the aspects of the evolutionary algorithm. Four aspects of the EA were
analyzed: the pairing approach, the variation operators, the fitness function, and the
selection method.

As multiple generators and/or discriminators are used in all proposals, and
the GAN training occurs using generators and discriminators as adversarial, an
approach has to be used to pair the individuals. With the exception of Pareto
GAN, all other solutions use separated individuals to represent discriminators and
generators. In E-GAN, as there are only a single discriminator and three generators,
the policy for pairing is to use the discriminator to evaluate all three generators. In
COEGAN, the all vs. all and all vs. k-best were used. Lipizzaner and Mustangs
use the same spatial coevolution strategy to match generators and discriminators. It
is important to note that the spatial coevolution mechanism applied in Lipizzaner
and Mustangs uses the mixture of weights from the neighborhood to compose the
weights of the generator in each cell, taking advantage of multiple individuals to
produce a single model. The other solutions do not apply an analogous mechanism
to combine weights from different individuals. COEGAN and Pareto GAN have
individuals with diverse architectural characteristics in the population, preventing
the use of the mixture mechanism designed for Lipizzaner and Mustangs.

The variation operators are paramount to provide diversity in the search for good
solutions in an EA. Pareto GAN uses crossover and mutation as operators. It is
also the solution that provides the most variability regarding the elements that can
be evolved through generations in the EA. As Pareto GAN models its individual
as a representation of the entire GAN, i.e., encoding both the discriminator and
the generator into the genotype, the crossover works exchanging the generator and
the discriminator between two parents to form the offspring. The other solutions
modeled the GAN with independent genotypes to represent the generator and the
discriminator. Therefore, this approach is not applicable to them. COEGAN also
evaluated a strategy to apply crossover, using a cut point to share parts of the neural
network between parents. However, this strategy proved to be not efficient for the
method.

Table 11.2 Aspects of the evolutionary algorithm used in the evaluated proposals

Algorithm Pairing Variation operators Fitness Selection

E-GAN One-vs-three Mutation (loss) Custom Best individual

Pareto GAN – Crossover and mutation IGD Pareto dominance

Lipizzaner Spatial coevolution Mutation (weights) GAN objective Spatial

Mustangs Spatial coevolution Mutation (weights, loss) GAN objectivea Spatial

COEGAN all vs. (all | k-best)b mutation (architecture) FID and loss NEAT-based
aThe FID score is used as the performance metric to evolve the mixture of weights in Mustangs
bCOEGAN presented experiments using both the all vs. all and the all vs. k-best approaches
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COEGAN and Pareto GAN are the only solutions that have evolvable neural
network architectures. The mutation operator is used to provide small changes in
these architectures that are built through generations to produce strong discrimina-
tors and generators. E-GAN, Lipizzaner, and Mustangs use a restricted mutation
strategy. In E-GAN, only the loss function can be switched. In Lipizzaner, gradient-
based mutations are applied to update the weights of generators and discriminators.
Furthermore, Lipizzaner uses an evolution strategy to update the mixture of weights
used for generators. Mustangs combines the operators of E-GAN and Lipizzaner.
Different from Lipizzaner and Mustangs, COEGAN does not apply a mutation
operator directly to the weights. However, this option can be explored to develop
a hybrid approach that evolves the weights when the gradient descent training
stagnates for a number of generations.

The choice for fitness is diverse among the proposals. E-GAN uses a custom
function that represents the quality and diversity of the created samples. As only the
generator is subject to evolution, the discriminator does not have a fitness associated.
Pareto GAN based its fitness on the concepts of the Pareto front, using the inverted
generational distance (IGD) to represent the fitness value. Lipizzaner and Mustangs
use the GAN objective function to calculate the fitness for the individuals. In
addition, the FID score was used as the performance metric to evolve the mixture
of weights in [46]. COEGAN follows a distinct approach for the fitness function.
The loss function of discriminators of the original GAN model is used as fitness for
them. In the generator, the FID score is used as fitness. COEGAN takes advantage
of the capabilities in the FID distance to represent the diversity and quality of the
created samples. As the FID is commonly used by researchers to compare GANs,
the implementation of this metric into an EA is a way to provide automatic insight
about the solutions produced by the method.

The selection method used in E-GAN is based on the choice of the best generator.
As E-GAN has only three generators, each one with a specific loss function, the
fitness guides the evolution by selecting the function that fits the best generator
for the current environment. The switches between functions through generations
give to E-GAN sufficient training diversity to achieve convergence. In Pareto GAN,
Pareto dominance is used as the strategy to select individuals to form the next
generation. Lipizzaner and Mustangs have a selection strategy based on the spatial
coevolution mechanism used in the evaluation phase. The neighborhood is used to
evaluate and replace the individual in the center of a neighborhood according to the
fitness. COEGAN uses an approach based on classical NEAT selection. Therefore,
speciation is used to ensure that individuals from different species will have the
opportunity to develop the skills needed to survive. Some of these strategies can
be combined into a single solution to build a stronger algorithm. For example, the
mechanism that guides the selection for Lipizzaner and Mustangs can be applied in
COEGAN to reduce the complexity of the evaluation phase and bring the advantages
given by spatial coevolution.
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11.5.3 Experiments and Results

Table 11.3 compares the proposals under the perspective of the experimental setup
used to assess the contributions of each solution. Four experimental attributes
are presented: the dataset used in the training, the number of generators and
discriminators in the populations, the number of generations used in training, and
the metric used to evaluate the results.

Except for Pareto GAN, all proposals used image datasets in the experiments.
Pareto GAN uses bi-objective functions to validate the model, also including a
function that simulates the data dimension of the MNIST dataset. In the category
of images, MNIST is a simple dataset and should be used carefully to draw generic
conclusions about the performance of a solution. The CelebA dataset is perhaps the
most commonly used data to validate GANs. Therefore, it would be important to
assess the performance of Pareto GAN in this dataset.

The populations used in the experiments vary a lot among the proposals.
Except for E-GAN, the solutions used multiple individuals for both populations
in the experiments. Although it is possible to use more individuals in E-GAN,
the experiments used only a single discriminator and three possibilities for gen-
erators (representing each possible loss function). In Pareto GAN, one individual
completely represents a GAN. Therefore, 20 individuals were used, meaning that
20 independent GANs with their own generator and discriminator was trained
through generations. Lipizzaner and Mustangs use spatial coevolution to distribute
the individuals in a grid of 2 × 2 for the MNIST dataset. For CelebA, Mustangs
used a grid of 3 × 3. As these grids hold a single generator and discriminator in
each cell, the population is composed of 4 and 9 individuals for the 2 × 2 and
3×3 setups, respectively. As a five-cell neighborhood is applied, spatial coevolution
reduces the number of iterations needed to evaluate the individuals. Thus, a larger
number of individuals can be used to evaluate Lipizzaner and Mustangs. Besides,
COEGAN can adopt the spatial coevolution approach to reduce the training time
and also increase the number of individuals in the experiments.

Table 11.3 Comparison of the experiments presented in the proposals

Algorithm Dataset Population (D ×G) Generations Metric

E-GAN CIFAR-10,
LSUN, CelebA

1× 3 200,000 Inception Score

Pareto GAN Bi-objective
functions

20a 500 IGD

Lipizzaner MNIST, CelebA 4× 4 400 –

Mustangs MNIST, CelebA 4× 4, 9× 9 Time-limited, 20 FID score

COEGAN MNIST, Fashion
MNIST, CelebA

10× 10 30, 50 FID score

aIn Pareto GAN one individual completely represents a GAN, i.e., it contains both a generator and
a discriminator



318 V. Costa et al.

The number of generations used to evaluate each approach also presents high
variability. Each approach adapted the experiments to use a number of generations
respecting their internal characteristics. For example, as E-GAN works with smaller
populations, the number of generations needed to converge is much higher than the
others. On the other hand, COEGAN used only 50 generations on the experiments
with MNIST and Fashion MNIST. For the experiments with CelebA (Sect. 11.4.5),
COEGAN ran for 30 generations. Mustangs used a time-limited strategy of 9 h for
the experiments with MNIST and a limit of 20 generations for experiments with
CelebA. The time-limited approach used in the MNIST experiments corresponds to
more than 150 generations.

Because COEGAN uses a population of 10 individuals for generators and
discriminators with the all vs. all pairing approach, each individual will execute
the training process for ten times at each generation. Furthermore, COEGAN uses
multiple batches when training a pair of generators and discriminators at each
generation. Mustangs uses a five-cell neighborhood to train the individuals, having
a lower number of samples in each training step when compared to COEGAN.
However, it is important to note that COEGAN also evolves the architecture of the
neural networks, requiring more samples per training step to achieve convergence.
On the other hand, the architectures of generators and discriminators in Mustangs
are fixed. Therefore, Mustangs is more efficient with respect to the number of
samples used at each training step, but COEGAN also provides neural architecture
search for discriminators and generators in the solution.

A metric is commonly used to evaluate the samples created by the generator.
COEGAN and Mustangs use the FID score to report and analyze the results. As
discussed in Sect. 11.2.3, the FID score is currently the state-of-the-art metric used
to evaluate and compare GANs. The Inception Score, the former most used metric
for GANs, was applied in the E-GAN experiments. Pareto GAN adopted the IGD
as the metric, that is adequate to its approach that is based on the Pareto set
approximations. Lipizzaner analyzed the results through visual inspections and does
not present an evaluation with respect to some objective measurement.

As the proposals use different metrics, we cannot directly compare the results
between all proposals. Only COEGAN and Mustangs share the same metric in the
evaluation of the results. The average FID for experiments with MNIST reported
by COEGAN [10] and Mustangs [46] are 49.2 and 42.235, respectively. Further
experiments for COEGAN [9] achieved an average of 42.6 for the FID score.
However, the difference between the average FID scores of COEGAN and Mustangs
is small and experiments with equal conditions should be made to better compare
these solutions.

For the CelebA dataset, the FID score reported in experiments with Mustangs
was 36.148, outperforming the FID score of 89.8 obtained by COEGAN. However,
this difference is not evident in a visual inspection of the samples produced by both
solutions.
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11.6 Conclusions

We present in this chapter the state-of-the-art of evolutionary algorithms applied
to Generative Adversarial Networks (GANs). An overview of GANs introduces the
challenges of the training method and how the common problems affect the resulting
performance. We also explore the applicability of concepts related to evolutionary
computation in the context of GANs, showing components that can be evolved and
participate actively in an EA. These concepts are materialized into the state-of-the-
art proposals of EAs applied to GANs that can be found in the literature. We discuss
the characteristics of these proposals, demonstrating the drawbacks and possible
improvements for further research.

Despite the recent advances in GANs, it is possible to see that there are still
open problems. The stability of training remains a challenge, being tackled by
researches using different approaches, such as the proposal of new loss functions
and/or alternative architectures. GAN is a relatively new model, and the use of EAs
in this context is in its early years. With the rise of the computational power and new
methods to apply EAs with robust machine learning techniques (e.g., deep learning),
EAs can be viewed as a strong way to train and evolve GANs. In this way, the
proposals presented in this chapter showed advantages in the union between EAs
and GANs. A set of different techniques was used by them, with different choices
concerning the GAN model and the EA. The diversity of strategies present in GANs
and also in evolutionary computation composes a large number of open possibilities
for exploration.

As future work, the techniques used in the proposals presented in this chapter
can be combined in the development of new solutions. For example, the spatial
coevolution strategy used in Mustangs and Lipizzaner can be adapted to the other
proposals. On the other hand, the neuroevolution techniques used in Pareto GAN
and COEGAN can also be evaluated in the other solutions. Besides, the proposed
solutions can be explored in larger experiments. The algorithms can run on a larger
number of generations and, when possible, with a larger population of generators
and discriminators. These experiments can make possible to evaluate the quality of
the outcome and also the scalability of the proposals. Complex datasets can also
be used to assess the robustness of the proposed solutions. Different techniques
related to GANs can also be incorporated into the algorithm. For example, the use of
alternative loss functions (as in WGAN [3]), spectral normalization [31], or the self-
attention module for GANs [51]. Concerning neural networks, other techniques can
also be experimented, such as the recently proposed competitive gradient descent
algorithm [40]. Alternative fitness functions can also be investigated to better guide
the progress of GANs in an EA. For example, the skill rating metric [33] uses the
mechanism that classifies the skill of players in a game to quantify the performance
of generators and discriminators in GANs. The adversarial characteristics of GANs
and a competitive coevolution environment can leverage the advantage with the use
of this metric, providing an efficient evaluation of individuals in the population of
generators and discriminators.
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Chapter 12
Evolving Deep Neural Networks
for X-ray Based Detection
of Dangerous Objects

Ryotaro Tsukada, Lekang Zou, and Hitoshi Iba

Abstract In recent years, neural networks with an additional convolutional layer,
referred to as convolutional neural networks (CNN), have widely been recognized
as being effective in the field of image recognition. In the majority of these previous
researches, the structures of networks were designed by hand, and were based
on experience. However, there is no established theory explaining how to build
networks with higher learning abilities. In this chapter, we propose a framework
on automatically obtaining network structures with the highest learning ability for
image recognition, through the combination of the various core technologies. We
employ EC (evolutionary computation) for the automatic extraction and synthesis
of network structures. Additionally, we attempt to perform an effective search in a
larger parameter space by gradually increasing the number of training epochs during
the generation change process. In order to show the effectiveness of our approach,
we apply the proposed method to the task of detecting dangerous objects in an
X-ray image data set. Compared with the previous results, we have achieved an
improvement in the mAP value. We can also find several by-passes in the structures
that were actually obtained.

12.1 Introduction

In recent years, machine learning methods using neural networks have significantly
outperformed traditional methods in areas such as image recognition [5], speech
recognition [2], and natural language processing [1].

Neural networks with an additional convolutional layer, referred to as con-
volutional neural networks (CNN), are widely recognized as being effective in
the field of image recognition. In ILSVRC 2012, a worldwide image recognition
contest conducted in 2012, Hinton et al. [5] used a method of image recognition
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based on convolutional neural networks and achieved more than 10% significant
improvement (compared with previous methods) in terms of recognition accuracy.
Subsequently, this achievement has triggered a lot of proactive research on image
recognition based on convolutional neural networks; this has resulted in the numer-
ous proposals and performance enhancement of neural networks with more complex
and varied structures such as the GoogLeNet [18], ResNet [4], and YOLO [12].

Image recognition is the process of extracting features from images obtained
in the real world in order to recognize objects such as characters, symbols,
people’s faces, and animals that may appear in an image, and it has a wide
range of applications. Hence, building systems with increasingly higher recognition
accuracies is necessary.

A characteristic of convolutional neural networks is that networks can be
constructed by combining layers that perform specific functions, just like blocks
that are put together. In the majority of the previous research on image recognition
using convolutional neural networks, the structures of networks were designed
by hand, and were based on experience. In this context, the improvement in the
learning ability of various networks from various core technologies such as dropout,
batch normalization, GoogLeNet’s inception module [18], and residual learning
introduced in ResNet [4] has been empirically verified. However, there is no
established theory explaining how to combine these technologies to build networks
with higher learning abilities. In fact, networks that currently exhibit the highest
learning levels contain a huge number of parameters and are deep and complex.
Therefore, specialists must perform a lot of trial-and-error and craftwork in order
to yield the highest learning ability on a specific data set. Consequently, there
is ongoing research on the automatic design of network structures using genetic
programming (GP) [9, 17], and network structure search methods using neural
networks [11].

The present research focuses on automatically obtaining network structures with
the highest learning ability for image recognition, through the combination of the
various core technologies itemized above. We used genetic algorithms (GA) for the
automatic extraction and synthesis of network structures. The advantage of genetic
algorithms in the present research is that a simple network can gradually evolve
into a complex network during the search process with very little prior input from
a human. Additionally, we attempt to perform a search in a larger parameter space
by gradually increasing the number of training epochs that evaluate each individual
during the generation change process.
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12.2 Related Research

12.2.1 Neuro-Evolution

Neuro-evolution in the broad sense is an attempt to generate neural networks by
the use of evolutionary computation methods [9]. In the present research, our goal
is to optimize the structure of the convolutional neural network by using GA. This
process can be likened to an evolutionary computation; thus, this approach can be
considered as a form of neuro-evolution.

The NEAT (NeuroEvolution of Augmented Topologies [16]) method is an
example of neuro-evolution. The method is characterized by the growth of small
structures into larger structures as they get optimized. Using GA, the network
undergoes evolution by crossover and mutation, which, respectively, results in better
structures and changes in the connectional relationship between nodes. An example
of structural change resulting from a mutation in NEAT is illustrated in Fig. 12.1.

12.2.2 Genetic CNN

Genetic convolutional neural network (Genetic CNN) [19] is a proposed example
of a convolutional neural network structure search using GA. In Genetic CNN, a
stage composed of multiple convolutional layers and subsequent pooling layers is
repeated multiple times. The convolutional layers in each stage are connected in the
form of directed acyclic graphs. As shown in Fig. 12.2, the binary values 0 or 1 are
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Fig. 12.1 Example of structure change due to mutation in NEAT [16]
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Fig. 12.2 Example of network structure encoding in Genetic CNN [19]

encoded as a sequence, specifying which previous convolutional layer is connected
to itself. These codes are viewed as “genes,” and the process of searching for the
network structures with higher learning abilities using GA is referred to as Genetic
CNN. The number of stages and the number of convolutional layers in each stage
are preset; therefore, the length of the sequence that makes up the gene is also fixed.

To represent the fitness of GA, we use the recognition accuracy yielded by the
network pertaining to the individual based on a specific data set used for learning.
Crossover is achieved by exchanging bits between sequences, and mutations are
performed by bit reversal. For the selection, a roulette wheel selection process is
adopted where the probability of selection is proportional to the difference in fitness
with respect to the individual with the lowest fitness. Therefore, individuals having
networks with a structure that yields higher accuracy are more likely to survive
into the next generation. This way, trial-and-error involving the combinations of
network structures and mutations eventually results in the output of individuals
having networks with the highest accuracy. The Genetic CNN algorithm is described
in Algorithm 1:

12.2.3 Aggressive Selection and Mutation

In Genetic CNN, training is performed from scratch to evaluate the individuals. This
process is repeated multiple times for all individuals of the generation during the
generation change process. Hence, if the final number of generations is T and the
number of individuals in each generation is N , training is repeated T ×N times until
the end of the generation change process. However, the training of a convolutional
neural network normally takes a considerable amount of time for just one round.
Consequently, a drawback of these repetitions is the considerable amount of time
required.
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Algorithm 1 Genetic CNN
1: Input: data set D, final generation number T , number of individuals in each generation N ,

probabilities of crossover and mutation pC and pM, parameters qC, qM related to crossover
and mutation

2: Initialization: the initial generation is formed, containing N individuals. Each individual
consists of a structure where bits 0 and 1 are selected at random. The individual fitness is
evaluated (more on this later).

3: for t = 1, 2, . . . , T do
4: Selection: considering individuals from generation t − 1, N individuals are selected in a

roulette wheel scheme where the selection probability is proportional to the fitness difference
with regard to the individual with the lowest (worst) fitness; selection of the same individual
multiple times is allowed.

5: Crossover: for each pair of selected neighboring individuals in the same generation t , the
crossover is performed with probability pC (each bit is exchanged with probability qC).

6: Mutation: for individuals that did not undergo crossover as above, mutation is carried out
with probability pM (each bit is reversed with a probability qM).

7: Evaluation: the network of an individual is trained on data set D and tested using test
images to obtain fitness, which is the accuracy obtained.

8: end for
9: Output: individuals and their recognition accuracies in the final generation.

Additionally, due to the utilization of a roulette wheel selection scheme where the
selection probability is proportional to the difference with respect to the fitness of
the individual with the lowest fitness, it is possible that individuals having networks
with weak structures that are not expected to yield further improvements in accuracy
could avoid elimination from selection and survive.

Furthermore, elements not related to connections in the convolutional layer
(hyperparameters such as the layout of the pooling layer, number of channels in
each layer, filter size, and stride.) must be previously determined, resulting in a
small search space for the parameters subject to search.

In [7], the above problems are addressed in the following ways:

(i) evaluation of individuals is accelerated by roughly assessing the fitness of an
individual by training using a small number of epochs;

(ii) by introducing a selection and mutation scheme called “aggressive selection
and mutation,” weak individuals are eliminated early so that new individuals
based on strong ones can be born more easily;

(iii) the space of parameters to be searched is enlarged by increasing the elements
subject to mutation.

The training of convolutional neural networks is performed by repeatedly feeding
the same training data to the networks. The number of such repetitions is called
“number of epochs.” Usually, a sufficient level of recognition accuracy is not
achieved if the network is trained with a small number of epochs. However, to
estimate fitness as a reference for generational change in GA, a rough estimation
based on a small number of epochs is expected to be enough.
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Fig. 12.3 Different strategies. Aggressive selection and mutation for N = 6 and k = 2 are shown
in the right [7]

The aggressive selection and mutation method involve selecting only k('N)

individuals with high fitness from the parents’ generation, complementing the
lacking part with clones, and applying mutation to those clones. The method is
similar to the random mutation hill-climbing method because it searches for a
solution based only on mutations. An example of aggressive selection and mutation
for N = 6 and k = 2 is illustrated in Fig. 12.3.

In Genetic CNN, only connectional relations in the convolutional layer are set
as a target for optimization. However, in aggressive selection and mutation, various
types of mutation operations are available, such as adding or deleting layers other
than convolutional layers or changing preset values of the convolutional layer itself
(hyperparameters). With this method, the parameter search space gets significantly
expanded.

Consequently, the time required to find the best individual is significantly reduced
and the recognition accuracy of the best individual is improved dramatically.

The aggressive selection and mutation algorithm is described in Algorithm 2.

Algorithm 2 Aggressive selection and mutation
1: Input: data set D, final generation number T , number of individuals per generation N , number

of elite individuals k to be added to the next generation, threshold d for the distance between
individuals

2: Initialization: the 0-th generation is formed by N individuals having a fixed initial structure.
The fitness of each individual is evaluated (to be explained later).

3: for t = 1, 2, . . . , T do
4: Selection: k individuals with high fitness are selected sequentially from generation t − 1.

The individual is added to generation t unless the distance with respect to the individuals
already added to generation t is less than d. A total of N − k clones of the k added individuals
are added.

5: Mutation: a mutation operation is selected and applied to each of the N − k cloned
individuals. Nothing is done to the remaining k individuals.

6: Evaluation: the network of each individual is trained on data set D, and the recognition
accuracy on test images is stored as the fitness value.

7: end for
8: Output: individuals in the final generation and the recognition accuracy for these individuals.
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Details on the initial structure and methods of mutation are explained in
Sect. 12.4.

12.2.4 YOLO

YOLO is one of single-shot object detection CNN models. YOLO first resizes the
input image into a square and divides it into equal-sized regions using S × S grids.
Each grid will predict B bounding boxes and probability values for C categories.
An example for S = 7, B = 2, and C = 20 is illustrated in Fig. 12.4 [13]. Each
bounding box needs to be represented by five parameters: the coordinate of the
center point on the x and y axes, the height h and width w of the bounding box, and
the confidence value c. Finally, YOLO selects the prediction box with the highest
confidence value as the detection result. In order to avoid multiple detections of the
same object, YOLO uses the non-maximum suppression method to ensure that each
object is detected only once.

As shown in Fig. 12.4, the entire YOLO network is composed of convolutional
layers and fully connected layers without any sub-network structure. Here, the
output dimension of YOLO is 7 × 7 × 30. This is because when S = 7, B = 2,
and C = 20, each grid predicts two bounding boxes, probability values for 20
categories, and each bounding box needs five parameters {x, y, h,w, c} in total
requiring 7× 7× (5× 2+ 20) = 7× 7× 30 parameters.

S × S grid on input

Class probability map

Final detections

Fig. 12.4 The system model of YOLO [13]
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12.2.5 Transfer Learning

Transfer learning [10] is a framework in machine learning where data on related
problems and derived knowledge are used to effectively and efficiently solve the
target problem. The sender and the receiver of knowledge to be transferred are called
the source domain and target domain, respectively.

Humans learn various things from transfer learning. For instance, when someone
who can play the piano starts to learn the electronic organ at the same time as
someone who cannot play the piano, the former can learn to play the electronic
organ better and in a shorter amount time than the latter. In the framework of transfer
learning, the piano is the source domain, the electronic organ is the target domain,
and proficiency in playing the piano assists in the learning of the electronic organ.
Transfer learning is applied in various fields, including natural language processing,
voice recognition, and image processing.

Figure 12.5 shows a rough flow of transfer learning. In this example, the source
task concerns training on female speech and the target task is to recognize speech
from males. Learning is carried out using data and knowledge associated with
problems in the source and target domains to ultimately answer problems in the
target domain efficiently and with high precision. Usually it is assumed that the
source and the target domains have some structural relationship.

Transfer learning is very effective when there is little training data in the
target domain, but substantial data in the source domain. Moreover, transferring
knowledge from a domain that is highly similar to the target domain results in more
efficient learning. In contrast, the transfer of knowledge from a source domain with
low similarity results in a decrease in learning performance, which is called negative
transfer.

In transfer learning, the maximum limit of learning performance in the training
domain is normally limited by the learning performance in the source domain. In
other words, a higher learning precision in the source domain results in a better
chance of improving learning efficiency in the target domain.

Fig. 12.5 Image of transfer
learning

source target

Solu on to target task

Transfer knowledge
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An important problem in transfer learning is determining what knowledge to
transfer. If the data from the source domain is necessary, the most obvious approach
is to appropriately map the data and use it when learning in the target domain. On
the other hand, transferring feature values or parameters that exist both in the source
and target domains is also possible. What knowledge can be transferred and what
knowledge successfully works depends on each domain, and determining which to
apply is difficult.

12.3 Proposed Method

In Sect. 12.2, we have explained the aggressive selection and mutation scheme [7].
In this section, we further introduce an extended method, which we call ASM+,
where generation alternation is performed by increasing the number of epochs
according to the generation number during the evaluation training of the individuals.
Let nmin, nmax, and T be the minimum number of epochs, the maximum number of
epochs, and the number of total generations, respectively. In our method ASM+, the
number of epochs n(t) related to generation t is defined by the following equation:

n(t) = (T − t) · nmin + t · nmax

T

Thus, the interval between n(0) = nmin and n(T ) = nmax is uniform and depends
on the final generation number T .

Due to the slope with respect to the epoch number, the generation change cycle
is faster at the beginning of evolution, thereby enabling an evaluation of individuals
with various structures over a wide range. Subsequently, individuals exhibiting good
structures at the end of evolution are evaluated locally with higher accuracy.

12.4 Experiments on Evolutionary Synthesis
of Convolutional Neural Networks

Experiments were carried out using two types of combinations of data sets and
tasks. First, the effectiveness of the proposed method ASM+ is evaluated through
a relatively simple handwritten number classification task using MNIST [6] as the
data set. Second, we also apply ASM+ to the task of detecting dangerous objects in
an X-ray image data set simulating luggage inspection.
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12.4.1 MNIST Handwritten Number Classification Experiment

For the first experiment, the MNIST [6] data set is used. MNIST is a widely
used data set designed for the classification of handwritten numbers. MNIST was
selected because of a possible comparison with the previous researches [19] and [7]
mentioned in Sect. 12.2. Moreover, the task is simple, and it permits the evaluation
of the effectiveness of the method with a small number of computations.

The MNIST data set consists of 60,000 images for training and 10,000 images
for testing. Each image is formed by a 28× 28-sized gray scale corresponding to an
Arabic number from 0 to 9 which are uniformly drawn on the image.

12.4.1.1 Initial Generation

As shown in Fig. 12.6, an individual in the initial generation has a network formed
by 3 layers: an input layer, a global max pooling layer, and a fully connected layer.
Global max pooling is the process of selecting the maximum value from all channels
of the input feature map, with an output to a 1 × 1-sized feature map with the
same number of channels. For the structure of the initial generation, the accuracy
on the MNIST data set is about 11%, which is approximately the same as a network
that just outputs random results. This network was selected as the initial structure
to confirm that it is unnecessary to introduce restrictions in the search range by
including human intervention.

12.4.1.2 Mutation Operations

In [7], the 15 types of operations described below were utilized for mutation
operations. In the following, “random” refers to the selection of candidates with
a uniform probability.

Fig. 12.6 Network structure
of an individual in the initial
generation. For details on the
notation of the figure, refer to
Fig. 12.8
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• add_convolution: inserts a convolutional layer with 32 channels, one
stride, 3× 3 filter size, and one-pixel padding in a random position. The number
of dimensions of the feature maps for the input and output before and after this
operation does not change. The activation function used is ReLU.

• remove_convolution: selects a single convolutional layer at random and
deletes it.

• alter_channel_number: selects a single convolutional layer at random,
and selects a channel number out of {8, 16, 32, 48, 64, 96, 128} at random for
the replacement.

• alter_filter_size: selects a convolutional layer at random and selects a
filter size out of {1× 1, 3× 3 or 5× 5} for the replacement.

• alter_stride: selects a convolutional layer at random and randomly selects
a stride out of {1 or 2} for the replacement.

• add_dropout: selects a convolutional layer at random and inserts a dropout
soon after. The dropout ratio is fixed at 0.5.

• remove_dropout: selects a dropout at random for removal.
• add_pooling: selects a convolutional layer at random and inserts a pooling

layer soon after. Max pooling is adapted and the kernel size is fixed as 2× 2.
• remove_pooling: selects a pooling layer at random and deletes it.
• add_skip: inserts a residual network, which was introduced in ResNet [4]. It

precisely selects a random pair of layers where the feature maps of the outputs
have the same dimension and inserts a layer that has an output formed by the sum
of these outputs.

• remove_skip: selects at random one of the skip layers above and deletes it.
• add_concatenate: like add_skip, it selects a random pair of layers where

the feature maps of the outputs have the same dimension (however, the numbers
of channels may not be the same), and inserts a layer that has an output formed
by concatenating the previous outputs.

• remove_concatenate: selects one of the concatenate layers above at
random and deletes it.

• add_fully_connected: selects a random position just after other fully
connected layers or the last layer and inserts a fully connected layer. The
dimension of the output is selected at random from {50, 100, 150, 200}.

• remove_fully_connected: a single fully connected layer is selected at
random and deleted.

Selecting and applying one out of the 15 types of operations above is con-
sidered a mutation. However, to facilitate the evolution to more complex struc-
tures, in our method ASM+, the probability of selecting add_convolution,
add_skip, add_concatenate, alter_stride, alter_filter_size,
and alter_channel_number is two times higher than other operations.

In some cases, it may be impossible to apply a certain operation. For instance,
it is impossible to apply remove_convolution to an individual that does not
have a convolutional layer. In such cases, the operation is selected again. In other
cases, the network structure of a given individual may be considered invalid due
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to the dimensional mismatch after beginning the actual evaluation training. In such
cases, the fitness of such individual is set to 0.

12.4.1.3 Experimental Results

Experiments were conducted on a single GPU on Google Colaboratory. Two
patterns were defined as follows: with and without batch normalization process
inserted just after the convolutional layer.

Other settings were: T = 30 (final generation number), N = 10 (number of
individuals in each generation), k = 1 (number of elite individuals to be added
to the next generation), nmin = 3 (minimum number of epochs), and nmax = 12
(maximum number of epochs).

Figure 12.7 shows how the fitness for the best individual (or image recognition
accuracy) evolved along the generations for each pattern. The recognition accuracy
obtained for the best individual in the final generation re-evaluated with the
maximum number of epochs nmax and the time required for the entire evolution
process are shown in Table 12.1.

Fig. 12.7 Changes in fitness
value for the best individual
in each generation

Table 12.1 Comparison of the recognition accuracy for the best individual in the final generation
across different methods

Method Recognition accuracy Computation time

Genetic CNN [19] 0.9966 48 GPUH

Aggressive selection and mutation [7] 0.9969 35 GPUH

ASM + (without batch normalization) 0.9932 N.A.

ASM + (with batch normalization) 0.9913 9 GPUH
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Fig. 12.8 Network structure
for the best individual in the
final generation (with batch
normalization). InputLayer
represents the input layer;
Conv2D is a 2-dimensional
convolutional layer.
BatchNormalization
represents batch
normalization, and Activation
denotes the application of the
activation function (ReLU).
GlobalMaxPooling2D
represents the maximum
pooling operation in 2
dimensions across all
channels, and Dense
represents a fully connected
layer. The values in the input
and output fields are the
dimensions of the input and
output, respectively, and
individually represent batch
size, height, width, and
number of channels. “None”
indicates that the batch size is
arbitrary. Note that fully
connected layers have neither
height nor width, thus the
height and width notations
are not shown before and
after Dense layer

Figure 12.8 shows the network structure for the best individual in the final
generation obtained by inserting batch normalization. A list of all the mutation
operations that were selected in each generation resulting in that individual is given
in Table 12.2. The evolution of the best individual in each generation is illustrated
in Fig. 12.9 as a tree diagram.
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Table 12.2 Mutation operations performed on the best individual of each generation (with batch
normalization)

Generation Mutation operation Maximum recognition accuracy

0 initialize 0.1135

1 add_convolution 0.6254

2 - 0.6254

3 alter_channel_number 0.7398

4 - 0.7398

5 - 0.7398

6 alter_filter_size 0.7558

7 add_convolution 0.7695

8 add_convolution 0.9559

9 alter_filter_size 0.9728

10 alter_filter_size 0.9783

11 alter_channel_number 0.9825

12 - 0.9825

13 - 0.9825

14 alter_filter_size 0.9873

15 - 0.9873

16 alter_stride 0.9911

17 - 0.9911

18 - 0.9911

19 - 0.9911

20 alter_stride 0.9916

21 - 0.9916

22 - 0.9916

23 - 0.9916

24 alter_channel_number 0.9922

25 - 0.9922

26 - 0.9922

27 - 0.9922

28 alter_channel_number 0.9933

29 - 0.9933

30 - 0.9933

Blank fields denote that no operation took place on the best individual in that generation

12.4.2 Experiment on Detecting Dangerous Objects in X-ray
Images

The next stage involves experiments that are carried out on a data set of X-ray
images created by Zou [20]. This data set contains 6121 X-ray images with 3 types
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Fig. 12.9 Tree diagram showing the evolution process of the best individual in each generation
(partially omitted). The value accompanying the image of the network structure of an individual
represents its fitness. Individuals with a value written in red are those selected for the next
generation. Colored arrows indicate the selection flow. Red arrows indicate the occurrence of
mutation, and blue arrows indicate cloning
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Fig. 12.10 Portable X-ray
device (NS-100-L)

Table 12.3 Division of X-ray images into training and test groups

Training images Test images Total

Natural images 662 442 1104

(10.82%) (7.22%) (18.04%)

Synthetic images 3010 2007 5017

(49.17%) (32.79%) (81.96%)

Total 3672 2449 6121

(59.99%) (40.01%) (100.00%)

of dangerous objects (scissors, knives, PET bottles), with annotations related to each
image.1

Experiments were carried out after dividing the 6121 images into two groups:
one to be used for training and the other one for testing. The proportion of images
for training and for testing is approximately 6:4 (Table 12.3). This ratio is equal to
the previous research [20].2

12.4.2.1 Initial Generation

Individuals in the initial generation are defined as those having the network structure
described in Table 12.4. This network is the same as the one used in YOLOv2 [12],
which specialized in the detection of objects. In the original YOLOv2, another
network containing the layers indicated above the double line of the table is

1 Instead of multi-view X-ray devices which are expensive and heavy, we use a portable X-ray
device (see Fig. 12.10). While multi-view devices need to colorize images, our device can collect
single-view X-ray images in real time.
2More precisely, the actual images to be used for training and testing are randomly changed each
time and the system is run 20 times from Run 1 up to Run 20. Here, we used the set of images
corresponding to Run 11, whose results are the most representative of the average.
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Table 12.4 Network structure of individuals in the initial generation

Type Filters Size/Stride Output

Convolutional 32 3 × 3 416 × 416

Maxpool 2 × 2/2 208 × 208

Convolutional 64 3 × 3 208 × 208

Maxpool 2 × 2/2 104 × 104

Convolutional 128 3 × 3 104 × 104

Convolutional 64 1 × 1 104 × 104

Convolutional 128 3 × 3 104 × 104

Maxpool 2 × 2/2 52 × 52

Convolutional 256 3 × 3 52 × 52

Convolutional 128 1 × 1 52 × 52

Convolutional 256 3 × 3 52 × 52

Maxpool 2 × 2/2 26 × 26

Convolutional 512 3 × 3 26 × 26

Convolutional 256 1 × 1 26 × 26

Convolutional 512 3 × 3 26 × 26

Convolutional 256 1 × 1 26 × 26

Convolutional (*) 512 3 × 3 26 × 26

Maxpool 2 × 2/2 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 512 1 × 1 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 512 1 × 1 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 1024 3 × 3 13 × 13

Concatenate (**) 1024 + 256 – 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 40 1 × 1 13 × 13

The structure is the same as the network of YOLOv2 [12]. The outputs of convolutional layers
marked with (*) are also connected to concatenate layers marked with (**), being combined along
the direction of the channel number. Here, the outputs (*) are reduced to 64 channels by 64 filters
that perform 1 × 1 convolution. Furthermore, to obtain a 13 × 13 height and width for the output,
they are, respectively, reduced by 1

2 , and the channel number is converted to 64 × 22 = 256. The
by-pass described in Sect. 12.2.4 is realized by this concatenate layer

previously trained on the ImageNet [15] data set where it acquires the ability to
extract the features of object recognition. Subsequently, the layers below the double
line are replaced by those shown in Table 12.4 and the training for object recognition
is repeated, thereby characterizing a transfer learning method (see Fig. 12.11). Using
this as a reference, only the layers below the double line becomes the target of
evolution. The output is a 13× 13× 40 tensor because B = 5 and C = 3, similar
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Fig. 12.11 Transfer learning
for X-ray based detection of
dangerous objects

to the case mentioned in Sect. 12.2.4. Here, C = 3 represents the three classes of
scissors, knives, and PET bottles.

Since evaluating the fitness (mAP, see Sect. 12.4.2.4) of individuals from this
initial generation takes a certain amount of time, unlike the initial generation
described in Sect. 12.4.1.1 for the MNIST experiment, this process was skipped.
Therefore, the group of individuals for the initial generation was just a formality.
The experiment essentially began with the group of individuals of the 1st generation,
who were obtained by performing mutation operations on the initial generation.

12.4.2.2 Mutation Operations

As in Sect. 12.4.1.2, the following nine types of operations based on [7] were chosen
as mutation operations. As mentioned in Sect. 12.2.4, the output size of the last
layer is fixed in order to output results related to object recognition. Furthermore,
to avoid overfitting in YOLO, batch normalization is introduced; thus, dropout is
unnecessary [12]. Due to these restrictions, six operations, namely add_dropout,
remove_dropout, add_skip, remove_skip, add_fully_connected,
remove_fully_connected, were removed. In the following, “random” was
defined as the selection of each candidate with uniform probability.

• add_convolution: inserts a convolutional layer with 1024 channels, one
stride, a 3×3 filter size, and one-pixel padding in a random position. The numbers
of dimensions of the feature maps for the input and output before and after this
operation do not change. The activation function used is Leaky ReLU [8].

• remove_convolution: selects a single convolutional layer at random and
deletes it.

• alter_channel_number: selects a single convolutional layer at random
and selects a random channel number out of {512, 1024 or 2048} for the
replacement.
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• alter_filter_size: selects a convolutional layer at random and randomly
selects a filter size out of {1× 1, 3× 3 or 5× 5} for the replacement.

• alter_stride: selects a convolutional layer at random and selects a stride
out of {1 or 2} at random for the replacement.

• add_pooling: inserts a pooling layer in a random position. Max pooling is
adapted, and the kernel size is fixed as 2× 2.

• remove_pooling: selects a pooling layer at random and deletes it.
• add_concatenate: selects a layer above and a layer below the double line of

Table 12.4. It then inserts a layer with an output formed by concatenating those
layers. The insertion point is just after the selected lower layer.

• remove_concatenate: selects one of the concatenate layers above at
random and deletes it.

Mutation is defined here as the operation of selecting and applying one of
the nine operations above. As in Sect. 12.4.1.2, the probability of selecting
operations add_convolution, add_concatenate, alter_stride,
alter_filter_size, and alter_channel_number is set as twice as
large as other operations to help facilitate the evolution of the network structure of
an individual to a more complex one.

12.4.2.3 Restructuring of Network Structures Due to Mutation

The results of Sect. 12.4.1.3 indicate that in some cases a mutation operation
selected at random cannot be applied due to restrictions related to the number of
dimensions of the input and output before and after the layer. For these cases,
we introduced a method to enhance the probability that the selected operation
can be applied by trying to restructure the network as much as possible to make
dimensions match when add_concatenate is selected as a mutation operation.
The restructuring algorithm is shown in Algorithm 3. This algorithm imitates the
operations carried out in the concatenate layer marked with (**) in Table 12.4.

12.4.2.4 Fitness (mAP) Calculation Method

In the MNIST handwritten classification task mentioned in Sect. 12.4.1, the classi-
fication accuracy was used as a measure of fitness. However, in an object detection
task, it is necessary not only to classify the object but also to estimate the position
and area where the object exists. Therefore, it is not possible to introduce the concept
of correct and incorrect detection results as it is. For this reason, it is necessary to
redefine the concept of fitness.
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Algorithm 3 Restructure algorithm for the network structure to apply
add_concatenate
1: Input: input from the immediately preceding layer (height hin, width win, number of channels

cin), input from the source layer (height hsource, width wsource, channel csource)
2: if hsource = m · hin or hsource = 1

n
· hin (m, n ∈ N) then

3: Pointwise convolution: connects the input from the source layer to the convolutional layer
having 64 channels, one stride, 1× 1 filter size, and one-pixel padding. Due to this operation,
the number of channels of the input from the source layer is fixed to 64. Hence, the number
of parameters is reduced, and the growth in the number of channels for the next operation is
suppressed.

4: Reorganization: performs a transformation where the height and width of the input from
the source layer are, respectively, reduced by 1

m
(magnified by n times), and the number of

channels is multiplied by m2 (reduction by 1
n2 ). As a result of this operation, we have hsource =

hin, wsource = win and the height and width dimensions of the inputs from the two layers
coincide. The number of parameters does not change before and after this operation.

5: Concatenation: the inputs from two layers whose height and width dimensions coincide
are concatenated along the channel number direction to form the output of this layer.

6: else
7: Failure: since restructuring is impossible, another mutation operation is selected.
8: end if
9: Output: formed by the concatenation of inputs from two layers along the channel number

direction

There are several performance evaluation criteria for the object detection task,
but here we consider mAP (mean Average Precision) as a fitness measure. Below
is an explanation of the mAP calculation method [3]. For simplicity, the subject of
detection is only one type of object.

If the image of the target of object detection is input to a network, several square
areas (set of numbers stating the coordinates of the center, width, and height) are
obtained. The output also includes the probability that an object exists in each
rectangular area (confidence). Of the above, we only consider the rectangular areas
where confidence is greater than or equal to a threshold c. Three terms are defined
below:

True Positive the number of predicted areas that was correctly “detected”
False Positive the number of predicted areas that was incorrectly not “detected”
False Negative the number of areas that should have been “detected” but was not.

Here a predicted area “detects” a correct area if the value of the intersection over
union (IoU) is equal to or greater than 0.5. Note that IoU is a measure of overlap
between the two areas. Figure 12.12 shows the definition of IoU. Hence, IoU is the
ratio of the intersection of two areas to the area of the union between them. If several
predicted areas cover a single correct area, only the predicted area of one of them is
counted as True Positive; all other predicted areas are counted as False Positive.
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Fig. 12.12 Definition of IoU

Fig. 12.13 Example of PR
curve. The blue-painted
region represents AP

Based on the definition above, the values of Recall and Precision are obtained by
counting the number of True Positive (TP), False Positive (FP), and False Negative
(FN) for all the given test images, as follows:

Recall = TP

TP+ FN

Precision = TP

TP+ FP

Recall is the ratio of “the number of actually detected objects to the number of all
objects to be detected,” while Precision is a ratio of “the number of areas where
objects actually exist out of the areas where they are predicted to exist.” Here, if
the threshold value c is changed, the number of predicted areas to be considered
also changes. Therefore, the values of TP, FP, and FN also change, and so do the
values of Recall and Precision. Thus, a plot such as the one in Fig. 12.13 (PR curve:
precision-recall curve) can be obtained by plotting Recall on the horizontal axis,
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Precision on the vertical axis, and connecting the points obtained when the value of
threshold c is changed from 0 to 1.

The area of the region delimited by the PR curve and the axes is called AP
(Average Precision) and assumes a value between 0 and 1. The higher the value
of the AP, the higher is the detection accuracy.

Even if the number of classes to be detected is increased, it is possible to calculate
the value of AP for each class. mAP is the average value of AP calculated for each
class.

12.4.2.5 Changing the Evaluation Method for Individuals in the Elite
Group of Each Generation

In the experiment described in Sect. 12.4.1, when individuals from the elite group
with the highest fitness in their generation are cloned into the next generation, their
fitness is just inherited without being re-evaluated. This results in an issue in the
proposed method ASM+ where the number of epochs for evaluation increases with
each generation. Furthermore, when individuals in the elite group are in a state of
overfitting where their fitness does not improve with the number of epochs, they are
not updated and enter a state of local stagnation. However, this issue was solved
by also re-evaluating those individuals in the elite group just like the other ones
using the number of epochs corresponding to the generation. Therefore, unlike the
MNIST experiment where the fitness of the best individual improves uniformly
with the generation, in some cases the fitness of the best individual decreases as
the generation advances.

12.4.2.6 Experimental Results

Experiments were conducted on an NVIDIA GeForce GTX 1080 Ti GPU. The
parameters used are shown in Table 12.5.

Table 12.5 Parameters used in the experiment

Parameter Value

Final generation number T 4

Number of individuals in each generation N 4

Number k of elite individuals to be added to the next generation 1

Batch size b 64

Number of training images Ltrain (Table 12.3) 3672

Number of testing images Ltest (Table 12.3) 2449

Minimum iteration number imin 10,000

Maximum iteration number imax 25,000
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For reasons related to implementation, instead of defining the minimum number
of epochs nmin and the maximum number of epochs nmax, the minimum and
maximum number of iterations, imin and imax, have, respectively, been defined.
Referring to the number of iterations as i and the number of epochs as n, the number
of epochs is converted to the number of iterations using the equation below:

n = b · i
Ltrain

Since batch size b = 64 and Ltrain = 3672, if we set imin = 10,000 and imax =
25,000, this is almost equivalent to setting nmin = 174, nmax = 436.

The method proposed ASM+ in Sect. 12.3 can be applied in the same way even
if the number of epochs is replaced by the number of iterations. Hence, in order to
split the interval between imin and imax uniformly with respect to generation number
T = 4, the number of iterations is varied from the first up to the 4th generation in
the following order: 10,000, 15,000, 20,000, and 25,000.

Figure 12.14 shows how the fitness (mAP) for an individual changed from
generation to generation. Table 12.6 shows the mAP for the best individual obtained
by evolution; it also shows the computation time required by the entire process.
Table 12.7 shows which mutation operations were selected in each generation.

Fig. 12.14 Change of fitness
of all individuals in each
generation. The red dot is the
result of reference [20] (Exp.
5/Run 11, including data
during the training), where
the number of epochs upon
evaluation is plotted after
conversion to the
corresponding generation
number

Table 12.6 Comparison of True Positive (TP), False Positive (FP), False Negative (FN), AP, mAP
(converted to %), and computation times for each method

AP

Method TP FP FN Scissors Knives PET bottles mAP Computation time

Zou [20] 5474 517 469 90.46% 88.82% 90.67% 89.98% 7 GPUH

ASM+ 5485 459 458 90.32% 89.16% 90.60% 90.03% 84 GPUH

The threshold used for the computation of TP, FP, and FN is c = 0.25
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Table 12.7 Mutation
operations performed on the
best individual of each
generation

Generation Mutation operation Maximum mAP

0 initialize –

1 add_concatenate 0.8988

2 - 0.8997

3 add_convolution 0.9003

4 add_concatenate 0.8999

Blank fields indicate that no update was carried out on a
specific individual/generation

The following Figs. 12.15 and 12.16 show the network structures of the indi-
viduals exhibiting the best and the second-best fitness during the evolution process.
Figure 12.17 is a tree diagram describing the evolution process of the best individual
of each generation.

However, note that, in Figs. 12.15, 12.16, and 12.17, batch normalization and
Leaky ReLU are applied immediately after all Conv2D (2-dimensional convolu-
tional layer) in all layers except the last one; however, this was abridged in the
figures.

12.5 Discussion

12.5.1 Handwritten Number Classification Experiment Using
MNIST

Compared with Genetic CNN [19] and aggressive selection and mutation [7], the
recognition accuracy for the best individual is slightly lower; however, the level of
accuracy achieved is approximately equivalent.

From the dimensional changes that occurred in the feature map of each layer of
the network that was eventually obtained, we observed that the vertical and horizon-
tal dimensions of the output feature map of the convolutional layer decreased, while
the number of channels increased. This structure is also seen in classical networks
such as LeNet [6] and is supposed to reflect the process of grasping the local features
of the image by changing the scale.

However, the final network has an extremely simple structure formed by
two convolutional layers. There is no pooling layer, dropout, or by-pass, which
could have been introduced by add_pooling, add_dropout, and add_skip,
respectively. This could be attributed to the strict conditions for the application of
mutations; therefore, the operations involving the addition of such structures were
not selected. Moreover, from Fig. 12.9 and Table 12.2, we observed that the addition
of a convolutional layer at an early stage of evolution produces a dramatic effect
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Fig. 12.15 Network
structure of an individual
from the 3rd generation,
which exhibited the best
fitness among all individuals
(fitness = 0.9003). For the
notation, refer to Fig. 12.8
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Fig. 12.16 Network
structure of an individual
from the 4th generation
whose network structure
yielded the second largest
fitness among all individuals
(fitness = 0.8999)
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(None, 13, 13, 512)

Conv2D
input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 1024)

Reshape
input:

output:
(None, 104, 104, 64)

(None, 13, 13, 4096)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Concatenate
input:

output:

[(None, 13, 13, 4096), (None, 13, 13, 1280)]
(None, 13, 13, 5376)

Conv2D
input:

output:

(None, 13, 13, 5376)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:
(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:
(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)
(None, 104, 104, 64)

Conv2D
input:

output:
(None, 104, 104, 64)
(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)
(None, 52, 52, 128)

Conv2D
input:

output:
(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)
(None, 52, 52, 128)

Conv2D
input:

output:
(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)

(None, 13, 13, 512)

Conv2D
input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]
(None, 13, 13, 1280)

Conv2D
input:

output:

(None, 13, 13, 1280)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)
(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)
(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)
(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 64)

Conv2D
input:

output:

(None, 52, 52, 256)
(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

MaxPooling2D
input:

output:
(None, 26, 26, 512)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 1024)

Reshape
input:

output:

(None, 52, 52, 64)

(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:
(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 1024), (None, 13, 13, 1024)]
(None, 13, 13, 2048)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 2048)]

(None, 13, 13, 2304)

Conv2D
input:

output:

(None, 13, 13, 2304)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)
(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)
(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)
(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)
(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

MaxPooling2D
input:

output:
(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)
(None, 13, 13, 256)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:
(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]
(None, 13, 13, 1280)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:
(None, 104, 104, 64)
(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

Conv2D
input:

output:
(None, 52, 52, 128)

(None, 52, 52, 64)
Conv2D

input:

output:
(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)
(None, 13, 13, 256)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Reshape
input:

output:

(None, 52, 52, 64)
(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1280)]
(None, 13, 13, 1536)

Concatenate
input:

output:
[(None, 13, 13, 1024), (None, 13, 13, 1536)]

(None, 13, 13, 2560)

Conv2D
input:

output:

(None, 13, 13, 2560)
(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

Conv2D
input:

output:
(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)
(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]
(None, 13, 13, 1280)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)
(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

Conv2D
input:

output:
(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 512)

(None, 13, 13, 64)
Conv2D

input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)
Reshape

input:

output:

(None, 13, 13, 64)

(None, 13, 13, 64)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Reshape
input:

output:

(None, 26, 26, 64)
(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 64), (None, 13, 13, 1280)]
(None, 13, 13, 1344)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1344)]

(None, 13, 13, 1600)

Conv2D
input:

output:

(None, 13, 13, 1600)
(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:
(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)
(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)
(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)
(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)
(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:
(None, 26, 26, 512)
(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

MaxPooling2D
input:

output:
(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)
(None, 13, 13, 256)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:
(None, 26, 26, 64)

(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]
(None, 13, 13, 1280)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:
(None, 104, 104, 64)
(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

Conv2D
input:

output:
(None, 52, 52, 256)
(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Reshape
input:

output:

(None, 26, 26, 64)
(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1280)
(None, 13, 13, 1024)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Conv2D
input:

output:

(None, 13, 13, 1280)
(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

Conv2D
input:

output:
(None, 52, 52, 256)
(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 256)
(None, 52, 52, 64)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:
(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Reshape
input:

output:

(None, 52, 52, 64)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Concatenate
input:

output:
[(None, 13, 13, 1024), (None, 13, 13, 1024)]

(None, 13, 13, 2048)

Conv2D
input:

output:

(None, 13, 13, 2048)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)
(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]
(None, 13, 13, 1280)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)
(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 104, 104, 128)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

Conv2D
input:

output:
(None, 52, 52, 256)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Reshape
input:

output:
(None, 104, 104, 64)

(None, 13, 13, 4096)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Concatenate
input:

output:
[(None, 13, 13, 4096), (None, 13, 13, 1024)]

(None, 13, 13, 5120)

Conv2D
input:

output:

(None, 13, 13, 5120)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)
(None, 13, 13, 256)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]
(None, 13, 13, 1280)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1280)]

(None, 13, 13, 1536)

Conv2D
input:

output:

(None, 13, 13, 1536)
(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:

(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:
(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

Conv2D
input:

output:
(None, 52, 52, 256)
(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)
(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 1024)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Reshape
input:

output:

(None, 26, 26, 64)
(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1280)
(None, 13, 13, 1024)

Concatenate
input:

output:
[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Conv2D
input:

output:

(None, 13, 13, 1280)
(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 3)

Conv2D
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)

(None, 208, 208, 32)

Conv2D
input:

output:
(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:
(None, 104, 104, 128)

(None, 104, 104, 64)

Conv2D
input:

output:

(None, 104, 104, 64)
(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)

(None, 52, 52, 128)

Conv2D
input:

output:
(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)
(None, 52, 52, 128)

Conv2D
input:

output:

(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:
(None, 52, 52, 256)

(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)
(None, 26, 26, 512)

Conv2D
input:

output:
(None, 26, 26, 512)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)
(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 256)

Conv2D
input:

output:

(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:
(None, 26, 26, 512)

(None, 13, 13, 512)
Conv2D

input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 26, 26, 512)

(None, 26, 26, 64)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 512)
(None, 13, 13, 64)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)
Reshape

input:

output:

(None, 13, 13, 64)

(None, 13, 13, 64)

Conv2D
input:

output:

(None, 13, 13, 1024)

(None, 13, 13, 1024)

Concatenate
input:

output:
[(None, 13, 13, 64), (None, 13, 13, 1024)]

(None, 13, 13, 1088)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:

(None, 13, 13, 1088)
(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]

(None, 13, 13, 1280)

Reshape
input:

output:

(None, 26, 26, 64)

(None, 13, 13, 256)

Conv2D
input:

output:
(None, 13, 13, 1280)
(None, 13, 13, 1024)

Concatenate
input:

output:

[(None, 13, 13, 256), (None, 13, 13, 1024)]
(None, 13, 13, 1280)

Conv2D
input:

output:

(None, 13, 13, 1280)

(None, 13, 13, 1024)

Conv2D
input:

output:
(None, 13, 13, 1024)

(None, 13, 13, 40)

InputLayer
input:

output:

(None, 416, 416, 3)
(None, 416, 416, 3)

Conv2D
input:

output:
(None, 416, 416, 3)

(None, 416, 416, 32)

MaxPooling2D
input:

output:

(None, 416, 416, 32)
(None, 208, 208, 32)

Conv2D
input:

output:
(None, 208, 208, 32)

(None, 208, 208, 64)

MaxPooling2D
input:

output:

(None, 208, 208, 64)
(None, 104, 104, 64)

Conv2D
input:

output:
(None, 104, 104, 64)

(None, 104, 104, 128)

Conv2D
input:

output:

(None, 104, 104, 128)
(None, 104, 104, 64)

Conv2D
input:

output:
(None, 104, 104, 64)

(None, 104, 104, 128)

MaxPooling2D
input:

output:

(None, 104, 104, 128)
(None, 52, 52, 128)

Conv2D
input:

output:
(None, 52, 52, 128)

(None, 52, 52, 256)

Conv2D
input:

output:

(None, 52, 52, 256)
(None, 52, 52, 128)

Conv2D
input:

output:
(None, 52, 52, 128)

(None, 52, 52, 256)

MaxPooling2D
input:

output:

(None, 52, 52, 256)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 256)

Conv2D
input:

output:
(None, 26, 26, 256)

(None, 26, 26, 512)

MaxPooling2D
input:

output:

(None, 26, 26, 512)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 26, 26, 512)
(None, 26, 26, 64)

Conv2D
input:

output:
(None, 26, 26, 512)

(None, 26, 26, 64)
Conv2D

input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:
(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
(None, 13, 13, 512)

Conv2D
input:

output:

(None, 13, 13, 512)

(None, 13, 13, 1024)

Conv2D
input:

output:

(None, 13, 13, 1024)
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Fig. 12.17 Tree diagram showing the evolution process of the best individual of each generation.
The value accompanying the image of the network structure of an individual represents its fitness
(mAP). Individuals with a value written in red are those selected for the next generation. Colored
arrows indicate the selection flow. Red arrows indicate the occurrence of mutation, and blue arrows
indicate cloning
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on recognition accuracy; subsequently, only operations that change the hyperpa-
rameters in the convolutional layer (alter_stride, alter_filter_size,
alter_channel_number) are selected as operations that result in the birth of
better individuals.

Furthermore, from Fig. 12.7, we observe that evolution saturates around the 15th
generation. Similarly, the selection of operations to be applied to the individuals of
that generation is restricted, resulting in the selection of locally optimized solutions.
Another factor is that since the number of epochs increases as the generations
advance, overfitting tends to occur in new individuals, and the best individuals end
up not being updated.

Conversely, the computation time for the entire evolution process is shorter than
the previous results [19] and [7]. This is possibly due to a persisting situation where
only networks with simple structures that require short training times were obtained.

The presence or absence of batch normalization did not produce a significant
difference in the results.

12.5.2 Experiment on Detecting Dangerous Objects in X-ray
Images

Compared with the results of the method used by Zou [20], individuals showing an
improvement of 0.05% in the mAP value were obtained (Table 12.6). The number
of “detected” dangerous objects (True Positive) also increased. Additionally, the
number of other objects wrongly detected as dangerous (False Positive) decreased,
and the number of dangerous objects that were not detected (overlooked) also
decreased (False Negative). Therefore, for the dangerous object detection task,
both “Recall” and “Precision” improved, which denotes a definite performance
improvement. Figure 12.18 shows an example of a dangerous object that was not
detected by Zou’s method but was detected by the proposed method ASM+.

In the tree diagram of Fig. 12.17, we can find several by-passes generated by
add_concatenate in the structures that were actually obtained. This can be
contrasted with the case of the MNIST handwritten number classification task,
where no by-pass was observed due to restrictions on the application of mutation
operations (Sect. 12.5.1). Our assumption is that the network structure reconstruc-
tion algorithm for applying add_concatenate introduced in Sect. 12.4.2.3 has
produced effective results.

The network structure of one of the two individuals that yielded a better mAP
than Zou’s method, which exists in the last generation shown in Fig. 12.16, is
examined closely. In that structure, three by-pass lines stretch out from a layer with a
26×26 (width, height) output towards a layer having a 13×13 input located closer to
the final layer. This structure is similar to the U-type structure of U-Net [14], which
produced good results in medical image segmentation. As mentioned in Sect. 12.2.4,
employing a by-pass from the high-resolution output of a layer with a large feature
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Fig. 12.18 Example of where an image that was overlooked by the Zou’s method [20] was
correctly detected by the proposed method ASM+. Images of two PET bottles and a knife are
overlapped in the center of the image. (a) Detection results in Zou’s method. (b) Detection results
by ASM+
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Fig. 12.19 Comparison of evolved network structures. (a) Aggressive selection and mutation. (b)
U-Net [14]

map to a layer with a small feature map acts to improve the ability to detect small
objects (see Fig. 12.19).

Next, from Fig. 12.14, we observe that the fitness of the best individual of the
4th generation is lower than that of the 3rd generation. This is an indication that the
high number of epochs used in the evaluation results in overfitting and deterioration
in the mAP value in individuals that are cloned into the next generation as an elite.
As a result, the proposed method ASM+ of increasing the number of epochs as the
generations advance has the advantage of finding an optimal number of epochs that
does not result in overfitting.
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12.6 Conclusion

Optimizing the structure of convolutional neural networks is a task that requires
high-level specialized knowledge and a huge amount of trial-and-error work. To
enable the automatic search of optimal network structures using GA, we proposed a
method ASM+ in which the number of epochs upon evaluation is increased as the
number of generations advance during the evolution process in the present research.

In the MNIST handwritten number classification experiment, we showed that
ASM+ exhibited a slightly lower recognition accuracy, but is relatively fast in terms
of computation time. However, this might be because the algorithm was not able to
search for complex structures.

In the experiment related to detecting dangerous objects in X-ray images, we
introduced a method that made it easier for individuals to undergo mutation in view
of the results of the MNIST experiments where only simple structures emerged
from the search. Consequently, it became possible to evaluate individuals possessing
several by-pass structures, resulting in an enlarged search space. Additionally, with
respect to cloned individuals belonging to the elite group, a change was introduced
where fitness is re-evaluated with a higher number of epochs instead of being
inherited into the next generation.

Due to this change, we avoided the problem of individuals becoming overfitted
with an increasing number of epochs and stuck in local solutions. Moreover, we can
consequently detect the optimal number of epochs that do not cause overfitting.

A future task is the acceleration of evolution. The proposed method ASM+
requires at least 10 times more computation than the Zou’s method [20], as is
shown in Table 12.6. Pham et. al. [11], as in ASM+, attempted to optimize the
convolutional neural network structure by using neural networks instead of GA.
A considerable reduction in computation needed to evaluate individuals may be
possible through a transfer learning approach where the weight parameters are
shared to some extent.

Acknowledgments We would like to thank Shin Yokoshima and Yoji Nikaido, T&S Corporation,
for providing us with X-ray data collection environment.
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Chapter 13
Evolving the Architecture
and Hyperparameters of DNNs
for Malware Detection

Alejandro Martín and David Camacho

Abstract Deep Learning models have consistently provided excellent results in
highly complex domains. Its deep architecture of layers allows to face problems
where classical machine learning approaches fail, or simply are not able to provide
good enough solutions. However, these deep models usually involve a complex
topology and hyperparameters that have to be carefully defined, typically following
a grid search, in order to reach the most profitable configuration. Neuroevolution
presents a perfect instrument to perform an evolutionary search pursuing this
configuration. Through an evolution of the hyperparameters (activation functions,
initialisation methods and optimiser) and the topology of the network (number and
type layers and the number of units) it is possible to deeply explore the space
of solutions in order to find the most proper architecture. Among the multiple
applications of this approach, in this chapter we focus on the Android malware
detection problem. This domain, which has led to a large amount of research in
the last decade, presents interesting characteristics which make the application of
Neuroevolution a logical approach to determine the architecture which will better
discern between malicious and benign applications. In this research, we leverage
a modification of EvoDeep, a framework for the evolution of valid deep layers
sequences, to implement this evolutionary search using a genetic algorithm as
means. To assess the approach, we use the OmniDroid dataset, a large set of
static and dynamic features extracted from 22,000 malicious and benign Android
applications. The results show that the application of a Neuroevolution based
strategy leads to build Deep Learning models which provide high accuracy rates,
greater than those obtained with classical machine learning approaches.

A. Martín (�) · D. Camacho
Departamento de Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
e-mail: alejandro.martin@upm.es; david.camacho@upm.es

© Springer Nature Singapore Pte Ltd. 2020
H. Iba, N. Noman (eds.), Deep Neural Evolution, Natural Computing Series,
https://doi.org/10.1007/978-981-15-3685-4_13

357

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3685-4_13&domain=pdf
mailto:alejandro.martin@upm.es
mailto:david.camacho@upm.es
https://doi.org/10.1007/978-981-15-3685-4_13


358 A. Martín and D. Camacho

13.1 Introduction

The detection of malware constitutes a large, open and critical problem. The
figures on the volume of new malware developed every year have not stopped
growing. Another element worthy of consideration is the increasing complexity of
these malicious programs. These two facts evidence the need for automated and
sophisticated detection tools able to identify the most elaborated malware shapes.
For this purpose, many approaches trust on machine learning techniques to build
accurate malware detectors.

Among the different techniques proposed in the literature, Deep Neural Networks
represent a widely studied and employed tool. However, unlike other supervised
processes, these models require to define an architecture and a series of hyperpa-
rameters. This typically involves testing different configurations in order to find the
most adequate option. Depending on the malware analysis technique followed and
the representation scheme used, different layers can be involved: fully connected,
convolutional, recurrent or dropout, among others.

In terms of malware analysis, there are two main approaches in order to extract
relevant characteristics from both goodware and malware samples. Static analysis
refers to the process of extracting features from the malware executable file without
executing the malware. This includes API calls, permissions declared, intents or
information extracted from the bytecode level. The second option is to extract
dynamic features, those retrieved with a monitoring agent which captures all the
actions performed by the suspicious sample when it is executed.

While a static analysis will mainly extract independent features (composed by
binary or count values), a dynamic approach will provide temporal sequences
of events (i.e. a list of disk operations with a timestamp). Once extracted the
necessary set of features (either static, dynamic or both), it is necessary to find a
machine learning algorithm able to construct a new model that could generalise
from that information. Although some models require a small number of technical
adjustments (i.e. a decision tree based algorithm), others, such as Deep Learning
models, require to set a large number of hyperparameters and to define a topology
where a big number of options come into play.

In addition, it is possible to identify two different tasks related to the malware
detection scenario: detection and classification. The former refers to the detection
of malware itself, where a suspicious sample has to be categorised as goodware or
malware. A second task is related to the classification of a malicious sample to the
malware family. This is an essential process where the sample is associated with a
known group which shares certain common characteristics. Although the detection
of malware is a vital step to detect and to prevent getting infected, the classification
into families remains a major barrier to avoid the expansion of the malicious sample
and to know the actions that the sample is able to take.

This chapter presents and evaluates a new method based on genetic algorithms
to evolve deep neural networks architectures trained for the detection of Android
malware. The main goal is to demonstrate how genetic algorithms and, in general,
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evolutionary algorithms can help to define the adequate architecture and hyper-
parameters in order build accurate and powerful malware detection methods. For
that purpose, fully connected and dropout layers are considered. In a previous
work [1], focused on the classification of malware into families, an evolutionary
algorithm was used to evolve both the topology and hyperparameters using a
specifically designed individual encoding and genetic operators. We extend this idea
by deploying EvoDeep [2].

EvoDeep leverages a genetic algorithm and a finite state machine to search
for a configuration of hyperparameters and layers that is able to maximise the
performance of a deep neural network in a particular problem. The genetic algorithm
includes a dynamic individual encoding representing the hyperparameters and a
sequence of layers of variable size. For its part, the finite state machine generates
valid sequences of layers. Due to EvoDeep was originally designed for building
Convolutional Neural Networks architectures, it is required to adapt the finite state
machine in order to generate sequences of layers only considering fully connected
and dropout layers. This tool also requires to define a broad range of values for
each parameter, which will form the search space. Since each individual represents
a specific network, its fitness is calculated by training and evaluating that model.
In order to train the architectures and to evaluate the approach presented, the
OmniDroid dataset [3] is used, a collection of feature vectors composed by static and
dynamic characteristics extracted from malicious and benign Android applications.
The OmniDroid dataset was built using the AndroPyTool framework.1 In this
research only static features have been considered.

The main contributions of this chapter are summarised as follows:

• An analysis of the literature focused on the use of Neuroevolution and Deep
Learning architectures to build Android malware detection and classification
algorithms and methods.

• A novel method based on a modification of the EvoDeep framework to automat-
ically define Deep Learning architectures in order to classify suspicious Android
applications into goodware or malware. A representation of the samples based
on a wide number of static features has been followed.

• An evaluation of the approach presented using a recently published dataset con-
taining 11,000 malware and 11,000 goodware samples. This dataset provides a
plethora of already extracted features including API Calls, permissions declared,
system commands, opcodes or a taint analysis performed with the FlowDroid
tool.

• A thorough assessment of the architectures generated using an evolutionary
search based approach.

The remaining sections of this chapter are organised as follows: Sect. 13.2 intro-
duces the state-of-the-art literature. Then, Sect. 13.3 describes our application of
Neuroevolution to the Android malware detection domain. Section 13.4 summarises

1https://github.com/alexMyG/AndroPyTool.

https://github.com/alexMyG/AndroPyTool
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the experimental setup and Sect. 13.5 presents the experiments and results. Finally,
a series of conclusions are provided in Sect. 13.6.

13.2 Deep Learning Based Android Malware Detection
and Classification Approaches

In the nineties, different researches introduced the use of Evolutionary Computation
to define the hyperparameter or the topology of Artificial Neural Networks. This
combination was called Neuroevolution. With different representation schemes,
using evolutionary strategies and focusing on different aspects of neural networks,
this research line showed a great potential to generate accurate models in varied
domains. However, in the case of neural networks and Deep Learning models
applied to the detection of Android malware, Neuroevolution has been scarcely
applied. In the following paragraphs, some of the most important approaches to
address the malware detection problem using these learning models are described.

Most of the huge volume of literature presenting malware detection or classi-
fication tools has used classical machine learning algorithms [4]. However, Deep
Learning based methods are increasingly present in the literature. The large number
of features used to represent the behaviour of a sample, the complexity of these
features or the different representation schemes (such as call graphs [5], geometric
schemes [6] or Markov chains [7]) make the use of these techniques a natural
alternative to build accurate classifiers.

One of the first researches evaluating the use of Deep Learning in this domain
was addressed by Yuan et al [8, 9], who presented Droid-Sec. This is an approach
for Android malware detection based on static and dynamic features. The learning
consists of two phases. In the first one, a Deep Belief Network (DBN) is used as
an unsupervised pre-training step. In the second phase, the model is fine-tuned
following a supervised process. The results show that DL architectures outperform
classical methods such as SVM or C4.5 with a difference of 10% accuracy. DBNs
have been largely studied by many other authors. DroidDeep [10] relies on static
features (permissions, API calls and components deployment) to make a search
space of 30,000 characteristics. A Deep Belief Network is used to filter these
features, spotting the most important ones. The detection step is then produced
by a SVM classifier. DBNs are also used in DroidDelver [11], this time using
API call blocks constructed by organising API calls in compliance with the smali
code in which they are defined. According to the authors, these blocks represent a
complete function, thus creating a higher level representation of the behaviour of
each sample. DBNs are compared against Stacked AutoEncoders (SAEs), showing
that the former leads to better results. DeepFlow [12] focuses on data flows extracted
with FlowDroid [13], a static taint analysis tool which finds connections between
sensitive API calls (sources and sinks). Following the approach previously used by
other literature, a DBN is firstly used in an unsupervised manner to structure the
features. Then, the model is trained with a supervised procedure.
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Other literature has employed and compared other architectures, such as typical
DNNs, CNNs or LSTMs. Regarding the first ones, Fereidooni et al. [14] tested the
use of deep architectures composed of fully connected layers and static features,
including intents, permissions, system commands, suspicious API calls or malicious
activities. A comparison against classical methods such as AdaBoost, Random
Forest or SVM is provided, showing that deep neural architectures achieve excellent
results, in this case only improved by XGBoost. With a more complex features
representation scheme, Deep4MalDroid [15] builds directed graphs with the system
calls dynamically extracted at the kernel level. Nodes denote system kernel level
calls, the size of the node indicates its frequency and connections between nodes
define the probability of that sequential pair of calls. The features of the graphs
are used to train a Deep Learning model with Stacked AutoEncoders. Multimodal
Deep Learning has also been studied in this domain by Kim et al. [16]. By training
five different deep networks with different groups of features (strings, opcodes,
API calls, shared functions, and vector combining permission, components and
environmental information) and finally combining these models with another DNN
model.

Convolutional models have also been explored for malware detection tasks.
A research by McLaughlin et al. [17] operates with opcode sequences from the
disassembled code. The performance of the CNNs shows that these models are
computationally efficient in comparison to n-gram features based approaches. Deep-
ClassifyDroid [18] performs a three-step classification process: extraction of static
features from the Android Manifest and the disassembled code, features embedding
and detection. In the final step, a CNN architecture with two convolutional blocks is
able to reach high results, with an improvement in comparison to kNN or linear
SVM. Wang et al. [19] follow a hybrid model using static features and a deep
autoencoder as a pre-training step in order to reduce the training time. A CNN
is then in charge of the detection step. The use of CNNs has also been tested in
comparison with Long Short Term Memory (LSTM) architectures and n-gram based
methods [20]. The results show that both CNN and LSTM are able to improve the
accuracy levels of n-gram based approaches, and that CNN outperforms LSTM.

Research has also focused on studying LSTM networks separately. DeepRe-
finer [21] concentrates on the semantic structures found in the Android bytecode
and trains LSTM networks. The results show this approach is able to achieve
higher results in comparison to other state-of-the-art approaches and that it is robust
against obfuscation techniques. LSTM is also used as classification method by
Vinayakumar et al. [22], selecting sequences of permissions as features. In this
research, the authors highlight the need to test different architectures with different
network parameters in order to find an appropriate model. Other authors have
preferred to implement new specifically designed architectures. In MalDozer [23],
samples are represented by sequences of API calls in the assembly code to perform
malware detection but also to identify the malware family. In the final step of the
designed deep model, a one unit output configuration is chosen in case of detection
and n units in case of family classification.
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Although some of the previous introduced state-of-the-art literature has men-
tioned the difficulty of defining the structure or the hyperparameters of the deep
model used, recent literature has analysed this problem in further detail. Booz et
al. [24] undertake a research where only permissions are used as features. In order to
define the Deep Learning architecture, the authors follow a grid search in order to set
the combination of parameters. The same problem was previously addressed using a
genetic algorithm to search for the optimal deep architecture, in this case focused on
classifying malware into families [1]. Additionally, evolutionary approaches have
also been directly applied in the Android malware detection domain to build new
classifiers [25] or to improve classical machine learning algorithms [26].

In this chapter, we introduce the application of Neuroevolution to evolve Deep
Learning architectures and their hyperparameters to generate accurate Android
malware detection models. This combination has been scarcely studied in state-of-
the-art literature. The EvoDeep framework is used to guide the genetic search, where
specific crossover and mutation operators modify individuals. Simultaneously, a
finite state machine defines valid sequences of layers.

13.3 Evolving the Architecture and Parameters of DNNs
for Malware Detection

With the goal of building a Deep Neural Network model able to detect Android
malware accurately, we leverage EvoDeep [2]. We have modified this framework
in order to generate sequences of fully connected and dropout layers. Through
an evolutionary process, this framework will create, combine and mutate different
individuals, representing potential deep models where the objective is to maximise
the classification accuracy. In comparison to a grid search based approach, where an
excessive and unmanageable number of different topologies and hyperparameters
combination would be tested, an heuristic search allows to reduce the search
time and to provide near-optimal solutions. By evaluating each individual created,
crossed or mutated, which implies training the whole deep model defined by the
individual encoding, the evolutionary process will successively generate better
solutions. In order to train these models, the OmniDroid dataset has been used,
a collection of features extracted from 22,000 Android malware and goodware
samples [3].

13.3.1 Genetic Algorithm Description

The genetic algorithm used by EvoDeep implements a (μ + λ) strategy, where μ

individuals are selected from the previous generation, whereas new λ individuals are
created in each generation. Figure 13.1 represents the workflow of this algorithm. A
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Individuals 
initialisation

Evaluation

Crossover Mutation

Stop criteria Solution

Selection

Random selection 
of pairs

Fig. 13.1 Scheme of the genetic algorithm used during the evolutionary search

Fig. 13.2 Representation of the individual encoding used in EvoDeep. Every individual encodes a
specific Deep Neural Network configuration, including the optimiser, a structure of layers and the
parameters of each layer

pool of individuals is initially randomly created. The only restriction applied in this
first step is that individuals start from minimal architectures, that is to say, with the
minimum number of layers predefined. This seeks to avoid unnecessarily complex
and oversized architectures, which often tend towards overfitting. This decision aims
to leave in hands of the genetic algorithm the selection of a higher number of layers
if this leads to better solutions.

The encoding of these individuals is represented in Fig. 13.2. It is divided into
two sections, one representing the optimiser O and a second dynamic section
representing a variable number of layers Li . In addition, each layer defines a series
of parameters Pk

i (such as the activation or initialisation function).
For the hyperparameters of the model, the individual only encodes the optimiser,

which can be one of the following algorithms: Adam, SGD, RMSprop, Adagrad,
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Adamax or Nadam. Other hyperparameters have been fixed experimentally. Thus,
the number of epochs and the batch size were fixed to 300 and 1000, respectively.
In case of the number of epochs, a dynamic stop criteria ends an execution when no
improvement is observed in the last 30 iterations.

In case of the layer level parameters, each type of layers involves certain
variables. Fully connected or Dense layers define the number of units, which will
be in the range between 10 and 500 with a step of 50; an activation function, where
the options are ReLU, softmax, softplus, softsign, tanh, sigmoid, hard_sigmoid and
linear; and also a kernel initialisation function with the following alternatives:
uniform, lecun_uniform, normal, zero, glorot_normal, glorot_uniform, he_normal,
he_uniform. The second type of layers engaged is dropout, where only a rate of units
to drop has to be defined. This value will be in the range [0.1, 0.8]with a step of 0.1.

13.3.2 Genetic Operators

During the search, two specifically designed genetic operators introduce modifica-
tions in the population at each generation. Due to the two levels of parameters in
the individual (optimiser and sequence of layers in the first level and the parameters
of each layer in the second level), the operators are designed to operate at each

G0

G1

L0 L1 ... Ln

Puc

L1 L2 ... Ln

I0

I1

Optimiser crossover

Layers crossover (Cut and splice)

I0

I1

L0 ... Ln

L1 L2 L1 ... Ln

I’0

I’1

P0
0 P0

1 ... P0
n

Puc Puc Puc

Layer0

Puc

P0
0 P0

1 ... P0
n

Internal parameters crossover

Fig. 13.3 Representation of crossover operation. At the top, the optimiser of two different parent
individuals and the parameters of each pair of coincident layers are crossed according to a Puc

probability. At the bottom, the section of layers of two different individuals is crossed following
a cut and splice scheme. A random point between layers is selected for each individual and the
second section of both individuals is swapped
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level individually. The crossover operator (see Fig. 13.3) is in charge of combining
two parent individuals to create a new pair of solutions. It operates at the two
levels previously mentioned. Externally, a uniform crossover is applied to the
optimiser, while the set of layers of two individuals are crossed using a cut and
splice approach. This last operation selects a random point in the structure of layers
of each individual to create two fragments. Then, the right part of each individual
is swapped, generating a new pair of structures of layers as a combination of the
parents. This operation ensures the creation of new individuals of different structure
of layers and sizes, always keeping intact the first and last layer and checking that
the new sequence is still valid. At the internal level, the parameters of each pair of
coincident layers are also uniformly crossed.

The mutation operator (see Fig. 13.4) has a similar behaviour. At the external
level, each global parameter is mutated following a uniform scheme, while a new
set of layers can be randomly added between any pair of the existing layers. The
internal operation mutates every layer parameter according to a given probability.

Fig. 13.4 Representation of
the mutation operation. At the
top, the optimiser and the
internal parameters of each
layers are mutated according
to a Pum probability. At the
bottom, a new set of n layers
is introduced in a random
position of the individual

O0

L0 L1 L2 ... Ln

Pum

L0 L1 L2’ L3 L4 ... Ln
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Insertion point
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0 P0

1 P0
2 ... P0

n

Pum Pum Pum Pum

Layer0



366 A. Martín and D. Camacho

13.3.3 Finite State Machine

EvoDeep employs a Finite State Machine (FSM) in order to generate valid layers
sequences, thus creating trainable and applicable network models. At the same
time, this FSM is also used cooperatively by the crossover and mutation operator
in order to check if new individuals encode valid layers sequences. Given the
specific characteristics of the problem faced in this chapter, we modified this FSM
as shown in Fig. 13.5, where only fully connected or dense and also dropout layers
are involved (the original implementation included the necessary layers to deploy
convolutional cycles which are not necessary in the malware detection domain).
The design of this new finite state machine limits the possible layers sequences to
a minimum size of two, where the last layer has to be unavoidably of type fully
connected. Figure 13.6 shows different examples of the layers sequences which can
be generated with the new FSM designed during the heuristic search.

13.3.4 Fitness Function

The fitness function of each individual defines its potential as Deep Learning
classification model in the accurate classification of Android malware. Thus, the
fitness is calculated after training and evaluating the architecture encoded by the
individual. For that purpose, the architecture defined by the genome is implemented
and trained in the training set. Then, in order to avoid overfitting, it is evaluated in a
validation set and the result is assigned to the fitness function.

Fig. 13.5 FSM designed to
generate Deep Learning
models composed by fully
connected and dropout layers

1
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Dense Dropout Dense Dense

Dropout Dense Dropout Dropout Dense

Dense Dense Dense Dense Dense

Dense Dropout Dropout Dense Dropout Dense

Dropout Dense Dropout Dense Dropout Dropout Dense

Dense Dense Dense Dense Dense Dropout Dropout Dense

I0

I1

I2

I3

I4

I5

Fig. 13.6 Examples of different layers sequences that EvoDeep is able to generate during the
heuristic search with the new FSM designed for the Android malware detection problem

The next subsections present the different models generated and the results
obtained.

13.4 Experimental Setup

This section describes a series of experiments performed to assess the performance
of the evolutionary search based approach presented in the previous section.
To that end, the Android malware detection domain has been chosen: given a
suspicious APK (an Android Application Package), it is necessary to determine if
it has malicious intentions (malware) or innocuous (goodware). Once described the
dataset used in the next subsection, the results obtained from different executions,
the architectures generated and a comparison against classical approaches are
described.

13.4.1 Dataset

The OmniDroid dataset [3] has been used in this research in order to evaluate the
ability of the genetic algorithm to find the most suited Deep Learning model. This
dataset is a collection of static and dynamic features extracted from 22,000 Android
goodware and malware samples. It contains a large number of features extracted
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with AndroPyTool2 [27] which represent the behaviour of every sample. For each
application, the static features defined are:

1. API Calls: Important features which determine the functions invoked of the
Android operating system from the code.

2. Opcodes: Low level information which can reveal important behavioural pat-
terns.

3. Permissions: A list of permissions declared in the Android Manifest. This
information reports the functionalities that the app could use.

4. Intents: Data related to the actions and events that the application can trigger or
being listening to.

5. Strings: Strings found in the code and which could reveal hidden sections of
code.

6. System commands: Linux level commands which can be used to perform certain
operations such as privilege escalation.

7. FlowDroid: A taint based analysis run with FlowDroid [13]. It reports connec-
tions between API calls which act as sources or sinks of data.

The OmniDroid dataset also includes dynamic features extracted with Droid-
Box;3 however, in this research we only considered static features.

13.4.2 Algorithm Parametrisation

Only a few hyperparameters need to be defined before executing the genetic
algorithm. All of them have been fixed experimentally, trying not to limit the ability
of the algorithm to explore the search space, and allowing, at the same time, to
perform a fine-grained refining process to provide accurate solutions. The maximum
number of generations was set to 200, but an early stop criteria ends the execution
when no improvement was observed in the last 5 generations. μ and λ have been
experimentally fixed to 5 and 10, respectively. Although these two parameters limit
the evolutionary search to a small number of individuals, it was observed that the
genetic search is improved in terms of time and thoroughness. A 50% chance was
chosen for the mutation and crossover probabilities and a 30% change is considered
to add or remove layers in individuals.

In order to run EvoDeep it is also necessary to define limits of the search space.
Table 13.1 summarises the range of values used for each hyperparameter.

2https://github.com/alexMyG/AndroPyTool.
3https://github.com/pjlantz/droidbox.

https://github.com/alexMyG/AndroPyTool
https://github.com/pjlantz/droidbox
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Table 13.1 Range of values defined for each hyperparameter

Hyperparameter Range of values

Kernel initialiser Uniform, Lecun uniform, Normal, Zero, Glorot normal, Glorot uniform, He
normal, He uniform

Activation Relu, Softmax, Softplus, Softsign, Tanh, Sigmoid, Hard sigmoid, Linear

No. units 10 <= n <= 500, step 50

Dropout rate 0.1 <= p <= 0.8, step 0.1

Optimiser Relu, Softmax, Softplus, softsign, Tanh, Sigmoid, Hard Sigmoid, Linear

No. layers 3 <= n <= 10, step 1

13.4.3 Experimental Environment

All executions were run in a EVGA GeForce GTX 1060 6 GB. The code was
implemented in Python, and the Keras library4 was used to train and evaluate the
deep models generated during the genetic search. For the experimental comparison
against classical machine learning algorithms, the Scikit-learn library [28] was used.

13.5 Results

This section summarises the results obtained and the architectures generated after
40 executions of the genetic algorithm previously described. In each execution, the
evolutionary search runs until the stop criteria is met or the maximum number of
epochs is reached (300). Figure 13.7 shows the evolution of all the executions. As
can be seen, the approach implemented, consisted in an extension of the EvoDeep
algorithm, has excellent convergence characteristics, requiring only one iteration to
reach close to 90% accuracy in the validation set. From this first iteration, a smooth
fine-tuning process is performed. None of the executions exceeds 31 generations,
which means that the stop criteria is early applied in all cases.

The approach followed allows to define the most suited architecture to solve
the malware detection problem faced. Although the evolutionary search starts
from minimal solutions, individuals are expected to evolve towards more complex
solutions with the goal of providing accurate solutions. Figure 13.8 shows the
number of layers of the best individual of each execution. As can be appreciated,
there is a wide variability among solutions: while the minimum number of layers
observed is 3, there are also executions where the maximum number of layers, a
total of 9, is reached. This is caused by the search process, where some solutions are
improved including a higher number of units or modifying some hyperparameters
while other solutions are upgraded using a higher number of layers.

4https://keras.io.

https://keras.io
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Fig. 13.7 Evolution of the fitness function (validation set) in all the executions over generations.
All executions reach high levels of accuracy after the first generation

In order to evaluate if there is a strong variation in terms of complexity, Fig. 13.9
represents the number of units of the best model generated after each execution. In
contrast to Fig. 13.8, the number of units becomes more stable among executions,
and remains in the range [9575, 11,165] with an average value of 10,173.65 ±
359.12. This evidences that although the architecture of the solutions generated can
be considerably different, the final complexity is very similar.

The use of the three data splits has also been studied, aiming to assess if it is
a correct procedure to evaluate individuals and to avoid overfitting. Figure 13.10
displays the accuracy reached in these sets. While the evaluation in the training
set produces highly accuracy rates, with a significant difference in comparison to
the other splits, the validation set allows to obtain a closer estimation of the real
performance (appreciated in the test set) of each individual.

For a further assessment of the models generated using the approach based on
EvoDeep, the same dataset was used to train and test classical machine learning
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Fig. 13.8 Number of layers of the best individual obtained after each execution
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Fig. 13.9 Number of units present in the architecture of the best individual obtained after each
execution
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Fig. 13.10 Accuracy value obtained in the training, validation and test sets. Only 20 random
executions are shows for a better visualisation

Table 13.2 Summary of the results obtained with the application of EvoDeep to evolve Deep
Learning models and other classical machine learning methods

Classifier Accuracy Mean Max. Min.

Decision Tree Test 85.23 ± 0.32 85.82 84.61

Training 99.79 ± 0.02 99.83 99.75

Nearest Neighbors Test 82.32 ± 0.34 82.93 81.85

Training 87.47 ± 0.18 87.77 87.08

Random Forest Test 87.5 ± 0.23 87.93 87.09

Training 99.02 ± 0.09 99.2 98.88

DNN standard model Test 80.90 ± 10.65 85.38 50

Training 81.43 ± 10.86 86.37 50

Evolved Deep Learning model Test 87.92 ± 0.55 88.77 86.81

Training 96.42 ± 1.63 99.43 92.22

The best value obtained in the test set is highlighted in bold

models. In particular, Decision Tree, Nearest Neighbours, Random Forest and a
DNN architecture with two internal layers of 200 units were trained, which are some
of the most prevalent classifiers in the state-of-the-art literature related to Android
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malware detection. The results are shown in Table 13.2. The average value of the
best individuals delivered in the different executions of the genetic algorithm reach
a 87.92% accuracy while the maximum value was 88.77%. In both cases, these
are highest values obtained among classifiers. The second best alternative, Random
Forest, which have shown excellent results in the literature, is not able to surpass
the Deep Learning model performance.

Figure 13.11 represents the architectures and hyperparameters of the final pop-
ulation of one execution of the genetic search. As already stated, there is a big
variability in terms of number of layers. However, all of them have similar accuracy
rates. In general, it can be seen how the search introduces layers with a certain
number of units which are shared among individuals. This is the case of the Dense
layer of 310 units, which is present in the entire final population in different
positions of the individuals. This fact reveals that those layers which show an
outstanding performance will propagate to the rest of the population in the following
iterations.

The use of the dropout layer, which has an important role to avoid overfitting, is
also significant. In most of the solutions, this type of layer composes at least 50%
of the architecture. It is noticeable that almost all individuals start with this type of
layer. This can be seen as a features filtering step, in charge of reducing the number
of features in subsequent layers. The only individual which does not follow this
pattern (Ind. 2) has in contrast three consecutive dropout layers after the first fully
connected layer. A similar pattern can be appreciated before the last layer, which in
all cases is also composed by a dropout component.

Regarding the hidden layers, some individuals include up to 3 hidden compo-
nents (i.e. Ind. 3 and 6). However, only one hidden layer is required to provide
the best results (Ind. 8). Due to the operation of the genetic search, where a
final population is provided, it is possible to select a solution applying different
restrictions. In this case, it is possible to select the individual with the lower number
of hidden layers.

As regards kernel initialisation functions, there are no clear trends, although the
he_uniform function has a certain degree of significance in the first fully connected
layer of all individuals. In the last layer, a broad range of functions are used, which
means that this does have special relevance in achieving better results. In case of the
activation function, there is no observable alignment in the first layers, while in the
last layer, the prevailing functions are sigmoid and softmax.

Finally, the computational time has also been analysed. Figure 13.12 shows the
mean time by generation for the 40 executions performed. As can be seen, there is
an increasing evolution across generations, although the mean time by generation is
always in the range between 2000 and 4500 s. The reason for these high values lies
in that the evaluation of every individual implies first to train the model defined by
its encoding and then to evaluate the performance in the validation set.
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Fig. 13.11 Architectures and hyperparameters of the 10 individuals obtained in one execution of
the genetic search. For each individual, the accuracy in the test set is provided
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Fig. 13.12 Evolution of the mean time by generation for all the executions of EvoDeep

13.6 Conclusions

This chapter introduces the application of Neuroevolution for the design of accurate
Deep Learning architectures to detect Android malware. A modification of the
Finite State Machine used by the EvoDeep framework has allowed to implement
a model to generate valid sequences of fully connected and dropout layers. In the
experiments, it has been demonstrated that this approach is able to successfully
define architectures which provide high accuracy rates and that they outperform
classical machine learning approaches typically used in the state-of-the-art litera-
ture. In addition, the approach followed has a strong ability to avoid overfitting,
using a validation set to guide the evolutionary search. In future work, we aim to
improve the genetic search by implementing a multi-objective algorithm where the
accuracy of the model is maximised but where the size of the model (in terms of
number of units and layers) is also minimised. This can help to create new solutions
with better generalisation ability.
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Chapter 14
Data Dieting in GAN Training

Jamal Toutouh, Erik Hemberg, and Una-May O’Reilly

Abstract We investigate training Generative Adversarial Networks, GANs, with
less data. Subsets of the training dataset can express empirical sample diversity
while reducing training resource requirements, e.g., time and memory. We ask
how much data reduction impacts generator performance and gauge the addi-
tive value of generator ensembles. In addition to considering stand-alone GAN
training and ensembles of generator models, we also consider reduced data train-
ing on an evolutionary GAN training framework named Redux-Lipizzaner.
Redux-Lipizzaner makes GAN training more robust and accurate by exploit-
ing overlapping neighborhood-based training on a spatial 2D grid. We conduct
empirical experiments on Redux-Lipizzaner using the MNIST and CelebA
data sets.

14.1 Introduction

In Generative Adversarial Network(GAN) training pathologies such as mode and
discriminator collapse can be overcome by using an evolutionary approach [25, 27].
In particular, an evolutionary GAN training method called Lipizzaner has
been used for creating robust and accurate generative models [25]. We work
with Redux-Lipizzaner, a descendant of Lipizzaner. Per Lipizzaner,
Redux-Lipizzaner operates on spatially distributed populations of generators
and discriminators. It executes an asynchronous competitive coevolutionary algo-
rithm on an abstract 2D spatial grid of cells organized into overlapping Moore
neighborhoods. On each cell there is a subpopulation of generators and the other
of discriminators, aggregated from the cell and its adjacent neighbors. The neural
network models’ parameters are updated with stochastic gradient descent following
conventional machine learning. Between training epochs, the subpopulations are
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reinitialized by requesting copies of best neural network models from the cell’s
neighborhood. This implicit asynchronous information exchange relies upon over-
lapping neighborhoods. In contrast to Lipizzaner, only after the final epoch,
in Redux-Lipizzaner, the probability weights for each generator ensemble,
consisting of a cell and its neighbors, are optimized using an evolutionary strategy.
One model in the ensemble is selected probabilistically, on the basis of the weights,
to generate the sample.

While it has been shown that mixtures of GANs perform well [6], one drawback
of relying upon multiple generators is that it can be resource intensive to train them.
A simple approach to reduce resource use during training is to use less data. For
example, different GANs can be trained on different subsamples of the training data
set. The use of less training data reduces the storage requirements, both disk and
RAM while depending on the ensemble of generators to limit possible loss in per-
formance from the reduction of training data. In the case of Redux-Lipizzaner
there is also the potential benefit of the implicit communication that comes from the
training on overlapping neighborhoods and updating the cell with the best generator
after a training epoch. This leads to the following research questions:

1. How does the accuracy of generators change in spatially distributed grids when
the dataset size is decreased?

2. How do ensembles support training with less data in cases where models are
trained independently or on a grid with implicit communication?

The contributions of this chapter are:

• Redux-Lipizzaner, a resource efficient method for evolutionary GAN
training,

• a method for optimizing GAN generator ensemble mixture weights via evolu-
tionary strategies

• analysis of the impact of data size on GAN training on the MNIST and CelebA
data sets

• analysis of the value of ensembling after GAN training on subsets of the data.

We proceed as follows. Notation for this chapter is in Sect. 14.2. In Sect. 14.3
we describe related work. The Redux-Lipizzaner is described in Sect. 14.4.
Empirical experiments are reported in Sect. 14.5. Finally conclusions and future
work are in Sect. 14.6.

14.2 General GAN Training

In this study, we adopt the notation similar to [5, 17]. Let G = {Gg, g ∈ U} and
D = {Dd, d ∈ V} denote the class of generators and discriminators, where Gg and
Dd are functions parameterized by g and d . U,V ⊆ R

p represent the respective
parameters space of the generators and discriminators. Finally, let G∗ be the target
unknown distribution to which we would like to fit our generative model.
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Formally, the goal of GAN training is to find parameters g and d in order to
optimize the objective function

min
g∈U max

d∈VL(g, d) , where

L(g, d) = ex∼G∗ [φ(Dd(x))] + ex∼Gg [φ(1−Dd(x))] , (14.1)

and φ : [0, 1] → R, is a concave measuring function. In practice, we have access
to a finite number of training samples x1, . . . , xm ∼ G∗. Therefore, an empirical
version 1

m

∑m
i=1 φ(Dd(xi)) is used to estimate ex∼G∗[φ(Dd(x))]. The same also

holds for Gg.

14.3 Related Work

Evolutionary Computing and GANs Competitive coevolutionary algorithms
have adversarial populations (usually two) that simultaneously evolve [12]
population solutions against each other. Unlike classic evolutionary algorithms, they
employ fitness functions that rate solutions relative to their opponent population.
Formally, these algorithms can be described with a minimax formulation [2, 9]
which makes them similar to GANs.

Spatial Coevolutionary Algorithms Spatial (toroidal) coevolution is an effective
means of controlling the mixing of adversarial populations in coevolutionary
algorithms. Five cells per neighborhood (one center and four adjacent cells) are
common [15]. With this notion of distributed evolution, each neighborhood can
evolve in a different direction and more diverse points in the search space are
explored. Additional investigation into the value of spatial coevolution has been
conducted by [20, 29].

Scaling Evolutionary Computing for Machine Learning A team from OpenAI
[22] applied a simplified version of Natural Evolution Strategies (NES) [28]
with a novel communication strategy to a collection of reinforcement learning
(RL) benchmark problems. Due to better parallelization over thousand cores, they
achieved much faster training times (wall-clock time) than popular RL techniques.
Likewise, a team from Uber AI [23] showed that deep convolutional networks
with over four million parameters trained with genetic algorithms can also reach
results competitive to those trained with OpenAI’s NES and other RL algorithms.
OpenAI ran their experiments on a computing cluster of 80 machines and 1440
CPU cores [22], whereas Uber AI employed a range of hundreds to thousands
of CPU cores (depending on availability). EC-Star [14] is another example of a
large scale evolutionary computation system. By evaluating population individuals
only on a small number of training examples per generation, Morse et al. [21]
showed that a simple evolutionary algorithm can optimize neural networks of
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over 1000 dimensions as effectively as gradient descent algorithms. FCUBE, see
https://flexgp.github.io/FCUBE/, is a cloud-based modeling system that uses genetic
programming [4].

Ensembles—Evolutionary Computation and GANs Evolutionary model ensem-
bling has been explored with the aforementioned FCUBE system. FCUBE factors
different data splits to cloud instances that model with symbolic regression. These
instances draw subsets of variables and fitness functions and learn weakly. After
learning the best models are filtered to eliminate the weakest ones and ensemble
fusion is used to unify the prediction.

Bagging applies a weighted average to the outputs of a model set for prediction
and assumes that all models use the same input variables. Random forests combine
bagging with decision trees that use randomized subsets of the input variables. The
ensemble technique of Redux-Lipizzaner has weights that bias probabilistic
selection of one model in the ensemble to generate a sample in contrast to these
techniques which consider all model outputs and average them. There are alternative
methods of combining GANs into ensembles. For example, “self-ensembles” of
GANs were introduced by Wang et al. [26] and are constructed with models based
on the same network initialization while training for different numbers of iterations.
The same authors introduced also cascade GANs where the part of the training
data which is badly modeled by one GAN is redirected to a follow-up GAN. Other
examples include boosting such as [7] and [24] who present AdaGAN, which adds
a new component into a mixture model at each step by running a GAN algorithm on
a reweighted sample. MD-GAN [8] distributes GANs so that they can be trained
over datasets that are spread on multiple workers. It proposes a novel learning
procedure to fit this distributed setup, whereas Lipizzaner uses conventional
gradient-based training and a probabilistic mixture model. In K-GANS [3] an
ensemble of GANs is trained using semi-discrete optimal transport theory. Quoting
the authors, “each generative network models the transportation map between a
point mass (Dirac measure) and the restriction of the data distribution on a tile
of a Voronoi tessellation that is defined by the location of the point masses. We
iteratively train the generative networks and the point masses until convergence.”
MGAN [13] trains with multiple generators given the specific goal of overcoming
mode collapse. They add a classifier to the architecture and use it to specify
which generator a sample comes from. Essentially, internal samples are created
from multiple generators and then one of them is randomly drawn to provide the
sample. With the specific aim to provide complete guaranteed mode coverage, [30]
constructing the generator mixture with a connection to the multiplicative weights
update rule.

The next section presents Redux-Lipizzaner: a scalable, distributed frame-
work for coevolutionary GAN training with reduced training data use.

https://flexgp.github.io/FCUBE/
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14.4 Data Reduction in Evolutionary GAN Training

This section describes Redux-Lipizzaner which is a spatially distributed
coevolutionary GANs training method in which GANs at each cell are
trained by using subsets of the whole training data set. The key output of
Redux-Lipizzaner is the best performing ensemble (mixture) of generators.
First we describe the spatial topology used to evolutionary train GANs in
Sect. 14.4.1. Next we present how we subsample the training data in Sect. 14.4.2.
Then in Sect. 14.4.3 we describe how the final generator mixture weights are
determined. Finally, we formalize the Redux-Lipizzaner algorithm in
Sect. 14.4.4.

14.4.1 Overview of Redux-Lipizzaner

Redux-Lipizzaner is an extension of Lipizzaner and addresses the robust
training of GANs by employing adversarial arms races between two populations,
one of generators, and one of discriminators. Going forward, we use the term
adversarial populations to denote these two populations. Thus, we define a pop-
ulation of generators g = {g1, . . . , gZ} and a population of discriminators d =
{d1, . . . , dZ}, where Z is the size of the population. These two populations are
trained one against the other. The use of populations is one source of diversity
that has shown to be adequate to deal with some of the GAN’s training patholo-
gies [1].
Redux-Lipizzaner defines a toroidal grid. In each cell, it places a GAN (a

pair generator-discriminator), which is named center. Each cell has a neighborhood
that forms a subpopulations of models: g (generators) and d (discriminators). The
size of these subpopulations is denoted by s. In this study, Redux-Lipizzaner
uses five-cell Moore neighborhood (s = 5), i.e., the neighborhoods include the cell
itself (center) and the cells in the west, north, east, and south.

For the k-th neighborhood in the grid, we refer to the generator in its center
cell by gk,1 ⊂ g and the set of generators in the rest of the neighborhood cells
by Redux-Lipizzaner gk,2, . . . , gk,s , respectively. Furthermore, we denote the
union of these sets by gk = ∪s

i=1gk,i ⊆ g, which represents the kth generator
neighborhood. Note that given a grid size m × m, there are m2 neighborhoods.
Figure 14.1 illustrates some examples of the overlapping neighborhoods on a 4× 4
toroidal grid and how the subpopulations of each cell are built (G1,1 and D1,1).
The use of this grid for training the models addresses the quadratic computational
complexity of the basic adversarial competitions based algorithms. Without loss of
generality, we consider square grids of m×m size in this study.

The overlapping neighborhoods define the possible exchange of information
among the different cells during the training process due to the selection and
replacement operators applied in coevolutionary algorithms.
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Fig. 14.1 Illustration of overlapping neighborhoods on a toroidal grid. Note how a cell update
at N1,2 can be communicated to N1,1 and N1,3 when they gather their neighbors. If N1,1 is
then updated with the updated value from N1,2, the value has propagated. If the propagation
continues one more cell to the left to N1,0, the value will come into the range of both N0,0 and
N2,0. Propagation runs laterally and vertically. We also show an example of a cell’s generator and
discriminator subpopulations (based on its neighborhood) for N1,1

Redux-Lipizzaner is built on the following basis: selection and replace-
ment, fitness evaluation, and reproduction based on GAN training.

Selection and Replacement Selection promotes high performing solutions when
updating a subpopulation. Redux-Lipizzaner applies tournament selection of
size τ to update the center of the cell. First, the subpopulations with the updated
copies of the neighbors evaluate all GAN generator-discriminator pairs, then τ

generators and τ discriminators are randomly picked, and the center of the cell is set
as the fittest generator and discriminator from the τ selected ones (lines from 1 to
6 of Algorithm 2). After all GAN training is completed all models are evaluated
again, and the tournament selection is applied to replace the least fit generator and
discriminator in the subpopulations with the fittest ones and sets them as the center
of the cell (lines from 20 to 27 of Algorithm 2).

Fitness Evaluation The search and optimization in evolutionary algorithms are
guided by the evaluation of the fitness, a measure that evaluates how good a
solution is at solving the problem. In Redux-Lipizzaner, an adversarial
method, the performance of the model depends on the adversary. The performance
of a given generator (discriminator) is evaluated in terms of some loss function
M . Redux-Lipizzaner uses Binary cross entropy (BCE) loss (see Eq. 14.2),
where the model’s objective is to minimize the Jensen–Shannon divergence (JSD)
between the real (p) and fake (q) data distributions, i.e., JSD(p ‖ q). In
Redux-Lipizzaner, fitness L of a model (gi ∈ g or dj ∈ d) is its average
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performance against all its adversaries.

MBCE = 1

2
ex∼Gg [log(1−Dd(x))]. (14.2)

Variation—GAN Training Model variation is done via GAN training, which is
applied in order to update the parameters of the models. Stochastic Gradient Descent
training performs gradient-based updates on the parameters (network weights) the
models. Moreover, Gaussian-based updates create new learning rate values nδ .

The center generator (discriminator) is trained against a randomly chosen
adversary from the subpopulation of discriminators (generators) (lines 9 and 14
of Algorithm 2, respectively).

14.4.2 Dataset Sampling in Redux-Lipizzaner

Instead of training each subpopulation with the whole training dataset, per
Lipizzaner, Redux-Lipizzaner applies random sampling with replacement
over the training data to define m2 different subsets (partitions) of data that will be
used as training dataset for each cell (see Fig. 14.2). Thus, each cell has its own
training subset of data.

14.4.3 Evolving Generator Mixture Weights

Redux-Lipizzaner searches for and returns a mixture of generators composed
from a neighborhood. The mixture of generators is the fusion of the different gener-
ators in the neighborhood trained by subsets of the training data set. The selection of
the best weights that define mixture ensemble is difficult. Redux-Lipizzaner
applies an ES-(1+1) algorithm [19, Algorithm 2.1] to evolve a mixture weight
vector w for each neighborhood in order to optimize the performance of the fused
generative model, see Algorithm 3.

Fig. 14.2 Illustration of how
the training dataset is
sampled to generate training
data subsets to train the
different neighborhoods on
the grid (N1,1 and N1,3)
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When using Redux-Lipizzaner for images Fréchet Inception Distance
(FID) score [10] is used to assess the accuracy of the generative models. Note,
nothing prevents the use of different metrics, e.g., inception score.

The s-dimensional mixture weight vector w is defined as follows:

g∗, w∗ = argmin
gk ,wk:1≤k≤m2

∑

gi∈gkwi∈wk

wiF IDgi
, (14.3)

where wi represents the probability that a data point comes from the ith generator
in the neighborhood, with

∑
wi∈wk wi = 1.

14.4.4 Algorithms of Redux-Lipizzaner

Algorithm 1 formalizes the main steps of Redux-Lipizzaner. First, it
starts the parallel execution of the training on each cell by initializing their own
learning hyper-parameters (i.e., the learning rate and the mixture weights) and
by assigning them their own training subsets (Lines 2 and 3). Then, the training
process, see Algorithm 2, consists of a loop with two main steps: first, gather
the GANs (neighbors) to build the subpopulations (neighborhood) and, second,
update the center by applying the coevolutionary GANs training method for all mini-
batches in the training subset. These steps are repeated T (generations or training
epochs) times. After that, each cell optimizes its mixture weights by applying an
Evolutionary Strategy in order to optimize the performance of the ensemble defined
by the neighborhood, see Algorithm 3. Finally, the best performing ensemble is
selected across the entire grid and returned, including its probabilistic weights, as
the final solution.

Section 14.5 next presents results regarding the question of how Redux-Lipiz
zaner performs given data reduction with the support of ensembles.

14.5 Experimental Analysis

In this section we proceed experimentally. We use Sect. 14.5.1 to present our
experimental setup. We then investigate the following research questions:

RQ1: How robust are spatially distributed grids when training with less of the
dataset?

RQ2: Given the use of ensembles, if we reduce the data quantity at each cell, at
what point will the ensemble fail to fuse the resulting models towards achieving
sufficient accuracy?
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Algorithm 1 Redux-Lipizzaner: In parallel, for each cell, initialize settings
then iterate over each generation. Each generation, retrieve neighbor cells to build
generator and discriminator subpopulations, evolve generators and discriminators
trained with SGD, replace worst with best and update self with best, and finally
evolve weights for a neighborhood mixture model.
Input: T : Total generations, E : Grid cells, k : Neighborhood size, θD : Training
dataset, θp : Sampling size in terms of dataset portion, θCOEV : Parameters for
CoevolveAndTrainModels, θEA: Parameters for MixtureEA
Return: n : neighborhood, ω : mixture weights

1: parfor c ∈ E do � Asynchronous parallel execution of all cells in grid
2: ds ← getDataSubset(θD, θp) � Creates a sub-set of the dataset
3: n, ω ← initializeCells(c, k, ds) � Initialization of cells
4: for generation do ∈ [0, . . . , T] � Iterate over generations
5: n← copyNeighbours(c, k) � Collect neighbor cells for the subpopulations
6: n← LipizzanerTraining (n, θCOEV ) � Coevolve GANs using Algorithm 2
7: end for
8: ω ← MixtureEA(ω, n, θEA ) � Evolve mixture weights, Algorithm 3
9: end parfor

10: return (n, ω)∗ � Cell with best generator mixture

14.5.1 Experimental Setup

We use two common image datasets from the GAN literature: MNIST [16] and
CelebA [18]. MNIST has been widely used and it consist of low dimensional
handwritten digits images. The larger CelebA dataset contains more than 200,000
images of faces. To obtain an absolute measure of model accuracy, we draw fake
image samples from the generative models computed and score them with Frechet
inception distance (FID) [11]. FID score is a black box, discriminator-independent,
metric and expresses image similarity to the samples used in training.

The process of sampling the data is independent for each cell of the grid and it
consist on randomly selecting different mini-batches of the training dataset. In the
context of a grid, given grid size, there is an expectation that every sample will be
drawn at least once. This can be considered 100% coverage, over the grid, though
not at any cell. When the subset size is lower and/or the grid is smaller, this expected
coverage of the complete dataset is nonetheless higher than that of a subset drawn
for a single GAN trained independently of others.

For a fixed budget of training samples, when a GAN is trained with a larger
dataset and the batch size of a smaller dataset is maintained, the gradient is
estimated more often because there are more mini-batches per generation. (Given
the standard terminology that an epoch is one forward pass and one backward pass
of all the training examples, one epoch is one generation.) In contrast, in the same
circumstances, if the number of mini-batches is held constant, and the mini-batch
size increased, we incur a cost increase in RAM to store the mini-batch and the
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Algorithm 2 LipizzanerTraining: Select a new neighborhood from the cur-
rent one. Each mini-batch train discriminators against a randomly drawn generator
and generators against a randomly drawn discriminator, using SGD. Evaluate all
against each other, using minimum loss as value to choose best to replace worst and
update center. Return this new neighborhood.
Input: τ : Tournament size, X : Input training dataset, β : Mutation probability,
n : Cell neighborhood subpopulation, ds : Sub-set of the training dataset
Return: n : Cell neighborhood subpopulations

1: B ← getMiniBatches(ds) � Load mini-batches
2: B ← getRandomMiniBatch(B) � Get a random mini-batch to evaluate GAN pairs
3: for g, d ∈ g× d do � Evaluate all GAN pairs
4: Lg,d ← evaluate(g, d, B) � Evaluate GAN
5: end for
6: g, d ← select(n, τ ) � Tournament selection with minimum loss(L) as fitness
7: for B ∈ B do � Loop over batches
8: nδ ← mutateLearningRate(nδ , β) � Update neighborhood learning rate
9: d ← getRandomOpponent(d) � Get uniform random discriminator

10: for g ∈ g do � Evaluate generators and train with SGD
11: ∇g ← computeGradient(g, d) � Compute gradient for neighborhood center
12: g ← updateNN(g,∇g , B) � Update with gradient
13: end for
14: g ← getRandomOpponent(g) � Get uniform random generator
15: for d ∈ d do � Evaluate discriminator and train with SGD
16: ∇d ← computeGradient(d, g) � Compute gradient for neighborhood center
17: d ← updateNN(d,∇d , B) � Update with gradient
18: end for
19: end for
20: for g, d ∈ g× d do � Evaluate all updated GAN pairs
21: Lg,d ← evaluate(g, d, B) � Evaluate GAN
22: end for
23: Lg ← min(L·,d) � Fitness for generator is the average loss value (L)
24: Ld ← min(Lg,·) � Fitness for discriminator is the average loss value (L)
25: n← replace(n, g) � Replace the generator with worst loss
26: n← replace(n, d) � Replace the discriminator worst loss
27: n← setCenterIndividuals(n) � Best generator and discriminator are placed in the center
28: return n

gradient is estimated on better information but less frequently. To date, there is no
clear well-founded procedure or even a heuristic for setting mini-batch size.

We place all experiments on equal footing by training them with the same
budget of mini-batches while keeping mini-batch size, i.e., the number of examples
per mini-batch, constant. We experimentally vary the training set size per cell or
GAN and adjust the number of generations to arrive at the mini-batch budget. See
Eq. 14.4.

batches_to_train = training_dataset_size

mini-batch_size
× data_portion× generations. (14.4)
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Algorithm 3 MixtureEA: Evolve mixture weights ω with a ES-(1+1).
Input: GT : Total generations to evolve the weights, μ : Mutation rate, n : Cell
neighborhood subpopulation, ω : Mixture weights
Return: ω : mixture weights

1: for generation do ∈ [0, . . . , GT] � Loop over generations
2: ω′ ← mutate(ω,μ) � Gaussian mutation of mixture weights
3: ω′f ← evaluateMixture(ω′ , n) � Evaluate generator mixture score, e.g. FID for images
4: if ω′f < ωf then � Replace if new mixture weights are better
5: ω ← ω′ � Update mixture weights
6: end if
7: end for
8: return ω

Table 14.1 Batches and
generations used in
experimental comparisons
under equalization to the
same computational budget
(expressed as batches)

Portion of data 100% 75% 50% 25%

MNIST (Computation budget = 1.20×105)

Number of mini-batches 600 450 300 150

Number of generations 200 267 400 800

CelebA (Computation budget = 31.66×103)

Number of mini-batches 1583 1187 792 396

Number of generations 20 27 40 80

For example, given a budget of 1.2× 105 mini-batches and a mini-batch size of
100, when the training set size per cell is 60,000, there will be 600 mini-batches
per generation. We therefore train for 200 generations to reach the 1.2× 105 mini-
batches budget. When we reduce the training set size to 30,000 (50%), there will be
only 300 mini-batches per generation so we train for 400 generations to reach the
training budget of 1.2× 105 mini-batches.

Considering the dataset sizes in terms of images (60,000 in MNIST and 202,599
in CelebA), a constant batch size of 100 (Table 14.2), and the relative training data
subset size, we provide the number of generations executed in Table 14.1. The total
number of batches used to train MNIST is 1.20× 105 and CelebA is 31.66× 103

when training with the 100% of the data.
In this analysis, we compare Redux-Lipizzaner by using different grid

sizes (4 × 4 and 5 × 5 for MNIST and 3 × 3 for CelebA) with a Single GAN
training method. These different grid sizes allow us to explore the performance of
Redux-Lipizzaner according to different degrees of cell overlap. The datasets
selected, MNIST and CelebA, represent different challenges for GANs training
due to: first, the size of each sample of MNIST (vector of 784 real numbers) is
smaller than the same of CelebA (vector of 12,288 real numbers); second, MNIST
dataset has fewer number of samples than CelebA, and third, the size of the models
(generator-discriminator) is much larger for CelebA generation than for MNIST.
This makes the computational resources required to address CelebA higher than
for MNIST. Thus, we have defined our experimental analysis taking into account
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Table 14.2 Setup for experiments conducted with Redux-Lipizzaner on MNIST and
CelebA

Parameter MNIST CelebA

Coevolutionary settings

Generations See Table 14.1

Population size per cell 1 1

Tournament size 2 2

Grid size 1 × 1, 4 × 4, and 5 × 5 3 × 3

Mixture evolution

Mixture mutation scale 0.01 0.01

Generations 5000 5000

Hyper-parameter mutation

Optimizer Adam Adam

Initial learning rate 0.0002 0.00005

Mutation rate 0.0001 0.0001

Mutation probability 0.5 0.5

Network topology

Network type MLP DCGAN

Input neurons 64 100

Number of hidden layers 2 4

Neurons per hidden layer 256 16,384–131,072

Output neurons 784 64× 64 × 3

Activation function tanh tanh

Training settings

Mini-batch size 100 128

different overlapping patterns and datasets, but also the computational resources
available.

All these methods are configured according to the parameterization shown in
Table 14.2. In order to extend our analysis, we apply a bootstrapping procedure to
compare the Single GANs with Redux-Lipizzaner. Therefore, we randomly
generated 30 populations (grids) of 16 and 25 generators from the 30 generators
computed by using Single GAN method. Then, we compute their FIDs and create
mixtures to compare these results against Redux-Lipizzaner 4 × 4 and
Redux-Lipizzaner 5 × 5, respectively. We name these variants Bootstrap 4
× 4 and Bootstrap 5 × 5.

All methods have been implemented in Python3 and pytorch.1 The exper-
iments are performed on a cloud that provides 16 Intel Cascade Lake cores up to
3.8 GHz with 64 GB RAM and a GPU which are either NVIDIA Tesla P4 GPU with
8 GB RAM or NVIDIA Tesla P100 GPU with 16 GB RAM. All implementations

1Pytorch Website—https://pytorch.es/.

https://pytorch.es/
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use the same Python libraries and versions to minimize computational differences
that could arise from using the cloud.

14.5.2 Research Question 1: How Does the Accuracy
of Generators Change in Spatially Distributed Grids
When the Dataset Size Is Decreased?

We first establish a non-grid baseline by training a single GAN with decreasing
amounts of data and examining the resulting FID scores, see Table 14.3, and
Fig. 14.3 for pairwise statistical significance with a Wilcoxon Rank Sum test with
α = 0.01. What we see is obvious, FID score increases (performance worsens)
as the GAN is trained on less data. In 30 runs of single GAN training on 25% of
the data, the mean FID score is very high: 574.6 while the standard deviation of FID
score is 51.3% including the best FID score of 35.1. When the data subset is doubled
to 50%, the mean FID score drops to 71.2 but the observed standard deviation is
higher (104.6%). The best FID score falls to 30.1. Mean FID score improves with
75% of the data significantly (from 71.2 to 39.8) but minimally in terms of the best
FID score (30.1 vs. 30.2), see Table 14.4. A marked decrease in standard deviation
(104.6–12.4%) occurs. In all cases, the smaller training subsets do not match the
performance when training with 100% of the data where the best FID score is 27.4
and the mean FID score is 38.8, see Tables 14.3 and 14.4. These results are straight
forwardly explained by smaller quantities of data failing to sufficiently cover the
latent distribution.

We can now consider competitive coevolutionary grid-trained GANs where there
is one GAN per cell, the best of that cell’s training, at the end of execution (see
Table 14.3). This data allows us to isolate the value of the evolutionary training’s
communication in contrast to (1) the independently trained GANs we previously
evaluated and (below) (2) the performance impact of ensemble. Recall that the
overlapping neighborhoods facilitate signal propagation. GANs which perform well
in one neighborhood migrate to their adjacent and overlapping neighborhoods in a
form of communication. The grid-trained GANs achieve better FID scores, given the
same training budget, than independently trained GANs [25]. In the case of a 4 ×
4 grid, the experimental mean FID score is 37.3 with a standard deviation of 15.1%
and the best generator has a FID score of 26.4. The improvement over independently
trained GANs is present with the 5× 5 grid, where the experimental mean FID score
is 34.3 with a standard deviation of 19.9% and the best generator has a FID score
of 20.8. One possible explanation is that the communication indirectly leads to a
mixing of the data subsamples (that are drawn independently and with replacement)
that effectively improves the coverage of the data.

Figure 14.3 illustrates the statistical analysis of different methods evaluated here
when using the same amount of data. When using the smallest training datasets
(MNIST 25%), the use of Redux-Lipizzanerwith larger grids and allow signif-
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(a) (b)

(c) (d)

Fig. 14.3 Statistical analysis comparing the same amount of data applying different methods.
Black indicates no significance with α = 0.01. (a) MNIST 25%. (b) MNIST 50%. (c) MNIST
75%. (d) MNIST 100%

icant improvements of the results. The results provided by Redux-Lipizzaner
are also improved when the optimization of the mixture weights is applied. With
larger datasets (MNIST 75%), Redux-Lipizzaner 4 × 4 provides results as
competitive as the same with 5 × 5. Something similar is observed when the whole
data is used to rain the GANs.

Figure 14.4 shows the statistical analysis of the impact on the performance
of the methods analyzed here when using different size of training data.
Redux-Lipizzaner 4 × 4 provides similar results when reducing the training
data in 25% (i.e., for MNIST 100% and MNIST 75%). When the grid size increases,
i.e., Redux-Lipizzaner 5 × 5, the use of the training datasets with the half of
the data or larger does not show statistical differences in the results. However, the
application of the mixtures drives the results with the 100% of the data to be the
most competitive ones.

Scrutinizing Table 14.3, Figs. 14.3, and 14.4 indicate thatRedux-Lipizzaner
on a large grid, 5 × 5, performs among the best for all training data sizes.
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Table 14.4 Min(best) of the best FID in the grid for 30 independent runs for different data diets

Data diet

Dataset Variant 25% 50% 75% 100%

MNIST Single GAN 35.1 30.1 30.2 27.4

MNIST Single GAN Ensemble 33.7 30.0 26.9 27.1

MNIST Bootstrap 4 × 4 395.5 47.0 37.0 36.1

MNIST Bootstrap 4 × 4 Ensemble 33.6 32.7 30.7 28.0

MNIST Redux-Lipizzaner 4 × 4 31.8 28.8 27.1 26.4

MNIST Redux-Lipizzaner 4 × 4 Ensemble 26.5 28.1 24.6 21.1

MNIST Bootstrap 5 × 5 440.8 48.0 37.6 34.9

MNIST Bootstrap 5 × 5 Ensemble 34.8 28.1 28.0 29.8

MNIST Redux-Lipizzaner 5 × 5 30.5 26.8 27.3 26.3

MNIST Redux-Lipizzaner 5 × 5 Ensemble 26.3 21.9 21.2 20.8

CelebA Redux-Lipizzaner 3 × 3 39.3 39.0 39.4 42.0

CelebA Redux-Lipizzaner 3 × 3 Ensemble 48.3 42.4 38.9 42.7

(a) Single GAN (b) 4 4 (c) 5 5

(d) Single GAN Ensemble (e) 4 4 Ensemble (f) 5 5 Ensemble

Fig. 14.4 Statistical analysis comparing the same method with different size of data for MNIST
experiments. Black indicates no significance with α = 0.01. Figures (b), (c), (e), and (f) illustrate
the results of Redux-Lipizzaner and their mixtures. Figures (a) and (d) shows the results of
bootstrapping and its mixture

Furthermore, the Redux-Lipizzaner 4 × 4 can perform well with reduced
training data size. The CelebA results indicate that Redux-Lipizzaner has
similar response to data dieting on another data set. Future work on applying
Redux-Lipizzaner to address CelebA with larger grid sizes will allow
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us to confirm this statement. These results lend support to the hypothesis that
communication during training can accelerate the impact of small training
datasets. We can answer affirmatively, for the datasets we examined, for
Redux-Lipizzaner.

14.5.3 Research Question 2: Given We Use Ensembles,
If We Reduce the Data Quantity at Each Cell, at What
Point Will the Ensemble Fail to Unify the Resulting
Models Towards Achieving High Accuracy?

We can now consider two directions of inquiry, their order not being important,
in the context of the evolutionary GAN training that occurs on a grid. As well,
each cell’s neighborhood on the grid defines a subpopulation of generators and a
subpopulation of discriminators which are trained against each other. This naturally
suggests the neighborhood to be the set of GANs in each ensemble of the grid,
that is, the fusing of each center cell’s generator with its North, South, West, and
East cell neighbors. We, therefore, can compare the impact of a neighborhood-based
ensemble to each cell’s FID score.

We thus isolate communication from grid-based ensembles and we also isolate
co-trained ensembles from ensembles arising from independently trained GANs.
For tabular results, see Table 14.3. To measure the impact of ensembles in this
context, i.e., independently trained GANs, we sample sets of 5 GANS from the 30
different training runs and train an mixture. We formulate experiments with different
portions of the training dataset (i.e., 25%, 50%, 75%, and 100%. of the samples). We
train GANs individually (non-population based) with the same training algorithm as
when we train the GANs within Lipizzaner.

We first measure the improvement of a given method m (�(m)) attributable to
using mixtures (mensemble). This metric is evaluated as a percentage in terms of the
difference between the average FID of m, FID(m) and the average FID of the same
method when applying the mixtures FID(mensemble), see Eq. 14.5.

�(m) = FID(m)− FID(mensemble)

F ID(m)
%. (14.5)

We expect these results to be consistent with [6] who observed an advantage
with mixtures of generators. We start with the sets of generators obtained from the
30 runs of independent training for each data subset. For each data subset’s set, we
optimize the weights of 5 generators randomly drawn from it via ES-(1+1) for 5000
generations, and report the mean, min, and std of FID scores for 30 independent
draws. We see statistically significant improvements for some subsets of data (25
and 75%), see Table 14.5. The mean ensemble FID score with 25% subsets is 44.2
versus the single generator’s mean FID score of 574.6, an improvement of 92.3%.
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Table 14.5 Mean FID improvement �(m) by weighted ensembles for 30 independent runs
(Eq. 14.5) for different data diets

Data diet

Data set Variant 25% 50% 75% 100%

MNIST Single GAN 92.3% 50.2% 13.7% 0.7%

MNIST Bootstrap 4 × 4 92.4% 51.8% 13.1% 7.6%

MNIST Redux-Lipizzaner 4 × 4 6.2% 3.6% 8.0% 17.5%

MNIST Bootstrap 5 × 5 92.4% 55.5% 16.9% 10.6%

MNIST Redux-Lipizzaner 5 × 5 9.3% 7.4% 8.5% 23.5%

CelebA Redux-Lipizzaner 3 × 3 5.3% 11.1% 21.5% 7.1%

Table 14.6 Min(best) of the mean FID in the grid for 30 independent runs for different data
diets

Data diet

Dataset Variant 25% 50% 75% 100%

MNIST Bootstrap 4 × 4 395.5 47.0 37.0 36.1

MNIST Redux-Lipizzaner 4 × 4 38.3 33.9 32.9 28.6

MNIST Bootstrap 5 × 5 440.8 48.0 37.6 34.9

MNIST Redux-Lipizzaner 5 × 5 34.0 29.3 30.3 27.2

CelebA Redux-Lipizzaner 3 × 3 58.2 58.6 59.4 49.0

The improvement is diminishes at 50–50.2% and again at 75–13.7% and finally only
0.7% for 100%. When all the data is used for training, the least improvement but
still an improvement is observed.

These results can be anticipated because different subsets were used in training
and the fusion of the generators. An interesting note is that Redux-Lipizzaner
almost has an inverse progression of mixture effect, see Table 14.5, with the mixture
improving the performance of Redux-Lipizzaner more the more training data
is available.

Moreover, we study the capacity of the generative models created by using
the fusion method presented in Sect. 14.4.3 (see Algorithm 3) from GANs
individually trained. In Tables 14.6 and 14.7 the best and the mean FIDs of each
generator are shown. The FIDs improve as the training data size increases. This
again highlights the improvement of the accuracy on the generated samples for the
separate generator with more training data.

Finally, the results in Tables 14.6 and 14.7 are less competitive (higher FIDs)
than the ones presented in Tables 14.4 and 14.3, respectively. This delves on the idea
of the improvements on the results when mixtures are used. Figure 14.5 illustrates
the FID scores distribution at the end of an independent run of MNIST-4 × 4. We
cannot compare the results among the different data sizes because we have selected
a random independent run, and therefore, these results do not follow the general
observations discussed above. The impact of the mixture optimization is shown in
this figure. Here, we can observe how the ES(1+1) optimizes the mixture FID values
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(a) 25% - Uniform (b) 50% - Uniform (c) 75% - Uniform (d)100% - Uniform

(e) 25% - ES-(1+1) (f) 50% - ES-(1+1) (g) 75% - ES-(1+1) (h) 100% - ES-(1+1)

Fig. 14.5 FID score distribution through a given grid at the end of an independent run for MNIST-
4× 4. Lighter blues represent lower (better) FID scores. The first row (a, b, c, and d) illustrates the
FIDs of each ensemble by using uniform mixture weights. The third row (e, f, g, and h) shows the
FIDs of each ensemble by using the weights computed by the ES-(1+1)

for each cell and manages to improve most of them (the best cell of the grid is always
improved).

14.6 Conclusions and Future Work

The use of less training data reduces the storage requirements, both disk and RAM
while depending on the ensemble of generators to limit possible loss in performance
from the reduction of training data. In the case of Redux-Lipizzaner there is
also the potential benefit of the implicit communication that comes from the training
on overlapping neighborhoods and updating the cell with the best generator after a
training epoch. Our method, Redux-Lipizzaner, for spatially distributed evo-
lutionary GAN training makes use of information exchange between neighborhoods
to generate high performing generator mixtures. The spatially distributed grids allow
training with less of the dataset because of signal propagation leading to exchange of
information and improved performance when training data is reduced compared to
ordinary parallel GAN training. In addition, the ensembles lose performance when
the training data is reduced, but they are surprisingly robust with 75% of the data.

Future work will investigate the impact of distributing different modes (e.g.,
classes) of the data to different cells. In addition, more data sets will be evaluated,
as well as more fine grained reductions in amount of training data.
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Chapter 15
One-Pixel Attack: Understanding
and Improving Deep Neural Networks
with Evolutionary Computation

Danilo Vasconcellos Vargas

Abstract Recently, the one-pixel attack showed that deep neural networks (DNNs)
can misclassify by changing only one pixel. Beyond a vulnerability, by demonstrat-
ing how easy it is to cause a change in classes, it revealed that DNNs are not learning
the expected high-level features but rather less robust ones. In this chapter, recent
findings further confirming the affirmations above will be presented together with an
overview of current attacks and defenses. Moreover, it will be shown the promises
of evolutionary computation as both a way to investigate the robustness of DNNs
as well as a way to improve their robustness through hybrid systems, evolution of
architectures, among others.

15.1 Introduction

In the moment of writing this chapter, the world is dominated by deep neural
networks (DNNs) in what some researchers consider the third wave of intelligent
systems. Results in deep learning showed that DNNs can get extremely accurate
when provided with huge datasets. They are the first and currently the only
systems capable of dealing with high-dimensional problems such as image and
speech recognition. Moreover, the image recognition accuracy of DNNs surpasses
human beings in some tasks and there are many challenging tasks in which DNNs
outperform us (e.g., Go, Atari games, etc.).

In 2017, however, a paper appeared on arXiv showing that deep neural networks,
albeit extremely accurate, can be fooled by changing a single pixel [1]. It is
surprising that a high accuracy is possible to achieve even with such a low
robustness. Making a parallel for human beings, it would be similar to say that a
person can correctly answer most questions in mathematics but may fail if some
typos are inserted in the text.

D. V. Vargas (�)
Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
e-mail: vargas@inf.kyushu-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2020
H. Iba, N. Noman (eds.), Deep Neural Evolution, Natural Computing Series,
https://doi.org/10.1007/978-981-15-3685-4_15

401

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3685-4_15&domain=pdf
mailto:vargas@inf.kyushu-u.ac.jp
https://doi.org/10.1007/978-981-15-3685-4_15


402 D. V. Vargas

The one-pixel attack, which is the name given to the attack that can fool DNNs
by changing only one pixel, is part of different types of attacks. Before diving deep
into the one-pixel attack and other different types of attacks, I will describe briefly
some concepts used in the area that study these attacks called adversarial machine
learning.

15.2 Adversarial Machine Learning: A Brief Introduction

Adversarial machine learning is the area which studies attacks to all types of
machine learning. An attack is basically a search for closer inputs that can fool a
DNN. In other words, attacks can be seen as a constrained optimization problem,
i.e., a maximization of error constrained by a region around the original sample.

Let f (x) ∈ R
k be the output of a machine learning algorithm denoted by function

f in which x ∈ R
m×n×3 is the input of the algorithm for input and output of

respective sizes m × n × 3 (images with three channels are considered) and k. For
untargeted attacks, adversarial machine learning can be defined as the following
optimization problem:

minimize
δ

f (x + δ)c

subject to ‖δ‖ ≤ ε

(15.1)

in which f ()c denotes the soft label for the correct class c, ε is a threshold value, and
δ ∈ � is a small perturbation added to the input. The definition above regards black-
box untargeted attacks, for targeted attacks there are a couple of possible objective
functions. One could, for example, maximize the targeted class soft label tc:

maximize
δ

f (x + δ)tc

subject to ‖δ‖ ≤ ε

(15.2)

To verify if a given attack is successful, one must check if the soft label for
the correct class decreased enough, causing the classification to change. To this
modified sample that caused the change in class is given the name of adversarial
sample. Adversarial samples x ′ are explicitly defined as follows:

x ′ = x + δ

{x ′ ∈ R
m×n×3 | argmax

j

(f (x ′)) �= argmax
i

(f (x))}, (15.3)

in which i and j are the indices with the maximum value inside the output,
corresponding to the chosen class. There are also white-box attacks. They are
based on using information from gradients of DNNs to find adversarial samples.
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However, these types of attacks are less realistic in the sense that in real-world
scenarios one would not have access to such information. Moreover, gradients can
be masked to defend against such types of attacks. Lastly, evolutionary computation
is more suitable to multi-modal black-box problems which need a well-balanced
exploration-exploitation trade-off rather than a direct search strategy.

15.2.1 The Constraint

The constraint (‖δ‖ ≤ ε) in the optimization problem has a very important
meaning. It has the objective of disallowing perturbations which could make x

unrecognizable or change its correct class. Therefore, the constraint is itself a
mathematical definition of what constitutes an imperceptible perturbation.

Moreover, the norm in Eq. 15.1 can be of any type and each of them has
completely different meaning. Many different norms are used in the literature (e.g.,
L0, L1, L2, and L∞). This results in different definition of what is an imperceptible
perturbation, influencing the search space and allowing for different types of attacks.
Intuitively, the norms allow for different types of attacks. L0 allows attacks to
perturb a few pixels strongly, L∞ allows all pixels to change slightly while both
L1 and L2 allow for a mix of both strategies.

15.3 One-Pixel Attack

One-pixel attack aims to fool DNNs by changing only one pixel (Fig. 15.1).
Therefore, the one-pixel attack can be defined by slightly changing the initial

adversarial machine learning formulation. By modifying the norm to a L0 one and
limiting it to a maximum of 1, i.e., ε = 1, it is possible to define the one-pixel attack

Fig. 15.1 Illustration of the one-pixel attack
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Fig. 15.2 Examples of
one-pixel attacks created with
one-pixel attack that
successfully fooled three
types of DNNs trained on
CIFAR-10 dataset. The
original class labels are in
black color, while the target
class labels and the
corresponding confidence are
given below [1]

mathematically:

minimize
δ

f (x + δ)c

subject to ‖δ‖0 ≤ 1
(15.4)

To solve the optimization problem above, the one-pixel attack used a differential
evolution (DE) algorithm. DE is a type of evolutionary algorithm which optimize
functions by using a population of candidate solutions (called individuals). For more
details please refer to [2, 3].

Examples of attacks on CIFAR dataset are shown on Fig. 15.2. Each of these
adversarial samples successfully fooled various types of DNNs with similar accu-
racy (Table 15.1). Generally speaking, for all networks tested, circa a third of the
samples were found to have at least one pixel in which if perturbed correctly can
cause a change in class. Moreover, the results are not only limited to small input.
Figure 15.3 shows some adversarial examples found by attacking a DNN learned on
ImageNet (Table 15.2).
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Table 15.1 Accuracy of the
one-pixel attack on original
CIFAR-10 test set for both
targeted and non-targeted
attacks

AllConv NIN VGG16

Targeted 3.41% 4.78% 5.63%

Non-targeted 22.60% 35.20% 31.40%

Confidence 56.57% 60.08% 53.58%

Fig. 15.3 One-pixel attacks on ImageNet dataset [1]. To facilitate the visualization of the modified
pixels, they are highlighted with red circles. The original class labels are in black color, while the
target class labels and their corresponding confidence are given below

Table 15.2 Comparison of non-targeted attack effectiveness between one-pixel attack and other
works

Method Success rate Confidence Number of pixels Network

Our method 35.20% 60.08% 1 (0.098%) NIN

Our method 31.40% 53.58% 1 (0.098%) VGG

LSA[4] 97.89% 72% 33 (3.24%) NIN

LSA[4] 97.98% 77% 30 (2.99%) VGG

FGSM[5] 93.67% 93% 1024 (100%) NIN

FGSM[5] 90.93% 90% 1024 (100%) VGG
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Table 15.3 Success rate of one-pixel attack on both nearby pixels and a single randomly chosen
pixel

LENET RESNET

ORIGINAL ONE-PIXEL ATTACK 59% 33%

ONE-PIXEL ATTACK ON Random Pixels 4.9% 3.1%

ONE-PIXEL ATTACK ON Nearby Pixels 33.1% 31.3%

This experiment is conducted in the following manner. First the one-pixel attack is executed.
Afterwards, the same perturbation is used to modify one random or nearby pixel of the original
image and evaluate success of the method. To obtain a statistically relevant result, both random
and nearby pixel attack are repeated once per image for each successful attack in 5000 samples of
the CIFAR-10 dataset (in which there are 1638 successful attacks for ResNet and 2934 successful
attacks for LeNet)

One-pixel attack became widely known by its capability of fooling DNNs with
an extremely small perturbation. However, to what extent is the position of the
perturbed pixel important? In Table 15.3, it is shown that nearby pixels when
perturbed randomly have roughly a 30% chance to fool the network. In other
words, the exact position of the pixel itself is not the main factor. To explain this
experiment we must look into the inner workings of the initial layers. Recall that
DNNs process the initial input using convolution, therefore the influence of nearby
pixels on the convolution, which is a linear function, is similar. Therefore, there is
a high chance of finding nearby pixels which would cause the same vulnerability.
Thus, the vulnerable part of a neural network which is highlighted by the one-pixel
attack is the convolution. This is further evidenced by the similar accuracy rate on
different architectures [6].

15.3.1 How Is It Possible?

Notice that all networks attacked have state-of-the-art performance accuracy on the
tests. The obvious question is, how is it possible for highly accurate models to be
vulnerable to such a small perturbation? There are many other questions that arise
from recent results.

• Are DNNs chaotic systems?—The definition of a chaotic system is to have high
sensitivity to input. Therefore, are we dealing with some sort of chaotic learning
systems?

• Do DNNs learn high-level features?—Recall that DNN’s success originates
from the ability to automatically develop features which are better suited than
manually coded ones. It was believed and to some extent showed that high-level
features develop inside DNNs; however, recent results are showing counter-
examples. Thus, what features are really being learned?

In the following sections, we will dive deeper in to the questions above. To
understand as well as try to envision the future before us.
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15.3.2 Are Deep Neural Networks Chaotic Systems?

“Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” In chaos
theory, this is a question that somewhat delineate a counter-intuitive puzzle. The
puzzle that small perturbations can lead to great differences in final state. That is
why weather predictions are not very accurate for long periods of time. In chaos
theory, this is what could be said for dynamical systems that have one positive
Lyapunov exponent (Lyapunov exponent basically calculates if predictions have an
error that, with time, differs exponentially from the target system).

As showed previously, small perturbations to the input are enough to make
algorithms change completely their output. Thus, are machines chaotic systems?

If we consider chaotic systems as defined originally in dynamical systems, the
answer is no. First, machine learning systems are not, in their majority, dynamical
systems. This is true even when dealing with dynamic problems such as games.
Therefore, most of the definition and other related concepts cannot be applied here.

However, what can be said of non-dynamical systems that are somewhat sensitive
to perturbations? The point here is that the origin of chaos can be tracked down to
many complex iterations. This many iterations were connected to unlimited time
and some iterations in a limited space (small number of nodes interacting with each
other). What if, instead of unlimited time, we consider unlimited space and limited
time. The results could be a different type of chaos. A lot has to be rethought since,
for example, trajectories are less meaningful when time is limited. Moreover, as time
is limited, defining chaos as trajectories that exponentially separate is also, naturally,
non-applicable.

Thus, they are not chaotic machines by following strictly the current definition.
However, they may fit a different kind of chaotic system defined on unlimited space
rather than time. Further discussion on this goes beyond the topic of this chapter.

15.4 Do Deep Neural Networks Learn High-Level Features?

The main reason for the use of DNNs is their capability of learning features which
are not feasible to be coded manually. DNNs learn these features automatically and
based on them achieve high accuracy on many tasks. Many of these features were
believed to be high-level ones, such as, for example, the recognition of body parts to
classify a portion of an image as a human being or the recognition of eyes and nose
to classify an image patch as a face. However, high-level features should not change
by only a pixel. In other words, if a single pixel can change the final classification,
high-level features are probably not being recognized by the DNN.

The following subsections evaluate as well as try to understand DNNs to answer
the question of “Do DNNs learn high-level features?”



408 D. V. Vargas

15.4.1 Propagation Maps

To evaluate the effects of one pixel change throughout the layers of a given DNN,
let us define a map of the differences between layers of an adversarial perturbed
input and for the original input. To the map of the difference between feature maps
is given the name of propagation map [6]. Consider an element-wise maximum of a
three-dimensional array O for indices a, b, and k to be described as:

Ma,b = max
k

(Oa,b,0,Oa,b,1, . . . ,Oa,b,k), (15.5)

where M is the resulting two-dimensional array. Specifically, propagation map PMi

is defined for a layer i as:

PMi = max
k

(FMi,k − FMadv
i,k ), (15.6)

where FMi,k and FMadv
i,k are, respectively, the feature maps for layer i and kernel

k of the natural (original) and adversarial samples.
Figure 15.4 shows an example of a propagated map for a given adversarial

sample. The difference between feature maps shows that the change of one pixel not
only stays strong but also spread throughout the layers. This behavior reveals that
DNNs pay a lot of attention to small changes in the input. Moreover, such changes
are important for the processing even on deeper layers which were supposed to
process higher-level features.

15.4.2 Texture-Based Features

Results on ImageNet showed that no shape information is required to achieve an
accuracy that rivals the state-of-the-art [7]. The authors showed that a simple bag-
of-local-features is enough to have high accuracy on ImageNet. In fact, this result
suggests that current DNNs do not need more than the recognition of texture patterns
and may be limited to it. In [8], the authors show that current DNNs do not learn
well when only the contour or the silhouette of an object is given. Figure 15.5 shows
how accuracy changes from usual images to images in which only the shape is
preserved. Interestingly, the results observed of current DNNs do not change much
when only the texture of objects are shown. Thus, both results suggest that current
DNNs only process textures. The reliance on textures might be the culprit of the
lack of robustness, since some textures may change with a few pixels or some weak
noise but the shape would not.
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Fig. 15.4 Propagation Map (PM) for ResNet using a sample from CIFAR. The sample above is
incorrectly classified as automobile after one pixel is changed in the image. Values are scaled with
the maximum value for each layer of the feature maps being the maximum value achievable in the
color map. Therefore, bright values show that the difference in activation is close to the maximum
value in the feature map, demonstrating the strength of the former [6]

Fig. 15.5 Change of accuracy from original images to images in which only the shape is preserved
or images in which only the texture is preserved [8]
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15.4.3 Non-robust Features Are Enough

In [9] the authors further demonstrate that DNNs use non-robust features. Moreover,
in an experiment in which the training set is composed of only adversarial samples
and their corresponding incorrect classes, it is showed that training in this dataset
still results in high accuracy. Based on these results, it is possible to say that the
non-robust features learned is enough to predict the true label. Therefore, there
is no incentive for the algorithms to find robust features. Naturally, the previous
information takes into account that current DNNs are able to learn such robust
features which might not be necessarily true.

Before going deeper into the understanding of DNNs’ vulnerabilities and
limitations, it is important to dive deeper into the meaning of robustness. The next
section explicitly define robustness as a different objective which may sometimes
be at odds with accuracy.

15.5 Robustness vs. Accuracy: Different Objectives

For human beings, robustness against adversarial samples and accuracy are one
and the same objective. However, such is not true for algorithms. In the canonical
classification setting, the goal of a classifier is to achieve low expected loss:

E
(x,y)∼D

[L(x, y; θ)]. (15.7)

Robustness against adversarial attacks is a slightly different setting. To achieve
a high robustness in this setting, a classifier should have a lower adversarial loss in
noise δ ∈ � 1:

E
(x,y)∼D

[L(x + δ, y; θ)] . (15.8)

These two objectives are sometimes at odds. This is why many solutions end up
with a trade-off between accuracy and robustness rather than an improvement of
both.

1Here we use the error in noise to be the adversarial loss instead of the worst-case error, for a
discussion of the relationship between error in noise and adversarial samples please refer to [10].
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15.6 Attacks on Deep Neural Networks

There are many attacks which were shown to be effective, here some of them will
be reviewed briefly. All attacks can be divided into two types of attacks:

• Evasion Attacks—In this scenario, the attacker has only access to the machine
learning algorithm after it has already learned. Thus, attacks involve using small
modifications in the input to cause changes in the behavior of the algorithm.
Targeted type of attacks have aims to change the class to a specifically defined
class while untargeted attacks do not have a target, aiming only to fool the
algorithm. This is the most common type of attack and the one this chapter will
cover in detail.

• Poison Attacks—Most machine learning algorithms need to be trained in a given
dataset beforehand. The dataset used is sometimes open and may be modified by
attackers. Moreover, there are algorithm which use information throughout the
application to improve themselves. In both cases, poison attacks refer to when
attackers introduce vulnerabilities by modifying the dataset. This type of attack
will not be covered in this chapter.

The first paper on the subject dates back to 2013, when DNNs were shown to
behave strangely for nearly the same images [11]. Figure 15.6 shows examples of
the vulnerabilities found in the first experiments, in which a small amount of noise
added to all pixels of the image.

Afterwards, a series of vulnerabilities were found. In [12], the authors demon-
strated that DNNs output a high confidence when presented with textures and
random noise (Fig. 15.7). This suggests that confidence in current DNNs is less
meaningful than previously thought. A solution to this problem lies in changing
the problem formulation slightly to include a new class for unknown classes. This
solution will be discussed later in the section about defenses.

Single adversarial perturbations which can be added to most of the samples to
fool a DNN were shown to be possible [13]. To this type of adversarial perturbation
was given the name of universal adversarial sample. Figure 15.8 shows examples
of universal adversarial sample. Notice that the universal perturbations found differ
from network to network. They are only constant inside a single DNN.

Until now, perturbation took the form of a small noise added throughout the
image or in a single pixel. In 2017, researchers found that the addition of small
patches could fool the classifier [14] (Fig. 15.9). It might be less surprising to think
about a patch after even one pixel was able to fool the classifier. However, the
patches developed are targeted attacks and can therefore be a real threat to DNNs.
In other words, somebody could use an adversarial patch to disguise as an object or
somebody else.
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Fig. 15.6 First experiments on adversarial attacks. Original sample (left), added mask (middle),
and resulting image (right). The resulting image on the right was misclassified by the algorithm
[11]

Until now, examples were shown with relation to machine learning algorithms
which require images as input. However, this is in no way a requirement. For exam-
ple, text input can also be manipulated by changing letters slightly. Figure 15.10
shows an example of an adversarial sample for text input. In text input, there is an
equivalent to the one-pixel attack which is the swap of two letters (Fig. 15.11).

In fact, attacks do not need to be constrained to the development of single
perturbations. Automatic and smarter models could be created to change inputs
and create adversarial samples with high confidence. Figure 15.12, for example,
shows an example of how a rule can be developed to automatically create adversarial
examples for text input. The rule is composed of many pattern matching segments,
each segment composed of a search and change procedure. For more information
please refer to [16], the technique used to evolve such a rule is a type of co-
evolutionary algorithm.



15 Understanding and Improving Deep Neural Networks 413

Fig. 15.7 Random noise which is recognized with high confidence by DNNs [12]. The names
below the image represent the class in which they were classified by the DNN

15.6.1 Are These Attacks Feasible in the Real World?

All attacks showed here were executed in a lab. Some of these attacks are white-
box attacks in which attackers have access to even more information such as the
gradient of the DNN. Thus, the natural question is “can these attacks be used in the
real world ?” Or even, to what extent are the lack of robustness of DNNs critical and
dangerous?
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Fig. 15.8 Illustration of how a single perturbation can be used to fool a DNN independent of the
sample [13]

In [17], the authors showed that current attacks can be translated to real-world
threats by merely printing them out. They demonstrated that printed out adversarial
samples still work because many adversarial samples are robust against different
light conditions. Moreover, carefully crafted glasses can also be made into attacks
[18] or even general 3d adversarial objects were shown possible [19]. 3d adversarial
objects can be built with 3d printing machines and revealed that such objects exist
and can be explored by malicious users.
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Fig. 15.9 Example of an adversarial patch in which the classifier changed the classification from
banana to toaster [14]

Fig. 15.10 An adversarial text sample generated with the perturbations proposed in [15]. By
inserting an irrelevant fact: Some exhibitions of Navy aircrafts were often held here. (red),
removing an HTP: historic (blue), and modifying an HSP: Castle (red). The output classification is
successfully changed from Building to Means of Transportation. Liang et al. [15]

Fig. 15.11 An adversarial text sample generated by swapping the two letters (two elements of
perturbation, shown in red)
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Fig. 15.12 Example of a crafted universal rule (sequence of prototype-matching based perturba-
tion procedures) for fooling text classification. Using the technique proposed in this paper it is
possible to craft a universal rule which automatically create adversarial samples, i.e., once the
universal rule is crafted no search is needed anymore. In fact, the universal rule will only do a
few perturbations which is imperceptible to typos. In the figure, adversarial samples are generated
by one universal adversarial rule (changes to the original sample are shown with a different color.
Swapping is shown in red, deletion shown in green, insertion shown in blue.) [16]

15.7 Defense Systems

Many defensive systems and detection systems were proposed to mitigate the
attacks described previously. However, there are still no current solutions or
promising ones. Regarding defensive systems, defensive distillation in which a
smaller neural network squeezes the content learned by the original one was
proposed as a defense [20]; however, it was shown not to be robust enough in [21].
Adversarial training was also proposed in which adversarial samples are used to
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augment the training dataset. The main idea of adversarial training is to include
adversarial samples in the dataset to allow DNN to train and then be able to correctly
classify them. Indeed, this type of defense was showed to increase the robustness
[22–24]. The resulting neural network, however, is still vulnerable to attacks [25].
Moreover, it was shown in [26] that adversarial samples insert a bias to the type
of adversarial sample used. For example, adversarial samples related to L∞ attacks
will increase the robustness against L∞. However, robustness against L0 types of
attacks would not be increased and may even decrease.

There are many other variations of defenses [27, 28] which were carefully
analyzed and many of their shortcomings explained in [29, 30]. In brief, many
defenses are based on hiding the gradients from DNNs, called gradient masking.
These modifications result in DNNs that are more difficult to attack for white-
box attacks which rely on this information. However, it was showed that gradient
masking gives a false sense of security, since they do not remove the vulnerability
but they only hide it. Methods that do not rely on gradients can bypass gradient
masking techniques resulting in no improvement of robustness.

Another type of defense systems are not based on variations of previous DNNs
but structural or even revolutionary modifications. For example, the addition of the
unknown class to correctly classify examples that are just pure noise. OpenMax
layer was proposed as a layer that is able to learn with this additional class [31].
Actually, there are many new types of machine learning algorithms which may be
robust but were never tested. An example of this is the CapsNet [32] which was
shown to be relatively more robust recently. Thus, partial solutions may lie on less
usual places or even already exist but still be hard to find.

15.7.1 Detection Systems

Detection systems are a subfield of defenses. They aim to identify the presence
of a malicious sample rather than removing the vulnerability. Regarding detection
systems, a study from [33] revealed that adversarial samples in general have
different statistical properties which could be exploited for detection. In [34], the
authors proposed a system which compares the prediction of a classifier with the
prediction of the same input but “squeezed” (either color or spatial smoothing). This
technique allowed classifiers to detect adversarial samples with small perturbations.
Having said that, many detection systems might fail when adversarial samples differ
from test conditions [35, 36]. Thus, the clear benefits of detection systems remain
inconclusive.
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15.8 Overview of the Current State of Robustness:
Evaluating Algorithms and Defenses

Previous sections showed many attacks and defenses but failed to give an overview
of the current state in terms of their robustness. To realize this, two attacks based
on different objectives will be defined based on [26]. The difference between these
attacks will serve the purpose of analyzing the state-of-the-art DNNs and defenses
from two different perspectives. We will see that robustness changes depending on
the type of attack used. Notice that the objective here is not to achieve 100% attack
accuracy (which can be achieved provided enough noise is inserted) but rather
to evaluate DNNs in very restricted L0 and L∞ attacks. These restricted L0 and
L∞ attacks have several advantages such as (a) evaluating all DNNs and defenses
with the same fixed amount of perturbation and (b) possessing no false adversarial
samples. Figure 15.13 shows an example of a false adversarial sample with very
few amount of perturbation which would be allowed in most attacks based on L1
and L2.

15.8.1 Threshold Attack (L∞ Black-Box Attack)

The threshold attack optimizes the constrained optimization problem defined in
Eq. 15.1 with the constraint ‖δ‖∞ ≤ ε, i.e., it uses the L∞ norm. ε is a threshold
which is set here to be one of the following values {1, 3, 5, 10}.

Threshold attack encode solutions as a matrix of pixel variations. Therefore, the
search space is the same as the input space because the variables can be any variation

Fig. 15.13 Example of a false adversarial sample (right) and its respective original sample (left)
[26]. The false adversarial sample is built with few total perturbations (i.e., low L1 and L2) but
with unrecognizable final image (false adversarial sample). This is a result from non-constrained
spatial distribution of perturbations which is prevented if low L0 or L∞ is used. In fact, this attack
has a L2 of merely 356, well below the maximum L2 for the one-pixel attack



15 Understanding and Improving Deep Neural Networks 419

of the input as long as the threshold is respected. Therefore, the algorithm search
happens in R

m×n×3 space.
The threshold attack uses the state-of-the-art black-box optimization algorithm

called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [37]. To satisfy
the constraint, a clipping function is used to keep the values inside the feasible
region, i.e., a simple repair method is employed in which pixels that surpass the
minimum/maximum are brought back to the minimum/maximum value.

15.8.2 Few-Pixel Attack (L0 Black-Box Attack)

The few-pixel attack is a variation of the one-pixel attack [1]. It optimizes the
constrained optimization problem defined in Eq. 15.1. However, the constraint used
is ‖δ‖0 ≤ ε, i.e., it uses the L0 norm. ε is a threshold which may also admit one of
the following values {1, 3, 5, 10}.

Few pixel attack uses a search variable which is a combination of pixel values (3
values) and position (2 values) for all of the pixels (ε pixels). Therefore, the search
space is smaller than the threshold attack with dimensions of R5×ε . To conduct the
optimization, we use the CMA-ES.2 The constraint is always satisfied because the
number of parameters is itself modeled after the constraint. In other words, when
searching for one pixel perturbation, the number of variables are fixed to pixel
values (three values) plus position values (two values). Therefore it will always
modify only one pixel, respecting the constraint. Since the optimization is done in
real values, to force the values to be within range, a simple clipping function is used
for pixel values. For position values a modulo operation is performed.

15.8.3 Analysis and Discussion

Table 15.4 shows results on various state-of-the-art DNNs: WideResNet [38],
DenseNet [39], ResNet [40], Network in Network (NIN)[41], All Convolutional
Network (AllConv) [42], CapsNet[32], and LeNet [43]. It reveals that they are
vulnerable to all types of attacks in all levels. This demonstrates that although
robustness may differ between current DNNs, none of them is able to completely
overcome even the lowest level of perturbation possible.

Results within a Hamming distance of five from the lowest are considered to
be equally good. These results are written in bold. CapsNet and AllConv can be

2Notice that we do not use DE optimization algorithm which was used in the original version of
the one-pixel attack. The reason for this is that DE performed worse than CMA-ES in the threshold
attack and both threshold and few-pixel attack should ideally have the same optimization algorithm.
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Table 15.4 Attack accuracy results for few-pixel attack (L0 black-box attack) and threshold attack
(L∞ black-box attack) [26]

L0 Attack’s ε

Model (Accuracy) 1 3 5 10

WideResNet (95.12) 11% 55% 75% 94%

DenseNet (94.54) 9% 43% 66% 78%

ResNet (92.67) 12% 52% 73% 85%

NIN (90.87) 18% 62% 81% 90%

AllConv (88.46) 11% 31% 57% 77%

CapsNet (79.03) 21% 37% 49% 57%
LeNet (73.57) 58% 86% 94% 99%

L∞ Attack’s ε

Model (Accuracy) 1 3 5 10

WideResNet (95.12) 15% 97% 98% 100%

DenseNet (94.54) 23% 68% 72% 74%
ResNet (92.67) 33% 71% 76% 83%

NIN (90.87) 11% 86% 88% 92%

AllConv (88.46) 9% 70% 73% 75%
CapsNet (79.03) 13% 34% 72% 97%

LeNet (73.57) 44% 96% 100% 100%

Left column shows the model attacked with the classification accuracy between brackets. The attack
is performed over 100 random samples from the CIFAR dataset using the CMA-ES optimization
algorithm. Results in bold are the lowest attack accuracy and other results which are within a
distance of five from the lowest one

considered the most robust with five bold results. The third place in robustness
achieves only three bold results and therefore is far away from the top performers.

The behavior of L0 and L∞ differ specially in the most robust DNNs, showing
that the robustness is achieved with some trade-offs. Moreover, this further justifies
the importance of using both metrics to evaluate DNNs.

Defenses can also be attacked with similar accuracy. Table 15.5 shows the
few-pixel and threshold attacks’ accuracy on adversarial training (AT) [24], total
variance minimization (TVM) defenses [28], and feature squeezing (FS) [34].
Regarding the adversarial training, it is easier to attack with the few-pixel attack than
with threshold attack. This result should derive from the fact that the adversarial
samples used in the training contained mostly images from L∞ type of attacks.
This happens because Projected Gradient Descent (PGD), which was used to create
the adversarial samples for the adversarial training, is a L∞ attack. Therefore, it
suggests that given an attack bias that differs from the invariance bias used to train
the networks, the attack can easily succeed. Regarding TVM, the attacks were less
successful but the original accuracy of the model trained with TVM is also not great.
Therefore, even with a small attack percentage of 24% the resulting model accuracy
is 35%. Attacks on feature squeezing had a relatively high accuracy. This is true
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Table 15.5 Accuracy results for few-pixel (L0) and threshold attack (L∞ black-box attack) on
adversarial training (AT) [24], total variance minimization (TVM) [28], and feature squeezing (FS)
[34] defenses

L0 Attack’s ε

1 3 5 10

AT (87%) 22% (67%) 52% (41%) 66% (29%) 86% (12%)

TVM (47%) 16% (39%) 12% (41%) 20% (37%) 24% (35%)

FS (92%) 17% (72%) 49% (44%) 69% (26%) 78% (19%)

L∞ Attack’s ε

1 3 5 10

AT (87%) 3% (84%) 12% (76%) 25% (65%) 57% (37%)

TVM (47%) 4% (45%) 4% (45%) 6% (44%) 14% (40%)

FS (92%) 26% (64%) 63% (32%) 66% (29%) 74% (22%)

In the leftmost column, the original attack is between brackets. The numbers between brackets in
the other columns are the resulting accuracy of the defenses when under attack. For the modified
accuracy, the value is calculated by multiplying the original accuracy by one minus attack accuracy.
The attack is performed over 100 correctly classified samples from the CIFAR dataset [26]

for both L0 and L∞ attacks. Moreover, both types of attacks had similar accuracy,
revealing a lack of bias in the defense system.

In summary, defense systems proposed until now do not give a relevant improve-
ment to robustness when all types of attacks are taken into consideration. In this
section, the current results after 7 years of research were presented, i.e., since the
first paper on adversarial machine learning was presented. This open problem is still
a recent one but it is part of a very active research area with huge socioeconomic
impact (autonomous cars and other applications need the solution to this to be
reliable). Therefore, there is a chance that the solution for DNNs, if it exists, will
not be a trivial one.

15.9 Down the Rabbit Hole: The Representation Problem

Researchers do not agree upon what could be the cause for DNN’s lack of
robustness. A recent result, however, suggests that the problem may lie in the
faulty representation learned by DNNs [44]. The results reveal that the quality
of representation is well aligned with the attack accuracy. Before going into the
details of the results, the representation metric and its relationship to the error of the
learning algorithm will be introduced.
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15.9.1 Representation Metric

Take Eq. 15.8 and consider the loss to be the mean squared error (MSE), we have

E
(x,y)∼D

[L(x+δ, y; θ)] = E
(x,y)∼D

[(f (x+δ)−h(x+δ))2]+ E
(x,y)∼D

[(h(x+δ)−ŷ(x+δ))2],

where h(x) = E[hD(x)] is the expected behavior of the prediction when averaged
over many datasets, f (x) is the ground-truth, and ŷ(x) = hD(x) is the output
after learned on a given dataset D. For robustness to increase, adversarial training
requires that datasets should have many noisy samples, i.e., x + δ ∈ D. However,
the more noise is added to images the more D becomes close to all possible images
of size M ×N , i.e., RM∗N :

lim
�→∞D = R

M∗N . (15.9)

However, f (x) is undefined3 for D ∈ R
M∗N in which y /∈ C for the set of known

classes C. Even a small amount of noise may be enough to cause y /∈ C and thus
f (x) undefined. Therefore, the following question arises. Would it be possible to
evaluate the robustness and/or the quality of a model without a well defined y?

To answer this question we take into account an ideal representation z and the
representation learned by the model ẑ:

E[(f (x + δ; z)− h(x + δ; ẑ))2] + E[(h(x + δ; ẑ)− ŷ(x + δ; ẑ))2]. (15.10)

Interestingly, although y is undefined, z represents the features learned and is
well defined for any input. Moreover, by considering learned classes to be clustered
in z space, unsupervised learning evaluation can be used to evaluate z even without a
well defined y. We use here a famous clustering analysis index to evaluate clusters in
z by their intracluster distance. In z, it is also possible to evaluate the representation
of known and unknown classes which should have common features. Moreover, we
hypothesize here that unknown classes should evaluate z with less bias because a
direct map from input to output is nonexistent. Any projection of the input in any of
the feature maps or the output layer could be used as z. To take the entire projection
into account, we use here z as the final projection of the input to the classes, i.e., z

is the soft label array e.
Thus, to evaluate representation quality we define the Davies–Bouldin metric

based on the clustering analysis of the soft label array for unknown classes. It is
specifically defined as follows.

3Alternatively, f (x) could be defined for any noise if an additional unknown class is defined, such
as with an OpenMax layer [31].
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15.9.1.1 Davies–Bouldin Metric: Clustering Hypothesis

Soft labels of a classifier compose a space in which a given image would be
classified as a weighted vector concerning the previous classes learned. Considering
that a cluster in this space would constitute a class, we can use clustering validation
techniques to evaluate the representation. Here we choose for simplicity one of the
most used metric in internal cluster validation, Davies–Bouldin Index (DBI). DBI
is defined as follows:

DBI =
⎛

⎝ 1

ne

ne∑

j=1

∣
∣ej − cn

∣
∣2

⎞

⎠

1/2

, (15.11)

in which cn is the centroid of the cluster, e is one soft label, and ne is the number of
samples.

Interestingly, this metric resembles the variance from Eq. 15.10 which is the only
part that is defined (the bias error is nonexistent for undefined y). If the centroid cn
does not vary with the dataset, both equations are one and the same. Therefore, the
DBI metric can be seen as an approximation of the variance. Here, however, only
unknown classes will be used to avoid any bias present from learning directly the
input-output map.

15.9.2 Analysis

To evaluate the DBI metric on unknown classes, a classifier is trained in c−1 classes
and tested on the remaining one. This process is repeated for all c classes. Table 15.6
shows the Pearson correlation between attacks and the DBI metric in the CIFAR
dataset. The majority of the results reveal a strong correlation. Moreover, they show
that both are inversely correlated which is expected since a higher DBI means sparse
clusters, consequently worse representation, and higher L2 means higher robustness.

15.10 The Role of Evolutionary Computation

Evolutionary computation was shown to be able to attack DNNs. Evolutionary algo-
rithms are well suited for black-box attacks in which very few, if any, information
about the neural network is known. In fact, those are the types of attacks that are
more realistic because attackers have little knowledge about the structure and what
is inside DNNs.

Moreover, attacks can also be used to study DNNs. Thus, evolutionary computa-
tion can be used, as already shown by previous examples, to attack and understand
DNNs.
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In this section, the objective is to give an overview of the possibilities allowed by
evolutionary computation to solve adversarial machine learning, going beyond the
understanding and attacking of DNNs. In other words, here, many possibilities of
learning systems will be discussed. These learning system might shape the path to a
partial or even complete solution to inherently robust learning system.

15.10.1 Evolving Robust Architectures

There are many possible DNN architectures. It is, however, difficult to search
manually and test each one of them. To solve this, in [45] the authors proposed to
search for architectures using evolutionary computation. The search space includes
many types of layers, multiple branches, and even any combinations of convolution
and full connected layers, i.e., multiple bottlenecks are possible.

The architecture found had its vulnerability decreased to around half the value
of other architecture search methods (Table 15.7). Moreover, these results are only
based on modifying the architecture, i.e., without adversarial training. Thus, when
other defenses are included, it is possible to achieve even higher robustness. This is
a promising research line which is still merely beginning.

15.10.2 Neuroevolution

Previously, it was shown that a faulty representation might be the main culprit for the
lack of robustness. Neuroevolution, which is the area concerned with the evolution
of neural networks both in weights as well as in topology [48]. In other words,
neuroevolution methods are not only limited to search for better weights, some of
them also search for better topologies. And a couple of these methods also search
for neuron models and connection types. One of the few of these methods is the
Spectrum-diverse Unified Neuroevolution Architecture (SUNA) [49].

Table 15.7 Error Rate (ER)
on both the testing dataset
and adversarial samples for
the best architecture find
when the evaluation function
has both accuracy on the
testing data and accuracy on
the adversarial samples

Architecture ER on adversarial

search Testing ER samples

DeepArchitecta [46] 25% 75%

Smasha [47] 23% 82%

Ours 18% 42%

The test was done over the CIFAR dataset and the adver-
sarial examples were also created using some samples
from the test dataset of the CIFAR dataset
aBoth DeepArchitect and Smash had their evaluation func-
tion modified to be the sum of accuracy on the testing and
adversarial samples
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Fig. 15.14 Neuron activation process and possible activation functions for SUNA

Figure 15.14 shows the unified neuron model proposed and used by SUNA.
Notice that this unified neuron model has an internal state, allowing for slower
or faster neurons to be defined. Moreover, the architecture of SUNA also enable
connections and neurons to be neuromodulated. The explanation of all these
functions and more details about the architecture and results go beyond the scope of
this chapter. To learn more about SUNA and how it tackled five complete different
hard problems without any parameter change, please refer to [49].

15.10.3 Self-Organizing Classifiers

Learning complex representations may help as mentioned in Sect. 15.10.2. However,
these representations are not easy to adapt to newer problems. They are also not
easy to learn and increment. This is a consequence of its monolithic complexity.
Self-Organizing Classifiers (SOC) introduce a map that divides input into different
groups (subpopulations) [50]. Each of these groups can change whenever a input
is presented that is different enough from the past experience. Moreover, in each
group there is population of neural networks that evolve to adapt to the type of
inputs it receives. Since the type of inputs of each group differs, neural networks
can be specialized and, consequently, less complex. Figure 15.15 illustrates SOC’s
architecture.

This type of divide and conquer approach with neural networks allows for a
collection of relatively simple models to tackle complex problems. Interestingly,
since each group is specialized, more knowledge can be added in a modular manner,
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Fig. 15.16 Dynamic maze problem in which the dimensions also change, growing from 10 × 10
to 10× 20 state and vice versa. The black square is the objective while the gray ones are the wall.
Further details of the experiment and the performance of the algorithm can be found in [53]

by merely adding new groups. Many variations of SOC were released improving
further on its first versions [51, 52]. For example, including more robust group
updates among other upgrades. These improvements allowed SOC to tackle very
challenging problems such as dynamic mazes (mazes that change their configuration
with time, similar to mazes used to test the learning abilities of mice). Figure 15.16
shows an example of maze solved [53].

15.10.4 Hybrids

All methods described in previous subsections are purely using evolutionary
algorithms for learning (in the case of SUNA and SOC) or using evolution to
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search for architectures which are trained solely with gradient based methods.
However, most of the gradient based optimization used in DNNs can be used in
the middle of evolutionary algorithms in many ways. Neuroevolution can use parts
of neural networks already learned with gradient based methods and SOC methods
can even benefit from a competition between gradient and non-gradient based neural
networks inside each group. The options are endless and we are only starting to
explore them.

15.11 What Lies Beyond

In this chapter, adversarial machine learning was reviewed exposing its current state-
of-the-art attacks and defenses. We saw that, albeit much effort of researchers,
robustness has barely improved. However, since the research area started in
2013, we understand more deeply the meaning and causes of robustness against
adversarial samples.

Moreover, many paths to solve many of the problems from adversarial machine
learning were pointed out. These solutions involve evolutionary machine learning
and hybrids which are not limited in the complexity of their models. Examples of
such evolutionary machine learning algorithms are SUNA and SOC which possess
more complex models as well as more adaptive (modular) ones.
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